DCS M5-016

OCT 1 5 1982

Docket File Gray File (4)

NRC PDR Local PDR

ORB Rdg #3 DEisenhut

PMKreutzer

JStevens

OELD

SECY

LJHarmon (2) TBarnhart (4) LSchneider (1)

ACRS (10)

OPA (clare Miles)

RDiggs NSIC ASLAB

Dear Mr. Cavanaugh:

P. O. Box 551

Docket No. 50-368

Mr. William Cavanaugh, III

Supply Department

Senior Vice President, Energy

Arkansas Power & Light Company

Little Rock, Arkansas 72203

The Commission has issued the enclosed Amendment No. 35 to Facility Operating License No. NPF-6 for Arkansas Nuclear One, Unit 2. The amendment consists of changes to Technical Specifications in response to your application dated

August 23, 1982, as supplemented September 22, 1982.

The amendment allows for testing of the electrical containment penetration conductor circuit breakers in accordance with manufacturer's recommendations. These testsare an improvement over those previously required since each over-current trip element of the circuit breaker is tested rather than just the instantaneous trip element.

The proposed change to the Arkansas Nuclear One, Unit 2 technical specification has been found acceptable. Copies of the Safety Evaluation and the Notice of Issuance are enclosed.

Sincerely,

Original signed by:

Janice A. Stevens, Project Manager Operating Reactors Branch #3 Division of Licensing

Enclosures:

1. Amendment No. 35 to NPF-6

2. Safety Evaluation

3. Notice of Issuance

8211050180 821015 PDR ADOCK 05000368 P PDR brown of stephy

OFFICE	DL:ORB#	DL:ORB#3/ JStevens:dd	DL: 088 #27 /	ADOR OF		
			RACTark	6CLa mas		
DATE	10/ /3 /82	10//9/82	.10//4/82	10/14/82	10/: ^L //82	 **************

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D.C. 20555

DISTRIBUTION: Docket File ORB#3 Rdg **PMKreutzer**

Docket No. 50-368

Docketing and Service Section Office of the Secretary of the Commission

For Kidling

SUBJECT: ARKANSAS POWER AND LIGHT COMPANY, AND Unit Noclear 1, Unit No. 2

Two signed originals of the <u>Federal Register</u> Notice identified below are enclosed for your transmittal to the Office of the Federal Register for publication. Additional conformed copies (12) of the Notice are enclosed for your use.
☐ Notice of Receipt of Application for Construction Permit(s) and Operating License(s).
Notice of Receipt of Partial Application for Construction Permit(s) and Facility License(s): Time for Submission of Views on Antitrust Matters.
☐ Notice of Availability of Applicant's Environmental Report.
☐ Notice of Proposed Issuance of Amendment to Facility Operating License.
Notice of Receipt of Application for Facility License(s); Notice of Availability of Applicant's Environmental Report; and Notice of Consideration of Issuance of Facility License(s) and Notice of Opportunity for Hearing.
☐ Notice of Availability of NRC Draft/Final Environmental Statement.
☐ Notice of Limited Work Authorization.
☐ Notice of Availability of Safety Evaluation Report.
☐ Notice of Issuance of Construction Permit(s).
☐ Notice of Issuance of Facility Operating License(s) or Amendment(s).
Other: Amendment No. 35 Referenced documents have been provided PDR.
Division of Licensing Office of Nuclear Reactor Regulation As Stated
OFFICE DL: ORB#3 ⁷
SURNAME PMKreutzer
DATE → 10//8/82

Arkansas Power & Light Company

cc:

Mr. John Marshall Manager, Licensing Arkansas Power & Light Company P. O. Box 551 Little Rock, Arkansas 72203

Mr. James P. O'Hanlon General Manager Arkansas Nuclear One P. O. Box 608 Russellville, Arkansas 72801

Mr. Robert B. Borsum
Babcock & Wilcox
Nuclear Power Generation Division
Suite 220
7910 Woodmont Avenue
Bethesda, Maryland 20814

