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HARDING, MILLER, LAWSON & ASSOCIATES

I INTRODUCTION 

This report presents the results of our soil investigation of 

the recent landslide in the coastal bluff at the Diablo Canyon site, 

San Luis Obispo County, California.  

We understand that the landslide occurred during the early part 

of this year in the cove located adjacent to the Pacific Ocean and 

west of the existing plant access road near the warehouse and batch 

plant. We also understand that this area is not presently part of 

the nuclear plant construction; however, it may be the location for 

future cooling water discharge conduits.  

The purpose of our work was to investigate the probable cause, 

extent, and condition of the recent slide in order to provide you 

with conclusions and recommendations for stabilization of the land

slide area.
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HARDING, MILLER, LAWSON & ASSOCIATES

II FIELD EXPLORATION AND LABORATORY TESTS 

We performed a field investigation of the landslide and surround

ing area by conducting a geologic reconnaissance and by drilling four 

test borings. The general site conditions and boring locations are 

shown on the accompanying Site Plan, Plate 1, Section IX. The borings 

were drilled with a 24-inch diameter bucket auger drill rig to depths 

ranging from 13 to 46 feet. Each boring was logged by our geologist 

who also obtained representative samples of the soil and rock pene

trated. These samples were tested in our laboratory to determine 

moisture content, dry density, and shear strength. The results of 

these tests are shown on the boring logs, Plates 6 through 9 in the 

Appendix.
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HARDING, MILLER, LAWSON & ASSOCIATES

III SITE CONDITIONS 

The landslide is approximately 200 feet wide and occupies the 

full height of the bluff face above a cove that is contiguous to 

the Ocean. The existing slope in places is as steep as 1-1/3 

horizontal to 1 vertical. The top of slope is approximately 105 

feet above Sea Level. The top of the slide is approximately 15 feet 

laterally from the toe of the existing fill for the plant access 

road.  

The slide surface contains numerous tension cracks and scarps 

especially along the upper limits. Some of the slide debris has 

moved to the base of the slope along the beach where wave action 

continuously removes loose material. A 15-foot deep and 25-foot wide 

erosion gully is present in the center of the slide. The gully is a 

result of outlet flow from an existing 4-1/2 foot diameter culvert 

pipe located at the top of slope. The culvert inlet is located across 

the plant access road near the warehouse. The flow has since been 

diverted around the slide area and is presently contained in a 

temporary drainage ditch leading to the cliff edge to the south.  

Numerous shallow mud flows are present on the slope outside the 

present slide limits. Evidence of soil creep, the gradual movement 

of soil on slopes due to shrinkage and expansion resulting from mois

ture changes, is also present on the slope. Seepage and springs 

exist in the area, especially along the toe of slope. Existing 

erosion gullies expose the deeply weathered bedrock.
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HARDING, MILLER, LAWSON & ASSOCIATES

IV SOIL AND ROCK CONDITIONS 

According to boring data and surface exposures, the landslide 

and adjacent slope is underlain by soils consisting of silt, clay, 

and sand; the soils overlie volcanic bedrock. The rock consists of 

altered tuff, generally sheared and deeply weathered, with occasional 

tuffaceous siltstone and shale interbeds.  

The east and west cliff faces of the cove contain hard vitric 

tuff and shale bedrock, producing steep rock slopes which are rela

tively resistant to erosion.  

Seepage was observed in Borings 1 and 2; however, only two feet 

of water accumulated in Boring 1 after two days. Both Borings 1 and 

2 have been converted to observation wells by installing 12-inch 

diameter PMP casing and backfilling the sides with drain rock. Since 

borings were not drilled within the slide mass due to inaccessibility, 

the location of the slip plane can only be inferred. Surface condi

tions indicate slide debris extending to the beach at the base of 

the slope, suggesting the presence of a rotational-type slide. Sub

surface conditions are illustrated on the accompanying Cross Sections, 

Plate 2.
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HARDING, MILLER, LAWSON & ASSOCIATES

V GEOLOGY 

The bedrock in the slide area is assigned to the Obispo tuff 

member of the Monterey Formation of Miocene Age. The Obispo tuff 

stratigraphically underlies the sedimentary rocks of the Monterey 

formation found to the north. The contact between these two units 

is located north of the slide.  

The altered tuff underlying the north slope of the cove and 

beach is apparently in fault or intrusive contact with the stronger 

vitric tuff forming the adjacent steep cliffs. The altered tuff is 

highly sheared adjacent to the vitric tuff, indicating intense frac

turing due to past movement along the contact. Evidence of slicken

sides, fault gouge, and breccia is present along the contact at the 

base of the west cliff face.  

The sand and gravel overlying the bedrock represents marine 

terrace deposits on an ancient wave cut bench formed during the 

Pleistocene. The thickness of overburden at this location suggests 

the presence of an ancient ravine area, probably extending farther 

upslope. The ravine probably formed as a result of the deep erosion 

of the relatively weak tuff. The ancient ravine area later became 

filled and covered with younger alluvium and is presently not.  

distinguishable on the surface. The upper portions of the soil 

overburden are part of the large alluvial fan forming most of the 

gentle slopes in the area to the north.

5



HARDING, MILLER, LAWSON & ASSOCIATES

VI DISCUSSION 

The landslide above the cove represents an accelerated form of 

the natural process of bluff regression; it occurred at this location 

for the following reasons: 

1. The thick alluvial soil is unstable on the steep 
existing slope, especially when it overlies weak 
material such as the tuff rock-type present.  

2. The terrace deposit of sand and gravel overlying 
the bedrock probably carries water acquired from 
surface infiltration of the upper alluvial fan, 
especially during heavy rainfall.  

3. Erosion and removal of the slope toe by wave 
action continuously produces the existing steep 
slope, preventing natural stabilization by normal 
slope flattening due to continued slide activity.  

4. The concentrated flow of water from the existing 
culvert hastened the sliding process.

6



HARDING, MILLER, LAWSON & ASSOCIATES

VII CONCLUSIONS 

On the basis of our investigation, we conclude that the land

slide can be stabilized. Corrective measures should be taken since 

it is probable that the slide area will enlarge with time unless 

the stability is improved. The completeness of the corrective 

measures (and therefore the cost) can vary through wide limits 

depending upon the importance of minimizing future movements. We 

do not believe the slide represents a threat to the safety of 

persons or existing or proposed structures. The access road could 

become undermined with time but it appears relatively simple to 

relocate it farther uphill should this occur.  

Three alternate schemes of correction are presented in subse

quent parts of this report. Scheme 1 is the minimum we believe 

should be done if the enlargement of the slide area is to be 

retarded. Future movement could occur but the chance of it happening 

and the magnitude if it happens should be greatly reduced. Scheme 3 

should prevent future sliding. While no slide correction is fool

proof, experience has been excellent with slide areas retained by 

the extensive method shown. Scheme 2 is an intermediate method in 

terms of cost and expected performance.

7



HARDING, MILLER, LAWSON & ASSOCIATES

VIII RECOMMENDATIONS 

A. Scheme No. 1 

Objective: To perform a limited amount of slope reconstruction 

and drainage installation necessary to reduce but not completely 

eliminate continued slide movement.  

Corrective measures should include 

1. Resurface the existing slope of the landslide and 
surrounding area by removing steep scarps, loose 
surface material, and filling erosion gullies and 
tension cracks with compacted soil.  

2. Remove excess water in the existing observation 
wells by pumping during periods of rainfall or 
when required.  

3. In lieu of No. 2, provide gravity drainage of the 
-wells by installing perforated tar-coated pipe in 
hydrauger borings drilled from the base of the 
slope up to the bottom of each well.  

4. Provide slope protection at the landslide toe in 
the form of a 30-foot wide and 15-foot high berm 
of riprap to reduce continued erosion by wave 
action. Riprap should consist of 1/2-ton class 
material placed by clam-type equipment.  

5. Concrete line the existing drainage ditch located 
along the south top of slope to prevent any further 
infiltration of surface water from the culvert.  

Illustration of the above scheme is presented on Plate 3 in 

Section IX.

8



HARDING, MILLER, LAWSON & ASSOCIATES

B. Scheme No. 2 

Objective: Stabilization of the landslide by buttressing and 

surfacing the slope with riprap.  

Corrective measures should include 

1. If sufficient riprap is available, provide a slope 
buttress and surface cover as shown on Plate 4, 
Section IX. Approximately 16,000 to 18,000 cubic 
yards of light class material will be required and 
should be placed by Method B as specified in the 
State of California Standard Specifications. The 
buttress portion (behind the 1:1 slope) should 
consist of 1/2-ton class material placed by clam
type equipment.  

2. Prior to the placement of riprap, dress and smooth 
the existing slope by grading loose slide debris 
and soil.  

3. The drainage ditch located on the top of slope 
should be concrete-lined as previously recommended 
under Scheme No. 1.  

C. Scheme No. 3 

Objective: To perform the most thorough slope reconstruction 

necessary for stabilization of the landslide area.  

Corrective measures should include 

1. Excavate the unstable slide debris (approximately 
30,000 cubic yards) and stockpile in an area south 
of the existing leach field to allow for drying.  

2. Excavate keyways into firm soil or bedrock below 
the slide plane, as shown on Plate 5, Section IX.  

3. Install subdrainage in the base of the excavation and 
along keyways where required. Approximately 600 feet 
of six-inch diameter perforated metal pipe will be 
required with 180 feet of six-inch diameter CMP.  
Approximately 500 cubic yards of crushed drain rock 
also will be required. Provide subdrain cleanout 
risers.

9



HARDING, MILLER, LAWSON & ASSOCIATES

4. Reconstruct the slope with compacted fill using the 
stockpiled material after moisture conditioning as 
required. Compact the fill to at least 90 percent 
of the maximum dry density determined by the ASTM 
D1557-66T(C) compaction test method. Fill placement 
should be in lifts no greater than eight inches 
loose thickness and compacted with sheepsfoot rollers.  

5. Provide riprap slope protection at the toe to reduce 
the amount of erosion due to wave action. Approxi
mately 1500 cubic yards will be required. Riprap 
should consist of material as specified in Scheme 
No. 2, paragraph 1.  

6. Provide an 8- to 10-foot wide bench approximately 
halfway up the slope to allow for collection and 
diversion of surface water.  

7. Upon completion of the compacted fill, the slope 
surface should be planted with deep-rooted vegetation 
to retard erosion and sloughing.  

8. The drainage ditch located on the top of slope should 
be concrete-lined as previously recommended under 
Scheme No. 1.

10
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IX ILLUSTRATIONS
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0- -6LOG OF BORING i 
Shear Strength (lbs/sq ft) " 

,• 4- " . Equipment 24" Diameter Buc!.et Auger 
U Elevation 111.8 Date 2/17/70 

" DARK BROWN SANDY CLAY (CH) 
soft, damp, with occasional 
angular gravel 

LIGHT BROWN SANDY SILT (ML) 
5 stiff, dry, with occasional 

angular gravel 
change to hard at 5', with 
occasional caliche cementation 
increased gravel up to 8" 

10- from 9 to 10.5' 
change to soft, wel at 10.5' 

26.0 86 

15- LIGHT BROWN SANDflY SILTY CLAY 

(CL) - soft, wet, with occasional 

25.8 94 angular gravel 

20-f 
change to stiff at 22.5' 

25 • /-CRAY BROWN SILTY SAND (SM) 

dense, wet, with abundant 
angular gravel 

"/-YELLOW BROWN SAND, CLAY (CL) 
30- /stiff, wet, with occasional 

gravel and shell fragments 
MOTTLED YELLOW GRAY SILTY 

CLAY (CL) - stiff, wet, with 
abundant weathered roc,

35" fragments 
MOTTLED YELLOW GRAY TUFF 

friable, low hardness, sheared, 
altered and deeply weathered 

- change to gray, weak at 44' 
" -- 1 I'I--,- water level 2/18/70

HARDING, MILLER, LAWSON & ASSOCIATES 

(Consultihg Engineers LOG OF BORING 1 PLATE Landslide 

Job No: 569, 210. 04 Appr: __'_'iw Date 3/18/70 PG&E - Diablo Canyon
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Shear Strength (lbs/sq ft)

C C

.5

0 0 
0

0 
0 
0

-� � 1 ___________ 1 .5.

Ui43 201

V 

In

C

0 
U

U 

C

LOG OF BORING -

CL4

0

5

25.4 c3 
10

15
27.9 87 

201 

25-

33.0

30-

E) 
a
(I

Equipment 24" Diameter Bucket Auger 

Elevation 1"10.8 Date 2/17/7c

. wwUwmI

U 
U 
z

I

I 
2

I 

2

r 

/ 

/~ 

* .

j-,MOTTLED GRAY BROWN CLAYEY 
"SILT (ML) - soft, moist, with 

occasional angular gravel 
MOTTLED ORANGE GRAY GRAVELLY 

35- CLAY (CL) - firm, moist, with 
z iabundant rock fragments 
-z'-MOTTLED ORANGE GRAY TUFF 

soft to friable, low hardness, 
77 sheared, altered and moderately 

87 41 *! weathered

HARDING, MILLER, LAWSON & ASSOCIATES 

Consiting Engineers LOG OF BORING 2 PLATE 

,,_____Landslide 

Job No:69,01- 14 Appr: f-4-/'w Date 3/18/70 PG&E - Diablo Canyon "7

Ul l

DARK BROWN SANDY CLAY (OH) 
soft, damp, with occasional 
angular gravel 

LIGHT BROWN SANDY SILT (ML) 
stiff, damp, with abundant 
angular grave I 
with occasional gravel up to 6" 
at 5' 

LIGHT BROWN SANDY CLAY (CL) 
soft, wet, with occasicnal gravel 
change to firm ot 9.5' 
change to soft a1 1 ' 

LIGHT BROWN SANDY CLAYEY 
SILT (ML) - soft to medium stiff, 
wet, with occasional angular 
grave I 

LIGHT BROWN SILTY CLAY (CL) 
stiff, moist, with slight porosity 

LIGHT BROWN SILTY SAND (SM) 
dense, wet 

BPOWN GRAVELLY SAND (SP) 
medium dense, moist, with 
silt binder



Shear Strength (lbs/sq ft)
0.,.  

.40

U

n~

LOG OF BORING 3

.-C

E 0.  
E a

Equipment 24" Diameter Bucket .Auaer

Elevation 100.8

01

5.  

10

15-

20.0 83
20-

25-

301

I

I

I 
2

I

____________4U-*

HARDING, MILLER, LAWSON & ASSOCIATES 

ý Consulting Engineers

Job No: 569,010.04 Appr: 2/-jw Date 3/18/170

I - U

K /

.�1i 
'III �j4� 
/ 

46

DAR" BROWN SANDY CLAY (CH) 
soft, damp, with occasional 
angular gravel

LIGHT BROWN SANDY SILT (ML) 
firm, damp, with occasional 
angular grave I 
up to 4" gravel at 7' 
grading clayey at 8', with 
caliche cementation 

slightly porous and moist at 14' 

BROWN SILTY SAND (SM) 
medium dense, moist, with 
occasional gravel 

ORANGE BROWN SANDY CLAY (CL) 
stiff, damp, with abundant 
rock fragments 

OPRANGE BPOWN TUFFACEOUS 
SILTSTONE - weaL-, moderately 
hard, closely fractured, 
moderately weathered 

(no free water observed)

Date 2/18"70

35-



Shear Strength (lbs/sq ft)
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LOG OF BORING 4
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24.8 77
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10.  

15
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35-
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2

II
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Equipment 24" Diameter 

Elevation 90.4

Bucket Auger

Date 2 19'70

HARDING, MILLER, LAWSON & ASSOCIATES 

Consulting Engineers , LOG OF BORING 4 PLATE 
LandslIide • 

Job No: 569,010.04 Appr: 51'-jiw Date 3/18/70 PG&E Diablo Canyon 9

F

e1/ 

/ / X/O

BLACK SANDY CLAY tCH) 
soft, moist, with occasional 

angulai grOvel 

MOTTLED YELLOW BROWN SILTY.  

CLAY tCHt - soft, wet, with 

occasional rock fragments 
change to stof at 8' 

BROWN GRAVELLY SANDY CLAY 

iCL) - firm, moist, with 

abundant rock fragments 

BLACK. SHALE 
moderately strong, hard, closely 

fractured, slightly weathered 

change to strong, very hard 

a,1 15' 
auger refusal at 16' 

(no free vwater observed)
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HARDING, MILLER, LAWSON & ASSOCIATES SOIL CLASSIFICATION CHART PLATE 
Uosllin, Epnrr -LC AS I CA TO CH R PL T 

KEY TO TEST DATA 
Job No: Appr: . Date .1 7 p -&F - DiaHo 10'

MAJOR DIVISIONS TYPICAL NAMES 

CLEAN GAVELS # WELL GRUADED GRAVELS, GRAVEL - SAND MIXTURES 

WITH LITTLE Ol 
(4 GRAVELS NO FINES 8 POOR LY GRADED GRLAVELS, GRAVEL -S$AND 

_~ MI X TUNES 

- MORE THAN HALF CAS FRAT SILTY GRAVELS, POORLY GRADED GRAVEL - SAND 
CASFRCINI GM SILT MIXTURES Z IS LARGER THAN GRAVEL WITH SILTMXU___ SNO. 4 SIEVE SIZE ova 12% PINES 

w GC CLAEY GRAVELS, POORLY GRADED GRAVEL - SAND z; CLAY MIXTURES 

CLEAN SANDS SW .I WELL GRADED SANDS, GRAVELLY SANDS 

SANDS WITH LITTLE OR 
z N FN iP S . POORLY GRADED &ANDS, GRAVELLY SANDS 

v ,C MORE THAN HALF O COAJSE FRACTION Im * SILTY SANDS, POORLY GRADED SAND - SILT o • IS SMALLER THAN SANDS WITH MIXTURES 
NO. 4 SIEVE SIZE OVER 12% FINES 

S C CLAYEY $ANDS, POORLY GRtADED SAND - CLAY 
I i MIXTURES 

I INORGANIC SILTS AND VERY FINE SANDS, ROCK (OI ML FLOUR, SILTY OR CLAYEY FINE SANDS, OR 
=j I CLAYEY SILTS WITH SLIGHT PLASTICITY 

SILTS AND CLAYS INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, Mz LIQUID LIMIT LESS THANCL GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LD CL LEAN CLAYS 

0L I IIII ORGANIC CLAYS AND ORGANIC SILTY CLAYS OF l-II LOW PLASTICITY 

R ~INORGANIC SILTS, MICACEOUS ORt DIATOMACIOUS CC FINE SANDY OR SILTY SOILS, ELASTIC SILTS 
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Getting Started 

Getting Started 

SWEDGE is designed to work on Windows 95, 98 and 
Windows NT 4.0 operating systems.  

To install SWEDGE on your computer: 

1. Insert the CD-ROM.  

2. Setup should begin automatically displaying the main 
Rocscience Installation window.  

3. If not, select Add / Remove Programs from the Control 
Panel and click on the Install button. Follow the 
directions until the main Rocscience Installation 
window is displayed.  

4. Click on the SWEDGE button.  

C_ .3 5. Click on the INSTALL FULL VERSION button.  

6. Follow the installation instructions. During 
C_ •installation you will be asked to enter your seventeen 

character alphanumeric serial number. Enter the 
serial number located on the outside of the CD case to 
install the program. Proceed until the installation is 
complete and you are back to the Rocscience 
Installation window.  

7. Click on the RETURN button.  

8. If you have NOT previously installed the hardlock 
driver software for any other Rocscience program 
proceed with step 9. Otherwise go to step 13.  

9. Click on the HARDLOCK button.  

10. Click on the INSTALL DRIVER FOR 95,98,NT 
button.
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11. Proceed until the hardlock driver installation is 
complete and you are back to the Rocscience 
Installation window.  

12. Click on the RETURN button.  

13. Click on the EXIT button.  

14. To run SWEDGE, you will also need the hardlock 
supplied with the program. The hardlock must be 
attached to the parallel port on your computer during 
execution of the program. Attach the SWEDGE 
hardlock to the parallel port of your computer.  

15. The installation process creates a ROCSCIENCE 
menu in your START...PROGRAMS menu. In the 
ROCSCIENCE menu there will be an SWEDGE menu 
containing the SWEDGE application. Run the 
SWEDGE application.

& 

�BI

16. If you are a first time user, read the Introduction and 
Tutorial chapters of this manual, to get acquainted 
with the features of SWEDGE.  

