Exelon Nuclear Te Peach Bottom Atomic Power Station w 1848 Lay Road Delta, PA 17314-9032

Telephone 717.456.7014 www.exeloncorp.com

10CFR 50, Appendix I

May 24, 2002

U.S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001

> Peach Bottom Atomic Power Station Unit Nos. 2 and 3 Facility Operating License Nos. DPR-44 and DPR-56 NRC Docket Nos. 50-277 and 50-278

Subject: Annual Radiological Environmental Operating Report No. 59

In accordance with the requirements of Section 5.6.2 of the Peach Bottom Atomic Power Station, Units 2 & 3 Technical Specifications, this letter submits the Annual Radiological Environmental Operating Report No. 59. This report provides the 2001 results for the Radiological Environmental Monitoring Program (REMP) as called for in the Offsite Dose Calculation Manual.

In assessing the data collected for the REMP, we have concluded that the operation of PBAPS, Units 2 & 3, had no adverse impact on the environment. No plant produced fission or activation products with the exception of Cs-137 were found in any pathway modeled by the REMP. Cesium-137 levels detected in sediment were similar to those found in previous years. Calculated doses from this pathway were less than 0.003% of the allowable 10 CFR 50, Appendix I limits.

Sincerely, JOHN DOLTING, JR. ohn Døering, Jr. Vice President. Peach Bottom Atomic Power Station a Tus JD/GLJ/IWS:tlm

CCN 02-14045 Enclosure

cc: H. J. Miller, Administrator, Region I, USNRC A. C. McMurtray, USNRC Senior Resident Inspector, PBAPS J. Boska, Senior Project Manager, USNRC

1425

I. Summary and Conclusions

This report on the Radiological Environmental Monitoring Program conducted for the Peach Bottom Atomic Power Station (PBAPS) by Exelon Nuclear covers the period 1 January 2001 through 31 December 2001. During that time period, 1101 analyses were performed on 968 samples.

Surface water samples were analyzed for concentrations of tritium and gamma emitting nuclides. No fission or activation products were found. Tritium levels were consistent with those observed in previous years and lower than levels seen during the preoperational years.

Drinking water samples were analyzed for concentrations of gross beta (soluble and insoluble fractions), tritium, and gamma emitting nuclides. No fission or activation products were found. Gross beta and tritium activities detected were consistent with those observed in previous years.

The remaining sample media representing the aquatic environment included fish and sediment samples. These media were analyzed for concentrations of gamma emitting nuclides. Fish samples showed no detectable fission or activation products from the operation of PBAPS. Cesium-137 activity was found at all sediment locations and was consistent with data from previous years. No other fission or activation products were found. The dose to a teenager's skin from the sediment pathway was calculated to be 5.93 E-04 mrem, which represents 0.003% of the allowable fraction of 10 CFR 50, Appendix I limits.

The atmospheric environment was divided into two parts for examination: airborne and terrestrial. Sample media for determining airborne effects included air particulates and air iodine samples. Analyses performed on air particulate samples included gross beta and gamma spectrometry. No fission or activation products were found. The gross beta results were consistent with results from the previous years. Furthermore, no notable differences between control and indicator locations were observed. These findings indicate no measurable effects from the operation of PBAPS.

High sensitivity lodine-131 analyses were performed on weekly air samples. All results were less than the minimum detectable activity.

Examination of the terrestrial environment was accomplished by analyzing milk samples for low level concentrations of lodine-131 and gamma emitting nuclides. No fission or activation products were found.

Ambient gamma radiation levels were measured quarterly throughout the year. All measurements were below 10 mR/standard month and except for the fourth quarter, results were consistent with those measured in previous years. The fourth quarter results were about 1 mR to 2 mR higher than results observed in the other quarters. The results were consistent at all stations indicating a non Peach Bottom induced effect.

The results of the TLD monitoring program were used to determine if the Independent Spent Fuel Storage Installation (ISFSI) had any measurable impact on the dose rate in the environs. Except for the fourth quarter data discussed above, no increase in dose was evident.

In assessing all the data gathered for this report and comparing these results with preoperational data, it was evident that the operation of PBAPS had no adverse radiological impact on the environment.

·' ~_

المائية الحركة المحالية ا المحالية الم المحالية الم المحالية الم

and the second second

A set of δ set of a set

Intentionally Left Blank

TABLE OF CONTENTS

I. Summary and Conclusions	1
II. Introduction	9
A. Objectives	9
B. Implementation	9
III. Program Description	9
A. Sample Collection	9
B. Sample Analysis	11
C. Data Interpretation	11
D. Program Exceptions	12
E. Program Changes	13
IV. Results and Discussion	13
A. Aquatic Environment	13
1. Surface Water	13
2. Drinking Water	
4. Sediment	14
B. Atmospheric Environment	15
1. Airborne	15
a. Air Particulates	
b. Airborne lodine	
2. Terrestnal	
а. Мик	15
C. Ambient Gamma Radiation	16
D. Independent Spent Fuel Storage Installation (ISFSI)	16
E. Land Use Census	16
V References	47

Appendices

.

.:...**.**...

	Appendices
Appendix A	Radiological Environmental Monitoring Report Summary
Tables	
Table A-1	Radiological Environmental Monitoring Report Summary for the Peach Bottom Atomic Power Station, 2001
E Constantino de la c	~ 1.001 (2.34) $\sim 10^{-10}$ (2.57) $\sim 10^{-10}$ (2.57) $\sim 10^{-10}$ (2.57) $\sim 10^{-10}$ (2.57)
Appendix B	Sample Designation and Locations
Tables	al a structure de la transmission de la constructure de la constructure de la constructure de la constructure d La constructure de la constructure d
Table B-1:	Radiological Environmental Monitoring Program – Sampling Locations, Distance and Direction from Reactor Buildings, Peach Bottom Atomic Power Station, 2001
Table B-2:	Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methodologies, Peach Bottom Atomic Power Station, 2001
Figures	, , , , , , , , , , , , , , , , , , ,
Figure B-1:	Environmental Sampling Locations within One Mile of the Peach Bottom Atomic Power Station, 2001
Figure B-2:	Environmental Sampling Locations Between One and Approximately Five Miles of the Peach Bottom Atomic Power Station, 2001
Figure B-3:	Environmental Sampling Locations Greater than Five Miles from the Peach Bottom Atomic Rower Station, 2001 (vector of the constant of the sector of the sector by the secto
Appendix C:	Data Tables and Figures - Primary Laboratory
Tables	و الور دار الم المحمد الذي الحق المحمد بالمحموض و 10 الحقوم موض و 10 الحقوم من المحمد المحمد المحمد ا
Table C-I.1	Concentrations of Tritium in Surface Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table C-I.2	Concentrations of Gamma Emitters in Surface Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table C-II.1	Concentrations of Gross Beta Insoluble in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table C-II.2	Concentrations of Gross Beta Soluble in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table C-II.3	Concentrations of Tritium in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.

Table C-II.4	Concentrations of Gamma Emitters in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table C-III.1	Concentrations of Gamma Emitters in Fish Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table C-IV.1	Concentrations of Gamma Emitters in Sediment Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table C-V.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table C-V.2	Monthly and Yearly Mean Values of Gross Beta Concentrations (E-3 pCi/cu. meter) in Air Particulate Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table C-V.3	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table C-VI.1	Concentrations of I-131 in Air Iodine Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table C-VII.1	Concentrations of I-131 in Milk Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table C-VII.2	Concentrations of Gamma Emitters in Milk Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table C-VIII.1	Quarterly TLD Results for Peach Bottom Atomic Power Station, 2001.
Table C-VIII.2	Mean TLD Results from Peach Bottom Atomic Power Station Site Boundary, Middle, and Outer Rings, 2001.
Table C-VIII.3	Summary of the Ambient Dosimetry Program for Peach Bottom Atomic Power Station, 2001.
Table C-IX.1	Summary of Collection Dates for Samples Collected in the Vicinity of Peach Bottom Power Station, 2001. Collected in the Vicinity of Peach Bottom Power
Figures	
and the second s	
Figure C-1	Monthly Insoluble Gross Beta Concentrations in Drinking Water Samples Collected in the Vicinity of PBAPS, 2001.
Figure C-2	Monthly Soluble Gross Beta Concentrations in Drinking Water Samples Collected in the Vicinity of PBAPS, 2001.
Figure C-3	these Discounts en an edigeted in the Ministry of PBAPS, Mean Annual Cs-137 Concentrations in Fish Samples Collected in the Vicinity of PBAPS, 1971-2001.
$(1,1)^{(1,1)} = (1,1)^{(1,1)}$	$L_{\rm eff}$ we can the first second second structure of the constant of the second se
Figure C-4	Mean Semi-Annual Cs-137 Concentrations in Sediment Samples Collected in the Vicinity of PBAPS, 1971-2001.

-

.

Figure C-5	Mean Weekly Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of PBAPS, 2001.
Figure C-6	Mean Monthly Gross Beta Concentrations in Air Particulate Samples Collected in the Vicinity of PBAPS, 1970-2001.
Figure C-7	Mean Annual Cs-137 Concentrations in Milk Samples Collected in the Vicinity of PBAPS, 1971-2001.
Figure C-8	Mean Quarterly Ambient Gamma Radiation Levels (TLD) in the Vicinity of PBAPS, 1973-2001.
Figure C-9	Quarterly Ambient Gamma Radiation Levels (TLD) Near the Independent Spent Fuel Storage Installation Located at PBAPS, 1998-2001.
Appendix D:	Data Tables and Figures - QC Laboratory
Tables	
Table D-I.1	Concentrations of Gross Beta Insoluble in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table D-I.2	Concentration of Gross Beta Soluble in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table D-I.3	Concentrations of Gamma Emitters in Drinking Water Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table D-II.1	Concentrations of Gross Beta in Air Particulate Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table D-II.2	Concentrations of Gamma Emitters in Air Particulate Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table D-III.1	Concentrations of I-131 by Chemical Separation and Gamma Emitters in Milk Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
Table D-IV.1	Summary of Collection Dates for Samples Collected in the Vicinity of Peach Bottom Atomic Power Station, 2001.
<u>Figures</u>	
Figure D-1	Comparison of Monthly Insoluble Gross Beta Concentrations in Drinking Water Samples Split between the Primary and QC Laboratories, 2001.
Figure D-2	Comparison of Monthly Soluble Gross Beta Concentrations in Drinking Water Samples Split between the Primary and QC Laboratories, 2001.
Figure D-3	Comparison of Weekly Gross Beta Concentrations from Collocated Air Particulate Locations Split between the Primary And QC Laboratories, 2001.

. .

. 1

- 6 -

Appendix E Quality Control - Inter-Laboratory Comparison Program

,

Tables		
Table E-1	DOE EML Cross Check Program Results for Environmental, Inc., 2001	
Table E-2	ERA Statistical Summary Proficiency Testing Program for Environmental,	Inc., 2001
Table E⊰3	Analytics Environmental Radioactivity Cross Check Program Teledyne Bro (TBE) Environmental Services, 2001	wn Engineering
Table E-4	DOE/EML Environmental Radioactivity Cross Check Program Teledyne Br (TBE) Environmental Services, 2001	own Engineering
	an an Anna an Anna an Anna Anna Anna An	1. A. A.
		2 10-1
2 9 ° 1 (1987) 2 9 ° 1 (1987)	anda a series sere series de la construction de la construction de la construction de la construction de la con La construction de la construction d	
	ye en Orenega, en la resultant da transforment da. Mistoren Sitzer en Sitzer en Sitzer en Sitzer en Sitzer	
	e or de Respuéries de la complete de la Reserve de la complete de la complete de la complete de la complete de La complete de la comfitte e la complete de la comp	$\chi^{(1)} = \delta$
1	a e esta a ser esta della esta della della della della contesta della estegna della estegna della estegna della Esta della	
e tap to je kodi i	ා විවිස්ත්රීම කිරීම සිට කරන්න සිටින් සිටින් පර්මිණ විස්ත්රීම සිට සිට කරන්නේ සිට කරන්නේ සිට සිට සිට සිට සිට සිට සිට සිට සිට සිට සිට සිට සිට සිට සිට සිට	
1944 - Angel Ange	් කරන්නේ කිරීම මෙසුවේ රෝගා සිටාමී සොමාරාවේ හැටේ වර්ගන්ගා මේ මොමාරාව රෝගින් මෙසම කර්ගන්ග සිටාම විද්යාවේ විද්යාවයි. මොමාරාවේ සිටාම මෙසම කර්ගන්න රෝගින් මෙසම කර්ගන්ග සිටාම මොමාර්මී කරුවන් විද්යාවන් මෙසම මොමාරාවන්න	
anterjaj	an an an an an t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-	
		•.
n i chiana	n na service en la secola da la servicia de la secola da la La secola da la secol	
t Area dh	un under Merican (United Alfred Battelle), republikan un besetz karde. Lucium eta kon Roman el SA Lationation el 1905	

14 C 1 C

¹ Constant (2) and (2)

and the second secon

¹ Construction of the second secon second sec

a the state of the state of the

and the second secon

a the second second

a service and the service of the serv I service of the servic

a Negal al Marine Carlos

And a super-

ان المحكم الجزير المحكمة المحكم المحكمة المحكمة

Intentionally Left Blank

II. Introduction

Peach Bottom Atomic Power Station (PBAPS) is located along the Susquehanna River between Holtwood and Conowingo Dams in Peach Bottom Township, York County, Pennsylvania. The initial loading of fuel into Unit 1, a 40 MWe (net) high temperature, gas-cooled reactor, began on 5 February 1966, and initial criticality was achieved on 3 March 1966. Shutdown of Peach Bottom Unit 1 for decommissioning was on 31 October 1974. For the purposes of the monitoring program, the beginning of the operational period for Unit 1 was considered to be 5 February 1966. A summary of the Unit 1 preoperational monitoring program was presented in a previous report ⁽¹⁾. PBAPS Units 2 and 3 are boiling water reactors, each with a power output of approximately 1159 MWe. The first fuel was loaded into Peach Bottom Unit 2 on 9 August 1973. Criticality was achieved on 16 September 1973, and full power was reached on 16 June 1974. The first fuel was loaded into Peach Bottom Unit 3 on 5 July 1974. Criticality was achieved on 7 August 1974, and full power was first reached on 21 December 1974. Preoperational summary reports ⁽²⁾⁽³⁾ for Units 2 and 3 have been previously issued and summarize the results of all analyses performed on samples collected from 5 February 1966 through 8 August 1973.

A. Objectives

The objectives of the REMP are:

- 1. To identify, measure, and evaluate existing radionuclides in the environs of PBAPS site and any fluctuations in radioactivity levels, which may occur.
- 2. To monitor and evaluate ambient radiation levels
- 3. To determine within the scope of the program, any measurable quantity of radioactivity introduced to the environment by the operation of PBAPS.
- B. Implementation of the Objectives

Implementation of the objectives is accomplished by:

- 1. Identifying significant exposure pathways.
- 2. Establishing baseline radiological data of media within those pathways.
- 3. Continuously monitoring those media before and during plant operation to assess plant effects (if any) on man and the environment.
- III. Program Description
 - A. Sample Collection

Samples for the PBAPS REMP were collected by Normandeau Associates, RMC Environmental Services Division (RMC). This section describes the general collection methods used by RMC to obtain environmental samples for the PBAPS REMP in 2001. Sample locations and descriptions can be found in Table B-1 and Figures B-1 through B-3, Appendix B. The collection procedures used by RMC are listed in Table B-2, Appendix B.

and the second second

Aquatic Environment

The aquatic environment was examined by analyzing samples of surface water, drinking water, fish, and sediment. Surface water from two locations (1LL and 1MM) and drinking water from two locations (4L and 6l) were collected weekly by automatic sampling equipment. Weekly samples from each of the surface and drinking water locations were composited into a separate monthly sample for analysis. Approximately, two quarts of water were removed from the weekly sample container and placed into a clean two-gallon polyethylene bottle to form a monthly composite. Control locations were 1LL and 6l.

 $\tilde{\zeta} \in \mathcal{L}$

Fish samples comprising the flesh from two groups: Bottom Feeder (catfish) and Predator (smallmouth bass, largemouth bass, or bass) were collected semiannually from two locations: 4 and 6 (control) using several methods such as trapnet, seine or electroshocking.

and the second second second

Sediment samples composed of recently deposited substrate were collected semiannually at three locations: 4J, 4T and 6F (control) using one of two methods, determined by the depth from which the sediment was obtained. In water greater than 4 feet deep, either a Ponar or Ekman Grab was used to collect sediment. In shallow water (1-4 feet), sediment was collected by scooping up mud with a plastic bucket.

Atmospheric Environment

· "我们的你们,你想到了你们的你的,你不是你们的?""我们的你,你能不知道你。"

£ .

The atmospheric environment was examined by analyzing airborne and terrestrial samples. These consisted of air particulates, airborne iodine, and milk. Air particulate and air iodine samples were collected and analyzed weekly from five locations (1B, 1Z, 1C, 3A, and 5H2). The control location was 5H2. Air samples were obtained using a vacuum sampler, glass fiber and charcoal filters, respectively. The filters were replaced weekly and sent to the laboratory for analysis. The vacuum samplers were run continuously at approximately 1 cubic foot per minute.

Milk samples were collected from five locations (A, J, O, R and S) monthly from December through March and biweekly April through November. Additionally, samples from seven locations (B, C, D, E, L, and P) were collected quarterly. Locations A, B, C, and E were controls. Milk samples were obtained by removing two gallons from the dairyman's bulk tank after mixing. The sample from each location was therefore a composite of all the milk collected from the dairy herd (from 1 to 3 milkings). The milk was scooped from the agitated bulk tank and placed in new plastic containers.

Ambient Gamma Radiation

Direct radiation measurements were made using Pahasonic 814 calcium sulfate (CaSO₄) thermoluminescent dosirreters (TLD). The TLD locations were placed on and around the PBAPS site as follows:

142.24

A <u>site boundary ring</u> consisting of eighteen locations (1L, 1P, 1A, 1Q, 1D, 2, 1M, 1R, 1I, 1C, 1J, 1F, 40, 1NN, 1H, 1G, 1B, and 1E) near and within the site perimeter representing fence post doses (i.e., at locations where the doses will be potentially greater than maximum annual off-site doses) from PBAPS releases.

An <u>intermediate distance ring</u> consisting of nineteen locations (15, 22, 44, 32, 45, 14, 17, 31A, 4K, 23, 27, 48, 3A, 49, 50, 51, 26, 6B, and 42) extending to approximately 5 miles from the site designed to measure possible exposures to close-in population.

The balance of nine locations (2B, 43, 5, 16, 24, 46, 47, 18, and 19) representing control and special interests areas such as population centers, schools, etc.

A Charles the

	The specific TLD locations were determined by the following criteria:	
· · · ·	1 The proceed of the burden consulation:	
•		
	2. Site metaorelanical data taking into account distance and alcustion for each of	ftha 26
	2. She meleorological data taking line account distance and elevation for each of	
	ten-degree sectors around the site, where estimated annual dose from PBAPS	, ir any,
	would be more significant;	
	A second seco	n
	3. On hills free from local obstructions and within sight of the vents (where practical);
	en for fingen et de service en 118 februaries en la service en de la service en la service de la service de la La service de la service de	
	4. A Near the dwelling closest to the main stack in the prevailing down wind direction.	
•		
	A TLD set was placed at each location in a Formica "birdhouse" or polyethylene jar	located
4.33.e1	approximately six feet above ground level. The TLD sets were exchanged quarterly, the	en sent
	to the laboratory for analysis. A standard strategies and a second strategies and the second strategies and the	
5 (fred 14) - 5 25	MTT 的复数 有关有关的 化电子分子 建碱铁石 人名法法尔克 法保持的 人名法法法 化正式	
В.	Sample Analysis	
	This section describes the general analytical methodologies used by Environmental Ir	nc. and
	Teledyne Brown Engineering to analyze the environmental samples for radioactivity	for the
elon a constru	PBAPS REMP in 2001. The analytical procedures used by the laboratories are listed Tab	ole B-3,
- 1910 - 1910 - 19 ¹⁰	Appendix B. Statistical statisti Statistical statistical statisticae statisticae statisticae statisticae statis	
1894 (1996) 480 (18	"我们们,你们还不是太好了我们们们们,可以帮助你就是吗?""这个话,你们还能是你的事情。"	
STS TO BE CONTRACT	ite The current program includes the following analyses:	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	na han budon wa iza za kato ina ana kato na tata 1915 na tata kato ina tata 19	
and a second of	1. Concentrations of beta emitters in drinking water and air particulates.	
	2 Concentrations of domina amitting nuclides in surface and driphing wat	tor oir
HAN OF LONG	2. Concentrations of gamma emitting nuclices in surface and uninking wat	lei, all
an a cast court		
La Contra Calific	3. Concentrations of tritium in surface and drinking water.	
ingue Segur A la Car	THE REAL AND STOLE SHOPES, DESCRIPTION OF THE STOLE IN A DECK OF A DECK OF THE	
al than in a		
NAME AND ADDRESS OF	25. Ambient gamma radiation fevels at various site environs.	
С.	Data Interpretation	
المريقين والمريان	Several factors are important in the interpretation of the data. These factors are discusse	d here
	to avoid undue repetition in the discussion of the results.	
	1. Lower Limit of Detection and Minimum Detectable Activity	
a taka taka		
	The lower limit of detection (LLD) was defined as the smallest concentration	of
	eradioactive material in a sample that would vield a net count (above backgrou	und)
	that would be detected with only a 5% probability of falsely concluding that a	blank
	observation represents a "real" signal. The LLD was intended as a before the	e fact
· · · ·	estimate of a system (including instrumentation incredure and sample type)	and
	not as an after the fact criteria for the presence of activity. All analyses were	anu
· · · · ·	decigned to achieve the required PPAPS detection conchliking for an increme	ntal
		niai
	sample analysis.	
	- 「「「「「」」」「「」」」「「」」」「「」」」「「」」」「「」」」」「「」」」」	
	化糖、糖、酸等、中心、副、脂、醋、醋、香、瓜、香、麦、麦、麦、黄、、、、、、	

`

The minimum detectable activity (MDA) is defined above with the exception that the measurement is an after the fact estimate of the presence of activity.

12 A.

Net Activity Calculation and Reporting of Results

.

Net activity for a sample was calculated by subtracting background activity from the sample activity. Since the REMP measures extremely small changes in radioactivity in the environment, background variations will result in sample activity being lower than the background activity effecting a negative number. An MDA was reported in all cases where positive activity was not detected.

