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Harding, Miller, Lawson & Associates, Soil Investigation Landslide, Diablo Canyon
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Rocscience, Inc., SWEDGE Probabilistic Analysis of the Geometry and Stability of
Surface Wedges, Version 3.06, 1999 (Users Guide).

S. A. Ashford and N. Sitar, Seismic Response of Steep Natural Slopes, Report
No. UCB/EERC-94/05, College of Engineering, University of California, Berkeley,
May 1994.

Design of Structures for Missile Impact, BC-TOP-8A, Bechtel Power Corporation
Topical Report, Revision 2, September 1974.



HARDING, MILLER, LAWSON & ASSOCIATES

SOIL INVESTIGATION
LANDSLIDE, DIABLO CANYON SITE
SAN LUIS OBISPO COUNTY, CALIFORNIA

Project Number 569,010.04

Prepared for

Pacific Gas & Electric Company
245 Market Street
San Francisco, California

by

v &7’“““-;>/ZV//%zjl_
Stephen R. Korbay, ./
Geologist - 853

fé&é;w¢/ ":77/6;;;;941"v

Hepty T. Taylo#f,
Civil Engineer - 8787

Harding, Miller, Lawson & Associates
155 Montgomery Street
San Francisco, California 94104

July 29, 1970



HARDING, MILLER, LAWSON & ASSOCIATES

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS . &« « & « o o o « o o o o s o o o o o » 1iii
I INTRODUCTION - L] v - L] Ld L4 - L] . - Ll - L] - L] - - - - L] 1
II FIELD EXPLORATION AND LABORATORY TESTS . . . . . .« . . 2

III SITE CONDITIONS . . L] L] L] L . . L] - L] L d L] > - . L] L d - -

W

IV SOIL AND ROCK CONDITIONS .« . & v o o o ¢ o o o o s o
V GEOLOGY . - 3 - - . L] . . . - - . » . . . [ - . L] » - . -
VI DISCUSSION . - . . - . - . . [ . . . . . - . - - . - L]

VII CONCLUSIONS . « ¢ ¢ o ¢ o o o« o ¢ s o s s o s o « » o =

0 N o s

VIII RECOMMENDATIONS . o ¢ ¢ o o« o s o o o o o s o ¢ o o o =

A, Scheme No. 1 .« & o« ¢ ¢ o ¢« o o o o o s s o o o o o
B. Scheme No. 2 L] - L L ] L] L ] . » * . . - L] L} - - E J - [ ]
C. Scheme NO. 3 +« ¢ ¢ o o o o s o 5 o o s o o o o o =

OO o

IX ILLUSTRATIONS L] L] * - o L] L L d L] L] L] . . L] L L] L - . - L] ll
Appendix FIELD AND LABORATORY DATA . .I s

DISTRIBUTION . L) . . L] L] . . L} . L] - . L] - . . - - - L] . L) - 23

ii



HARDING, MILLER, LAWSON & ASSOCIATES

LIST OF ILLUSTRATIONS

Plate 1 Site Plal .+ « « « « = o o o o o o o o s o o o« o « o 12
Plate 2 Cross Sections . . ¢ « + o ¢ o o o o o o o o o « « 13
Plate 3 Slope Stabilization Scheme 1 ., . . « « « « « « « . 14
Plate 4 Slope Stabilization Scheme 2 . . . . . « « . « « « 15
Plate 5 Slope Stabilization Scheme 3 . . . . . . « « . . . 16

Plate 6 Log of Boring 1 . . . « « « &+ o o« « o« « « - « Appendix
Plate 7 Log of Boring 2 . . « « &+ « « « o« o« « o« « « « Appendix
Plate 8 Log of Boring 3 . . +. « &+ « « « « s « « » + « Appendix
Plate 9 Log of Boring 4 . . . « « « « « « « » « « « . Appendix

Plate 10 Scoil Classification Chart and
Key to Test Data . + « « o« « o « « o « « + . Appendix

iii



HARDING, MILLER, LAWSON & ASSOCIATES

I INTRODUCTION

This report presents the results of our soil investigation of
the recent landslide in the coastal bluff at the Diablo Canyon site,
San Luis Obispo County, California.

We understand that the landslide occurred during the early part
of this year in the cove located adjacent to the Pacific Ocean and
west of the existing plant access road near the warehouse and batch
plant. We also understand that this area is not presently part of
the nuclear plant construction; however, it may be the location for
future cooling water discharge conduits.

The purpose of our work was to investigate the probable cause,
extent, and condition of the recent slide in order to provide you
with conclusions and recommendations for stabilization of the land-

slide area.
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II FIELD EXPLORATION AND LABORATORY TESTS

We performed a field investigation of the landslide and surround-
ing area by conducting a geologic reconnais_sance and by drilling four
test borings. The general site conditions and boring locations are
shown on the accompanying Site Plan, Plate 1, Section IX. The borings
were drilled with a 24-inch diameter bucket auger drill rig to depths
ranging from 13 to 46 feet. Each boring was logged by our geologist
who also obtained representative samples of the soil and rock pene-
trated. These samples were tested in our laboratory to determine
moisture content, dry density, and shear strength. The results of

these tests are shown on the boring logs, Plates 6 through 9 in the

Appendix.



HARDING, MILLER, LAWSON & ASSOCIATES

II1I SITE CONDITIONS

The landslide is approximately 200 feet wide and occupies the
full height' of the bluff face above a coveAthat is contiguous to
the Ocean. The existing slope in places is as steep as 1-1/3
horizontal to 1 verticai. The top of slope is approximately 105
feet above Sea Level. The top of the slide is approximately 15 feet
laterally from the toe of the existing £ill for the plant access
road.

The slide surface contains numerous tension cracks and scarps
especially along the upper limits. Some of the slide debris has
moved to the base of the slope along the beach where wave action
continuously removes loose material. A 15-foot deep and 25-foot wide
erosion gully is present in the center of the slide. The gully is a
result of outlet flow from an existing 4-1/2 foot diameter culvert
pipe located at the top of slope. The culvert inlet is located across
the plant access road near the warehouse. The flow has since been
diverted around the slide area and is presently contained in a
temporary drainage ditch leading to the cliff edge to the south.

' Numerous shallow mud flows are present on the slope outside the
present slide limits. Evidence of soil creep, the gradual movement
of soil on slopes due to shrinkage and expansion resulting from mois-
ture changes, is also present on the slope. Seepage and springs
exist in the area, especially along the toe of slope. Existing

erosion gullies expose the deeply weathered bedrock.
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IV SOIL AND ROCK CONDITIONS

According to boring data and surface exposures, the landslide
and adjacent slope is underlain by soils consisting of silt, clay,
and sand; the soils overlie volcanic bedrock. The rock consists of
altered tuff, generally sheared and deeply weathered, with occasional
tuffaceous siltstone and shale interbeds.

The east and west cliff faces of the cove contain hard vitric
tuff and shale bedrock, producing steep :ock slopes which are rela-
tively resistant to erosion.

Seepage was observed in Borings 1 and 2; however, only two feet
of water accumulated in Boring 1 after two days. Both Borings 1 and
2 have been éonverted to observation wells by installing 12-inch
diameter PMP casing and backfilling the sides with drain rock. Since
borings were not drilled within the slide mass due to inaccessibility,
the location of the slip plane can only be inferred. Surface condi-
tions indicate slide debris extending to the beach at the base of
the slope, suggesting the presence of a rotational-type slide. Sub-
surface conditions are illustrated on the accompanying Cross Sections,

Plate 2.
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V  GEOLOGY

The bedrock in the slide area is assigned to the Obispo tuff
member of the Monterey Formation of Miocene Age. The Obispo tuff
stratigraphically underlies the sedimentafy rocks of the Monterey
formation found to the north. The contact between these two units
is located north of the slide.

The altered tuff underlying the north slope of the cove and
beach is apparently in fault or intrusive contact with the stronger
vitric tuff forming the adjacent steep cliffs. The altered tuff is
highly sheared adjacent to the vitric tuff, indicating intense frac-
turing due to past movement along the contact. Evidence of slicken-
sides, fault gouge, and breccia is present along the contact at the
base of the west cliff face.

The sand and gravel overlying the bedrock represents marine
terrace deposits on an ancient wave cut bench formed during the
Pleistocene. The thickness of overburden at this location suggests
the presence of an ancient ravine area, probably extending farther
upslope. The ravine probably formed as a result of the deep erosion
of the relatively weak tuff. The ancient ravine area later became
filled and covered_with younger alluvium and is presently not.
distinguishable on the surface. The upper portions of the soil
overburden are part of the large alluvial fan forming most of the

gentle slopes in the area to the north.
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VvI DISCUSSION

The landslide above the cove represents an accelerated form of
the natural process of bluff regression; it occurred at this location
for the following reasons:

1. The thick alluvial soil is unstable on the steep
existing slope, especially when it overlies weak
material such as the tuff rock-type present.

2. The terrace deposit of sand and gravel overlying
the bedrock probably carries water acquired from
surface infiltration of the upper alluvial fan,
especially during heavy rainfall.

3. Erosion and removal of the slope toe by wave
action continuously produces the existing steep
slope, preventing natural stabilization by normal
slope flattening due to continued slide activity.

4. The concentrated flow of water from the existing
culvert hastened the sliding process.
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VII CONCLUSIONS

On the basis of our investigation, we conclude that the land-
slide can be stabilized. Corrective measures should be taken since
it is probable that the slide area will enlarge with time unless
the stability is improved. The completeness of the corrective
measures (and therefore the cost) can vary through wide limits
depending upon the importance of minimizing future movements. We
do not believe the slide represents a threat to the safety of
persons or existing or proposed structures. The access road could
become undermined with time but it appears relatively simple to
relocate it farther uphill should this occur.

Three alternate schemes of correction are presented in subse-
quent parts of this report. Scheme 1 is the minimum we believe
should be done if the enlargement of the slide area is to be
retarded. Future movement could occur but the chance of it happening
and the magnitude if it happens should be greatly reduced. Scheme 3
should prevent future sliding. While no slide correction is fool-
proof, experience has been excellent with slide areas retained by
the extensive method shown. Scheme 2 is an intermediate meéhod in

terms of cost and expected performance.
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VIII RECOMMENDATIONS

A. Scheme No. 1

Objective: To perform a limited amount of slope reconstruction
and drainage installation necessary to reduce but not completely
eliminate continued slide movement.

Corrective measures should include

1. Resurface the existing slope of the landslide and
surrounding area by removing steep scarps, loose
surface material, and filling erosion gullies and
tension cracks with compacted soil.

2. Remove excess water in the existing observation
wells by pumping during periods of rainfall or
when required.

3. 1In lieu of No. 2, provide gravity drainage of the
‘wells by installing perforated tar-coated pipe in
hydrauger borings drilled from the base of the
slope up to the bottom of each well.

4. Provide slope protection at the landslide toe in
the form of a 30-foot wide and 15-foot high berm
of riprap to reduce continued erosion by wave
action. Riprap should consist of 1/2-ton class
material placed by clam-type equipment.

5. Concrete line the existing drainage ditch located
along the south top of slope to prevent any further
infiltration of surface water from the culvert.
Illustration of the above scheme is presented on Plate 3 in

Section IX.
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B. Scheme No. 2

Objective: Stabilization of the landslide by buttressing and

surfacing the slope with riprap.

Corrective measures should include

l.

If sufficient riprap is available, provide a slope
buttress and surface cover as shown on Plate 4,
Section IX. Approximately 16,000 to 18,000 cubic
yards of light class material will be required and
should be placed by Method B as specified in the
State of California Standard Specifications. The
buttress portion (behind the 1:1 slope) should
consist of 1/2-ton class material placed by clam-
type equipment. '

Prior to the placement of riprap, dress and smooth
the existing slope by grading loose slide debris
and soil.

The drainage ditch located on the top of slope
should be concrete-lined as previously recommended
under Scheme No. 1.

C. Scheme No. 3

Objective: To perform the most thorough slope reconstruction

necessary for stabilization of the landslide area.

Corrective measures should include

l.

Excavate the unstable slide debris (approximately
30,000 cubic yards) and stockpile in an area south
of the existing leach field to allow for drying.

Excavate keyways into firm soil or bedrock below
the slide plane, as shown on Plate 5, Section IX.

Install subdrainage in the base of the excavation and
along keyways where required. Approximately 600 feet
of six-inch diameter perforated metal pipe will be
required with 180 feet of six-inch diameter CMP.
Approximately 500 cubic yards of crushed drain rock
also will be reguired. Provide subdrain cleanout
risers.
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Reconstruct the slope with compacted f£ill using the
stockpiled material after moisture conditioning as
required. Compact the fill to at least 90 percent

of the maximum dry density determined by the ASTM
D1557-66T(C) compaction test method. Fill placement
should be in lifts no greater than eight inches

loose thickness and compacted with sheepsfoot rollers.

Provide riprap slope protection at the toe to reduce
the amount of erosion due to wave action. Approxi-
mately 1500 cubic yards will be required. Riprap
should consist of material as specified in Scheme
No. 2, paragraph 1.

Provide an 8- to 1l0-foot wide bench approximately
halfway up the slope to allow for collection and
diversion of surface water.

Upon completion of the compacted f£ill, the slope
surface should be planted with deep-rooted vegetation
to retard erosion and sloughing.

The drainage ditch located on the top of slope should

be concrete-lined as previously recommended under
Scheme No. 1.

10
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IX ILLUSTRATIONS
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Shear Strength (lbs/sq ft)

Content (%)

Moisture
Dry

26.0

25.8

Density (pcf)

Sample

LOG OF BORING |

Equipment 24" Diameter Bucket Auger

111.8 Date 2/17/70

Elevation

o Depth (ft)

N\

104

86
15

=

94

\\\w\t

)
<

W
NN

X

&

DO

A

/YELLOW BROWN SANDY CLAY {CL)
stiff, wet, with occasional
gravel and shell fragments

/MOTTLED YELLOW GRAY SILTY

VA

DARK BROWN SANDY CLAY (CH)
soft, damp, with occasional
angular gravel

LIGHT BROWN SANDY SILT (ML)
stiff, dry, with occasional
angular gravel
change to hard at 5', with
occasional caliche cementation
increased gravel up to 8"
from ¢ to 10.5'
change to soft, wet at 10.5"

-

LIGHT BROWN SANDY SILTY CLAY
(CL) - soft, wet, with occasional
angular gravel!

change to stiff at 22.5"

GRAY BROWN SILTY SAND (SM)
dense, wet, with abundant
angular gravel

CLAY (CL) - stiff, wet, with
abundant weathered rock
fragments

MOTTLED YELLOW GRAY TUFF
friable, low hardness, sheared,
altered and deeply weathered

change to gray, weak at 44"

C T T T T 1

S_water level 2/18/70
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Consulting Engineers

Job No: 549,210.04

Appr: ‘7%'iw Date 3/18,/70

PLATE

LOG OF BORING

Landslide
PG&E - Diablo Canyon
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LOG OF BORING =

EqUipmenf 24" Diameter Bucket Auger
Elevation 110.8 Date 2/17/7%

\¥ Sample

N %

X
..\\

e NN

2

g 8.
Shear Strength (lbs/sq ft) . L&
S c© >
- ‘s =
o o < o o 25 >§5 &
2 S S S = =8 8884
u ~t [op] (V] p— [a)
0
5-
25.4 63 g/
104
154
i 7
27.9 8] E
201 //
-4
254 L
=
30
354
B
UL 4320 x—q X

DARK BROWN SANDY CLAY (CH)
soft, damp, with occasional
angular gravel

- ‘LIGHT BROWN SANDY SILT (ML)
stiff, damp, with abundant
ongular gravel
with occasional gravel up to 6"
at 5'

LIGHT BROWN SANDY CLAY (CL)
soft, wet, with occasicnal gravel
change tc firm at 9.5
change to soft at 11"

LIGHT BROWN SANDY CLAYEY
SILT (ML) - soft to medium stiff,
wet, with occasional angular
gravel

LIGHT BROWN SILTY CLAY {CL)
stiff, moist, with slight porosity

LIGHT BROWN SILTY SAND (SM)
dense, wet

BROWHI GRAVELLY SaNCT (SP)
medium dense, moist, with
silt binder

) | /TMOTILED GRAY BROWN CLAYEY

SILT (ML) - soft, moist, with
occasional angular gravel
MOTTLED ORANGE GRAY GRAVELLY
/ CLAY (CL) - firm, moist, with
abundant rock fragments
/MOTTLED ORANGE GRAY TUFF

soft to friable, low hardness,

Lo\ sheared, altered and moderately
= gl = 33.0 87 4]'&@- \ weathered

water level 2/19/70 at 40.5"
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LOG OF BORING 2 PLATE
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Shear Strength (lbs/sq ft)

LOG OF BORING 3

Equipment 24" Diame ter Bucket Auger
Elevation  100.8 Date 2/18/7C

\\\ Sample

X
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) S
-~
L Sz
- -
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v - 7
= C >\C Q.
go oo o
(O el alyal
0
5-
104
154
20.0

351

40-

DARK BROWN SANDY CLAY (CH)
soft, damp, with occasional
angular gravel

LIGHT BROWN SANDY SILT (ML)
firm, damp, with occasional
angular grovel
up to 4" gravel at 7'
grading clavey at 8', with
caliche cementation

slightly porous and moist at 14!

BROWN SILTY SAND (SM)
medium dense, moist, with
occasional gravel

ORANGE BROWN SANDY CLAY (CL)
stiff, damp, with abundant
rock fragments

ORANGE BROWN TUFFACEQUS
SILTSTOMNE - weal:, moderately
hard, closely fractured,
moderately weathered

fno free water ohserved)

HARDING, MILLER, LAWSON & ASSOCIATES

&

Consulting Engineers

Job No: 369,010, 04

Appr: RE/iw Date 3/18/70

LOG OF BORING 3 PLATE
Landslide
PG&E - Diablo Conyon
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Shear Strength (Ibs/sq ft) o - ~
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2§ 548
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LOG OF BORING 4

Equipment 24" Diameter Bucket Auger

90.4 Date < 19770

Elevation

o Depth (ft)

104

151

251

30

40

BLATZK SANDY CLAY (CH)
soft, moist, with occasional
angular grovel

MOTTLED YELLOW BROWN SILTY
CLAY (JH) - soft, wet, with
occasional rock fragments
change to stiff at 8'

BROWN GRAVELLY SANDY CLAY
tCL) - firm, moist, with
abundant rock fragments

BLACK SHALE
moderately strong, hard, closely
fractured, slightly weathered
change to strong, very hard
at 15!
auger refusal at 16'

tno free water observed)
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PCG&E - Diablo Canyon
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MAJOR DIVISIONS

TYPICAL NAMES

i
;.#

i Gw '.1 WELL GRADED GRAVELS, GRAVEL - SAND MIXTURES
i CLEAN GRAVELS .0
! WITH LITTLE O 0—*-‘-*
L GRAVELS NO FINES i i -1 POORLY GRADED GRAVELS, GRAVEL - SAND
—r XL MIX TURES
5% i
' P - SAND -
0§ | MO THAN HAL . SILTY GRAVELS, POORLY GRADED GRAVEL - SAND
2 o GRAVELS Wit | GM SILT MIXTURES
(= NO. 4 SIEVE SIZE OVER 12% FINES
W GC CLAYEY GRAVELS, FOORLY GRADED GRAVEL - SAND -
Z5 CLAY MIXTURES ]
g 3 o o
® SW | o o | WELL GRADED SANDS, GRAVELLY SANDS
+ LU CLEAN SANDS i R
< SANDS WITH LITTLE OR .
X
"'}," z NO FINES SP |"4"\] POORLY GRADED SANDS, GRAVELLY SANDS
x ,i_ { MORE THAN MALF %
< & | comsemacnon sm’ SILTY SANDS, POORLY GRADED SAND - SILT
8 $ |15 smALLER THAN SANDS WITH MIXTURES
NO. & SIEVE SIZE OVER 12% FINES
sc CLAYEY SANDS, POORLY GRAOED SAND - CLAY
MIXTURES

INORGANIC SILTS AND VERY FINE SANDS, ROCK

-
v ML FLOU, SILTY OR CLAYEY FINE SANDS, OR
-4 é‘ CLAYEY SILTS WITH SLIGHT PLASTICITY
b LTS AND CLAYS Y. INORGANIC CLAYS OF LOW YO MEDIUM PLASTICITY,
8 % SILTS AN cL / GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS,
5 LIQUID LIMIT LESS THAN S0 LEAN CLAYS
Hi{ih
Q. OL |"!]HI| ORGANIC CLAYS AND ORGANIC SILTY CLAYS OF
g .i.‘ Y4 Low pLasTiciTY
< s MH INORGANIC SILTS, MICACEOUS OR DIATOMACIOUS
g = FINE SANDY OR SILTY SOILS, ELASTIC SILTS
Ed SILTS AND CLAYS 7
Wz CH INORGANIC CLAYS OF HIGH PLASTICITY,
z 2 LIGUID LIMIT GREATER THAN 50 FAT CLAYS
hred ¢/
Lo OH [///] ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY.
§ 77/ ORGANIC siLTS
HIGHLY ORGANIC SOILS Pt PEAT AND OTHER HIGHLY ORGANIC SOILS

UNIFIED SOIL CLASSIFICATION SYSTEM

B -undisivrbed Sampie

[SZSTNTSZ] VANE SHEAR TEST
F = Field
L = Leborotory

1000 ¢30.0) """ DIRECT SHEAR TEST

S—————————— Moii1ture Content ofrer Test (%) l
Strass Normal to Shear Plane (paf)

1000 (30.0) BT R X5

CD = Consolidoted - Droined 4

SAMPLE DESIGNATION 4

E Bulk or Classification Sample

STRENGTH TESTS

UNCONFINED COMPRESSION TEST

TRIAXIAL COMPRESSION TEST
UU = Unconsolidated - Undrained
CU = Contolidoted - Undrained
CD = Consolldoted - Droined

T

—

1/2 Deviator Stress (prf)
Moisture Content ofter Tast (%)

Conflning Stress - 03 {paf)

KEY TO

TEST DATA

HARDING, MILLER, LAWSON & ASSOCIATES

SOIL CLASSIFICATION CHART

Consulting Engineers

&
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AND :
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Getting Started

SWEDGE is designed to work on Windows 95, 98 and
Windows NT 4.0 operating systems.