Nicholas S. Reynolds, Esq. c/o DeBevoise & Liberman 1200 Seventeenth Street, N.W. Washington, D. C. 20036

Arkansas Polytechnic College Russellville, Arkansas 72801

Mr. Charles B. Brinkman
Manager - Washington Nuclear
Operations
C-E Power Systems
4853 Cordell Avenue, Suite A-1
Bethesda, Maryland 20014

Regional Administrator Nuclear Regulatory Commission, Region IV Office of Executive Director for Operations 611 Ryan Plaza Drive, Suite 1000 Arlington, Texas 76011

Mr. W. Johnson U.S. NRC P. O. Box 2090 Russellville, Arkansas 72801 U.S. Environmental Protection Agency Region VI Office ATTN: Regional Radiation Representative 1201 Elm Street Dallas, Texas 75270

S. L. Smith, Operations Officer Arkansas Nuclear Planning & Response Program P. O. Box 1749 Russellville, Arkansas 72801

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

ARKANSAS POWER & LIGHT COMPANY

DOCKET NO. 50-368

ARKANSAS NUCLEAR ONE, UNIT 2

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 35 License No. NPF-6

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment by Arkansas Power & Light Company (the licensee) dated August 23, 1982, as supplemented September 22, 1982, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act) and the Commission's rules and regulations set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

2. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment, and paragraph 2.C(2) of Facility Operating License No. NPF-6 is hereby amended to read as follows:

(2) Technical Specifications

The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 35, are hereby incorporated in the license. The licensee shall operate the facility in accordance with the Technical Specifications.

3. This license amendment is effective as of the date of its issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Robert A. Clark, Chief

Operating Reactors Branch #3

Division of Licensing

Attachment: Changes to the Technical Specifications

Date of Issuance: October 15, 1982

ATTACHMENT TO LICENSE AMENDMENT NO. 35

FACILITY OPERATING LICENSE NO. NPF-6

DOCKET NO. 50-368

Replace the following pages of the Appendix "A" Technical Specifications with the enclosed pages. The revised pages are identified by Amendment number and contain vertical lines indicating the area of change. Corresponding overleaf pages are provided to maintain document completeness.

Remove Pages	<u>Insert Pages</u>
3/4 8-11	3/4 8-11
through	through
3/4 8-32	3/4 8-32

ELECTRICAL POWER SYSTEMS

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

LIMITING CONDITION FOR OPERATION

3.8.2.5 All containment penetration conductor overcurrent protective devices shown in Table 3.8-1 shall be OPERABLE.

APPLICABILITY: MODES 1, 2, 3 and 4.

ACTION:

With one or more of the containment penetration conductor overcurrent protective devices shown in Table 3.8-1 inoperable:

- a. De-energize the circuit(s) by tripping the associated backup circuit breaker within 72 hours and verifying the backup circuit breaker to be tripped at least once per 7 days thereafter; the provisions of Specification 3.0.4 are not applicable to overcurrent devices in circuits which have their backup circuit breakers tripped, or
- b. Be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

- 4.8.2.5 All containment penetration conductor overcurrent protective devices shown in Table 3.8-1 shall be demonstrated OPERABLE in accordance with the manufacturers' recommendations:
- a. At least once per 18 months:
 - 1. For at least one 6.9 kv reactor coolant pump circuit, such that all reactor coolant pump circuits are demonstrated OPEARABLE at least once per 72 months, by performance of:
 - (a) A CHANNEL CALIBRATION of the associated protective relays, and
 - (b) An integrated system functional test which includes simulated automatic actuation of the system and verifying that each relay and associated circuit breakers and control circuits function as designed.

