

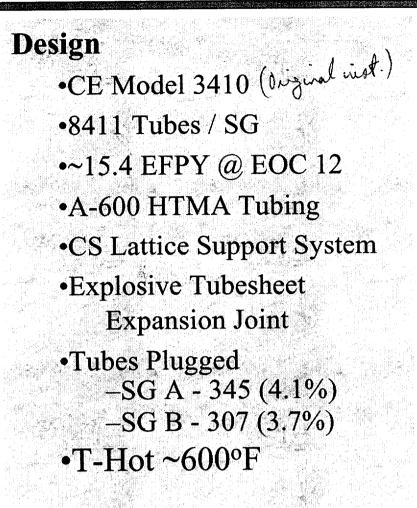
St. Lucie Unit 2

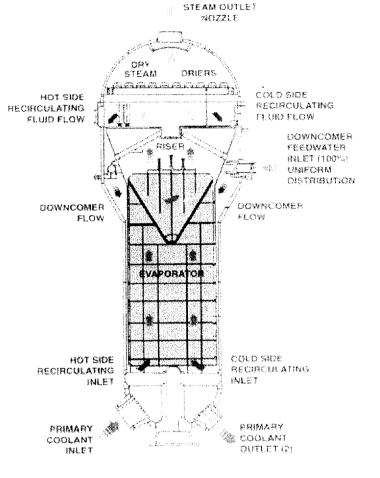
NRC Update SL2-13 November 2001 Steam Generator Inspection Plans

PURPOSE OF TELECON

- •Review SL2 Steam Generator Condition
- •Review November 2001 Inspection Plans
- •Ensure FPL Plans Address Staff Concerns

2




3

FPL STEAM GENERATOR PROGRAM

- Committed to Safe Operation
- Full Implementation of NEI 97-06, S/G Program Guidelines
- Incorporate Industry Experience
 - Extensive Examination History at Unit2
- Conservative Approach
 - •In Situ Pressure Test at Last 3 Inspections

4

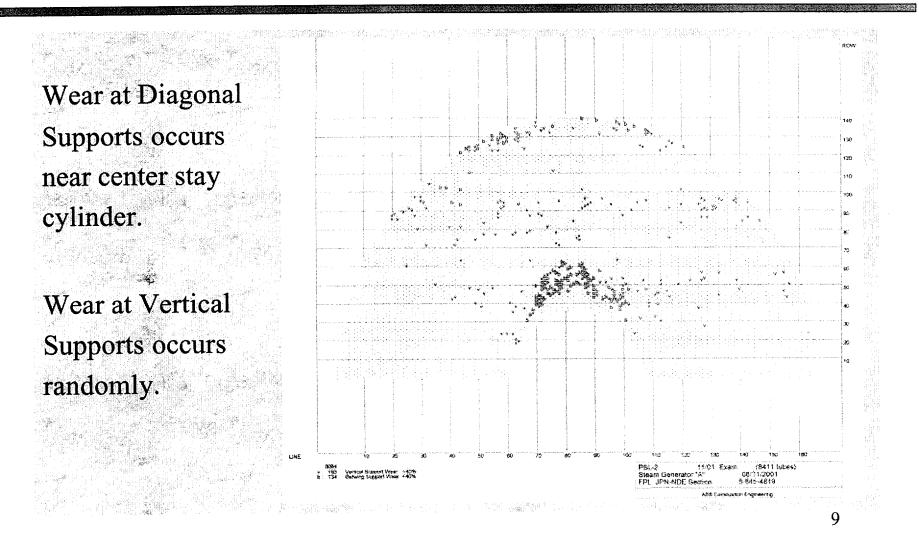
- S/G Chemistry Meets industry Practice
 - All Volatile Treatment Since Start-up
 - Dimethylamine 1 ppm (DMA) started in 1999
 - Evaluating Additional Amines to Reduce Iron Transport
 - Boric Acid Addition Since 1990
 - Hÿdrazine @ 8x DO₂
 - Ammonia @ ~ 7 ppm
 - Elevated Feedwater pH ~9.8
 - Continuous Blowdown
 - Condensate Polishers Used on Startup

Primary to Secondary Leakage

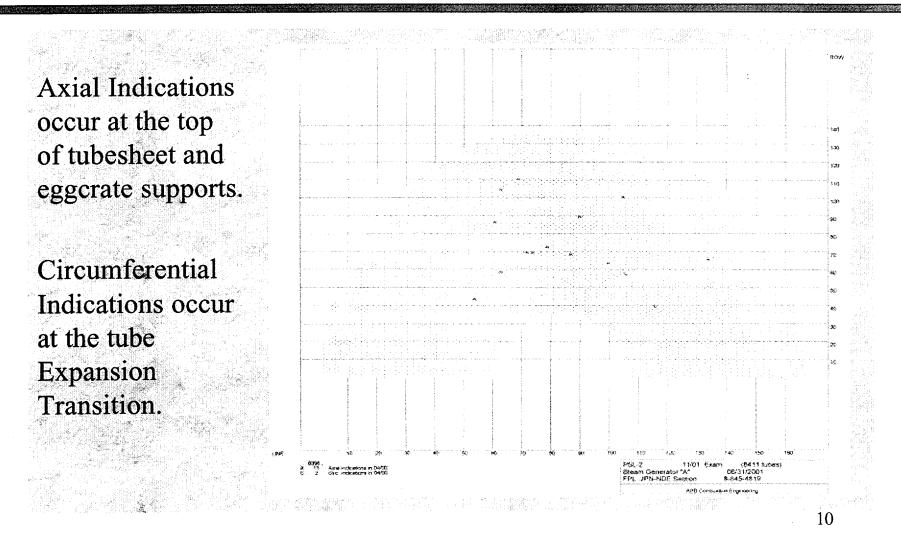
- Technical Specification Requirements
- Procedures Incorporate EPRI Leak Guidelines
- Leakage Less than Detectable for Current Cycle
- Only Tube Leak 3/85 Due to Wear at Batwing Contact
 - Leak Rate at Shutdown was 18 20 GPD