To install SWEDGE on your computer:

1.

2.

10.

Insert the CD-ROM.

Setup should begin automatically displaying the main
Rocscience Installation window.

If not, select Add / Remove Programs from the Control
Panel and click on the Install button. Follow the
directions until the main Rocscience Installation
window is displayed.

Click on the SWEDGE button.
Click on the INSTALL FULL VERSION button.

Follow the installation instructions. During
installation you will be asked to enter your seventeen
character alphanumeric serial number. Enter the
serial number located on the outside of the CD case to
install the program. Proceed until the installation is
complete and you are back to the Rocscience
Installation window.

Click on the RETURN button.

If you have NOT previously installed the hardlock
driver software for any other Rocscience program
proceed with step 9. Otherwise go to step 13.
Click on the HARDLOCK button.

Click on the INSTALL DRIVER FOR 95,98,NT
button.
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11. Proceed until the hardlock driver installation is
complete and you are back to the Rocscience
Installation window.

12. Click on the RETURN button.
13. Click on the EXIT button.

14. To run SWEDGE, you will also need the hardlock
supplied with the program. The hardlock must be
attached to the parallel port on your computer during
execution of the program. Attach the SWEDGE
hardlock to the parallel port of your computer.

15. The installation process creates a ROCSCIENCE
menu in your START... PROGRAMS menu. In the
ROCSCIENCE menu there will be an SWEDGE menu
containing the SWEDGE application. Run the
SWEDGE application.

16. If you are a first time user, read the Introduction and
Tutorial chapters of this manual, to get acquainted
with the features of SWEDGE.

Hints about this Manual

This manual is intended as a hands-on, getting started
user’s guide. For more information on any SWEDGE
options which are not discussed in these pages, consuit
the SWEDGE Help system. In the tutorial chapters,
instructions such as:

Select: Analysis — Input Data

are used to navigate the menu selections.

When a toolbar button is displayed in the margin, as
shown above, this indicates that the option is available in
the SWEDGE toolbar. This is always the recommended
and quickest way to use the option.

Introduction 3

Introduction

SWEDGE is a quick, interactive and simple to use
analysis tool for evaluating the stability of surface wedges
in rock slopes, defined by two intersecting discontinuity
planes, the slope surface and an optional tension crack.
Wedge stability can be assessed using either:

» DETERMINISTIC (safety factor), or
¢ PROBABILISTIC (probability of failure)

analysis methods. For a DETERMINISTIC analysis
SWEDGE computes the factor of safety for a wedge of
known orientation. For a PROBABILISTIC analysis,
statistical input data can be entered to account for
uncertainty in joint orientation and strength values. This
results in a safety factor distribution, from which a
probability of failure is calculated.

Other modeling features include:

¢ water pressure,

e external / seismic forces,

e rock bolt reinforcement.

In all cases, the assumed failure mode of the wedge is
translational slip — rotational slip and toppling are not
taken into account. The stability method used in

SWEDGE can be found in “Rock Slope Engineering” (Rev.
3rd edition, E. Hoek & J.W. Bray, pp 341-351).
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H1

i

LEGEND

Failure planes (2
intersecting joint sets)

Upper ground surface
Siope face
Tension crack

Slope height referred to
plane 1

Distance of tension
crack from crest,
measured along the
trace of plane 1.

SWEDGE computes the factor of safety for translational
slip of a tetrahedral wedge formed in a rock slope by:

e two intersecting discontinuities (joint sets),
s the slope face,

e the upper ground surface, and

e atension crack (optional).

Typical problem geometry is illustrated below (Ref. 1).

Figure 1-1: Typical wedge geometry for SWEDGE analysis (Ref.1)
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When a pair of discontinuities are selected at random
from a set of field data, it is not known whether:

e the planes could form a wedge (the line of intersection
may plunge too steeply to daylight in the slope face or
it may be too flat to intersect the upper ground
surface).

e one of the planes overlies the other (this affects the
calculation of the normal reactions on the plane).

e one of the planes lies to the right or the left of the
other plane when viewed from the bottom of the slope.

In order to resolve these uncertainties, the solution has
been derived in such a way that:

¢ Either of the planes may be labeled 1 (or 2).

¢ Allowance has been made for one of the planes
overlying the other (this is llustrated in Figure 1-2)

* The crest can overhang the base of the slope.

+ Contact may be lost on either plane (this is dependent
on wedge geometry, and also on the magnitude of the
water pressures acting on the planes).

A check on whether the two planes do form a wedge is
included in the solution at an early stage. In addition,
SWEDGE also examines how the tension crack intersects
the other planes, accepting only those cases where the
tension crack truncates the wedge in a kinematically
admissible manner.

The SWEDGE stability analysis has been derived from a
solution presented in Ref. 1. For a complete and detailed
description of this analysis, consult this reference.
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Figure 1-2: Situation where wedge is formed, and cne plane
overlies the other.

Joint Sets

Either joint set can be defined as Joint Set 1 or Joint Set 2
in the Input Data dialog.

However, remember that the Slope Height and the Trace
Length of the Tension Crack are measured with respect to
Joint Set I - see Figure I-1.
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Upper Slope and Face Slope

Note that there is no restriction on the inclination of the
crest of the slope (the line of intersection of the upper and
face slope planes), therefore the Dip Directions of the
Upper Slope and Face Slope do not necessarily have to be
the same.

The Upper Slope and Face Slope correspond to planes 3
and 4 in Figure 1-1.

Overhanging Slope

If the crest overhangs the base of the slope, select the
Overhanging checkbox in the Input Data dialog, and enter
appropriate Dip and Dip Directions of the Upper and Face
Slope planes.

Tension Crack

The Trace Length of the Tension Crack is the distance of
the tension crack from the crest, measured along the trace
of plane 1. See Figure 1-1. Length L is the trace length.

SWEDGE examines how the tension crack intersects the
other planes, and only accepts those cases where the
tension crack truncates the wedge in the manner shown
in Figure 1-1. If the tension crack plane does not form an
acceptable wedge with the other planes, a warning
message will be displayed when you select the Apply
button to compute.

A Tension Crack is optional in SWEDGE, and can be

excluded from a model by de-selecting the Tension Crack
checkbox in the Input Data dialog.

Slope Height

The Slope Height is the vertical distance H1 in Figure 1-1,
referred to plane 1.
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External Force

A single external force (eg. a blast acceleration acting in a
known direction) can be applied to the wedge, by selecting
the External Force checkbox, and entering a direction and
magnitude.

External force can also be applied through the use of rock

bolts. See the Adding Support tutorial at the end of this
manual for details.

Water Pressure

In the SWEDGE factor of safety calculation, it is assumed
that extreme conditions of very heavy rainfall occur, and
that in consequence the fissures (failure planes) are
completely full of water. Further, it is assumed that the
pressure varies from zero at the free faces to @ maximum
value at some point on the line of intersection of the two
failure planes.

SWEDGE calculates average values of water pressure
on each failure plane as follows (Ref. 1):

With NO Tension Crack 4]

wi=uz= yw.Hw/6 Egn l.1a

where: U1 and u2 are the average values of water
pressure on failure planes 1 and 2

Yw = unit weight of water

Hw = total height of the wedge

With Tension Crack J

wmiTuz=us= yw. Hsw /3 Eqn. 1.1b
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where: U1, U2 and U5 are the average values of water
pressure on the failure planes 1 and 2, and the tension
crack, respectively

Yw = unit weight of water

Hsw = depth of bottom vertex of the tension crack below
the upper ground surface

The above formulae are simple estimations which are
useful in the absence of more precise information.

Varying the Water Pressure

To vary water pressure in
SWEDGE, alter the Unit
Weight of water in the input
Data dialog.

e To simulate a “dry” slope, the user can de-select the
Water Pressure checkbox in the Input Data dialog, or
enter a Unit Weight of zero.

e To simulate intermediate water pressures, the user

can effectively vary the water pressure by varying the
unit weight of water between zero and the actual unit
weight. This allows the user to perform a sensitivity
analysis on the effect of water pressure on the safety
factor of the wedge.
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Seismic Force

Seismic Force can be applied to the wedge, by selecting
the Seismic checkbox in the Input Data dialog, and
entering the following data:

Seismic Coefficient

A dimensionless number defining the seismic acceleration
as a fraction of the acceleration due to gravity. Typically
the Seismic Coefficient might be around 0.1 to 0.2. If ¢ =
Seismic Coefficient, g = acceleration due to gravity = 9.81
m/s?, and m = mass of the wedge, then the Seismic Force
applied to the wedge, F=m a g.

Direction
e “Line of Intersection” will apply the Seismic Force in

the direction (PLUNGE and TREND) of the Line of
Intersection of Joint Sets 1 and 2.

e ‘“Horiz. & Inters. Trend” will apply the Seismic Force

horizontally, but with the same TREND as the Line of
Intersection of Joint Sets 1 and 2.

e User Defined allows the user to define any direction

for the Seismic Force.
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Probabilistic Input

If the Analysis Type is Probabilistic, the user can define
the following random variables in the Probabilistic Input
Data dialog:

¢ Dip and Dip Direction of all planes (ie. Joint Sets 1
and 2, Upper and Face Slope, and Tension Crack).

¢ The strength (Cohesion and Friction Angle) of Joint
Sets I and 2.

For each random variable, enter an appropriate:

* Mean
s Standard deviation (if applicable)

¢ Relative minimum and maximum values

NOTE that the minimum / maximum values are specified
as RELATIVE numbers (ie. distance from the mean),
rather than as absolute values. All references below to
“minimum” and “maximum” values refer to the actual
values (ie. mean — rel. min and mean + rel. max), and
not to the relative values entered in the Input Data
dialog.

Statistical Distributions

To define a random variable, first choose a Statistical
Distribution (also known as “Probability Density
Function” or “pdf’). The five available distributions are:
s Normal

¢  Uniform

¢ Triangular

e Beta

» Exponential (only available for cohesion and friction
angle)
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f(x)

Normal

The NORMAL (or Gaussian) distribution is the most
common type of probability distribution function, and is
generally used for probabilistic studies in geotechnical
engineering. Unless there is a good reason to use one of
the other four PDFs available in SWEDGE, it is
recommended that the user choose the NORMAL “pdf’.

For a NORMAL distribution, about 68% of observations
should fall within one standard deviation of the mean,
and about 95% of observations should fall within two
standard deviations of the mean.

mean = p

p*20 \

Figure 1-3: Norma! probability density function, showing standard
deviation ranges.
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Truncated Normal Distribution

A truncated NORMAL distribution can be defined by
setting the desired minimum and/or maximum values for
the variable. For practical purposes, if the minimum and
maximum values are at least 3 standard deviations away
from the mean, you will obtain a complete normal
distribution. If the minimum / maximum values are less
than 3 standard deviations away from the mean, the
distribution will be visibly truncated.

Uniform

A UNIFORM distribution can be used to simulate a
random variation between two values, where all values in
the range are equally probable. .

A UNIFORM distribution is entirely specified by the
minimum and maximum values. The mean value of a
UNIFORM distribution is simply the average of the
minimum and maximum values, and cannot be
independently specified.

A

X
Figure 1-4: Uniform probability density function.
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fx)

Triangular

You may wish to use a TRIANGULAR distribution in
some cases, as a rough approximation to a random
variable with an unknown distribution.

A TRIANGULAR distribution is specified by its minimum,
maximum and mean values. It does not have to be
symmetric, it can be skewed to the left or right by
entering a mean value less than or greater than the
average of the minimum and maximum values.

A

a b

—>
X

Figure 1-5: Triangular probability density function. Minimum = a,
maximum = b, mode = ¢. For a symmetric distribution, mean =
mode.

Note: for a non-symmetric TRIANGULAR distribution,
the mean value is not equal to the mode. The mode is the
value of the variable at the peak of the TRIANGULAR
distribution. In general for a TRIANGULAR distribution,
the mean is given by:

minimum + maximum + mode
mean = Eqn. 1.2

3
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1. If the distribution is symmetric, then the mean is
equal to the mode.

2. For a left triangular distribution, the mode =
minimum, and the mean = (2*minimum + maximum) /
3.

3. For a right triangular distribution, the mode =
maximum, and the mean = (2*maximum + minimum)
/3.

Beta

The BETA distribution is a very versatile function which
can be used to model several different shapes of
probability density curves, as shown in the figure below.

@ =Sewm=S

o, =3, 8,03

Figure 1-6: Beta (a1, oe2) density functions {Ref. 3)

The form of the BETA distribution is determined by the
shape parameters ol and «2. Both a1 and a2 are always
> (0. The relationship between the BETA distribution
shape parameters and the SWEDGE input data is as
follows:
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mean = _a_l__- Egn. 1.3
al+a2
variance = c;zlaZ Eqn. 1.4
(al+a2)(al+a2+1)

The standard deviation is the positive square root of the
variance.

Note that Equations 1.3 and 1.4 apply to a beta random
variable on [0,1]. To rescale and relocate to obtain a beta
random variable on [a,b] of the same shape, use the
transformation a + (b—-a)X.

Exponential

The EXPONENTIAL probability density function has also
been made available in SWEDGE.

*

X
Figure 1-7: Exponential probability density function.

@
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1. Since the range of values must always be positive for
an EXPONENTIAL distribution, it has only been
made available for the strength parameters (cohesion
and friction angle), and not for the orientation
parameters, since these may have negative ranges
which would be invalid for an EXPONENTIAL
distribution.

2. The mean is always equal to the standard deviation
for an EXPONENTIAL distribution. This is a property
of the EXPONENTIAL distribution, and cannot be
altered by the user.

3. Like the NORMAL distribution, the EXPONENTIAL
distribution can be truncated by entering the desired
minimum and maximum values (the basic
EXPONENTIAL distribution varies from zero to
infinity).

The EXPONENTIAL distribution is sometimes used to
define events, such as the occurrence of earthquakes or
rockbursts, or gquantities such as the length of joints in a
rockmass. Of the currently defined statistical variables in
SWEDGE, you may occasionally find it useful for
modeling joint cohesion, for example.

Probability — Further Reading

An excellent introduction to probability theory in a

geotechnical engineering context, can be found in Chapter
2 of Ref. 2.

More comprehensive and detailed information can be
found in statistics textbooks. For example, Chapter 6 of
Ref. 3 is an excellent guide to the selection of input
probability distributions. Ref. 4 provides a summary of
over 30 different probability density functions, in a quick-
reference format.

Note the following:

noDODPPTDOTD®TDDDDODODOPOEADTDDAANNNRCS
YV VR VR VR R U T I T N R A R R A 6
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S>wedge Analysis Sliding Planes

After a typical SWEDGE analysis, the analysis summary

To run the SWEDGE analysis, simply select the Apply will indicate, for a given wedge:

button in the Input Data dialog, after entering all your

input data. Sliding along line of intersection (trend / plunge)

e Ifthe Analysis Type = Deterministic, the Safety
Factor will be immediately calculated and displayed
in the lower right corner of the dialog, as well as in
the toolbar.

This indicates that the factor of safety accounts for sliding
Depending on wedge on both of the failure planes (joint sets). The line of
Qs:f;zefz :”g ;"a’el" preslsure_, intersection refers to the line of intersection of the two
g may take place along: failure planes (Joint Set 1 and Joint Set 2).

«  Both failure planes
e If the Analysis Type = Probabilistic, the Probability of

t i In , i
Failure will be calculated and displayed in the toolbar. *  One failure plane some cases, depending on the geometry of the wedge
. None (foss of contact) and the magnitude of the water pressure, contact may be
o - lost on either failure plane. In such cases, the amalysis

A Probabilistic Analysis can Note that a Probabilistic Analysis can be re-run at any summary will show:

be re-run at any time by time, by selecting the Compute button in the toolbar. The ’
selecting the Compute button i 3 3 i . .

"%1 the toolbar. Probal_nhty of Fallu_rg “fxll not ne.ce.ssanly be the same, Sliding on Joint1 or
each time a Probabilistic Analysis is re-run.

Sliding on Joint 2
Geometry Validation

If the water pressure is too high, the wedge will ‘float’,

SWEDGE always checks if the model geometry is valid,
before proceeding to calculate a Safety Factor for a given
wedge.

e If the Analysis Type = Deterministic, you will receive
a warning message if there is a problem with your

and the analysis summary will indicate:

Contact Lost on Both Planes

Finally, if tension in the rock bolts is too high, the
analysis summary may indicate:

input data.

Sliding UP Line of Intersection (trend / plunge)

» If the Analysis Type = Probabilistic, validation is first
performed on the mean Input Data. If the mean
orientation data does not form a valid wedge, then the
entire Probabilistic Analysis will be aborted, and you
will receive a warning message. If the mean wedge is
valid, but invalid wedges are generated during the
statistical sampling, then these results are discarded,
but the analysis is allowed to proceed. The Number of
Valid Wedges for a Probabilistic Analysis can be found
listed in the Analysis — Info Viewer option.

indicating that the total rock bolt tension is high enough
to potentially push the wedge ‘up’ the slope.

For a Deterministic Analysis, the sliding plane(s) will be
indicated in the Input Data dialog, along with the Safety
Factor. For a Probabilistic Analysis, this information is
listed in the Info Viewer.
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Quick Tour of Swedge

Seiou. Tievaai 35 ) udicet
Nise Yaw fronn femey Wedow then

DR &0 T Ea Brmmmons] OB = ~ Filois

Ponty BRIl

This “quick tour” will familiarize the user with some of
the basic features of SWEDGE.

If you have not already done so, run SWEDGE by double-
clicking on the SWEDGE icon in your installation folder.
Or from the Start menu, select Programs —» Rocscience —
Swedge —» Swedge.

If the SWEDGE application window is not already
maximized, maximize it now, so that the full screen is
available for viewing the model.

To begin creating a new model:

Select: File — New

A wedge model will immediately appear on your screen,
as shown in the above figure. Whenever a new file is
opened, the default input data will form a valid wedge.
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Job Control

The first thing you will notice is the four-view, split screen
format of the display, which shows:

TOP

FRONT

RIGHT and
PERSPECTIVE

views of the model. The Top, Front and Right views are
orthogonal with respect to each other (ie. viewing angles
differ by 90 degrees).

ﬁ@

Job Control allows the user t(; enter a Job Title, and select
a Unit System and Analysis Type.

Select: Analysis — Job Control

Job Te: [SWEDGE Quick Start Tutanal

Unts e - AnalysisType -~ ;
& Metnc : & Dateministic
< Imperial  Probabilisic

L | concel |

Oistance units in meters and Force units in tonnes (1000 kg)

Enter “SWEDGE Quick Start Tutorial” as the Job Title.
Leave Units = Metric and Analysis Type = Deterministic.
Select OK.

¢ The Job Title will appear in the Info Viewer listing,
discussed later in this tutorial.

* Units determines the length and force units used in
the Input Data dialog (see the next section).

s  Probabilistic SWEDGE analysis is covered in the next
tutorial.
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Now let’s see what input data was used to create this
maodel.

Select: Analysis — Input Data

Oeterministic Input Data oo e e i x
Geomeby 'Fmees |

Oip (deg} Dip Direction (deq)  Cohesion (Ym2)  Frichon Angle {deg)
JointSett a5 fros 6] feo

JointSetz 7o [e3s [s [3a
Upper Fece IIZ II‘JS

Stope Face r-_ss [1_85—— Slope Proparties - ~ - -
Slope Height{m} l33
# Tension Crack Unit Weight (Ym3) '2 5

Dip (deg} I70
I” Ovethanging

Dip Direction (deg) 165 .