Hints about this Manual

This manual is intended as a hands-on, getting started 
user's guide. For more information on any SWEDGE 
options which are not discussed in these pages, consult 
the SWEDGE Help system. In the tutorial chapters, 
instructions such as: 

Select: Analysis --+ Input Data 

are used to navigate the menu selections.  

When a toolbar button is displayed in the margin, as 
shown above, this indicates that the option is available in 
the SWEDGE toolbar. This is always the recommended 
and quickest way to use the option.

Introduction 39 
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Introduction

SWEDGE is a quick, interactive and simple to use 
analysis tool for evaluating the stability of surface wedges 
in rock slopes, defined by two intersecting discontinuity 
planes, the slope surface and an optional tension crack.  
Wedge stability can be assessed using either: 

"* DETERMINISTIC (safety factor), or 

"* PROBABILISTIC (probability of failure) 

analysis methods. For a DETERMINISTIC analysis 
SWEDGE computes the factor of safety for a wedge of 
known orientation. For a PROBABILISTIC analysis, 
statistical input data can be entered to account for 
uncertainty in joint orientation and strength values. This 
results in a safety factor distribution, from which a 
probability of failure is calculated.  

Other modeling features include: 

"* water pressure, 

"* external / seismic forces, 

"* rock bolt reinforcement.  

In all cases, the assumed failure mode of the wedge is 
translational slip - rotational slip and toppling are not 
taken into account. The stability method used in 
SWEDGE can be found in "Rock Slope Engineering" (Rev.  
3rd edition, E. Hoek & J.W. Bray, pp 341-351).
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Swedge Input

SWEDGE computes the factor of safety for translational 
slip of a tetrahedral wedge formed in a rock slope by: 

"* two intersecting discontinuities (joint sets), 

"* the slope face, 

"* the upper ground surface, and

0 a tension crack (optional).

Typical problem geometry is illustrated below (Ref. 1).

LEGEND 

1,2 = Failure planes (2 
intersecting joint sets) 

3 = Upper ground surface 

4 = Slope face 

5 = Tension crack 

HI = Slope height referred to 
plane I 

L = Distance of tension 
crack from crest, 
measured along the 
trace of plane 1.

Figure 1-1: Typical wedge geometry for SWEDGE analysis (Ref.1)

When a pair of discontinuities are selected at random 
from a set of field data, it is not known whether: 

" the planes could form a wedge (the line of intersection 
may plunge too steeply to daylight in the slope face or 
it may be too flat to intersect the upper ground 
surface).  

"* one of the planes overlies the other (this affects the 
calculation of the normal reactions on the plane).  

"* one of the planes lies to the right or the left of the 
other plane when viewed from the bottom of the slope.  

In order to resolve these uncertainties, the solution has 
been derived in such a way that: 

"* Either of the planes may be labeled 1 (or 2).  

"* Allowance has been made for one of the planes 
overlying the other (this is illustrated in Figure 1-2) 

"* The crest can overhang the base of the slope.  

"* Contact may be lost on either plane (this is dependent 
on wedge geometry, and also on the magnitude of the 
water pressures acting on the planes).  

A check on whether the two planes do form a wedge is 
included in the solution at an early stage. In addition, 
SWEDGE also examines how the tension crack intersects 
the other planes, accepting only those cases where the 
tension crack truncates the wedge in a kinematically 
admissible manner.  

The SWEDGE stability analysis has been derived from a 
solution presented in Ref. 1. For a complete and detailed 
description of this analysis, consult this reference.

@ 1-

.4..
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Figure 1-2: Situation where wedge is formed, and one plane 
overlies the other.  

Joint Sets 

Either joint set can be defined as Joint Set I or Joint Set 2 
in the Input Data dialog.  

However, remember that the Slope Height and the Trace 
Length of the Tension Crack are measured with respect to 
Joint Set 1- see Figgure 1-1.

Upper Slope and Face Slope 

Note that there is no restriction on the inclination of the 
crest of the slope (the line of intersection of the upper and 
face slope planes), therefore the Dip Directions of the 
Upper Slope and Face Slope do not necessarily have to be 
the same.  

The Upper Slope and Face Slope correspond to planes 3 
and 4 in Figure 1-1.  

Overhanging Slope 

If the crest overhangs the base of the slope, select the 
Overhanging checkbox in the Input Data dialog, and enter 
appropriate Dip and Dip Directions of the Upper and Face 
Slope planes.  

Tension Crack 

The Trace Length of the Tension Crack is the distance of 
the tension crack from the crest, measured along the trace 
of plane 1. See Figure 1-1. Length L is the trace length.  

SWEDGE examines how the tension crack intersects the 
other planes, and only accepts those cases where the 
tension crack truncates the wedge in the manner shown 
in Figure 1-1. If the tension crack plane does not form an 
acceptable wedge with the other planes, a warning 
message will be displayed when you select the Apply 
button to compute.  

A Tension Crack is optional in SWEDGE, and can be 
excluded from a model by de-selecting the Tension Crack 
checkbox in the Input Data dialog.  

Slope Height 

The Slope Height is the vertical distance Hi in Figure 1-1, 
referred to plane 1.

.4ý-

Introduction
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External Force 

A single external force (eg. a blast acceleration acting in a 
known direction) can be applied to the wedge, by selecting 
the External Force checkbox, and entering a direction and 
magnitude.  

External force can also be applied through the use of rock 
bolts. See the Adding Support tutorial at the end of this 
manual for details.  

Water Pressure 

In the SWEDGE factor of safety calculation, it is assumed 
that extreme conditions of very heavy rainfall occur, and 
that in consequence the fissures (failure planes) are 
completely full of water. Further, it is assumed that the 
pressure varies from zero at the free faces to a maximum 
value at some point on the line of intersection of the two 
failure planes.  

SWEDGE calculates average values of water pressure 
on each failure plane as follows (Ref. 1): 

With NO Tension Crack

To vary water pressure in 
SIWEDGE, alter the Unit 

Weight of water in the Input 
Data dialog.

where: Ui, U2 and U5 are the average values of water 
pressure on the failure planes 1 and 2, and the tension 

crack, respectively 

yw = unit weight of water 

H5w = depth of bottom vertex of the tension crack below 
the upper ground surface 

The above formulae are simple estimations which are 
useful in the absence of more precise information.  

Varying the Water Pressure 

"* To simulate a "dry" slope, the user can de-select the 
Water Pressure checkbox in the Input Data dialog, or 
enter a Unit Weight of zero.  

" To simulate intermediate water pressures, the user 
can effectively vary the water pressure by varying the 
unit weight of water between zero and the actual unit 
weight. This allows the user to perform a sensitivity 
analysis on the effect of water pressure on the safety 
factor of the wedge.

UI= U2= 7w.H /6 

where: ui and U2 are the average values of 
pressure on failure planes 1 and 2 

yw = unit weight of water 

= total height of the wedge 

With Tension Crack 

UI = U2 = Us5= 7w. Hw/3

Eqn 1.1a 

water 

Eqn. I.lb
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Seismic Force 

Seismic Force can be applied to the wedge, by selecting 
the Seismic checkbox in the Input Data dialog, and 
entering the following data: 

Seismic Coefficient 

A dimensionless number defining the seismic acceleration 
as a fraction of the acceleration due to gravity. Typically 
the Seismic Coefficient might be around 0.1 to 0.2. If a = 
Seismic Coefficient, g = acceleration due to gravity = 9.81 
m/s2 , and m = mass of the wedge, then the Seismic Force 
applied to the wedge, F = m a g.  

Direction 

"* "Line of Intersection" will apply the Seismic Force in 
the direction (PLUNGE and TREND) of the Line of 
Intersection of Joint Sets 1 and 2.  

"* "Horiz. & Inters. Trend" will apply the Seismic Force 
horizontally, but with the same TREND as the Line of 
Intersection of Joint Sets 1 and 2.  

"* User Defined allows the user to define any direction 
for the Seismic Force.

Probabilistic Input 

If the Analysis Type is Probabilistic, the user can define 
the following random variables in the Probabilistic Input 
Data dialog: 

"* Dip and Dip Direction of all planes (ie. Joint Sets 1 
and 2, Upper and Face Slope, and Tension Crack).  

"* The strength (Cohesion and Friction Angle) of Joint 
Sets I and 2.  

For each random variable, enter an appropriate: 

"* Mean 

"* Standard deviation (if applicable) 

"* Relative minimum and maximum values 

NOTE that the minimum / maximum values are specified 
as RELATIVE numbers (ie. distance from the mean), 
rather than as absolute values. All references below to 
"minimum" and "maximum" values refer to the actual 
values (ie. mean - rel. min and mean + rel. max), and 
not to the relative values entered in the Input Data 
dialog.  

Statistical Distributions

To define a random variable, first choose a Statistical 
Distribution (also known as "Probability Density 
Function" or "pdf'). The five available distributions are: 

"* Normal 

"* Uniform 

"* Triangular 

"* Beta 

"• Exponential (only available for cohesion and friction 
angle)

4) 

d4 

4)

Introduction 11
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Normal 

The NORMAL (or Gaussian) distribution is the most 
common type of probability distribution function, and is 
generally used for probabilistic studies in geotechnical 
engineering. Unless there is a good reason to use one of 
the other four PDFs available in SWEDGE, it is 
recommended that the user choose the NORMAL "pdf'.  

For a NORMAL distribution, about 68% of observations 
should fall within one standard deviation of the mean, 
and about 95% of observations should fall within two 
standard deviations of the mean.

4

Truncated Normal Distribution

e

mean = p

A truncated NORMAL distribution can be defined by 
setting the desired minimum and/or maximum values for 
the variable. For practical purposes, if the minimum and 
maximum values are at least 3 standard deviations away 
from the mean, you will obtain a complete normal 
distribution. If the minimum / maximum values are less 
than 3 standard deviations away from the mean, the 
distribution will be visibly truncated.  

Uniform 

A UNIFORM distribution can be used to simulate a 
random variation between two values, where all values in 
the range are equally probable.  

A UNIFORM distribution is entirely specified by the 
minimum and maximum values. The mean value of a 
UNIFORM distribution is simply the average of the 
minimum and maximum values, and cannot be 
independently specified.

f(x)

x 

Figure 1-3: Normal probability density function, showing standard 
deviation ranges.

p 

�um

x 
Figure 1-4: Uniform probability density function.

f(x)

C- 4 

C- 4 

re
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Triangular 

You may wish to use a TRIANGULAR distribution in 
some cases, as a rough approximation to a random 
variable with an unknown distribution.  

A TRIANGULAR distribution is specified by its minimum, 
maximum and mean values. It does not have to be 
symmetric, it can be skewed to the left or right by 
entering a mean value less than or greater than the 
average of the minimum and maximum values.  

c 

5 b 

X 

Figure 1-5: Triangular probability density function. Minimum = a, 
maximum = b, mode = c. For a symmetric distribution, mean 
mode.  

Note: for a non-symmetric TRIANGULAR distribution, 
the mean value is not equal to the mode. The mode is the 
value of the variable at the peak of the TRIANGULAR 
distribution. In general for a TRIANGULAR distribution, 
the mean is given by: 

minimum + maximum + mode Eqn. 1.2 
mean =n 3

@ .

1. If the distribution is symmetric, then the mean is 
equal to the mode.  

2. For a left triangular distribution, the mode 
minimum, and the mean = (2*minimum + maximum) / 
3.  

3. For a right triangular distribution, the mode = 

maximum, and the mean = (2*maximum + minimum) 
/3.  

Beta 

The BETA distribution is a very versatile function which 
can be used to model several different shapes of 
probability density curves, as shown in the figure below.  

* - . * * S* 

- o• ° • +. + ,, 2. . . ; 

(22) (b) 

W }(d) 

Figure 1-6: Beta (al, a•2) density functions (Ref. 3) 

The form of the BETA distribution is determined by the 
shape parameters a I and o_2. Both a I and a2 are always 
> 0. The relationship between the BETA distribution 

shape parameters and the SWEDGE input data is as 
follows:

@4 

@4

@cm4 

et aj

f(X)
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al 
mean = 

al+a2 

variance = ala2 
(al + a2)2 (al + a2 + 1)

Eqn. 1.3 

Eqn. 1.4

The standard deviation is the positive square root of the 
variance.  

Note that Equations 1.3 and 1.4 apply to a beta random 
variable on 10,1]. To rescale and relocate to obtain a beta 
random variable on [a,b] of the same shape, use the 
transformation a + (b-a)X.  

Exponential 

The EXPONENTIAL probability density function has also 

been made available in SWEDGE.

-3

4 

4 

4 

4 

4

X 

Figure 1-7: Exponential probability density function.

1. Since the range of values must always be positive for 
an EXPONENTIAL distribution, it has only been 
made available for the strength parameters (cohesion 
and friction angle), and not for the orientation 
parameters, since these may have negative ranges 
which would be invalid for an EXPONENTIAL 
distribution.  

2. The mean is always equal to the standard deviation 
for an EXPONENTIAL distribution. This is a property 
of the EXPONENTIAL distribution, and cannot be 
altered by the user.  

3. Like the NORMAL distribution, the EXPONENTIAL 
distribution can be truncated by entering the .desired 
minimum and maximum values (the basic 
EXPONENTIAL distribution varies from zero to 
infinity).  

The EXPONENTIAL distribution is sometimes used to 
define events, such as the occurrence of earthquakes or 
rockbursts, or quantities such as the length of joints in a 
rockmass. Of the currently defined statistical variables in 
SWEDGE, you may occasionally find it useful for 
modeling joint cohesion, for example.  

Probability - Further Reading 

An excellent introduction to probability theory in a 
geotechnical engineering context, can be found in Chapter 
2 of Ref. 2.  

More comprehensive and detailed information can be 
found in statistics textbooks. For example, Chapter 6 of 
Ref. 3 is an excellent guide to the selection of input 
probability distributions. Ref. 4 provides a summary of 
over 30 different probability density functions, in a quick
reference format.

Note the following:

.4.-

f(x)
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Sliding Planes3owedge Analysis

To run the SWEDGE analysis, simply select the Apply 
button in the Input Data dialog, after entering all your 
input data.  

" If the Analysis Type = Deterministic, the Safety 
Factor will be immediately calculated and displayed 
in the lower right corner of the dialog, as well as in 
the toolbar.  

"* If the Analysis Type = Probabilistic, the Probability of 
Failure will be calculated and displayed in the toolbar.  

Note that a Probabilistic Analysis can be re-run at any 
time, by selecting the Compute button in the toolbar. The 
Probability of Failure will not necessarily be the same, 
each time a Probabilistic Analysis is re-run.  

Geometry Validation 

SWEDGE always checks if the model geometry is valid, 
before proceeding to calculate a Safety Factor for a given 
wedge.  

" If the Analysis Type = Deterministic, you will receive 

a warning message if there is a problem with your 
input data.  

" If the Analysis Type = Probabilistic, validation is first 

performed on the mean Input Data. If the mean 

orientation data does not form a valid wedge, then the 

entire Probabilistic Analysis will be aborted, and you 

will receive a warning message. If the mean wedge is 

valid, but invalid wedges are generated during the 

statistical sampling, then these results are discarded, 

but the analysis is allowed to proceed. The Number of 

Valid Wedges for a Probabilistic Analysis can be found 

listed in the Analysis -+ Info Viewer option.

Depending on wedge 
geometry and water pressure, 
sliding may take place along: 

. Both failure planes 

. One failure plane 

. None (loss of contact)

20
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After a typical SWEDGE analysis, the analysis summary 
will indicate, for a given wedge: 

Sliding along line of intersection (trend I plunge) 

This indicates that the factor of safety accounts for sliding 
on both of the failure planes (joint sets). The line of 
intersection refers to the line of intersection of the two 
failure planes (Joint Set 1 and Joint Set 2).  

In some cases, depending on the geometry of the wedge 
and the magnitude of the water pressure, contact may be 
lost on either failure plane. In such cases, the analysis 
summary will show: 

Sliding on Joint I or 

Sliding on Joint 2 

If the water pressure is too high, the wedge will 'float', 
and the analysis summary will indicate: 

Contact Lost on Both Planes 

Finally, if tension in the rock bolts is too high, the 

analysis summary may indicate: 

Sliding UP Line of Intersection (trend I plunge) 

indicating that the total rock bolt tension is high enough 
to potentially push the wedge 'up' the slope.  

For a Deterministic Analysis, the sliding plane(s) will be 

indicated in the Input Data dialog, along with the Safety 

Factor. For a Probabilistic Analysis, this information is 
listed in the Info Viewer.

A Probabilistic Analysis can 
be re-run at any time by 

selecting the Compute button 
in the toolbar.



Quick Start Tutorial 21
0 SWEDGE User's Guide

teferences Quick Tour of Swedge
1. Hoek, E. and Bray, J.W. Rock Slope Engineering, 

Revised 3rd edition, The Institution of Mining and 
Metallurgy, London, 1981, pp 341 - 351.  

2. Hoek, E., Kaiser, P.K. and Bawden, W.F. Support of 
Underground Excavations in Hard Rock, 
A.A.Balkema, Rotterdam, Brookfield, 1995.  

3. Law, A.M. and Kelton, D.W. Simulation Modeling and 
Analysis, 2nd edition, McGraw-Hill, Inc., New York, 
1991.  

4 Evans, M., Hastings, N. and Peacock, B. Statistical 
Distributions, 2nd edition, John Wiley & Sons, Inc., 
New York, 1993.
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This "quick tour" will familiarize the user with some of 
the basic features of SWEDGE.  

If you have not already done so, run SWEDGE by double

clicking on the SWEDGE icon in your installation folder.  
Or from the Start menu, select Programs --• Rocscience -• 

Swedge -* Swedge.  

If the SWEDGE application window is not already 
maximized, maximize it now, so that the full screen is 
available for viewing the model.  

To begin creating a new model: 

Select: File -> New 

A wedge model will immediately appear on your screen, 
as shown in the above figure. Whenever a new file is 

opened, the default input data will form a valid wedge.

4',

4 
9 
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The first thing you will notice is the four-view, split screen 
format of the display, which shows:

Input Data

Now let's see what input data was used to create this 
model.

"* TOP 
"* FRONT 
"* RIGHT and 
"- PERSPECTIVE Select: Analysis -- Input Data

views of the model. The Top, Front and Right views are 
orthogonal with respect to each other (ie. viewing angles 
differ by 90 degrees).

Job Control

Job Control allows the user to enter a Job Title, and select 
a Unit System and Analysis Type.  

Select: Analysis --, Job Control 

Job Tde: rSWPOGE Ouk SwTuoSOnl 

Us . ... AndysisType 
' Me.c 0C Oetem-aoeec 

r Impenal C'nPobab'distc 

Distace unft in meteers end Farce wits m tnnes (1000 Sg) 

Enter "SWEDGE Quick Start Tutorial" as the Job Title.  
Leave Units = Metric and Analysis Type = Deterministic.  
Select OK.  

" The Job Title will appear in the Info Viewer listing, 
discussed later in this tutorial.  

"* Units determines the length and force units used in 
the Input Data dialog (see the next section).  

"* Probabilistic SWEDGE analysis is covered in the next 
tutorial.

Geometry IForme I 
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Figure 2-1: Input Data dialog (Deterministic).  

The Geometry input data which you see in this dialog is 
the default input data, which forms a valid default wedge, 
each time a new file is started.  

Quickly examine the input data in this dialog. See the 
introductory section of this manual for definitions of the 
SWEDGE input data. Do not change any values just yet, 
we will be coming back to this shortly.  

Before you close the dialog, notice the Safety Factor, 
Wedge Weight etc information displayed in the lower 
right corner. The Safety Factor (FS = ...) is also displayed 
in the SWEDGE toolbar, at the top of the screen.

uelýiftistic input Date -- x
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Now close the dialog by selecting the X in the upper right 
corner.

Manipulating the View

The LEFT and RIGHT mouse buttons can be used to 
interactively manipulate the view as follows: 

"* The Perspective view of the model allows the model to 
be rotated for viewing at any angle with the LEFT 
mouse button.  

"* The wedge can be moved out of the slope with the 
RIGHT mouse button in any of the four views.  

Rotating the Model 

1. Press and HOLD the LEFT mouse button anywhere in 
the Perspective view. Notice that the cursor changes 
to a "circular arrow" symbol to indicate that you may 
rotate the model.  