Primary to Secondary Leak Monitoring

- S/G's Sampled Daily on Alternating Basis (SG A then B)
 - Gross Activity (TS Requires 3 Samples / 7 Days)
 - Tritium Activity
- Quarterly Sample 4000 ml Dose Equivalent Iodine
- On-line Blowdown & Air Ejector Monitors
- Main Steam Line Radiation Monitors


Last Unit 2 Inspection Scope - April 2000

Bobbin Probe:	100% Full Length	
Plus Point Probe:	20% Row 1&2 U-Bends	A \
	20% Hot Leg Dents (Monufactur	ing ulaled)
	100% Hot Leg Top of Tubesheet	2
	Free Span Indications that are New	w or Show Change
Plugging:	Wear at U-Bend Supports	20 Tubes
	OD Axial Indications	28 Tubes
	ID Axial Indications	1 Tube
	OD Circumferential Indications	<u>5 Tubes</u>
		54 Tubes
		4


8

In Situ Pressure Test - 5 OD Axial Indications (All Passed)

Tube Plugging Trend Remains Low

Preservice Wear at	50									The second second second second			1	
Nearat		alar an an Anna			nation de la company a participation de la company a participation de la company	1.11								50
U-Bend			265	28	17	19	31	36	6	11	8	6	20	447
Axial ODSCC At Tubesheet							8		1	5	66	13) 13)	14	107
Circ. ODSCC At Tubesheet									2		14		5	22
Axial ODSCC													14	14
Foreign Object Damage						1						3		
Free Span Volumetric				2							2			
Axial PWSCC At Tubesheet											1			
Preventative											1.1			
Free Span										And the second s				
Totals	50		-265 ²	30	18	20	39	36	9	16	92 ¹	23	54	652

TOTAL PLUGS: S/G 2A = 345 (4.10%) S/G 2B = 307 (3.65%) 1. 4/97 Inspection was 1^{st} use of Plus Point Rotating Probe Technology.

2. 4/85 Leak forced outage due to U-bend Wear at Diagonal Strap.

11

Impact of Free Span Cracking

Affects Most of CE Fleet but Few Tubes Require Plugging

Bobbin Probe - Effective Screening Tool

Rotating Probe Inspections of Affected Regions

Significant Outage Delays at Several CE Plants

Inspection Containment vs. Demonstrate Full Cycle Tube Integrity

History of Free Span Evaluations at St. Lucie 2

1993 - Upper Bundle Freespan Tube Rupture at a CE Plant Deposits & Concentration of Contaminants

1994 - ATHOS Evaluation - Identify High Deposit Potential Regions

1994 - MRPC 376 Tubes/~1400 Spans in High Potential Regions

1997 - Plus Point Inspect All Freespan Bobbin Indications

S/G 2A - 89 S/G 2B - 71 ~75% Traceable to 1982 Preservice Data Remainder Traceable to 1987 Data

1 Volumetric Indication Plugged

No Cracking Detected

1998 to Present - Plus Point Inspect Indications that Show Change or Growth from Prior Inspection

November 2001 Inspection Scope

	30																		n		

- Plus Point Probe:100% of Hot Leg Top of Tubesheet30% of Row 1&2 U-bends30% of Hot Leg Dents*Free Span Indications (New or Show Change)
 - In Situ Test:

Screen / Test per EPRI Guidance

Contingency Plan for Free Span Cracking

14

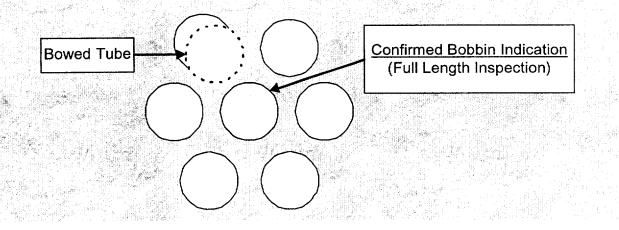
Overview Of Contingency Plan

Presented to NRC prior to SL2-10, 11 & 12 Inspections

Sampling Methodology to Optimizes Use of Resources

Statistical Basis for Operational Assessment

Reduces Risk of not Inspecting Affected Areas


Incorporates Both Site & Industry Experience

STEP 1 - Free Span Cracking Plan

Screen 100% of Bundle with Bobbin Coil

- Plus Point Inspect Bobbin Indications that are New or Show Change
- If Cracking is Confirmed:
 - Inspect Remainder Of Tube On Side With Crack
 - Inspect 6 Neighbor Tubes At Same Span with Confirmed Cracks

STEP 2 - Free Span Cracking Plan

Evaluate Locations of All Confirmed Free Span Cracks

Determine Applicable Inspection Scenario

Select Appropriate Sample Scheme

Maximize Use of Resources

Maximize Potential to Demonstrate Full Cycle Tube Integrity

SCENARIO	DEGREE C	CLUSTERED ;	# CRACKS	SAMPLE SCHEME
CASE 1	NONE	N/A	0	NONE
CASE 2	MINIMAL	YES	<15	LHS
CASE 3	MINIMAL	NO	<15	LHS
CASE 4	MODERATE	YES	15-50	IMPORTANCE
CASE 5	MODERATE	NO	15-50	REDUCED LHS
CASE 6	SEVERE	YES	>50	IMPORTANCE
CASE 7	SEVERE	N0	>50	SYSTEMATIC*
		상에는 그 것을 통하는 것 같아? 것을 받았		이 같은 것은 것을 알았는 것을 많이 있는 것이 같이 있는 것이 없다.