Trace Length (m) [\2_

Sefaty Factor= 104026

'Wedge Weight = 15987 7 loanes
Sliding on Line of ttersection:
Trend « 157 732 Plunge < 31.1365

Distence in meters
Force in Tonnes (1000 kg

Apply Cone |

Figure 2-1: Input Data dialog (Deterministic).

The Geometry input data which you see in this dialog is
the default input data, which forms a valid default wedge,
each time a new file is started.

Quickly examine the input data in this dialog. See the
introductory section of this manual for definitions of the
SWEDGE input data. Do not change any values just yet,
we will be coming back to this shortly.

Before you close the dialog, notice the Safety Factor,
Wedge Weight etc information displayed in the lower
right corner. The Safety Factor (FS =...) is also displayed
in the SWEDGE toolbar, at the top of the screen.
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Now close the dialog by selecting the X in the upper right
corner.

Manipulating the View

The LEFT and RIGHT mouse buttons can be used to
interactively manipulate the view as follows:

» The Perspective view of the model allows the model to
be rotated for viewing at any angle with the LEFT
mouse button.

¢ The wedge can be moved out of the slope with the
RIGHT mouse button in any of the four views.

Rotating the Model

1. Press and HOLD the LEFT mouse button anywhere in
the Perspective view. Notice that the cursor changes
to a “circular arrow” symbol to indicate that you may
rotate the model.

2. Now keep the LEFT mouse button pressed, and move
the cursor around. The model is rotated according to
the direction of movement of the cursor.

3. To exit the rotation mode, release the LEFT mouse
button. Notice that the cursor reverts to the normal
arrow cursor.

4. Repeat the above steps to rotate the model for viewing
at any angle.
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Moving the Wedge Out of the Slope

1. Press and HOLD the RIGHT mouse button anywhere
in ANY of the four views. Notice that the cursor
changes to an “up-down arrow” symbol.

2. Now, keep the RIGHT mouse button pressed, and
move the cursor UP or DOWN. The wedge will slide
UP or DOWN out of the slope. Note:

¢ If your model does NOT have a Tension Crack,
then the wedge will slide UP or DOWN along the
Line of Intersection of Joint 1 and Joint 2.

e If your model DOES have a Tension Crack, then
the wedge will slide DOWN along the Line of
Intersection of Joint 1 and Joint 2, and UP along
the plane of the Tension Crack. -

3. To exit this mode, release the RIGHT mouse button.

Notice that the cursor reverts to the normal arrow
cursor.

Resetting the Wedge

To reset the wedge in its normal position, click and
RELEASE the RIGHT mouse button in any of the four
views. The wedge will snap back to its normal position.

Rotating and Moving

The rotate and move options, described above, can be used
in any order. That is, the model can be rotated after
moving the wedge, and the wedge can be moved after
rotating. This allows complete flexibility of viewing the
slope and wedge from all possible angles.

Note that rotating the model only affects the Perspective
view, while moving the wedge out of the slope affects all
views (Top, Front, Right and Perspective).
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Double-clicking in any view
will maximize that view.
Double-clicking again in the
maximized view, will restore
the four view display.

Resizing the Views

You can change the relative size of the Top / Front / Right
{ Perspective views in a number of ways:

1. Double-clicking in any view will maximize that view.
Double-clicking again in the maximized view, will
restore the four view display.

e oav fum > ¢ s
W [l Yo Areiin Sesdct  winose

Hoe . . T
DG 8D TS Prumminc} Qe X 7 FTowN
1
Pensmm
= 4zesd

Figure 2-2: Maximized Perspective view.

2. Alternatively, hover the cursor over the vertical or
horizontal dividers between the views, or over the
intersection point of the four views. The cursor will
change to a “parallel line” or “four arrow” symbol.
Press and HOLD the LEFT mouse button, and drag to
re-size the views.

3. Maximizing views can also be accomplished with the
View — Layout options. To reset the four views to
equal size, select View— Layout — All Views.
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Zooming

Zooming (from 50% to 800%) is available in the View —

Zoom menu, to increase or decrease the displayed size of
the model in all four views.

Individual views can be zoomed in or out using the Page
Up / Page Down keys, or the + or — numeric keypad keys.
You must first click in the view with the LEFT mouse
button, to make it the active view.

Display Options

ii

You may change the colours of the Slope, Wedge,
Background and Bolts, and the Drawing Mode (Shaded or
Wireframe) in the Display Options dialog.

Select; View — Display Options

< COHOTS < o v - e o

D -
weage  TENEEN) _._lw
Hockgrooed  THEIZ] Concal |
Bots | —
“sewaen [ 3

- Drawing Mode -~ - - e
& Shodad

T Waeteme

Select new slope, wedge and background colours, and hit
the Apply button. Now change the Drawing Mode from
Shaded to Wireframe, and hit Apply. Select the Defaults
button to restore the defaults, and hit OK or Cancel to extt
the dialog.

The “Selection” colour refers to the colour of selected bolts
while using the Delete Bolt and Edit Bolt options. See the
last tutorial in this manual for more information.
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Note that the Cancel button in the Display Options dialog
does NOT cancel any changes once they have been applied
with the Apply button.

Nl 80 TYQ A [Crearns] O 5 .~ Fiisan

e

Randy (2211 ]

Figure 2-3: Wireframe Drawing Mode.

Changing the Input Data & Re-calculating the Safety Factor

Now let's experiment with changing the Input Data and
re-calculating a new Safety Factor.

This is simply a matter of:

1. Entering the desired Input Data.

2. Selecting the Apply button.

For a Deterministic analysis, the Safety Factor is
immediately calculated and displayed in the lower right

corner of the dialog.

Select: Analysis — Input Data

T ® ® H H O ® X
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- Tension Cragk—————————

Safety Factor = 1.13181

Wedge Weight = 21483.3 tonnes
Sliding on Line of Intersection:
Trend = 157.732 Plunge = 31.1365
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Let's first remove the Tension Crack, and observe the
effect on Safety Factor and the wedge geometry.

Removing the Tension Crack

1. To remove the Tension Crack from the model, simply
de-select the Tension Crack checkbox in the Input
Data dialog.

2. Select the Apply button, and a new Safety Factor is
immediately calculated. Removing the Tension Crack
increased the Safety Factor from 1.04 to 1.13.

3. Select the Done button, to close the Input Data dialog,
so that you can view the new wedge. It should appear
as below.

Pewty EXE 3
Figure 2-4: Wedge with tension crack removed.
Note that the Input Data dialog can also be minimized

without closing it, by selecting the - arrow in the upper
right corner of the dialog.
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Entering a New Wedge

Let’s enter data for a completely different wedge.
Select: Analysis —» Input Data

1. Enter the following data and select Apply.

Deterministic INput DBl o oo oes s & oo e i S e X
Geometry ann:esI

Dip(deg)  DipDirecion{deg) Cohesion (ym?)  Friction Angle (deg}
JoimSet1 a7 [s2 . s [30
Jomt Set 2 18 fo [

F°_—_
Upper Faca ﬁ'o__— [AS—
F.S__.'

‘ - . SiopeaProperies - - L
Slope Face I45
Slope Hergim (m) fo
T TensionCrack ~ -7 i Unit Weight (Y m3) ﬁ 7
e I - ging
T Safety Foctor = 0.529239
Wedge Waight « 5365.12 tonnes

Distance in maters Shding on Joim ¢
Force in Tonnes (1000 kg)

I Apply I Done |

2. Select the Done button to close the dialog, or minimize
it by clicking on the = arrow, and you should see the
following wedge, with a Safety Factor of 0.53.
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Figure 2-5: A new wedge.

Sliding Piane

Notice that in this case, the analysis summary in the
Input Data dialog indicates the failure mechanism as
“Sliding on Joint 1”, rather than “Sliding along line of
intersection”. This is consistent with the model geometry,
since Joint Set 2 dips at 70 degrees and has a cohesion of
zero, and therefore has little influence on the wedge
stability.

See the Introduction for more information on the sliding
plane failure modes in SWEDGE.
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Water Pressure

When Water Pressure is toggled on and the Unit Weight =
1 in the Input Data dialog, the factor of safety is
calculated assuming extreme conditions of heavy rainfall.
This means that maximum (average) values of water
pressure are applied on the failure planes (and tension
crack, if present). Parametric analysis of the effect of
varying water pressure, can be achieved by varying the
Unit Weight of water between 0 and 1.

For example:
1. Enter Unit Weight of water = 0.5. Select Apply.

2. The Safety Factor increases from 0.53 to 0.81.

3. Now toggle Water Pressure off (or enter Unit Weight
=0, this has the same effect). Select Apply.

4. The Safety Factor with no water pressure (ie. a
completely dry slope) is 1.11. This is the maximum
Safety Factor for this wedge, without installing rock
bolt reinforcement.

Deterministic input Data.

Geometry Forces ]

F Watar Pressure —- - oo s

UnitWeight (Ym3) - Io

I Exemal Forgg

Safety Fector = 110801

‘Wedge Weight » §365.12 tonnes
Distanca i melers Sliding on Joint 1

Force in Tonaes {1000 ka)

ook ] Oone |
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External Force

1. Toggle on the External Force checkbox.
2. Enter Plunge = 20, Trend = 45 and Magnitude = 500.
3. Select Apply.

4. The Safety Factor (with Water Pressure toggled off)
drops to 0.97.

Deterministic laput Date ~— oo - owme o someswns o

Gaomaty Forces l

T Water Pressure - - = oo " Seismic -

- External Forge ~~—~s— s o—es ERP | P
Plunge (deg) o iy [——"—

Trend {deg) 45
Magnitude () 500

Safety Factor » 0.865823
'Wedge Weight « 5365 12tonnes
Distance in maters
Force inTonnes (1000 kg)

Sliding on Jomt 1

Dure |

At this point we will note that rock bolts in SWEDGE are
implemented in the analysis in exactly the same way as
the External Force.

That is, rock bolts can be simulated by an equivalent
External Force, or an External Force can be simulated by
rock bolts. See the last tutorial in this manual, Adding
Support, for more information.
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Seismic Force

1. Toggle off the External Force checkbox, and toggle on
the Seismic Force checkbox.

2. Enter a Seismic Coefficient of 0.2, and select the
Direction as “User Defined”, and enter Plunge = 0 and
Trend = 52.

Deterministic It Data <r= ccirsrre: % S SmmITR T L s e X
Geomey Forces |
- Waret Pressure ~——x ———- = Setsmic - - o eees
l : Seismic Coeticient l02 !
g i
. Duection User Detned 'l
R orce X g Plunge [d!g’) r’_‘—D
R E- ’ Tendtdes)  [i2
Safety Facior » 8.836522
'Wadge Weight = 5365.12 tonnes.
Distance in meters Stding on Joint |
Force in Tonnas {1000 kg) .
Done

3. This will apply a force on the wedge F=02*g* m,

where g = acceleration due to gravity and m = mass of
the wedge. Note that the Trend is equal to the Dip
Direction of Joint Set 1, which is the worst possible
direction in this case, since the failure mode for this
wedge already indicates Sliding on Joint 1.

4. Select Apply, and the Safety Factor now drops to 0.84.
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CCRENT CJT VT VR VRRY VR VIRV VR VIRV VR R VI I VR T S A R I 2 I I

Quick Start Tutorial 35

More About the Input Data Dialog

You may not have noticed, but the Input Data dialog in
SWEDGE works a little differently than a regular dialog:

1. Itis known as a “roll-up” dialog, since it can be
“rolled-up” (minimized) or “rolled-down” again, by
selecting the « or ¥ arrow in the upper right corner
of the dialog.

Deterministic input Oata . . s e ,I

2. It can be left up on the screen while performing other
tasks. When not needed, it can be "rolled-up” and
dragged out of the way (for example, the top of the
screen) with the LEFT mouse button.

3. If multiple files are open, the Input Data dialog will
always display the data in the active file.

You may find these properties of the Input Data dialog
useful, for example, when performing parametric
analysis, or when working with multiple files.
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Stereo Projection of input Data Planes

To view a stereographic projection of your SWEDGE
Input Data planes, select the Stereonet button in the
toolbar. The great circles on the stereonet are identified
by labels - 1, 2, TC, US, and FS - to indicate failure
planes 1 and 2, the tenston crack plane, and the upper
and face slope planes.

Posty [ 138

Figure 2-6: Stereonet projection of SWEDGE input data planes.

Importing Data from a DIPS File

The planes forming the wedge geometry can also be read
into SWEDGE from a DIPS planes file (“.dwp” filename
extension), with the Import option in the File menu.

DIPS is a program for the graphical and statistical
analysis of structural geology data using spherical
projection techniques. Visit the Rocscience website at
www rocscience.com for more information.
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te

Before we conclude this “quick tour”, let’s examine the
Info Viewer option.

Select: Analysis ~» Info Viewer

A convenient summary of model and analysis parameters
is displayed in its own view. Scroll down to view all of the
information. This can be printed if desired.

Sui gy clowiias I avaeue

S Eee Yo daves Swieot Swkics Wedow Hep JNTTES]
0 B0 YT .- [Premane | OS>~ FEToa
(Swedge Analysis information =

Pocument Name.
Smadge

Lab Tale:
[SWEOGE - Surfaca Wedge Statibty Analys:s.

Paalyin Results:

panatyses Type=DETERMINISTIC

Eiarety Factor=1 04026

Medge voune=6149 12 m)

[veage Weight= 15967 7 tonnes

Pveage Area (Jont Lz577 644 in2
Mveage Area (Jont 2)=617 563 m2
Ireage Acea (Teauon Crack)=214 96 m2
Normal Force {Jod 1):8478 35 tornes.
Pormal Force (Jond 21=3128 82 tonnes.
Fesre voge

[Erann on weersecton anw (xnes 182)
ot Sats 182 ine of iniarsecton
pronge=31 1965 aeg. rena= 157 132 oeg
Proint St t Data.

J10:45 ceg. ap areckan=105 deg
Fohesion=2 lorey/m2. tncuon angd =20 deg

ok St 2 Data
Jo=70 309. 00 arecaon=235 ceg
kohes:on=5 lonnes/m2. tnchion ange=30 deg

[lope Oate:

bo:65 aeg. ap areceqn: 165 ceg
kincw reinrt=13 metars

sy

Figure 2-7: Info Viewer listing.

That concludes this “quick tour” of SWEDGE. To exit the
program:

Select: File — Exit
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Probabilistic Analysis

“"h‘“ Swncy Yedow raep
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This tutorial will familiarize the user with the
Probabilistic analysis features of SWEDGE.

If you have not already done so, run SWEDGE by double-
clicking on the SWEDGE icon in your installation folder.
Or from the Start menu, select Programs — Rocscience —
Swedge —» Swedge.

If the SWEDGE application window is not already
maximized, maximize it now, so that the full screen is
available for viewing the model.

To begin creating a new model:

Select: File — New

A default wedge model will immediately appear on your
screen. Whenever a new file is opened, the default input
data will form a valid wedge.
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Defining Random Variables

« The Job Title will appear in the Info Viewer listing,

discussed later in this tutorial. To define a random variable in SWEDGE:

1. First select a Statistical Distribution for the variable.
(In most cases a Normal distribution will be
adequate.)

e Units determines the length and force units used in
the Input Data dialog and the analysis.

" D DD

2. Enter Standard Deviation, Minimum and Maximum

Minimum / Maximum values values. NOTE that the Minimum / Maximum values
are specified as RELATIVE

distances from the mean

are specified as RELATIVE distances from the mean,
rather than absolute values.

: ]
40 SWEDGE User's Guide 6 9 Probabilistic Tutorial 41
Job Control €93 Probabilistic Input Data
e 9
Job Control allows the user to enter a Job Title, and select Now let’s look at the input data.
a Unit System and Analysis Type. Let’s switch the € 39 o
Analysis Type to Probabilistic. € 3 Select: Analysis — Input Data
'&n Select: Analysis — Job Control You should see the Probabilistic Input Data dialog shown
€ 3 below.
e 3
. . . - Probabilistic Pt DA & — .. .cooos o s e e s i e o mimemrie & X
THe. i
JobTe . [MDGE Pmbu.bahsh»’chnal JomtSatl l.lcnnt Set2| Stope ] Upper Eace | Tansion Crack | FormsISamphngl
~Unitg -~ e - - Anelysis Type -~ - - e ’ D oo L e e s e D)) DRPECHER - o e e - s s
& Metic ¢ Deterministic Msan Value. FS-I——-— deg Mgen Value: 105 deg
~ imperial : - & Probedtistc e 9 Stgtistonl Diswibtion: _ [Nons 7] Statistical Diswibuton: [Nore =]
i e »F—_deg T - [_"dag
I oK I Cancel I e ’ l" deg I deg
. li'. deg [? deg
Distance units in meters and Force unts intonnes (1000 ky) e 9 . - .
Cobgsion. - 1~ - vemi noein i . FrichonAngla- - mmmseee -
Enter “SWEDGE Probabilistic Tutorial” as the Job Title. € 3 oo, [ e veeveke T e
ol . d Statsuce Drstribunon m : Stetisicel Distibuton:  |Nane -
Leave Units = Metric and change the Analysis Type to - )
Probabilistic. Select OK. K v [T e SR
o - T yme P [ e
Note: ] e P we e POM
analysis Type can be selected| ¢ Analysis Type can also be changed at any time, using 2 Apply Oore |
from the drop-down list box in the drop-down list box in the middle of the SWEDGE
the toolbar. toolbar. This is a convenient shortcut. L 3
?
L
3
]
L
2
L 4
2
2

mmn MDD
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3. Any variable for which the Statistical Distribution =
“None” will be assumed to be “exactly” known, and
will not be involved in the statistical sampling.

See the Introduction for information about the properties
of the statistical distributions available in SWEDGE.

For this example, we will use the default Mean Input
Data, and define Normal Statistical Distributions for the
following variables:

Joint Set 1 Dip and Dip Direction

Joint Set 1 Cohesion and Friction Angle
Joint Set 2 Dip and Dip Direction

dJoint Set 2 Cohesion and Friction Angle
Tension Crack Dip and Dip Direction

Joint Set 1

Make sure the Joint Set 1 tab is selected in the Input
Data dialog, and enter the following data:

Probabilistic putDete - -x-: - s e L e

JomtSer? | sointSat2 ] Slope | UpperFoce | Tension Crack | Forces | Sampling |

D = e i O DMROEROAT < e e
Maon Valig, [E g T Moo vaue 105 deg
Stassscal Distnbution: m . il {Normai R
SendardOeviston.  [1 deg © SwnderdOevison  [3 deg
Relaive Moimum: [0 deg i Rusrvemmmum:  fiI5 eg
RelatoMadme: il deg . RelstveMuwamom: . [i5 deg
CohgSOn -+ = - oo = ; FicknAngle -

MesnValva: E ym2 . ! MeenValus; |2n drg

Swisicupimbieon. [oma 5] | o [uomal <] .
SundvaOevision. IS ym2 -, SwndsdOevieson |2 deg
Ralative Minimum IZ ym2 ' Relatrve Mavmom. IB deg

"m0 o> DDDDOOPOEOEEOIHEORON DD DD

| ———— Smmmrms & — i t— i —— . ———— = b = e iy e ——nens

SRR IR BK 2K B AR I T TR R R A IR R

Joint Set 2
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Select the Joint Set 2 tab and enter the following data:

Probabilistic Input Data = o e oot

Sl LR f i mo ST S X
JointSett JointSe12 |Siope | Uppar Face | Tensian Orack | Forces | Sampting |
Dip Dip Direcuon
Mean Value: |7u deg Mean Vekue. 215 deg
Stotisical Distibuson:  [Norma -l Statstical Ovsmbation.  [Nommal hd
Standard Deviason; 3 deg Standard Dewsbon: kl deg
Relatve Mimmom, ’Iu deg Relnlive Mirumum: 15 deg
Retative Maximum 10 deg Reletve Mexdmum: |l5 dag
Cohasion Fncoon Angle
Mean Value: |5 yme MeanVakue lao deg
- Steisteol Distiburon: [Nmal v] Statsncal Disnbutoo,  [Normas -
Standard Deviaton: IO 5 ym2 Standard Devistion, [2 deg ™
Refotive Misimum. 2 ym2 Aelotve Moemum: B deq |
RefotveMeximum: 2 Relotve Mesimom B d i
atve Medmum: 2 uyme edmum eg i
ooe |
Tension Crack

Select the Tension Crack tab and enter the following data:

Probehikistic feput Data . .. ... ...