2. Now keep the LEFT mouse button pressed, and move 
the cursor around. The model is rotated according to 
the direction of movement of the cursor.  

3. To exit the rotation mode, release the LEFT mouse 
button. Notice that the cursor reverts to the normal 
arrow cursor.  

4. Repeat the above steps to rotate the model for viewing 
at any angle.

t
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4
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4 
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4 

4

Moving the Wedge Out of the Slope 

1. Press and HOLD the RIGHT mouse button anywhere 
in ANY of the four views. Notice that the cursor 
changes to an "up-down arrow" symbol.  

2. Now, keep the RIGHT mouse button pressed, and 
move the cursor UP or DOWN. The wedge will slide 
UP or DOWN out of the slope. Note: 

"* If your model does NOT have a Tension Crack, 
then the wedge will slide UP or DOWN along the 
Line of Intersection of Joint 1 and Joint 2.  

" If your model DOES have a Tension Crack, then 
the wedge will slide DOWN along the Line of 
Intersection of Joint 1 and Joint 2, and UP along 
the plane of the Tension Crack.  

3. To exit this mode, release the RIGHT mouse button.  
Notice that the cursor reverts to the normal arrow 
cursor.  

Resetting the Wedge

To reset the wedge in its normal position, click and 
RELEASE the RIGHT mouse button in any of the four 
views. The wedge will snap back to its normal position.  

Rotating and Moving 

The rotate and move options, described above, can be used 
in any order. That is, the model can be rotated after 
moving the wedge, and the wedge can be moved after 
rotating. This allows complete flexibility of viewing the 
slope and wedge from all possible angles.  

Note that rotating the model only affects the Perspective 
view, while moving the wedge out of the slope affects all 
views (Top, Front, Right and Perspective).

Quick Start Tutorial 25



Quick Start Tutorial 27
26 SWEDGE User's Guide

Resizing the Views 

You can change the relative size of the Top / Front / Right 
/ Perspective views in a number of ways: 

1. Double-clicking in any view will maximize that view.  

Double-clicking again in the maximized view, will 
restore the four view display.

Double-clicking in any view 
will maximize that view.  

Double-clicking again in the 
maximized view, will restore 

the four view display.

Zooming

I.

e

4D - v F-r5-

I�I4J

Figure 2-2: Maximized Perspective view.  

2. Alternatively, hover the cursor over the vertical or 
horizontal dividers between the views, or over the 
intersection point of the four views. The cursor will 
change to a "parallel line" or "four arrow" symbol.  
Press and HOLD the LEFT mouse button, and drag to 
re-size the views.  

3. Maximizing views can also be accomplished with the 
View -+ Layout options. To reset the four views to 

equal size, select View-* Layout --* All Views.

4 
.4 

.4 

4 
V.4 
V.4 
K 
V4

Zooming (from 50% to 800%) is available in the View --+ 
Zoom menu, to increase or decrease the displayed size of 
the model in all four views.  

Individual views can be zoomed in or out using the Page 

Up I Page Down keys, or the + or - numeric keypad keys.  
You must first click in the view with the LEFT mouse 

button, to make it the active view.  

Display Options 

You may change the colours of the Slope, Wedge,.  

Background and Bolts, and the Drawing Mode (Shaded or 

Wireframe) in the Display Options dialog.

Select: View -> Display Options 

awo. - :,.  

W.d" g. G ýA 

Sw,- c-

Select new slope, wedge and background colours, and hit 
the Apply button. Now change the Drawing Mode from 
Shaded to Wireframe, and hit Apply. Select the Defaults 
button to restore the defaults, and hit OK or Cancel to exit 
the dialog.  

The "Selection" colour refers to the colour of selected bolts 
while using the Delete Bolt and Edit Bolt options. See the 
last tutorial in this manual for more information.

S 

S
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Note that the Cancel button in the Display Options dialog 
does NOT cancel any changes once they have been applied 
with the Apply button.  

M ,...

Let's first remove the Tension Crack, and observe the 
effect on Safety Factor and the wedge geometry.  

Removing the Tension Crack

Figure 2-3: Wireframe Drawing Mode.  

Changing the Input Data & Re-calculating the Safety Factor

e
4 

4 

4 

4 

4

e

Now let's experiment with changing the Input Data and 
re-calculating a new Safety Factor.  

This is simply a matter of: 

1. Entering the desired Input Data.  

2. Selecting the Apply button.  

For a Deterministic analysis, the Safety Factor is 
immediately calculated and displayed in the lower right 
corner of the dialog.  

Select: Analysis -+ Input Data

I.  

4 

4

SSelety Factor-=1.13191 
Wedge Weight - 21483.3 lonnes 
Sliding on Line of Intersection: 
Trend = 157.732 Plunge - 31 .1965

1. To remove the Tension Crack from the model, simply 
de-select the Tension Crack checkbox in the Input 
Data dialog.  

2. Select the Apply button, and a new Safety Factor is 
immediately calculated. Removing the Tension Crack 
increased the Safety Factor from 1.04 to 1.13.  

3. Select the Done button, to close the Input Data dialog, 
so that you can view the new wedge. It should appear 
as below.

c�eeme.�=led� �*-

-I

N.7.

Figure 2-4: Wedge with tension crack removed.4 

4 

4 

4 

4

Note that the Input Data dialog can also be minimized 
without closing it, by selecting the - arrow in the upper 
right corner of the dialog.Fir1

I-
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Entering a New Wedge

Let's enter data for a completely different wedge.  

Select: Analysis --> Input Data 

1. Enter the following data and select Apply.  

Deterndnisfic Input Dat. ...  

G.o•ry I Fo.. I 

Dip (d.9 ) Dip Ocioa(d4g Coh.son ) Fickoon-ll (deq) 

So st a 70-- Pe- 1-.
Uppe, Fam F 0- F 
Slop. Face, Fs - 4 -5Slope Properties 

Slope H.eOltn) 

r' Tensn-Crac Uni0Weit(Trn,3) F7 

r-Overhangig 

S.... ..... ...... ... ..... .... S ty~vFe ar - 0.$29299 

WedgeWekilqt- 5531.5t5or.  
OWacein met.6; S dkg on Join1 
Fow i m Tonnes (I000kq) 

SDone 

2. Select the Done button to close the dialog, or minimize 
it by clicking on the - arrow, and you should see the 
following wedge, with a Safety Factor of 0.53.

4 
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4
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Figure 2-5: A new wedge.

C

o I 

o I 

Ef 

o II 

C.  

C

F'

4) 

,4 

4j

Sliding Plane 

Notice that in this case, the analysis summary in the 
Input Data dialog indicates the failure mechanism as 
"Sliding on Joint 1", rather than "Sliding along line of 
intersection". This is consistent with the model geometry, 
since Joint Set 2 dips at 70 degrees and has a cohesion of 
zero, and therefore has little influence on the wedge 
stability.  

See the Introduction for more information on the sliding 
plane failure modes in SWEDGE.
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Water Pressure 

When Water Pressure is toggled on and the Unit Weight 
1 in the Input Data dialog, the factor of safety is 
calculated assuming extreme conditions of heavy rainfall.  
This means that maximum (average) values of water 
pressure are applied on the failure planes (and tension 
crack, if present). Parametric analysis of the effect of 
varying water pressure, can be achieved by varying the 
Unit Weight of water between 0 and 1.  

For example: 

1. Enter Unit Weight of water = 0.5. Select Apply.  

2. The Safety Factor increases from 0.53 to 0.81.  

3. Now toggle Water Pressure off (or enter Unit Weight 
= 0, this has the same effect). Select Apply.  

4. The Safety Factor with no water pressure (ie. a 
completely dry slope) is 1.11. This is the maximum 
Safety Factor for this wedge, without installing rock 
bolt reinforcement.  

Geereby Forces 

P Wate.,Piesresr . Seeu.  

UMWeigh,r(V3)F) .- " r 

F- Ep aJ F 
'= .... i ... . - ---.  

F-F 

Sael yFeclor" 1.10801 
WedgeWeigh.• 5365.12 •stas 

Dist .e . meiers /Sfidig onmJinti I 
FoceinToen$ssfOOikg)9

External Force 

1. Toggle on the External Force checkbox.  

2. Enter Plunge = 20, Trend = 45 and Magnitude = 500.  

3. Select Apply.  

4. The Safety Factor (with Water Pressure toggled off) 
drops to 0.97.  

Oeternninisuc Tnp O . .-t.- -

Ge.erby ForcesI 

r- Walr Pres•sure .. .... . ... r- Sereriuc . . . . . . ... .  
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I SIW FeJ.'r- 0111111 
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Oisttr cn or meters SSidmg enaJo.J 1 
Fo-ce iTonnes (1000 k

9
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At this point we will note that rock bolts in SWEDGE are 
implemented in the analysis in exactly the same way as 
the External Force.  

That is, rock bolts can be simulated by an equivalent 
External Force, or an External Force can be simulated by 
rock bolts. See the last tutorial in this manual, Adding 
Support, for more information.

@4 

@4@ @4 

@4 
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Seismic Force

1. Toggle off the External Force checkbox, and toggle on 
the Seismic Force checkbox.  

2. Enter a Seismic Coefficient of 0.2, and select the 
Direction as "User Defined", and enter Plunge 0 and 
Trend = 52.  

t0 - I ep•DI. e-M--- -- :.- • :-P ..... .. 
Geo-ey IFoe, I 

-I- W Presure .......... . - Setsrnic. . . . .... . . .  

, . .siti , c o,*wnt 02 

Diecton User Dond -_ 

ISefiy F (- 09i 3i24 
WedgeWeight - 536.i i o1?W 

istat in m M momSltting on JotI I 
Fo,,Ton-,. I[tfl kg) 

3. This will apply a force on the wedge F = 0.2 * g * 

where g = acceleration due to gravity and m = mass of 
the wedge. Note that the Trend is equal to the Dip 
Direction of Joint Set 1, which is the worst possible 
direction in this case, since the failure mode for this 
wedge already indicates Sliding on Joint 1.  

4. Select Apply, and the Safety Factor now drops to 0.84.

4

More About the Input Data Dialog 

You may not have noticed, but the Input Data dialog in 
SWEDGE works a little differently than a regular dialog: 

1. It is known as a "roll-up" dialog, since it can be 
"rolled-up" (minimized) or "rolled-down" again, by 
selecting the - or arrow in the upper right corner 
of the dialog.  

DO terminisicInpuwOData�- . . - . .

2. It can be left up on the screen while performing other 
tasks. When not needed, it can be "rolled-up" and 
dragged out of the way (for example, the top of the 
screen) with the LEFT mouse button.  

3. If multiple files are open, the Input Data dialog will 
always display the data in the active file.  

You may find these properties of the Input Data dialog 
useful, for example, when performing parametric 
analysis, or when working with multiple files.

4 

4 

4 

9 

4

4 

'4 

K9 

K9 

I. -.

35



36 SWEDGE User's Guide
0 4

Stereo Projection of Input Data Planes Info Viewer

To view a stereographic projection of your SWEDGE 
Input Data planes, select the Stereonet button in the 
toolbar. The great circles on the stereonet are identified 
by labels - 1, 2, TC, US, and FS - to indicate failure 
planes 1 and 2, the tension crack plane, and the upper 
and face slope planes.

4
Before we conclude this "quick tour", let's examine the 
Info Viewer option.

1WJ
OS; M-6'* Van ..

NJ 

di

Figure 2-6: Stereonet projection of SWEDGE input data planes.  

Importing Data from a DIPS File

The planes forming the wedge geometry can also be read 
into SWEDGE from a DIPS planes file (".dwp" filename 
extension), with the Import option in the File menu.  

DIPS is a program for the graphical and statistical 
analysis of structural geology data using spherical 
projection techniques. Visit the Rocscience website at 
www.rocscience.com for more information.

4 

4 
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Select: Analysis -4 Info Viewer 

A convenient summary of model and analysis parameters 
is displayed in its own view. Scroll down to view all of the 
information. This can be printed if desired.  

_'.. .... .. - S.... r.,85 LJ , 

Dag &a] vam. Io Ced g .WAnalysi Stýaffm*31.  

'be 1t*v •TMlNISn¢C 

Cag fl ~t( teS 4 e n12 ' 

2)zwgN S?'7 $0 I 

edgea oreg (,ane S•eSI 568 35tn'S 

Figure 2-7: Info Viewer listing.  

That concludes this "quick tour" of SWEDGE. To exit the 
program: 

Select: File -- 'Exit

Quick Start Tutorial 37
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Probabilistic Analysis
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This tutorial will familiarize the user with the 
Probabilistic analysis features of SWEDGE.  

If you have not already done so, run SWEDGE by double
clicking on the SWEDGE icon in your installation folder.  
Or from the Start menu, select Programs --) Rocscience -

Swedge -+ Swedge.  

If the SWEDGE application window is not already 
maximized, maximize it now, so that the full screen is 
available for viewing the model.  

To begin creating a new model: 

Select: File -4 New 

A default wedge model will immediately appear on your 
screen. Whenever a new file is opened, the default input 
data will form a valid wedge.

Probabilistic Tutorial 39
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Job Control Probabilistic Input Data

Job Control allows the user to enter a Job Title, and select 
a Unit System and Analysis Type. Let's switch the 
Analysis Type to Probabilistic.  

Select: Analysis --. Job Control

JobTde JSWEDGEOb Pobib~lsbcTutonal

.-CUn•s -....  
r• Mehic

nmeysit Type • 
e' Deteminis

t- Imperial C Pobabulstc 

Dismceu ýns mi meters snd Forceties uintnnes (1000 kg)

Enter "SWEDGE Probabilistic Tutorial"as the Job Title.  
Leave Units = Metric and change the Analysis Type to 
Probabilistic. Select OK.

Now let's look at the input data.

4 

4 

4 

4

Note:

"* Analysis Type can also be changed at any time, using 
the drop-down list box in the middle of the SWEDGE 
toolbar. This is a convenient shortcut.  

"* The Job Title will appear in the Info Viewer listing, 
discussed later in this tutorial.  

"* Units determines the length and force units used in 
the Input Data dialog and the analysis.

4) 

4• 

4}

Minimum/I Maximum values 1 are specified as RELATIVE 
distances from the mean

E�!1

4-

Select: Analysis -> Input Data 

You should see the Probabilistic Input Data dialog shown 
below.  

Frobabilistic Input Da t..  
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Defining Random Variables 

To define a random variable in SWEDGE: 

1. First select a Statistical Distribution for the variable.  
(In most cases a Normal distribution will be 
adequate.) 

2. Enter Standard Deviation, Minimum and Maximum 
values. NOTE that the Minimum / Maximum values 
are specified as RELATIVE distances from the mean, 
rather than absolute values.

4nalysis Type can be selected' 
from the drop-down list box in 

the toolbar
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3. Any variable for which the Statistical Distribution= 
"None tt will be assumed to be "exactly" known, and 
will not be involved in the statistical sampling.  

See the Introduction for information about the properties 
of the statistical distributions available in SWEDGE.  

For this example, we will use the default Mean Input 
Data, and define Normal Statistical Distributions for the 
following variables: 

"* Joint Set 1 Dip and Dip Direction 
"* Joint Set 1 Cohesion and Friction Angle 
"* Joint Set 2 Dip and Dip Direction 
"* Joint Set 2 Cohesion and Friction Angle 
"* Tension Crack Dip and Dip Direction

Joint Set I

Make sure the Joint Set 1 tab is selected in the Input 
Data dialog, and enter the following data: 
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Joint Set 2 

Select the Joint Set 2 tab and enter the following data: 
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Tension Crack 

Select the Tension Crack tab and enter the following data: 
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Slope

We will assume that the orientation of the slope planes is 
exactly known, so we will not enter statistical data for the 
upper slope or face slope orientations (ie. Statistical 
Distribution = None for these variables).

I.

Forces

We will not be using the Forces options in this tutorial.  
See the Quick Start Tutorial for a discussion of Forces in 
SWEDGE.  

Sampling

Probabilistic Analysis 

To carry out the SWEDGE Probabilistic Analysis: 

0 Select the Apply button in the Input Data dialog.  

The analysis will be run using the parameters you have 
just entered. Calculation should only take a few seconds.  
The progress of the calculation is indicated in the status 
bar.  

Close the dialog by selecting the Done button.  

Results

We will use the default Sampling Method and Number of 
Samples (ie. Monte Carlo method, 1000 samples). Probability of Failure

The primary result of interest from a Probabilistic 
Analysis is the Probability of Failure. This is displayed in 
the toolbar at the top of the screen.  

TkEAe i s au Pr wi Sasbsm W'. do elp -U 

For this example, if you entered the Input Date correctly, 
you should obtain a Probability of Failure of around 6%.  
(eg. PF = 0.061 means 6.1% Probability of Failure).  

However, remember that the sampling of the Input Data 
is based on the generation of random numbers by the 
Monte Carlo analysis. Therefore the Probability of Failure 
will not necessarily be the same each time you compute 
with the same data.  

See the section on Re-running the Analysis later in this 
tutorial, for a demonstration.
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Wedge Display 

The wedge initially displayed after a Probabilistic 
Analysis, is based on the mean input values. Therefore, 
the wedge will appear exactly the same as one based on 
Deterministic Input Data with the same orientation as 
the mean Probabilistic Input Data.  

However, other wedges generated from the Probabilistic 
Analysis can be displayed as described below.  

H istog rams 

To plot histograms of results after a Probabilistic 
Analysis: 

Select: Statistics --* Plot Histogram

OotmType: ISafely Feawor 

Numbeoflntmrs. 130 

r o 

7 oon~noT~

Select OK to plot a histogram of Safety Factor.  

The histogram represents the distribution of Safety 
Factor, for all valid wedges generated by the Monte Carlo 
sampling of the Input Data. The red bars at the left of the 
distribution represent wedges with Safety Factor less 
than 1.0.

eL 

�jI

The mean Safety Factor is 
not necessarily the same as 

the Deterministic Safety 
Factor based on the mean 

Input Data values.
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Mean Safety Factor 

Notice the mean, standard deviation, min and max values 
displayed below the histogram.  

Keep in mind that the mean Safety Factor from a 
Probabilistic Analysis is not necessarily the same as the 
Deterministic Safety Factor based on the mean Input 
Data values. In general, these two values will not be equal 
to each other.  

Manipulating the Histogram View 

1. If you right-click on a histogram and select 3D 
Histogram, you can apply a 3D effect. 

2. If you click and HOLD the LEFT mouse button on the 
histogram and move the mouse, you can change the 
"viewing angle" of the 3-D histogram.  

3. To restore the default viewing angle of a 3D 
Histogram, right-click and select Reset View.  

Viewing Other Wedges 

Let's now tile the Histogram and Wedge views, so that 
both are visible.  

Select: Window --> Tile Vertically 

A useful property of the Histogram view is the following: 

* If you double-click the LEFT mouse button anywhere 
on the histogram, the nearest corresponding wedge 
will be displayed in the Wedge view.  

For example: 

1. Double-click on the histogram at approximately 
Safety Factor = 1.

.4.,
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2. Notice that a different wedge is now displayed.  

3. The actual Safety Factor ofthis wedge is displayed in 
the title bar of the Wedge view. It will probably not be 
exactly = 1, since it depends on exactly where you 
clicked, and the actual safety factor of the nearest 
wedge.

.j 

4 43 
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Figure 3-1: Safety Factor histogram and wedge view.

In any case, this feature is meant to give you a general 
idea of the shape and orientation of wedges corresponding 
to locations along the histogram. For example, you will 
probably want to double-click in the "red" Safety Factor 
region, to see the wedges with a Safety Factor < 1.  

To reset the Wedge view so that the mean wedge is 
displayed: 

Select: View -+ Reset Wedge 

This will display the wedge corresponding to the mean 
Probabilistic Input Data.
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Histograms of Other Data 

In addition to Safety Factor, you may also plot histograms 
of: 

"* Wedge Weight 

"* Plunge or Trend of Line of Intersection of Joint Sets 1 
and 2 

"* Any random variable (ie. any Input Data variable 
which was assigned a Statistical Distribution) 

For example: 

Select: Statistics -4- Plot Histogram 

In the dialog, set the Data Type = Wedge Weight, and 
select OK.  

A histogram of the Wedge Weight distribution will be 
generated.  

Note that all of the features described above for the Safety 
Factor histogram, apply to any other Data Type. For 
example, if you double-click on the Wedge Weight 
histogram, the nearest corresponding wedge will be 
displayed in the Wedge View.