Gamma spectroscopy results for each type of sample were grouped as follows:

For surface and drinking eleven nuclides, Mn–54, Co–58, Fe–59, Co-60, Zn-65, Zr–95, Nb–95, Cs–134, Cs–137, Ba–140, and La–140 were reported.

For fish eight nuclides, K-40, Mn–54, Co–58, Fe–59, Co–60, Zn–65, Cs–134, and Cs–137 were reported.

For sediment five nuclides, K-40, Co-58, Co -60, Cs-134, and Cs-137 were reported.

For air particulate six nuclides, Be-7, Mn-54, Co-58, Co-60, Cs-134, and Cs-137 were reported.

For milk five nuclides, K-40, Cs-134, Cs-137, Ba-140, and La-140 were reported.

Means and standard deviations of the results (including MDA values) were calculated. The standard deviations represent the variability of measured results for different samples rather than single analysis uncertainty. Including the MDA values will bias the mean calculations high.

D. Program Exceptions

2.

For 2001 the PBAPS REMP had a sample collection recovery rate of better than 99%. The exceptions to this program are listed below:

 Drinking water sampler at location 4L was out of service for the following dates: 03/16/2001 to 03/23/2001 due to maintenance work in area. 06/08/2001 to 06/15/2000 due to equipment problems.

e na san tanàn

A weekly grab sample was taken.

2. Air particulate and air iodine samples from ocation 1C were not available for the period 08/09/2001 to 08/16/2001 due to a pump failure most likely caused by an electrical storm.

a de la composición d

3. The following samples processed by TBE, the QC laboratory, did not meet the LLDs required by Table 4:8.E.2 of the Peach Bottom OBCM:

a. Drinking water - 4L, January, Ba-140 and La-140

The LLDs were missed because samples were not processed in a timely manner. TBE was shipping the QC samples to another laboratory while they were staffing up their laboratory in Knowille, TN.

Each program exception was reviewed to understand the causes of the program exception. Sampling and maintenance errors were reviewed with the personnel involved to prevent a recurrence. Occasional equipment breakdowns and power outages were unavoidable. The overall sample recovery rate indicates that the appropriate procedures and equipment are in place to assure reliable program implementation. enga tata sa sa sa

E. Program Changes

No changes were made to the REMP in 2001.

IV. **Results and Discussion**

×.,

the first of the second second second Aquatic Environment Α.

Surface Water 1.

> Samples were collected from two locations monthly (1LL and 1MM). 1LL served as the control location. The following analyses were performed.

> > the state of the second second second

Tritium

eng ar ag¥r eggi a Samples from both locations were analyzed for concentrations of tritium (Table C-I.1, Appendix C). Results ranged from <106 to 177 pCi/ and averaged 112 pCi/ at the reaction and 128 pCi/ at the indicator location. Concentrations found were the second s

Resident in the only represent sevence permanent representation and the reserves Gamma Spectrometry is a place of the second second second

> Samples from both locations were analyzed for concentrations of gamma emitting nuclides (Table C-I.2, Appendix C). All nuclides were less than the MDA.

landon en en la Alton de Seconda de La deserva. Reserva en la contra de la contra A LAND SALE Drinking Water

a po azerte da

المحاج المحاج ا

2

Samples were collected from two locations monthly (4L and 6l). 6l served as the control location. The following analyses were performed.

Gross Beta

and the second Samples from both locations were analyzed for concentrations of gross beta activity in state the state of the state of the soluble and soluble fractions. (Tables C-II.1 and C-II.2 and Figures C-1 and C-2, Appendix C). Gross beta activity in the insoluble fraction ranged from <1.0 to < 1.9 pCi/l. The values in the soluble fraction ranged from 1.6 to 4.4 pCi/l. No differences were observed between the means of the control and indicator stations. The values were generally below those seen in the preoperational period.

Tritium - second state to be demanded as a second state of

Samples from both locations were analyzed for tritium quarterly (Table C-II.3, Appendix C). The values for the indicator location (4L) ranged from <106 to 177 pCi/l with a mean of 126 pCi/l. Control location (6l) values ranged from <106 to 144 pCi/l with a mean of 118 pCi/l. The concentrations found were lower than those observed during the preoperational period.

Gamma Spectrometry

Samples from both locations were analyzed for concentrations of gamma emitting nuclides (Table C-II.4, Appendix C). All nuclides were less than the MDA.

3. Eish

Samples were collected from two locations semiannually (4 and 6). The control location was 6. The following analyses were performed.

Gamma Spectrometry

The edible portion of fish samples from both locations was analyzed for concentrations of gamma emitting nuclides (Table C-III.1, Appendix C). Naturally occurring K-40 was found at all stations and ranged from 2,328 to 3,232 pCi/kg wet and was consistent with levels detected in previous years. No fission or activation products were found. Figure C-3 illustrates the Cs-137 activity for indicator and control locations from the beginning of the operational period through the present. Cesium-137 activity has declined to non-detectable levels.

4. Sediment

Samples were collected from three locations semi-annually (4J, 4T and 6F). The control location was 6F. The following analyses were performed.

Gamma Spectrometry

A CONTRACT OF C

and the second second

Sediment samples from *cl*^{*i*} locations *v*^{*i*} re analyzed for concentrations of gamma emitting nuclides (Table C-IV.1, Appendix C). Naturally occurring K-40 was found at all locations. K-40 results ranged from 8,711 to 23,482 pCi/kg (dry).

Statistically significant activity for Cs-137 was found at all locations with a mean value of 139 pCi/kg (dry) for the indicator locations and 70 pCi/kg (dry) for the control location. No other fission or activation products were found. The maximum calculated dose from this pathway to a teenager's skin was 5.93 E-04 mrem/yr. This value is based upon the assumption the maximum concentrations of Cs-137 at the downstream location (4T) was present the entire year. This dose represents 0.003% of the allowable fraction of 10 CFR 50, Appendix I limits. Results found were consistent with those from previous years. Figure C-4, Appendix C illustrates the comparison of activities of Cs-137 detected at the control location and indicator locations from the preoperational period through the present.

- 14 --

3

B. Atmospheric Environment
1. <u>Airborne</u>
a. <u>Air Particulates</u>
Samples were collected from five locations (1B)

Samples were collected from five locations (1B, 1Z, 1C, 3A, and 5H2). Control location was 5H2. The following analyses were performed.

Gross Beta

and set i

Samples from all locations were analyzed for concentrations of gross beta (Tables C-V.1 and C-V.2 and Figures C-5 and C-6, Appendix C). Air 1.1 particulate locations were divided into three groups: Group I, consisting of 1B. 1Z, and 1C, located on PBAPS site; Group II, comprised of 3A, located at an intermediate distance from PBAPS, and Group III, consisting of 5H2, located at a remote distance from PBAPS. The results from these three groups help in determining the effects, if any, resulting from the operation of PBAPS. The $\sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$ results from the on-site locations ranged from 10 E-3 to 49 E-3 pCi/m³, with a a maximum of a mean of 21° E-3° pCi/m³: The results from intermediate distance location and the second second ranged from 9 E-3 to 44 E-3 pCi/m3, with a mean of 21 E-3 pCi/m3. The stand a compared from 4.E-3 to 38 E-3 pCi/m³, with a an an an an ann an Air an A mean of 20 E-3 pCi/m³. Comparison of the values indicates no notable difference among the three groups suggesting no effects from the operation of PBAPS (Figure C-5, Appendix C). 11.11.1.1.1.1

and the second second

Gamma Spectrometry

Weekly samples from five locations (1B; 1Z, 1C, 3A, and 5H2) were composited and analyzed quarterly for the presence of gamma emitting nuclides (Table C-V.3). Naturally occurring Be-7 was found in all samples with activity values similar to those from the preoperational years. No other fission or active for nuclides were detected.

Continuous àir samples were collected weekly at five locations (1B, 1Z, 1C, 3A, and 5H2) and analyzed for I-131 via gamma spectroscopy (Table C-VI.1, Appendix C): Alkresults were less than MDA.

Samples were collected from eleven locations (A, B, C, D, E, J, L, O, P, R, and S). Farms A, B, C, and E were control locations. The following analyses were performed.

lodine-131

Samples from all locations were analyzed for low level concentrations of I-131 (Tables C-VII.1, Appendix C). All results were less than MDA.

Gamma Spectrometry

Samples from five locations were analyzed quarterly for concentrations for gamma emitting nuclides (Table C-VII.2, Appendix C). Naturally occurring K-40 was found in all samples with values ranging from 1,260 to 1,587 pCi/l. All other nuclides searched for were less than MDA. Figure C-7 (Appendix C) illustrates the Cs-137 activity in milk from the beginning of the operational period through the present. Cesium-137 activity has declined to non-detectable levels.

• • ~

and the state of the second

514

C. Ambient Gamma Radiation

Ambient gamma radiation levels were measured quarterly at forty-six locations (as described in the program description section) using Panasonic 814 (CaSO₄) thermoluminescent dosimeters. Each 814 badge has three CaSO₄ phosphors. All TLD readings were below 10 mR/std. month with a range of 2.9 to 9.0 mR per standard month (Tables C-VIII.1 through C-VIII.3 and Figure C-8, Appendix C). Except for the fourth quarter, results were consistent with those measured in previous years. The fourth quarter results were about 1 mR to 2 mR higher than results observed in the other quarters. The results were consistent at all stations indicating a non Peach Bottom induced effect.

D. Independent Spent Fuel Storage Installation (ISFSI)

The Independent Spent Fuel Storage Installation (ISFSI) was utilized beginning in June 2000. A total of nine TN-68 casks were each loaded with 68 fuel bundles. As part of the overall REMP, additional TLDs were place at locations near the site boundary and at the nearest resident. Except for the fourth quarter data discussed above, no increase in dose was evident due to operation of the ISFSI (Figure C-9, Appendix C). As a result the doses observed were below both 40CFR190 and 10CFR72.104 limits.

and the second

E. Land Use Census

A Land Use Census around the Peach Bottom Atomic Power Station (PEAPS) was conducted by Normandeau Associates, Inc., RMC Environmental Services Division for Exelon Nuclear to comply with Section 3.8.E.2 of PBAPS's Offsite Dose Calculation Manual Specifications (ODCMS) and Bases. The census to locate the nearest milk producing animal in each of the sixteen meteorological sectors out to five miles was conducted during the May to October 2001 growing season. The distance and direction of all locations were positioned from the bam to the PBAPS vents using Global Positioning System (GPS) technology.

and a second second

A small number of goats were discovered in the SSW sector at a distance of 11,414 feet from the vent stacks. Because of the distance from PBAPS and the small number of goats (2-4) the farm was not added to the REMP. The results of this survey are summarized below.

	Five Mile Radius of PBAPS, 2001	
	Distance (ft.)	•.
Sect	or from Vents	
N 1	14,650	i
NNE	11,078	
NE	11,211	
ENE	10,978	
E	15,163	
ESE	20,149	
SE	19,085	
n hateling of the second states of SSE	and the second	n - an in state
1998 - 1999 - Carlos Martin, S . Ca	than an ar an a	
n an SSM	¹	
eko alta 🔭 este sento en la travela e la e SW i	12,241	
and the second state of the second	V	
an an an an an an an an Maria	ter jak et	(1) 日本語の「本の第二日」
and the second second second second second	V	
NW	17,866	
NNV	-	
- INDICATES	NO MILK ANIMALS LOCATED	
the second s		γ
en 1999 - Elemente de la companya d La companya de la comp		
an Village References de la second	(1,3,5,1) (1.4) $(1,1,5,1)$ $(1,1,5,1)$ (1.4) $(1,1,5,1)$	
an tha tha tha an		
1. Preoperational En	virons Radioactivity Survey Summ	ary Report, March 1960 through January,
1966. (Septembe	1967). Alter a factor	1
2 Interne Comparti	- Deech Dettern Atomic Dev	on Otations Designal Environt Destintion
2. Intelex Colporate Manitaring Program	n, Peach Bollom Alomic Pow	El Station: Regional Environs Radiation
	1977 Notick Massachusette	, Offics 2 and 3, 5 February 1900 through 6
August 1910, Julis	TOWAN ARCK, WASSACHUSCUS, 2007	san pasa sang on tengen sing sing sing sing sing sing sing sin
2 Dadiation Manag	ements Corporation (Disblighting	Pedch Bottom Atomic Dower Station
Preoperational F	adiological Monitoring Report	for Units 2 and 3 January 1974
Philadelphia Den	nsvivanja sa S	street and the second street and the second street and the second street
	no peronina. Las de la della	n an gara an
	and all the Parkon David and	2 A A A T
	والمراجع والمراجع والمراجع والمتركب والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع وال	

Location of the Nearest Milk Producing Animal within a Five Mile Radius of PBAPS, 2001

(a) Some set is a set of the set of the

.

.

. 1

Intentionally Left Blank

- 18 -

APPENDIX A

RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT SUMMARY

 $\mathcal{F} = \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\} = \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\} = \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}$

.

Intentionally Left Blank

NAME OF FACILITY: PEACH BOTTOM ATOMIC POWER STATION LOCATION OF FACILITY: YORK COUNTY, PA					DOCK			
		-		INDICATOR LOCATIONS	CONTROL	LOCATION WIT	H HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPE OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
SURFACE WATER (PCI/LITER)	TRITIUM	8	2000	128 (2/4) (<106/177)	112 (1/4) (<106/122)	128 (2/4) (<106/177)	1MM (INDICATOR) CANAL DISCHARGE 1.04 MILES SE OF SITE	0
	GAMMA MN-54	24	15	2.4 (0/12) (<1/<3)	2.4 (0/12) (<1/<3)	2.4 (0/12) (<1/<3)	1LL (CONTROL) UNITS 2 & 3 INTAKE 0.24 MILES ENE OF SITE	0
- 20 - 41 - 20 - 20 - 41 - 20	CO-58		15	2.6 (0/12) (<1/<4)	2.2 (0/12) (<1/<3)	2.6 (0/12) (<1/<4)	1MM (INDICATOR) CANAL DISCHARGE 1.04 MILES SE OF SITE	0
	CO-60		15	2.1 (0/12) (<1/<2)	1.9 (0/12) (<1/<4)	2.1 (0/12) (<1/<2)	1MM (INDICATOR) CANAL DISCHARGE 1.04 MILES SE OF SITE	0
	FE-59		30	3.9 (0/12) (<2/<7)	3.9 (0/12) (<2/<9)	3.9 (0/12) (<2/<7)	1MM (INDICATOR) CANAL DISCHARGE 1.04 MILES SE OF SITE	0
	ZN-65		30	3.4 (0/12) (<2/<6)	3.6 (0/12) (<2/<5)	3.6 (0/12) (<2/<5)	1LL (CONTROL) UNITS 2 & 3 INTAKE 0.24 MILES ENE OF SITE	0
	ZR-95		15	5.3 (0/12) (<4/<7)	4.9 (0/12) (<3/<7)	5.3 (0/12) (<4/<7)	1MM (INDICATOR) CANAL DISCHARGE 1.04 MILES SE OF SITE	0
	NB-95		15	2.6 (0/12) (<2/<4)	2.9 (0/12) (<2/<4)	2.9 (0/12) (<2/<4)	1LL (CONTROL) UNITS 2 & 3 INTAKE 0.24 MILES ENE OF SITE	0

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F). A - 1

	NAME OF FACILITY: PEACH BOTTOM ATOMIC POWER STATION LOCATION OF FACILITY: YORK COUNTY, PA			ATION	DOCKET NUMBER: 50-277 & 50-278 REPORTING PERIOD: 2001			
				INDICATOR LOCATIONS	CONTROL	LOCATION WI	TH HIGHEST ANNUAL MEAN	
PATHWAY SAMPLED (UNIT OF MEASUREMENT)	ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	CS-134		15	2.8 (0/12) (<1/<4)	2.6 (0/12) (<2/<4)	2.8 (0/12) (<1/<4)	1MM (INDICATOR) CANAL DISCHARGE 1.04 MILES SE OF SITE	0
	CS-137		18	2.6 (0/12) (<2/<4)	2.3 (0/12) (<1/<5)	2.6 (0/12) (<2/<4)	1MM (INDICATOR) CANAL DISCHARGE 1.04 MILES SE OF SITE	0
	BA-140		60	16 (0/12) (<11/<29)	18 (0/12) (<8/<29)	18 (0/12) (<8/<29)	1LL (CCNTROL) UNITS 2 & 3 INTAKE 0.24 MILES ENE OF SITE	0
	LA-140		15	3.8 (0/12) (<2/<6)	4.0 (0/12) (<2/<7)	4.0 (0/12) (<2/<7)	1LL (CONTROL) UNITS 2 & 3 INTAKE 0,24 MILES ENE OF SITE	0
DRINKING WATER (PCI/LITER)	GROSS BETA SOLUBLE	24	4	2.3 (9/i 2) (<1.7/3.8)	2.3 (8/12) (1.6/4.4)	2.3 (9/12) (<1.7/3.8)	4L (INDICATOR) CONOWINGO DAM EL 33FT. 8.66 MILES SE OF SITE	0
	GROSS BETA INSOLUBI	.E 24	4	1.6 (0/12) (<1.0/<1.9)	1.6 (0/12) (<1.0/<1.8)	1.6 (0/12) (<1.0/<1.9)	4L (INDICATOR) CONOWINGO DAM EL 33FT. 8.66 MILES SE OF SITE	0
· · · · · · · · · · · · · · · · · · ·	TRITIUM	8	2000	126 (1/4) (<106/177)	118 (1/4) (<106/144)	126 (1/4) (<106/177)	4L (INDICATOR) CONOWINGO DAM EL 33FT. 8.66 MILES SE OF SITE	0
	GAMMA MN-54	24	15	2.5 (0/12) (<2/<4)	2.7 (0/12) (<2/<4)	2.7 (0/12) (<2/<4)	6I (CONTROL) HOLTWOOD STATION INTAKE 5.74 MILES NW OF SITE	0
	and the second	йн у Алжар -		• •	· · · · ·	1		

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F)

	NAME OF FACILITY: PE LOCATION OF FACILITY:	OMIC POWER STA	TION	DOCK				
					CONTROL	LOCATION WITH	I HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPE OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) N RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	CO-58	81	15	2.3 (0/12) (<1/<3)	2.4 (0/12) (<2/<4	2.4 (0/12) (<2/<4)	6 (CONTROL) HOLTWOOD STATION INTAKE 5.74 MILES NW OF SITE	0
	CO-60		15	2.0 (0/12) (<1/<3)	2.5 (0/12) (<1/<5)	2.5 (0/12) (<1/<5)	6I (CONTROL) HOLTWOOD STATION INTAKE 5.74 MILES NW OF SITE	0
	FE-59		30	3.4 (0/12) (<2/<6)	4.5 (0/12) (<3/<8)	4.5 (0/12) (<3/<8)	6I (CONTROL) HOLTWOOD STATION INTAKE 5.74 MILES NW OF SITE	0
	ZN-65		30	3.3 (0/12) (<1/<5)	4.3 (0/12) (<2/<8)	4.3 (0/12) (<2/<8)	6I (CONTROL) HOLTWOOD STATION INTAKE 5.74 MILES NW OF SITE	0
	ZR-95		15	4.9 (0/12) (<3/<7)	5.7 (0/12) (<3/<8)	5.7 (0/12) (<3/<8)	6I (CONTROL) HOLTWOOD STATION INTAKE 5,74 MILES NW OF SITE	0
	NB-95		15	2.7 (0/12) (<2/<4)	3.1 (0/12) (<2/<5)	3.1 (0/12) (<2/<5)	6I (CONTROL) HOLTWOOD STATION INTAKE 5.74 MILES NW OF SITE	0
n na mara	CS-134		15	2.6 (0/12) (<2/<4)	3.0 (0/12) (<2/<4)	3.0 (0/12) (<2/<4)	6I (CONTROL) HOLTWOOD STATION INTAKE 5.74 MILES NW OF SITE	0
an an Car 1897 - An Ardan An 1997 - An	CS-137		18	2.4 (0/12) (<1/<4)	3.0 (0/12) (<2/<5)	3.0 (0/12) (<2/<5)	6I (CONTROL) HOLTWOOD STATION INTAKE 5.74 MILES NW OF SITE	0
	and the second	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			•		A_{1} (A_{2}	

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

NAME OF FACILITY: PEACH BOTTOM ATOMIC POWER STA LOCATION OF FACILITY: YORK COUNTY, PA				TION			50-277 & 50-278 2001	
				INDICATOR LOCATIONS		LOCATION WIT	TH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPE OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	BA-140		60	15 (0/12) (<7/<24)	18 (0/12) (<9/<26)	18 (0/12) (<9/<26)	6I (CONTROL) HOLTWOOD STATION INTAKE 5.74 MILES NW OF SITE	0
	LA-140		15	3.4 (0/12) (<2/<5)	3.3 (0/12) (<2/<5)	3.4 (0/12) (<2/<5)	4L (INDICATOR) CONOWINGO DAM EL 33FT. 8.66 MILES SE OF SITE	0
BOTTOM FEEDER (FISH) GAMMA	4						
	29 29		Ņ/A	2740 (2/2) (2568/2911)	2521 (2/2) (2328/2714)	2740 (2/2) (2568/2911)	4 (INDICATOR) CONOWINGO POND BELOW DISCHARGE	0
	MN-54		130	7.7 (0/2) (<7/<8)	7,1 (0/2) (<7/<8)	7.7 (0/2) (<7/<8)	4 (INDICATOR) CONOWINGO POND BELOW DISCHARGE	0
	CO-58		130	7.2 (0/2) (<7/<7)	6.5 (0/2) (5.5/7.4)	7.2 (0/2) (<7/<7)	4 (INDICATOR) CONOWINGO POND BELOW DISCHARGE	0
	CO-60		130	5.6 (0/2) (<4/<7)	6.5 (0/2) (<6/<7)	6.5 (0/2) (<6/<7)	6 (CONTROL) HOLTWOOD POND UPSTREAM OF INTAKE	0
	FE-59		260	15 (0/2) (<15/<16)	15 (0/2) (<11/<19)	15 (0/2) (<15/<16)	4 (INDICATOR) CONOWINGC POND	0
	ZN-65		260	13 (0/2) (<12/<13)	13 (0/2) (<11/<14)	13 (0/2). (<11/<14)	6 (CONTROL) HOLTWOOD POND UPSTREAM OF INTAKE	0
					1. A.			