JowtSet1] JointSer2 ] Stope | UpperFace Tension Crack | Forcas| Sampting |

(S R —
Maen Value:

* Tension Crack Exists

Trace Length {m}

|70 deg

StaistcalOiswibuton [Nomnal =]

Standesd Deviouon:
Relative Minimum:

Relatve Medmum

3 deg
10 deg
1a deg

IT——

Dip Direcoon
MeanVake

Standard Devaton:
Relabve Minmum:

Relaove Meximum

185 dag

Stapstcal Grstribubon. fm_.,,.__],,. 1
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Slope

We will assume that the orientation of the slope planes is
exactly known, so we will not enter statistical data for the
upper slope or face slope orientations (ie. Statistical
Distribution = None for these variables).

Forces

We will not be using the Forces options in this tutorial.
See the Quick Start Tutorial for a discussion of Forces in
SWEDGE.

Sampling

We will use the default Sampling Method and Number of
Samples (ie. Monte Carlo method, 1000 samples).
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Probabilistic Analysis

Resuits

To carry out the SWEDGE Probabilistic Analysis:

e Select the Apply button in the Input Data dialog.
The analysis will be run using the parameters you have
just entered. Calculation should only take a few seconds.
The progress of the calculation is indicated in the status

bar.

Close the dialog by selecting the Done button.

Probability of Failure

The primary result of interest from a Probabilistic
Analysis is the Probability of Failure. This is displayed in
the toolbar at the top of the screen.

Swedge - [Probexam swd - FS=1 12522 (mean)”} [=1a]>]
% Ple View Analysis Suppont Swisﬁcs_ Yindow Help 13§ x|

D38 &0 AW/ [Pobabilisic ~] © 3 M PFo61

For this example, if you entered the Input Data correctly,
you should obtain a Probability of Failure of around 6%.
{eg. PF = 0.061 means 6.1% Probability of Failure).

However, remember that the sampling of the Input Data
is based on the generation of random numbers by the
Monte Carlo analysis. Therefore the Probability of Failure
will not necessartly be the same each time you compute
with the same data.

See the section on Re-running the Analysis later in this
tutorial, for a demonstration.
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Wedge Display

The wedge initially displayed after a Probabilistic
Analysis, is based on the mean input values. Therefore,
the wedge will appear exactly the same as one based on
Deterministic Input Data with the same orientation as
the mean Probabilistic Input Data.

However, other wedges generated from the Probabilistic
Analysis can be displayed as described below.

Histograms

To plot histograms of results after a Probabilistic
Analysis:

Select: Statistics —» Plot Histogram

Plot Parameters B

Data Type: ISu!ely Fector El

—

Number of Intervals.
o=
T o=z

I KolmogorowSmimov Test

o ) Cancet |

Select OK to plot a histogram of Safety Factor.

The histogram represents the distribution of Safety
Factor, for all valid wedges generated by the Monte Carlo
sampling of the Input Data. The red bars at the left of the
distribution represent wedges with Safety Factor less
than 1.0.
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Mean Safety Factor

The mean Safety Factoris
not necessarily the same as
the Deterministic Safety
Factor based on the mean
Input Data values.

Notice the mean, standard deviation, min and max values
displayed below the histogram.

Keep in mind that the mean Safety Factor from a
Probabilistic Analysis is not necessarily the same as the
Deterministic Safety Factor based on the mean Input
Data values. In general, these two values will not be equal
to each other.

Manipulating the Histogram View

1. If you right-click on a histogram and select 3D
Histogram, you can apply a 3D effect.

2. If youclick and HOLD the LEFT mouse button on the
histogram and move the mouse, you can change the

“viewing angle” of the 3-D histogram.

3. To restore the default viewing angle of a 3D
Histogram, right-click and select Reset View.

Viewing Other Wedges

Let’s now tile the Histogram and Wedge views, so that
both are visible.

Select: Window — Tile Vertically

A useful property of the Histogram view is the following:

s If you double-click the LEFT mouse button anywhere
on the histogram, the nearest corresponding wedge
will be displayed in the Wedge view.

For example:

1. Double-click on the histogram at approximately
Safety Factor = 1.
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2. Notice that a different wedge is now displayed.

3. The actual Safety Factor of this wedge is displayed in
the title bar of the Wedge view. It will probably not be
exactly = 1, since it depends on exactly where you
clicked, and the actual safety factor of the nearest
wedge.
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Figure 3-1: Safety Factor histogram and wedge view.

In any case, this feature is meant to give you a general
idea of the shape and orientation of wedges corresponding
to locations along the histogram. For example, you will
probably want to double-click in the “red” Safety Factor
region, to see the wedges with a Safety Factor < 1.

To reset the Wedge view so that the mean wedge is
displayed:

Select: View — Reset Wedge

This will display the wedge corresponding to the mean
Probabilistic Input Data.
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Histograms of Other Data

In addition to Safety Factor, you may also plot histograms
of:

o  Wedge Weight

* Plunge or Trend of Line of Intersection of Joint Sets 1
and 2

¢ Any random variable (ie. any Input Data variable
which was assigned a Statistical Distribution)

For example:
Select: Statistics — Plot Histogram

In the dialog, set the Data Type = Wedge Weight, and
select OK.

A histogram of the Wedge Weight distribution will be
generated.

Note that all of the features described above for the Safety
Factor histogram, apply to any other Data Type. For
example, if you double-click on the Wedge Weight
histogram, the nearest corresponding wedge will be
displayed in the Wedge View.

Let’s generate one more histogram.
Select: Statistics — Plot Histogram
This time we will plot one of our Input Data random

variables. Set the Data Type = Dip of Joint 1. Check the
Plot Sampled Distribution checkbox. Select OK.
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Figure 3-2: Joint 1 Dip Angle — Monte Carlo sampling of normal
distribution.

The histogram shows how the Dip of Joint 1 Input Data
variable was sampled by the Monte Carlo analysis. The
curve superimposed over the histogram is the Normal
distribution you defined when you entered the mean,
standard deviation, min and max values for Dip of Joint 1
in the Input Data dialog.

Re-running the Analysis

The Probabilistic Analysis can be re-run at any time, by
selecting the Compute button in the toolbar.

In general, the Probability of Failure will be different each
time the analysis is re-run.

Let's demonstrate this, but first let’s tile the views again.
If you have not closed any views, you should still have on
your screen:

fnmmmmmmmmmnmmmmmmmmmmmmmmn
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o The Wedge View and

e The Safety Factor, Wedge Weight, and Joint 1 Dip
Angle Histograms.

If you closed any of the histograms, re-generate them as
described above. Now tile the four views.

Select: Window —» Tile Vertically
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Figure 3-3: Tiled histogram and wedge views.
Now select the Compute button in the SWEDGE toolbar.
Select: Analysis — Compute

Notice that the Histograms and Probability of Failure are
updated with the new analysis results.

Now continue to select Compute several times, and
observe the variation in the Histograms and the
Probability of Failure. This graphically demonstrates the
SWEDGE Monte Carlo analysis.
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Note that the Wedge view does not change when you re-
compute, since the default wedge displayed is based on
the mean Input Data, which is not affected by re-running
the analysis.

For this example, if you re-run the analysis several times,

you will find that the Probability of Failure will vary
between about 4 and 8%.

Cumulative Distributions (S-curves)

In addition to the histograms, cumulative distributions (S-
curves) of the statistical results can also be plotted.

Select: Statistics — Plot Cumulative

Dota Type: - . [Setety Factor -]

Number of Intervals. I30

~ Anach Markers ta Disvibuton

oK Concel |

Select OK.

The cumulative Safety Factor distribution will be
generated, as shown in Figure 3-4.

Notice the vertical dotted line visible on the plot. This is
the Sampler, and allows you to obtain the coordinates of
any point on the cumulative distribution curve.

s To use the sampler, just SINGLE click the LEFT
mouse button anywhere on the plot, qnd the sampler
will jump to that location, and display the results.
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¢ Alternatively, press and HOLD the LEFT mouse
button on the plot, and you will see the double-arrow
icon. Move the mouse left or right, and the sampler
will continuously display the values of points along
the curve.
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Figure 3-4: Cumulative safety factor distribution.

The display of the Sampler can be turned on or off in the
right-click menu or the Statistics menu.

Now tile the views one more time, and re-compute the
analysis.

Select: Window — Tile Vertically
Select: Analysis —» Compute
Notice that the cumulative distribution gets updated

along with the histograms, each time the analysis is re-
run.
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Info Viewer

Let’s examine the Info Viewer listing for a Probabilistic
Analysis.

Select: Analysis —» Info Viewer

A convenient summary of model and analysis parameters
is displayed in its own view. Scroll down to view all of the
information. This can be printed if desired.

Notice the summary of Valid, Failed and Safe Wedges.
Depending on your geometry input, it is possible for the
Probabilistic Sampling of the Input Data to generate
invalid wedge geometries. In general:

Number of Failed Wedges +
Number of Safe Wedges =
Number of Valid Wedges

Number of Samples —
Number of Valid Wedges =
Number of Invalid Wedges

As with the Histograms and S-curves, if you re-compute
the analysis, the Info Viewer listing is automatically
updated to reflect the latest results.

Current Wedge Data

Notice the Current Wedge Data listing in the Info Viewer.

By default, the mean wedge data is displayed after a
Probabilistic analysis.

Remember we pointed out earlier that if you double-click
on a Histogram, the nearest wedge will be displayed in
the Wedge View. The Current Wedge Data will also be
updated, to reflect the data for the “picked” wedge. Let's
demonstrate this.
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1. Close (or minimize) all views you may have on the
screen, EXCEPT the Info Viewer and the Safety
Factor Histogram.

2. Select the Tile Vertically toolbar button.

3. If necessary, scroll down in the Info Viewer view, so
that the Current Wedge Data is visible.

4. Double-click at different points on the Safety Factor
histogram, and notice that the Current Wedge Data is
updated to show the data for the “picked” wedge.
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Figure 3-5: Current Wedge Data for Picked Wedge.
5. To reset the Current Wedge Data to the mean data:

Select: View — Reset Wedge
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Sampling Method

As a final exercise, set the Sampling Method to Latin
Hypercube, and re-run the analysis.

Select: Analysis — Input Data

In the Input Data dialog, select the Sampling tab, and set
the Sampling Method to Latin Hypercube. Select the Apply
button.

Examine the Probability of Failure, and the Safety Factor
Histogram. The results should be very similar to the
Monte Carlo analysis.

The difference is in the sampling of the Input Data
random variables. For example, generate a Histogram of
Joint Set 1 Dip Angle.

Select: Statistics — Plot Histogram

Set the Data Type = Dip of Joint 1. Select the Plot
Sampled Distribution checkbox. Select OK.

Now compare the histogram with Figure 3-2. The Latin
Hypercube sampling method results in a much smoother
sampling of the Input Data distribution, compared to the
Monte Carlo method.
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Adding Support

Rock bolts are added to an SWEDGE model with the Add
Bolt option. This allows the user to evaluate the number,
location, length and capacity of bolts necessary to stabilize
a wedge (ie. increase the Safety Factor to a required
amount).

Let’s start with a new (Deterministic) file for the purposes
of the following demonstration.

Select: File = New
To add a rock bolt:

Select: Support — Add Bolt

1. Move the cursor into the Top or Front orthogonal
views.

2. Notice that the cursor changes to an “arrow / rockbolt”
icon.

3. As you move the cursor over the wedge, notice that
the “rockbolt” and “arrow” now line up - this indicates
that you may add the bolt to the wedge.

4. Click the LEFT mouse button at a point on the wedge
where you want the bolt installed.

5. The bolt will be installed NORMAL to the face of the
wedge on which you clicked (ie. normal to the Upper
or Face slope), however you can modify the
orientation using the Bolt Properties dialog which you
will see in the middle of the screen.
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The Bolt Properties dialog works as follows:

If you modify the Capacity, Trend or Plunge with
the “arrow” buttons at the right of the dialog, the
Safety Factor is immediately recalculated and
displayed in the dialog as the values are being
changed. This allows the user to interactively
modify the bolt properties, and immediately see
the effect on the Safety Factor.

Alternatively, values can be typed in to the dialog.

In this case, the Safety Factor is NOT
automatically re-calculated, the user must select
the Apply button to apply typed in values.

As the bolt Trend and Plunge are changed, you
will see the orientation of the bolt updated on the
screen.

Changing the Length of the bolt will be visible on
the mode), but has NO effect on the Safety Factor
— see the next section for details.

When the bolt orientation, length and capacity are
satisfactory, select OK, and the bolt will be added to
the model.

If you are not happy with the location of the bolt,

select Cancel, and the bolt will be deleted.
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Figure 4-1: Adding a bolt.
Note:

e The Right orthogonal view can also be used for adding
bolts, however this is not recommended, as correct
placement may be difficult or impossible. (If the Dip
Directions of the Upper and Face Slope are the same
it will NOT be possible to add a bolt in the Right
orthogonal view.)

¢ Bolts can NOT be added in the Perspective view.
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How Bolts are Ihplemented in SWEDGE

Bolts are implemented in the SWEDGE stability analysis
as follows:

Capacity and Orientation

1. Bolts affect the Safety Factor through their Capacity
and Orientation (Trend / Plunge) only.

2. Bolt capacities and orientations are added vectorially,
and are included in the Safety Factor calculation as a
single, equivalent force passing through the centroid
of the wedge. .

3. Multiple bolts with the same orientation can therefore

be simulated by a single bolt having the same total
capacity.

Length and Location

1. Bolt Length and Location (on the face of the wedge)
have NO effect on the Safety Factor.

2. The Length and Location of bolts allows the user to
visualize the practical problems of installing the bolts.

3. Even bolts which do not pass through the wedge, will
affect the Safety Factor (ie. SWEDGE does NOT check
for valid bolt lengths). So do NOT assume that “short”
bolts will be filtered out — they will have exactly the
same effect as longer bolts with the same capacity and
orientation.
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Bolts vs. External Force

1. Abolt is therefore exactly equivalent to adding an
External Force with the same magnitude and
orientation. (See the Quick Start Tutorial for an
example of adding an External Force).

2. Itisleft as an exercise for the user to verify that a

bolt, and an equivalent External Force, result in the
same Safety Factor.

Multiple Bolts

Any number of bolts can be added to a model, by _
repeating the steps outlined above.

However, remember that bolts in SWEDGE simply
behave as force vectors passing through the centroid of
the wedge. The applied force is equal to the bolt capacity.

Therefore, in terms of the effect on the Safety Factor,
multiple bolts can be simulated by:

* afewer number of bolts, or even a single bolt, with
equivalent capacity and direction,

® or an equivalent External Force.

Installation of multiple bolts is useful for visualizing the
practical problems of bolt installation, and the necessary
bolt lengths and spacing. Or for back-calculating the
Safety Factor of an existing wedge support system.
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Deleting Bolts

%

To delete bolts:

Select: Support — Delete Bolt

Bolts can be deleted in the Top, Front or Right views as
follows (bolts cannot be deleted in the Perspective view):

1. Move the cursor in the Top, Front or Right views.
2. The cursor will change to a small “box”.
3. Hover the cursor over a belt that you wish to delete.

4. The bolt will change colour, to indicate that it is
“selected”.

5. When the correct bolt is selected, click the LEFT
mouse button, and the bolt will be deleted.

6. A new Safety Factor will immediately be calculated.
7. Repeat steps 3 to 5 to continue deleting bolts.

8. Press Escape to exit the Delete Bolts option.

To delete ALL bolts at once:

Select: Support — Delete Bolt

1. Enter the asterisk ( * ) character on the keyboard.
2. ALL bolts will be deleted from the model.

Note that the bolt colour and the “selected” bolt colour,

can be modified in the View — Display Options dialog, if
necessary, for easier viewing.
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Editing Bolts
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A

To edit the properties of a bolt:

Select: Support ~» Edit Bolt

Bolts are selected for editing in the same manner as for
deleting ~ see the previous page for instructions.

Once a bolt has been selected for editing:

1. You will see the Bolt Properties dialog in the middle of
the screen, displaying the properties of the bolt.

2. You can modify the Capacity, Trend, Plunge or
Length of the bolt, in the same manner as when you
originally added the bolt. See the previous pages for
details.

3. When you are finished editing the properties, select
OK to save your changes.

4. If you select Cancel, all changes will be cancelled,
even if you used the Apply button to apply the
changes.

Bolts can only be edited one at a time in this manner. It is
not possible to edit the properties of multiple bolts
simultaneously.

Listing of Bolt Properties

7

A listing of all bolts and their properties (Capacity,
Length, Trend and Plunge) can be found in the Info
Viewer listing.

The Info Viewer option is available in the Analysis menu,
and in the toolbar.



SWEDGE User's Guide

Bolts in a Probabilistic Analysis

The above discussion of bolts in SWEDGE assumes a
Deterministic Analysis of a single wedge.

If the Analysis Type is PROBABILISTIC:

o the Probabilistic Analysis will be run EACH time a
bolt is added or edited (ie. when OK is selected on the
Bolt Properties dialog).

e Selecting Apply in the Bolt Properties dialog will
calculate a new Safety Factor for the MEAN wedge,
but will NOT run the Probabilistic Analysis.

s If you are deleting bolts, the Safety Factor for the
MEAN wedge will be re-calculated as each bolt is
deleted, but the Probabilistic Analysis will only be run
when you exit the Delete Bolts option.

NOTE:

Bolts should be used with some caution in a Probabilistic
Analysis if your random variables include the orientation
of the planes forming the wedge.

Since the bolts are added while viewing the mean wedge,
the orientations of bolts added on the mean wedge may no
longer be appropriate in terms of support to wedges of
other orientations generated by the Probabilistic Analysis.

If the only random variables in the Probabilistic Analysis
are the strength parameters (cohesion and friction angle)
of the failure planes, then this will not be an issue, since
the wedge geometry will remain constant.
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ABSTRACT

The results of a research program to evaluate the seismic response of steep slopes
are presented. The impetus for this work was the October 17, 1989, Loma Prieta
Earthquake which caused extensive landsliding along the coastal bluffs from San
Francisco to Santa Cruz. While this research is specific to the bluffs in the San Francisco
Bay region, the methods developed are generally applicable to stability analyses of steep,
natural slopes.

A frequency domain parametric study on topographic effects, using the
generalized hyperelement method, shows that the peak amplification of motion at the crest
occurs at a normalized frequency H/A = 0.2, where H is the slope height and A is the
wavelength of the motion. Amplification was found to increase with inclined waves
traveling into the slope crest, and to decrease with inclined waves traveling away from
the crest. More importantly, the natural frequency of the site behind the crest dominates
the response, relative to the topographic effect.

The importance of the natural frequency is illustrated by the time domain response
of 3 prototype sites using actual seismograms. The results show that the topographic
amplification at the crest of a steep slope can be reasonably estimated by increasing the
peak acceleration obtained from a one-dimensional site response analysis in the free field
behind the crest by 50 percent. Then, for use in limit equilibrium slope stability analyses,
the seismically induced force on a potential sliding mass can be estimated using profiles

of the average seismic coefficient developed from the analytical results.



One of the objectives of the research was to develop practical analysis guidelines
for evaluation of seismic response of steep slopes in weakly cemgnted natural deposits.
A review of the laboratory behavior of weakly cemented sands shows that these materials
exhibit brittle behavior under low confining stress, typical of a near-slope environment.
This assessment of the behavior is supported by numerous field observations of
seismically induced failures. Therefore, a limit equilibrium approach, rather than a

deformation based analysis, is recommended.
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1. INTRODUCTION

The results of a research program to evaluate the seismic response of steep
slopes in weakly cemented granular soils are presented in this report. The main
objective of the research program was to develop practical analysis guidelines for
evaluation of seismic response of steep slopes in weakly cemented natural deposits.
The impetus for this work has been the October 17, 1989, Loma Prieta Earthquake
which caused extensive landsliding in the epicentral region and along the coastal
bluffs from Seaside, south of Santa Cruz, to Daly City (Figure 1.1). While this
research is specific to the coastal bluffs in the San Francisco Bay region, the methods
developed are applicable to analysis of seismic response of similar marine terrace
bluffs along the coast of Southern California, Oregon, and Washington, and should
be generally applicable to stability analyses of steep, natural slopes.

The California coastline from Moss Landing northward to San Francisco is
characterized by extensive stretches of steep coastal bluffs in marine terrace deposits,
ranging from 20 to 200 meters in height. The appearance of the bluffs along this
entire stretch of the coast shows evidence of active erosion, and there is abundant
historical evidence of slope failures caused by earthquakes, wave erosion, and intense
rainfall. Records indicate that seismically-induced slope failures along different
portions of this coastline occurred during earthquakes in 1865 (Plant and Griggs,
1990), in 1906 (Lawson, 1908), in 1957 (Bonilla, 1957) and, most recently, during the
Loma Prieta earthquake of October 17, 1989 (Plant and Griggs, 1990; Sitar, 1990).