Let's generate one more histogram.

Select: Statistics --4 Plot Histogram 

This time we will plot one of our Input Data random 
variables. Set the Data Type = Dip of Joint 1. Check the 
Plot Sampled Distribution checkbox. Select OK.
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Figure 3-2: Joint 1 Dip Angle - Monte Carlo sampling of normal 
distribution.  

The histogram shows how the Dip of Joint 1 Input Data 
variable was sampled by the Monte Carlo analysis. The 

curve superimposed over the histogram is the Normal 

distribution you defined when you entered the mean, 

standard deviation, min and max values for Dip of Joint 1 

in the Input Data dialog.  

Re-running the Analysis 

The Probabilistic Analysis can be re-run at any time, by 

selecting the Compute button in the toolbar.  

In general, the Probability of Failure will be different each 
time the analysis is re-run.  

Let's demonstrate this, but first let's tile the views again.  
If you have not closed any views, you should still have on 
your screen:

E-1

. The Wedge View and

* The Safety Factor, Wedge Weight, and Joint 1 Dip 
Angle Histograms.  

If you closed any of the histograms, re-generate them as 

described above. Now tile the four views.  

Select: Window -4 Tile Vertically

Figure 3-3: Tiled histogram and wedge views.  

Now select the Compute button in the SWEDGE toolbar.  

Select: Analysis -+ Compute 

Notice that the Histograms and Probability of Failure are 
updated with the new analysis results.  

Now continue to select Compute several times, and 

observe the variation in the Histograms and the 
Probability of Failure. This graphically demonstrates the 
SWEDGE Monte Carlo analysis.
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Note that the Wedge view does not change when you re
compute, since the default wedge displayed is based on 
the mean Input Data, which is not affected by re-running 
the analysis.  

For this example, if you re-run the analysis several times, 
you will find that the Probability of Failure will vary 
between about 4 and 8%.  

Cumulative Distributions (S-curves) 

In addition to the histograms, cumulative distributions (S
curves) of the statistical results can also be plotted.  

Select: Statistics -> Plot Cumulative

DmtType: lSaetsyFacoss 

Nanber of Intervos. 30 

S f techMeekets t ODislibuion

Select OK.  

The cumulative Safety Factor distribution will be 
generated, as shown in Figure 3-4.  

Notice the vertical dotted line visible on the plot. This is 
the Sampler, and allows you to obtain the coordinates of 
any point on the cumulative distribution curve.  

* To use the sampler, just SINGLE click the LEFT 
mouse button anywhere on the plot, and the sampler 
will jump to that location, and display the results.

Alternatively, press and HOLD the LEFT mouse 
button on the plot, and you will see the double-arrow 
icon. Move the mouse left or right, and the sampler 
will continuously display the values of points along 
the curve.
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Figure 3-4: Cumulative safety factor distribution.

Fo-1

The display of the Sampler can be turned on or off in the 
right-click menu or the Statistics menu.  

Now tile the views one more time, and re-compute the 
analysis.  

Select: Window -- Tile Vertically 

Select: Analysis -- Compute 

Notice that the cumulative distribution gets updated 
along with the histograms, each time the analysis is re
run.
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Info Viewer 

Let's examine the Info Viewer listing for a Probabilistic 
Analysis.  

Select: Analysis --> Info Viewer 

A convenient summary of model and analysis parameters 
is displayed in its own view. Scroll down to view all of the 
information. This can be printed if desired.  

Notice the summary of Valid, Failed and Safe Wedges.  
Depending on your geometry input, it is possible for the 
Probabilistic Sampling of the Input Data to generate 
invalid wedge geometries. In general: 

Number of Failed Wedges + 
Number of Safe Wedges = 
Number of Valid Wedges 

Number of Samples 
Number of Valid Wedges = 
Number of Invalid Wedges 

As with the Histograms and S-curves, if you re-compute 

the analysis, the Info Viewer listing is automatically 
updated to reflect the latest results.  

Current Wedge Data 

Notice the Current Wedge Data listing in the Info Viewer.  
By default, the mean wedge data is displayed after a 
Probabilistic analysis.  

Remember we pointed out earlier that if you double-click 
on a Histogram, the nearest wedge will be displayed in 
the Wedge View. The Current Wedge Data will also be 
updated, to reflect the data for the "picked" wedge. Let's 
demonstrate this.

I
1. Close (or minimize) all views you may have on the 

screen, EXCEPT the Info Viewer and the Safety 
Factor Histogram.  

2. Select the Tile Vertically toolbar button.  

3. If necessary, scroll down in the Info Viewer view, so 
that the Current Wedge Data is visible.  

4. Double-click at different points on the Safety Factor 
histogram, and notice that the Current Wedge Data is 
updated to show the data for the "picked" wedge.
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Figure 3-5: Current Wedge Data for Picked Wedge.  

5. To reset the Current Wedge Data to the mean data: 

Select: View - Reset Wedge
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Sampling Method

As a final exercise, set the Sampling Method to Latin 
Hypercube, and re-run the analysis.  

Select: Analysis --3 Input Data 

In the Input Data dialog, select the Sampling tab, and set 
the Sampling Method to Latin Hypercube. Select the Apply 
button.  

Examine the Probability of Failure, and the Safety Factor 
Histogram. The results should be very similar to the 
Monte Carlo analysis.  

The difference is in the sampling of the Input Data 
random variables. For example, generate a Histogram of 
Joint Set 1 Dip Angle.  

Select: Statistics -* Plot Histogram 

Set the Data Type = Dip of Joint 1. Select the Plot 
Sampled Distribution checkbox. Select OK.  

Now compare the histogram with Figure 3-2. The Latin 
Hypercube sampling method results in a much smoother 
sampling of the Input Data distribution, compared to the 
Monte Carlo method.

6

Adding Support 

Rock bolts are added to an SWEDGE model with the Add 
Bolt option. This allows the user to evaluate the number, 
location, length and capacity of bolts necessary to stabilize 
a wedge (ie. increase the Safety Factor to a required 
amount).  

Let's start with a new (Deterministic) file for the purposes 
of the following demonstration.

LDi1
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Lemp ~ h(m): 

CTpen (tonnes: ) F120- 

Trend (deg): J 
Plunge (deg): 125 

Facbo oItaled :1.0428 

F-071AFip-ý1r~

Select: File -), New 

To add a rock bolt:

Select: Support -+ Add Bolt 

1. Move the cursor into the Top or Front orthogonal 
views.  

2. Notice that the cursor changes to an "arrow / rockbolt" 
icon.  

3. As you move the cursor over the wedge, notice that 
the "rockbolt" and "arrow" now line up - this indicates 
that you may add the bolt to the wedge.  

4. Click the LEFT mouse button at a point on the wedge 
where you want the bolt installed.  

5. The bolt will be installed NORMAL to the face of the 
wedge on which you clicked (ie. normal to the Upper 

or Face slope), however you can modify the 
orientation using the Bolt Properties dialog which you 
will see in the middle of the screen.

@ .  
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6. The Bolt Properties dialog works as follows: 

"* If you modify the Capacity, Trend or Plunge with 

the "arrow" buttons at the right of the dialog, the 
Safety Factor is immediately recalculated and 

displayed in the dialog as the values are being 

changed. This allows the user to interactively 
modify the bolt properties, and immediately see 

the effect on the Safety Factor.  

" Alternatively, values can be typed in to the dialog.  
In this case, the Safety Factor is NOT 
automatically re-calculated, the user must select 

the Apply button to apply typed in values.  

" As the bolt Trend and Plunge are changed, you 
will see the orientation of the bolt updated on the 
screen.  

"* Changing the Length of the bolt will be visible on 

the model, but has NO effect on the Safety Factor 

- see the next section for details.  

7. When the bolt orientation, length and capacity are 
satisfactory, select OK, and the bolt will be added to 
the model.  

8. If you are not happy with the location of the bolt, 

select Cancel, and the bolt will be deleted.

Figure 4-1: Adding a bolt.

Note:

4 The Right orthogonal view can also be used for adding 
bolts, however this is not recommended, as correct 
placement may be difficult or impossible. (If the Dip 

Directions of the Upper and Face Slope are the same 
it will NOT be possible to add a bolt in the Right 
orthogonal view.) 

* Bolts can NOT be added in the Perspective view.
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How Bolts are Implemented in SWEDGE

Bolts are implemented in the SWEDGE stability analysis 
as follows: 

Capacity and Orientation

1. Bolts affect the Safety Factor through their Capacity 
and Orientation (Trend / Plunge) only.  

2. Bolt capacities and orientations are added vectorially, 
and are included in the Safety Factor calculation as a 
single, equivalent force passing through the centroid 
of the wedge.  

3. Multiple bolts with the same orientation can therefore 
be simulated by a single bolt having the same total 
capacity.  

Length and Location

1. Bolt Length and Location (on the face of the wedge) 
have NO effect on the Safety Factor.  

2. The Length and Location of bolts allows the user to 
visualize the practical problems of installing the bolts.  

3. Even bolts which do not pass through the wedge, will 
affect the Safety Factor (ie. SWEDGE does NOT check 
for valid bolt lengths). So do NOT assume that "short" 
bolts will be filtered out - they will have exactly the 
same effect as longer bolts with the same capacity and 
orientation.

Bolts vs. External Force 

1. A bolt is therefore exactly equivalent to adding an 
External Force with the same magnitude and 
orientation. (See the Quick Start Tutorial for an 
example of adding an External Force).  

2. It is left as an exercise for the user to verify that a 
bolt, and an equivalent External Force, result in the 
same Safety Factor.  

Multiple Bolts 

Any number of bolts can be added to a model, by 
repeating the steps outlined above.  

However, remember that bolts in SWEDGE simply 
behave as force vectors passing through the centroid of 
the wedge. The applied force is equal to the bolt capacity.  

Therefore, in terms of the effect on the Safety Factor, 
multiple bolts can be simulated by: 

"* a fewer number of bolts, or even a single bolt, with 
equivalent capacity and direction, 

"* or an equivalent External Force.  

Installation of multiple bolts is useful for visualizing the 
practical problems of bolt installation, and the necessary 
bolt lengths and spacing. Or for back-calculating the 
Safety Factor of an existing wedge support system.
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Deleting Bolts

To delete bolts: 

Select: Support -. Delete Bolt 

Bolts can be deleted in the Top, Front or Right views as 
follows (bolts cannot be deleted in the Perspective view): 

1. Move the cursor in the Top, Front or Right views.  

2. The cursor will change to a small "box".  

3. Hover the cursor over a bolt that you wish to delete.  

4. The bolt will change colour, to indicate that it is 
"selected".  

5. When the correct bolt is selected, click the LEFT 
mouse button, and the bolt will be deleted.  

6. A new Safety Factor will immediately be calculated.  

7. Repeat steps 3 to 5 to continue deleting bolts.  

8. Press Escape to exit the Delete Bolts option.  

To delete ALL bolts at once: 

Select: Support -+ Delete Bolt 

1. Enter the asterisk ( * ) character on the keyboard.  

2. ALL bolts will be deleted from the model.  

Note that the bolt colour and the "selected" bolt colour, 
can be modified in the View -+ Display Options dialog, if 
necessary, for easier viewing.

fig ps$ 

e- I 

Sm4

A listing of all bolts and their properties (Capacity, 
Length, Trend and Plunge) can be found in the Info 
Viewer listing.  

The Info Viewer option is available in the Analysis menu, 
and in the toolbar.

Editing Bolts 

To edit the properties of a bolt: 

SSelect: Support -4 Edit Bolt 

Bolts are selected for editing in the same manner as for 
deleting - see the previous page for instructions.  

Once a bolt has been selected for editing: 

1. You will see the Bolt Properties dialog in the middle of 
the screen, displaying the properties of the bolt.  

2. You can modify the Capacity, Trend, Plunge or 
Length of the bolt, in the same manner as when you 
originally added the bolt. See the previous pages for 
details.  

3. When you are finished editing the properties, select 
OK to save your changes.  

4. If you select Cancel, all changes will be cancelled, 
even if you used the Apply button to apply the 
changes.  

Bolts can only be edited one at a time in this manner. It is 
not possible to edit the properties of multiple bolts 
simultaneously.  

Listing of Bolt Properties

Fd-1
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Bolts in a Probabilistic Analysis 

The above discussion of bolts in SWEDGE assumes a 

Deterministic Analysis of a single wedge.  

If the Analysis Type is PROBABILISTIC: ' 9 

"* the Probabilistic Analysis will be run EACH time a 
bolt is added or edited (ie. when OK is selected on the 
Bolt Properties dialog).  

"* Selecting Apply in the Bolt Properties dialog will • "9 
calculate a new Safety Factor for the MEAN wedge, 
but will NOT run the Probabilistic Analysis.  

"*If you are deleting bolts, the Safety Factor for the •' 
MEAN wedge will be re-calculated as each bolt is 
deleted, but the Probabilistic Analysis will only be run 
when you exit the Delete Bolts option.  

NOTE: 

Bolts should be used with some caution in a Probabilistic 
Analysis if your random variables include the orientation 
of the planes forming the wedge. • 

Since the bolts are added while viewing the mean wedge, 
the orientations of bolts added on the mean wedge may no • 
longer be appropriate in terms of support to wedges of 
other orientations generated by the Probabilistic Analysis. f 4 

If the only random variables in the Probabilistic Analysis 4 
are the strength parameters (cohesion and friction angle) 
of the failure planes, then this will not be an issue, since • 
the wedge geometry will remain constant.  

C.
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ABSTRACT

The results of a research program to evaluate the seismic response of steep slopes 

are presented. The impetus for this work was the October 17, 1989, Loma Prieta 

Earthquake which caused extensive landsliding along the coastal bluffs from San 

Francisco to Santa Cruz. While this research is specific to the bluffs in the San Francisco 

Bay region, the methods developed are generally applicable to stability analyses of steep, 

natural slopes.  

A frequency domain parametric study on topographic effects, using the 

generalized hyperelement method, shows that the peak amplification of motion at the crest 

occurs at a normalized frequency H/X = 0.2, where H is the slope height and X is the 

wavelength of the motion. Amplification was found to increase with inclined waves 

traveling into the slope crest, and to decrease with inclined waves traveling away from 

the crest. More importantly, the natural frequency of the site behind the crest dominates 

the response, relative to the topographic effect.  

The importance of the natural frequency is illustrated by the time domain response 

of 3 prototype sites using actual seismograms. The results show that the topographic 

amplification at the crest of a steep slope can be reasonably estimated by increasing the 

peak acceleration obtained from a one-dimensional site response analysis in the free field 

behind the crest by 50 percent. Then, for use in limit equilibrium slope stability analyses, 

the seismically induced force on a potential sliding mass can be estimated using profiles 

of the average seismic coefficient developed from the analytical results.

i



One of the objectives of the research was to develop practical analysis guidelines 

for evaluation of seismic response of steep slopes in weakly cemented natural deposits.  

A review of the laboratory behavior of weakly cemented sands shows that these materials 

exhibit brittle behavior under low confining stress, typical of a near-slope environment.  

This assessment of the behavior is supported by numerous field observations of 

seismically induced failures. Therefore, a limit equilibrium approach, rather than a 

deformation based analysis, is recommended.

ii
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1. INTRODUCTION

The results of a research program to evaluate the seismic response of steep 

slopes in weakly cemented granular soils are presented in this report. The main 

objective of the research program was to develop practical analysis guidelines for 

evaluation of seismic response of steep slopes in weakly cemented natural deposits.  

The impetus for this work has been the October 17, 1989, Loma Prieta Earthquake 

which caused extensive landsliding in the epicentral region and along the coastal 

bluffs from Seaside, south of Santa Cruz, to Daly City (Figure 1.1). While this 

research is specific to the coastal bluffs in the San Francisco Bay region, the methods 

developed are applicable to analysis of seismic response of similar marine terrace 

bluffs along the coast of Southern California, Oregon, and Washington, and should 

be generally applicable to stability analyses of steep, natural slopes.  

The California coastline from Moss Landing northward to San Francisco is 

characterized by extensive stretches of steep coastal bluffs in marine terrace deposits, 

ranging from 20 to 200 meters in height. The appearance of the bluffs along this 

entire stretch of the coast shows evidence of active erosion, and there is abundant 

historical evidence of slope failures caused by earthquakes, wave erosion, and intense 

rainfall. Records indicate that seismically-induced slope failures along different 

portions of this coastline occurred during earthquakes in 1865 (Plant and Griggs, 

1990), in 1906 (Lawson, 1908), in 1957 (Bonilla, 1957) and, most recently, during the 

Loma Prieta earthquake of October 17, 1989 (Plant and Griggs, 1990; Sitar, 1990).  

No loss of property was recorded in 1865, probably due to very sparse
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population of the area. In 1906, extensive landsliding was observed, particularly 

along the bluffs in Daly City, where the railbed of the Ocean Shore Railroad was 

extensively damaged (Figure 1.2). In 1957, extensive landslides along the bluffs in 

Daly City blocked State Route 1 for about two weeks (Figure 1.3) and led to the 

eventual abandonment of the highway by the California Department of 

Transportation. Most importantly, while cracking was detected along the crest of the 

bluffs, there was no direct damage to dwellings because the bluff crests were still 

largely undeveloped. Since then the bluff crests along the coast have been 

extensively developed, particularly in Daly City, Pacifica, Half Moon Bay, Santa Cruz, 

Capitola, and Seaside. The risk posed by seismically-induced slope failures to these 

new developments was amply demonstrated by the October 17, 1989, Loma Prieta 

earthquake. Fortunately, the extent of damage was surprisingly minor considering the 

severity of other damage in the epicentral region and in San Francisco. Figure 1.4 

shows a shallow failure of the bluffs at Pacifica, on the San Francisco peninsula.  

Similar slides at Rio Del Mar, south of Santa Cruz, were responsible for relatively 

minor damage to structures at toe of the slope; however, tensile cracking and loss of 

crest left many structures more vulnerable to future events. By far the largest failure 

occurred along the Daly City bluffs, some 55 miles from the epicenter (Figure 1.5).  

Cracking along the crest of the bluffs was also observed.  

Thus, given the apparent potential for damaging landslides during 

earthquakes, there is a need to develop adequate understanding of the bluff response 

under seismic loading. Only then can rational procedures for stability evaluation of 

these slopes be developed.
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Figure 1.2: Slope failures along the Ocean Shore Railroad north of Mussel Rock 

caused by the 1906 San Francisco Earthquake (courtesy of the Bancroft 
Libraiy, U.C. Berkeley).

Figure 1.3: Landslides along bluffs in Daly City caused by the 1957 San Francisco 

Earthquake (courtesy of the California Department of Transportation).
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Figure 1.4: Localized minor failures of marine terrace deposits in Pacifica caused by 

the 1989 Lonia Prieta Earthquake.

Figure 1.5: Failure of bluffs in Daly City caused by the 1989 Loma Prieta Earthquake.
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This report begins with a review of the behavior of weakly cemented sands, 

both in the laboratory and in the field. The results of the review show that these 

materials exhibit brittle behavior under low confining stress, typical of a near-slope 

environment, and this behavior is confirmed by field observations of seismically 

induced failures. Since the stress conditions in the vicinity of the slope are an 

important aspect of a slope stability analysis, an evaluation of the accuracy of 

computed stress distributions using the finite element method is performed. This 

evaluation shows some of the limitations of a finite element method analysis in this 

case. The Generalized Hyperelement Method (Deng, 1991) is then presented for the 

analysis of the seismic response of these steep slopes.  

The analysis of steep slopes to seismic loading begins with a frequency domain 

parametric study of a stepped halfspace and a stepped layer over a halfspace, in 

order to develop fundamental relationships between response, slope geometry, and 

material properties. Following this parametric study, the use and applicability of the 

"average seismic coefficient", originally developed for the seismic response analysis 

of embankments and dams, is evaluated. Seismic response characteristics of steep 

slopes in the time domain are then realistically examined using actual slope profiles, 

material properties, and seismograms. These results are used to develop a simplified 

methodology, similar to that presented by Makdisi and Seed (1978) to determine the 

equivalent seismic force induced by an earthquake on a steep slope. Finally, 

recommendations on the use of the results of this study in appropriate pseudo-static 

limit equilibrium stability analyses are presented.
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2. BEHAVIOR OF WEAKLY CEMENTED SANDS

Weakly cemented granular deposits composed of various proportions of sand, 

gravel, and silt can be classified as either soft rock or hard soil, depending on the 

degree of compaction and the degree of cementation. Typical cementing agents 

include silica, calcium carbonate, clay, and iron. In addition, apparent cementation 

is achieved by mechanical interlocking of the soil grains or by capillary tension of 

pore water. Examples of such materials include marine terrace deposits along the 

Pacific coast of the United States, loess deposits in the mid-western United States 

and China, and volcanic ash deposits in Japan and Guatemala (Sitar 1990). Though 

examples of these materials are found around the world, the emphasis in this study 

is on the marine terrace deposits in the San Francisco Bay area, which are mainly 

composed of weakly cemented sands.  