LHS – Latin Hypercube Sampling *Optimized to support bobbin POD

17

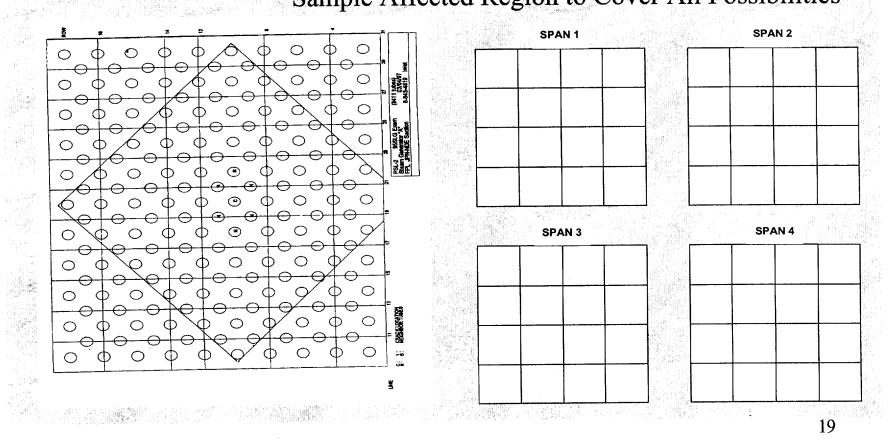
Latin Hypercube Sampling Scheme Most Likely Scenario

Proven Efficiency vs. Random Sampling

Provides Optimal Coverage vs. Inspection Cost

Widely Used Strategy in Monte-Carlo Simulation

Good Approach with High Uncertainty in Risk Stratification


Robust Approach

;

NRC Update - SL2-13 November 2001 Steam Generator Inspection

LHS Example: Generate 11 X 11 Tube Box Around Tubes w/Crack Sample Affected Region to Cover All Possibilities

Summary

Meet or Exceed Industry Guidance

Incorporate Site & Industry Experience

Provide Reasonable Assurance of Tube Integrity

Identify & Address Staff Concerns

Results as of 0400 on 12/6/01. DRAFT / UNVERIFIED Page 1 of 4

STEAM GENERATOR TUBE INSPECTION DISCUSSION POINTS PREPARED BY THE OFFICE OF NUCLEAR REACTOR REGULATION FLORIDA POWER AND LIGHT COMPANY ST. LUCIE PLANT, UNIT 2 DOCKET NO. 50-389

December 6, 2001

The following discussion points have been prepared to facilitate the phone conference arranged with the St. Lucie licensee to discuss the results of the steam generator (SG) tube inspections to be conducted during the upcoming St. Lucie Plant, Unit 2 refueling outage. This phone call is scheduled to occur towards the end of the planned SG tube inspection interval, but before the unit exits its refueling outage.

It is the staff's expectation that any significant results or relevant trends discussed during the phone conference, as well as any materials provided by your staff to assist us during the phone conference in the understanding of the SG tube results, will be included in one of the special reports required by the plant Technical Specifications.

1. Discuss whether any primary to secondary leakage existed in this unit prior to shutdown.

<u>Response</u>: Primary to secondary leakage is less than detectable for Cycle 12.

2. Discuss the results of secondary side hydrostatic tests.

Response: None planned for this refueling outage.

3. For each steam generator, provide a general description of areas examined, including the expansion criteria utilized and type of probe used in each area.

Response:	Exar	nination Scope	% Complete @ 0400
	Bobbin Probe	100% Full Length	66%
	Plus Point Probe	100% Hot Leg Tubesheet	91%
		30% Row 1&2 U-bends	80%
		30% Hot Leg Dents	95%

Expansion criteria will be in accordance with Plant Technical Specifications and NEI 97-06, Steam Generator Program Guidelines (i.e., EPRI S/G Examination Guidelines).

4. For analyzed eddy current results, describe bobbin indications (those not examined with rotating pancake coil (RPC) and RPC/Plus Point/Cecco indications. Include the following information in the discussion: location, number, degradation mode, disposition, and voltages/depths/lengths of significant indications.

<u>Response</u>: Bobbin indications not examined with rotating probe coils include approximately 500 mechanical wear indications 20-39% through-wall located at the u-bend support structures. A small number of wear indications are also present at the upper eggcrate tube supports. These

Results as of 0400 on 12/6/01. DRAFT / UNVERIFIED Page 2 of 4

indications range in voltage from <0.3 to about 2.2 volts. Mechanical wear indications are depth sized with qualified and site validated bobbin techniques and plugged based on the Technical Specification limit of 40% through-wall penetration. Wear indications that approach the Technical Specification limit are screened for preventative plugging based on observed growth rates. Bobbin indications at other locations (i.e., freespans) have been examined with rotating probe techniques at prior inspections, and are reviewed in the current inspection for evidence of change or growth, which would require a rotating probe examination in the current inspection.