ELECTRICAL POWER SYSTEMS

SURVEILLANCE REQUIREMENTS (Continued)

- 2. For molded case circuit breakers, by performance of a functional test of a least one circuit breaker of each type, such that all circuit breakers of each type are demonstrated OPERABLE at least once per N x 18 months, where N is the number of circuit breakers of each type. The functional test shall consist of injecting a current input at the specified setpoint to the circuit breaker and verifying that the circuit breaker functions as designed. If any circuit breaker fails to function as designed, all other circuit breakers of that type shall be tested.
- b. At least once per 60 months by subjecting each circuit breaker to an inspection and preventive maintenance in accordance with procedures prepared in conjunction with its manufacturer's recommendations.

TABLE 3.8-1

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

PRIMARY DEVICE NUMBER	BACKUP DEVICE NUMBER	LOCATION OF DEVICES	SYSTEM POWERED
À. 6900 KVAC			
152-11	152-13, or 152-14, or 152-15	Switchgear 2H1	RCP 2P32A
152-12	152-13, or 152-14, or 152-15	Switchgear 2H1	RCP 2P32D
152-21	152-23, or 152-24, or 152-25	Switchgear 2H2	RCP 2P32B
152-22	152-23, or 152-24, or 152-25	Switchgear 2H2	RCP 2P32C
B. 480 VAC			
52-131	None, circuit shall not be energized unless plant is shutdown	2B1	Containment Building Crane 2LM2
52-P501 thru 52-P504	52-523	Primary - 2PP5 Backup - 2B5	Pressurizer Proportional Heater Bank 1
52-533	52-512	2B5	Hydrogen Recombiner 1
52-P601 thru 52-P604	52-623	Primary - 2PP6 Backup - 2B6	Pressurizer Proportional Heater Bank 2

TABLE 3.8-1 (Continued) CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

PRIMARY DEVICE NUMBER	BACKUP DEVICE NUMBER	LOCATION OF DEVICES	SYSTEM POWERED
52-633	52-612	2B6	Hydrogen Recombiner 2
52-731	52-732	2B7	MCC 2B71
52-824	52-823	2B8	MCC 2B81
52-P701 thru 52-P706	52-922	Primary - 2PP7 Backup - 2B9	Pressurizer Backup Heater Bank 3
52-P901 thru 52-P906	52-923	Primary - 2PP9 Backup - 2B9	Pressurizer Backup Heater Bank 5
52-P801 thru 52-P806	52-1022	Primary - 2PP8 Backup - 2B10	Pressurizer Backup Heater Bank 4
52-1001 thru 52-1006	52-1023	Primary - 2PP10 Backup - 2B10	Pressurizer Backup Heater Bank 6
C. 480 VAC52-51A4	MCC 52-51H2	MCC 2B51	Reactor Cavity Cooling Fan 2VSF34A-1
52-51B2	52-51H3	MCC 2B51	Containment Sump Isolation MOV 2CV-2060-1
52-5103	52-51H4	MCC 2B51	Containment Recirculating Fan 2VSF31A-1

TABLE 3.8-1 (Continued) CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

PRIMARY DEVICE NUMBER	BACKUP DEVICE NUMBER	LOCATION OF DEVICES	SYSTEM POWERED
52-51D4	52-51H5	MCC 2B51	Containment Recirculating Fan 2VSF31C-1
52-51E2	52 - 51H6	MCC 2B51	Reactor Drain Tank Drain Isolation Valve 2CV-2202-1
52-51FI	52-51H7	MCC 2B51	RCP Controlled Bleedoff Isolation Valve 2CV-4846-1
52-51F2	52-51H8	MCC 2B51	Safety Injection Tank 2T2A Discharge MOV 2CV-5003-1
52-51G2	52-51L2	MCC 2B51	Shutdown Cooling Return Header Iso. Valve 2CV-5084-1
52-51G3	52-51H9	MCC 2B51	Check Valve Leakage Drain Valve 2CV-5105-1
52-5H1	52-51L3	MCC 2B51	Safety Injection Tank 2T2B Discharge MOV 2CV-5023-1
52-51K1	52-51L4	MCC 2B51	Containment Sump Isolation MOV 2CV-5647-1
		· · · · · · · · · · · · · · · · · · ·	