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

	NAME OF FACILITY: PE LOCATION OF FACILITY:	ION DOCKET NUMBER: 50-277 REPORTING PERIOD: 200			50-277 & 50-278 2001	-277 & 50-278		
				INDICATOR	CONTROL	LOCATION WIT	H HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPE OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED
								MEASUREMENTS
	CS-134		130	7.6	9.2	9,2	6 (CONTROL)	0
			t .	(0/2) (<6/<9)	(0/2) (<8/<11)	(0/2) (<8/<11)	HOLTWOOD POND UPSTREAM OF INTAKE	-
	CS-137		150	7.0	6.2	7.0	4 (INDICATOR)	0
			$F_{ij}(t)$	(0/2) (<6/<8)	(0/2) (<6/<7)	(0/2) (<6/<8)	CONOWINGO POND BELOW DISCHARGE	
PREDATOR (FISH) (PCI/KG WET)	GAMMA K-40	4	N/A	3197 (2/2) (3161/3232)	2857 (2/2) (2770/2942)	3197 (2/2) (3161/3232)	4 (INDICATOR) CONOWINGO POND BELOW DISCHARGE	0
	MN-54		130	7.8 (0/2) (<6/<10)	7 (0/2) (<5/<9)	7.8 (0/2) (<6/<10)	4 (INDICATOR) CONOWINGO POND BELOW DISCHARGE	0
	CO-58		130	8.8 (0/2)	9.6 (0/2)	9.6 (0/2)	6 (CONTROL) HOLTWOOD POND	0
				(<0/<9)	(<10/<10)	(<10/<10)	UPSTREAM OF INTAKE	
	CO-60		130	7.1 (0/2) (<7/<7)	6.9 (0/2) (<6/<8)	7.1 (0/2)	4 (INDICATOR) CONOWINGO POND	0
			a a second de la composición de la comp		(-0/-0)	(-11-1)	BELOW DISCHARGE	
an an taon an An an taon an	FE-99		260	13 (0/2) (<12/<15)	19 (0/2) (<18/<19)	19 (0/2) (<18/<19)	6 (CONTROL) HOLTWOOD POND UPSTREAM OF INTAKE	0
and an	ZN-65		260	12 (0/2) (<10/<14)	14 (0/2) (<14/<15)	14 (0/2) (<14/<15)	6 (CONTROL) HOLTWOOD POND UPSTREAM OF INTAKE	0
	1	• • • • • • • • •				1 x _1		

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F). A - 5

MEDIUM OR PETHWAY SAMPLED (UNIT OF MANLYSES PERFORMED NUMBER OF AWALYSES PERFORMED NUMBER OF AWALYSES PERFORMED NUMBER OF AWALYSES PERFORMED NUMBER OF CONTROL OF DETECTION CONTROL MEAN (RANGE LOCATIONS MEAN (RANGE LOCATIONS MEAN (RANGE LOCATION WITH HIGHEST ANNUAL MEAN MEAN (RANGE NUMBER OF RANGE NUMBER OF MEAN (RANGE 0 SC134 130 78 78 78 78 6 (CONTROL) DISTANCE AND DIRECTION (LD) 0 0 SC134 130 78 78 78 6 (CONTROL) HOLTWOOD POND 0 0 SC137 150 73 (22) (02) (02) (02) (02) 0 0 SC137 150 73 (23) (02) (02) (02) UPSTREAM OF INTAKE 0 SILT (PCUKG DRY) GAMMA (40) 6 N/A 16783 9199 22076 4T (NDICATOR) CONVINGO FOND NEAR DAM 0 CO-58 N/A 35 27 37 4T (INDICATOR) CONVINGO FOND NEAR DAM 0 CO-60 N/A 36 15 41 4T		NAME OF FACILITY: PI LOCATION OF FACILITY:	TION		ET NUMBER:	50-277 & 50-278 2001			
MEDIUM OK MEAN (INT OF MAILYSES ENFORMED NUMBER OF PARFORMED REQUIRED ANALYSES PERFORMED NUMBER OF PARFORMED REQUIRED MEAN MEAN (F) MEAN (F)	MEDUNAGO				INDICATOR LOCATIONS		LOCATION WITH	H HIGHEST ANNUAL MEAN	
CS-134 130 7.8 (0/2) (7/<65)	MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPE OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
CS-137 150 7.3 (D/2) (S7/40) 8.6 (D/2) (S7/40) 9.6 (D/2) (S7/40) 6 (D/2) (S7/40) CONTROL (S4/9) 0 SILT (PC//KG DRY) GAMMA K-40 6 N/A 16783 (44) (11533/23482) 9199 (2/2) (2/2) 2297 8 (2/2) 4T (S00WINGO POND NEAR DAM CONWINGO POND NEAR DAM (2/2) 0 C0-58 N/A 35 (0/4) (1533/23482) 27 (0/2) (1533/2482) 37 (2/2) 4T (S00WINGO POND NEAR DAM CONWINGO POND NEAR DAM (2/2) 0 C0-60 N/A 36 (0/4) (129/3) 15 (0/2) (14/16) 41 (0/2) (29/53) 4T (NDICATOR) CONWINGO POND NEAR DAM (NDICATOR) (NDICATOR) (NDICATOR) 0 C0-60 N/A 38 (0/4) (129/1 15 (0/2) (14/16) 41 (0/2) (29/53) 4T (NDICATOR) (NDICATOR) (NDICATOR) 0 CS-134 150 150 (0/4) (19/7) 150 (0/2) (19/7) 39 (0/2) (19/2) 20 (0/2) (19/2) 4T (NDICATOR) (NDICATOR) (NDICATOR) 0 AIR PARTICULATE (E-3 PCI/CUL METER) GROSS BETA 259 10 21 (20/20) (19/20) 20 (52/52) 22 (52/52) 18 (NDICATOR) (NDICATOR) 0		CS-134		130	7.8 (0/2) (<7/<8)	7.8 (0/2) (<5/<10)	7.8 (0/2) (<5/<10)	6 (CONTROL) HOLTWOOD POND UPSTREAM OF INTAKE	0
SILT (PCI/KG DRY) GAMMA K-40 6 VA 16783 (4/4) (10593/23482) 9199 (2/2) (3711/9686) 22978 (2/2) (2/2) (2/2) (3711/9686) 4T CONWINGO POND NEAR DAM CONWINGO POND NEAR DAM (2/2) (2/2/ 4/23482) 0 C0-58 N/A 35 (0/4) (30/<43)		CS-137		150	7.3 (C/2) (<7/<8)	8.6 (0/2) (<8/<9)	8.6 (0/2) (<8/<9)	6 (CONTROL) HOLTWOOD POND UPSTREAM OF INTAKE	0
CO-58 N/A 35 (0/4) (<30/<43)	SILT (PCI/KG DRY)	GAMMA K-40	6	N/A	16783 (4/4) (10533/23482)	9199 (2/2) (3711/9686)	22978 (2/2) (22474/23482)	4T (INDICATOR) CONOWINGO POND NEAR DAN 7.92 MILES SE OF SITE	0
CO-60 N/A 38 (0/4) (<29/<53)		CO-58		N/A	35 (0/4) (<30/<43)	27 (0/2) (18/36)	37 (0/2) (30/43)	4T (INDICATOR) CONOWINGO POND NEAR DAN 7.92 MILES SE OF SITE	0
CS-134 150 50 35 62 4T (INDICATOR) 0 (0/4) (0/2) (0/2) (0/2) (0/2) (0/2) CONOWINGO POND NEAR DAM 0 CS-137 180 139 70 209 4T (INDICATOR) 0 AIR PARTICULATE GROSS BETA 259 10 21 20. 22 18 (INDICATOR) 0 (E-3 PCI/CU_METER) CROSS BETA 259 10 21 20. 22 18 (INDICATOR) 0 (4/38) (9/49) (4/38) (11/49) 0.49 MILES NW OF SITE 0		CO-60		N/A	38 (0/4) (<29/<53)	15 (0/2) (14/16)	41 (0/2) (29/53)	4T (INDICATOR) CONOWINGO POND NEAR DAN 7.92 MILES SE OF SITE	0
CS-137 180 139 (4/4) (56/227) 70 (2/2) (60/81) 209 (2/2) (192/227) 4T (INDICATOR) CONOWINGO POND NEAR DAM 7.92 MILES SE OF SITE 0 AIR PARTICULATE (E-3 PCI/CUL METER) GROSS BETA 259 10 21 (207/207) (52/52) 20 (52/52) 22 18 (INDICATOR) 0 AIR PARTICULATE (E-3 PCI/CUL METER) GROSS BETA 259 10 21 (207/207) (9/49) 20 (52/52) 22 18 (INDICATOR) 0		CS-134		150	50 (0/4) (<37/<81)	35 (0/2) (18/53)	62 (0/2) (43/81)	4T (INDICATOR) CONOWINGO POND NEAR DAN 7.92 MILES SE OF SITE	0
AIR PARTICULATE GROSS BETA 259 10 21 20 22 1B (INDICATOR) 0 (E-3 PCI/CU. METER) (207/207) (52/52) (52/52) (52/52) WEATHER STATION NO.2 0 (9/49) (4/38) (11/49) 0.49 MILES NW OF SITE	* *	CS-137		180	139 (4/4) (56/227)	70 (2/2) (60/81)	209 (2/2) (192/227)	4T (INDICATOR) CONOWINGO POND NEAR DAN 7.92 MILES SE OF SITE	0
	AIR PARTICULATE (E-3 PCI/CU. METER)	GROSS BETA	259	10 e	21 ; (207/207) (9/49)	20 (52/52) (4/38)	22 (52/52) (11/49)	1B (INDICATOR) WEATHER STATION NO.2 0.49 MILES NW OF SITE	0

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

NAME OF FACILITY: PEACH BOTTOM ATOMIC POWER STATION LOCATION OF FACILITY: YORK COUNTY, PA				TION	DOCKET NUMBER: 50-277 & 50-278 REPORTING PERIOD: 2001			
sa sejanji Bt				INDICATOR LOCATIONS	CONTROL LOCATION	LOCATION WI	TH HIGHEST ANNUAL MEAN	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPE OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION	MEAN (F) RANGE	MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED
	2 - 1 M			2 ⁴				MEASUREMENTS
	GAMMA	20					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
			N/A	68 (16/16) (49/93)	61 (4/4) (43/72)	72 (4/4) (49/91)	1B (INDICATOR) WEATHER STATION NO.2 0.49 MILES NW OF SITE	0
	MN-54		N/A	0.7 (16/16) (<0.5/<1.1)	0.7 (0/4) (<0.7/<0.8)	0.8 (0/4) (<0.6/<1.1)	1C (INDICATOR) SOUTH SUBSTATION ROAD 0.85 MILES SSE OF SITE	0
	CO-58		N/A	0.7 (16/16) (<0.4/<1.2)	0.9 (0/4) (<0.5/<1.5)	1.0 (0/4) (<0.7/<1:2)	1Z (INDICATOR) WEATHER STATION 1 0.26 MILES SE OF SITE	0
	CO-60		N/A	0.8	1.1:	1/1	5H2 (CONTROL)	0
	1. 1. 1 .			(16/16) (<0.6/<1.1)	(0/4) (<0.9/<1.3)	(0/4) (<0.9/<1.3)	MANOR SUBSTATION 30.79 MILES NE OF SITE	
	CS-134		50	0.8	0.8	0.9	1Z (INDICATOR)	0
				(0/16) (<0.4/<1.1)	(0/4) (<0.4/<1.5)	(0/4) (<0.9/<1.1)	WEATHER STATION 1 0.26 MILES SE OF SITE	
	CS-137		60	0.7	0.9	0.9	5H2 (CONTROL)	0
	: 	• ·	na serie de la companya d	(16/16) (<0.3/<1.1)	(0/4) (<0.5/<1.3)	(0/4) (<0.5/<1.3)	MANOR SUBSTATION 30.79 MILES NE OF SITE	
AIR IODINE (E-3 PCI/CU. METER)	I-131	259	70 • • • • • •	14 (0/20?) (<8/<26)	11 (0/52) (<4/<19)	15 (0/52) (<8/<26)	1B (INDICATOR) WEATHER STATION NO.2 0.49 MILES NW OF SITE	0
MILK (PCI/LITER)	I-131	108	1 ^{e m}	0.3 (0/75) (<0.2/<0.5)	0.3 (0/33) (<0.2/<0.4)	0.3 (0/4) (<0.3 0.4)</td <td>B (CONTROL) DISTANCE FARM B 10.58 MILES S OF SITE</td> <td>0</td>	B (CONTROL) DISTANCE FARM B 10.58 MILES S OF SITE	0
	•							

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F). A - 7

N L	AME OF FACILITY: PE OCATION OF FACILITY:	EACH BOTTOM ATOMIC POWER STA YORK COUNTY, PA			DOCKET NUMBER: 50-277 & REPORTING PERIOD: 2001		50-277 & 50-278 2001	
MEDIUM OR PATHWAY SAMPLED (UNIT OF MEASUREMENT)	TYPE OF ANALYSES PERFORMED	NUMBER OF ANALYSES PERFORMED	REQUIRED LOWER LIMIT OF DETECTION (LLD)	LOCATIONS MEAN (F) RANGE	LOCATION MEAN (F) RANGE	MEAN (F) RANGE	STATION # NAME DISTANCE AND DIRECTION	NUMBER OF NONROUTINE REPORTED MEASUREMENTS
	GAMMA K-40	28	N/A	1434 (21/21) (1309/1587)	1425 (7/7) (1356/1483)	1474 (7/7) (1410/1557)	J (INDICATOR) NEARBY FARM J 0.97 MILES W OF SITE	0
	CS-134		15	3.3 (0/21) (<2/<6)	3.5 (0/7) (<3/5)	3.6 (0/7) (<2/<5)	J (INDICATOR) NEARBY FARM J 0.97 MILES W OF SITE	0
	CS-137		18	3.5 (0/21) (<2/<7)	3.4 (0/7) (<3/<4)	3.6 (0/7) (<2/<7)	R (INDICATOR) NEARBY FARM R 0.76 MILES WSW OF SITE	0
	BA-140		60 s	17 . (0/21) . (<9/<30)	17 (0/7) (<11/<28)	19 (0/7) (<13/<26)	R (INDICATOR) NEARBY FARM R 0.76 MILES WSW OF SITE	0
	LA-140		15	3.4 (0/21) (<2/<6)	3.1 (0/7) (<2/<7)	3.5 (0/7) (<2/<4)	R (INDICATOR) NEARBY FARM R 0.76 MILES WSW OF SITE	0
DIRECT RADIATION (MILLI-ROENTGEN/STD	TLD-QUARTERLY MO.)	184	N/A	3.0 (168/168) (2.9/9.0)	6.1 (16/16) (4.7/7.7)	7.6 (4/4) (6.9/9.0)	50 (INDICATOR) TRANSCO PUMPING STATION 4.99 MILES W OF SITE	0

FRACTION OF DETECTABLE MEASUREMENTS AT SPECIFIED LOCATIONS IS INDICATED IN PARENTHESES (F).

APPENDIX B

ŝ

<u>,</u> 14

`4;

SAMPLE DESIGNATION AND LOCATIONS

.

 .

Intentionally Left Blank

Location	Location Description	Distance & Direction from PBAPS Vents
A. Surface V	Vater	
1LL	Peach Bottom Units 2 and 3 Intake - Composite (Control)	0.24 miles NE
1 MM	Peach Bottom Canal Discharge -Composite	1.04 miles SE
<u>B. Drinking (</u>	Potable) Water	
4L 6I	Conowingo Dam EL 33' MSL - Composite Holtwood Dam Hydroelectric Station - Composite (Control)	8.66 miles SE 5.75 miles NW
<u>C. Fish</u>		
4	Conowingo Pond	Located in Conowingo Pond
6	Holtwood Pond (Control)	Located in Holtwood Pond
D. Sediment		
4J	Conowingo Pond near Berkin's Run	1.39 miles SE
4⊤ 6F	Conowingo Pond near Conowingo Dam Holtwood Dam (Control)	7.92 miles SE 5.96 miles NW
E. Air Particu	late - Air Iodine	
1B 1Z 1A 1C 3A 5H2	Weather Station #2 Weather Station #1 Weather Station #1 Peach Bottom South Sub Station Delta, PA – Substation Manor Substation	0.49 miles NW 0.26 miles SE 0.26 miles SE 0.85 miles SSE 3.62 miles SW 30.79 miles NE
F. Milk – bi-w	eekly / monthly	
A J O R S	(Control)	5.78 miles WSW 0.97 miles W 2.32 miles SW 0.89 miles WSW 3.61 miles ESE
G. Milk – quar	terly	
B C D E L P T	(Control) (Control) (Control)	10.58 miles S 9.54 miles NW 3.51 miles NE 8.74 miles N 2.12 miles NE 2.08 miles ENE 3.17 miles W

.

TABLE B-1Radiological Environmental Monitoring Program – Sampling Locations, Distance and
Direction from Reactor Buildings, Peach Bottom Atomic Power Station, 2001

(1, 1) = (

Location	Location Description	Distance & Direction from PBAPS Vents		
G Environm	pental Dosimetry - TI D			
Site Boundary				
1 L	Peach Bottom Unit 3 Intake	0.24 miles NE		
1P	Tower B & C Fence	0.40 miles ESE		
1A	Weather Station #1	0.26 miles SE		
1Q	Tower D & E Fence	0.62 miles SE		
1D	140° Sector	0.67 miles SE		
2	Peach Bottom 130° Sector Hill	0.88 miles SE		
1 M	Discharge	1.03 miles SE		
1R 1	Transmission Line Hili	0.53 miles SSE		
11	Peach Bottom South Substation	0.54 rniles SSE		
1C	Peach Bottom South Substation	0.85 miles SSE		
1J	Peach Bottom 180° Sector Hill	0.71 miles S		
1F	Peach Bottom 200° Sector Hill	0.51 miles SSW		
40	Peach Bottom Site Area	1.46 miles SW		
1NN	Peach Bottom Site	0.48 miles WSW		
1H	Peach Bottom 270° Sector Hill	0.59 miles W		
1G	Peach Bottom North Substation	0.60 miles WNW		
1B	Weather Station #2	0.49 miles NW		
1E	Peach Bottom 350° Sector Hill	0.59 miles NNW		
Intermediate Dista	ance			
15	Silver Spring Rd	3.68 miles N		
22	Eagle Road	2.39 miles NNE		
44	Goshen Mill Rd	5.07 miles NE		
32	Slate Hill Rd	2.75 miles ENE		
45	PB-Keeney Line	3.38 miles ENE		
14	Peters Creek	1.97 miles E		
1/	Riverview Rd	4.07 miles ESE		
31A	Eckman Rd	4.57 miles SE		
4K	Conowingo Dam Power House Roof	8.61 miles SE		
23	Peach Bottom 150" Sector Hill	1.01 miles SSE		
27	N. Cooper Road	2.68 miles S		
48	Macton Substation	4.99 miles SSW		
3A	Delta, PA Substation	3.62 mileš SW		
49	PB-Conastone Line	4.05 miles WSW		
50	RANSCO Pumping Station	4.99 miles W		
51	Fin Substation	3.98 miles WNW		
26	Slab Road	4.23 miles NW		
6B	Holtwood Dam Power House Roof	5.78 miles NW		
42	Muddy Run Environ. Laboratory	4.13 miles NNW		
Distant and Specia	al Interest			
28	Burk Property	0.71 miles SSE		
43	Drumore Township School			
40 5	Makafiald PA			
16	Nottinghom DA Substation (Castal)			
24	Herrieville, MD Substation (Control)			
24	Darrisville, IVID Substation (Control)	TU.91 miles ESE		
46	Broad Creek	4.48 miles SSE		
4/	Broad Greek Scout Camp	4.26 miles S		
18	Fawn Grove, PA (Control)	9.86 miles W		
19	Red Lion, PA (Control)	20.21 miles WNW		

Radiological Environmental Monitoring Program – Sampling Locations, Distance and Direction from Reactor Buildings, Peach Bottom Atomic Power Station, 2001 TABLE B-1

TABLE B-2 Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methodologies, Peach Bottom Atomic Power Station, 2001 Power Station, 2001

Sample	Analysis	Sampling Mothod	Collection Descentions March		
Medium			Collection Procedure Number	Sample Size	Analytical Procedure Number
Surface Water	Gamma Spectroscopy	Monthly composite from a continuous water compositor.	RMC-ER15 Collection of water samples for radiological analysis (Peach Bottom Atomic Power Station)	2 gallon	Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy TBE, PRO-042-5 Determination of gamma emitting
Surface Water:	Tritium	Quarterly composite from a continuous water compositor.	RiMC-ER15 Collection of water samples for radiological analysis (Peach Bottom Atomic Power Station)	500 ml	radioisotopes Env. Inc., T-02 Determination of tritium in water (direct method)
Drinking Water	Gross Beta	Monthly composite from a continuous water compositor	RMC-ER15 Collection of water samples for radiological analysis (Peach Bottom Atomic Power Station)	2 gàllon	Env. Inc., W(DS)-01 Determination of gross alpha and/or gross beta in water (dissolved solids or total residue) Env. Inc., W(SS)-02 Determination of gross alpha and/or gross beta in water (suspended solids) TBE, PRO-032-41 Gross Alpha and/or gross beta activity in water samples (suspended and dissolved
Drinking Water	Gamma Spectroscopy	Monthly composite from a continuous water compositor.	RMC-ER15 Collection of water samples for radiological analysis (Peach Bottom Atomic Power Station)	2 gallon	Tractions) Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy TBE, PRO-042-5 Determination of gamma emitting
Drinking Water	Tritium	Quarterly composite from a continuous water compositor.	RMC-ER15 Collection of water samples for radiological analysis (Peach Bottom Atomic Power Station)	500 mi	radioisotopes Env. Inc., T-02 Determination of tritium in water (direct method)
Fish	Gamma Spectroscopy	Semi-annual samples collected via electroshocking or other techniques	RMC-ER3 Collection of fish samples for radiological analysis (Peach Bottom Atomic Power Station)	1000 grams (wet)	Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Sediment	Gamma Spectroscopy	Semi-annual grab samples	RMC-ER2 Collection of sediment samples for radiological analysis (Peach Bottom Atomic Power Station)	500 grams (dry)	Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy
Air Particulates	Gross Beta	One-week composite of continuous air sampling through glass fiber filter paper	RMC-ER16 Collection of air particulate and air iodine samples for radiological analysis (Peach Bottom Atomic Power Station)	1 filter (approximately 280 cubic meters weekly)	Env. Inc., AP-02 Determination of gross alpha and/or gross beta in air particulate filters TBE, PRO-032-10 Gross beta and/or alpha activity in air particulate filters (direct count method)

1

 TABLE B-2
 Radiological Environmental Monitoring Program – Summary of Sample Collection and Analytical Methodologies, Peach Bottom Atomic

 Power Station, 2001

Sample	Analysis	Sampling Method	Collection Procedure Number	Sample Size	Applicial Dependent Munit
Medium				Sample Size	Analytical Procedure Number
Air Particulates	Gamma Spectroscopy	Quarterly composite of each station	Env. Inc., AP-03 Procedure for compositing air particulate filters for gamma spectroscopic analysis	13 filters (approximately 3600 cubic meters)	Env. Inc., GS-01 Determination of gamma emitters by gamma spectroscopy TBE, PRO-042-5 Determination of gamma emitting
Air Iodine	Gamma Spectroscopy	One-week composite of continuous air sampling through charcoal filter	RMC-ER8 Collection of air particulate and air iodine samples for radiological analysis (Limerick Generating Station)	1 filter (approximately 280 cubic meters weekly)	radioisotopes Env. Inc., I-131-02 Determination of I-131 in charcoal canisters by gamma spectroscopy (batch method)
Milk	-131	Bi-weekly grab sample when cows are on pasture. Monthly all other times	RMC-ER10 Collection of milk samples for radiological analysis (Limerick Generating Station)	2 galion	Env. Inc., I-131-01 Determination of I-131 in milk by anion exchange TBE, PRO-032-20 Radiometric determination of I-131 by the beta commo coincidence counting to be the
Milk	Gamma Spectri scopy	Bi-weekly grab sample when cows are on pasture. Monthly all other times	RMC-ER10 Collection of milk samples for radiological a nalysis (Limerick Generating Station)	2 gallon	Env. inc., GS-01 Determination of gamma emitters by gamma spectroscopy TBE, PRO-042-5 Determination of gamma emitting radioisotones
TLD	Thermoluminescence Dosimetry	Quarterly TLDs comprised of two Panasonic 814 (containing 3 each CaSO ₄ elements)	RMC-ER9 (ollection of TLD samples for radiological enalysis (Limerick Generating Station)	2 dosimeters	ICN Pharmaceutical

4

۲.