Plus Point rotating probe indications are summarized in the following table. All corrosion-type indications will be plugged, and circumferential indications will be stabilized.

Туре	Mode	Location	No.	Voltages	Depths	Lengths
Axial	OD	Eggcrate	74	0.14 - 0.60	24-60%	0.16-1.68"
Axial	OD	Sludge Pile	6	0.09 - 0.55	24-75%	0.13 – 0.30"
Axial	ID	Sludge Pile	3	1.78 - 3.35 ⁽¹⁾	86-99%	0.25 – 0.43"
Axial	ID	Tubesheet	1	0.32 - 0.38	58-82%	0.16 – 0.20"
Circ	OD	Tubesheet	7	0.12 - 0.42	19-94%	25-123 Degrees
Vol	OD	Eggcrate	2	0.23 – 0.27	47-85%	0.20 - 0.45"

(1) Indication depth and voltage estimates influenced by a dent. Origin is assumed to be ID.

5. Describe repair/plugging plans for the SG tubes that meet the repair/plugging criteria.

<u>Response</u>: Mechanical wear will be depth sized and plugged based on the Technical Specification plugging limit. Corrosion-type indications (i.e., above table) will be plugged on detection.

6. Discuss the previous history of SG tube inspection results, including any "look backs" performed.

<u>Response:</u> Review of historical data is on going and incomplete at this time. In general, mechanical wear indications are examined at each refueling outage and may be present for many inspections. Corrosion type flaws may be present in prior inspection data near the threshold of detection as their probability of detection increases with flaw amplitude. In situ pressure testing has been conducted during the prior 3 inspections and has demonstrated that NDE and tube integrity estimates are conservative.

7. Discuss, in general, the new inspection findings.

<u>Response:</u> The number and sizes of indications are generally within the bounds of those observed in recent inspections with two exceptions. First, a dent just above the hot leg tubesheet appears to have developed an axial indication that is most likely ID in origin due to the stress associated with the dent. This indication is distorted by the dent signal, but appears to be near through-wall and less than ½" in length. This indication will be situ pressure tested. Second, the number of axial indications at eggcrate tube supports increased from 15 in the prior inspection to about 74 to date in this inspection. These indications do not appear to challenge tube integrity performance criteria. However, in situ pressure testing is planned for a sample to further demonstrate that NDE and tube integrity estimates are conservative. Additional indications will be included based on screening results.

Results as of 0400 on 12/6/01. DRAFT / UNVERIFIED Page 3 of 4

8. Describe in situ pressure test plans and results, if applicable and available, including tube selection criteria.

<u>Response:</u> A total of 18 in situ pressure tests have been conducted at St. Lucie Unit 2 during the past 3 inspections. All tubes tested met the tube integrity performance criteria of NEI 97-06, Steam Generator Program Guidelines. Based on screening work to date, indications observed in this inspection appear to be consistent with prior results with the exception of the axial indications that are coincident with dents just above the tubesheet, and the increase in axial indications at eggcrate tube supports. Test candidates are profiled based on detailed Plus Point probe examinations. The profiles are used with lower bound material properties, corrected for temperature, to calculate burst pressures and accident induced leakage rates. Candidates are selected based on a minimum calculated burst pressure of 4305 psi and/or projected leakage. Test pressures are developed to meet the tube integrity performance criteria of NEI 97-06, Steam Generator Program Guidelines. Test configuration will utilize the Westinghouse (formerly ABB/CE) test tooling with capability for local and full tube testing. In the event that axial indications at eggcrate supports do not exceed screening criteria, a sample of indications will be in situ tested to demonstrate that tube integrity performance criteria are maintained.

9. Describe tube pull plans and preliminary results, if applicable and available; include tube selection criteria.

Response: There are no plans for a tube pull in this inspection.

10. Discuss the assessment of tube integrity for the previous operating cycle.

<u>Response:</u> This work is still on going and will include in situ pressure testing.

11. Discuss the assessment of tube integrity for next operating cycle.

<u>Response:</u> This work is still on going and will include in situ pressure test results.

12. Provide the schedule for steam generator-related activities during the remainder of the current outage.

<u>Response:</u> All inspection and tube plugging activities will be concluded by approximately December 9, 2001.

13. Discuss what steps have been taken, or will be taken, in response to the lessons learned from the Indian Point Unit 2 tube failure. In addition, please be prepared to discuss the following:

<u>Response:</u> FPL has participated in NEI/NRC meetings on this subject. Low row u-bend noise at St. Lucie Unit 2 has been determined to be less than noise levels encountered at IP-2, and less than those encountered with the EPRI qualification data set for low row u-bend technique qualification. Therefore, site-specific validation of EPRI techniques is considered appropriate for low row u-bend inspection at St. Lucie Unit 2. The use of high frequency techniques will be

Page 4

Results as of 0400 on 12/6/01. DRAFT / UNVERIFIED Page 4 of 4

considered in the event that higher than expected noise levels are encountered.

a) Discuss the actions that are taken in response to identifying a new degradation mechanism

<u>Response:</u> A new degradation mechanism would be entered into the Plant Corrective Action System for appropriate evaluation. Examination planning includes appropriate expansion criteria and the use of "diagnostic examinations" to ensure potential degradation is understood and appropriately addressed. Results in this area remain under review.

b) Discuss the actions taken to ensure that data noise levels are acceptable, and

<u>Response:</u> *St. Lucie Unit 2 examination data has been reviewed against the EPRI generic technique qualification sample set data used to ensure that the use of the techniques is appropriate (i.e., site specific validation). Guidance on data quality and noise levels is provided in FPL data analysis guidelines, and an independent Qualified Data Analyst samples the examination data to ensure that data quality is acceptable.*

Isolated and discrete ID indications at the U-bend apex, if detected, will be considered for preventative plugging based on recent experience in Westinghouse and Combustion Engineering design steam generators.

c) Address data quality issues and the need for criteria to address data quality.