TABLE 3.8-1 (Continued)

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

PRIMARY DEVICE NUMBER	BACKUP DEVICE NUMBER	LOCATION OF DEVICES	SYSTEM POWERED
52-51K3	52 - 51L5	MCC 2B51	Containment Air Purge Isolation Valve 2CV-8289-1
52-51K4	52 - 51L6	MCC 2B51	Containment Air Purge Isolation Valve 2CV-8291-1
52-51L1 _.	52-51L7	MCC 2B51	Containment Vent Header Isolation Valve 2CV-2401-1
52-51M1	52-51L8	MCC 2B51	Regenerative Heat Exchanger Inlet Valve 2CV-4821-1
52-51N3	52 - 51L9	MCC 2B51	Reactor Cavity Cooling Fan Bypass Damper 2HCO8243-1
52-53G1	52 - 53A5	MCC 2B53	Containment Cooling Fan Bypass Damper Motor 2UCDM8203-1
52-53G2	52-53A6	MCC 2B53	Containment Cooling Fan Bypass Damper Motor 2UCDM8209-1
52-53L1	52-53K5	MCC 2B53	Containment Cooling Fan 2VSF1A
52-53L2	52-53K6	MCC 2B53	Containment Cooling Fan 2VSF1B

TABLE 3.8-1 (Continued)

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

PRIMARY DEVICE	BACKUP DEVICE	LOCATION OF	SYSTEM
NUMBER	NUMBER	DEVICES	POWERED
Š2-54J2	52-54J3	MCC 2B54	Containment Elevator Motor 2MM6
52-54K2	52-54J4	MCC 2B54	Containment Building Lighting Panel 27 LA
52-54K3	52-54J8	MCC 2B54	RCP 2P3A Oil Lift Pumps 2P63Al & A2
52-54K4	52 - 54F3	MCC 2B54	RCP 2P32B Oil Lift Pumps 2P63B1 & B2
52-61A4	52-61H3	MCC 2B61	Reactor Cavity Cooling Fan 2VSF34B-2
52-6103	52-61H4	MCC 2B61	Containment Recirculating Fan 2VSF31B-2
52-6104	52-61H5	MCC 2B61	Containment Recirculating Fan 2VSF31D-2
52-61F2	52-61H6	MCC 2B61	Safety Inject. Tank 2T2C Discharge MOV 2CV-5043-2
52-61G2	52-61K8	MCC 2B61	Check Valve Leakage Drain Valve 2CV-51Q6-2

TABLE 3.8-1 (Continued) CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

PRIMARY	BACKUP		į
DEVICE NUMBER	DEVICE NUMBER	LOCATION OF DEVICES	SYSTEM POWERED
52-61G3	52-61H7	MCC 2B61	Reactor Cooling System Charging Line MOV 2CV-4831-2
52-61G4	52-61H8	MCC 2B61	Reactor Cooling System Charging Line MOV 2CV-4827-2
52-61H1	52 - 61Қ3	MCC 2B61	Safety Inj. Tank 2T2D Dis. MOV 2CV-5063-2
52-61H2	52-61K7	MCC 2B61	Containment Sump Iso. MOV 2CV-5648-2
52-61L3	52-61K4	MCC 2B61	Letdown Line Stop Valve 2CV-4820-2
52-61N2	52-61K6	MCC 2B61	Reactor Cavity Cooling Fan Damper 2HCO 8244-2
52-62E5	52-62C2	MCC 2B62	Shutdown Cooling Return Header Iso. Valve 2CV-5086-2
52-63F2	52-63E1	MCC 2B63	Containment Chilled Water Isol. Valve 2CV-3850-2