.

. 1

...

.

Figure B-1 Environmental Sampling Locations Within One Mile of the Peach Bottom Atomic Power Station, 2001

. .

Figure B-3 Environmental Sampling Locations Greater Than Five Miles from the Peach Bottom Atomic Power Station, 2001

,

.

Intentionally Left Blank

.

APPENDIX C

DATA TABLES AND FIGURES PRIMARY LABORATORY

۰₃

.

. .

TABLE C-I.1CONCENTRATIONS OF TRITIUM IN SURFACE WATER SAMPLES COLLECTED
IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

COLLECTION PERIOD		1LL		1MM	
JAN-MAR	<	107		116 ± 59	
APR-JUN	<	106	<	106	
JUL-SEP		122 ± 67		177 ± 69	
OCT-DEC	<	113	<	113	
MEAN		112 ± 15		128 ± 66	

RESULTS IN UNITS OF PCI/LITER +/- 2 SIGMA

TABLE C-I.2CONCENTRATIONS OF GAMMA EMITTERS IN SURFACE WATER SAMPLES COLLECTED IN
THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

STC	PERIOD		Mn-54		Co-58		Fe-59		Co-60		Zn-65		Zr-95		NI	b-95	c	s-134		Cs-137		Ba-140	1	n 140
1LL	JAN	<	3	<	2	<	9	<	3	<	4	<	6		-	4						Da-140		.a-140
	FEB	<	1	· <	1	<	2	<	1	<	3	-	3		2	4		3	<	5	<	19	<	7
	MAR	<	2		2		2				Ŭ.	~	J .			Z	<	2	<	1	<	8	<	2
	APR	è	2	2	3	2	3	<	2	<	4	<	6		<	3	<	3	<	2	<	19	<	4
	MAY	2	2		3	<	2	<	2	<	3	<	6		<	4	<	2	<	3	<	29	<	4
	ILINI	2	2		2	<	2	<	2	<	2	<	5 ' '		<	3	<	3	<	2	<	17	<	3
		2	<u></u> з	٢.	3	<	5	<	3	<	5	<	7 "		<	3	<	4	<	2	<	23	< l	4
			3	<	3	<	4	<	2	<	3	<	4		<	4	<	2	<	3	<	25	è	4
	AUG SED	<	3	< .	3	<	5	<	2	<	4	<	5		<	4	<	3	<	2	<	16	2	3
	OCT	<	1	<	1	<	3	<	1	<	3	<	3 ·		<	2	<	2	<	1	-	10	2	5
		<	3	<	3	<	4	<	4	<	5	<	7		<	2	<	3	ć	2		22	2	· ວ
	NOV	<	3	<	2	<	5	<	2	<	4	<	4		<	2	<	2	~	2		15	2	3
	DEC	<	2	<	2	<	3	<	2	<	3	<	3 -		<	2	<	2	2	2	-	10.	<	6
													-			-	-	2		2		0	<	3
MEAN			2±1		2±1		4±4		2±1		4±2		5 ± 3			3±2		3±1		2+2		18+13		4+3
1MM																				~		101 10		410
	JAN	<	3	· <	4	~	3	~	2		2		<u> </u>			_								
	FEB	<	3 '	e e	3	2	6		2	5	3	< _	(<	2	<	4	<	3	<	15	<	4
	MAR	<	2	۲.	2	Ż	4		2	< -	5	< .	(<	2	<	3	<	3	<	15	<	4
	APR	<	3	27	2	2	4	2	2	۲.	3	<	6	` ;	<	2	<	2	<	2	<	13	<	3
	MAY	<	à		2)	4	2	2	<	4	<	(<	3	<	4	<	2	<	13	< ·	4
	JUN	è	3		2	2	0	<u>د</u>	2	<	4	<	4		<	3	<	2	<	3	<	11	<	3
		2	5				3	<	2	<	2	<	7		<	3	<	3	<	3	<	20	<	2
	AUG	2	4		2	<	3	<	2	<	4	<	6		<	4	<	3	<	2	<	12 -	<	5
			4		3	<	4	<	2	<	5	< `	4		<	3	<	3	<	3	<	15	<	2
	OCT		2.	< . ;	1	<	2	<	2	<	2	<	4		<	2	<	1	<	2	<	24	<	6
	NOV	<	3	. * 22	3	<	/	<	2	<	3	<	5		<	3	<	2	<	4	<	29	<	5
		<	2	<	. 2	<	4	<	1	<	3	<	5		<	2	<	3	<	4	<	15	-	5
	DEC	<.	2	<	· 1	<	2	<	2	<	2	<	5		<	2	<	2	<	2	<	15	<	2
			2±1	:.	3+2		4+3		2+1		3+0	•		1.		a								
MEAN							, 10		4 1 1		JIZ		or2			3±1		3±1		3±1		16±10		4±3
			Ð																					
				~																				

RESULTS IN UNITS OF PCI/LITER +/- 2 SIGMA

TABLE C-II.1 CONCENTRATIONS OF GROSS BETA INSOLUBLE IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

			•					
COLLECTION PERIOD		4L		61				
JAN	<	1.3	<	1.6				
FEB	· <	1.7	<	1.8				
MAR	<	1.6	. <	1.7				
APR	<	1.7	<	1.7				
MAY	<	1.7		1.4				
JUN	<	1.9	<	1.8				
JUL	<	1.8	<	1.8				
AUG	< 1	1.5	<	1.5				
SEP	<	1.2	<	1.2				
OCT	<	1.8	· <	1.8				
NOV	<	1.0	<	1.0				
DEC	<	1.7	<	1.5				
MEAN		1.6 ± 0.5	1 A .	1.6 ± 0.5				

RESULTS IN UNITS OF PCI/LITER +/- 2 SIGMA

TABLE II.2CONCENTRATIONS OF GROSS BETA SOLUBLE IN DRINKING WATER SAMPLES
COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

. .

1.2

COLLECTION	4L	61	
PERIOD	1. W.C. 19	N N	
JAN	2.2 ± 0.9	2.6 ± 1.0	
FEB	1.9 ± 0.5	[™] 1.7 ± 0.5	
MAR	2.0 ± 0.9	1.7 ± 0.6	
APR	< 1.7	< 1.9	
MAY	< 1.9	2.6 ± 1.0	
JUN	1.9 ± 1.0	1.6 ± 0.9	
JUL	< 1.7	< 1.9	
AUG	2.7 ± 0.9	3.0 ± 0.9	
SEP	3.8 ± 0.6	4.4 ± 0.8	
OCT	2.5 ± 1.0	< 1.8	a giri a s
NOV	3.1 ± 0.7	2.9 ± 0.7	
DEC	2.4 ± 0.9	< 1.7	,
MEAN	2.3 ± 1.3	2.3 ± 1.7	

RESULTS IN UNITS OF PCI/LITER +/- 2 SIGMA

TABLE II-3CONCENTRATIONS OF TRITIUM IN DRINKING WATER SAMPLES COLLECTED
IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

RESULTS IN UNITS OF PCI/LITER +/- 2 SIGMA

COLLECTION		4L	61		
PERIOD					
JAN-MAR	<	106	<	106	
APR-JUN	<	107	<	107	
JUL-SEP		177 ± 69		144 ± 68	
OCT-DEC	<	113	<	113	
MEAN		126 ± 69	÷	118 ± 36	

:

3 TABLE C-II.4 CONCENTRATIONS OF GAMMA EMITTERS IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

STC	COLLECTION PERIOD		Mn-54		Co-58		Fe-59		Co-60		Zn-65		Zr-95		Nb-95	Ċ	Cs-134				Ba 140		a 140
4L	JAN	<	2	<	2	<	2	<	1	<	2	~	5		3							ـــــــــــــــــــــــــــــــــــــ	.d-140
	FEB	<	3	<	2	<	2	<	3	<	2	ć	5	2	3		2	<	3	<	11	<	4
	MAR	<	2	<	1	<	6	<	3	ć	2	2	3	-	3	< .	3	<	3	<	14	<	3
	APR	<	3	<	3	<	2	<	2	ż	2	2	7	-	2	<	2	<	1	<	10	<	3
	MAY	<	2	<	2	<	2	<	1		7	2	1		3	<	4	<	2	<	13	<	4
	JUN	<	2	<	3	<	5	<	2	Ž	5		4	~	3	<	2	<	2	<	7	<	2
	JUL	<	3	<	3	<	4	è	2	2	5		0		2	<	3	<	2	<	20	<	3
	AUG	<	2	<	. 2	<	3	,	1		1		0	<	4	<	3	<	2	<	15	<	5
	SEP	<	2	<	2	<	3	è	1	Ż	4	~	1	<	4	<	2	<	4	<	14	<	3
	OCT	<	3	<	2	<	5	è	2	2	2	2	4	<	2	<	2	<	2	<	24	<	4
	NOV	<	3	<	3	<	3	è	1	Ì	3		5	<	2	<	2	<	2	<	20	<	4
	DEC	<	4	<	1	<	4	Ż	3	~	5		5	<	2	<	2	<	3	<	20	<	3
					•		7	-	J .	•	5	<	5	<	2	<	3	<	3	<	17	<	4
MEAN			3±1		2±1		3±3		2±1		3±3		5±2		3±1		3±1		2±1		15±10		3±2
61	IAN		з	~	4		0		4		_		_										
	FFB		1	2	7		0	<	4	<	5	<	8	<	5	<	4	<	4	<	24	<	3
	MAR	2	7	2	2	<u>د</u>	5	. <	5	<	4	<	6	<	3	<	4	<	5	<	26	<	5
			2		2	<	3	<	1	<	5	<	4	<	3	<	4	<	3	<	15	<	3
			4	<u> </u>	2	<	3	<	2	<	4	<	6	<	3	<	4	<	3	<	19	<	3
	11.161	2	3	<	2	<	6	<	1	<	3	<	8	<	4	<	3	<	3	<	18	<	3
		<u> </u>	3	<	2	<	4	<	3	<	8	<	5	<	4	<	3	<	2	<	25	<	3
	JUL	< .	3	<	2	<	4	<	2	<	2	<	6	<	4	<	2	<	3	<	23	<	3
	AUG	~	3	<	2	<	4	<	3	<	6	<	6	<	4	<	3	<	3	<	16	<	5
	SEP	<	2	<	2	<	4	<	1	<	3	<	6	<	3	<	2	<	2	<	12	<	5
		<	3	< .	4	<	3	<	3	<	6	<	5	<	3	<	3	<	4	<	21	<	3
	NOV	<	2	<	2	<	5	<	2	<	3	<	6	<	3	<	2	<	2	<	1.3	<	2
	DEC	<	2	<	3	<	5	<	2	<	3	<	3	<	2	<	2	<	2	<	9	<	3
MEAN	· · · · ·		3±2		2±1		4±3		2±2		4±3		6±3		3±2		3±1		3±2		18±11		3±2

RESULTS IN UNITS OF PCI/LITER +/- 2 SIGMA

1.19.40

TABLE C-III.1

CONCENTRATIONS OF GAMMA EMITTERS IN PREDATOR AND BOTTOM FEEDER FISH SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

RESULTS IN UNITS OF PCI/KG WET +/- 2 SIGMA

STC	COLLECTION PERIOD	K-40	Mn-54	Co-58	Fe-59	Co-60	Zn-65	Cs-134	Cs-137
4	PREDATOR (FISH) 06/19 - 06/19/01 10/24 - 10/24/01	3161 ± 188 3232 ± 213	< 6 < 10	< 8 < 9	< 12 < 15	< 7 < 7	< 14 < 10	< 7 < 9	< 7
	MEAN	3197 ± 100	8±5	9 ± 2	13 ± 3	7	12 ± 6	8 ± 2	7±1
	BOTTOM FEEDER (FISH)					÷			
	06/18 - 06/18/01 10/24 - 10/24/01	2568 ± 177 2911 ± 216	< 8 < 7	< 7	< 15 < 16	< 4 < 7	< 13 < 12	< 6 < 9	< 6 < 8
	MEAN	2740 ± 485	8±2	7	15 ± 1	6 ± 5	13 ± 2	8 ± 5	7±2
6	PREDATOR (FISH)		(<u>)</u>						
	06/21 - 06/21/01 10/24 - 10/24/01	2772 ± 237 2942 ± 256	< 5 < 9	< 10 < 10	< 19 < 18	< 8 < 6	< 14 < 15	< 5 < 10 ⁻	< 8 < 9
	MEAN	2857 ± 240	7±5	10	19 ± 2	7 ± 2	14 ± 2	8 ± 7	9±1
	BOTTOM FEEDER (FISH)		· · ·				* •		
	06/18 - 06/18/01	2328 ± 234	< 8	< 7	< 19	< 7	< 11	< 11	< 7
		2/14 1 104	S · 1	< 0	< 11	< 6	< 14	< 8	< 6
	Mean	2521 ± 546	. 7±1	6±3	15 ± 11	7 ± 1	13 ± 4	9±5	6±1
				· · ·					
		· .			•				

and the second second

A set of a set of

TABLE C-IV.1 CONCENTRATIONS OF GAMMA EMITTERS IN SILT SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

STC	COLLECTION PERIOD	K-40	C	0-58	0	0-60	С	s-134	Cs-13	37
4J	06/20/2001	10,591 ± 905	<	33	<	33	<	38	83	± 37
	10/22/2001	10,583 ± 782	<	36	<	38	<	37	56	± 25
	MEAN	10,587 ± 11		34 ± 5		35 ± 7		38 ± 1	70	± 39
4T	06/20/2001	22,474 ± 1,662	<	30	<	53	<	81	227	± 59
	10/22/2001	23,482 ± 1,399	<	43	<	29	<	43	192	± 47
	MEAN	22,978 ± 1426		37 ± 19		41 ± 35		62 ± 54	209	± 49
6F	06/20/2001	8,711 ± 874	<	36	<	16	<	53	60.	± 35
	10/22/2001	9,686 ± 643	<	18	<	14	<	18	81	± 25
	MEAN	9,199 ± 1,379		27 ± 25		15 ± 3		35 ± 50	70	± 30

RESULTS IN UNITS OF PCI/KG DRY +/- 2 SIGMA

TABLE C-V.1

.

CONCENTRATIONS OF GROSS BETA IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

Sec. Sec. 2 RESULTS IN UNITS OF E-3 PCI/CU METER +/- 2 SIGMA

•

2

		GROUP I		GROUP II	GROUP III
WEEK NO	1B	1Z	2	3A	5H2
1	18 ±3	16 ± 3	15 ± 3	15 ±3	19 ± 4
2	25 ± 4	24 ± 4	28 ± 4	23 ± 3	18 ±3
3	25 ± 4	25 ± 4	24 ± 4	22 ± 4	13 ± 4
4	32 ± 4	31 ±4	31 ± 4	31 ± 4	27 ± 4
5	23 ± 4	19 ± 4	18 ± 4	16 ± 4	19 ± 4
6	17 ±4	20 ± 4	21 ± 4	21 ± 4	16 ± 4
7	15 ±4	15 ±4	16 ±4	16 ± 4	19 ± 4
8	30 ± 4	23 ± 4	27 ± 4	27 ± 4	22 ± 4
9	25 ± 4	21 ± 4	22 ± 4	21 ± 4	19 ± 4
10	15 ±3	16 ± 3	15 ± 3	15 ±3	8 ±3
11	15 ±4	14 ± 4	15 ±3	15 ± 4	8 ±3
12	11 ± 3	13 ±3	11 ±3	15 ±3	14 ± 3
13	14 ± 3	17 ± 3	16 ± 3	22 ± 4	10 ±3
14	12 ± 3	13 ± 3	14 ± 3	12 ± 3	15 ± 3
15	11 ±3	11 ± 3	13 ± 3	13 ± 3	16 ± 3
16	17 ± 3	18 ± 3	18 ± 3	18 ± 3	22 ± 4
17	30 ± 4	23 ± 4	26 ± 4	23 ± 4	21 ± 4
18	36 ± 5	30 ± 4	33 ± 4	29 ± 4	29 ± 4
19	21 ± 3	10 ± 3	18 ± 3	18 ± 3	14 ± 3
20	17 ± 4	11 ± 3	12 ± 3	16 ± 4	10 ±4
21	11 ± 3	10 ± 3	12 ± 3	9 ± 3	4 ±0
22	12 IJ	13 ± 3	15 ± 3	15 ± 3	14 ±5
23	13 ± 3	13 ± 3 25 ± 3	12 ± 3	13 ± 3 24 ± 2	23 ± 5
24	24 IJ 18 + A	20 ± 3 21 ± 4	30 ± 5 10 ± 5	24 IJ 22 + 4	23 ± 4
26	17 + 3	21 ±4 17 +3	19 ± 5	22 I 4 20 + 3	10 ± 4 25 ± 4
20	16 ± 3	16 ± 3	18 + 3	17 + 3	25 ±4 15 ±3
28	21 + 3	19 + 3	18 + 3	17 + 3	14 + 3
29	19 + 4	17 + 4	16 +4	17 + 3	17 + 4
30	18 ± 3	17 ± 3	17 ± 3	18 ± 3	11 + 3
31	15 ± 3	13 ± 3	14 ± 3	13 ± 3	18 ± 3
32	35 ± 4	32 ± 4	31 ± 4	24 ± 4	34 ± 4
33	24 ± 4	18 ±3	(1)	22 ± 3	27 ± 4
34	28 ± 4	29 ± 4	27 ± 4	27 ± 4	21 ± 4
35	29 ± 4	27 ± 3	29 ± 4	28 ± 3	48 ±6
36	24 ± 3	19 ± 3	23 ± 3	18 ± 3	20 ± 3
37	23 ± 3	19 ± 3	20 ± 3	24 ± 3	25 ± 4
38	29 ± 5	28 ± 5	27 ±5	26 ± 4	29 ± 4
39	24 ± 4	21 ± 3	19 ±3	21. ±3	12 ±3
40	28 ± 3	30 ± 3	29 ± 3	26 ± 3	38 ± 4
41	20 ± 4	22 ± 4	16 ±4	19 ± 4	13 ±4
42	13 ± 3	14 ± 3	15 ± 3	13 ± 3	20 ± 3
43	29 ± 4	28 ± 4	24 ± 4	28 ± 4	20 ± 4
44	14 ± 3	18 ± 3	17 ± 3	16 ± 3	28 ± 4
45	29 ± 4	26 ± 4	23 ± 4	25 ± 4	20 ± 4
40	23 ± 4	22 ± 4	19 ± 4	19 ± 3	35 ± 4
47 78	30 ±4	35 ± 4	21 ± 4	34 ± 4	19 ±3
40	24 IJ 10 ±€	22 ± 3 40 ± 5	21 ± 3	21 ± 3	2/ ±4
49 50	~9 IU 21 I2	40 ±0 18 ±2	40 ±0 10 ±0	44 ± 0 20 ± 2	34 ± 4
51	21 IJ 23 +1	10 E J 23 ± 3	19 IJ 21 13	20 IJ 22 13	20 ±4 10 ±2
52	20 ± 4	23 ± 3 28 ± 1	24 IJ 28 1/	22 IV 25 II	19 IJ 33 IV
52	23 17	20 1 7	20 14	2J ±4	33 I 4
MEAN	22 ±16	21 ± 13	21 ± 13	21 ± 13	20 ± 15