<u>Response</u>: As required by Industry guidance, data quality issues are addressed through site specific validation of techniques that are used for inspection at St. Lucie Unit 2. Guidance on data quality and noise levels is also provided in FPL data analysis guidelines. Further, an independent Qualified Data Analyst samples the examination data to ensure that data quality is acceptable.

Results as of 0400 on 12/7/01. DRAFT / UNVERIFIED Page 1 of 3

STEAM GENERATOR TUBE INSPECTION DISCUSSION POINTS PREPARED BY THE OFFICE OF NUCLEAR REACTOR REGULATION FLORIDA POWER AND LIGHT COMPANY ST. LUCIE PLANT, UNIT 2 DOCKET NO. 50-389

December 7, 2001

The following discussion points have been prepared to facilitate the phone conference arranged with the St. Lucie licensee to discuss the results of the steam generator (SG) tube inspections to be conducted during the upcoming St. Lucie Plant, Unit 2 refueling outage. This phone call is scheduled to occur towards the end of the planned SG tube inspection interval, but before the unit exits its refueling outage.

It is the staff's expectation that any significant results or relevant trends discussed during the phone conference, as well as any materials provided by your staff to assist us during the phone conference in the understanding of the SG tube results, will be included in one of the special reports required by the plant Technical Specifications.

1. For each steam generator, provide a general description of areas examined, including the expansion criteria utilized and type of probe used in each area.

Response:	Exan	nination Scope	<u>% Complete @ 0400</u>
	Bobbin Probe	100% Full Length	93%
	Plus Point Probe	100% Hot Leg Tubesheet	97%
		30% Row 1&2 U-bends	86%
		30% Hot Leg Dents	<i>95%</i>

Expansion criteria will be in accordance with Plant Technical Specifications and NEI 97-06, Steam Generator Program Guidelines (i.e., EPRI S/G Examination Guidelines).

 For analyzed eddy current results, describe bobbin indications (those not examined with rotating pancake coil (RPC) and RPC/Plus Point/Cecco indications. Include the following information in the discussion: location, number, degradation mode, disposition, and voltages/depths/lengths of significant indications.

Plus Point rotating probe indications are summarized in the following table. All corrosion-type indications will be plugged, and circumferential indications will be stabilized.

Түре	Mode	Location	No.	Voltages	Depths	Lengths
Axial	OD	Eggcrate	75	0.14 - 0.60	24-60%	0.16-1.68"
Axial	OD	Sludge Pile	18	0.09 - 0.55	24-75%	0.13 – 0.30"
Axial	ID	Dents	4	1.43 - 3.35 ⁽¹⁾	44-99%	0.20 - 0.43"
Axial	ID	Tubesheet	1	0.32 - 0.38	58-82%	0.16 – 0.20"
Circ	OD	Tubesheet	9	0.12 - 0.42	19-94%	25-123 Degrees
Vol	OD	Eggcrate/TS	2	0.23 - 0.27	47-85%	0.20 - 0.45"

(1) Indication depth and voltage estimates influenced by a dent. Origin is assumed to be ID.

Results as of 0400 on 12/7/01. DRAFT / UNVERIFIED Page 2 of 3

- 1	Der	nts	De	nts	· · ·
Program	Inspe	cted	Defe	ctive	Comments
Description					
	SG	SG	SG	SG	
	2A	2B	2A	2B	
Hot Leg 30% Sample Dents 5> Volts	39	50	0	0	
All Dents within 3" of Hot Leg Top of Tubesheet (+ Point inspected)	40	39	3	0	All defects located in periphery tubes
All Dents Hot Leg Top of Tubesheet +3" to 1 st Tube Support	27	20	1	0	Defective Dent at TSH+24'
All Dents > 5 Volts from 1 st Tube Support to Bend	59	54	TBD	TBD	
Dents in Cold Leg Periphery Tubes: SG 2A = 20, SG 2B = 24	16	15	0	0	
Review of All Dents < 5 Volts from Hot Leg Tubesheet to Bend	319	241	TBD	TBD	Plus Point Inspection of Distorted Dent Indications

Results as of 0400 on 12/7/01. DRAFT / UNVERIFIED Page 3 of 3

			PRELI	MARY IN SITU	TEST CANDIDATE LIST
S/G	Row	Line	Location	FLAW TYPE	TEST REASON
A	139	95	TSH+0.82	ASI-ID / Dent	Burst <3NODP / Leak TBD / Voltage
A	140	80	TSH+0.86	ASI-ID / Dent	Burst <3NODP / Leak TBD / Voltage / Depth
A	20	2	TSH+0.83	ASI-ID / Dent	Burst <3NODP / Leak 0.040 gpm / Voltage / Depth
A	39	103	TSH-1.82	ASI-ID	Burst <3NODP / Leak 0.032 gpm / Multiple
"	"	"	TSH-2.05	ASI-ID	Burst <3NODP / Leak 0.011 gpm / Multiple
A	70	76	TSH+0.56	ASI-OD	Burst <3NODP / Leak TBD
В	41	115	TSH-0.03	CSI-OD	Length / Depth / Leak 0.184 gpm
В	53	61	TSH-0.12	CSI-OD	Depth / Leak 0.029 gpm
В	66	106	01H+0.65	ASI-OD	Lowest Eggcrate Burst 4945 psi
A	117	73	01H-0.38	ASI-OD	Length
В	64	108	01H-0.37	ASI-OD	Longest Length at Eggcrate
В	47	51	01H025	ASI-OD	Long Length / Multiple Flaw
"	64	"	01H+0.25	ASI-OD	Long Length / Multiple Flaw
В	7	53	05H+0.56	ASI-OD	Voltage