Nearly vertical natural slopes in weakly cemented sands have been observed 

in excess of 30 m in height, and slopes steeper than 30 degrees have been observed 

in excess of 150 m. In addition, the ability of these materials to stand in steep slopes 

has often been exploited to cut nearly vertical slopes for highways or roadways.  

Under the low confining pressures encountered near slope faces, cemented 

sands exhibit brittle behavior and low tensile strength. As a result, tension cracks are 

typically observed behind the crests of the slopes, and the brittle behavior makes for 

spectacular and potentially devastating slope failures during dynamic, earthquake 

loading. As a preface to the study of the slope response, the following sections of
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this chapter contain a review of the static and dynamic behavior of the material to 

the extent necessary for slope stability evaluation.  

2.1 REVIEW OF STATIC PROPERTIES 

The static behavior of weakly cemented soils has been the subject of 

numerous studies in the recent past (Clough et al. 1981, Haruyama 1973, Murata and 

Yamanouchi 1978, O'Rourke and Crespo 1988, Saxena and Lastrico 1978, and Wang 

1986). One of the earliest studies devoted to cemented sands was performed by 

Saxena and Lastrico (1978) who tested the static stress-strain behavior of lightly 

naturally cemented sand with calcite as a cementing agent. They found that the 

cohesion caused by cementation was the predominant strength component at low 

strain levels (below 1 percent), and at high strain levels the frictional component of 

strength became predominant. They also found that very high confining stress could 

destroy the cementation.  

Clough et al. (1981) reported on the results of over 100 tests on naturally and 

artificially cemented sand. They noted that cemented sand tends to behave in a 

brittle fashion, with brittleness increasing with cement content and decreasing with 

increasing confining pressure. The relationship between brittleness and confining 

pressure is apparent from Figure 2.1 which shows a set of typical stress-strain curves 

for an artificially cemented sand. At low confining pressures, the cementation tends 

to control behavior, making the material more brittle. As confining pressure 

increases, the ductility of the material also increases, as intergranular friction

8
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becomes more important. Also, the material exhibits nearly linear behavior until 

failure. Typical tensile strength, determined using the Brazilian tensile test, is on the 

order of 10 percent of the unconfined compressive strength. Thus, the failure 

envelope curves in the tensile region and gives a lower tensile strength than would 

be estimated using a straight-line extrapolation of the compression test results.  

2.2 REVIEW OF DYNAMIC PROPERTIES 

Fewer studies addressing the dynamic properties of cemented sands are 

available. Acar and El-Tahir (1986) studied the low strain dynamic properties of 

artificially cemented sands, while Frydman et al. (1980) and Clough et al. (1989) 

studied the effects of cementation on liquefaction. Studies that are most relevant to 

dynamic slope response in cemented sands were reported by Sitar and Clough (1983), 

Sitar (1990), and Wang (1986).  

Wang (1986) conducted a comprehensive laboratory study on the dynamic 

behavior of cemented sand, consisting of over 80 dynamic tests on sands which were 

naturally and artificially cemented. He found that the shear modulus decreases and 

damping increases with increasing strain, as is the case with most soil during cyclic 

loading. Summary plots of shear modulus and damping ratio varying with shear 

strain are presented in Figures 2.2 and 2.3, respectively. A typical result of a cyclic 

simple shear test on cemented sand is shown in Figure 2.4. These results, together 

with results of cyclic triaxial tests, show that the stress-strain curve from static tests 

tend to provide an envelope for the hysteresis loops from the cyclic stress-strain test.
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Thus, Sitar (1990) has suggested that the large strain cyclic stress-strain behavior can 

be estimated from the results of static testing.  

Figure 2.5 presents a plot of the ratio of static to cyclic simple shear strength 

with respect to the number of cycles to failure as a function of confining pressure 

(Sitar 1990). It is apparent that there is a trend for reduction in dynamic strength 

with increasing number of cycles. The effect is most pronounced at low confining 

pressures where the reduction can be as much as 15 percent. At higher confining 

pressures, the effect seems to be less than 10 percent.  

2.3 OBSERVED SLOPE FAILURES IN WEAKLY CEMENTED SANDS 

Failures of steep slopes in weakly cemented granular soils during seismic 

events have been recorded in many parts of the world. In California, in the San 

Francisco Bay region, landslides in coastal bluffs due to a seismic event were first 

recorded following an earthquake in 1865 (Plant and Griggs, 1990), though no 

property damage was reported. The first noted failures causing property damage 

occurred during the San Francisco Earthquake of 1906. "Rockfalls and dry sand 

flows were particularly disruptive" to highways and railroad grades (Youd and Hoose, 

1978). Five kilometers of the Oceanshore Railway between Lake Merced and 

Mussel Rock were closed due to failure of coastal bluffs. In this area, large cracks 

were observed extending several hundred feet behind the slope crest (Lawson, 1908).  

These slopes are mostly in the Merced Formation which is primarily composed of 

uncemented and weakly cemented sand with interbedded clay layers. Further south,
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near Capitola, slope failures were also observed in coastal bluffs in marine terrace 

deposits of weakly cemented sand (Youd and Hoose, 1978). However, due to the 

sparse population along the coast at the time, the available information is quite 

sketchy.  

Numerous failures, which closed the coast highway, also occurred in the 

coastal bluffs between Lake Merced and Mussel Rock in the 1957 San Francisco 

Earthquake (Bonilla, 1959). The largest slide was several hundred feet wide and 700 

feet from top to bottom along a 40 degree slope. The slide material appeared to be 

dry, and dust was observed rising from the slopes during failure. Cracks were also 

observed along the coast highway and behind the crests of the failed slopes.  

The Loma Prieta Earthquake caused hundreds of failures in marine terrace 

deposits and coastal bluffs between Marin County and Big Sur (Sitar, 1990). This 

included a large slide in the bluffs in Daly City, near the site of earlier failures 

recorded in 1906 and 1957. Closer to the epicenter, slides were mapped all along the 

coast of Santa Cruz County by Plant and Griggs (1990). At Seacliff State Beach, 

many slides were observed occurring in the upper 12 m of the 30 m high cliffs.  

These slides were observed to be up to 60 m wide with tension cracks extending 1 

to 6 m behind the crest. The slopes in this area are composed of up to 5 m of 

Quaternary marine terrace deposits, underlain by moderately indurated, weakly 

jointed sandstone member of the Purisima Formation. It is interesting to note that 

the types of failures, based on aerial photographs, appear similar to those which 

occurred during heavy rains in the winter of 1982.
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More recently, failures in steep coastal bluffs occurred during the Petrolia 

Earthquakes of April 24 and 25, 1992. Failures in coastal bluffs composed of weakly 

cemented sand were observed at Centerville Beach, located approximately 6 km west 

of hard-hit Ferndale, California (Figure 2.6). These bluffs, consisting of Pliocene 

marine terrace deposits, are 10 to 50 m in height and slope angles range from 450 

to nearly vertical. Strong motion instrumentation at the Oceanographic Naval 

Station, just behind the crest of the slope, indicated horizontal peak ground 

acceleration of 0.5g for the main shock (Shakal et al. 1992). The failures appeared 

to be relatively shallow and occurred in the upper portion of the slopes. Most of the 

material in the failure mass seemed to have lost its cementation, though several small 

intact blocks up to 1 m in diameter and larger were found (Figure 2.7). Three 

tension cracks were observed at 2 to 3 m intervals behind the crest of the 50 m slope 

to the west of the Naval Station. No other failures were observed in directly adjacent 

materials.  

Most recently, slope failures occurred in the Pacific Palisades due to the 

January 17, 1994, Northridge Earthquake near Los Angeles California. These coastal 

bluffs are located approximately 30 km south of the epicenter of the Mw = 6.7 

earthquake. Strong motion records at the nearby Santa Monica Fire Station indicate 

a peak horizontal acceleration of 0.93g and a peak vertical acceleration of 0.25g.  

The bluff failures closed the northbound lanes of the Pacific Coast Highway (State 

Route 1) for at least 4 days following the earthquake. Four large landslides were 

observed in this area, along with several smaller slides. One of the large slides 

carried a portion of a house down the slope, as shown in Figure 2.8. On properties

15



Figure 2.6: Landslides at Centerville Beach caused by the 1992 Petrolia Earthquake.

Figure 2.7. Intact blocks in landslide debris at Centerville Beach.
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Figure 2.8: Landslide at Pacific Palisades caused by the 1994 Northridge Earthquake.

Figure 2.9: Intact blocks in slide debris at Pacific Palisades.
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adjacent to this house, shallow concrete piers and H-piles were observed hanging in 

mid-air at the crest of the slope, implying that they provided little benefit. The 

failures occurred in Quaternary age deposits of weakly cemented sand (Jennings and 

Strand, 1969). The slopes on which the failures occurred were 40 to 60 m in height 

and moderately steep (between 45 and 60 degrees). The failure masses appeared to 

be only a few yards thick, subparallel to the slope, and had widths on the order of 

100 m. The slide debris was predominately loose sand with a few intact blocks, as 

shown in Figure 2.9.  

Failures of this type are not limited to California. Brittle, tensile failures of 

steep slopes in cemented volcanic ash deposits in Japan following the 1968 Ebino 

Earthquake were documented by Yamanouchi and Murata (1973) and Yamanouchi 

(1977). This material, called Shirasu, is a Pleistocene volcaniclastic deposit 

apparently cemented by welding, interlocking, or electro-static bonding. Again, 

similar types of failures were observed following heavy rains in 1949 and 1969.  

Harp et al. (1978) documented slope failures in the February 4, 1976, 

Guatemala Earthquake. Landslides in Pleistocene pumice deposits blocked major 

highways and a railway, stalling relief efforts. This pumice has a very low tensile 

strength, but derives apparent cohesion from the mechanical interlocking of the 

angular particles. Nearly all failures occurred in steep-sided canyons. On slopes 

steeper than 50', the pumice appeared to fail in tension by spalling off into nearly 

vertical slabs less than 6 m thick. Tension cracks were observed to extend 15 to 30 

m back behind the up to 100 m high, nearly vertical slopes. On 300 to 50' slopes, 

debris slides less than 1 m thick were observed in sandy soil overlying the pumice.
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Almost all individual slides were limited in size to less than 15,000 n3. Harp noted 

that both types of failures were heavily concentrated on narrow ridges and spurs, and 

suggested that topography may have amplified the ground motions.  

O'Rourke and Crespo (1988) described similar type of landslides in the 

Cangahua formation in Ecuador and southern Colombia. This volcaniclastic 

formation is characterized as a loess-like tephra with silica as a cementation agent.  

The material has the ability to stand in nearly vertical slopes up to 50 m high. An 

earthquake in 1987 closed the Pan-American Highway due to landslides in this 

material.  

The "Conglomerate of Lima" has failed in several earthquakes (Carrillo and 

Garcia, 1985). This material is a coarse-grained granular soil, including gravel, 

cemented with "fine soils mixed with calcium carbonate". It is of Quaternary age, 

well jointed, and forms steep coastal bluffs outside of Lima, Peru. Following the 

failures, tension cracks were typically observed 2 to 4 m back from the slope crests, 

with some cracks as much as 10 to 20 m behind the slope crests. The slopes were 

also observed to fail in heavy rainstorms and due to sewer leaks.  

Based on a review of documented failures, Sitar (1990) classified slope failures 

into two general categories. Moderately steep slopes, with slopes angles between 30' 

and 600, tend to experience shallow planar failures, subparallel to the slope face.  

The second category, the very steep slopes with slope angles greater than 60'. tend 

to develop tension cracks behind the slope crest, and then fail in block toppling or 

by in shear at the base of the tension cracks. The failure modes for the moderately
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steep and very steep slopes are schematically depicted in Figures 2.10 and 2.11, 

respectively. In both cases, the failure planes tend to be only a few meters deep.  

2.4 CONCLUSIONS 

A review of laboratory studies of weakly cemented sands shows that the 

material exhibits brittle behavior, particularly at low confining stresses, as would be 

anticipated near the face of a steep slope. Dynamic studies show that there is a 

reduction in strength due to cyclic loading, typically on the order of 85 to 90 percent 

of the static simple shear strength. In addition, results of dynamic tests have led to 

the development of shear modulus reduction and damping curves which are suitable 

for seismic site response analyses.  

Numerous observations of seismically induced failures confirm the inference 

about the brittle behavior of the material based on the results of laboratory tests.  

Typically, the failure mass at the base of the slide shows an almost complete loss of 

cementation, with occasional intact blocks. There is little evidence of incremental 

permanent deformations eventually leading up to failure, though tension cracks are 

frequently observed at the crest of the slopes. These observations indicate that a 

failure based stability analysis rather than a deformation based analysis would be 

more appropriate for these type of slopes.
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Shear Plane"- f 
>200 mn

Figure 2.10: Failure mode for moderately steep slopes in cemented sands (after Sitar, 

1990).

Tension Cracks 

Shear Plane >30 rn

Figure 2.11: Failure mode for very steep slopes in cemented sands (after Sitar, 1990).
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3. STATIC FINITE ELEMENT ANALYSIS OF STEEP SLOPES

Limit equilibrium analyses are often used in the assessment of slope stability.  

However, this method of analysis does not provide any opportunity to assess the 

actual stress distribution within the slope. Since the deformation characteristics of 

cemented sands depend on the actual stress conditions, other methods have to be 

employed to look at the stress distributions. The finite element method has been 

used extensively to analyze stresses in a variety of man-made and natural slopes.  

However, most of the work to date has concentrated on embankment slopes, where 

the desired stresses are often located along some curved failure surface through the 

interior of the embankment. For steep slopes, for example in weakly cemented soil, 

the failure surface tends to be shallow and planar, initiating in a zone of tension near 

the slope face, as already discussed (Sitar and Clough, 1983). Consequently, the 

critical stresses in a steep slope are located near a free boundary and are of relatively 

small magnitude; whereas in the flatter embankment slopes, the stresses are larger, 

since they are averaged along a deep curved surface within the interior of the 

embankment. Because of these differences, and since most of the finite element 

work to date has been directed toward embankment analysis, a study of the suitability 

of the finite element method for analysis of steep slopes was performed. Specifically, 

the accuracy of the computed stress distribution near the free surface of the slope 

was evaluated as a function of the element size and shape.
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3.1 BACKGROUND

The accuracy of a linear elastic finite element analysis depends on the type of 

element, fineness of mesh, mesh layout, and the geometry of the problem. The effect 

of these variables can be estimated empirically, and a review of published FEM 

analyses of slopes has been carried out. Table 3.1 lists the papers reviewed and also 

gives the pertinent information about the fineness of the mesh and type of element 

used. Though the list is not exhaustive, it gives an overview of the history of the 

development of the finite element method over the last 25 years. Only two

dimensional studies are included, since three-dimensional studies were found not to 

be applicable to this research effort at this stage (e.g. Lefebrve 1973). In this review, 

the aspect ration is defined as the ratio of element height to element width.  

The first application of the FEM to the analysis of stresses in a slope was 

performed by Clough and Woodward (1967) in the context of an analysis of stresses 

in an embankment dam. In their study, 3-node constant stress triangular elements 

were used with an aspect ratio of 1/2. The analyzed embankments were divided into 

7 to 14 layers, so that the element height ranged from H/7 to H/14. In addition to 

studying the discretization effects, Clough and Woodward compared the effects of 

incremental construction to single step, or "gravity turn-on," loading and evaluated the 

effects of soil nonlinearity on an idealized dam. The study was validated by 

comparison of the computed deformations to deformations observed in an actual 

dam.
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Table 3.1 Summary of Finite Element Analyses of Slopes 

Source Layers Nodes Aspect Notes 
Ratio 

Clough and Woodward (1967) 7,10,14 3 1/2 EM 

Idriss and Seed (1967) 4 3 1/2 EM,D 

Duncan and Goodman (1968) 10 4 1 EX 

Zienkiewicz et at. (1968) 11 3 1 EX 

Seed et al. (1969) 5,7 3 1 EM,D 

Boughton (1970) 6 3 1/2 EM 

Kovacs et al. (1971) 4 3 1/3 EM,D 

Kulhawy and Duncan (1972) 9,12 3 NS EM 

Lefebvre et al. (1973) 8 4 1 EM 

Smith and Hobbs (1974) 10 4 1/2,1 EM 

Vrymoed (1981) 25 4 1/3 EM,D 

Sitar and Clough (1983) 4 4 3 N,D 

Naylor et al. (1986) 5,9 8,4 1 EM 

Acar et al. (1988) 6,8 9 1 EM 

Kuwano and Ishihara (1988) 10 4 1/2,1 EM,D 

Griffiths and Prevost (1988) 4,6 4 1/2,1 EM,D 

Naylor and Mattar (1988) 4,6 8 1 EM

1Embankment, 2Included dynamic analysis, 3Excavation, 4Not shown, 5Natural 

slope

Based on the results of this study, Clough and Woodward concluded that a 

staged analysis, in which layers of elements were added to the model to simulate 

incremental construction, was crucial in predicting deformations during construction.  

Stresses were affected to a lesser extent, though a staged analysis led to a more 

accurate prediction of stresses. As for the number of stages, or layers, necessary to
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model deformations, virtually no difference was found between 7 and 14 layers for 

two horizontal sections through the idealized dam. Furthermore, they found that 

nonlinearity could easily be accounted for by changing the soil properties between 

stages in the analysis.  

Duncan and Goodman (1968) used the FEM to analyze stresses and 

deformations in excavated rock slopes. For analysis of homogenous rock, they used 

a 4-node quadrilateral linear stress element with a height of H/10 and an aspect ratio 

of one. In their study, two sequences of analysis were considered: the "gravity turn

on" method, in which gravity was applied to the finite element mesh with the 

excavation at its final geometry; and the staged analysis, in which stresses were 

reduced according to the sequence of excavation. They found that for the purposes 

of estimating the stress distribution around an excavation, the simpler gravity turn-on 

method was adequate. However, for estimating displacements, the staged procedure 

was necessary to obtain reasonable accuracy. They concluded that the coefficient of 

lateral earth pressure, K, was critical for determining the stresses in the rock mass, 

and that the aspect ratio of elements should be between 1/5 and 5. In addition, they 

investigated the effect of joints on stresses and deformations. For a joint set 

occurring in only one direction, an equivalent anisotropy was used to model the joints.  

Joints were also modeled using one- and two-dimensional elements (1-D and 2-D, 

respectively). They concluded that the 1-D joint element was more versatile than the 

2-D element for modelling joints, and that joints had little effect on initial stresses in 

the rock mass.
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Excavation in rock has been analyzed by Zienkiewicz (1968) assuming the rock 

was a "no-tension" material. In his study, a 4-node quadrilateral element was used 

with a height of H/11 and an aspect ratio of one. The rock mass was considered to 

be unable to carry tensile stress due to the formation of joints and fractures, and an 

iterative process was used transfer stress to other regions of the rock such that in the 

end, no tensile stresses existed. Zienkiewicz concluded that this type of analogy 

represented a "lower bound" solution to the stress distribution in the rock mass.  

Sitar and Clough (1983) used the FEM to specifically model naturally 

occurring steep slopes in weakly cemented soils. A 4-node quadrilateral element with 

an aspect ratio of 3 was used in their analyses. Sitar and Clough concluded that a 

zone of tension occurs behind the crest of the slope, as well as in a small zone on the 

face of a vertical slope. This appeared to concur with observed failures in these types 

of materials. However, it should be noted that they used elements with an aspect 

ratio greater than one.  

Smith and Hobbs (1974) used the FEM to analyze the observed behavior of 

model slopes in a centrifuge. In particular, aspect ratios of 1/2 and 1 were compared.  