TABLE 3.8-1 (Continued) CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

PRIMARY DEVICE NUMBER	BACKUP DEVICE NUMBER	LOCATION OF DEVICES	SYSTEM POWERED
52-63G4	52-63E2	MCC 2B63	RCP Cooler Iso. Valve 2CV-5254-2
52-63L1	52-63J1	MCC 2B63	Containment Cooling Fan 2VSF1C
52-63L2 _.	52-63J2	MCC 2B63	Containment Cooling Fan 2VSF1D
52-64D4	52-64B3	MCC 2B64	Containment Cooling Fan Bypass Damper Motor 2UCDM 8216-2
52-64E3	52-64B4	MCC 2B64	Pressurizer Auxiliary Spray MOV 2CV-4824-2
52-64E4	52-64C2	MCC 2B64	Containment Cooling Fan Bypass Damper Motor 2UCDM 8222-2
52-64J1	52-64B1	MCC 2B64	RCP 2P32C Oil Lift Pumps 2P63C1 & C2
52-64Kl	52 - 64H2	MCC 2B64	RCP 2P32D Oil Lift Pumps 2P63D1 & D2

TABLE 3.8-1 (Continued)

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

PRIMARY DEVICE	BACKUP	LOCATION OF	CVCTE
NUMBER	DEVICE NUMBER	LOCATION OF DEVICES	SYSTEM POWERED
D. 480 /277	7		
21PA-19	52-15C1	Primary - 21PA Backup - 2B15	Space Heater for RCP 2P32A
21PA-25	52-15C1	Primary - 21PA Backup - 2B15	Space Heater for RCP 2P32B
21PA-31	52-15C1	Primary - 21PA Backup - 2B15	Space Heater for RCP 2P32C
21PA-20	52-15C1	Primary - 21PA Backup - 2B15	Space Heater for RCP 2P32D
. 125 VAC			
72-0318	72-0320	DC Control Center 2D03	Containment Bldg 125 VDC Lighting Panel 22DA
72 - 26A3	72-26A2	DC MCC 2D26	Pressurizer Vent Valve 2CV-4697-2
72-27A3	72-27A2	DC MCC 2D27	Pressurizer Vent Valve 2CV-4698-1
6 amp fuse in 2C116	2D21BKR26	DC MCC 2D21	RCS Sample Line Solenoid Valves 2SV-4632, 39 & 65
F. 240 VAC			
CEA 1	CB3021	2C72	CEA 1
CB101	& CB3022		

TABLE 3.8-1 (Continued)

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

_			;	
PRIMARY DEVICE NUMBER	BACKUP DEVICE NUMBER	LOCATION OF DEVICES	SYSTEM POWERED	
CEA 2 CB101	CB3001	2C70	CEA 2	
CEA 3 CB102	CB3001	2C70	CEA 3	
CEA 4 CB103	CB3001	2C70	CEA 4	
CEA 5 CB104	CB3001	2C70	CEA 5	
CEA 6 CB101	CB3002	2C70	CEA 6	
CEA 7 CB102	CB3002	2C70	CEA 7	
CEA 8 CB103	CB3002	2C70	CEA 8	
CEA 9 CB104	CB3002	2C70	CEA 9	
CEA 10 CB101	CB3002	2C70	CEA 10	
CEA 11 CB102	CB3003	2C70	CEA 11	
CEA 12 CB103	CB3003	2C70	CEA 12	

TABLE 3.8-1 (Continued)

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

PRIMARY DEVICE NUMBER	BACKUP DEVICE NUMBER	LOCATION OF DEVICES	SYSTEM POWERED	
CEA 13 CB104	CB3003	2C70	CEA 13	
CEA 14 CB101	CB3004	2070	CEA 14	
CEA 16 CB102	CB3004	2C70	CEA 16	
CEA 18 CB103	CB3004 _,	2C70	CEA 18	
CEA 20 CB104	CB3004	2070	CEA 20	
CEA 15 CB101	CB3005	2C70	CEA 15	
CEA 17 CB102	CB3005	2C70	CEA 17	
CEA 19 CB103	CB3005	2C70	CEA 19	
CEA 21 CB104	CB3005	2C70	CEA 21	
CEA 22 CB101	CB3006	2C70	CEA 22	
CEA 23 CB102	CB3006	2C70	CEA 23	