Results as of 0400 on 12/10/01. DRAFT / UNVERIFIED Page 1 of 3

STEAM GENERATOR TUBE INSPECTION DISCUSSION POINTS PREPARED BY THE OFFICE OF NUCLEAR REACTOR REGULATION FLORIDA POWER AND LIGHT COMPANY ST. LUCIE PLANT, UNIT 2 DOCKET NO. 50-389

December 10, 2001

The following discussion points have been prepared to facilitate the phone conference arranged with the St. Lucie licensee to discuss the results of the steam generator (SG) tube inspections to be conducted during the upcoming St. Lucie Plant, Unit 2 refueling outage. This phone call is scheduled to occur towards the end of the planned SG tube inspection interval, but before the unit exits its refueling outage.

It is the staff's expectation that any significant results or relevant trends discussed during the phone conference, as well as any materials provided by your staff to assist us during the phone conference in the understanding of the SG tube results, will be included in one of the special reports required by the plant Technical Specifications.

1. For each steam generator, provide a general description of areas examined, including the expansion criteria utilized and type of probe used in each area.

<u>Response</u> :	<u>Exam</u> Bobbin Probe Plus Point Probe	nination Scope 100% Full Length 100% Hot Leg Tubesheet 30% Row 1&2 U-bends 30% Hot Leg Dents	<u>% Complete @ 0400</u> 100% 100% 100% 100%
	Remaining Items:		

- Diagnostic testing
- In Situ Pressure Testing
- Tube plugging

Update on two issues:

- Axial indications at dents are OD based on additional review of data (i.e., 100 kHz)
- Axial indications at dents were present in prior inspection but at lower level

Results as of 0400 on 12/10/01. DRAFT / UNVERIFIED Page 2 of 3

2. For analyzed eddy current results, describe bobbin indications (those not examined with rotating pancake coil (RPC) and RPC/Plus Point/Cecco indications. Include the following information in the discussion: location, number, degradation mode, disposition, and voltages/depths/lengths of significant indications.

Plus Point rotating probe indications are summarized in the following table. All corrosion-type indications will be plugged, and circumferential indications will be stabilized.

Туре	Mode	Location	No.	Voltages	Depths	Lengths
Axial	OD	Eggcrate	257	0.14 - 0.60	24-60%	0.16-1.94"
Axial	OD	Sludge Pile	24	0.09 - 0.55	24-75%	0.13 – 0.30"
Axial	OD	Dents	6	1.43 - 3.35 ⁽¹⁾	44-99%	0.20 – 0.43"
Axial	ID	Tubesheet	2	0.32 - 0.38	58-82%	0.16 - 0.20"
Circ	OD	Tubesheet	12	0.12 - 0.42	19-94%	25-123 Degrees
Vol	OD	Eggcrate / TS	1/1	0.23 - 0.27	47-85%	0.20 - 0.45"

(1) Indication depth and voltage estimates influenced by a dent.

St. Lucie Unit 2 Steam Generator Dent Inspection Results							
Plus Point Inspection of Dents	Dents Defective	Location					
All Hot Leg Dents Top of Tubesheet to 1 st Support	4 OD Axial	3 at TSH + ~1", 1 at TSH+24" 22 – 44 Volts					
All Hot Leg Dents 1st Eggcrate to Hot Leg Bend 5 > Volts	1 OD Axial	5H+3.8" 3.5 Volts					
Review All Dents 1 st Tube Support to Hot Bend < 5 Volts	0	Plus Point Inspection of Distorted Dent Indications and all dents at Eggcrates					
All Dents Row 1-18 U-Bends	1 OD Axial	Row 13 U-Bend 6.1 Volts					
Majority of Cold Leg Dents at Top of Tubesheet	0						