Discrepancies were noted when the coarser mesh (aspect ratio of 1/2) was used. In 

addition, the effect of overall width of the finite element mesh was studied. They 

showed that, even with boundaries as close as 1H from the toe and crest, the 

proximity of the boundary had little effect on the stress distribution in the vicinity of 

the slope. Of particular interest to the current research, is the fact that relatively 

poor agreement was observed between the finite element model and the centrifuge 

models of steep slopes.
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Naylor and Mattar (1988) studied the effects of element height when using 

FEM to model embankment dams. They concluded that only 4 to 6 layers are 

necessary in most cases to properly analyze stresses in an embankment, not the 10 

layers as is the common practice. However, in their analyses, 8-node serendipity 

elements were used, not the 4-node quadrilateral elements used in most of the 

previous studies.  

The different discretization schemes used in FEM analyses of slopes during 

the 25 years since the publication of Clough and Woodward's pioneering work are 

summarized on Table 5-1. It can be seen that there is little consistency in the size 

and shape of the elements. The initial studies used element heights of approximately 

H/10. Since then heights have ranged from H/4 to H/25, though H/10 appears to be 

close to the most commonly used value. The most commonly used element in the 

studies reviewed herein is the 4-node element, though the 3-node element was 

common in earlier studies, and 8- and 9-node elements have become more common 

over the past 5 years. The aspect ratios (height/width) have typically been close to 

one, though they vary from approximately 1/3 to 3. Most of the above studies were 

analyses of embankments, where stresses in the interior of the slope were of greatest 

interest. In addition, many of the studies performed were subject to a limitation of 

the total number of elements due to computer costs. Most importantly, it is evident 

from this review that there is no commonly agreed upon approach to the 

discretization of the modelled domain. Therefore, a study was deemed necessary to 

determine the optimum size and aspect ratio of elements for use in studying steep 

slopes, where shallow zones of tension may occur.
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3.2 PHYSICAL MODEL

Before the advent of computers, methods of studying stress distributions were 

relatively limited, and physical models using photoelastic materials were often used 

to obtain stresses and stress distributions directly. Photoelastic materials, such as 

gelatine, bakelite, and glass show contours of equal stress when polarized light is 

shone through them (Timoshenko and Goodier, 1970). Of these, gelatine is the only 

material sensitive enough to be of practical use when looking at stresses caused by 

the weight of the material itself.  

Therefore, the gelatine slope model built by La Rochelle (1960) is used for 

comparison with the numerical analyses performed as a part of our study. La 

Rochelle studied the stability of excavations in London clay and used gelatine models 

to determine stress distributions. He considered four different slopes: a vertical 

slope, a 1 horizontal to 2 vertical (1H:2V) slope, a 2H:IV slope, and a "Bradwell" 

(benched) slope. Only the vertical slope is of interest herein.  

La Rochelle's model was constructed by pouring a heated liquid gelatine 

mixture into a mold comprised of 13-mm thick perspex plates mounted on a wooden 

frame. All wood within the mold was lined with 2-mm thick perspex plates. Prior 

to pouring the mixture into the mold, all interior surfaces of the mold were coated 

with silicon grease. Once the mixture had dried, the perspex plates were removed 

and coated with heavy gear oil. The grease and oil effectively removed any friction 

between the mold and model. A schematic of the mold is presented in Figure 3.1.
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Figure 3.1: Gelatine model (from La Rouchelle, 1960).



The gelatine mix contained 12% leaf gelatine, 28% glycerine, and 60% water.  

Poisson's ratio of the mix was approximately 0.5, the unit weight was 10.7 kN/m 3, and 

for the analysis presented herein, Young's modulus will be assumed to be 62 kPa 

(Farquharson and Hennes, 1940).  

Prior to testing, the model was checked for initial stresses and none were 

found. The wooden block supporting the molded slope face was then removed to 

simulate excavation and polarized light was shone through the mix to determine the 

"isoclinics", contours of constant direction of major principal stress, and the 

"isochromatics", contours of constant shear stress. La Rochelle was then able to 

separate the principal stresses using a numerical solution of the Laplace equation for 

the sum of the stresses.  

La Rochelle concluded that boundary effects were eliminated in the vicinity 

of the slope by locating model boundaries at a distance of 2H; however, he noted 

some difficulties with modelling of the vertical slopes due to severe deformations.  

This problem was somewhat eliminated by cutting the toe of the slope with a 6-mm 

radius instead of a right angle. Nevertheless, approximately 5 percent deformation 

still remained, and a tension crack opened up to a depth of H/5 between the mold 

and the top of the model behind the crest of the slope. La Rochelle concluded that 

as a result, stresses in the vicinity of the slope included up to approximately 10 

percent error, while stresses at the base of the model included approximately 2 

percent error.
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3.3 FINITE ELEMENT MODEL

The computer program FEAP (Taylor 1977) was used to model the gelatine 

slopes. An enhanced, plane strain 4-node quadrilateral element capable of modeling 

a Poisson's ratio very close to 0.5 was used, and the actual value of Poisson's ratio 

used in the analyses was 0.499. The left and right boundaries of the mesh were 

restrained from lateral movement, and the bottom of the mesh was restrained from 

vertical movement to simulate the gelatine model. The gravity turn-on method was 

used, in which full gravity was applied to the entire mesh at once.  

Nine different meshes are discussed herein, though many others were used in 

the course of the study. Most of the analyses were performed using meshes 

containing elements of uniform size, as shown in Figure 3.2. A mesh curved at the 

base of the slope and an extremely fine mesh with variably-sized elements were also 

used to complete the study (Figures 3.3 and 3.4, respectively). A description of each 

mesh is given in Table 3.2. The number of uniformly-sized elements required to 

model the slope height is given by the variable n. As can be seen from Table 3.2, 

values of n ranged from 4 to 32. The aspect ratio, a, is defined as the vertical 

dimension, h, of a given element divided by its width, w. Aspect ratios 

(height/width) from 0.25 to 4 were used in the analyses.
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Figure 3.2: Typical FEM mesh and parameter definition.
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Figure 3.3: Curved FEM mesh.

Figure 3.4: Variable sized element mesh.
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Table 3.2 Summary of Meshes Used in Study 

Mesh Description Element Aspect Ratio 
______ ~Height I_ _ 

n4al H1/4 1 

n4a4 H/4 4 

n8al H/8 1 

nl2al H/12 1 

nl6aO.25 H/16 0.25 

nl6al H/16 1 

n32al H/32 1 

n64a0.25 H/64 0.25 

n128a0.25 H/128 0.25 

curved NA NA 

variably-sized element NA NA

3.4 RESULTS 

The most direct method to compare the gelatine and FEM model is to 

compare the shear stress, a1 a3, because this is the only stress which is obtained 

directly from the gelatine model, while the values of the principal stresses must be 

calculated numerically from the shear stress measurements. Shear stresses computed 

using the meshes n4al and nl6al are compared to the shear stresses from the 

gelatine model in Figures 3.5 and 3.6, respectively. These meshes are composed of 

square elements with element heights of H/4 and H/16, respectively. Figure 3.5 

shows only a general agreement with the gelatine model for the larger element size,
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Figure 3.5: Comparison of 01-a3 between gelatine model and FEM using element 
n4al.

Gelatine Model 
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Figure 3.6: Comparison of aJ-a 3 btween gelatine model and FEM using element 
n,6a1.
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and this general agreement tends to decrease with increasing shear stress. The 

difference near the base of the slope is in excess of 25 percent, with the FEM model 

always underestimating the stress. The agreement is somewhat improved by 

quartering the element size (nl6al). The difference at the base of the slope is less 

than 20 percent.  

The principal stresses were obtained from the gelatine model by applying the 

finite difference method to the results of the photoelastic test. The comparisons 

between the principal stresses computed from the gelatine model and those obtained 

from the FEM analyses are presented in Figures 3.7 through 3.10. Figures 3.7 and 

3.8 show the comparison between the minimum principal stress, a3, contours for the 

large and small elements, respectively, and those obtained from the gelatine model.  

Similarly, Figures 3.9 and 3.10 compare the maximum principal stress, ap, contours 

between the finite element and gelatine models. All of these results indicate that 

there is a better agreement between the gelatine model and the finite element model 

for principal stresses than for shear stresses. There is excellent agreement between 

the minimum principal stresses in Figures 3.7 and 3.8, except within about 0.2H of 

the slope face. Good agreement is also found in Figures 3.9 and 3.10 for the 

maximum principal stresses. The figures also show that there is better agreement in 

both cases for the finer mesh (n=16). However, even with n=4, the overall 

agreement is still good.  

The major differences between the gelatine and finite element model occur 

along the slope face for a3, and near the base of the slope for a1 and the shear 

stresses. Though it is not apparent from the stress contours, the finite element model
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Gelatine Model 

F.E.M.

Figure 3.7: Comparison of T3 between gelatine model and FEM using element 

n4al.

Gelatine Model 

F.E.M.

Figure 3.8: Comparison of T3 between gelatine model and FEM using element 

n16a1.
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Gelatin.e Model 

F.E.M.

Figure 3.9: Comparison of a2 between gelatine model and FEM using element 
n4al.

Geatin• Model 

F.LM.

Figure 3.10: Comparison of a1 between gelatine model and FEM using element 
n16a1.
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breaks down near the base of the slope. A review of stresses at the Gauss 

integration points reveals an oscillation between compression and tension within 

elements near the face of the slope. This oscillation dies out rather quickly, within 

about 0.2H of the face. The oscillation is apparently caused by a singularity in the 

solution matrix originating in the element at the base of the slope. It is important 

to note that stresses in this zone may not be critical in a typical slope stability 

analysis because the interior stresses are well defined. However, for shallow shear 

or tensile failures, these stresses are critical and must be quantified.  

In an attempt to reduce this error, two additional meshes were used to 

compare the FEM model to the gelatine model: a mesh curved at the slope base and 

a very fine mesh with elements increasing in size away from the slope base. The 

results of these comparisons are shown for all stresses in Figures 3.11 through 3.13, 

and 3.14 through 3.16, respectively. It is apparent from these figures that not much 

improvement is achieved from using these more complicated meshes. In fact, Figures 

3.15 and 3.16 match very closely the results for nl6al shown in Figures 3.9 and 3.10.  

Tensile stresses along the top of the slope from the model edge to the crest 

of the slope are compared in Figure 3.17. The stresses from four uniform meshes 

with different sized elements are shown. Meshes indicated by n4al and nl6al used 

square elements. Element n4a4 is a tall element with the same height as n4al and 

the same width as nl6al. Conversely, nl6aO.25 is a short element, with the same 

height as nl6a1 and the same width as n4al. The figure shows that elements with 

the same heights give similar results, and the square elements bound the results.  

Since the results obtained using the meshes n4al and n4a4 give similar results, as
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Gelatine Model 

F.E.M.

Figure 3.11: Comparison of c1)-3 between gelatine model and FEM using curved 

mesh.

Gelatine Model 

F..M.

Figure 3.12: Comparison of 03 between gelatine model and FEM model using curved 

mesh.
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Gelatine Model 

F.E.M.

Figtre 3.13: Comparison of a1 between gelatine model and FEM using curved mesh.

Gelatine Model 

F.EM.

Figure 3.14: Comparison of O1-a3 between gelatine model and FEM using variable 
sized element mesh.
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Figure 3.15: Comparison of (Y3 between gelatine model and FEM using variable 

sized element mesh.  
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Figure 3.16: Comparison of a, between gelatine model and FEM using variable 

sized element mesh.  
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Figure 3.17: Variation of maximum tensile stress along top of slope with varying 
aspect ratio.

Figure 3.18: Variation of maximum tensile stress along top of slope with varying 
element size.
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do nl6al and nl6aO.25, it appears that the element height has more effect than 

aspect ratio when computing tensile stresses behind the crest of the slope.  

The effect of element size on the magnitude of tensile stress is shown in 

Figure 3.18. All meshes are composed of uniformly sized square elements, except 

n64aO.25 and n128a0.25 which contained short rectangular elements in the upper 

portion of the mesh. Figure 3.18 shows that progressively finer meshes yield higher 

tensile stresses at a decreasing rate, with the finest mesh approaching a practical 

upper-bound. Based on these results, it appears that the element height of H/10 

typically used in many studies predicts a much lower tensile stress behind the crest 

than may be actually present, and an element height of H1/32 may be required to get 

within 10 percent of the upper-bound.  

3.5 CONCLUSIONS 

The results of the analyses indicate a reasonable agreement between the 

physical (gelatine) model and the numerical (FEM) model for shear stresses, and an 

overall good agreement between the two models for the principal stresses, even for 

coarse meshes. When looking at stresses along the top of the slope, the height of the 

element tends to be more important than the aspect ratio, at least for aspect ratios 

up to 4. In all cases, the greatest difference between the two models occurs in the 

vicinity of the slope. Therefore, due to limitations in the FEM analyses used herein, 

accurate stresses could not be determined within 0.2H of the slope face. Finally, an 

element height of H/10 commonly used in FEM analyses of slopes does not appear
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to accurately define tensile stresses behind the crest of the slope, and an element 

as small as H/32, or higher order elements, may be necessary to determine stresses 

within 10 percent of the upper-bound.  

The difficulty of modeling stresses behind the free face of steep slopes, and 

the fineness of mess required to accurately model stresses behind the crest of steep 

slopes are of concern. In light of these results, an approach other than the finite 

element method, and in fact, other than detailed stress analysis, may be advantageous 

to the study of the response of steep slopes in weakly cemented soil, as is explored 

next.
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4. THE GENERALIZED HYPERELEMENT METHOD

SThe generalized hyperelement (GHE) method was developed by Deng (1991) 

for two-dimensional seismic response analysis. Deng showed that this method works 

well for steep slopes, and in fact, is not applicable to shallow slopes (less than about 

20 degrees). The GHE method, coded by Deng into the computer program 

GROUND2D (Deng et al., 1994), greatly reduces the number of degrees of freedom 

required for the analysis of two-dimensional site response, as compared to the finite 

element method. In addition, the current program offers greater capability for 

analysis of a variety of seismic waves than readily available finite element programs.  

For these reasons, the GHE method, as coded in GROUND2D, is used for the 

analysis of the seismic response of steep slopes presented herein.  

4.1 COMPUTATIONAL MODEL 

In order to illustrate the concepts used in the computational model, consider 

a site shown in Figure 4.1. A model of this site using the methods coded in 

GROUND2D is presented in Figure 4.2. The site is divided into two large blocky 

regions and two semi-infinite regions on the left and right sides, respectively. Within 

each region, the soil and rock strata are divided into a group of perfectly horizontal 

layers, with material properties perhaps varying from layer to layer. The boundaries 

between the regions can be of arbitrary shape. The whole model rests on a visco

elastic halfspace.
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Figure 4.1: Site for two-dimensional seismic site response analysis (after Deng, 1991).
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Figure 4.2: Typical model of site using GROUND2D (after Deng, 1991).
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In general, each blocky region is simulated by a generalized hyperelement, H 1 , 

H 2 5 ..., Hn. The semi-infinite regions, L and R, are simulated by generalized 

transmitting elements. The prefix "generalized" refers to the ability of these elements 

to model arbitrarily shaped boundaries. Nodal points exist only at the boundaries 

between any two regions, and only the motions at the nodal points need to be solved 

in the global equations of motion. Once the nodal point motions are obtained, the 

motions within each region can be recovered through a nodal expansion process.  

4.1.1 The Complex Response Method 

The techniques used in formulation of the generalized transmitting element 

(GTE) and the generalized hyperelement (GHE) utilize the complex response 

method to simulate viscous damping within the elements. For simplicity, the complex 

response method is described below for a simple damped oscillator. The general 

form of the equation of motion for the simple damped oscillator is: 

Mfi + C4• + Ku = q(t) (4.1) 

where M, C, and K are mass, viscous damping and stiffness, respectively; q(t) is the 

driving force; and ii, a, and u are the acceleration, velocity, and displacement of the 

system. The solution of the equation of motion for harmonic motion at circular 

frequency o is given by: 

(K + ioC - W2M)Ul = QI (4.2)
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where UP and Q' are the complex amplitudes of the displacement and force, 

respectively. Employing the concept of complex stiffness, the above equation can be 

reduced to the following: 

(K' - ci2M)Ul = Q1 (4.3) 

where K' = K + iwC is the complex stiffness which can be formulated using the 

complex modulus for linear visco-elastic materials. In the context of the methodology 

used herein, viscous damping is employed through the use of the complex shear 

modulus G', 

' 0,(1_~2I32 + i2f3-/2) (4.4) 

and complex constrained modulus 

M, = Mc(1 -2p2 + i2 p2f3 i) (4.5) 

where p is the ratio of critical damping for S- and P-waves. Though some laboratory 

studies indicate that p may be different for S- and P-waves, there are treated as equal 

in this study. It is possible, however, to define separate values in GROUND2D. It 

should be noted that MC' = V. + 2G', where the complex value of Lame's constant 

is 

1. = X(1 -2p32 + i2f3Vi-p ) (4.6) 

Using definitions of complex modulii leads to: 

a real value of Poisson's ratio,
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V = ;/1(4.7) 
2(;L'÷ ýL (X 

an exact value for amplitude, because 

IK'I = K (4.8) 

and, for small values of p, a small error in the phase of the solution: 

2P3 (4.9) 02 - 0 1 -- +a 

where 0 1 and 02 are the phase lags between the displacement and the driving forces 

using the complex response method and modal analysis, respectively. The phase lag 

is greatest at low frequencies (for the static case a = 0); is approximately 0 (in 

radians) near the natural frequency; and disappears with high frequencies. For the 

sake of simplicity, the prime symbol (') indicating complex values will be dropped 

from here on, though it should be understood that the complex values of these 

variables are used throughout. For a detailed discussion of the complex response 

method, see Deng (1991).  

4.1.2 Equations of Motion 

The equations of motion for the model shown in Figure 4.2 can be written 

generally as
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n 

([LIL+[R]R+E [I]I) { U} = (PI (4.10) 

where [L]L is the stiffness matrix for the left semi-infinite region, [RIR is the stiffness 

matrix for the right semi-infinite region, and [H]i is the stiffness matrix for the i-th 

blocky region Hi. {U} is vector containing the motions at all nodal points, and {P} 

is the force vector, which is of different form for different incident wave cases. For 

surface wave incidence, assuming the wave propagates from left to right, the vector 

{P} can be expressed as 

{P} =([L]L +[R] 1){ U}R (4.11) 

where {U}R is the incident surface wave vector, the subscript L refers to the left 

boundary, and the superscript R refers to the direction of wave propagation.  

Similarly, if the incident surface wave propagates from right to the left, the {P} 

vector becomes 

{ P} =([L]R+[RJR){UI} (4.12) 

For body wave incidence, the {P} vector is 

n 

{IP =[L]L, Uf) LfR, RI UR+E [ttJ{ Ufjj 
i-1 (4.13) 

+ [LolL{ UfIL-[ IR]R{ U>R+. [Hoji U~f, 
i=1 

where {Uf}L, {Uf}R, {Uf}i are the "free field" motion vectors for the left, right, and 

Hi regions, respectively (i.e. the response vectors of the regions corresponding to the 

incident wave, if the motions in the regions are computed using one-dimensional layer
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models with no lateral boundaries). The matrices [Lo], [Ro] and [Ho]i are defined as 

follows: 

[LOIL=i1Ca[AIL +[DIL (4.14) 

[RO]R=iKotA]R+[D]R (4.15) 

-(ijK[AIL,+[D]L [ 0 (4.16) [H°] 0 iWa[Aji R,+[D] R, 

where the subscripts Li and Ri are for the left and right boundaries of the Hi region, 

respectively. The matrices [A] and [D] are related to the eigenvalue problem of a 

layered system and will be defined in the following section. The parameter ica is the 

apparent wavenumber of the incident body wave in the underlying halfspace and is 

defined as 

1C. = I,0sin 0 0 (4.17) 

where ico = ris for SH- and SV-waves, and xo = xp for P-waves. 00 is the incident 

angle, measured from the z-axis, with the positive value corresponding to a wave 

propagating toward the positive x-direction.  

4.1.3 Eigenvalue Problem of the Layered Halfspace 

Consider a semi-infinite layered region bounded at the left end by an irregular 

boundary S, shown in Figure 4.3. According to Deng (1991), the surface wave 

motions in the region along a curve S*, which is parallel to the boundary S at a
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distance x, can be generally expressed as a superposition of the generalized surface 

wave modes: 

N 

(U(w,x)I=F tv), e-iKIxas (4.18) 
s=1 

where {U(wx)} is the frequency-dependent displacement vector, {v}, is the s-th wave 

mode of the layered region, xs is the s-th wavenumber, and as is the mode 

participation factor for the mode. Equation (4.18) is the general form for both in

plane (e.g. SV-waves) and out-of-plane motions (e.g. SH-waves). Assuming, for 

example, that the bottom of the layered system is fixed, then N = 4n for in-plane 

motions, where n is the number of discretized nodal points along the boundary S, 

and N = 2n for out-of-plane motions.  