No loss of property was recorded in 1865, probably due to very sparse
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Figure 1.1:  Distribution of landslides in the San Francisco area caused by the 1989
| Loma Prieta Earthquake (from Seed et al., 1990).




population of the area. In 1906, extensive landsliding was observed, particularly
along the bluffs in Daly City, where the railbed of the Ocean Shore Railroad was
extensively damaged (Figure 1.2). In 1957, extensive landslides along the bluffs in
Daly City blocked State Route 1 for about two weeks (Figure 1.3) and led to the
eventual abandonment of the highway by the California Department of
Transportation. Most importantly, while cracking was detected along the crest of the
bluffs, there was no direct damage to dwellings because the bluff crests were still
largely undeveloped. Since then the bluff crests along the coast have been
extensively developed, particularly in Daly City, Pacifica, Half Moon Bay, Santa Cruz,
Capitola, and Seaside. The risk posed by seismically-induced slope failures to these
new developments was amply demonstrated by the October 17, 1989, Loma Prieta
earthquake. Fortunately, the extent of damage was surprisingly minor considering the
severity of other damage in the epicentral region and in San Francisco. Figure 1.4
shows a shallow failure of the bluffs at Pacifica, on the San Francisco peninsula.
Similar slides at Rio Del Mar, south of Santa Cruz, were responsible for relatively
minor damage to structures at toe of the slope; however, tensile cracking and loss of
crest left many structures more vulnerable to future events. By far the largest failure
occurred along the Daly City bluffs, some 55 miles from the epicenter (Figure 1.5).
Cracking along the crest of the bluffs was also observed.

Thus, given the apparent potential for damaging landslides during
earthquakes, there is a need to develop adequate understanding of the bluff response
under seismic loading. Only then can rational procedures for stability evaluation of

these slopes be developed.



Figure 12: Slope failures along the Ocean Shore Railroad north of Mussel Rock
caused by the 1906 San Francisco Earthquake (courtesy of the Bancroft
Library, U.C. Berkeley).

Figure 1.3:  Landslides along bluffs in Daly City caused by the 1957 San Francisco
Earthquake (courtesy of the California Department of Transportation).



Figure 14: Localized minor failures of marine terrace deposits in Pacifica caused by
the 1989 Loma Prieta Earthquake.

Figure 1.5:  Failure of bluffs in Daly City caused by the 1989 Loma Prieta Earthquake.



This report begins with a review of the behavior of weakly cemented sands,
both in the laboratory and in the field. The results of the review show that these
materials exhibit brittle behavior under low confining stress, typical of a near-slope
environment, and this behavior is confirmed by field observations of seismically
induced failures. Since the stress conditions in the vicinity of the slope are an
important aspect of a slope stability analysis, an evaluation of the accuracy of
computed stress distributions using the finite element method is performed. This
evaluation shows some of the limitations of a finite element method analysis in this
case. The Generalized Hyperelement Method (Deng, 1991) is then presented for the
analysis of the seismic response of these steep slopes.

The analysis of steep slopes to seismic loading begins with a frequency domain
pafametric study of a stepped halfspace and a stepped layer over a halfspace, in
order to develop fundamental relationships between response, slope geometry, and
material properties. Following this parametric study, the use and applicability of the
"average seismic coefficient’, originally developed for the seismic response analysis
of embankments and dams, is evaluated. Seismic response characteristics of steep
slopes in the time domain are then realistically examined using actual slope profiles,
material properties, and seismograms. These results are used to develop a simplified
methodology, similar to that presented by Makdisi and Seed (1978) to determine the
equivalent seismic force induced by an earthquake on a steep slope. Finally,
recommendations on the use of the results of this study in appropriate pseudo-static

limit equilibrium stability analyses are presented.



2. BEHAVIOR OF WEAKLY CEMENTED SANDS

Weakly cemented granular deposits composed of various proportions of sand,
gravel, and silt can be classified as either soft rock or hard soil, depending on the
degree of compaction and the degree of cementation. Typical cementing agents
include silica, calcium carbonate, clay, and iron. In addition, apparent cementation
is achieved by mechanical interlocking of the soil grains or by capillary tension of
pore water. Examples of such materials include marine terrace deposits along the
Pacific coast of the United States, loess deposits in the mid-western United States
and China, and volcanic ash deposits in Japan and Guatemala (Sitar 1990). Though
examples of these materials are found around the world, the emphasis in this study
is on the marine terrace deposits in the San Francisco Bay area, which are mainly
composed of weakly cemented sands.

Nearly vertical natural slopes in weakly cemented sands have been observed
in excess of 30 m in height, and slopes steeper than 30 degrees have been observed
in excess of 150 m. In addition, the ability of these materials to stand in steep slopes
has often been exploited to cut nearly vertical slopes for highways or roadways.

Under the low confining pressures encountered near slope faces, cemented
sands exhibit brittle behavior and low tensile strength. As a result, tension cracks are
typically observed behind the crests of the slopes, and the brittle behavior makes for
spectacular and potentially devastating slope failures during dynamic, earthquake

loading. As a preface to the study of the slope response, the following sections of



this chapter contain a review of the static and dynamic behavior of the material to

the extent necessary for slope stability evaluation.

2.1 REVIEW OF STATIC PROPERTIES

The static behavior of weakly cemented soils has been the subject of
numerous studies in the recent past (Clough et al. 1981, Haruyama 1973, Murata and
Yamanouchi 1978, O’Rourke and Crespo 1988, Saxena and Lastrico 1978, and Wang
1986). One of the earliest studies devoted to cemented sands was performed by
Saxena and Lastrico (1978) who tested the static stress-strain behavior of lightly
naturally cemented sand with calcite as a cementing agent. They found that the
cohesion caused by cementation was the predominant strength component at low
strain levels (below 1 percent), and at high strain levels the frictional component of
strength became predominant. They also found that very high confining stress could
destroy the cementation.

Clough et al. (1981) reported on the results of over 100 tests on naturally and
artificially cemented sand. They noted that cemented sand tends to behave in a
brittle fashion, with brittleness increasing with cement content and decreasing with
increasing confining pressure. The relationship between brittleness and confining
pressure is apparent from Figure 2.1 which shows a set of typical stress-strain curves
for an artificially cemented sand. At low confining pressures, the cementation tends
to control behavior, making the material more brittle. As confining pressure

increases, the ductility of the material also increases, as intergranular friction
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Figure 2.1:  Typical stress-strain curves for artificially cemented sand (from Clough et
al., 1981).



becomes more important. Also, the material exhibits nearly linear behavior until
failure. Typical tensile strength, determined using the Brazilian tensile test, is on the
order of 10 percent of the unconfined compressive strength. Thus, the failure
envelope curves in the tensile region and gives a lower tensile strength than would

be estimated using a straight-line extrapolation of the compression test results.
2.2 REVIEW OF DYNAMIC PROPERTIES

Fewer studies addressing the dynamic properties of cemented sands are
available. Acar and El-Tahir (1986) studied the low strain dynamic properﬁcs of
artificially cemented sands, while Frydman et al. (1980) and Clough et al. (1989)
studied the effects of cementation on liquefaction. Studies that are most relevant to
dynamic slope response in cemented sands were reported by Sitar and Clough (1983),
Sitar (1990), and Wang (1986).

Wang (1986) conducted a comprehensive laboratory study on the dynamic
behavior of cemented sand, consisting of over 80 dynamic tests on sands which were
naturally and artificially cemented. He found that the shear modulus decreases and
damping increases with increasing strain, as is the case with most soil during cyclic
loading. Summary plots of shear modulus and damping ratio varying with shear
strain are presented in Figures 2.2 and 2.3, respectively. A typical result of a cyclic
simple shear test on cemented sand is shown in Figure 2.4. These results, together
with results of cyclic triaxial tests, show that the stress-strain curve from static tests

tend to provide an envelope for the hysteresis loops from the cyclic stress-strain test.
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Figure 2.5:  Dynamic strength envelopes for cemented sands under cyclic simple shear

loading (from Wang, 1986).
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Thus, Sitar (1990) has suggested that the large strain cyclic stress-strain behavior can
be estimated from the results of static testing.

Figure 2.5 presents a plot of the ratio of static to cyclic simple shear strength
with respect to the number of cycles to failure as a function of confining pressure
(Sitar 1990). It is apparent that there is a trend for reduction in dynamic strength
with increasing number of cycles. The effect is most pronounced at low confining
pressures where the reduction can be as much as 15 percent. At higher confining

pressures, the effect seems to be less than 10 percent.

2.3 OBSERVED SLOPE FAILURES IN WEAKLY CEMENTED SANDS

Failures of steep slopes in weakly cemented granular soils during seismic
events have been recorded in many parts of the world. In California, in the San
Francisco Bay region, landslides in coastal bluffs due to a seismic event were first
recorded following an earthquake in 1865 (Plant and Griggs, 1990), though no
property damage was reported. The first noted failures causing property damage
occurred during the San Francisco Earthquake of 1906. "Rockfalls and dry sand
flows were particularly disruptive” to highways and railroad grades (Youd and Hoose,
1978). Five kilometers of the Oceanshore Railway between Lake Merced and
Maussel Rock were closed due to failure of coastal bluffs. In this area, large cracks
were observed extending several hundred feet behind the slope crest (Lawson, 1908).
These slopes are mostly in the Merced Formation which is primarily composed of

uncemented and weakly cemented sand with interbedded clay layers. Further south,
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near Capitola, slope failures were also observed in coastal bluffs in marine terrace
deposits of weakly cemented sand (Youd and Hoose, 1978). However, due to the
sparse population along the coast at the time, the available information is quite
sketchy.

Numerous failures, which closed the coast highway, also occurred in the
coastal bluffs between Lake Merced and Mussel Rock in the 1957 San Francisco
Earthquake (Bonilla, 1959). The largest slide was several hundred feet wide and 700
feet from top to bottom along a 40 degree slope. The slide material appeared to be
dry, and dust was observed rising from the slopes during failure. Cracks were also
observed along the coast highway and behind the crests of the failed slopes.

The Loma Prieta Earthquake caused hundreds of failures in marine terrace
deposits and coastal bluffs between Marin County and Big Sur (Sitar, 1990). This
included a large slide in the bluffs in Daly City, near the site of earlier failures
recorded in 1906 and 1957. Closer to the epicenter, slides were mapped all along the
coast of Santa Cruz County by Plant and Griggs (1990). At Seacliff State Beach,
many slides were observed occurring in the upper 12 m of the 30 m high cliffs.
These slides were observed to be up to 60 m wide with tension cracks extending 1
to 6 m behind the crest. The slopes in this area are composed of up to 5 m of
Quaternary marine terrace deposits, underlain by moderately indurated, weakly
jointed sandstone member of the Purisima Formation. It is interesting to note that
the types of failures, based on aerial photographs, appear similar to those which

occurred during heavy rains in the winter of 1982.
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More recently, failures in steep coastal bluffs occurred during the Petrolia
Earthquakes of April 24 and 25, 1992. Failures in coastal bluffs composed of weakly
cemented sand were observed at Centerville Beach, located approximately 6 km west
of hard-hit Ferndale, California (Figure 2.6). These bluffs, consisting of Pliocene
marine terrace deposits, are 10 to 50 m in height and slope angles range from 45°
to nearly vertical. Strong motion instrumentation at the Oceanographic Naval
Station, just behind the crest of the slope, indicated horizontal peak ground
acceleration of 0.5g for the main shock (Shakal et al. 1992). The failures appeared
to be relatively shallow and occurred in the upper portion of the slopes. Most of the
material in the failure mass seemed to have lost its cementation, though several small
intact blocks up to 1 m in diameter and larger were found (Figure 2.7). Three
tension cracks were observed at 2 to 3 m intervals behind the crest of the 50 m slope
to the west of the Naval Station. No other failures were observed in directly adjacent
materials.

Most recently, slope failures occurred in the Pacific Paliéades due to the
January 17, 1994, Northridge Earthquake near Los Angeles California. These coastal
bluffs are located approximately 30 km south of the epicenter of the My, = 6.7
earthquake. Strong motion records at the nearby Santa Monica Fire Station indicate
a peak horizontal acceleration of 0.93g and a peak vertical acceleration of 0.25g.
The bluff failures closed the northbound lanes of the Pacific Coast Highway (State
Route 1) for at least 4 days following the earthquake. Four large landslides were
observed in this area, along with several smaller slides. One of the large slides

carried a portion of a house down the slope, as shown in Figure 2.8. On properties
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Figure 2.6:  Landslides at Centerville Beach caused by the 1992 Petrolia Earthquake.

Figure 2.7:  Intact blocks in landslide debris at Centerville Beach.
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Figure 2.8:

Figure 2.9:

Intact blocks in slide debris at Pacific Palisades.
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adjacent to this house, shallow concrete piers and H-piles were observed hanging in
mid-air at the crest of the slope, implying that they provided little benefit. The
failures occurred in Quaternary age deposits of weakly cemented sand (Jennings and
Strand, 1969). The slopes on which the failures occurred were 40 to 60 m in height
and moderately steep (between 45 and 60 degrees). The failure masses appeared to
be only a few yards thick, subparallel to the slope, and had widths on the order of
100 m. The slide debris was predominately loose sand with a few intact blocks, as
shown in Figure 2.9.

Failures of this type are not limited to California. Brittle, tensile failures of
steep slopes in cemented volcanic ash deposits in Japan following the 1968 Ebino
Earthquake were documented by Yamanouchi and Murata (1973) and Yamanouchi
(1977). This material, called Shirasu, is a Pleistocene volcaniclastic deposit
apparently cemented by welding, interlocking, or electro-static bonding. Again,
similar types of failures were observed following heavy rains in 1949 and 1969.

Harp et al. (1978) documented slope failures in the February 4, 1976,
Guatemala Earthquake. Landslides in Pleistocene pumice deposits blocked major
highways and a rai]way,. stalling relief efforts. This pumice has a very low tensile
strength, but derives apparent cohesion from the mechanical interlocking of the
angular particles. Nearly all fajlures occurred in steep-sided canyons. On slopes
steeper than 50° the pumice appeared to fail in tension by spalling off into nearly
vertical slabs less than 6 m thick. Tgnsion cracks were observed to extend 15 to 30
m back behind the up to 100 m high, nearly vertical slopes. On 30° to 50° slopes,

debris slides less than 1 m thick were observed in sandy soil overlying the pumice.
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Almost all individual slides were limited in size to less than 15,000 m3, Harp noted
that both types of failures were heavily concentrated on narrow ridges and spurs, and
suggested that topography may have amplified the ground motions.

O’Rourke and Crespo (1988) described similar type of landslides in the
Cangahua formation in Ecuador and southern Colombia. This volcaniclastic
formation is characterized as a loess-like tephra with silica as a cementation agent.
The material has the ability to stand in nearly vertical slopes up to 50 m high. An
earthquake in 1987 closed the Pan-American Highway due to landslides in this
material.

The "Conglomerate of Lima" has failed in several earthquakes (Carrillo and
Garcia, 1985). This material is a coarse-grained granular soil, including gravel,
cemented with "fine soils mixed with calcium carbonate”. It is of Quaternary age,
well jointed, and forms steep coastal bluffs outside of Lima, Peru. Following the
failures, tension cracks were typically observed 2 to 4 m back from the slope crests,
with some cracks as much as 10 to 20 m behind the slope crests. The slopes were
also observed to fail in heavy rainstorms and due to sewer leaks.

Based on a review of documented failures, Sitar (1990) classified slope failures
into two general categories. Moderately steep slopes, with slopes angles between 30°
and 609, tend to experience shallow planar failures, subparallel to the slope face.
The second category, the very steep slopes with slope angles greater than 609, tend
to develop tension cracks behind the slope crest, and then fail in block toppling or

by in shear at the base of the tension cracks. The failure modes for the moderately

19



steep and very steep slopes are schematically depicted in Figures 2.10 and 2.11,

respectively. In both cases, the failure planes tend to be only a few meters deep.
2.4 CONCLUSIONS

A review of laboratory studies of weakly cemented sands shows that the
material exhibits brittle behavior, particularly at low confining stresses, as would be
anticipated near the face of a steep slope. Dynamic studies show that there is a
reduction in strength due to cyclic loading, typically on the order of 85 to 90 percent
of the static simple shear strength. In addition, results of dynamic tests have led to
the development of shear modulus reduction and damping curves which are suitable
for seismic site response analyses.

Numerous observations of seismically induced failures confirm the inference
about the brittle behavior of the material based on the results of laboratory tests.
Typically, the failure mass at the base of the slide shows an almost complete loss of
cementation, with occasional intact blocks. There is little evidence of incremental
permanent deformations eventually leading up to failure, though tension cracks are
frequently observed at the crest of the slopes. These observations indicate that a
failure based stability analysis rather than a deformation based analysis would be

more appropriate for these type of slopes.
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Figure 2.10: Failure mode for moderately steep slopes in cemented sands (after Sitar,
1990).

Tension Cracks

-

Shear Plane 3 30 m

Figure 2.11: Failure mode for very steep slopes in cemented sands (after Sitar, 1990).
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3. STATIC FINITE ELEMENT ANALYSIS OF STEEP SLOPES

Limit equilibrium analyses are often used in the assessment of slope stability.
However, this method of analysis does not provide any opportunity to assess the
actual stress distribution within the slope. Since the deformation characteristics of
cemented sands depend on the actual stress conditions, other methods have to be
employed to look at the stress distributions. The finite element method has been
used extensively to analyze stresses in a variety of man-made and natural slopes.
However, most of the work to date has concentrated on embankment slopes, where
the desired stresses are often located along some curved failure surface through the
interior of the embankment. For steep slopes, for example in weakly cemented soil,
the failure surface tends to be shallow and planar, initiating in a zone of tension near
the slope face, as already discussed (Sitar and Clough, 1983). Consequently, the
critical stresses in a steep slope are located near a free boundary and are of relaiively
small magnitude; whereas in the flatter embankment slopes, the stresses are larger,
since they are averaged along a deep curved surface within the interior of the
embankment. Because of these differences, and since most of the finite element
work to date has been directed toward embankment analysis, a study of the suitability
of the finite element method for analysis of steep slopes was performed. Specifically,
the accuracy of the computed stress distribution near the free surface of the slope

was evaluated as a function of the element size and shape.
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3.1 BACKGROUND

The accuracy of a linear elastic finite element analysis depends on the type of
element, fineness of mesh, mesh layout, and the geometry of the problem. The effect
of these variables can be estimated empirically, and a review of published FEM
analyses of slopes has been carried out. Table 3.1 lists the papers reviewed and also
gives the pertinent information about the fineness of the mesh and type of element
used. Though the list is not exhaustive, it gives an overview of the history of the
development of the finite element method over the last 25 years. Only two-
dimensional studies are included, since three-dimensional studies were found not to
be applicable to this research effort at this stage (e.g. Lefebrve 1973). In this review,
the aspect ration is defined as the ratio of element height to element width.

The first application of the FEM to the analysis of stresses in a slope was
performed by Clough and Woodward (1967) in the context of an analysis of stresses
in an embankment dam. In their study, 3-node constant stress triangular elerﬁents
were used with an aspect ratio of 1/2. The analyzed embankments were divided into
7 to 14 Jayers, so that the element height ranged from H/7 to H/14. In addition to
studying the discretization effects, Clough and Woodward compared the effects of
incremental construction to single step, or "gravity turn-on," loading and evaluated the
effects of soil nonlinearity on an idealized dam. The study was validated by
comparison of the computed deformations to deformations observed in an actual

dam.
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‘ Table 3.1 Summary of Finite Element Analyses of Slopes Jl

Fource Layers | Nodes | Aspect Notes '
Ratio

Rlough and Woodward (1967) 7,10,14 | 3 1/2 EM

“ Idriss and Seed (1967) 4 3 1/2 EM,D
Duncan and Goodman (1968) 10 4 1 EX I
Zienkiewicz et al. (1968) 11 3 1 EX

“ Seed et al. (1969) 5,7 3 1 EM,D

“ Boughton (1970) 6 3 1/2 EM
Kovacs et al. (1971) 4 3 1/3 EM,D4“
Kulhawy and Duncan (1972) 9,12 3 NS EM “

“ Lefebvre et al. (1973) 8 4 1 EM ‘
Smith and Hobbs (1974) 10 4 1/2,1 EM
Vrymoed (1981) 25 4 1/3 EM,D

“ Sitar and Clough (1983) 4 4 3 ‘N,D

“ Naylor et al. (1986) 59 84 1 EM

“ Acar et al. (1988) 6,8 9 1 EM
Kuwano and Ishihara (1988) 10 4 1/2,1 EM,D
Griffiths and Prevost (1988) 4,6 4 1/2,1 EM,D

“ Naylor and Mattar (1988) 4,6 8 1 EM
1::T.mbankment, 2Included dynamic analysis, 3Excavation, 4Not shown, SNatural
slope

Based on the results of this study, Clough and Woodward concluded that a
staged analysis, in which layers of elements were added to the model to simulate
incremental construction, was crucial in predicting deformations during construction.
Stresses were affected to a lesser extent, though a staged analysis led to a more

accurate prediction of stresses. As for the number of stages, or layers, necessary to
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model deformations, virtually no difference was found between 7 and 14 layers for
two horizontal sections through the idealized dam. Furthermore, they found that
nonlinearity could easily be accounted for by changing the soil properties between
stages in the analysis.