TABLE 3.8-1 (Continued) CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

PRIMARY DEVICE NUMBER	BACKUP DEVICE NUMBER	LOCATION OF DEVICES	SYSTEM POWERED	
CB24 CB103	CB3006	2C70	C EA 24	
CEA 25 CB104	CB3006	2070	CEA 25	
CEA 26 CB101	CB3007	2C7 0	CEA 26	
CEA 27 CB102	CB3007 _,	2C70	CEA 27	
CEA 28 CB103	CB3007	2C70	CEA 28	
CEA 29 CB104	CB3007	2C70	CEA 29	
CEA 30 CB101	CB3008	2070	CEA 30	
CEA 32 CB102	CB3008	2C70	CEA 32	
CEA 34 CB103	CB3008	2070	CEA 34	
CEA 36 CB104	CB3008	2C70	CEA 36	
CEA 31 CB101	CB3009	2C70	CEA 31	

TABLE 3.8-1 (Continued)

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

PRIMARY	BACKUP		:
DEVICE NUMBER	DEVICE NUMBER	LOCATION OF DEVICES	SYSTEM POWERED
CEA 33 CB102	CB3009	2070	CEA 33
CEA 35 CB103	CB3009	2C70	CEA 35
CEA 37 CB104	CB3009	2C70	CEA 37
CEA 38 CB101	CB3010	2C70	CEA 38
CEA 40 CB102	CB3010	2C70	CEA 40
CEA 42 CB103	CB3010	2C70	CEA 42
CEA 44 CB104	CB3010	2C70	CEA 44
CEA 39 CB101	CB3011	2C71	CEA 39
CEA 41 CB102	CB3011	2C71	CEA 41
CEA 43 CB103	CB3011	2071	CEA 43
CEA 45 CB104	CB3011	2071	CEA 45

TABLE 3.8-1 (Continued)

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

PRIMARY DEVICE NUMBER	BACKUP DEVICE NUMBER	LOCATION OF DEVICES	SYSTEM POWERED
CEA 46 CB101	CB3012	2071	CEA 46
CEA 47 CB102	CB3012 ,	2071	CEA 47
CEA 48 CB103	CB3012	2C71	CEA 48
CEA 49 CB104	CB3012	2071	CEA 49
CEA 50 CB101	CB3013	2071	CEA 50
CEA 52 CB102	CB3013	2071	CEA 52
CEA 54 CB103	CB3013	2071	CEA 54
CEA 56 CB104	CB3013	2071	CEA 56
CEA 51 CB101	CB3014	2071	CEA 51
CEA 53 CB102	CB3014	2071	CEA 53
CEA 55 CB103	CB3014	2071	CEA 55

TABLE 3.8-1 (Continued)

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

PRIMARY DEVICE NUMBER	BACKUP DEVICE NUMBER	LOCATION OF	SYSTEM
CEA 57 CB104	CB3014	DEVICES 2C71	POWERED CEA 57
CEA 58 CB101	CB3015	2071	CEA 58
CEA 59 CB102	CB3015	2C71	CEA 59
CEA 60 CB103	CB3015	2C71	CEA 60
CEA 61 CB104	CB3015	2071	CEA 61
CEA 62 CB101	CB3016	2C71	CEA 62
CEA 64 CB102	CB3016	2C71	CEA 64
CEA 66 CB103	CB3016	2C71	CEA 66
CEA 68 CB104	CB3016	2C71	CEA 68
CEA 63 CB101	CB3017	2C71	CEA 63
CEA 65 CB102	CB3017	2071	CEA 65

TABLE 3.8-1 (Continued)