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

GROUP I - ON-SITE LO COLLECTION PERIOD	CATION MIN.	NS MAX.	MEAN +/- 2 SD	GROUP II - INTERMEDIA	LOCATION MEAN +/- 2 SD	GROUP III - CONTROL LOCATION COLLECTION PERIOD MIN. MAX. MEAN +/- 2 SD					
12/29/2000 - 02/02/2001	16	32	24 ± 10	12/29/2000 - 02/02/2001	15	31	21 ± 13	12/29/2000 - 01/29/2001			10 + 10
02/02/2001 - 03/02/2001	15	30	21 ± 10	02/02/2001 - 03/02/2001	16	27	21 ± 9	01/29/2001 - 02/26/2001	10	27	19±12
03/02/2001 - 03/30/2001	14	17	15 ± 2	03/02/2001 - 03/30/2001	15	22	17 + 8	02/26/2001 - 04/02/2001	0	22	.9±5
03/30/2001 - 04/28/2001	11	30	17 ± 12	03/30/2001 - 04/28/2001	12	23	17 ± 10	04/02/2001 - 04/30/2001	0	19	11 ± 11
04/28/2001 - 06/01/2001	10	36	17 ± 16	04/28/2001 - 06/01/2001	9	29	17 + 13	04/30/2001 - 06/03/2001	10	22	19±7
06/01/2001 - 06/29/2001	12	30	1 9 ± 11	06/01/2001 - 06/29/2001	13	24	20 + 10	06/03/2001 - 07/02/2001	4	29	14 ± 17
06/29/2001 - 08/02/2001	13	21	17 ± 4	06/29/2001 - 08/02/2001	13	18	16 ± 4	07/02/2001 - 07/30/2001	11	20	23±7
02/29/2000 - 08/30/2001	15	35	27 ± 11	08/02/2001 - 08/30/2001	22	28	25 ± 6	07/30/2001 - 09/04/2001	10	17	14±5
08/30/2001 - 09/27/2001	19	29	23 ± 7	08/30/2001 - 09/27/2001	18	26	22 + 7	09/04/2001 - 10/01/2001	10	04 00	20 ± 11
09/27/2001 - 11/01/2001	13	30	21 ± 13	09/27/2001 - 11/01/2001	13	28	20 ± 13		12	29	22 ± 15
11/01/2001 - 12/02/2001	19	36	26 ± 11	11/01/2001 - 12/02/2001	19	34	25 + 13	10/29/2001 - 12/03/2001	10	30	23 ± 21
12/02/2001 - 12/28/2001	18	49	29 ± 19	12/02/2001 - 12/28/2001	20	44	28 ± 22	12/03/2001 - 12/31/2001	19	35 34	26 ± 13 25 ± 14
02/29/2000 - 12/28/2001	10	49	21 ± 14	12/29/2000 - 12/28/2001	9	44	21 ± 13	12/29/2000 - 12/31/2001	4	38	20 + 15

TABLE C-V.2 MONTHLY AND YEARLY MEAN VALUES OF GROSS BETA CONCENTRATIONS (E-3 PCI/CU. METER) IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

NOTE; GROUP I CONSISTS OF LOCATIONS 1B, 1Z, AND 1C GROUP II CONSISTS OF LOCATION 3A GROUP III CONSISTS OF LOCATION 5H2

C - 8

· •

TABLE C-V.3 CONCENTRATION OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

STC		Be-7	Mn-54	Co-58	Co-60	Cs-134	Cs-137
1B	12/29 - 03/30/01	49 ± 13	< 0.9	< 0.5	< 0.7	< 0.4	< 0.8
	03/30 - 06/29/01	86 ± 22	< 0.7	< 0.7	< 0.8	< 0.7	< 0.4
	06/29 - 09/27/01	91 ± 19	< 0.6	< 0.6	< 0.7	< 0.5	< 0.5
	09/27 - 12/28/01	60 ± 12	< 0.6	< 0.5	< 0.6	< 0.6	< 0.4
	MFAN	72 + 40	07+03	06+02	07+02	06+03	05+04
			0.1 2 0.0		0.7 2 0.2	0.010.0	0.0 1 0.4
			1				.' •
10	12/20 02/20/01	56 + 15	< 06	~ 05	< 06	~ 00	~ ^ ^
10	02/29 - 03/30/01	30 ± 13	< 0.0	< 0.5	< 0.0	< 0.9	< 0.0
	03/30 - 00/23/01	00 ± 27	< 0.9		< 0.0	× 0.0	0.3
	06/29 - 09/27/01	89±17	< 0.6	< 0.9	< 0.6	< 0.8	⊴< 0.9
	09/27 - 12/28/01	58 ± 19	< 1.1	< 0.6	< 1.1	< 1.0	< 0.9
			•	$\gamma^{(1)} = \frac{1}{2} \lambda^{(1)}$ (4)			1. A.
	MFAN	71 ± 33	0.8+05	06+04	08+05	09+02	07+06
			0.0 - 0.0	0.020.1	0.010.0	0.0 2 0.2	0.7 2 0.0
						•	
17	12/29 - 03/30/01	52 + 15	e 10	c 12	< 00	< 10	- 01
12	03/30 06/20/01	60 + 20	< 07	< 07	< 0.9	< 0.6	< 0.4
	00/00 - 00/23/01	03 ± 20	< 0.7	< 0.7	< 0.9	< 0.0	< 0.0
	00/29 - 09/21/01	93 ± 21	< 0.5	< 0.0	< 1.0	< 0.9	< 0.9
	09/27 - 12/20/01	02 ± 22	< 0.0	S 1.1	< 0.0	5 1.1	.5 91.1
						·	
	MEAN	69 ± 35	0.8 ± 0.4	0.9±0.5	0.9 ± 0.2	0.9 ± 0.4	0.7±0.8
			·		· · ·		
34							
0,1	12/29 - 03/30/01	49 + 15	< 07	< 08	< 07	< 06	< 10
	03/30 - 06/29/01	63 + 19	< 07	- < 08	< 0.8	< 0.9	< 04
	06/29 - 09/27/01	83 + 18	< 0.8	< 0.5	< 0.6	< 1.1	- 05
	00/27 = 12/28/01	52 + 13	< 0.7	< 0.4	< 0.7	- 08	2.08
	03/21 - 12/20/01	02 1 10			- 0.7	- 0.0	
			·• ·· ·•				÷.
	MEAN -	62 ± 31	0.7 ± 0.1	0.6±0.4	0.7±0.2	0.8±0.4	∷0.7±0.6
	1 · · · · · · · · · · · · · · · · · · ·						
			1		•		
			· · · ·		1. 11 · · ·		.) <
5H2	01/02 - 04/02/01	43 + 16	< 07	< 0.8	< 10	< 0.4	< 05
0112		70 . 40	- 0.7	× 0.0	< 1.0	• 0.4	- 0.5
	04/02 - 07/02/01	72 ± 18	< 0.7	< 0.5	< 1.0	< 0.4	<: 0.9
	07/02 - 10/01/01	68 ± 23	< 0.8	< 0.9	< 0.9	< 1.5	< 0.8
	10/01 - 12/31/01	62 ± 19	< 0.7	< 1.5	< 1.3	< 0.8	< 1.3
	1. j	•	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				
		*					•
	MEAN	61 ± 26	0.7±0.1	0.9±0.8	1.1 ± 0.3	0.8±1.0	0.9 ± 0.7
		-					· .
	: · · · · · · · · · · · · · · · · · · ·	·					
			1	AND THE POINT	· · · · · · · · · · · · · · · · · · ·		
		: · · ·				4	
							÷ 4
					•		·
			-	•			
		·					. * *
		••					•
			•		•		
				0 0			

RESULTS IN UNITS OF E-3 PCI/CU METER +/- 2 SIGMA

TABLE C-VI.1 CONCENTRATIONS OF I-131 IN AIR IODINE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

1

, I

		GROUP I		GROUP II	GROUP III
WEEK NO	1B	1Z	1C	3A	5H2
					0112
1	- 10				
1	< 12	< 11	< 11	< 12	< 7
2	< 8	< 9	< 8	< 9	< 4
3	< 15	< 15	< 14	< 15	< 12
4	< 12	< 12	< 12	< 12	< 6
5	< 10	< 10	< 10	< 10	< 7
6	< 15	< 15	< 14	< 15	< 12
7	< 16	< 16	< 15	< 16	- 13
8	< 10	< 10	< 9	- 10	× 15
q	< 17	< 17	- 16	< 17	× 0
10	< 10	< 10	< 10	< 17	< 13
11	- 19	19	< 10 10	< 18	< 15
10	× 10	< 10	< 16	< 16	< 13
12	< 13	< 13	< 12	< 13	< 11
13	< 10	< 10	< 9	< 10	< 8
14	< 13	< 13	< 12	< 13	< 10 -
15	< 8	< 8	< 8	< 8	< 6
16	< 18	< 17	< 17	< 18	< 14
17	< 15	< 14	< 14	< 14	. < 14
18	< 9	< 9	< 8	< 9	< 6
19	< 13	< 13	< 12	- 13	
20	< 10	< 10	< 10	< 10	< 10
21	< 15	< 14	< 10	< 10	< 8
20	< 14	< 14	< 14 - 44	< 15	< 10
22	14	< 14	< 14	< 14	< 18
23	< 9	< y	< 8	< 9	< 10 ¹
24	< 8	< 8	< 13	< 8	< 6 ·
25	< 18	< 18	< 25	< 18	< 14
26	< 14	< 14	< 13	< 14	< 11
27	< 9	< 9	< 9	< 8	< 7 👾
28	< 16	< 15	< 15	< 14	< 13
29	< 19	< 19	< 19	< 18	< 16
30	< 12	< 12	< 12	< 11	- 10 -
31	< 18	< 18	< 18	= 17	
32	< 16	< 16	< 15	< 17 < 19	
33	< 10	< 10	< 15 (1)	< 18	< 411
34	< 17	< 10 < 17	(1)	< 17	< .13 0
34	× 17	< 17	< 1/	< 16	< 13
35	< 14	< 14	< 14	< 13	< 16
36	< 20	< 20	< 20	< 19	< 17
37	< 15	< 14	< 14	< 14	< ĭ5
38	< 19	< 19	< 19	< 18	< 12
39	< 9	< 9	< 8	< 8	< 6
40	< 12	< 12	< 12	< 11	< 11
41	< 16	< 17	< 17	< 15	< 11
42	< 11	< 11	< 11	< 10	
43	< 24	< 24	< 24	< 22	
44	< 18	< 17	- 17	~ 22	10
45	2 15	- 11	> 1/ < 1E		< 13
16	- 10		10	< 14	< 14
40	< 10	< 15	< 16	< 15	< 11
4/	< 24	< 24	< 24	< 22	< 17
48	< 13	< 13	< 13	< 12 [·]	< 19
49	< 26	< 26	< 26	< 24	< 15
50	< 17	< 17	< 16	< 15	< 14
51	< 10	< 9	< 9	< 9	< 8
52	< 17	< 17	< 17	< 15	< 13
			•• •		+0
MEAN	15 ± 8	14 ± 8	14 ± 9	14 ± 8	12 ± 7

RESULTS IN UNITS OF E-3 PCI/CU METER +/- 2 SIGMA

(1) SEE PROGRAM EXCEPTIONS SECTION FOR EXPLANATION

TABLE C-VII.1

CONCENTRATIONS OF I-131 IN MILK SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

RESULTS IN UNITS OF PCI/LITER +/- 2 SIGMA

001 50500			NE/	ARBY	FARM	s	_					NTE	RMED		DIST	ANCE	FARM	IS							ום	STAN	ΓFΔ	PMS						
DATE	J	l		÷ 0			R			s	ŝ		D)		L			Р	·		A		<u></u>	B	21711	<u></u>	C			 F			
01/07/2001								·						·····				<u> </u>			<	04									E			
01/08/2001	< 0.4		<	0.4		<	0.4		<	0.3												•.,												
02/12/2001	< 0.3		<	0.3		<	0.3		<	0.3		<	0.3		<	0.3		< (3		e	03		~ 0				~ .			• •			
03/12/2001	< 0.2		<	0.2		<	0.5		<	0.2											Ż	0.0		- 0	Ç.,		•	0.4		<	0.2			
04/09/2001	< 0.2		<	0.3		<	0.2		<	0.2											2	0.2												
04/23/2001	< 0.2		<	0.2		<	0.2		<	0.2											2	0.2												
05/06/2001	< 0.4	· · ·	<	0.3				· · · · ·				5 B.2	••••		· · .	2.1	1.1			· · · ·		0.2	•.					1.1				:		
05/072001			•			<	0.2		<	0.3		ć	03			0.2						0.3		_	-									
05/21/2001	< 0.2		<	0.2		<	0.2		ć	0.2			0.0		•	0.5		~ (1.3			• •		< 0	.3		<	0.3		<	0.3			1.4
06/04/2001	< 0.3		<	03		<	0.3		2	0.2	••	. v									<	0.2												
06/18/2001	< 0.2		<	0.2		è	0.0		2	0.0											<	0.4												
07/02/2001	< 0.3		é	0.2		2	0.2		2	0.2											<	0.2												
07/16/2001	< 0.3		è	0.0		2	0.3			0.3											<	0.3												
07/30/2001	e 0.0		2	0.7		2	0.4		5	0.3											<	0.4												
08/12/2001	~ 0.2		2	0.2		~	0.2		<	0.2											<	0.2												
08/12/2001	~ 0.2	· .	•	0.2			• •															0.2		< 0	.4		<	0.2						
00/132001	< 0.2			• •		<	0.2		<	0.2		<	0.2		<	0.2		< ().3											<	0.2			
00/27/2001	< 0.2		<	0.2	÷.,	,<	0.2	11	<	0.2		11 . I •	1	· · .	н ¹ .,		· . ·				`<	0.2						•		-	0.2			
09/10/2001	< 0.3		<	0.3		<	0.3		<	0.3											<	0.4												
09/24/2001	< 0.2	1	<	0.2		<	0.2		<	0.2											<	0.2												
10/08/2001	< 0.3		<	0.3		<	0.3		<	0.2		2									<	0.3												
10/22/2001	< 0.2		<	0.2		<	0.3		<	0.2											<	0.3												
11/04/2001			<	0.4																		0.3					e	03						
11/05/2001	< 0.3					<	0.3		<	0.3		<	0.3		<	0.3		< (.4		<			< 0	٦		•	0.0		_	0.2			
11/19/2001	< 0.4	· . · ·	<	0.4		<	0.4		<	0.3											<	04									0.5			
12/17/2001	< 0.2		<	0.2		<	0.5		<	0.2		•		· ` -			•			5	<	0.2												
MEAN	0.3	± 0.1		0.3	± 0.2		0.3	± 0.2		0.2	± 0.1	ų i	0.3	± 0.1		0.3 :	±0.1 ∙.	C).3 <u>-</u>	£ 0.1		0,3	± 0.2	0	.3	± 0.1		0.3	± 0.2		0.3	± 0.′	1	

TABLE C-VII.2CONCENTRATIONS OF GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE
VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

.

1

ī

STC	COLLECTION PERIOD	K-40	Cs-134	Cs-137	Ba-140	La-140
A	01/07/2001	1483±110	< 4	< 3	< 20	< 2
	02/12/2001	1356±106	< 3	< 4	< 17	< 2
	03/12/2001	1400 ± 105	< 4	< 3	< 12	< 3
	04/09/2001	1472±133	< 5	< 4	< 14	< 2
	05/06/2001	1453±124	< 3	< 4	< 11	< 3
	08/12/2001	1398 ± 96	< 3	< 3	< 28	< 7
	11/04/2001	1410±112	< 4	< 4	< 21	< 3
	MEAN	1425 ± 92	3±2	3±1	17±12	3±4
J	01/08/2001	1538±117	< 2	< 3	< 9	< 5
	02/12/2001	1410±130	< 3	< 2	< 15	< 2
	03/12/2001	1465 ± 117	< 4	< 3	< 15	< 3
	04/09/2001	1429±144	< 5	< 3	< 11	< 3
	05/06/2001	1457 ± 88	< 3	< 4	< 15	< 2
	08/13/2001	1462±119	< 3	< 5	< 30	< 6
	11/05/2001	1557±108	< 4	< 4	< 29	< 2
	MEAN	1474±108	4±2	3±2	18±17	3±3
0	01/08/2001	1360±.92	< 3	< 3	< 12	< 4
	02/12/2001	1425±106	< 2	< 3	< 10	< 3
	03/12/2001	1351 ± 119	< 3	< 4	< 12	< 3
	04/09/2001	1419±163	< 5	< 4	< 22	< 3
	05/06/2001	1347 ± 110	< 2	< 4	< 14	< 3
	08/12/2001	1309±110	< 3	< 4	< 20	< 3
	11/04/2001	1336±87	< 3	< 3	< 18	< 5
	MEAN	1364±86	3±2	3±1	15±9	3±1
R	01/08/2001	1587 ± 189	< 5	< 6	< 26	< 4
	02/12/2001	1560 ± 170	< 6	< 7	< 18	< 3
	03/12/2001	1455 ± 117	< 3	< 4	< 18	< 3
	04/09/2001	1475±125	< 3	< 3	< 13	< 2
	05/07/2001	1319±123	< 4	< 3	< 20	< 4
	08/13/2001	1400 ± 43	< 2	< 2	< 15	< 3
	11/05/2001	1449±47	< 2	< 2	< 24	< 4
	MEAN	1464±182	3±3	4±4	19±9	4±2
S	01/08/2001	1454 + 161	< 6	< 5	< 27	- 5
0	02/12/2001	1369+144	< 5.	< 1	< 11	< 3
	03/12/2001	1409 + 120	< 3	~ 4	< 21	< 3
	04/09/2001	1427 + 125	< 1	< 1	~ 15	 > 3
	05/07/2001	1260 + 130	~ 5	< 4	< 10	
	08/13/2001	1404 + 92	~ ~	< 3	~ 13	~ 2
	11/05/2001	1334 ± 48	< 1	< 1	< 29	< 6
	MEAN	1380±131	4±3	4±2	21 ± 14	4±4

RESULTS IN UNITS OF PCI/LITER +/- 2 SIGMA

TABLE C-VII.1 QUARTERLY TLD RESULTS FOR PEACH BOTTOM ATOMIC POWER STATION, 2001

STATION	MEAN ⁽¹⁾	JAN-MAR	APR-JUN	JUL-SEP	OCT-DEC
CODE	+/- 2 S.D.				
1A	6.3 ± 2.1	6.3 ± 0.7	5.5 ± 0.6	5.6 ± 0.6	7.8 ± 0.6
1B	5.2 ± 1.5	5.0 ± 0.7	4.9 ± 0.5	4.8 ± 0.6	6.3 ± 0.8
1C	6.3 ± 1.7	6.0 ± 0.4	5.8 ± 0.6	5.9 ± 0.5	7.7 ± 0.7
1D	6.0 ± 1.7	5.9 ± 0.4	5.4 ± 0.4	5.3 ± 0.4	7.1 ± 0.6
1E	5.6 ± 1.6	5.4 ± 0.0	5.4 ± 0.4	4.9 ± 0.4	6.8 ± 0.7
1F	7.1 ± 1.8	6.7 ± 0.6	6.7 ± 0.5	6.6 ± 0.6	8.4 ± 0.8
1G	4.6 ± 1.6	4.5 ± 0.3	4.1 ± 0.3	4.0 ± 0.4	5.7 ± 0.0
1H	6.2 ± 2.0	5.8 ± 0.6	5.6 ± 0.9	5.6 ± 0.5	7.6 ± 0.6
11	5.0 ± 1.5	4.7 ± 0.4	4.7 ± 0.4	4.3 ± 0.4	6.0 ± 0.6
1J	7.1 ± 2.2	6.6 ± 0.5	6.4 ± 0.6	6.6 ± 0.5	8.8 ± 0.6
1L	5.4 ± 2.0	5.3 ± 0.4	4.8 ± 0.6	4.7 ± 0.4	6.8 ± 0.7
1 M	3.5 ± 1.2	3.8 ± 0.5	3.1 ± 0.4	2.9 ± 0.4	4.2 ± 0.3
1P	4.4 ± 2.1	4.4 ± 0.4	3.6 ± 0.4	3.6 ± 0.4	5.8 ± 0.8
1Q.	4.9 ± 1.9	4.9 ± 0.6	4.2 ± 0.3	4.3 ± 0.4	6.3 ± 0.4
1R .	6.6 ± 1.9	6.2 ± 0.7	6.1 ± 0.6	/ [∞] 6.0 ± 0.6	8.0 ± 0.5
2	6.0 ± 1.6	5.9 ± 0.4	5.5 ± 0.6	5.5 ± 0.8	7.2 ± 0.5
2B	5.6 ± 1.7	5.1 ± 0.4	5.3 ± 0.6	5.0 ± 0.4	6.8 ± 0.7
ЗA	4.5 ± 1.3	4.4 ± 0.7	4.1 ± 0.5	4.0 ± 0.6	5.5 ± 0.6
4K	4.0 ± 1.4	3.8 ± 0.5	3.8 ± 0.0	3.5 ± 0.4	5.0 ± 0.6
5	5.8 ± 1.7	5.7 ± 0.4	5.4 ± 0.4	5.2 ± 0.3	7.1 ± 0.9
1NN	6.7 ± 1.7	6.2 ± 0.3	6.5 ± 0.4	6.2 ±.0.6	8.0 ± 0.6
6B	5.0 ± 1.4	5.4 ± 0.7	4.5 ± 0.3	4.4 ± 0.4	5.8 ± 0.4
14	6.1 ± 1.4	5.9 ± 0.3	5.5 ± 0.3	5.8 ± 0.4	7.2 ± 0.6
15	6.2 ± 1.9	5.9 ± 0.9	5.8 ± 0.4	5.5 ± 0.6	7.6:± 0.7
16	6.2 ± 1.3	5.9 ± 0.4	5.7 ± 0.6	6.0 ± 0.7	7.2 ± 0.5
17	6.8 ± 2.3	6.5 ± 0.4	6.4 ± 0.9	6.0 ± 0.6	8.5 ± 0.6
18	6.6 ± 1.5	6.5 ± 0.4	6.0 ± 0.7	6.2 ± 0.9	7.7 ± 0.8
19	6.4 ± 1.6	6.0 ± 0.4	5.9 ± 0.3	6.2 ± 0.6	7.6 ± 0.6
22	6.4 ± 1.9	6.1 ± 0.4	5.8 ± 0.4	6.0 ± 0.6	7.8 ± 0.4
23	6.5 ± 1.6	5.9 ± 0.6	6.2 ± 0.8	6.2 ± 0.3	7.6 ± 0.7
24	5.2 ± 1.1	5.2 ± 0.4	4.7 ± 0.4	4.9 ± 0.5	5.9 ± 1.1
26	7.2 ± 1.7	6.6 ± 0.7	6.6 ± 0.4	7.1 ± 0.8	8.4 ± 0.6
27	6.6 ± 1.5	6.1 ± 0.7	6.1 ± 0.8	6.4 ± 1.0	7.6 ± 0.6
31A	4.9 ± 1.5	4.6 ± 0.5	4.5 ± 0.6	4.5 ± 0.5	6.1 ± 0.7
32	6.7 ± 1.8	6.3 ± 0.3	6.3 ± 0.5	6.2 ± 0.6	8.1 ± 0.6
40	7.3 ± 2.3	6.7 ± 0.7	6.6±0.9	6.8 ± 0.6	9.0 ± 0.7
42	5.5 ± 1.4	5.5 ± 0.7	5.0 ± 0.4	5.0 ± 0.6	6.5 ± 0.5
43	7.0 ± 1.7	6.7 ± 0.4	6.2 ± 0.6	6.9 ± 0.6	8.3 ± 0.6
44	6.0 ± 1.8	5.4 ± 0.5	5.4 ± 0.6	5.8 ± 0.5	7.3 ± 0.9
45	6.6 ± 2.3	5.9 ± 0.8	6.1 ± 0.6	6.0 ± 0.7	8.3 ± 0.3
40	6.0 ± 1.6	6.1 ± 0.9	5.3 ± 0.7	5.6 ± 0.6	7.1 ± 0.4
47	0.0 ± 1.5	6.3 ± 0.4	5.6 ± 0.4	5.5 ± 0.5	8.0 ± 0.7
40	0.4 ± 1.8	0.1 ± U./	5.8 ± 0.4	6.0 ± 0.7	1.1 ± 0.6
49	0.4 ± 1.4	0.3 ± 0.5	5.8 ± 0.4	6.U ± 1.U	7.4 ± 0.4
50 E4	1.0 ± 2.0	7.4±0.8	0.9 ± 0.4	7.0 ±.1.0	9.0 ± 0.6
JI	C.I I 0.0	C.U I 0.0	5.0 ± 0.8	0.∠ ± 0.0	1.0 ± 0.6

RESULTS IN UNITS OF MILLI-ROENTGEN/STD. +/- 2 SIGMA

(1) MEAN AND TWO TIMES THE STANDARD DEVIATION OF THE QUARTERLY RESULTS

TABLE C-VIII.2MEAN TLD RESULTS FROM PEACH BOTTOM ATOMIC POWER STATION FOR
THE SITE BOUNDARY, MIDDLE, AND OUTER RINGS, 2001

RESULTS IN UNITS OF MILLI-ROENTGEN/STD. MO. +/- 2 STANDARD DEVIATIONS OF THE STATION DATA

EXPOSURE	SITE RING	MIDDLE RING	OUTER RING
PERIOD			
JAN-MAR	5.6 ± 1.7	5.9 ± 1.6	5.9 ± 1.1
APR-JUN	5.3 ± 2.0	5.7 ± 1.6	5.6 ± 1.2
JUL-SEP	5.2 ± 2.1	5.7 ± 1.9	5.8 ± 1.3
OCT-DEC	7.1 ± 2.4	7.4 ± 2.0	7.1 ± 1.6

TABLE C-VIII.3SUMMARY OF THE 1999 AMBIENT DOSIMETRY PROGRAM FOR PEACH
BOTTOM ATOMIC POWER STATION, 2001

RESULTS IN UNITS OF MILLI-ROENTGEN/STD. MO.