Preventatively plug all dents >10 Volts below 1st tube support on Hot Leg

Brendan Moroney - PSL 2 11-01 NRC Telecon 12-10-01.doc

Page 3

Results as of 0400 on 12/10/01. DRAFT / UNVERIFIED Page 3 of 3

	PRELIMARY IN SITU TEST CANDIDATE LIST									
S/G	Row	Line	Location	FLAW TYPE	TEST REASON	RESULT				
A	139	95	TSH+0.82	ASI-OD / Dent	Burst <3NODP / Leak TBD / Voltage	Passed				
A	140	80	TSH+0.86	ASI-OD / Dent	Burst <3NODP / Leak TBD / Voltage / Depth	Full Tube Required				
A	20	2	TSH+0.83	ASI-OD / Dent	Burst <3NODP / Leak 0.040 gpm / Voltage / Depth	Full Tube Required				
A	39	103	TSH-1.82	ASI-ID	Burst <3NODP / Leak 0.032 gpm / Multiple	Passed				
и	4	"	TSH-2.05	ASI-ID	Burst <3NODP / Leak 0.011 gpm / Multiple	Passed				
A	70	76	TSH+0.56	ASI-OD	Burst <3NODP / Leak	Passed				
A	49	57	TSH+0.23	ASI-OD	Depth	Passed				
A	55	113	TSH+24.6	ASI-OD / Dent	Voltage	Full Tube Required				
A	117	61	1H-0.22	ASI-OD	Burst <3NODP / Longest Length	Passed				
A	8	144	3H+0.80	ASI-OD	Length	Passed				
A	109	65	1H+0.16	ASI-OD	Length	Passed				
В	41	115	TSH-0.03	CSI-OD	Length / Depth / Leak 0.184 gpm					
В	53	61	TSH-0.12	CSI-OD	Depth / Leak 0.029 gpm					
В	58	88	2H+0.19	ASI-OD	Burst <3NODP / Max Leakage					
В	64	108	1H-0.37	ASI-OD	Length					
В	47	51	1H025	ASI-OD	Length / Multiple Flaw					
"	ű	ű	1H+0.25	ASI-OD	Long Length / Multiple Flaw					
В	70	78	TSH+0.31	ASI-OD	Burst <3NODP / Depth					
В	64	108	1H-0.37	ASI-OD	Length					
В	83	111	TSH+0.20	VOL-OD	Depth	L				

NOTE: S/G 2B Test List is still preliminary

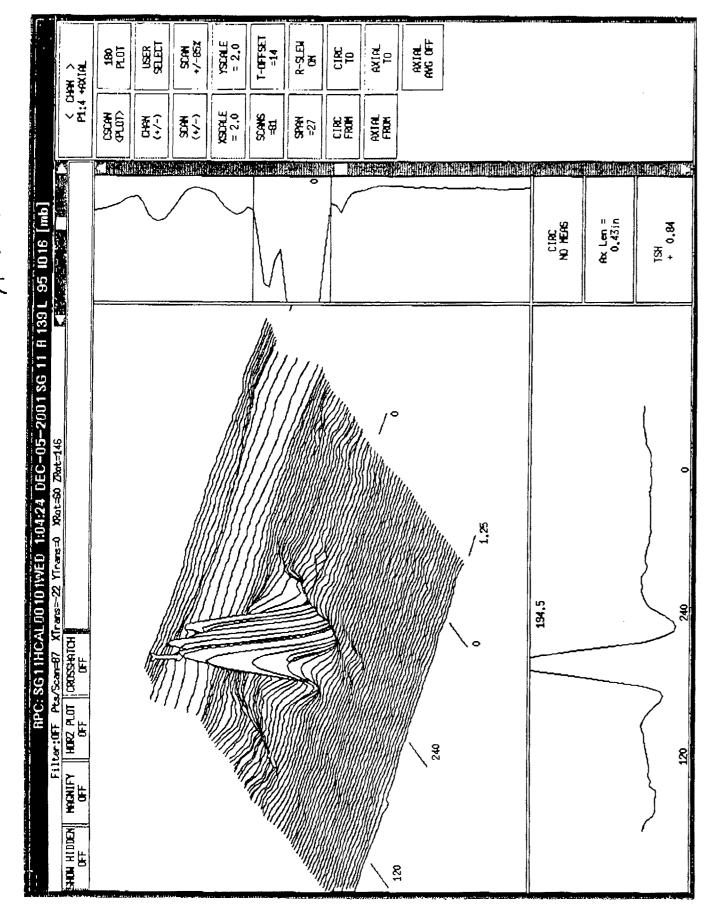
STEAM GENERATOR TUBE INSPECTION DISCUSSION POINTS PREPARED BY THE OFFICE OF NUCLEAR REACTOR REGULATION FLORIDA POWER AND LIGHT COMPANY ST. LUCIE PLANT, UNIT 2 DOCKET NO. 50-389

December 11, 2001 - 3 PM

Overview:

FPL has participated in three phone conferences with NRC to discuss on-going inspection results for St. Lucie 2 steam generators. During our 1st phone call on Thursday, portions of the inspection program were only 65% complete. In our discussions on Friday the inspection was about 90% complete, but there were several hundred outstanding diagnostic Plus Point inspections that were required to finalize tube repair listing. Over the weekend, the inspection was essentially completed and most diagnostic tests were completed which increased the total tubes to be plugged. NRC identified several issues and requested further explanation in our phone call scheduled for today. The following discussion and attachments provide our response to these issues. For reference, the information provided to NRC for our discussion yesterday is provided as Attachment 3.

Issue 1: Provide eddy current graphics and discuss the evolution of the worst indications detected in dents (See Attachment 1 – 13 Pages).


Issue 2: How is the lessons learned information being used in today's inspection?

Issue 3:

- a. How is the scope of inspection for dents <3 volts sufficient?
- b. How is the scope inspection of U-bends greater than row 18 sufficient?
- c. How is the scope inspection of cold leg areas sufficient?