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

BACKUP DEVICE NUMBER	LOCATION OF DEVICES	SYSTEM POWERED	
CB3017	2071	CEA 67	
CB3017	2071	CEA 69	
CB3018	2C71	CEA 70	
CB3018	2C71	CEA 73	
CB3018	2071	CEA 76	
CB3018	2C71	CEA 79	
CB3019	2071	CEA 71	
CB3019	2C71	CEA 74	
CB3019	2071	CEA 77	
CB3019	2071	CEA 80	
CB3020	2071	CEA 72	
	DEVICE NUMBER CB3017 CB3017 CB3018 CB3018 CB3018 CB3019 CB3019 CB3019 CB3019	DEVICE NUMBER LOCATION OF DEVICES CB3017 2C71 CB3017 2C71 CB3018 2C71 CB3018 2C71 CB3018 2C71 CB3018 2C71 CB3019 2C71 CB3019 2C71 CB3019 2C71 CB3019 2C71 CB3019 2C71 CB3019 2C71	DEVICE NUMBER LOCATION OF DEVICES SYSTEM POWERED CB3017 2C71 CEA 67 CB3017 2C71 CEA 69 CB3018 2C71 CEA 70 CB3018 2C71 CEA 73 CB3018 2C71 CEA 76 CB3018 2C71 CEA 76 CB3019 2C71 CEA 71 CB3019 2C71 CEA 74 CB3019 2C71 CEA 77 CB3019 2C71 CEA 77 CB3019 2C71 CEA 80

TABLE 3.8-1 (Continued)

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

PRIMARY DEVICE NUMBER	BACKUP DEVICE NUMBER	LOCATION OF DEVICES	SYSTEM POWERED	
CEA 75 CB102	CB3020	2071	CEA 75	
CEA 78 CB103	CB3020	2071	CEA 78	
CEA 81 CB104	CB3020	2071	CEA 81	

TABLE 3.8-1

TABLE NOTATION DELETED

PAGES 3/4 8-29 THROUGH 3/4 8-31 ARE LEFT BLANK INTENTIONALLY

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

SAFETY EVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATION

SUPPORTING AMENDMENT NO. 35 TO FACILITY OPERATING LICENSE NO. NPF-6

ARKANSAS POWER & LIGHT COMPANY

ARKANSAS NUCLEAR ONE, UNIT 2

DOCKET NO. 50-368

1. Introduction

By letter dated August 23, 1982, Arkansas Power and Light Company proposed a Technical Specification (TS) change for ANO-2 to allow for testing of the electrical containment penetration conductor circuit breakers in accordance with manufacturer's recommendations. The existing TS require a representative sample of these circuit breakers to be tested every 18 months. The required test consists of injecting a short circuit value of fault current into the circuit breaker primary contacts and monitoring the response time of the contact to open. The existing test criteria impose unrealistic and deleterious conditions on these devices. The magnitude of the currents injected to operate the circuit breakers in the instantaneous tripping range are excessively high (10-15 times normal load currents) and the corresponding response times to be monitored are very short (.012 and .017 seconds predominately). Since these protective devices were not designed to withstand repeated cycles at overcurrent conditions and recording of response times is of little value in the instantaneous tripping range, the licensee proposes instead to test the circuit breaker in accordance with "manufacturer's recommendations." The proposed TS deletes the requirement to measure response times and compare them to the design criteri The staff evaluation of the proposed TS change follows.

2. Staff Evaluation

The licensee, in a letter dated September 22, 1982, has provided the manufacturer's recommendations which will be used to develop his test procedures. In general, the recommendations instruct that molded case circuit breaker time delay (thermal) trips should be tested by injecting a current equal to 300% of the breaker trip setting. The tripping time values thus obtained should be compared to the manufacturer supplied data. The instantaneous (magnetic) trips are tested by pulsing or running the current up to the pickup point of the instantaneous element and verifying that the circuit breaker trips.

The recommendations in general for low voltage air circuit breakers are to test the long time delay and short time delay trips by injecting a current equal to 300% of the long time delay setting and 150% of the pickup of the short time delay setting, then verifying that tripping times are in accordance with the manufacturer supplied data. The instantaneous trips are checked by verifying that the instantaneous trip element actuates at the instantaneous pickup setting of the circuit breaker (within \pm 20%).