	SAMPLES PERIOD ANALYZED MINIMUM		PERIOD. MAXIMUM	PERIOD MEAN +/- 2 S.D.	PRE-OP MEAN +/- 2 S.D.	
		* .				
SITE RING	76	2.9	9.0	5.8 ± 2.5	5.4 ± 1.7	
MIDDLE RING	92	3.5	9.0	6.2 ± 2.2	5.3 ± 1.3	
OUTER RING	16	4.7	7.7	6.1 ± 1.7	5.7 ± 1.8	

THE PRE-OPERATIONAL MEAN WAS CALCULATED FROM TLD READINGS 01/07/73 TO 08/05/73. SITE BOUNDARY RING STATIONS - 1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1L, 1M, 1NN, 1P, 1Q, 1R, 2, 2B, 40 MIDDLE RING STATIONS - 3A, 4K, 5, 6B, 14, 15, 17, 22, 23, 26, 27, 31A, 32, 42, 43, 44, 45, 46, 47, 48, 49, OUTER RING STATIONS - 16, 18, 19, 24

TABLE C-IX.1 SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

SURFACE WATER	(TRITIUM)	de la construcción de la			
		1 MM			
DEBIOD	TLE				
	01/02/2001 02/28/2001	01/02/2001 02/28/2001	<u> </u>		
	01/03/2001 - 03/26/2001	02/28/2001 - 03/26/2001			
APR-JUN	03/28/2001 - 06/27/2001	03/28/2001 - 08/27/2001			
JUL-SEP	06/2//2001 - 10/03/2001	06/27/2001 - 10/03/2001	4 ¹		•
UCT-DEC	10/03/2001 - 01/02/2002	10/03/2001 - 01/02/2002			
SURFACE WATER	(GAMMA SPECTROSCOPY)	l . " .			÷.
COLLECTION	1LL	1MM	. •		
	01/03/2001 - 01/31/2001	01/03/2001 - 01/31/2001	- .		
	01/03/2001 - 01/31/2001	01/03/2001 - 01/31/2001			
	01/31/2001 - 02/28/2001	01/31/2001 - 02/28/2001			
	02/28/2001 - 03/28/2001	02/20/2001 - 05/20/2001			
APR	03/28/2001 - 05/02/2001	03/28/2001 - 05/02/2001	da berezet e	1	
MAY	05/02/2001 - 05/30/2001	05/02/2001 - 05/30/2001			
JUN	05/30/2001 - 06/27/2001 - 0	05/30/2001 - 06/27/2001			
JUL	06/27/2001 - 08/01/2001	06/27/2001 - 08/01/2001			
AUG	08/01/2001 - 08/29/2001	08/01/2001 - 08/29/2001			
SEP	08/29/2001 - 10/03/2001	08/29/2001 - 10/03/2001			
OCT	10/03/2001 - 10/31/2001	10/03/2001 - 10/31/2001			
NOV	10/31/2001 - 11/28/2001	10/31/2001 - 11/28/2001	· · · · ·		
DEC	11/28/2001 - 01/02/2002	11/28/2001 - 01/02/2002			
		1.5	. *		•,
DRINKING WATER	(TRITIUM)				
	41				
COLLECTION	4L (1)	o i se		•	
PERIOD			•		
JAN-MAR	01/05/2001 - 03/30/2001	01/05/2001 - 03/30/2001			
APR-JUN	03/30/2001 - 06/29/2001	03/30/2001 - 06/29/2001			:
JUL-SEP	06/29/2001 - 10/05/2001	06/29/2001 - 10/05/2001			
OCT-DEC	10/05/2001 - 01/04/2002	10/05/2001 - 01/04/2002			
DRINKING WATER	(GROSS BETA & GAMMA)			-	
	4L	61			
JAN	01/05/2001 - 02/02/2001	01/05/2001 - 02/02/2001			
FFB	02/02/2001 - 03/02/2001	02/02/2001 - 03/02/2001			
MAR	03/02/2001 - 03/30/2001	03/02/2001 - 03/30/2001			
APR	03/30/2001 - 05/04/2001	03/30/2001 - 05/04/2001			
MAY	05/04/2001 - 06/01/2001	05/04/2001 - 06/01/2001			
11 IN	06/01/2001 - 06/29/2001	06/01/2001 - 06/20/2001			
	06/29/2001 - 08/02/2001	06/29/2001 - 08/02/2001			
	08/01/2001 - 08/30/2001	08/01/2001 - 08/30/2001			
SED	08/30/2001 - 10/05/2001	08/30/2001 - 10/05/2001			
	10/05/2001 = 11/00/2001				
	11/01/2001 - 12/02/2001				
	11/01/2001 - 12/02/2001	10002001 - 1202/2001			

12/02/2001 - 01/04/2002

DEC

12/02/2001 - 01/04/2002

TABLE C-IX.1SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN THE VICINITY
OF PEACH BOTTOM ATOMIC POWER STATION; 2001

1

. I

AIR PARTICULATE & AIR IODINE (G. BETA & I-131)

SAMPLING PERIOD	1B	1Z	10	ЗА	5H2
1	12/29 - 01/05/2001	12/29 - 01/05/2001	02/01 - 01/05/2001	12/29 - 01/05/2001	12/29 - 01/08/2001
2	01/05 - 01/12/2001	01/05 - 01/12/2001	01/05 - 01/12/2001	01/05 - 01/12/2001	01/08 - 01/15/2001
3	01/12 - 01/19/2001	01/12 - 01/19/2001	01/12 - 01/19/2001	01/12 - 01/19/2001	01/15 = 01/22/2001
4	01/19 - 01/26/2001	01/19 - 01/26/2001	01/19 - 01/26/2001	01/19 - 01/26/2001	01/22 = 01/29/2001
5	01/26 - 02/02/2001	01/26 - 02/02/2001	01/26 - 02/02/2001	01/26 - 02/02/2001	01/29 = 02/05/2001
6	02/02 - 02/09/2001	02/02 - 02/09/2001	02/02 - 02/09/2001	02/02 = 02/09/2001	02/05 02/12/2001
7	02/09 - 02/16/2001	02/09 - 02/16/2001	02/09 = 02/16/2001	(02/09 - 02/16/2001)	02/03 - 02/12/2001
8	02/16 - 02/23/2001	02/16 - 02/23/2001	02/16 - 02/23/2001	02/16 = 02/16/2001	02/12 - 02/19/2001
9	02/23 - 03/02/2001	02/23 - 03/02/2001	02/23 = 03/02/2001	02/23 = 03/02/2001	02/26 02/26/2001
10	03/02 - 03/09/2001	03/02 - 03/09/2001	03/02 - 03/09/2001	03/02 = 03/09/2001	03/05 03/12/2004
11	03/09 - 03/16/2001	03/09 - 03/16/2001	03/09 - 03/16/2001	03/09 - 03/16/2001	03/12 03/12/2001
12	06/16 - 03/23/2001	06/16 - 03/23/2001	06/16 - 03/23/2001	06/16 03/23/2001	05/12 - 03/19/2001
13	03/23 - 03/30/2001	03/23 - 03/30/2001	03/23 - 03/30/2001	03/23 03/30/2001	02/26 04/02/2001
14	03/30 - 04/06/2001	03/30 - 04/06/2001	03/30 - 04/06/2001		0.3/20 = 0.4/0.2/2001
15	04/06 - 04/13/2001	04/06 - 04/13/2001	03/06 = 04/03/2001	04/06 04/13/2001	04/02 - 04/09/2001
16	04/13 - 04/20/2001	04/13 - 04/20/2001	-04/13 = 04/20/2001	04/13 04/20/2001	04/09 - 04/16/2001
17	04/20 - 04/28/2001	04/20 - 04/28/2001	04/20 - 04/28/2001		04/16 - 04/23/2001
18	04/28 - 05/04/2001	04/28 - 05/04/2001	04/28 - 05/04/2001	04/20 - 04/20/2001	04/23 - 04/30/2001
19	05/04 - 05/11/2001	05/04 - 05/11/2001	$0-\frac{1}{20} = 0.5/0-\frac{1}{2001}$	04/28 - 05/04/2001	04/30 - 05/07/2001
20	05/11 - 05/18/2001	05/11 - 05/18/2001	05/11 - 05/18/2001	05/11 - 05/18/2001	05/07 - 05/14/2001
21	05/18 - 05/25/2001	05/18 - 05/25/2001	05/18 - 05/25/2001	05/18 05/2001	05/14 = 05/21/2001
22	05/25 - 06/01/2001	05/25 - 06/01/2001	05/25 = 06/01/2001	05/25 06/01/2001	05/217-05/29/2001
23	06/01 - 06/08/2001	06/01 - 06/08/2001	06/01 - 06/08/2001	06/01 06/08/2001	05/29 - 06/03/2001
24	06/08 - 06/15/2001	06/08 - 06/15/2001	06/08 - 06/15/2001	06/08 06/15/2001	06/03 - 06/11/2001
25	06/15 - 06/22/2001	06/15 - 06/22/2001	06/15 - 06/22/2001	06/15 06/22/2001	06/11 - 06/19/2001
26	06/22 - 06/29/2001	06/22 - 06/29/2001	06/22 = 06/20/2001	06/22 06/22/2001	06/19 - 06/25/2001
27	06/29 - 07/06/2001	06/29 - 07/06/2001	06/29 - 07/06/2001	06/22 - 06/29/2001	06/25 - 07/02/2001
28	07/06 - 07/13/2001	07/06 - 07/13/2001	07/06 07/13/2001	07/06 07/12/2001	07/02 - 07/09/2001
29	07/13 - 07/20/2001	07/13 - 07/20/2001	07/00 - 07/13/2001	07/00 - 07/13/2001	07/09 - 07/16/2001
30	07/20 - 07/27/2001	07/20 - 07/27/2001	07/20 - 07/27/2001	07/13 - 07/20/2001	07/16 - 07/23/2001
31	07/27 - 08/02/2001	07/27 = 08/02/2001	07/20 = 07/27/2001	07/20 ~ 07/27/2001	07/23 - 07/30/2001
32	08/02 - 08/09/2001	08/02 - 08/09/2001	08/02 - 08/00/2001	09/02 08/00/2001	07/30 - 08/06/2001
33	08/09 - 08/16/2001	08/09 - 08/16/2001	00/02 - 00/03/2001	08/00 08/16/2001	08/06 - 08/13/2001
34	08/16 - 08/23/2001	08/16 - 08/23/2001	08/16 08/23/2001	08/16 08/22/2001	08/13 - 08/20/2001
35	08/23 - 08/30/2001	08/23 - 08/30/2001		08/22 08/20/2004	08/20 - 08/27/2001
36	08/30 - 09/06/2001	08/30 - 09/06/2001		08/20 - 08/30/2001	08/27 - 09/04/2001
37	09/06 - 09/14/2001	09/06 - 09/14/2001	09/06 09/14/2001	00/06 00/14/2001	09/04 - 09/11/2001
38	09/14 - 09/20/2001	09/14 - 09/20/2001	09/14 09/20/2001	09/00 - 09/14/2001	09/11 - 09/17/2001
39	09/20 - 09/27/2001	09/2012 09/27/2001	09/14 - 09/20/2001	09/14 - 09/20/2001	09/17 - 09/24/2001
40	09/27 - 10/05/2001	$R_{20}^{-1} = 10/05/2001$	09/20 = 09/27/2001	09/20 - 09/27/2001	09/24 - 10/01/2001
41	10/05 - 10/11/2001	10/05 10/11/2001	10/05 10/11/2001	10/05/2001	10/01 - 10/08/2001
42	10/11 - 10/18/2001	10/11 - 10/18/2001	10/03 - 10/11/2001	10/05 - 10/11/2001	10/08 - 10/15/2001
43	10/18 - 10/25/2001	10/18 - 10/25/2001	10/11 - 10/10/2001	10/11 - 10/18/2001	10/15 - 10/22/2001
44	10/25 - 11/01/2001	10/10 - 10/20/2001	10/16 - 10/25/2001	10/18 - 10/25/2001	10/22 - 10/29/2001
45	11/01 = 11/09/2001	11/01 11/00/2001	11/01 11/00/2001	10/25 - 11/01/2001	10/29 - 11/05/2001
 46	11/09 - 11/15/2001	11/09 - 11/15/2001	11/01 - 11/09/2001	11/01 - 11/09/2001	11/05 - 11/12/2001
 47	11/15 - 11/22/2001	11/15 - 11/10/2001	11/09 - 11/15/2001	11/09 - 11/15/2001	11/12 - 11/19/2001
-77	11/22 . 12/02/2001	11/22 12/02/2001	11/13 - 11/22/2001	11/15 - 11/22/2001	11/19 - 11/26/2001
- 1 0 40	12/02 - 12/02/2001	12/02 - 12/02/2001	12/02 12/02/2001	11/22 - 12/02/2001	11/26 - 12/03/2001
50	12/07 - 12/14/2001	12/02 - 12/07/2001	12/02 - 12/07/2001	12/02 - 12/07/2001	12/03 - 12/10/2001
51	12/14 - 12/14/2001	12/07 - 12/14/2001	12/07 - 12/14/2001	12/07 - 12/14/2001	12/10 - 12/21/2001
50	12/14 * 12/21/2001	12/14 - 12/21/2001	12/14 - 12/21/2001	12/14 - 12/21/2001	12/17 - 12/24/2001
JZ		12/21 - 12/28/2001	12/21 - 12/28/2001	12/21 - 12/28/2001	12/24 - 12/31/2001

TABLE C-IX.1

SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

STATION				
CODE	JAN-MAR	APR-JUN	JUL-SEP	OCT-DEC
1A	01/05/2001 - 03/30/2001	03/30/2001 - 06/29/2001	06/29/2001 - 10/05/2001	10/05/2001 - 01/04/2002
1B	01/05/2001 - 03/30/2001	03/30/2001 - 06/29/2001	06/29/2001 - 10/05/2001	10/05/2001 - 01/04/2002
1C	01/05/2001 - 03/30/2001	03/30/2001 - 06/29/2001	06/29/2001 - 10/05/2001	10/05/2001 - 01/04/2002
1D	01/05/2001 - 03/30/2001	03/30/2001 - 06/29/2001	06/29/2001 - 10/05/2001	10/05/2001 - 01/04/2002
1E	01/04/2001 - 03/29/2001	03/29/2001 - 06/28/2001	06/28/2001 - 10/05/2001	10/04/2001 - 01/03/2002
1F	01/04/2001 - 03/29/2001	03/29/2001 - 06/28/2001	06/28/2001 - 10/05/2001	10/04/2001 - 01/04/2002
1G	01/04/2001 - 03/29/2001	03/29/2001 - 06/28/2001	06/28/2001 - 10/05/2001	10/04/2001 - 01/03/2002
1H	01/04/2001 - 03/30/2001	03/30/2001 - 06/29/2001	06/29/2001 - 10/05/2001	10/05/2001 - 01/04/2002
- 11	01/05/2001 - 03/30/2001	03/30/2001 - 06/29/2001	06/29/2001 - 10/05/2001	10/05/2001 - 01/04/2002
1.1	01/04/2001 - 03/29/2001	03/29/2001 - 06/28/2001	06/28/2001 - 10/05/2001	10/04/2001 - 01/03/2002
11	01/04/2001 - 03/29/2001	03/29/2001 - 06/28/2001	06/28/2001 - 10/05/2001	10/05/2001 - 01/04/2002
1M	01/05/2001 - 03/30/2001	03/30/2001 - 06/29/2001	06/29/2001 - 10/05/2001	10/05/2001 - 01/04/2002
19	01/05/2001 = 03/30/2001	03/30/2001 - 06/29/2001	06/29/2001 - 10/05/2001	10/05/2001 - 01/04/2002
10	01/05/2001 - 03/30/2001	03/30/2001 - 06/29/2001	06/29/2001 - 10/05/2001	10/05/2001 - 01/04/2002
18	01/05/2001 = 03/30/2001	03/30/2001 - 06/29/2001	06/29/2001 - 10/05/2001	10/05/2001 = 01/04/2002
2	01/04/2001 03/20/2001	03/20/2001 - 06/28/2001	06/28/2001 - 10/05/2001	10/03/2001 - 01/03/2002
2	01/05/2001 03/30/2001	03/30/2001 - 06/20/2001	06/20/2001 - 10/05/2001	10/05/2001 01/04/2002
20	01/05/2001 - 03/30/2001	03/30/2001 - 00/23/2001	06/20/2001 - 10/05/2001	10/05/2001 - 01/04/2002
JA	01/05/2001 - 03/30/2001	03/30/2001 - 06/29/2001	06/29/2001 - 10/05/2001	10/05/2001 - 01/04/2002
.4n	01/05/2001 - 05/30/2001	03/30/2001 - 00/29/2001	00/29/2001 - 10/05/2001	10/03/2001 - 01/04/2002
5 4 M M	01/03/2001 - 03/28/2001	03/28/2001 - 08/27/2001	06/20/2001 - 10/05/2001	10/05/2001 - 01/02/2002
LININ CD	01/04/2001 - 03/30/2001	03/30/2001 - 06/29/2001	06/29/2001 - 10/05/2001	10/05/2001 - 01/04/2002
OB TA A	01/05/2001 - 05/28/2001	03/30/2001 - 06/29/2001	06/29/2001 - 10/05/2001	10/03/2001 - 01/04/2002
14	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
15	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
16	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
17	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
18	01/03/2001 - 03/28/2001	03/28/2001 - 05/27/2001	06/27/2001 - 10/03/2001	10/03/2007 - 01/02/2002
19	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
22	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
23	01/04/2001 - 03/29/2001	03/29/2001 - 06/28/2001	06/28/2001 - 10/05/2001	10/04/2001 - 01/03/2002
24	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
26	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
27	01/04/2001 - 03/29/2001	03/29/2001 - 06/28/2001	06/28/2001 - 10/05/2001	10/04/2001 - 01/03/2002
31A	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
32	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
40	01/04/2001 - 03/29/2001	03/29/2001 - 06/28/2001	06/28/2001 - 10/05/2001	10/04/2001 - 01/03/2002
42	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
43	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
44	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
45	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
46	01/04/2001 - 03/29/2001	03/29/2001 - 06/28/2001	06/28/2001 - 10/05/2001	10/04/2001 - 01/03/2002
47	01/04/2001 - 03/29/2001	03/29/2001 - 06/28/2001	06/28/2001 - 10/05/2001	10/04/2001 - 01/03/2002
48	01/04/2001 - 03/29/2001	03/29/2001 - 06/28/2001	06/28/2001 - 10/05/2001	10/04/2001 - 01/03/2002
49	01/04/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
50	01/04/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
51	01/03/2001 - 03/28/2001	03/28/2001 - 06/27/2001	06/27/2001 - 10/03/2001	10/03/2001 - 01/02/2002
	a an			
		and and a second se		
		21 T		

C- 17

in the second second

HINOW

FIGURE C-3

No sample collected from Station 4J in 1990 and Station 4D discontinued beginning 1991

MEAN MONTHLY GROSS BETA CONCENTRATIONS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PBAPS, 1970 - 2001 FIGURE C-6

FIGURE C-9 QUARTERLY AMBIENT GAMMA RADIATION LEVELS (TLD) NEAR THE INDEPENDENT SPENT FUEL STORAGE INSTALLATION

APPENDIX D

3.

. . .

DATA TABLES AND FIGURES COMPARISON LABORATORY

ц÷,

1

Intentionally Left Blank

The following section contains data and figures illustrating the analyses performed by the QC laboratory, Teledyne Brown Engineering (TBE). Duplicate samples were obtained from several locations and media and split between the primary laboratory, Environmental, Inc. and the QC laboratory. Comparison of the results for most media were within expected ranges.

The QC laboratory results for gross beta insoluble and soluble in drinking water samples were very similar to those reported by the Primary laboratory. All results between the laboratories were within 4 pCi/l of each other. The data reported were well within the historical range.

The gross beta results for air particulate samples collected at the collocated stations 1Z (Primary) and 1A (QC) compared very well (Figure D-3). Week No 1 showed the only significant difference between the two collocated samplers. Both results were analyzed by the same laboratory.