Duncan and Goodman (1968) used the FEM to analyze stresses and
deformations in excavated rock slopes. For analysis of homogenous rock, they used
a 4-node quadrilateral linear stress element with a height of H/10 and an aspect ratio
of one. In their study, two sequences of analysis were considered: the "gravity turn-
on" method, in which gravity was applied to the finite element mesh with the
excavation at its final geometry; and the staged analysis, in which stresses were
reduced according to the sequence of excavation. They found that for the purposes
of estimating the stress distribution around an excavation, the simpler gravity turn-on
method was adequate. However, for estimating displacements, the staged procedure
was necessary to obtain reasonable accuracy. They concluded that the coefficient of
lateral earth pressure, K, was critical for determining the stresses in the rock mass,
and that the aspect ratio of elements should be between 1/5 and 5. In addition, they
investigated the effect of joints on stresses and deformations. For a joint set
occurring in only one direction, an equivalent anisotropy was used to model the joints.
Joints were also modeled using one- and two-dimensional elements (1-D and 2-D,
respectively). They concluded that the 1-D joint element was more versatile than the
2-D element for modelling joints, and that joints had little effect on initial stresses in

the rock mass.
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Excavation in rock has been analyzed by Zienkiewicz (1968) assuming the rock
was a_"no-tension" material. In his study, a 4-node quadrilateral element was used
with a height of H/11 and an aspect ratio of one. The rock mass was considered to
be unable to carry tensile stress due to the formation of joints and fractures, and an
iterative process was used transfer stress to other regions of the rock such that in the
end, no tensile stresses existed. Zienkiewicz concluded that this type of analogy
represented a "lower bound” solution to the stress distribution in the rock mass.

Sitar and Clough (1983) used the FEM to specifically model naturally
occurring steep slopes in weakly cemented soils. A 4-node quadrilateral element with
an aspect ratio of 3 was used in their analyses. Sitar and Clough concluded that a
-one of tension occurs behind the crest of the slope, as well as in a small zone on the
face of a vertical slope. This appeared to concur with observed failures in these types
" of materials. However, it should be noted that they used elements with an aspect
ratio greater than one.

Smith and Hobbs (1974) used the FEM to analyze the observed behavior of
model slopes in a centrifuge. In particular, aspect ratios of 1/2 and 1 were compared.
Discrepancies were noted when the coarser mesh (aspect ratio of 1/2) was used. In
addition, the effect of overall width of the finite element mesh was studied. They
showed that, even with boundaries as close as 1H from the toe and crest, the
proximity of the boundary had little effect on the stress distribution in the vicinity of
the slope. Of particular interest to the current research, is the fact that relatively
poor agreement was observed between the finite element model and the centrifuge

models of steep slopes.
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Naylor and Mattar (1988) studied the effects of element height when using
FEM to model embankment dams. They concluded that only 4 to 6 layers are
necessary in most cases to properly analyze stresses in an embankment, not the 10
layers as is the common practice. However, in their analyses, 8-node serendipity
elements were used, not the 4-node quadrilateral elements used in most of the
previous studies.

The different discretization schemes used in FEM analyses of slopes during
the 25 years since the publication of Clough and Woodward’s pioneering work are
summarized on Table 5-1. It can be seen that there is little consistency in the size
and shape of the elements. The initial studies used element heights of approximately
H/10. Since then heights have ranged from H/4 to H/25, though H/10 appears to be
close to the most commonly used value. The most commonly used element in the
studies reviewed herein is the 4-node element, though the 3-node element was
common in earlier studies, and 8- and 9-node elements have become more common
over the past 5 years. The aspect ratios (height/width) have typically been close to
one, though they vary from approximately 1/3 to 3. Most of the above studies were
analyses of embankments, where stresses in the interior of the slope were of greatest
interest. In addition, many of the studies performed were subject to a limitation of
the total number of elements due to computer costs. Most importantly, it is evident
from this review that there is no commonly agreed upon approach to the
discretization of the modelled domain. Therefore, a study was deemed necessary to
determine the optimum size and aspect ratio of elements for use in studying steep

slopes, where shallow zones of tension may occur.
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3.2 PHYSICAL MODEL

Before the advent of computers, methods of studying stress distributions were
relatively limited, and physical models using photoelastic materials were often used
to obtain stresses and stress distributions directly. Photoelastic materials, such as
gelatine, bakelite, and glass show contours of equal stress when polarized light is
shone through them (Timoshenko and Goodier, 1970). Of these, gelatine is the only
material sensitive enough to be of practical use when looking at stresses caused by
the weight of the material itself.

Therefore, the gelatine slope model built by La Rochelle (1960) is used for |
comparison with the numerical analyses performed as a part of our study. La
Rochelle studied the stability of excavations in London clay and used gelatine models
to determine stress distributions. He considered four different slopes: a vertical
slope, a 1 horizontal to 2 vertical (1H:2V) slope, a 2H:1V slope, and a "Bradwell"
(benched) slope. Only the vertical slope is of interest herein.

La Rochelle’s model was constructed by pouring a heated liquid gelatine
mixture into a mold comprised of 13-mm thick perspex plates mounted on a wooden
frame. All wood within the mold was lined with 2-mm thick perspex plates. Prior
to pouring the mixture into the mold, all interior surfaces of the mold were coated
with silicon grease. Once the mixture had dried, the perspex plates were removed
and coated with heavy gear oil. The grease and oil effectively removed any friction

between the mold and model. A schematic of the mold is presented in Figure 3.1.
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Figure 3.1:  Gelatine model (from La Rouchelle, 1960).




The gelatine mix contained 12% leaf gelatine, 28% glycerine, and 60% water.
Poisson’s ratio of the mix was approximately 0.5, the unit weight was 10.7 kN/m?>, and
for the analysis presented herein, Young’s modulus will be assumed to be 62 kPa
(Farquharson and Hennes, 1940).

Prior to testing, the model was checked for initial stresses and none were
found. The wooden block supporting the molded slope face was then removed to
simulate excavation and polarized light was shone through the mix to determine the
msoclinics”, contours of constant direction of major principal stress, and the
"isochromatics”, contours of constant shear stress. La Rochelle was then able to
separate the principal stresses using a numerical solution of the Laplace equation for
the sum of the stresses.

La Rochelle concluded that boundary effects were eliminated in the vicinity
of the slope by locating model boundaries at a distance of 2H; however, he noted
some difficulties with modelling of the vertical slopes due to severe deformations.
This problem was somewhat eliminated by cutting the toe of the slope with a 6-mm
radius instead of a right angle. Nevertheless, approximately 5 percent deformation
still remained, and a tension crack opened up to a depth of H/5 between the mold
and the top of the model behind the crest of the slope. La Rochelle concluded that
as a result, stresses in the vicinity of the slope included up to approximately 10
percent error, while stresses at the base of the model included approximately 2

percent error.
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3.3 FINITE ELEMENT MODEL

The computer program FEAP (Taylor 1977) was used to model the gelatine
slopes. An enhanced, plane strain 4-node quadrilateral element capable of modeling
a Poisson’s ratio very close to 0.5 was used, and the actual value of Poisson’s ratio
used in the analyses was 0.499. The left and right boundaries of the mesh were
restrained from lateral movement, and the bottom of the mesh was restrained from
vertical movement to simulate the gelatine model. The gravity turn-on method was
used, in which full gravity was applied to the entire mesh at once.

Nine different meshes are discussed herein, though many others were used in
the course of the study. Most of the analyses were performed using meshes
containing elements of uniform size, as shown in Figure 3.2. A mesh curved at the
base of the slope and an extremely fine mesh with variably-sized elements were also
used to complete the study (Figures 3.3 and 3.4, respectively). A description of each
mesh is given in Table 3.2. The number of uniformly-sized elements required to
model the slope height is given by the variable n. As can be seen from Table 3.2,
values of n ranged from 4 to 32. The aspect ratio, @ is defined as the vertical
dimension, A, of a given element divided by its width, w. Aspect ratios

(height/width) from 0.25 to 4 were used in the analyses.
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Figure 3.2:  Typical F EM mesh and parameter definition.




Figure 3.3: Curved FEM mesh.

Figure 34: Variable sized element mesh.
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3.4 RESULTS

The most direct method to compare the gelatine and FEM model is to
compare the shear stress, o403, because this is the only stress which is obtained
directly from the gelatine model, while the values of the principal stresses must be
calculated numerically from the shear stress measurements. Shear stresses computed
using the meshes ndal and nl6al are compared to the shear stresses from the
gelatine model in Figures 3.5 and 3.6, respectively. These meshes are composed of
square elements with element heights of H/4 and H/16, respectivély. Figure 3.5

shows only a general agreement with the gelatine model for the larger element size,

Table 3.2  Summary of Meshes Used in Study

|

Mesh Description Element Aspect Ratio j
Height

ndal H/4 1

nda4 H/4 4

n8al H/8 1

nl2al H/12 1

n16a0.25 H/16 0.25

nl6al H/16 1

n32al H/32 1

n64a0.25 H/64 0.25

n128a0.25 H/128 0.25

curved NA NA ‘
variably-sized element | NA NA JJ
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and this general agreement tends to decrease with increasing shear stress. The
difference near the base of the slope is in excess of 25 percent, with the FEM model
always underestimating the stress. The agreement is somewhat improved by
quartering the element size (nl6al). The difference at the base of the slope is less
than 20 percent.

The principal stresses were obtained from the gelatine model by applying the
finite difference method to the results of the photoelastic test. The comparisons
between the principal stresses computed from the gelatine model and those obtained
from the FEM analyses are presented in Figures 3.7 through 3.10. Figures 3.7 and
3.8 show the comparison between the minimum principal stress, o3, contours for the
large and small elements, respectively, and those obtained from the gelatine model.
Similarly, Figures 3.9 and 3.10 compare the maximum principal stress, g;, contours
between the finite element and gelatine models. All of these results indicate that
there is a better agreement between the gelatine model and the finite element model
for principal stresses than for shear stresses. There is excellent agreement between
the minimum principal stresses in Figures 3.7 and 3.8, except within about 0.2H of
the slope face. Good agreement is also found in Figures 3.9 and 3.10 for the
maximum principal stresses. The figures also show that there is better agreement in
both éases for the finer mesh (n=16). However, even with n=4, the overall
agreement is still good.

The major differences between the gelatine and finite element model occur
along the slope face for o;, and near the base of the slope for oy and the shear

stresses. Though it is not apparent from the stress contours, the finite element model
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breaks down near the base of the slope. A review of stresses at the Gauss
integration points reveals an oscillation between compression and tension within
elements near the face of the slope. This oscillation dies out rather quickly, within
about 0.2H of the face. The oscillation is apparently caused by a singularity in the
solution matrix originating in the element at the base of the slope. It is important
to note that stresses in this zone may not be critical in a typical slope stability
analysis because the interior stresses are well defined. However, for shallow shear
or tensile failures, these stresses are critical and must be quantified.

In an attempt to reduce this error, two additional meshes were used to
compare the FEM model to the gelatine model: a mesh curved at the slope base and
a very fine mesh with elements increasing in size away from the slope base. The
results of these comparisons are shown for all stresses in Figures 3.11 through 3.13,
and 3.14 through 3.16, respectively. It is apparent from these figures that not much
improvement is achieved from using these more complicated meshes. In fact, Figures
3.15 and 3.16 match very closely the results for nl6al shown in Figures 3.9 and 3.10.

Tensile stresses along the top of the slope from the model edge to the crest
of the slope are compared in Figure 3.17. The stresses from four uniform meshes
with different sized elements are shown. Meshes indicated by n4al and nl6al used
square elements. Element n4a4 is a tall element with the same height as n4al and
the same width as nl16al. Conversely, n16a0.25 is a short element, with the same
height as n16al and the same width as ndal. The figure shows that elements with
the same heights give similar results, and the square elements bound'the results.

Since the results obtained using the meshes n4al and n4a4 give similar results, as
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mesh.
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do nl6al and nl16a0.25, it appears that the element height has more effect than
aspect ratio when computing tensile stresses behind the crest of the slope.

The effect of element size on the magnitude of tensile stress is shown in
Figure 3.18. All meshes are composed of uniformly sized square elements, except
n64a0.25 and n128a0.25 which contained short rectangular elements in the upper
portion of the mesh. Figure 3.18 shows that progressively finer meshes yield higher
tensile stresses at a decreasing rate, with the finest mesh approaching a practical
upper-bound. Based on these results, it appears that the element height of H/10
typically used in many studies predicts a much lower tensile stress behind the crest
than may be actually present, and an element height of H/32 may be required to get

within 10 percent of the upper-bound.
3.5 CONCLUSIONS

The results of the analyses indicate a reasonable agreement between the
physical (gelatine) model and the numerical (FEM) model for shear stresses, and an
overall good agreement between the two models for the principal stresses, even for
coarse meshes. When looking at stresses along the top of the slope, the height of the
element tends to be more important than the aspect ratio, at least for aspect ratios
up to 4. In all cases, the greatest difference between the two models occurs in the
vicinity of the slope. Therefore, due to limitations in tﬁe FEM analyses used herein,
accurate stresses could not be determined within 0.2H of the slope face. Finally, an

element height of H/10 commonly used in FEM analyses of slopes does not appear
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to accurately define tensile stresses behind the crest of the slope, and an element
as small as H/32, or higher order elements, may be necessary to determine stresses
within 10 percent of the upper-bound.

The difficulty of modeling stresses behind the free face of steep slopes, and
the fineness of mess required to accurately model stresses behind the crest of steep
slopes are of concern. In light of these results, an approach other than the finite
element method, and in fact, other than detailed stress analysis, may be advantageous
to the study of the response of steep slopes in weakly cemented soil, as is explored

next.
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4. THE GENERALIZED HYPERELEMENT METHOD

- The generalized hyperelement (GHE) method was developed by Deng (1991)
for two-dimensional seismic response analysis. Deng showed that this method works
well for steep slopes, and in fact, is not applicable to shallow slopes (less than about
20 degrees). The GHE method, coded by Deng into the computer program
GROUND2D (Deng et al., 1994), greatly reduces the number of degrees of freedom
required for the analysis of two-dimensional site response, as compared to the finite
element method. In addition, the current program offers greater capability for
analysis of a variety of seismic waves than readily available finite element programs.
For these reasons, the GHE method, as coded in GROUND?2D, is used for the

analysis of the seismic response of steep slopes presented herein.

4.1 COMPUTATIONAL MODEL

In order to illustrate the concepts used in the computational model, consider
a site shown in Figure 4.1. A model of this site using the methods coded in
GROUND2D is presented in Figure 4.2. The site is divided into two large blocky
regions and two semi-infinite regions on the left and right sides, respectively. Within
each region, the soil and rock strata are divided into a group of perfectly horizontal
layers, with material properties perhaps varying from layer to layer. The boundaries
between the regions can be of arbitrary shape. The whole model rests on a visco-

elastic halfspace.
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Figure 4.1:  Site for two-dimensional seismic site response analysis (after Deng, 1991).
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Figure 4.2:  Typical model of site using GROUND2D (after Deng, 1991).
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In general, each blocky region is simulated by a generalized hyperelement, H,

H,, .., H,. The semi-infinite regions, L and R, are simulated by generalized

n
transmitting elements. The prefix "generalized" refers to the ability of these elements
to model arbitrarily shaped boundaries. Nodal points exist only at the boundaries
between any two regions, and only the motions at the nodal points need to be solved

in the global equations of motion. Once the nodal point motions are obtained, the

motions within each region can be recovered through a nodal expansion process.

4.1.1 The Complex Response Method

The techniques used in formulation of the generalized transmitting element
(GTE) and the generalized hyperelement (GHE) utilize the complex response
method to simulate viscous damping within the elements. For simplicity, the complex
response method is described below for a simple damped oscillator. The general

form of the equation of motion for the simple damped oscillator is:

Mii + Ci + Ku = q(f) (4.1)

where M, C, and K are mass, viscous damping and stiffness, respectively; g(r) is the
driving force; and i, &, and u are the acceleration, velocity, and displacement of the
system. The solution of the equation of motion for harmonic motion at circular

frequency w is given by:

(K + ioC - o*MU’ = Q' (42)
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where U’ and Q' are the complex amplitudes of the displacement and force,
respectively. Employing the concept of complex stiffness, the above equation can be

reduced to the following:

X' - &*MU’ = Q' (4.3)
where K’ = K + iwC is the complex stiffness which can be formulated using the
complex modulus for linear visco-elastic materials. In the context of the methodology
used herein, viscous damping is employed through the use of the complex shear

modulus G,

G’ = G(1-2p? + i2py/1-p?) (44)

and complex constrained modulus

M. = M(1-2p* + i2py1- ) (4.5)
where g is the ratio of critical damping for S- and P-waves. Though some laboratory
studies indicate that 8 may be different for S- and P-waves, there are treated as equal
in this study. It is possible, however, to define separate values in GROUND2D. It
should be noted that M’ = A’ + 2G’, where the compléx value of Lame’s constant

is

A= A(1-2p% + i2py/1-PBD) (4.6)
Using definitions of complex modulii leads to:

a real value of Poisson’s ratio,
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ve M ____2 4.7
2+ 2(A+p)

an exact value for amplitude, because

K| =K (4.8)

and, for small values of g8, a small error in the phase of the solution:

¢2_¢1 = 2p (49)

l+a
where ¢; and ¢, are the phase lags between the displacement and the driving forces
using the complex response method and modal analysis, respectively. The phase lag
is greatest at low frequencies (for the static case a = 0); is approximately g (in
radians) near the natural frequency; and disappears with high frequencies. For the
sake of simplicity, the prime symbol (*) indicating complex values will be dropped
from here on, though it should be understood that the complex values of these
variables are used throughout. For a detailed discussion of the complex response

method, see Deng (1991).
4.1.2 Equations of Motion

The equations of motion for the model shown in Figure 4.2 can be written

generally as
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(L1 +[Rlg+> [HI){U}={P} (4.10)
1

where [L]; is the stiffness matrix for the left semi-infinite région, [R]p is the stiffness
matrix for the right semi-infinite region, and [H]; is the stiffness matrix for the i-th
blocky region H;. {U} is vector containing the motions at all nodal points, and {P}
is the force vector, which is of different form for different incident wave cases. For
surface wave incidence, assuming the wave propagates from left to right, the vector

{P} can be expressed as

(P}=(ILI+[RIDIV)] (4.11)
where {U}f is the incident surface wave vector, the subscript L refers to the left
boundary, and the superscript R refers to the direction of wave propagation.
Similarly, if the incident surface wave propagates from right to the left, the {P}

vector becomes

{P}=(IL1x*[R1p) (Ulg (4.12)
For body wave incidence, the {P} vector is

{(PY=IL1 (U} +[RI{U)z*+Y [H],(U],
i1 (4.13)

Lol (U - [R )l Uf}R+Z [H) AU,
i=1

where {Uf} L {Uf} r { Uf}i are the "free field" motion vectors for the left, right, and
H; regions, respectively (i.e. the response vectors of the regions corresponding to the

incident wave, if the motions in the regions are computed using one-dimensional layer
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models with no lateral boundaries). The matrices [Ly), [Ry] and [H j]; are defined as

follows:

[L), =ix [A],+[D], (4.14)
[RQ]R=iK¢[A]R+[D]R (415)
~(ix A1, +[D],) 0 (416)

Hl; = 0 ix (Al +[Dly,

where the subscripts L; and R; are for the left and right boundaries of the H; region,
respectively. The matrices [4] and [D] are related to the eigenvalue problem of a
layered system and will be defined in the following section. The parameter «, is the
apparent wavenumber of the incident body wave in the underlying halfspace and is

defined as
X, = xosineo (4.17)

where xy = x for SH- and SV-waves, and k3 = Xp for P-waves. 6 is the incident
angle, measured from the z-axis, with the positive value corresponding to a wave

propagating toward the positive x-direction.

4.1.3 Eigenvalue Problem of the Layered Halfspace

Consider a semi-infinite layered region bounded at the left end by an irregular
boundary S, shown in Figure 4.3. According to Deng (1991), the surface wave

motions in the region along a curve S*, which is parallel to the boundary § at a
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distance x, can be generally expressed as a superposition of the generalized surface
wave modes:

N .
(U}=Y (v}, e e, (4.18)

s=1

where {U(w,x)} is the frequency-dependent displacement vector, {v}, is the s-th wave
mode of the layered region, x is the s-th wavenumber, and a4 is the mode
participation factor for the mode. Equation (4.18) is the general form for both in-
plane (e.g. SV-waves) and out-of-plane motions (e.g. SH-waves). Assuming, for
example, that the bottom of the layered system is fixed, then N = 4n for in-plane
motions, where n is the number of discretized nodal points along the boundary S,
and N = 2n for out-of-plane motions.