3.0 Summary

The staff has reviewed the proposed TS change to allow for testing of the electrical penetration conductor circuit breakers in accordance with manufacturer's recommendations. These tests are an improvement over those previously required since each overcurrent trip element of the circuit breaker is tested rather than just the instantaneous trip element. Also, the magnitude of the current injected to operate the circuit breakers in the overcurrent tripping range has been decreased. The proposed change to the ANO-2 TS is therefore acceptable.

Environmental Consideration

We have determined that the amendment does not authorize a change in effluent types or total amounts nor an increase in power level and will not result in any significant environmental impact. Having made this determination, we have further concluded that the amendment involves an action which is insignificant from the standpoint of environmental impact and, pursuant to 10 CFR §51.5(d)(4), that an environmental impact statement or negative declaration and environmental impact appraisal need not be prepared in connection with the issuance of this amendment.

Conclusion

We have concluded, based on the considerations discussed above, that:
(1) because the amendment does not involve a significant increase in
the probability or consequences of an accident previously evaluated,
does not create the possibility of an accident of a type different from
any evaluated previously, and does not involve a significant reduction
in a margin of safety, the amendment does not involve a significant
hazards consideration, (2) there is reasonable assurance that the health
and safety of the public will not be endangered by operation in the
proposed manner, and (3) such activities will be conducted in compliance
with the Commission's regulations and the issuance of this amendment will
not be inimical to the common defense and security or to the health and
safety of the public.

Date: October 15, 1982

Principal Contributors:

James J. Lazevnick, PSB Janice A. Stevens, ORB#3

UNITED STATES NUCLEAR REGULATORY COMMISSION

DOCKET NO. 50-368

ARKANSAS POWER & LIGHT COMPANY

NOTICE OF ISSUANCE OF AMENDMENT TO FACILITY OPERATING LICENSE

The U. S. Nuclear Regulatory Commission (the Commission) has issued

Amendment No. 35 to Facility Operating License No. NPF-6 issued to Arkansas

Power & Light Company (the licensee), which revised the Technical Specifications

for operation of Arkansas Nuclear One, Unit 2 (the facility), located in Pope

County, Arkansas. The amendment is effective as of the date of issuance.

The amendment allows for testing of the electrical containment penetration conductor circuit breakers in accordance with manufacturer's recommendations. These tests are an improvement over those previously required since each over-current trip element of the circuit breaker is tested rather than just the instantaneous trip element.

The application for the amendment complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations. The Commission has made appropriate findings as required by the Act and the Commission's rules and regulations in 10 CFR Chapter I, which are set forth in the license amendment. Prior public notice of this amendment was not required since the amendment does not involve a significant hazards consideration.

The Commission has determined that the issuance of this amendment will not result in any significant environmental impact and that pursuant to 10 CFR §51.5(d)(4) an environmental impact statement or negative declaration and environmental impact appraisal need not be prepared in connection with the issuance of this amendment.

For further details with respect to this action, see (1) the application for amendment dated August 23, 1982, as supplemented September 22, 1982, (2) Amendment No. 35 to Facility Operating License No. NPF-6, and (3) the Commission's related Safety Evaluation. These items are available for public inspection at the Commission's Public Document Room at 1717 H Street, N.W., Washington, D.C. 20555 and at the Tomlinson Library, Arkansas Tech University, Russellville, Arkansas 72801. A copy of items (2) and (3) may be obtained upon request addressed to the U. S. Nuclear Regulatory Commission, Washington, D.C. 20555, Attention: Director, Division of Licensing.

Dated at Bethesda, Maryland, this 15th day of October, 1982

FOR THE NUCLEAR REGULATORY COMMISSION

Robert A. Clark, Chief Operating Reactors Branch #3

Division of Licensing