D - 1

TABLE D-I.1CONCENTRATIONS OF GROSS BETA INSOLUBLE IN DRINKING WATER SAMPLES
COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

COLLECTION PERIOD		4L
JAN	<	0.8
FEB	<	0.5
MAR		1.5 ± 0.6
APR		1.1 ± 0.5
MAY	<	0.5
JUN		5.2 ± 0.9
JUL		3.2 ± 0.5
AUG		3.3 ± 0.4
SEP		0.6 ± 0.5
ост	<	1.0
NOV		0.6 ± 0.5
DEC	<	0.7
MEAN		1.6 ± 3.0

RESULTS IN UNITS OF PCI/LITER +/- 2 SIGMA

TABLE D-I.2CONCENTRATIONS OF GROSS BETA SOLUBLE IN DRINKING WATER SAMPLES
COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

÷.

÷

RESULTS IN UNITS OF PCI/LITER +/- 2 SIGMA

COLLECTION PERIOD		4L
JAN		2.3 ± 0.9
FEB	<	0.9
MAR		2.0 ± 0.9
APR		1.6 ± 0.7
MAY		2.6 ± 0.9
JUN		2.0 ± 1.0
JUL		3.0 ± 1.0
AUG		3.0 ± 0.8
SEP		4.0 ± 1.0
ост		3.8 ± 1.0
NOV		4.0 ± 1.0
DEC		1.7 ± 0.7
MEAN		2.6 ± 2.0
TABLE D-I.3

CONCENTRATIONS OF GAMMA EMITTERS IN DRINKING WATER SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

RESULTS IN UNITS OF PCI/LITER +/- 2 SIGMA

STC	COLLECTION		MN-54		CO-58		FE-59		CO-60		ZN-65		ZR-95		NB-95		CS-134		CS-137		BA-140		LA-140		
4L	JAN FEB	<	7	<	8	<	18	<	6	<	15	<	14	<	8	<	8	<	7	<	87 ⁽¹⁾	<	27 ⁽¹⁾		
	MAR	2	5 7	<	0 7	<	14	<	4	<	12	<	11	<	6	<	5	<	5	< 1	112())	<	37(1)		•
	APR	2	5		/ 6		14	۲ ۲	6	<	15	<	12	<	-	<	7	<	7	<	43	<	14		,
	MAY	~	3	è	3	Ì	2	2	ວ ຈ	2	12	2	9 5	<	5	<	6	<	5	<	25	<	8		·•:
	JUN	<	3	<	3	~	5	۔ ح	3	Ì	6	2	5	Ì	3	~	3	<	5	<	14	<	5		
	JUL	<	5	<	6	<	12	<	5	<	13		10	è	7 6	Ì	2	2	4	~	14	<	5		
	AUG	<	6	<	6	<	13	<	6	<	14	<.	10	~	6	~	6	Ì	5	~	40	2	10	<u>`</u> :	
	SEP	<	3	<	3	<	6	<	3	<	6	<	6	<	3	<	3	<	3	ç	19	è	6		
	OCT	<	4	<	3	<	9	<	5	<	11	<	8 '	<	5	<	5	<	5	<	26	<	8		
	NOV	<	3	<	3	<	6	<	6	<	7	<	5	<	3	<	3	<	4	<	13	<	4		
	DEC	<	5	<	5	<	10	<	5	<	12	<	9	<	5	<	6	<	5	<	24	<	8		
	MEAN		5±3		5 ± 4	ł	10 ± 1	D	5±2		11 ± 7		9 ± 6		5±3	5	5 ± 4		5 ± 2		38 ± 6	2	12 ± 2	20)	
(1)	SEE PROGRA	M E	XCEPTIC	ONS S	ECTION			VATIC	N		; ;								÷						
													1												
							÷.			t.	•									•				• •	
									- 13 e	2							• •							,	
												2													
											÷														-
												Ì.													
											: *	A. 1													
																			•						
													D - 3												

TABLE D-II.1CONCENTRATIONS OF GROSS BETA INSOLUBLE IN AIR PARTICULATE
SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC
POWER STATION, 2001

1

. I

RESULTS IN UNITS OF E-3 PCI/CU METER +/- 2 SIGMA

WEEK NO	D. 1A
1	16 +1
2	40 ±4
2	29 ±4
3	30 ±4
4 5	33 ±4
5	24 I4
7	22 ±4
7	14 ±3
0	24 ±3
9	18 ±3
10	12 ±3
11	14 ±3
12	9 ±3
13	12 ±3
14	11 ±3
15	12 ±3
16	15 ±3
1/	19 ±3
18	26 ±4
19	13 ±3
20	14 ±3
21	9 ±3
22	9 ±3
23	11 ±3
24	20 ±3
25	16 ±3
26	15 ±3
27	15 ±3
28	17 ±3
29	16 ±3
30	15 ±3
31	13 ±3
32	25 ±3
33	22 ±3
34	22 ±3
35	25 ±3
36	17 ±3
37	17 ±3
38	22 ±4
39	22 ±3
40	26 ±3
41	16 ±3
42	12 ±3
43	22 ±3
44	11 ±3
45	21 ±3
46	21 ±4
47	36 ±4
48	20 ±2
49	41 ±5
50	19 ±3
51	19 ±3
52	22 ±3
MEAN	19 ±16

TABLE D-II.2 CONCENTRATION OF GAMMA EMITTERS IN AIR PARTICULATE SAMPLES COLLECTED IN THE VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

STC		Be-7	Ν	/in-54	(Co-58		Co-60	C	Cs-134	С	s-137
1A	12/29 - 03/30/01	47 ± 4	<	0.5	<	0.8	<	0.5	<	0.5	<	0.4
	03/30 - 06/29/01	136±12	<	0.8	<	1.4	<	0.8	<	0.8	<	0.7
	06/29 - 09/27/01	73±7	<	0.5	<	0.7	<	0.5	<	0.5	<	05
	09/27 - 12/28/01	44±9	<	2.1	<	1.1	<	0.8	<	1.1	<	0.9
	MEAN	75±85		1.0± 1.5		1.0±0.6		0.7±0.3		0.7±0.6		0.6±0.4

RESULTS IN UNITS OF E-3 PCI/CU METER +/- 2 SIGMA

an 19 Ng

1.41

TABLE D-III.1 CONCENTRATION OF I-131 BY CHEMICAL SEPARATION AND GAMMA EMITTERS IN MILK SAMPLES COLLECTED IN THE VINCINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

L

RESULTS IN UNITS OF PCI/LITER +/- 2 SIGMA

.

STC	SAMPLING											
	PERIOD		<u>l-131</u>	K-40	С	<u>s-134</u>	C	<u>s-137</u>	E	la-140		La-140
А	02/12/2001	<	0.3	1330 ± 77	<	7	<	6	<	28	<	9
	05/06/2001	<	0.1	1160 ± 73	<	3	<	4	<	11	<	5
	08/12/2001	<	0.2	1350 ± 73	<	3	<	5	<	21	<	7
	11/04/2001	<	0.1	1250 ± 76	<	7	<	6	<	30	<	9
	MEAN		0.2 ± 0.2	1273 ± 173		5±4		5 ± 2		23 ± 17		7 ± 4
J	02/12/2001	<	0.3	1330 ± 82	<	6	<	6	<	29	<	9
	05/06/2001	<	0.1	1280 ± 79	<	4	<	4	<	16	<	5
	08/12/2001	<	0.2	1330 ± 77	<	6	<	6	<	31	<.	10
	11/04/2001	<	0.1	1230 ± 78	<	7	<	6	<	28	<	9
	MEAN		0.2 ± 0.2	1293 ± 96		6±3		5 ± 2		∴ 26 ± 14		8 ± 4
0	02/12/2001	<	0.3	1260 ± 92	<	8	<	7	. <	34	<	11
	05/06/2001	<	0.1	1510 ± 107	<	5	<	6	<	21	<	7
	08/12/2001	<	0.2	1210 ± 72	<	6	<	7	<	30	<	9
	11/04/2001	<	0.2	1190 ± 86	<	8	<	7	<	34	<	11
	MEAN		0.2 ± 0.2	1293 ± 296		7 ± 3		7 ± 1		30 ± 12		9+4

;`

- 9- ×"

Barra da Cara da Cara

D - 6

SUMMARY OF COLLECTION DATES FOR SAMPLES COLLECTED IN THE TABLE D-IV.1 VICINITY OF PEACH BOTTOM ATOMIC POWER STATION, 2001

••

54.4

DRINKING WATER (GROSS BETA & GAMMA SPECTROSCOPY)

COLLECTION PERIOD		4L
JAN	01/05/2001	- 02/02/2001
FEB	02/02/2001	- 03/02/2001
MAR	03/02/2001	- 03/30/2001
APR	03/30/2001	- 05/04/2001
MAY	05/04/2001	- 06/01/2001
JUN	06/01/2001	- 06/29/2001
JUL	06/29/2001	- 08/02/2001
AUG	08/01/2001	- 08/30/2001
SEP	08/30/2001	- 10/05/2001
ост	10/05/2001	- 11/01/2001
NOV	11/01/2001	- 12/02/2001
DEC	12/02/2001	- 01/04/2002

AIR PARTICULATE	(Gross Beta)	
<i>:</i> :	• •	

WEEK NO	1A	WEEK NO	1A
1	12/29/2000 - 01/05/2001	27	06/29/2001 - 07/06/2001
2	01/05/2001 - 01/12/2001	28	07/06/2001 - 07/13/2001
3	01/12/2001 - 01/19/2001	29	07/13/2001 - 07/20/2001
. 4	01/19/2001 - 01/26/2001	30	07/20/2001 - 07/27/2001
5	01/26/2001 - 02/02/2001	31	07/27/2001 - 08/02/2001
6	02/02/2001 - 02/09/2001	32	08/02/2001 - 08/09/2001
7	02/09/2001 - 02/16/2001	33	08/09/2001 - 08/16/2001
8	02/16/2001 - 02/23/2001	34	08/16/2001 - 08/23/2001
9	02/23/2001 - 03/02/2001	35	08/23/2001 - 08/30/2001
10	03/02/2001 - 03/09/2001	36	08/30/2001 - 09/06/2001
11	03/09/2001 - 03/16/2001	37	09/06/2001 - 09/14/2001
12	03/16/2001 - 03/23/2001	38	09/14/2001 - 09/20/2001
13	03/23/2001 - 03/30/2001	39	09/20/2001 - 09/27/2001
14	03/30/2001 - 04/06/2001	40	09/27/2001 - 10/05/2001
15	04/06/2001 - 04/13/2001	41	10/05/2001 - 10/11/2001
16	04/13/2001 - 04/20/2001	42	10/11/2001 - 10/18/2001
17	04/20/2001 - 04/28/2001	43	10/18/2001 - 10/25/2001
18	04/28/2001 - 05/04/2001	44	10/25/2001 - 11/01/2001
19	05/04/2001 - 05/11/2001	45	11/01/2001 - 11/09/2001
20	05/11/2001 - 05/18/2001	46	11/09/2001 - 11/15/2001
21	05/18/2001 - 05/25/2001	47	11/15/2001 - 11/22/2001
22	05/25/2001 - 06/01/2001	48	11/22/2001 - 12/02/2001
23	06/01/2001 - 06/08/2001	49	12/02/2001 - 12/07/2001
24	06/08/2001 - 06/15/2001	50	12/07/2001 - 12/14/2001
25	06/15/2001 - 06/22/2001	51	12/14/2001 - 12/21/2001
26	06/22/2001 - 06/29/2001	52	12/21/2001 - 12/28/2001

. . · ·

.,

,

AIR PARTICULATE (GAMMA SPECTROSCOPY)

COLLECTION

PERIOD	<u> </u>
JAN-MAR	12/29/2000 - 03/30/2001
APR-JUN	03/30/2001 - 06/29/2001
JUL-SEP	06/29/2001 - 09/27/2001
OCT-DEC	09/27/2001 - 12/28/2001

FIGURE D-3 COMPARISON OF WEEKLY GROSS BETA CONCENTRATIONS FROM COLLOCATED AIR PARTICULATE LOCATIONS SPLIT BETWEEN THE PRIMARY AND QC LABORATORIES, 2001

APPENDIX E

έ,

. . .

INTER-LABORATORY COMPARISON PROGRAM

;

Intentionally Left Blank

Table E-1 DOE EML Cross Check Program Results for Environmental, Inc., 2001

			Environr	nental, Inc.		DOE	EEML	
Collection			Value	Uncertainty	Value	Min	Max	Agreement
Date	Media	Nuclide	(B & E)	(C & E)	(D & E)	Ratio	Ratio	(F)
		(A)						
3/2001	Air Filter	Co-60	20.110	0.160	19.440	0.79	1.30	YES
		Cs-134	2.710	0.150	2.830	0.74	1.21	YES
		Cs-137	9.860	0.230	8.760	0.78	1.35	YES
		Mn-54	7.250	0.220	6.520	0.80	1.36	YES
		Sr-90	7.410	0.150	7.100	0.55	2.05	YES
		Gr Beta	2.300	0.020	2.580	0.76	1.52	YES
3/2001	Soil	Ac-228	45.600	4.000	42.700	0.80	1.50	YES
		Bi-212	53.200	3.100	42.000	0.45	1.23	NO
, ,								(G)
•		Bi-214	42.100	7.700	32.600	0.78	1.50	ÝEŚ
-		Cs-137	1772.600	79.800	1740.000	0.80	1.29	YES
		K-40	583.800	52.600	468.000	0.80	1.37	YES
		Pb-212	46.600	8.500	41.500	0.74	1.36	YES
		Pb-214	45.300	8.600	34.300	0.76	1.53	YES
		Sr-90	55.600	2.200	69.000	0.61	3.91	YES
3/2001	Vegetation	Co-60	28.500	2.100	30.400	0.75	1.51	YES
ية معر مور		Cs-137	795.500	76.400	842.000	0.80	1.37	YES
		K-40	592.600	42.500	603.000	0.78	1.43	YES
		Sr-90	1239.600	130.000	1330.000	0.52	1.23	YES
3/2001	Water	Co-60	97.000	0.800	98.200	0.80	1.20	YES
		Cs-137	70.100	4.000	73.000	0.80	1.24	YES
		H-3	76.500	5.500	79.300	0.74	2.29	YES
		Sr-90	3.850	0.130	4.400	0.64	1.50	YES
		Gr Beta	1246.400	31.100	1297.000	0.56	1.50	YES
9/2001	Soil	Ac-228	68.100	1.400	59.570	0.80	1.50	YES
		Bi-212	65.100	1.600	62.067	0.45	1.23	YES
	·	Bi-214	47.300	4.700	36.900	0.78	1.50	YES
	·	Cs-137	659.200	10.800	612.330	0.80	1.29	YES
	1	K-40	737.700	16.600	623.330	0.80	1.37	YES
		Pb-212	64.700	3.800	58.330	0.74	1.36	YES
		Pb-214	53.700	7.700	39.670	0.76	1.53	YES
		Sr-90	27.400	6.300	30.596	0.61	3.91	YES

Table E-1 DOE EML Cross Check Program Results for Environmental, Inc., 2001

Collection			Environr	nental, Inc.		DO	EEMI	
Date	Media	Nuclide (A)	Value (B & E)	Uncertainty (C & E)	Value (D & E)	Min Ratio	Max Ratio	Agreement (F)
9/2001	Water	Co-60 Cs-137 H-3 Sr-90 Gr Beta	206.700 46.600 254.100 4.100 8461.000	4.700 0.800 3.600 0.300	209.000 45.133 207.000 3.729	0.80 0.80 0.74 0.64	1.20 1.24 2.29 1.50	YES YES YES YES
9/2001	Air Filter	Co-60 Cs-134 Cs-137 Mn-54 Sr-90 Gr Beta	16.900 11.800 18.300 85.400 3.110 13.800	0.300 0.200 0.300 1.300 0.060 0.100	7970.000 17.500 12.950 17.100 81.150 3.481 12.770	0.56 0.79 0.74 0.78 0.80 0.55	1.50 1.30 1.21 1.35 1.36 2.05	YES YES YES YES YES YES
9/2001	Vegetation	Co-60 Cs-137 K-40 Sr-90	40.200 1184.000 1023.000 1364.000	0.900 2.800 44.100 18.400	35.300 1030.000 898.670 1612.800	0.76 0.75 0.80 0.78 0.52	1.52 1.51 1.37 1.43 1.23	YES YES YES YES

A. Only analyses performed routinely for the REMP are included on this table.

B. The Environmental, Inc. value is the mean of 1 or 3 measurements/determinations.

C. The Environmental, Inc. uncertainty is the 2-sigma counting uncertainty for one determination and one standard deviation for three determinations.

D. The DOE EML value is the mean of replicate determinations for each radionuclide.

E. Reporting units are Bq/l for water, Bq/kg (dry) for soil, Bq/kg (wet) for vegetation and total Bq for air filters.

F. The control limits (min ratio and max ratio) are established by DOE EML. Acceptable agreement is achieved if the ratio of the Environmental, Inc. value divided by the DOE

G. This naturally-occurring radionuclide is present in the shield background. No follow-up actions were performed because all of the other gamma scan results were acceptable and the subject result was just outside of the upper control limit.

The control limit concept was established from percentiles of historic data distributions (1982 - 1992). The evaluation of this historic data and the development of the control limits are presented in DOE report EML-564. The control limits listed in this table were developed from percentiles of data distributions for the years 1993 - 1999.

Table E-2 ERA Statistical Summary Proficiency Testing Program for Environmental, Inc., 2001

1

Date	Media	Nuclide (A)	Environmental., Inc. Result (pCi/L) (B)	ERA Known Value (pCi/L) (C)	ERA Expected Deviation from Known (pCi/L) (D)	ERA Control Limits (pCi/L) (D)	Performance Evaluation (E)
1/2001	Water	Gr Beta	25,3 (1997)		5.0	8.0-25.4	Α
2/2001	Water	1-131	27.2	28.3	3.0	23.1-33.5	Α
3/2001	Water	H-3	17,400	17,800	1780.0	14,700.0-20,900.0	Α
4/2001	Water	Co-60	27.9	26.4	5.0	17.7-35.1	A
and An Anna an Anna an Anna Anna Anna Anna		Cs-134	16.0	16.9	5.0	8.2-25.6	А
		Cs-137	195.4	186.0	9.3	170.0-202.0	А
		Gr Beta	343.0	340.0	51.0	252.0-428.0	А
		Sr-89	6 2.8	64.1	5.0	55.5-72.8	А
144-4-55		Sr-90	34.2	33.8	5.0	25.1-42.5	A
6/2001	Water	Ba-133	CS 37.8	36.0	5.0	27.3-44.7	A
		Co-60	49.9	46.8	5.0	38.1-55.5	A
		Cs-134	19:16.0	15.9	5.0	7.2-24.6	A
	:	Cs-137	208.0	197.0	9.9	180.0-214.0	A
· ·		Zn-65	37.8	36.2	5.0	27.5-44.9	А
7/2001	Water	Sr-89	19.8	31.2	5.0	22.5-39.9	NA(F)
		Sr-90	26.3	25.9	5.0	17.2-34.6	A
		Gr Beta	48.5	53.0	10.0.	35:7-70.3	A
8/2001	Water	H-3	2,680.0	2,730.0	356.0	2,110.0-3,350.0	A
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			<u></u>			

E - 3

Date	Media	Nuclide (A)	Environmental., Inc. Result (pCi/L) (B)	ERA Known Value (pCi/L) (C)	ERA Expected Deviation from Known (pCi/L) (D)	ERA Control Limits (pCi/L) (D)	Performance Evaluation (E)
10/2001	Water	I-131	7.7	7.7	2.0	4.2-11.2	Δ
		Co-60	82.4	78.4	5.0	69.7-87.1	A
		Cs-134	52.2	54.1	5.0	45.4-62.8	Δ
		Cs-137	39.4	37.9	5.0	26.3-43.7	A
		Gr Seta	166.0	192.0	28.8	142.0-242.0	Δ
		Sr-89	12.8	16.7	5.0	8.0-25.4	A
		Sr-90	6.8	7.7	5.0	-1.0-16.4	Δ
		Gr Beta	26.0	21.5	5.0	12.8-30.2	A
11/2001	Water	Ba-133	66.7	69.3	6.9	57.5-81 1	Δ
		Co-60	59.3	59.7	5.0	51.0-68.4	A
		Cs-134	86.7	93.9	5.0	85.2-103.0	Δ
		Cs-137	45.0	42.0	5.0	33.3-50.7	A
		Zn-65	80.7	77.3	7.7	63.9-90.7	A

Table E-2 ERA Statistical Summary Proficiency Testing Program for Environmental, Inc., 2001

Α. Only analyses performed routinely for the REMP are included on this table.

The Environmental, Inc. result is the mean for three measurements/determinations. Β. С

The ERA known value is equal to 100% of the parameter present in the standard as determined by gravimetric and/or volumetric measurements made during standard preparation. D.

Established per the guidelines contained in the EPA's National Standards for Water Proficiency Testing Criteria Document, December 1998, as applicable. A= Acceptable - Reported Result falls within the Control Limits. Ε.

NA = Not Acceptable - Reported Result falls outside of the Control Limits.

F.

A reanalysis was performed; the result was 35.3 ± 4.4 pCi/L which was within the established control limits.