The eigenvalues and eigenvectors must be solved for each frequency from the

following generalized eigenvalue problem

([AI +i[Blx+[G]-*[MD){v} = {0} (4.19)
where © is the circular frequency, [4], [B], [G], and [M] are frequency independent
matrices related to the material properties of the layered region and the geometry
of the irregular boundary S. Depending on the different type of motions concerned,
(e.g. in-plane or out-of-plane) and different order of the discretization (e.g. 1st- or
2nd-order), the matrices may have different forms and dimensions.

Equation (4.19) can be solved by a method proposed by Deng (1991). This
solution yields 4n pairs of the wave modes and wavenumbers for the in-plane motions

(2n pairs for the wave modes and wavenumbers for the out-of-plane motions). Half

55



of the wave modes represents the surface waves propagating in the positive x-
direction and the other half represent the waves in the negative x-direction. The
wave modes and wavenumbers are used in generating the transmitting boundary

matrices and in computing the motions in any part of the layered regions.

4.1.4 Generalized Transmitting Elements

The generalized transmitting elements (GTE) are formulated by using the
exact analytical solution in the horizontal direction and a discretized displacement
shape function along the irregular boundary S. The boundaries of these elements
transmit energy accurately in the horizontal direction and represent the perfect
“infinite" boundary condition. The GTE stiffness matrix represents the response of
the semi-infinite region to the boundary nodal forces. For each irregular boundary
S, two stiffness matrices exist. One is for the waves propagating toward the positive
x-direction, i.e., the semi-infinite region is at the RIGHT of the boundary, and is
denoted [R]. The other is for the waves propagating toward the negative x-direction,
or the semi-infinite region is at the LEFT of the boundary, and is denoted [L]. We

have generally the following force-displacement relationship for the right region

{P}=[R){U} (4.20)

and, for the left region
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{P}=[LI{U} ‘ (421)

where {P} is the nodal force vector along the boundary, {U} is the nodal
displacement vector along the boundary respectively, and [L] and [R] are the GTE
stiffness matrices.

According to Deng (1991), the GTE stiffness matrices for both the in-plane

and the out-of-plane motions can generaily be written in the following form:
[RI=ATVII[V] ™ +1D] (4-22)

[L]=HAIWIGIW] (D) (4.23)
In the two equations, the dimensions of all matrices are 2n x 2n for the in-plane
motions (n x n for the out-of-plane motions). [V] is the matrix containing all right
eigenvectors and [W] is the matrix containing all left eigenvectors, respectively; and
[x] is a diagonal matrix containing all the wavenumbers (i.e., the eigenvalues) for the
corresponding modes. These eigenvalues and eigenvectors serve as the basis for the
mode superposition of the motions in the layered region, as defined in Eq.(4.19).
The matrix [D] is related to the geometry of the lateral boundary and the material
properties of the layered region, and is assembled from the submatrices of individual

layers.
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4.1.5 The Generalized Hyperelement

Each of the blocky regions in Figure 4.2 is simulated by a generalized
hyperelement (GHE) which is an extension of the generalized transmitting element.
The following gives a brief outline of the formulations of GHE. The detailed
derivation can be found in Deng (1991).

Consider a layered blocky region bounded laterally by two irregular
boundaries, S; and Sy, respectively, as shown in Figure 4.4. The layers inside the
region are assumed to be perfectly horizontal, but material properties may differ from
layer to layer. Nodal points exist only along the boundaries. The displacement shape
functions in the region, i.e., the correlations between the displacement vectors of the
two boundaries, are obtained by the superposition of all right-propagating modes
from §; and all left-propagating modes from Si. After considering the effect of the
boundary geometry, the general form of the displacement vector within the region

can be written as

(U} = (UE)) zHUB) g,

[QE)] o { UWD)} o HQE) o {UR)

(4.24)

where the vector {U(L)}, p is the right-propagating component of the displacement
vector defined at the left boundary, the vector {U(R)}g; is the left-propagating
component of the displacement vector defined at the right boundary. {£} is the
vector which defines the distance from the left boundary to the line of interest, and

{€} = {d}-{£} is the vector which defines the distance from the right boundary to
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the line of interest, where {d} is the distance vector between the left and the right
boundaries.

The matrix operator @ is defined as a term-by-term multiplication of the
matrix entries. i.e., [C] = [A]  [B] implies that c;; = a;; % bij. In this manner, [Q]; g

and [Q]g, are matrices of the following form:

-([V],® 1
Q=1 BWIIVL; (425)
[Ql =W, R ¥V
where [V], is the right eigenvector matrix defined along Sy, [W]g is the left

eigenvector matrix defined along Sg. The entries in the matrices [¥];, and [¥]g are

defined as

- 4.26
("I’g R___e E‘Kg ( )
st=1, ., n
for the out-of-plane motions, and
_, ik _, ik
(Wa5101=€ > (¥ 0L=€
iR, 2 8, (4.27)

(‘I’zs-l’; RT€ s (4’9_” R=e -
s=1, .., n; t=1, .., 2n
for in-plane motions, where {x} and {#} are defined from the left and right

boundaries, respectively. All the matrices are of dimension # x n for the out-of-plane

motions, and of dimension 2n x 2n for the in-plane motions.
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For the left boundary, {£} ={0} and {£}={d}. For the right boundary,
{€}={d} and {£}={0}. Thus the nodal displacement vector of the blocky region can

be written as

{{ U(L)}} {{ U(L)},,R+{U(L)}RL}
U= -

vy Jlovw L+
{UBR)}] [{UB} R+ {UB)} g, (428)
[0 101][(UDe
Qe M [ljuwi,

where [I] is the identity matrix. Similarly, applying the boundary conditions of the
GTE on both lateral boundaries, S; and Sp, and considering all propagating
components of the displacement field, the nodal force vector of the blocky region can

be written as

[R] L '[L] L[Q] RL

{F}=
_[R]R[Q]uz [L]R

{UWD)} 15 (4.29)
{UR))

where [R] and [L] are the left and the right GTE stiffness matrices, respectively. The

subscripts L and R denote that the matrices are defined at §; and Sk, respectively.

Combination of the Equations (4.28) and (4.29) leads to the following relationship:

{F}=[H){U} (4.30)

where the matrix [H] is the hyperelement matrix:

=[[H]“ [H]”} (4.31)

[H],, [H],
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The components of the matrix [H] are

[H]n =[R] L[‘I’]l +[L] L[Q]m_“’]z[Q] LR
[H],=-[R1[¥],[Q) g, - (L], [Ql p, [¥],

(4.32)
[H]21 = —[R] R[Q] I.R[q’] 1~ [L] R[‘I’]g[Q] LR
The matrices [¥];, [¥], are defined as the following
[%1,=(11-[Ql, QR 4.33)

[¥1,=(N-[Q)4[Clz)
The component matrices [H};;, [H]; 2 [H],;, [H],; are of dimension zn x n for out-of-

plane motions, and 2n x 2n for in-plane motions.

4.2 FREE FIELD MOTIONS IN THE LAYERED REGIONS

The term "free field" herein denotes the responses of a layered system to a
incident wave field, either an inclined body wave, or a surface wave, computed by
one-dimensional model, i.e., without the lateral boundaries. The free field motions
will be different for the different types of incident waves. The procedures used in

GROUND2D in determining the free field motions are described below.
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4.2.1 Inclined In-Plane Waves (SV- and P-Waves)

Consider a one-dimensional layered system, shown in Figure 4.5. Using a
method similar to Chen et al (1981), the response of the layered system to incident

in-plane (SV- or P-waves) can be obtained by solving the following equation:

([A]Kii-i[B]lca-k[G]—mz[M]){gf} ={£b} (4.34)

where the matrices [4], [B], [G] and [M] are the same matrices as defined in the
eigenvalue problem, as shown in Equation (4.19), except that the dimension of the
matrices are (2n+2) x (2n+2), since the motions at the interface between the layered
system and the underlying halfspace are now taken into account. «, is the apparent
wavenumber for the incident wave, as defined in Equation (4.27). Uf is the to-be-
solved free field displacement vector in the layered system; U, is the interface
displacement vector; and P, is the interface force vector. The vectors U, and P,
each have two components, one for horizontal motion and one for vertical motion,
and they define the influence of the incident waves upon the layered system. The
vectors are dependent on the properties of the underlying halfspace, the incident
angle, and the type of the impinging wave, and must be determined from case to
case. The procedure used in determining U, and P, in GROUND2D is a variation
of the technique developed by Chen et al (1981). The detailed formulation can be
found there.

Solution of Equation (4.34) yields the free-field displacement vector {U}f,

which is defined along S. Assuming the x-coordinate of the reference curve at top
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SURFACE AMPLITUDE

1.5

0.5

Figure 4.6.

U £2 Layer 1 2
2
Uf,2j-1 0
Uf’2j j (j+1)
j+1
(n)
Ubp,1 "
Halfspace = e (n+1)
SV Ub,2 SV

Wave-scattering in a layered system (after Chen, 1981).

HORIZONTAL
VERTICAL

Note:
Poisson’s Ratio = 0.373

63

L ®
s “g.
) -
y -
[, -
[] el
) e
- ] §~~
“‘—‘ “: ‘\
‘. «
% R .
30 60 90
INCIDENT ANGLE

Variation of surface amplitude with incident angle.



of the layers is x5, the free-field displacements along any curve which is parallel to the

reference curve and at a distance x-x; can then be obtained using the relation

(U®) (UG}, e -ix (x~x) (4.35)
It is worthy to note that Equation (4.35) not only defines the free field motions along
a curve which is parallel to the reference curve, it can also be used to determine the
free field motions along any curves in the layered system, since the relationship
defined in Equation (4.35) as a vector can also be applied for each individual term
as well. Suppose it is necessary to determine the free field motions along $* (see
- Figure 4.3) which is not parallel to the reference curve S. The vector defining the

distances of the nodal points of the two curves is

3

1.1 %o,
K12 %02

=%, 303 (4.36)

v

1,0 %0n)

The free-field displacement vector along S*, {U(X 1)}f can then be determined as

e -ix, 8y

e ~ix K,

(UKD}, ¢ s (U}, (4.37)




4.2.2 Inclined Out-of-Plane Waves (SH-Waves)

The free-field displacement vector {U}s due to SH-wave (out-of-plane)
incidence can also be solved in the same way as the SV- and P-wave case. That is,

to solve the equation

U
(A1 +i[B]x, +[G] -wzm{uf}={£ } (4.38)
b b
where the matrices [4], [B], [G] and [M] are defined for the out-of-plane motion, and
x, is the apparent wavenumber of the inclined SH-wave in the underlying halfspace.
The determination of the terms of U, and P, is much simpler, however, because each
term contains only one component. In fact, the interaction of the SH-wave at the

interface of the layered system and the underlying halfspace can be represented by

a simple viscous force.
43 SIMULATION OF SEMI-INFINITE HALFSPACE AT BASE

The approach described above was first developed for layered systems resting
on a rigid base. A rigid base will reflect the scattered energy back into the system
and will cause the site to have erroneous natural frequencies which will affect the
overall response. This becomes especially critical for two-dimensional site response
analysis. Since the model often covers a large distance, any small deviation from the

true solutions is likely to be amplified. However, at some sites, soil layers may extend

65



to such a great depth that an artificial boundary must be introduced at a certain
depth. The following two techniques are used in GROUND2D to remedy these
problems in simulating the semi-infinite halfspace at the base of the layered system.

The first technique used in the program is to add some additional layers to the
original model of the site. The total thickness, 4, of the additional layers varies with

frequency and is set to

V
h=1.5— (4.39)
f

where f is the frequency of analysis in Hz, and ¥V is the shear wave velocity of the
underlying halfspace. The choice of this thickness is based on the observation that
fundamental mode Rayleigh waves in a halfspace decay exponentially with depth and
essentially vanish at a depth corresponding to one and a half wave length. Since the
scattering motions generated due to the geometrical and geological irregularities in
a site can be expressed as generalized surface wave motions, i.e., the generalized
Rayleigh wave motions in the in-plane motion case, and higher modes usually decay
faster than the fundamental mode, only minimal error is introduced by placing a rigid
base at this depth. In GROUND2D, the total thickness of the layers is automatically
adjusted according to the frequency under consideration, and all layers in the
extended region are of uniform thickness. This type of discretization provides
sufficient depth for the scattered motions to decay, and also allows the pathway of
the incident wave be accurately modeled.

The second technique used in the program is to attach viscous dashpots at the

base, thus the base becomes a viscous boundary instead of a rigid boundary. The
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dashpots are formulated into the eigenvalue problem for each region, and Equation

(4.19) becomes

(A1 +i[Blx +[G] -0} [M]+[C ) (v} ={0} (4.40)

where, for out-of-plane motion,
[Cyl=diagi0, ..., 0, iwpV } (4.41)

with dimensions (n+1) x (n+1); and for in-plane motions

[Cyl=diag{0, .., 0, iwpV,, iwpV,} (4.42)

with dimensions (2n+2) x (2n+2). V, and v, are the shear wave velocity and P-wave
velocity of the halfspace, respectively; p is the mass density of the halfspace; and ®
is the circular frequency. The mode vectors and wavenumbers are obtained by
solving Equation (4.40), are usually different from the solutions of Eq.(4.19), and are
used as the base in the computation of all the boundary matrices, the hyperelement
matrices, and the mode superposition for expansion of the motions within a layered
block region. Thus, the effect of the radiation damping of a perfect halfspace is built
in.

Since the dashpot representation of the halfspace is only exact for the
vertically propagating P- and S-waves, and the directions of the scattered motions are
usually unknown, this technique is approximate in the sense that some of the
scattered energy may still be able to bounce back into the system. However, the use

of both techniques gives very satisfactory results in most practical problems.
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4.4 INPUT GROUND MOTION

Ever since one-dimensional site response analyses became commonplace with
the advent of readily available computer programs like SHAKE (Schabel et al, 1972),
the ground motions used as input into the analyses are derived from a reference
"outcrop" motion. That is, the data input into the computer program is the motion
recorded on a rock outcrop. The actual motion used by these earlier programs at the
base of the soil model is equal to 0.5 of the input "outcrop" motion, because for the
vertically propagating waves considered by these programs, the amplitude of the
incident wave is equal to 0.5 of the amplitude of the outcrop motion. The outcrop
motion is assumed to occur on the surface of a homogeneous, isotropic halfspace.

The use of the outcrop motion as the reference motion for site response
analyses is reasonable for analyses that do not consider inclined incident waves. The
approach is also reasonable for inclined SH-waves. However, it has been shown
(Lysmer et al, 1994) that for the same amplitude of the outcrop motion, the
amplitude of incident P- and SV-wave is extremely dependent on the angle of
incidence. An example of this relationship between incident angle and incident wave
amplitude for a given outcrop motion is shown in Figure 4.6, after work performed
by Knopoff (1957). This figure indicates that the amplitude of the incident wave
back-calculated from a given outcrop motion can vary several-fold, depending on the
incident angle. The most extreme case is for an incident angle of 45 degrees, where
no horizontal surface motions are generated, thus leading to an incident wave

amplitude of infinity. The effect of inclined incident waves is most noticeable at soil
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sites, because as the seismic waves travel upward through less and less stiff materials,
they tend to become more vertical due to Snells Law. Thus, by the time the seismic
waves reach the ground surface, they may be near vertical and there is no reduction
in surface amplitude due to hitting the free surface at an inclination.

Therefore, Deng et al. (1994) recommended that the amplitude of the incident
wave, and not the outcrop motion, be used as the basis for analysis using inclined
waves. In particular, the recommended amplitude of incident wave is that which
would be backcalculated for a vertically propagating wave incident on a rock outcrop,
which is the same amplitude as would be used in SHAKE. This procedure then
allows the user to directly consider the effect of inclined incident waves without the

added variable of incident wave amplitude.

4.5 GENERATION OF GROUND MOTIONS

After all boundary matrices, hyperelement matrices and load vectors are
computed for a particular frequency, the global equations of motion are assembled
according to Equation (4.20) and the final equations are solved. Since the use of the
generalized boundary element and the generalized hyperelement greatly reduces the
total degrees-of-freedom in the global equations, only an in-core active column solver
is coded in GROUND2D. The solution process is repeated for each of the
frequencies specified. All of the solution vectors, which consist of the displacements

at all nodal points, and free field motions for all blocky regions in case of a body
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wave incidence are stored in external files for post-processing to obtain required
ground motions.

The post-processing of the nodal point solutions is an integral part of the
solution process to generate necessary results due to the uniqueness of the analytical
model adopted in the program. Three types of post-processing techniques are
required, namely: (1) the spatial interpolation through modal superposition to extract
the motions within blocky regions from nodal point solutions at each specified
frequency; (2) the frequency domain interpolation through discrete Fourier
wavenumber transform to obtain a continuous form of transfer functions at a
specified point from solutions at discrete frequencies; and (3) the Fourier transform
to convert frequency domain (steady state) solutions to time domain (transient state)
solutions, or from transfer functions to acceleration time histories and acceleration
response spectra, given a reference earthquake motion. Details of the three post-

processing techniques can be found in Deng et al. (1994).
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5. TOPOGRAPHIC EFFECTS

" The effect of the vibration on the hard primary slate, which composes the
foundation of the island, was still more curious: the superficial parts of some narrow
ridges were as completely shivered as if they had been blasted by gunpowder. This effect,
which was rendered conspicuous by the fresh fractures and displaced soil, must be
confined to the near surface, for otherwise there would not exist a block of solid rock
throughout Chile; nor is this improbable, as it is known that surface of a vibrating body
is affected differently form the central part. It is, perhaps, owing to this same reason that
earthquakes do not cause such terrific havoc within deep mines as would be expected..."
(Charles Darwin, 1835).

5.1 BACKGROUND

The above quote by Darwin (Barlow, 1933) describing the effects of the
February 20, 1835 Chilean earthquake suggests that topographic amplification of
seismic motions is a phenomenon that has been well recognized for some time.
Certainly, in the recent past, there have been numerous cases of observed earthquake
damage pointing to topographic amplification as an important effect. As a result, a
considerable amount of work has been done in an attempt to model, quantify, and
predict these effects.

Some of the earliest experiments aimed at evaluating topographic
amplification were performed by F. J. Rogers (Lawson, 1908) fo]lowing the 1906 San
Francisco earthquake. These early experiments were conducted with buckets of sand
on a shaking table. Rogers observed vibrations on the top of the sand pile to be
greater than those at the base. These results were later discussed by Reid (1910)

who suggested that the observed effects could be the result of irregular reflections
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and refractions in the immediate neighborhood of the slope. Similar experiments
were repeated later by Goodman and Seed (1966) with comparable results.

The apparent effects of topographic amplification were observed by Celebi
(1987) following the Mg=7.8 1985 Chile Earthquake. While four- and five-story
buildings on ridgetops were extensively damaged, similar buildings in adjacent
canyons suffered no damage. In addition, one- and two-story buildings along
ridgetops suffered only minor ‘damage. The concentration of damage along the
ridgetops prompted the deployment of an array to measure possible topographic
amplification.

The ridges in question were approximately 20 m in height with side slopes of
10 to 15 degrees. The seismograph stations were set on alluvial deposits or
weathered granite, with care taken so that a station in the base of a canyon was set
upon similar material as the station on the corresponding ridgetop. Aftershock data
was then collected for a period of 5 months following the main shock.

Results were presented in the form of spectral ratios between the ridge crests
and canyon bases for a frequency range of 0 to 10 Hz. These results indicated
considerable frequency-dependent amplification, particularly in the range of 2 to 4
Hz, and 8 Hz. Spectral amplifications up to 10 and above were noted. Similar
amplification was noted between the canyon station and a nearby reference station
sited on bedrock. No consideration was given in the study for differences in soil
amplification between the canyon and ridge sites.

Celebi (1991) presented additional evidence of topographic amplification

observed in aftershock data following the 1983 Coalinga and 1987 Superstition Hills
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earthquakes. A 3 station array (1 crest and 2 opposing gully stations) set across a
ridge was able to record motions from a Mg=5.3 aftershock of the Coalinga event.
The ridge was approximately 30 m high, with average side slopes of 10 to 15 degrees.
The geology was described as weathered sandstone near the surface, with harder
Pliocene sandstone at depth. Amplification was calculated between the crest and
gully stations. Spectral amplifications of up to 10 were noted, with most amplification
occurring between 1 and 6 Hz, and at 7.5 Hz. Eleven aftershocks of the 1987
Superstition Hills earthquake were recorded at the base and crest of Superstition
Mountain. The mountain has side slopes of less than 5 degrees and the observed
amplifications were as high as 20 in the 2 to 12 Hz range.