The eigenvalues and eigenvectors must be solved for each frequency from the 

following generalized eigenvalue problem 

([A]Kx +i[B]Y÷+ [G-• -w2[M])IvI =101 (4.19) 

where ca is the circular frequency, [A], [B], [G], and [Af] are frequency independent 

matrices related to the material properties of the layered region and the geometry 

of the irregular boundary S. Depending on the different type of motions concerned, 

(e.g. in-plane or out-of-plane) and different order of the discretization (e.g. 1st- or 

2nd-order), the matrices may have different forms and dimensions.  

Equation (4.19) can be solved by a method proposed by Deng (1991). This 

solution yields 4n pairs of the wave modes and wavenumbers for the in-plane motions 

(2n pairs for the wave modes and wavenumbers for the out-of-plane motions). Half
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of the wave modes represents the surface waves propagating in the positive x

direction and the other half represent the waves in the negative x-direction. The 

wave modes and wavenumbers are used in generating the transmitting boundary 

matrices and in computing the motions in any part of the layered regions.  

4.1.4 Generalized Transmitting Elements 

The generalized transmitting elements (GTE) are formulated by using the 

exact analytical solution in the horizontal direction and a discretized displacement 

shape function along the irregular boundary S. The boundaries of these elements 

transmit energy accurately in the horizontal direction and represent the perfect 

"infinite" boundary condition. The GTE stiffness matrix represents the response of 

the semi-infinite region to the boundary nodal forces. For each irregular boundary 

S, two stiffness matrices exist. One is for the waves propagating toward the positive 

x-direction, i.e., the semi-infinite region is at the RIGHT of the boundary, and is 

denoted [R]. The other is for the waves propagating toward the negative x-direction, 

or the semi-infinite region is at the LEFT of the boundary, and is denoted [L]. We 

have generally the following force-displacement relationship for the right region 

(PJ=[R]IU) (4.20) 

and, for the left region
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(4.21)(P) =[L]{ U)

where {P} is the nodal force vector along the boundary, {U} is the nodal 

displacement vector along the boundary respectively, and [L] and [R] are the GTE 

stiffness matrices.  

According to Deng (1991), the GTE stiffness matrices for both the in-plane 

and the out-of-plane motions can generally be written in the following form: 

[R] =i[A][V[ic/][ -] - +[D] (4.22) 

[L] =i[A]J[W]•]cJ[W1-j-[D] (4.23) 

In the two equations, the dimensions of all matrices are 2n x 2n for the in-plane 

motions (n x n for the out-of-plane motions). [V] is the matrix containing all right 

eigenvectors and [W] is the matrix containing all left eigenvectors, respectively; and 

[_K] is a diagonal matrix containing all the wavenumbers (i.e., the eigenvalues) for the 

corresponding modes. These eigenvalues and eigenvectors serve as the basis for the 

mode superposition of the motions in the layered region, as defined in Eq.(4.19).  

The matrix [D] is related to the geometry of the lateral boundary and the material 

properties of the layered region, and is assembled from the submatrices of individual 

layers.
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4.1.5 The Generalized Hyperelement

Each of the blocky regions in Figure 4.2 is simulated by a generalized 

hyperelement (GHE) which is an extension of the generalized transmitting element.  

The following gives a brief outline of the formulations of GHE. The detailed 

derivation can be found in Deng (1991).  

Consider a layered blocky region bounded laterally by two irregular 

boundaries, SL and SR, respectively, as shown in Figure 4.4. The layers inside the 

region are assumed to be perfectly horizontal, but material properties may differ from 

layer to layer. Nodal points exist only along the boundaries. The displacement shape 

functions in the region, i.e., the correlations between the displacement vectors of the 

two boundaries, are obtained by the superposition of all right-propagating modes 

from SL and all left-propagating modes from SR. After considering the effect of the 

boundary geometry, the general form of the displacement vector within the region 

can be written as 

{ U(•) = {U(t)LR+{U(4)}RL (4.24) 

= [Q(4)]tR{ U(L)IL+[Q(&)]RL{U(R)}L 

where the vector {U(L)}LR is the right-propagating component of the displacement 

vector defined at the left boundary, the vector {U(R)}RL is the left-propagating 

component of the displacement vector defined at the right boundary. {I} is the 

vector which defines the distance from the left boundary to the line of interest, and 

{•} = {d}-{•} is the vector which defines the distance from the right boundary to
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the line of interest, where {d} is the distance vector between the left and the right 

boundaries.  

The matrix operator o is defined as a term-by-term multiplication of the 

matrix entries. i.e., [C] = [A] o [B] implies that cij = aij x bij. In this manner, [Q]LR 

and [QIRL are matrices of the following form: 

[QIt•=([VJt®[4t)[P]L1  (4.25) 

where [11L is the right eigenvector matrix defined along SL, [WMR is the left 

eigenvector matrix defined along SR. The entries in the matrices [W]L and [FIR are 

defined as 

(W,•)=e -'•,• 

( R=e (4.26) 

s,t=l, ... , n 

for the out-of-plane motions, and 

(*,-I_1)L=e -itA•, (*ýS)L =e -'EA 

(*,-l_ t)R=e -it ' ,, (*,.ts)R=e -it 'k (4.27) 

s=1, ..., n; t=1, ..., 2n 

for in-plane motions, where {K} and {K} are defined from the left and right 

boundaries, respectively. All the matrices are of dimension n x n for the out-of-plane 

motions, and of dimension 2n x 2n for the in-plane motions.
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For the left boundary, {f} ={O} and {f}={d}. For the right boundary, 

{f}={d} and {I}={0}. Thus the nodal displacement vector of the blocky region can 

be written as 

{U1= I U()I I=U IL)}+{U(LI}RI 

itlU(R)) J(=/RIu).+(U(R)l RLJ (4.28) 

[1 J [11 U<R) I L 

where [I] is the identity matrix. Similarly, applying the boundary conditions of the 

GTE on both lateral boundaries, SL and SR, and considering all propagating 

components of the displacement field, the nodal force vector of the blocky region can 

be written as 

IF[IRL -[L]L[QJRLI{U(L)}r" (4.29) 

where [R] and [L] are the left and the right GTE stiffness matrices, respectively. The 

subscripts L and R denote that the matrices are defined at SL and SR, respectively.  

Combination of the Equations (4.28) and (4.29) leads to the following relationship: 

IF) =[H] { U) (4.30) 

where the matrix [H] is the hyperelement matrix: 

=[[H]1 [ Hi! 21 
(4.31) [H] [R] 2 [R122
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The components of the matrix [HI] are 

[H]11 =[RIL[•] +[L]L[Q]j[I]2[QIR 

[R12=-[RIL[4•l][Q]n-[L]L[ Q][ *] 2  (4.32) 

("121=-[R)1= [ILQ]JI -[L]R[12[(QILR 

[H]2 =[RIR[IQ]lI[[QIQ•+[L]R[I)2 

The matrices [I]1 [1T12 are defined as the following 

[] 2 =([]- [Q Q][ )(4.33) 
[P'12=([/1Ql-(OQt.Rd]•

The component matrices [1111, [H112, WN]21, [H)22 are of dimension n x n for out-of

plane motions, and 2n x 2n for in-plane motions.  

4.2 FREE FIELD MOTIONS IN THE LAYERED REGIONS 

The term "free field" herein denotes the responses of a layered system to a 

incident wave field, either an inclined body wave, or a surface wave, computed by 

one-dimensional model, i.e., without the lateral boundaries. The free field motions 

will be different for the different types of incident waves. The procedures used in 

GROUND2D in determining the free field motions are described below.
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4.2.1 Inclined In-Plane Waves (SV- and P-Waves)

Consider a one-dimensional layered system, shown in Figure 4.5. Using a 

method similar to Chen et al (1981), the response of the layered system to incident 

in-plane (SV- or P-waves) can be obtained by solving the following equation: 

2 +]2[M])U o, (4.34) 

where the matrices [A], [B], [G] and [Al] are the same matrices as defined in the 

eigenvalue problem, as shown in Equation (4.19), except that the dimension of the 

matrices are (2n +2) x (2n +2), since the motions at the interface between the layered 

system and the underlying halfspace are now taken into account. ca is the apparent 

wavenumber for the incident wave, as defined in Equation (4.27). Uf is the to-be

solved free field displacement vector in the layered system;" Ub is the interface 

displacement vector; and Pb is the interface force vector. The vectors Ub and Pb 

each have two components, one for horizontal motion and one for vertical motion, 

and they define the influence of the incident waves upon the layered system. The 

vectors are dependent on the properties of the underlying halfspace, the incident 

angle, and the type of the impinging wave, and must be determined from case to 

case. The procedure used in determining Ub and Pb in GROUND2D is a variation 

of the technique developed by Chen et al (1981). The detailed formulation can be 

found there.  

Solution of Equation (4.34) yields the free-field displacement vector { U}.  

which is defined along S. Assuming the x-coordinate of the reference curve at top
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of the layers is x0, the free-field displacements along any curve which is parallel to the 

reference curve and at a distance x-xo can then be obtained using the relation 

{U (x) ].€= I U (x o) I., e - o -. ( 4.35 ) 

It is worthy to note that Equation (4.35) not only defines the free field motions along 

a curve which is parallel to the reference curve, it can also be used to determine the 

free field motions along any curves in the layered system, since the relationship 

defined in Equation (4.35) as a vector can also be applied for each individual term 

as well. Suppose it is necessary to determine the free field motions along S* (see 

Figure 4.3) which is not parallel to the reference curve S. The vector defining the 

distances of the nodal points of the two curves is 

S1 -X O ,2 (4 .3 6 ) 10 }='t•3 '= •Xo,3-A 

The free-field displacement vector along S*, {U(X1 )}f can then be determined as 

.e 

e 

U(X1) jI e - U(Xd) if (4.37) 

e
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4.2.2 Inclined Out-of-Plane Waves (SH-Waves)

The free-field displacement vector {U}f due to SH-wave (out-of-plane) 

incidence can also be solved in the same way as the SV- and P-wave case. That is, 

to solve the equation 

2IJ~~BIC+G C2[MD{I {Pb}1 (4.38) 

where the matrices [A], [B], [G] and [M] are defined for the out-of-plane motion, and 

rca is the apparent wavenumber of the inclined SH-wave in the underlying halfspace.  

The determination of the terms of Ub and Pb is much simpler, however, because each 

term contains only one component. In fact, the interaction of the SH-wave at the 

interface of the layered system and the underlying halfspace can be represented by 

a simple viscous force.  

4.3 SIMULATION OF SEMI-INFINITE HALFSPACE AT BASE 

The approach described above was first developed for layered systems resting 

on a rigid base. A rigid base will reflect the scattered energy back into the system 

and will cause the site to have erroneous natural frequencies which will affect the 

overall response. This becomes especially critical for two-dimensional site response 

analysis. Since the model often covers a large distance, any small deviation from the 

true solutions is likely to be amplified. However, at some sites, soil layers may extend
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to such a great depth that an artificial boundary must be introduced at a certain 

depth. The following two techniques are used in GROUND2D to remedy these 

problems in simulating the semi-infinite halfspace at the base of the layered system.  

The first technique used in the program is to add some additional layers to the 

original model of the site. The total thickness, h, of the additional layers varies with 

frequency and is set to 

V h=1.5_.V (4.39) 

f 

where f is the frequency of analysis in Hz, and Vs is the shear wave velocity of the 

underlying halfspace. The choice of this thickness is based on the observation that 

fundamental mode Rayleigh waves in a halfspace decay exponentially with depth and 

essentially vanish at a depth corresponding to one and a half wave length. Since the 

scattering motions generated due to the geometrical and geological irregularities in 

a site can be expressed as generalized surface wave motions, i.e., the generalized 

Rayleigh wave motions in the in-plane motion case, and higher modes usually decay 

faster than the fundamental mode, only minimal error is introduced by placing a rigid 

base at this depth. In GROUND2D, the total thickness of the layers is automatically 

adjusted according to the frequency under consideration, and all layers in the 

extended region are of uniform thickness. This type of discretization provides 

sufficient depth for the scattered motions to decay, and also allows the pathway of 

the incident wave be accurately modeled.  

The second technique used in the program is to attach viscous dashpots at the 

base, thus the base becomes a viscous boundary instead of a rigid boundary. The
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dashpots are formulated into the eigenvalue problem for each region, and Equation 

(4.19) becomes 

([A]r +i[B]iC+[G] -W2[MJ +[CH]) (v} =101 (4.40) 

where, for out-of-plane motion, 

[Cn]=diag{O, ..., 0, icapV s (4.41) 

with dimensions (n+1) x (n+1); and for in-plane motions 

[CHl]=diag{O, ..., 0, iWpVV, iapVp} (4.42) 

with dimensions (2n +2) x (2n +2). Vs and Vp are the shear wave velocity and P-wave 

velocity of the halfspace, respectively; p is the mass density of the halfspace; and ( 

is the circular frequency. The mode vectors and wavenumbers are obtained by 

solving Equation (4.40), are usually different from the solutions of Eq.(4.19), and are 

used as the base in the computation of all the boundary matrices, the hyperelement 

matrices, and the mode superposition for expansion of the motions within a layered 

block region. Thus, the effect of the radiation damping of a perfect halfspace is built 

in.  

Since the dashpot representation of the halfspace is only exact for the 

vertically propagating P- and S-waves, and the directions of the scattered motions are 

usually unknown, this technique is approximate in the sense that some of the 

scattered energy may still be able to bounce back into the system. However, the use 

of both techniques gives very satisfactory results in most practical problems.
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4.4 INPUT GROUND MOTION

Ever since one-dimensional site response analyses became commonplace with 

the advent of readily available computer programs like SHAKE (Schabel et al, 1972), 

the ground motions used as input into the analyses are derived from a reference 

"outcrop" motion. That is, the data input into the computer program is the motion 

recorded on a rock outcrop. The actual motion used by these earlier programs at the 

base of the soil model is equal to 0.5 of the input "outcrop" motion, because for the 

vertically propagating waves considered by these programs, the amplitude of the 

incident wave is equal to 0.5 of the amplitude of the outcrop motion. The outcrop 

motion is assumed to occur on the surface of a homogeneous, isotropic halfspace.  

The use of the outcrop motion as the reference motion for site response 

analyses is reasonable for analyses that do not consider inclined incident waves. The 

approach is also reasonable for inclined SH-waves. However, it has been shown 

(Lysmer et al, 1994) that for the same amplitude of the outcrop motion, the 

amplitude of incident P- and SV-wave is extremely dependent on the angle of 

incidence. An example of this relationship between incident angle and incident wave 

amplitude for a given outcrop motion is shown in Figure 4.6, after work performed 

by Knopoff (1957). This figure indicates that the amplitude of the incident wave 

back-calculated from a given outcrop motion can vary several-fold, depending on the 

incident angle. The most extreme case is for an incident angle of 45 degrees, where 

no horizontal surface motions are generated, thus leading to an incident wave 

amplitude of infinity. The effect of inclined incident waves is most noticeable at soil
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sites, because as the seismic waves travel upward through less and less stiff materials, 

they tend to become more vertical due to Snells Law. Thus, by the time the seismic 

waves reach the ground surface, they may be near vertical and there is no reduction 

in surface amplitude due to hitting the free surface at an inclination.  

Therefore, Deng et al. (1994) recommended that the amplitude of the incident 

wave, and not the outcrop motion, be used as the basis for analysis using inclined 

waves. In particular, the recommended amplitude of incident wave is that which 

would be backcalculated for a vertically propagating wave incident on a rock outcrop, 

which is the same amplitude as would be used in SHAKE. This procedure then 

allows the user to directly consider the effect of inclined incident waves without the 

added variable of incident wave amplitude.  

4.5 GENERATION OF GROUND MOTIONS 

After all boundary matrices, hyperelement matrices and load vectors are 

computed for a particular frequency, the global equations of motion are assembled 

according to Equation (4.20) and the final equations are solved. Since the use of the 

generalized boundary element and the generalized hyperelement greatly reduces the 

total degrees-of-freedom in the global equations, only an in-core active column solver 

is coded in GROUND2D. The solution process is repeated for each of the 

frequencies specified. All of the solution vectors, which consist of the displacements 

at all nodal points, and free field motions for all blocky regions in case of a body
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wave incidence are stored in external files for post-processing to obtain required 

ground motions.  

The post-processing of the nodal point solutions is an integral part of the 

solution process to generate necessary results due to the uniqueness of the analytical 

model adopted in the program. Three types of post-processing techniques are 

required, namely: (1) the spatial interpolation through modal superposition to extract 

the motions within blocky regions from nodal point solutions at each specified 

frequency; (2) the frequency domain interpolation through, discrete Fourier 

wavenumber transform to obtain a continuous form of transfer functions at a 

specified point from solutions at discrete frequencies; and (3) the Fourier transform 

to convert frequency domain (steady state) solutions to time domain (transient state) 

solutions, or from transfer functions to acceleration time histories and acceleration 

response spectra, given a reference earthquake motion. Details of the three post

processing techniques can be found in Deng et al. (1994).
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5. TOPOGRAPHIC EFFECTS

"...The effect of the vibration on the hard primary slate, which composes the 

foundation of the island, was still more curious: the superficial parts of some narrow 

ridges were as completely shivered as if they had been blasted by gunpowder. This effect, 

which was rendered conspicuous by the fresh fractures and displaced soil, must be 

confined to the near surface, for otherwise there would not exist a block of solid rock 

throughout Chile; nor is this improbable, as it is known that surface of a vibrating body 

is affected differently form the central part. It is, perhaps, owing to this same reason that 

earthquakes do not cause such temific havoc within deep mines as would be expected..." 

(Charles Darwin, 1835).  

5.1 BACKGROUND 

The above quote by Darwin (Barlow, 1933) describing the effects of the 

February 20, 1835 Chilean earthquake suggests that topographic amplification of 

seismic motions is a phenomenon that has been well recognized for some time.  

Certainly, in the recent past, there have been numerous cases of observed earthquake 

damage pointing to topographic amplification as an important effect. As a result, a 

considerable amount of work has been done in an attempt to model, quantify, and 

predict these effects.  

Some of the earliest experiments aimed at evaluating topographic 

amplification were performed by F. J. Rogers (Lawson, 1908) following the 1906 San 

Francisco earthquake. These early experiments were conducted with buckets of sand 

on a shaking table. Rogers observed vibrations on the top of the sand pile to be 

greater than those at the base. These results were later discussed by Reid (1910) 

who suggested that the observed effects could be the result of irregular reflections
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and refractions in the immediate neighborhood of the slope. Similar experiments 

were repeated later by Goodman and Seed (1966) with comparable results.  

The apparent effects of topographic amplification were observed by Celebi 

(1987) following the Ms=7.8 1985 Chile Earthquake. While four- and five-story 

buildings on ridgetops were extensively damaged, similar buildings in adjacent 

canyons suffered no damage. In addition, one- and two-story buildings along 

ridgetops suffered only minor damage. The concentration of damage along the 

ridgetops prompted the deployment of an array to measure possible topographic 

amplification.  

The ridges in question were approximately 20 m in height with side slopes of 

10 to 15 degrees. The seismograph stations were set on alluvial deposits or 

weathered granite, with care taken so that a station in the base of a canyon was set 

upon similar material as the station on the corresponding ridgetop. Aftershock data 

was then collected for a period of 5 months following the main shock.  

Results were presented in the form of spectral ratios between the ridge crests 

and canyon bases for a frequency range of 0 to 10 Hz. These results indicated 

considerable frequency-dependent amplification, particularly in the range of 2 to 4 

Hz, and 8 Hz. Spectral amplifications up to 10 and above were noted. Similar 

amplification was noted between the canyon station and a nearby reference station 

sited on bedrock. No consideration was given in the study for differences in soil 

amplification between the canyon and ridge sites.  

Celebi (1991) presented additional evidence of topographic amplification 

observed in aftershock data following the 1983 Coalinga and 1987 Superstition Hills
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earthquakes. A 3 station array (1 crest and 2 opposing gully stations) set across a 

ridge was able to record motions from a MS=5.3 aftershock of the Coalinga event.  