- Sector general sector - 「「 開催 An Article - 」」 - An Article - State - Sector - Sector - An Article - Article - Article - Article - Article - Article - Article

TABLE E-3ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN
ENGINEERING (TBE) ENVIRONMENTAL SERVICES, 2001

	Identific	ation			Reported	Known	Ratio	
Month/Year	Number	Matrix	Nuclide	Units	Value	Value	TBE/Analytics	Evaluation
March, 2001	E2584-93	ese e Milk one e	I-131::-	pCi/L	75	77	0.97	A
	e van Sternen in Sterne Sternen in Sternen in St		Ce-141		166	162 \cdots	1.03	A
		na di seconda di second Seconda di seconda di se	Cr-51		433	418	1.04	А
	n Africa an an an Air an Ai	1. e 200 	Cs-134		212	223	0.95	А
		ایک معید در اینان ۱۹۰۰ میر این اینان اینان	Cs-137		165	176	0.94	A
en en la Angle en la servició en la Angle de 1995. Angle en la Angle en la Angle de 1995. Angle en la Angle en la Angle de 1995.	n fasto, de la de la fasto.		Co-58		81	82	0.99	
		an a	Mn-54	1. A. A. B.	172	175	0.98	A.
		· ·	Fe-59		151	146	1.03	A
			Zn-65		314	322	0.98	, A
	- -		Co-60	5.	254	254	1	A
june, 2001	2707	Charcoal	I-131	pCi	104.5	81	1.29	W
e de la companya de la	2708	Charcoal	I-131	pCi	84.8	72	1.18	A
	2709	Charcoal	1-131	pCi	99.6	92	1.08	A
							· · ·	
August, 2001	E2757-369	AP Filters	Fe-55	Total pCi	71	83	0.86	A
			Cr-51	Total pCi	100,	90 -	1.11	A
	·		Mn-54	Total pCi	161	134	1.20	A
			Co-58	Total pCi	72	66	1.09	A
		,	Fe-59	Total pCi	64	49	1.31	A
			Co-60	Total pCi	148	128	1.16	A
			Zn-65	Total pCi	200	158	1.27	W
			Cs-134	Total pCi	109	125	0.87	A
	r.,		Cs-137	Total pCi	140	116	1.21	A
			Ce-141	Total pCi	79	74	1.07	A
					i i nite e			

TABLE E-3ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN
ENGINEERING (TBE) ENVIRONMENTAL SERVICES, 2001

Month/Year Number Matrix Nuclide Units Value Value TBE/Analytics Evalua August, 2001 E2755-396 Milk Mn-54 pCi/L 131 124 1.06 A Co-58 pCi/L 68 68 1.00 A Co-58 pCi/L 53 50 1.06 A Co-60 pCi/L 134 132 1.02 A Zn-65 pCi/L 172 162 1.06 A Co-80 pCi/L 134 132 1.02 A Zn-65 pCi/L 172 162 1.06 A Cs-134 pCi/L 141 128 1.10 A Cs-137 pCi/L 126 120 1.05 A September, 2001 A14734-148 Liquid Sr-89 Total uCi 1.30E-03 1.55E-03 0.84 A September, 2001 A14735-148 Gas Xe-133 Total uCi
August, 2001 E2755-396 Milk Mn-54 pCi/L 131 124 1.06 A Co-58 pCi/L 68 68 1.06 A Co-58 pCi/L 53 50 1.06 A Co-60 pCi/L 134 132 1.02 A Zn-65 pCi/L 134 132 1.02 A Li131 pCi/L 134 132 1.02 A Zn-65 pCi/L 134 132 1.02 A Cs-131 pCi/L 172 162 1.06 A Cs-137 pCi/L 126 120 1.05 A Cs-137 pCi/L 72 76 0.95 A September, 2001 A14734-148 Liquid Sr-89 Total uCi 1.30E-03 1.55E-03 0.84 A September, 2001 A14735-148 Gas Xe-133 Total uCi 1.00E-04 1.12E-04 0.89 A </td
Co-58 pC//L 68 68 1.00 A Fe-59 pCi/L 53 50 1.06 A Co-60 pCi/L 134 132 1.02 A Zn-65 pCi/L 134 132 1.02 A Zn-65 pCi/L 134 132 1.02 A Co-80 pCi/L 134 132 1.02 A Zn-65 pCi/L 172 162 1.06 A Cs-134 pCi/L 76 86 0.88 A Cs-137 pCi/L 141 128 1.10 A Ce-141 pCi/L 72 76 0.95 A September, 2001 A14734-148 Liquid Sr-89 Total uCi 1.00E-04 1.12E-04 0.84 A September, 2001 A14735-148 Gas Xe-133 Total uCi 1.00E-04 1.12E-04 0.89 A September, 2001 A14736-148
Fe-59 pCi/L 53 50 1.00 A Co-60 pCi/L 134 132 1.02 A Zn-65 pCi/L 134 132 1.02 A Lindit PCi/L 134 132 1.02 A Zn-65 pCi/L 172 162 1.06 A Cs-134 pCi/L 76 86 0.88 A Cs-134 pCi/L 141 128 1.10 A Cs-137 pCi/L 126 120 1.05 A Cs-131 pCi/L 72 76 0.95 A September, 2001 A14734-148 Liquid Sr-89 Total uCi 1.30E-03 1.55E-03 0.84 A September, 2001 A14735-148 Gas Xe-133 Total uCi 1.00E-04 1.12E-04 0.89 A September, 2001 A14736-148 Charcoal I-131 Total uCi 0.483 0.495 0.98
Co-60 pCi/L 134 132 1.00 A Zn-65 pCi/L 172 162 1.02 A L-131 pCi/L 172 162 1.06 A L-131 pCi/L 172 162 1.06 A L-131 pCi/L 141 128 1.10 A Cs-134 pCi/L 141 128 1.10 A Cs-137 pCi/L 126 120 1.05 A Ce-141 pCi/L 72 76 0.95 A September, 2001 A14734-148 Liquid Sr-89 Total uCi 1.30E-03 1.55E-03 0.84 A September, 2001 A14735-148 Gas Xe-133 Total uCi 0.606 0.585 1.04 A September, 2001 A14736-148 Charcoal L-131 Total uCi 0.483 0.495 0.98 A September, 2001 A14737-148 Air Filter Ce-141
Zn-65 pCi/L 172 162 1.02 A PCi/L 171 162 1.06 A PCi/L 172 162 1.06 A September, 2001 A14734-148 Liquid Sr-89 Total uCi 1.30E-03 1.55E-03 0.84 A September, 2001 A14735-148 Gas Xe-133 Total uCi 1.00E-04 1.12E-04 0.89 A September, 2001 A14736-148 Gas Xe-133 Total uCi 0.606 0.585 1.04 A September, 2001 A14736-148 Charcoal I-131 Total uCi 0.483 0.495 0.98 A September, 2001 A14736-148 Charcoal I-131 Total uCi 0.483 0.495 0.98 A September, 2001 A14737-148 Air Filter Ce-141 Total uCi 1.49E-02 5.25E-02 0.995 A
Initial Initial <t< td=""></t<>
Cs-134 pCi/L 141 128 1.10 A September, 2001 A14734-148 Liquid Sr-89 Total uCi 1.30E-03 1.55E-03 0.84 A September, 2001 A14735-148 Gas Xe-133 Total uCi 1.30E-03 1.55E-03 0.84 A September, 2001 A14735-148 Gas Xe-133 Total uCi 1.00E-04 1.12E-04 0.89 A September, 2001 A14735-148 Gas Xe-133 Total uCi 0.606 0.585 1.04 A September, 2001 A14736-148 Charcoal I-131 Total uCi 0.483 0.495 0.98 A September, 2001 A14737-148 Air Filter Ce-141 Total uCi 0.483 0.495 0.98 A
Cs-137 Ce-141 Cs-137 pCi/L Total uCi 126 120 1.10 A September, 2001 A14734-148 Liquid Sr-89 Sr-90 Total uCi 1.30E-03 1.55E-03 0.84 A September, 2001 A14735-148 Gas Xe-133 Kr-85 Total uCi 1.00E-04 1.12E-04 0.89 A September, 2001 A14736-148 Charcoal I-131 Total uCi 0.606 0.585 1.04 A September, 2001 A14736-148 Charcoal I-131 Total uCi 0.483 0.495 0.98 A September, 2001 A14737-148 Air Filter Ce-141 Total uCi 1.68E-01 0.95 A
Ce-141 point 120 120 1.05 A September, 2001 A14734-148 Liquid Sr-89 Total uCi 1.30E-03 1.55E-03 0.84 A September, 2001 A14735-148 Gas Xe-133 Total uCi 1.00E-04 1.12E-04 0.89 A September, 2001 A14736-148 Gas Xe-133 Total uCi 0.606 0.585 1.04 A September, 2001 A14736-148 Charcoal I-131 Total uCi 0.483 0.495 0.98 A September, 2001 A14737-148 Air Filter Ce-141 Total uCi 0.483 0.495 0.98 A
September, 2001 A14734-148 Liquid Sr-89 Sr-90 Total uCi Total uCi 1.30E-03 1.00E-04 1.55E-03 1.12E-04 0.84 A September, 2001 A14735-148 Gas Xe-123 Kr-85 Total uCi 0.606 0.585 1.04 A September, 2001 A14736-148 Gas Xe-123 Kr-85 Total uCi 0.606 0.585 1.04 A September, 2001 A14736-148 Charcoal I-131 Total uCi 0.483 0.495 0.98 A September, 2001 A14737-148 Air Filter Ce-141 Total uCi 4.99E-02 5.25E-02 0.95 A September, 2001 A14737-148 Air Filter Ce-141 Total uCi 4.99E-02 5.25E-02 0.95 A
September, 2001 A14734-148 Liquid Sr-89 Total uCi 1.30E-03 1.55E-03 0.84 A September, 2001 A14735-148 Gas Xe-133 Total uCi 0.606 0.585 1.04 A September, 2001 A14735-148 Gas Xe-133 Total uCi 0.606 0.585 1.04 A September, 2001 A14736-148 Charcoal I-131 Total uCi 0.483 0.495 0.98 A September, 2001 A14737-148 Air Filter Ce-141 Total uCi 4.99E-02 5.25E-02 0.95 A September, 2001 A14737-148 Air Filter Ce-141 Total uCi 4.99E-02 5.25E-02 0.95 A
September, 2001 A14735-148 Gas Xe-133 Kr-85 Total uCi 0.606 0.606 0.585 1.04 A September, 2001 A14736-148 Gas Xe-133 Kr-85 Total uCi 0.606 0.585 1.04 A September, 2001 A14736-148 Charcoal I-131 Total uCi 0.483 0.495 0.98 A September, 2001 A14737-148 Air Filter Ce-141 Cr-51 Total uCi 4.99E-02 5.25E-02 0.95 A
September, 2001 A14735-148 Gas Xe-133 Kr-85 Total uCi Total uCi 0.606 0.585 1.04 A September, 2001 A14736-148 Charcoal I-131 Total uCi 0.483 0.495 0.98 A September, 2001 A14737-148 Air Filter Ce-141 Cr-51 Total uCi 4.99E-02 5.25E-02 0.95 A
September, 2001 A14735-148 Gas Xe-133 Kr-85 Total uCi 0.606 0.585 1.04 A September, 2001 A14736-148 Charcoal I-131 Total uCi 0.483 0.495 0.98 A September, 2001 A14737-148 Air Filter Ce-141 Total uCi 4.99E-02 5.25E-02 0.95 A September, 2001 A14737-148 Air Filter Ce-141 Total uCi 1.68E-01 1.85E-01 0.91 A
Kr-85 Total uCi 8.53 8.42 1.04 A September, 2001 A14736-148 Charcoal I-131 Total uCi 0.483 0.495 0.98 A September, 2001 A14737-148 Air Filter Ce-141 Total uCi 4.99E-02 5.25E-02 0.95 A Cr-51 Total uCi 1.68E-01 1.85E-01 0.91 A
September, 2001 A14736-148 Charcoal I-131 Total uCi 0.483 0.495 0.98 A September, 2001 A14737-148 Air Filter Ce-141 Total uCi 4.99E-02 5.25E-02 0.95 A Cr-51 Total uCi 1.68E-01 1.85E-01 0.91 A
September, 2001 A14736-148 Charcoal I-131 Total uCi 0.483 0.495 0.98 A September, 2001 A14737-148 Air Filter Ce-141 Total uCi 4.99E-02 5.25E-02 0.95 A Cr-51 Total uCi 1.68E-01 1.85E-01 0.91 A
September, 2001 A14737-148 Air Filter Ce-141 Total uCi 4.99E-02 5.25E-02 0.95 A Cr-51 Total uCi 1.68E-01 1.85E-01 0.91 A
September, 2001 A14737-148 Air Filter Ce-141 Totai uCi 4.99E-02 5.25E-02 0.95 A Cr-51 Total uCi 1.68E-01 1.85E-01 0.91 <
Cr-51 Total uCi 1.68E-01 1.85E-01 0.01
Cs-134 Total uCi 2.47E-02 2.97E-02 0.83
Cs-137 Total uCi 5.18E-02 5.73E-02 0.90
Co-58 Total UCi 4.60E-02 4.75E-02 0.97
Mn-54 Total uCi 3.96E-02 4.02E-02 0.60
Fe-59 Total uCi 2.99E-02 2.92E-02 1.02
Zn-65 Total uCi 5.22E-02 1.02 A
September, 2001 A14737-148 Air Filter Co-60 Total uCi 4 71E-02 4 82E 02 0.00
A A A A A A A A A A A A A A A A A A A

TABLE E-3

.

E-3 ANALYTICS ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING (TBE) ENVIRONMENTAL SERVICES, 2001

	Iden	ification			Reported	Known	Ratio	
Month/Year	Number	Matrix	Nuclide	Units	Value	Value	TBE/Analytics	Evaluation
September, 2001	A14738-148	Liquid	Gr-Alpha	Total uCi	5.80E-04	4.67E-04	1.24	A
			a see page					
September, 2001	A14286-148	Liquid	Gr-Alpha	uCi/cc	1.70E-04	1.45E-04	1.17	Α
n an taine an tainn agus an tainn an ta			H÷3	uCi/cc	2.92E-03	1.77E-03	1.65	A
September, 2001	E2772-396	Milk	1-131	pCi/L	100	⁵ 91	1 10	Δ
	and the second sec		Ce-141	pCi/L	126	121	1.10	Δ
			Cr-51	pCi/L	349	366	0.95	A
			Cs-134	pCi/L	147	160	0.92	A
			Cs-137	pCi/L	321	319	1.01	A
			Co-58	pCi/L	190	177	1.07	A
			Mn . 54	pCi/L	205	205	1.00	A
an an 19 anns an Anns a			Fe-59	pCi/L	85	86	0.99	A
			Zn-65	pCi/L	246	254	0.98	A
			<u>Co-60</u>	pCi/L	261	266	0.98	A
					1	· ·		
• • •			-1 - 1		•	:		
				14		- :		
			· · · · · · · · · · · · · · · · · · ·	•	•			
			Ϋ́.	· ·				
	n 1997 - State State 1997 - State State	•			t vere en en en		• •	

DOE/EML ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING TABLE E-4 (TBE) ENVIRONMENTAL SERVICES, 2001

	Identifi	cation	and the second		Reported	Known		
Month/Year	Number	Media	Nuclide	Units	Value	Vaiuo	Ratio	
March, 2001	QAP 103	Air Filter	Nuclide Mn-54 Co-60 Cs-134 Cs-137 Pu-238 Pu-239 Am-241 Total-U Gr-Alpha Gr-Beta	Units Bq/filter Bq/filter Bq/filter Bq/filter Bq/filter Bq/filter ug/ filter Bq/filter Bq/filter Bq/filter	Value 6.96 19.4 2.59 9.52 0.23 0.17 0.93 0.127 3.33 2.26	Vaiue 6.52 19.44 2.83 8.76 0.215 0.136 0.486 3.7 3.97 2.58	TBE/EML 1.07 1.00 0.92 1.09 1.07 1.25 1.91 0.03 0.84 0.88	Evaluation A A A A W W W N (a) A
March, 2001	QAP 103	Soil	Sr-90	Bq/filter	7.46	7.1	1.05	A
			Cs-137 Pu-239/40 Sr-90	Bq/kg Bq/kg Bq/kg Bq/kg	464.8 1696 24.32 80.8	468 1740 25.6 69	0.99 0.97 0.95 1.17	A A A A
March, 2001	QAP 103	Vegetation	K-40 Co-60 Cs-137 Pu-239 Am-241 Cm-244 Sr-90	Bq/kg Bq/kg Bq/kg Bq/kg Bq/kg Bq/kg Bq/kg	728 34 1005 10.54 7.03 2.26 1283	603 30.4 842 9.58 6.17 3.69 1330	1.21 1.12 1.19 1.10 1.14 0.61 0.96	A A A A A W A

DOE/EML ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING TABLE E-4 (TBE) ENVIRONMENTAL SERVICES, 2001

	Ident	ification			Reported	Known	Ratio	
Month/Year	Number	Media	Nuclide	Units	Value	Value	TBE/EMI	Evaluation
March, 2001	QAP 103	Water	Co-60	·Bq/l·	100.3	98.2	1.02	A
			Cs-137	Bq/ł	75.8	73	1.04	А
			Gr-Alpha	Bq/I	1600	1900	0.84	А
			Gr-Beta	Bq/I	1200	1297	0.93	A
		. 1	Pu-238	Bq/I	1.78	1.58	1.13	w
an a			Pu-239	Bq/I	1.99	1.64	1.21	Ŵ
			Am-241	Bq/i	2.2	1.67	1.32	Ŵ
March, 2001	QAP 103	Vegetation	K-40	Bq/kg	728	603	1.21	A
			Co-60	Bq/kg	34	30.4	1.12	A
Marata da como de como Como de como de			Cs-137	Bq/kg	1005	842	1.19	A
			Pu-239	Bq/kg	10.54	9:58	1.10	A
			Am-241	Bq/kg	7.03	6.17	1.14	A
			Cm-244	Bq/kg	2.26	3.69	0.61	w
			Sr-90	Bq/kg	1283	1330	0.96	А
	· · · · · · · · · · · · · · · · · · ·						7	
May, 2001		Water	Sr-90	Bq/I	4.57	4.4	1.04	A
			Total U	ug/filter	1.46	0.08	18.25	N (b)
			Н-3	Bq/I	61.0	79.3	0.77	w
					. # 2 ¹ -			
June, 2001	QAP 2009	Air Filters	Mn-54	Bq/filter	49.5	43.2	1.15	A
			Co-57	Bq/filter	15.2	14.5	1.05	A
			Co-60	Bq/filter	8.79	8.43	1.04	A
			Cs-137	Bq/filter	8.26	7.41	1.11	A
			Gr-Alpha	Bq/filter	2.31	2.35	0.98	A
			Gr-Beta	Bq/filter	1.79	1.52	1.18	A
· .	4 Carlos Maria Carlos	A Star Department				1 1 St. 1 St. 20	 	

TABLE E-4DOE/EML ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING
(TBE) ENVIRONMENTAL SERVICES, 2001

	Iden	Identification			Poportod			
Month/Year	Number	Media	Nuclide	Units	Value	Known	Ratio	
June, 2001	QAP 2009	Soil	K-40	Balka		Value	IBE/EML	Evaluation
			Cs-137	Bq/kg Bg/kg	039.2	/13	1.18	A
			Pb-212	Bq/kg	1164	1020	1.14	A
			Bi-214	Bq/kg	95.5	79.3	1.20	A
			Pb-214	Dy/kg	84.0	83.3	1.01	A
			Ac-228	Bq/kg	92.9	86.3	1.08	A
			11-234	Bq/kg	84.8	80.2	1.06	A
	l t		11 229	Bd/kg	117	157	0.75	W
		\$	J-200	Bd/kg	122	163	0.75	W
June, 2001	0AP 2009	Vogotation		ug/filter	4.41	13.2	0.33	N (b)
		vegetation	11-40	Bq/kg	827.4	639	1.29	W
			Co-60	Bq/kg	34.4	32.8	1.05	A
· · · · · · · · · · · · · · · · · · ·			Cs-137	Bq/kg	949.4	867	1.10	A
une, 2001	QAP 2009	Water	Co-60	Ba/l	75.7	73 7		
			Cs-137	Bg/l	69.3	73.7	1.03	A
		:	U-234	Ba/l	030	0.10	1.03	A
			U-238	Ba/l	0.39	0.481	0.81	W
			Total U	Bq/I	0.32	0.368	0.87	W
				Bq/i	0.014	0.0304	0.46	N (b)
eptember, 2001	QAP 0109	Air Filters	Mn-54	Bq/filter	97.1	81.15	1 107	
			Co-60	Ba/filter	18.8	17.5	1.197	A
			Sr-90	Ba/filter	2.56	3 / 9/	1.074	A
		*****	Cs-134	Ba/filter	12.00	12.05	0.735	W
			Cs-137	Ba/filter	70.9	12.95	0.981	A
			Pu-238	Bq/filtor	20.0	17.1	1.216	W
			Pu-239	Balfiltor	0.0595	0.071	0.838	W
· .			Am-241	Dy/iiter	0.287	0.2291	1.253	W
۰.			GrAlpha	Bq/mter	9.089	0.0887	1.011	A
				Bq/filter	5.42	5.362	1.011	A
	and the second		GI-Refa	Bq/filter	12.0	12.77	0.94	•

TABLE E-4 DOE/EML ENVIRONMENTAL RADIOACTIVITY CROSS CHECK PROGRAM TELEDYNE BROWN ENGINEERING (TBE) ENVIRONMENTAL SERVICES, 2001

	Iden	Identification			Reported	Known	Ratio	
Month/Year	Number	Media	Nuclide	Units	Value	Value	TBE/EML	Evaluation
September, 2001	QAP 0109	Soil	K-40	Bq/kg	673.0	623.33	1.080	Α
			Sr-90	Bq/kg	29.6	30.596	0.967	A
and the state of the	State Barris		Cs-137	Bq/kg	680.5	612.33	1.111	A
			Pu-239	Bq/kg	7.42	8.948	0.829	Ŵ
			012.5		a second			
September, 2001	QAP 0109	Vegetation	K-40	Bq/kg	1090.0	898.67	1.213	A
			Co-60	Bq/kg	39.8	35.3	1.127	A
			Sr-90	Bq/kg	1253.0	1612.8	0.777	A
			Cs-137	Bq/kg	1235.0	1030.0	1.199	A
			Pu-239	Bq/kg	11.6	11.022	1.052	А
September, 2001	QAP 0109	Water	H-3::	Bq/I	212.3	207.0	1.026	Α
			Co-60	Bq/I	207.3	209.0	0.992	Α
	n fa Angelander Herrie	1	Ni-63	Bq/I	50.7	45:25	1.1	A
			Sr-90	Bq/I	4.76	3.729	1.276	Ŵ
			Cs-137	Bq/I	47.7	45.133	1.057	A
			Pu-238	Bq/I	1.21	1.0882	1.112	w
			Pu-139	Bq/I	1.86	1.628	1.143	W
			Am-241	Bq/I	0.763	0.7597	1.004	A
			Gr-Alpha	Bq/I	1333.0	1150.0	1.159	w
, , , , , , , , , , , , , , , , , , ,			Gr-Beta	Bq/I	8533.0	7970.0	1.071	Α
				· · ·				

ı.

(a) Reported in Bq/filter. Converted to ug/filter, the results of 3.4 would be acceptable.

(b) Reported in incorrect units. Converted to correct units, the results would be acceptable.

Intentionally Left Blank

-