One of the first numerical studies of the effect of topography on seismic
response was carried out by Boore (1972). This study, prompted by observations of
high accelerations near Pacoima Dam during the 1971 San Fernando earthquake,
considered the effect of simple topography on vertically propagating SH-waves.
Boore noted that numerical models were necessary when considering steep slopes,
or when the wavelength and size of topographic feature are similar (i.e. analytical
solutions are not possible). Boore used the finite difference method to model 20 m
high ridges with side slopes of 23 and 35 degrees. The medium was assumed to be
homogeneous, isotropic, and linearly elastic. The shear wave velocity of the material
was 500 m/s, and the frequency range under consideration was approximately 1 to 10
Hz. Damping values ranged from 2 to 20 percent, depending on the frequency.
Since no layering was included in the model, the level of damping had little effect on

the spectral ratios.
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Boore concluded that the motion within the ridge consisted of 3 phases: a
direct wave, a reflected wave, and a diffracted wave. The rf;sults showed that there
was amplification at the ridge crest, and that both amplification and attenuation couid
occur along the side slopes, depending on the slope geometry and the frequency of
motion. The effect of topography was found to vary with frequency, and
amplification up to 100 percent was noted over the free-field. The amplification was
found to decrease with slope angle and as the wavelength became large compared
to the characteristic length.

Rogers et al. (1974) performed experiments using a physical model to study
ridge effects on P-waves. Amplifications on the order of 50 percent were found on
broadband input motion, and on the order of 200 percent on band limited input.
When this data was compared to actual field measurements of ground motion (Davis
and West, 1973), qualitative, but not quantitative, agreement was found. The field
studies showed amplifications of 400 percent for peak velocities, and amplifications
as high as 20 times in relative spectral velocity from base to crest.

May (1980) studied the effectiveness of vertical scarps on reducing the seismic
energy transmitted to a site above or below the scarp. May used the finite element
method to analyses horizontally propagating SH- and Love waves passing through 60-
to 150-m high vertical scarps in a halfspace and a layer over a halfspace. The
frequencies of motion considered ranged from 1.5 to 6 Hz. May found that refection
off the scarp face played a large role in the response, and that the effect of the scarp

could be related to the ratio of slope height, H, and the wavelength of the motion
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under consideration. May performed tests using an instrumented granite block to
validate his numerical model, and found a good comparison between the two models.

Geli et al. (1988) reviewed previous analytical studies of topographic
amplification, which used the following methods: finite difference (Boore, 1972;
Zahradnik and Urban, 1984), finite elements (Smith, 1975), integral equation method
(Sills, 1978), boundary methods (Sanchez-Sesma et al, 1982), and discrete
wavenumber methods (Bouchon, 1973, Bard, 1982). All of these studies considered
the analysis of an isolated two-dimensional ridge on the surface of a homogeneous
halfspace and all yielded consistent results: the amplification of acceleration of no
more than 2 at the crest, peaking when the wavelength is about equal to the ridge
width; and varying amplification and attenuation along the surface of the slope from
the crest to the base. However, these results considerably under-estimate
amplifications observed in the field, which mostly range from 2 to 10, and up to as
much as 30. Geli et al. then analyzed a more detailed model cbnﬁguration using a
layered profile and introduced nearby ridge effects, but arrived at conclusions similar
to those of the previous researchers. In addition, they found that neighboring ridges
may have greater effect on site response than layering, and concluded that future
models should be able to analyze SV- and surface waves and three dimensional
geologic configurations.

Sitar and Clough (1983) used a two-dimensional finite element model to
analyze the seismic response of steep slopes in weakly cemented sands. They found
that accelerations tended to be amplified in the vicinity of the slope face. However,

in contrast to Geli et al. (1991) they noted that these topographic effects tended to
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be small relative to the amplification that occurs in the free field due to the site
period.

Most recently, various methods of analyzing topographic effects were reviewed
in an NSF/EPRI workshop (EPRI 1991). Recommendations resulting from the
workshop include the need for instrumented sites to verify numerical analyses of
topographic effects. It was also suggested that there is a need for simple, easy to
measure parameters and empirical correction factors for determining topographic

effects, since 2- and 3-dimensional modeling can become quite cumbersome.

5.2 ANALYSIS OF A STEPPED HALFSPACE

To determine the effect of a steep cliff on the dynamic response of a uniform
visco-elastic material subject to out-of-plane (SH) waves and in-plane (SV) waves, a
parametric study using the computer program GROUND2D has been performed as
part of this study. For clarity, the definition of the wave types as used herein is
illustrated in Figure 5.1. A SV-wave is the in-plane shear wave with displacement in
the plane of the slope cross-section, i.e. within the plane shown in Figure 5.1. The
SH-wave is the out-of-plane shear wave with displacement normal to the slope cross-
section, i.e. out of the plane shown in Figure 5.1. These definitions are consistent
with those commonly used for the case of a wave traveling normal to the slope face,
i.e. in the plane of Figure 5.1.

The problem of a steep slope in a uniform visco-elastic material can be

simplified to that of a stepped uniform halfspace. The analysis of this problem is
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Stepped halfspace model for a vertical slope.
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very useful for the development of an understanding of the fundamental parameters
necessary to quantify the effect of topography on seismic response, because the only
variables are the slope height and the wavelength. This allows the analysis to focus
on the relationship between these two parameters without having to incorporate the
natural frequency of the site. Once this relationship is examined, then other variables
such as slope angle and wave inclination can be incorporated.

The development of the generalized hyperelement and the generalized
transmitting element and their incorporation into GROUND2D make two-
dimensional modelling relatively simple, particularly for steep slopes. To consider
the effect of a slope on a uniform soil deposit, only a left and a right GTE are
required, as shown in Figure 5.2.

The results of the analyses are presented as a function of H/A, i.e. the ratio
of the slope height and the wavelength of the motion under consideration. This
definition of the normalized wavelength is in contrast to earlier studies of ridge
effects (e.g. Boore, 1972; Geli et al., 1988) and dams (e.g. Gazetas and Dakoulas,
1993), in which the correlation was made between the wavelength and the width of
the topographic feature, but is similar to the "dimensionless frequency" proposed by

Dakoulas (1993) for the study of SH-waves in earth dams.

5.2.1 Effect of SH- (Out-of-Plane) Waves on a Vertical Slope

The effect of vertically propagating SH-waves on the seismic response of a

vertically stepped halfspace is evaluated in the frequency domain over the range of
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0.5 to 10 Hz. The uniform halfspace has a shear wave velocity of 300 m/s, a
Poisson’s Ratio of 0.3, and the fraction of critical damping ranging from 1 to 20
percent. The height of the slope is 30 m.

The results are presented in the form of transfer functions for the normalized
frequencies of motion, and in terms of the amplification of the free field motion
behind the crest. The transfer function is the multiple required to transfer the input
motion, at a given frequency, from the control point in Figure 5.2, to the output
motion at the point of interest. The actual transfer function is a complex number
which accounts for the phase difference between the motions; however, only the
magnitudes of the transfer functions are needed to compare the amplification of
motion. The frequency range of 0.5 to 10 Hz includes the typical range of
engineering interest and spans the range of dominant frequencies most often
observed in large earthquakes.

The results of the analyses are presented in Figures 5.3 through 5.6, for
damping values of 1, 5, 10, and 20 percent, and for distances varying from the slope
crest to 4H behind the slope crest. The transfer functions plotted in Figures 5.3a
through 5.6a show that increased damping significantly reduces the response of the
free-field and of the slope, particularly at higher frequencies. The transfer functions
also show that the effect of the slope is more pronounced at low levels of damping.

A comparison of the amplification of the free field motion at various distances
behind the slope (Figures 5.3b through 5.6b) shows that damping does not greatly
affect the amplification, though the amplification decreases slightly with increased

damping. Again, the effect of damping is more pronounced at higher frequencies.
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Looking only at the amplification at the crest, a peak amplification of nearly
30 percent occurs at approximately H/A = 0.2, a secondary peak of 15 percent at
about H/A = 0.7, and a null at H/A = 0.45. The peaks correspond somewhat to the
natural frequency of the soil column behind the crest for the height of the slope,
which would occur at H/A = 0.25 and H/A = 0.75 for the first and second modes.
This implies that the relationship between the slope height and the shear wave
velocity of the soil behind the slope is very important in quantifying the effect of
topography. The two peaks are seen at all levels of damping, though the peaks
appear to shift to slightly lower values of H/A with increased damping.

The magnitude of the amplification decreases away from the slope crest,
primarily as a function of damping. The peak amplification seems to decrease and
occur at a lower frequenéy with increasing distance from the crest, though in any
case, the amplification is on the order of 15 to 20 percent of the free field motion.
In addition, attenuation occurs at cértain frequencies with increasing distance from
the crest. At low values of H/A, where the topographic step is small compared to the

wavelength, the slope has little effect on the response.
5.2.2 Effect of SV- (In-Plane) Waves on a Vertical Slope
For the analysis of the response to SV-waves, both a horizontal and vertical

. component need to be considered. Since the input motion only consists of horizontal

motion, the transfer functions for the vertical response are given relative to the
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horizontal input motion, and the vertical amplification is relative to the free field
horizontal response.

The results of the horizontal response due to SV-waves are shown in Figures
5.7 through 5.10 for frequencies ranging from 0.1 to 10 Hz (H/A = 0.01 to 1.0).
Considering first the horizontal response, the results are similar to those obtained for
the SH-waves. The first peak amplification occurs at H/A = 0.2, and the second peak
occurs at H/A = 1.0. For all levels of damping, the magnitude of both amplification
peaks are on the order of 50 percent, which is higher than those observed for SH-
waves, the second peak significantly so. However, as with SH-waves, increased
damping significantly reduces the response at higher frequencies, so the second peak
has a lesser importance in the overall response at higher damping levels. The pattern
of attenuation and amplification with increasing distance away from the slope is also
similar to the SH-wave case, though the magnitudes are greater for the SV-case.

The results showing the vertical response are presented in Figures 5.11
through 5.14. The vertical response is most pronounced at the crest of the slope, and
at H/A> 0.2, it is greater than the free field horizontal response. The amplitude at
the crest does not seem to be effected by damping. The amplification of the vertical
response away from the crest is never greater than about 50 percent the free field
motion, and decreases with iﬁcreased damping. Finally, it appears that the amplitude
of the vertical response at the crest tends to increase with increasing frequency, and

seems to be independent of the horizontal response at frequencies above H/A > 0.2.
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Figure 5.14: Vertical ransfer functions (a) and amplifications (b) for vertically incident
SV-wave on a stepped halfspace for various distances behind crest,

B=20%.
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5.2.3 Effect of Slope Angle

The effect of slope angle on topographic amplification was considered by
varying the slope angle, S, as shown in Figure 5.15. Since steep slopes are the subject
of this study, only slopes between 45 and 90 degrees were considered (30 and 90
degrees for SV-waves). The slope-crest amplification of the SH-wave free field
motion is shown in Figure 5.16. With decreasing slope angle, the magnitude of the
amplification at the first peak decreases from about 25 percent to about 15 percent,
while the response at higher frequencies tends to increase to about 50 percent, with
no apparent second peak. The horizontal response due to SV-waves is shown in
Figure 5.17. In general, the magnitude of the amplification decreases with decreasing
slope angle, from about 55 percent to about 15 percent, for H/A < 0.4. Results at
higher frequencies, above H/A = 0.4, indicate no clear trend. The vertical response
due to SV-waves is presented in Figure 5.18. Again, the vertical response decreases

with decreasing slope angle.
5.2.4 Effect of the Incident Angle

The effect of varying the incident angle of SV-waves has until recently been
a subject of little understanding. With the development of GROUND?2D, the analysis
of inclined SV-waves is made relatively easy, and provides us with an opportunity to
consider their effect on the seismic response of steep slopes. Though our ability to

determine the angle of incidence for the purposes of a site-specific stability analysis
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Figure 5.16: Horizontal amplification at the crest for a vertically incident SH-wave on

an inclined slope, B = 1%.
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Figure 5.17: Horizontal amplification at the crest for a vertically incident SV-wave on
an inclined slope, B = 1%.
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Figure 5.18: Vertical amplification at the crest for a vertically incident SV-wave on an
inclined slope, p = 1%.
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of an actual slope is questionable, the purpose of the analyses presented herein is to
determine if the incident angle is, in fact, important to the response.

The angle of incidence, F, is measured clockwise from the z-axis (Figure 5.19).
Waves with positive incident angles will be referred to as travelling away from the
slope, and those with negative incident angles are refetred to as travelling into the
slope. The model characteristics are the same as previously analyzed, with damping
equal to 1 percent, and the angle of incidence ranging from +30 to -30 degrees.

The response to SH-waves is presented in Figures 5.20 through 5.23. In each
case, the response due to the wave traveling into the slope is greater than for the
wave angle traveling away from the slope. For all angles considered, waves traveling
into the slope result in greater amplification than for vertically propagating waves,
and this effect increases with increasing frequency. The opposite is true for waves
traveling away from the slope. The motion is attenuated with increasing incident
angle, and the attenuation increases with frequency.

Similar results are obtained for the horizontal component of the SV-wave
response, presented in Figures 5.24 through 5.27. However, in contrast, the direction
of wave propagation appears to make little difference in the vertical response to SV-
waves. Although, there is a notable increase in the vertical response due to SV-waves
at low frequencies, which increases with incident angle independent of the direction
of propagation due to wave splitting on the free surface. An SV-wave of amplitude
0.5 incident on a free surface will result in both horizontal and vertical motions,

depending on Poisson’s ratio, as shown in Figure 4.6. For material with a Poisson’s
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Figure 5.19: Stepped halfspace model for inclined wave incident on a vertical slope.

98



3 [

" | 0 DEGREES
Horizontal

25 H

1.5

AMPLIFICATION

0.5

0.01 0.02 0.03 ‘ 0.05 — .0.1 0.2 0.3 . 0.5 = .1
SLOPE HEIGHT/WAVELENGTH

Figure 5.20: Amplifications at the crest for inclined SH-wave incident on a vertical
slope, F = 0°, B = 1%.
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Figure 5.21: Amplifications at the crest for inclined SH-wave incident on a vertical
slope, F = -10° and +10°, B = 1%.
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Figure 5.22: Amplifications at the crest for inclined SH-wave incident on a vertical
slope, F = -20° and +20°, B = 1%.
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Figure 5.23: Amplifications at the crest for inclined SH-wave incident on a vertical
slope, F = -30° and +30°, B = 1%.
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Figure 5.24: Amplifications at the crest for inclined SV-wave incident on a vertical
slope, F = (°, B = 1%.
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Figure 5.25: Amplifications at the crest for inclined SV-wave incident on a vertical
slope, F = -10° and +10°, B = 1%.
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Figure 5.26: Amplifications at the crest for inclined SH-wave incident on a vertical
slope, F = -20° and +20°, B = 1%.
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Figure 5.27: Amplifications at the crest for inclined SV-wave incident on a vertical

slope, F = -30° and +30°, B = 1%.
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Ratio = 0.3, the effect is relatively minor on horizontal motion, but is pronounced
on the vertical response for the angles of incidence considered in this study.
Overall, the amplification of inclined SV-waves traveling into the slope may
partially explain field observations of failures on slopes facing in a particular
direction, while slopes in the same material, but of different orientation, showed no
distress. Consequently, these analytical results suggest the need to account for wave

orientation in relation to the slope in performing stability analyses.

53 ANALYSIS OF A STEPPED LAYER OVER A HALFSPACE

The preceding parametric study of the stepped halfspace provides a
fundamental understanding of the topographic effect. The next step is to evaluate
the relationship between the natural frequency of the site and the topographic
amplification effect. To this end, the analysis of a stepped layer over a halfspace is
presented.

A vertically stepped layer over a halfspace was used, as shown in Figure 5.28.
The layer has the same material properties as used in the halfspace study discussed
previously, while the underlying halfspace has properties as shown in the figure,
resulting in an impedance between the layer and the halfspace of 3. The natural
frequency of the model behind the crest of the step is varied by changing the
thickness of the layer, Z, from H to SH. The thickness Z is varied because the

topographic effect is normalized as a function of H/A which is dependent on Vg.
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Figure 5.28: Model for vertically stepped layer over a halfspace.
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Figure 5.29: Comparison of transfer function ratio, T, /T, as a function of frequency
ratio, ®/,.
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Changing Vg, of the layer, therefore, would not have allowed for the separation of
the topographic effect and the resonance at the natural frequency.

The results are presented in Table 5.1 in the form of the horizontal transfer
functions for the free field behind the crest and at the crest of the slope. The
transfer functions shown are those at the natural frequency of the free field behind

the crest, w,, defined as

Ve (5.1)

W = —
" ¥4

and at the topographic frequency, w,, defined as

o, = 2% (52)
SH

since the peak effect of topography occurs at about H/A = 0.2. A review of the
transfer functions for the response at the crest shows that the transfer function at the
topographic frequency, T, is never greater than the transfer function at the natural
frequency of the site, T, .. The results also show that, in the free field, T remains
relatively constant for all values of w,. However, at the crest, T, increases as o,
approaches o, (i.e. as Z/H approaches 1.00). This trend is clearly shown in Figure

5.29, in which the ratio of the transfer functions, T, /T, is plotted versus the ratio

np
of the frequencies, w,/w,. At low values of w /v, where slope height is small
compared to the wavelength at the natural frequency, the transfer function at the
crest, T, is approximately equal to the free field transfer function, T ;. However,

when the natural frequency of the site occurs near the topographic frequency, the

free field motion is amplified by over 50 percent. This amount of amplification is
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similar to the amount observed at the topography frequency of the stepped halfspace.

It would seem, therefore, that the effects of the natural frequency and those of

topography may work independently.

Table 5.1 Transfer Functions for Stepped Layer over Halfspace "
CREST FREE FIELD |
Z/H ®, o, T T T T |
ne fc nf tf
1.00 2.0 2.5 5.2 4.3 29 2.2
{ 1.30 2.0 1.92 5.0 4.8 29 2.8
1.60 20 1.56 4.9 3.0 3.0 1.9
2.00 20 1.25 4.3 2.6 3.0 1.2
3.00 2.0 0.83 33 1.6 2.9 1.2
4.00 2.0 0.62 3.0 2.1 2.8 2.1
H 5.00 2.0 0.5 3.0 2.3 2.8 1.0

In general, the results of the frequency domain analysis of a stepped layer over

a halfspace indicate two important points. First, the natural frequency of the site has

a greater effect on surface amplification than does the effect of topography. Second,

it appears that the topographic amplification can be added onto the amplification

caused by the natural frequency, as is indicated in Figure 5.29. This concept of

separating the amplification caused by topography from that caused by the natural

frequency is advantageous to the development of a simplified method to estimate

topographic effects.
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5.4 CONCLUSIONS

The parametric study of the seismic response of a stepped halfspace and a
stepped layer over a halfspace shows that the topographic effect of a steep slope on
the seismic response of that slope can be normalized as a function of the ratio of the
slope height (H) and the wavelength of the motion (). Such relationship between
slope height and wavelength was also noted by May (1980) for horizontally
propagating SH-waves incident on a vertical scarp, and similar relationships were
observed between structure dimension and wavelength by others (e.g. Boore, 1972;
Geli et al,, 1988; Dakoulas, 1993).

For both out-of-plane (SH) waves and in-plane (SV) waves, the magnitude of
the response at the crest of the slope is significantly reduced by increased damping,
particularly at higher frequencies. However, the amplification of the motion at the
crest over that in the free field behind the crest is relatively unaffected by damping.
The fact that amplification is relatively unaffected by damping in a homogeneous
system was also observed by Boore (1972).

The peak topographic effect occurs at a H/ A = 0.2. This amplification is on
the order of 25% for SH-waves, and 50% for SV-waves. The peak at H/ A ~ 0.2
approximately corresponds to the first mode of vibration of a soil column of thickness
H (H/ A = 0.25), which is the frequency at which Boore (1972) and Geli et al. (1988)
observed the peak response in their studies of ridges. Secondary peaks occur near
H/ A =0.7 for SH-waves and H/ A = 1.0 for SV-waves. 'i‘he vertical component of the

topographic effect occurs independently of the natural frequency of the site.
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The topographic effect is most apparent for slopes steeper than 60 degrees,
and is greater for inclined waves travelling into the slope than away from the slope.
For a stepped layer over a halfspace, the natural frequency of the site behind the
crest dominates the response, which agrees with observations by Sitar and Clough
(1983). If the natural frequency of the site is approximately equal to the topographic
frequency, i.e. w,%w, then that response is amplified. In no case is the topographic

effect greater than the response at the natural frequency.
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