The ridge was approximately 30 m high, with average side slopes of 10 to 15 degrees.  

The geology was described as weathered sandstone near the surface, with harder 

Pliocene sandstone at depth. Amplification was calculated between the crest and 

gully stations. Spectral amplifications of up to 10 were noted, with most amplification 

occurring between 1 and 6 Hz, and at 7.5 Hz. Eleven aftershocks of the 1987 

Superstition Hills earthquake were recorded at the base and crest of Superstition 

Mountain. The mountain has side slopes of less than 5 degrees and the observed 

amplifications were as high as 20 in the 2 to 12 Hz range.  

One of the first numerical studies of the effect of topography on seismic 

response was carried out by Boore (1972). This study, prompted by observations of 

high accelerations near Pacoima Dam during the 1971 San Fernando earthquake, 

considered the effect of simple topography on vertically propagating SH-waves.  

Boore noted that numerical models were necessary when considering steep slopes, 

or when the wavelength and size of topographic feature are similar (i.e. analytical 

solutions are not possible). Boore used the finite difference method to model 20 m 

high ridges with side slopes of 23 and 35 degrees. The medium was assumed to be 

homogeneous, isotropic, and linearly elastic. The shear wave velocity of the material 

was 500 m/s, and the frequency range under consideration was approximately 1 to 10 

Hz. Damping values ranged from 2 to 20 percent, depending on the frequency.  

Since no layering was included in the model, the level of damping had little effect on 

the spectral ratios.
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Boore concluded that the motion within the ridge consisted of 3 phases: a 

direct wave, a reflected wave, and a diffracted wave. The results showed that there 

was amplification at the ridge crest, and that both amplification and attenuation could 

occur along the side slopes, depending on the slope geometry and the frequency of 

motion. The effect of topography was found to vary with frequency, and 

amplification up to 100 percent was noted over the free-field. The amplification was 

found to decrease with slope angle and as the wavelength became large compared 

to the characteristic length.  

Rogers et al. (1974) performed experiments using a physical model to study 

ridge effects on P-waves. Amplifications on the order of 50 percent were found on 

broadband input motion, and on the order of 200 percent on band limited input.  

When this data was compared to actual field measurements of ground motion (Davis 

and West, 1973), qualitative, but not quantitative, agreement was found. The field 

studies showed amplifications of 400 percent for peak velocities, and amplifications 

as high as 20 times in relative spectral velocity from base to crest.  

May (1980) studied the effectiveness of vertical scarps on reducing the seismic 

energy transmitted to a site above or below the scarp. May used the finite element 

method to analyses horizontally propagating SH- and Love waves passing through 60

to 150-m high vertical scarps in a halfspace and a layer over a halfspace. The 

frequencies of motion considered ranged from 1.5 to 6 Hz. May found that refection 

off the scarp face played a large role in the response, and that the effect of the scarp 

could be related to the ratio of slope height, H, and the wavelength of the motion
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under consideration. May performed tests using an instrumented granite block to 

validate his numerical model, and found a good comparison between the two models.  

Geli et al. (1988) reviewed previous analytical studies of topographic 

amplification, which used the following methods: finite difference (Boore, 1972; 

Zahradnik and Urban, 1984), finite elements (Smith, 1975), integral equation method 

(Sills, 1978), boundary methods (Sanchez-Sesma et al., 1982), and discrete 

wavenumber methods (Bouchon, 1973, Bard, 1982). All of these studies considered 

the analysis of an isolated two-dimensional ridge on the surface of a homogeneous 

halfspace and all yielded consistent results: the amplification of acceleration of no 

more than 2 at the crest, peaking when the wavelength is about equal to the ridge 

width; and varying amplification and attenuation along the surface of the slope from 

the crest to the base. However, these results considerably under-estimate 

amplifications observed in the field, which mostly range from 2 to 10, and up to as 

much as 30. Geli et al. then analyzed a more detailed model configuration using a 

layered profile and introduced nearby ridge effects, but arrived at conclusions similar 

to those of the previous researchers. In addition, they found that neighboring ridges 

may have greater effect on site response than layering, and concluded that future 

models should be able to analyze SV- and surface waves and three dimensional 

geologic configurations.  

Sitar and Clough (1983) used a two-dimensional finite element model to 

analyze the seismic response of steep slopes in weakly cemented sands. They found 

that accelerations tended to be amplified in the vicinity of the slope face. However, 

in contrast to Geli et al. (1991) they noted that these topographic effects tended to
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be small relative to the amplification that occurs in the free field due to the site 

period.  

Most recently, various methods of analyzing topographic effects were reviewed 

in an NSF/EPRI workshop (EPRI 1991). Recommendations resulting from the 

workshop include the need for instrumented sites to verify numerical analyses of 

topographic effects. It was also suggested that there is a need for simple, easy to 

measure parameters and empirical correction factors for determining topographic 

effects, since 2- and 3-dimensional modeling can become quite cumbersome.  

5.2 ANALYSIS OF A STEPPED HALFSPACE 

To determine the effect of a steep cliff on the dynamic response of a uniform 

visco-elastic material subject to out-of-plane (SH) waves and in-plane (SV) waves, a 

parametric study using the computer program GROUND2D has been performed as 

part of this study. For clarity, the definition of the wave types as used herein is 

illustrated in Figure 5.1. A SV-wave is the in-plane shear wave with displacement in 

the plane of the slope cross-section, i.e. within the plane shown in Figure 5.1. The 

SH-wave is the out-of-plane shear wave with displacement normal to the slope cross

section, i.e. out of the plane shown in Figure 5.1. These definitions are consistent 

with those commonly used for the case of a wave traveling normal to the slope face, 

i.e. in the plane of Figure 5.1.  

The problem of a steep slope in a uniform visco-elastic material can be 

simplified to that of a stepped uniform halfspace. The analysis of this problem is
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very useful for the development of an understanding of the fundamental parameters 

necessary to quantify the effect of topography on seismic response, because the only 

variables are the slope height and the wavelength. This allows the analysis to focus 

on the relationship between these two parameters without having to incorporate the 

natural frequency of the site. Once this relationship is examined, then other variables 

such as slope angle and wave inclination can be incorporated.  

The development of the generalized hyperelement and the generalized 

transmitting element and their incorporation into GROUND2D make two

dimensional modelling relatively simple, particularly for steep slopes. To consider 

the effect of a slope on a uniform soil deposit, only a left and a right GTE are 

required, as shown in Figure 5.2.  

The results of the analyses are presented as a function of H/I), i.e. the ratio 

of the slope height and the wavelength of the motion under consideration. This 

definition of the normalized wavelength is in contrast to earlier studies of ridge 

effects (e.g. Boore, 1972; Geli et al., 1988) and dams (e.g. Gazetas and Dakoulas, 

1993), in which the correlation was made between the wavelength and the width of 

the topographic feature, but is similar to the "dimensionless frequency" proposed by 

Dakoulas (1993) for the study of SH-waves in earth dams.  

5.2.1 Effect of SH- (Out-of-Plane) Waves on a Vertical Slope 

The effect of vertically propagating SH-waves on the seismic response of a 

vertically stepped halfspace is evaluated in the frequency domain over the range of
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0.5 to 10 Hz. The uniform halfspace has a shear wave velocity of 300 m/s, a 

Poisson's Ratio of 0.3, and the fraction of critical damping ranging from 1 to 20 

percent. The height of the slope is 30 m.  

The results are presented in the form of transfer functions for the normalized 

frequencies of motion, and in terms of the amplification of the free field motion 

behind the crest. The transfer function is the multiple required to transfer the input 

motion, at a given frequency, from the control point in Figure 5.2, to the output 

motion at the point of interest. The actual transfer function is a complex number 

which accounts for the phase difference between the motions; however, only the 

magnitudes of the transfer functions are needed to compare the amplification of 

motion. The frequency range of 0.5 to 10 Hz includes the typical range of 

engineering interest and spans the range of dominant frequencies most often 

observed in large earthquakes.  

The results of the analyses are presented in Figures 5.3 through 5.6, for 

damping values of 1, 5, 10, and 20 percent, and for distances varying from the slope 

crest to 4H behind the slope crest. The transfer functions plotted in Figures 5.3a 

through 5.6a show that increased damping significantly reduces the response of the 

free-field and of the slope, particularly at higher frequencies. The transfer functions 

also show that the effect of the slope is more pronounced at low levels of damping.  

A comparison of the amplification of the free field motion at various distances 

behind the slope (Figures 5.3b through 5.6b) shows that damping does not greatly 

affect the amplification, though the amplification decreases slightly with increased 

damping. Again, the effect of damping is more pronounced at higher frequencies.
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Looking only at the amplification at the crest, a peak amplification of nearly 

30 percent occurs at approximately H/I. = 0.2, a secondary peak of 15 percent at 

about HA). = 0.7, and a null at HIA. = 0.45. The peaks correspond somewhat to the 

natural frequency of the soil column behind the crest for the height of the slope, 

which would occur at H/A. = 0.25 and H/). = 0.75 for the first and second modes.  

This implies that the relationship between the slope height and the shear wave 

velocity of the soil behind the slope is very important in quantifying the effect of 

topography. The two peaks are seen at all levels of damping, though the peaks 

appear to shift to slightly lower values of H/I. with increased damping.  

The magnitude of the amplification decreases away from the slope crest, 

primarily as a function of damping. The peak amplification seems to decrease and 

occur at a lower frequency with increasing distance from the crest, though in any 

case, the amplification is on the order of 15 to 20 percent of the free field motion.  

In addition, attenuation occurs at certain frequencies with increasing distance from 

the crest. At low values of H/!., where the topographic step is small compared to the 

wavelength, the slope has little effect on the response.  

5.2.2 Effect of SV- (In-Plane) Waves on a Vertical Slope 

For the analysis of the response to SV-waves, both a horizontal and vertical 

component need to be considered. Since the input motion only consists of horizontal 

motion, the transfer functions for the vertical response are given relative to the
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horizontal input motion, and the vertical amplification is relative to the free field 

horizontal response.  

The results of the horizontal response due to SV-waves are shown in Figures 

5.7 through 5.10 for frequencies ranging from 0.1 to 10 Hz (H/I) = 0.01 to 1.0).  

Considering first the horizontal response, the results are similar to those obtained for 

the SH-waves. The first peak amplification occurs at H/I = 0.2, and the second peak 

occurs at HA = 1.0. For all levels of damping, the magnitude of both amplification 

peaks are on the order of 50 percent, which is higher than those observed for SH

waves, the second peak significantly so. However, as with SH-waves, increased 

damping significantly reduces the response at higher frequencies, so the second peak 

has a lesser importance in the overall response at higher damping levels. The pattern 

of attenuation and amplification with increasing distance away from the slope is also 

similar to the SH-wave case, though the magnitudes are greater for the SV-case.  

The results showing the vertical response are presented in Figures 5.11 

through 5.14. The vertical response is most pronounced at the crest of the slope, and 

at H/I.> 0.2, it is greater than the free field horizontal response. The amplitude at 

the crest does not seem to be effected by damping. The amplification of the vertical 

response away from the crest is never greater than about 50 percent the free field 

motion, and decreases with increased damping. Finally, it appears that the amplitude 

of the vertical response at the crest tends to increase with increasing frequency, and 

seems to be independent of the horizontal response at frequencies above H/I. > 0.2.
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5.2.3 Effect of Slope Angle

The effect of slope angle on topographic amplification was considered by 

varying the slope angle, S, as shown in Figure 5.15. Since steep slopes are the subject 

of this study, only slopes between 45 and 90 degrees were considered (30 and 90 

degrees for SV-waves). The slope-crest amplification of the SH-wave free field 

motion is shown in Figure 5.16. With decreasing slope angle, the magnitude of the 

amplification at the first peak decreases from about 25 percent to about 15 percent, 

while the response at higher frequencies tends to increase to about 50 percent, with 

no apparent second peak. The horizontal response due to SV-waves is shown in 

Figure 5.17. In general, the magnitude of the amplification decreases with decreasing 

slope angle, from about 55 percent to about 15 percent, for H/I. < 0.4. Results at 

higher frequencies, above H/I. = 0.4, indicate no clear trend. The vertical response 

due to SV-waves is presented in Figure 5.18. Again, the vertical response decreases 

with decreasing slope angle.  

5.2.4 Effect of the Incident Angle 

The effect of varying the incident angle of SV-waves has until recently been 

a subject of little understanding. With the development of GROUND2D, the analysis 

of inclined SV-waves is made relatively easy, and provides us with an opportunity to 

consider their effect on the seismic response of steep slopes. Though our ability to 

determine the angle of incidence for the purposes of a site-specific stability analysis
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of an actual slope is questionable, the purpose of the analyses presented herein is to 

determine if the incident angle is, in fact, important to the response.  

The angle of incidence, F, is measured clockwise from the z-axis (Figure 5.19).  

Waves with positive incident angles will be referred to as travelling away from the 

slope, and those with negative incident angles are referred to as travelling into the 

slope. The model characteristics are the same as previously analyzed, with damping 

equal to 1 percent, and the angle of incidence ranging from +30 to -30 degrees.  

The response to SH-waves is presented in Figures 5.20 through 5.23. In each 

case, the response due to the wave traveling into the slope is greater than for the 

wave angle traveling away from the slope. For all angles considered, waves traveling 

into the slope result in greater amplification than for vertically propagating waves, 

and this effect increases with increasing frequency. The opposite is true for waves 

traveling away from the slope. The motion is attenuated with increasing incident 

angle, and the attenuation increases with frequency.  

Similar results are obtained for the horizontal component of the SV-wave 

response, presented in Figures 5.24 through 5.27. However, in contrast, the direction 

of wave propagation appears to make little difference in the vertical response to SV

waves. Although, there is a notable increase in the vertical response due to SV-waves 

at low frequencies, which increases with incident angle independent of the direction 

of propagation due to wave splitting on the free surface. An SV-wave of amplitude 

0.5 incident on a free surface will result in both horizontal and vertical motions, 

depending on Poisson's ratio, as shown in Figure 4.6. For material with a Poisson's
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SLOPE HEIGHT/WAVELENGTH 

Amplifications at the crest for inclined SH-wave incident on a vertical 
slope, F = -20° and +200, P = 1%.
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SLOPE HEIGHT/WAVELENGTH 
Amplifications at the crest for inclined SV-wave incident on a vertical 
slope, F = -300 and +300, P = 1%.
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Ratio = 0.3, the effect is relatively minor on horizontal motion, but is pronounced 

on the vertical response for the angles of incidence considered in this study.  

Overall, the amplification of inclined SV-waves traveling into the slope may 

partially explain field observations of failures on slopes facing in a particular 

direction, while slopes in the same material, but of different orientation, showed no 

distress. Consequently, these analytical results suggest the need to account for wave 

orientation in relation to the slope in performing stability analyses.  

5.3 ANALYSIS OF A STEPPED LAYER OVER A HALFSPACE 

The preceding parametric study of the stepped halfspace provides a 

fundamental understanding of the topographic effect. The next step is to evaluate 

the relationship between the natural frequency of the site and the topographic 

amplification effect. To this end, the analysis of a stepped layer over a halfspace is 

presented.  

A vertically stepped layer over a halfspace was used, as shown in Figure 5.28.  

The layer has the same material properties as used in the halfspace study discussed 

previously, while the underlying halfspace has properties as shown in the figure, 

resulting in an impedance between the layer and the halfspace of 3. The natural 

frequency of the model behind the crest of the step is varied by changing the 

thickness of the layer, Z, from H to 5H. The thickness Z is varied because the 

topographic effect is normalized as a function of HIA which is dependent on Vs.
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Figure 5.28: Model for vertically stepped layer over a halfspace.
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Figure 5.29: Comparison of transfer function ratio, TfrTf, as a function of frequency 

ratio, co3,,1 
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Changing Vs, of the layer, therefore, would not have allowed for the separation of 

the topographic effect and the resonance at the natural frequency.  

The results are presented in Table 5.1 in the form of the horizontal transfer 

functions for the free field behind the crest and at the crest of the slope. The 

transfer functions shown are those at the natural frequency of the free field behind 

the crest, (n, defined as 

cn , (5.1) 
4Z 

and at the topographic frequency, wt, defined as 

V 
V (5.2) 

5H 

since the peak effect of topography occurs at about HIA = 0.2. A review of the 

transfer functions for the response at the crest shows that the transfer function at the 

topographic frequency, Ttc is never greater than the transfer function at the natural 

frequency of the site, Tnc. The results also show that, in the free field, Tnf remains 

relatively constant for all values of wn" However, at the crest, Tnc increases as (n 

approaches wt (i.e. as Z/H approaches 1.00). This trend is clearly shown in Figure 

5.29, in which the ratio of the transfer functions, TnclTnf, is plotted versus the ratio 

of the frequencies, wn/(O. At low values of wn/ot, where slope height is small 

compared to the wavelength at the natural frequency, the transfer function at the 

crest, Tnc, is approximately equal to the free field transfer function, Tnf. However, 

when the natural frequency of the site occurs near the topographic frequency, the 

free field motion is amplified by over 50 percent. This amount of amplification is
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similar to the amount observed at the topography frequency of the stepped halfspace.  

It would seem, therefore, that the effects of the natural frequency and those of 

topography may work independently.

Table 5.1 Transfer Functions for Stepped Layer over Halfspace 

CREST FREE FIELD 
Z/H (an ~~ Z] ~ n€tTnc Ttc Tnf Ttf 

1.00 2.0 2.5 5.2 4.3 2.9 2.2 

1.30 2.0 1.92 5.0 4.8 2.9 2.8 

1.60 2.0 1.56 4.9 3.0 3.0 1.9 

2.00 2.0 1.25 4.3 2.6 3.0 1.2 

3.00 2.0 0.83 3.3 1.6 2.9 1.2 

4.00 2.0 0.62 3.0 2.1 2.8 2.1 

5.00 2.0 0.5 3.0 2.3 2.8 1.0 

In general, the results of the frequency domain analysis of a stepped layer over 

a halfspace indicate two important points. First, the natural frequency of the site has 

a greater effect on surface amplification than does the effect of topography. Second, 

it appears that the topographic amplification can be added onto the amplification 

caused by the natural frequency, as is indicated in Figure 5.29. This concept of 

separating the amplification caused by topography from that caused by the natural 

frequency is advantageous to the development of a simplified method to estimate 

topographic effects.
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5A CONCLUSIONS

The parametric study of the seismic response of a stepped halfspace and a 

stepped layer over a halfspace shows that the topographic effect of a steep slope on 

the seismic response of that slope can be normalized as a function of the ratio of the 

slope height (H) and the wavelength of the motion (1). Such relationship between 

slope height and wavelength was also noted by May (1980) for horizontally 

propagating SH-waves incident on a vertical scarp, and similar relationships were 

observed between structure dimension and wavelength by others (e.g. Boore, 1972; 

Geli et al., 1988; Dakoulas, 1993).  

For both out-of-plane (SH) waves and in-plane (SV) waves, the magnitude of 

the response at the crest of the slope is significantly reduced by increased damping, 

particularly at higher frequencies. However, the amplification of the motion at the 

crest over that in the free field behind the crest is relatively unaffected by damping.  

The fact that amplification is relatively unaffected by damping in a homogeneous 

system was also observed by Boore (1972).  

The peak topographic effect occurs at a H/ X = 0.2. This amplification is on 

the order of 25% for SH-waves, and 50% for SV-waves. The peak at H/ X z 0.2 

approximately corresponds to the first mode of vibration of a soil column of thickness 

H (H/ X = 0.25), which is the frequency at which Boore (1972) and Geli et al. (1988) 

observed the peak response in their studies of ridges. Secondary peaks occur near 

H/,X = 0.7 for SH-waves and H/.I z 1.0 for SV-waves. The vertical component of the 

topographic effect occurs independently of the natural frequency of the site.
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The topographic effect is most apparent for slopes steeper than 60 degrees, 

and is greater for inclined waves travelling into the slope than away from the slope.  

For a stepped layer over a halfspace, the natural frequency of the site behind the 

crest dominates the response, which agrees with observations by Sitar and Clough 

(1983). If the natural frequency of the site is approximately equal to the topographic 

frequency, i.e. cantwr then that response is amplified. In no case is the topographic 

effect greater than the response at the natural frequency.

108