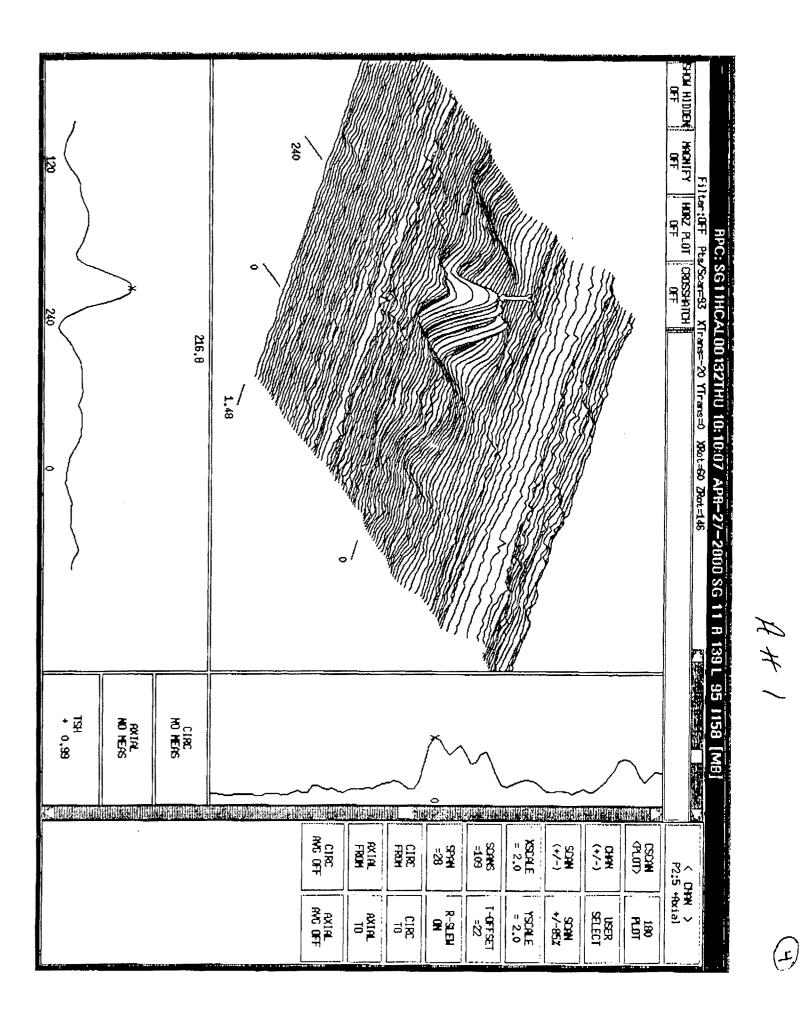
Issue 4: Discuss why plugging dents 10 volts and greater for dents between the hot leg tubesheet and the first support is adequate. Discuss what the scope of inspections has been (See Attachment 2).

<u>Issue 5:</u> Explain why the description of cold leg top of tubesheet dents is different today from what was described on Friday.

AH.1

 (\mathbf{c})

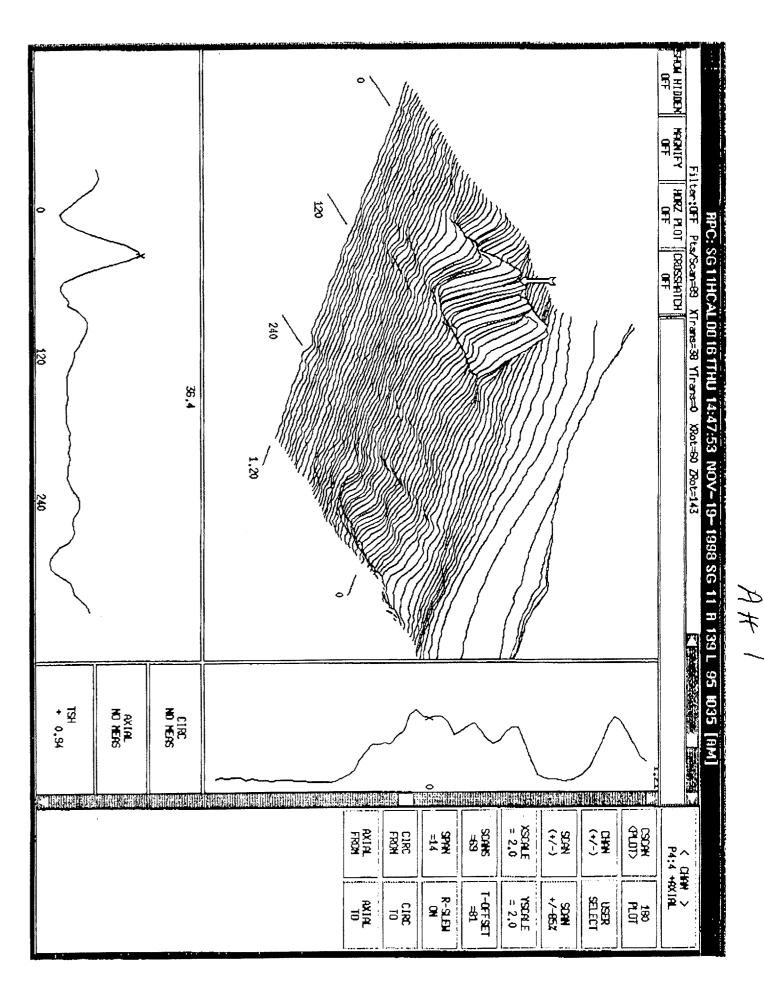
picture entry inter a star and and


Eddynet98: Analysis [C]- 1989,90 M2691 as gir [MB] Analysis System Layout Add Displays File Teols Help Tube Connent: MDO SG11HCAL00132 THU 10:10:07 APR-27-2000 SG 11 ROW 139 LIN 95 1158 +Axial <Lmrks> P2 300 10 20 Locator P2:5 300 G1 **C**5 +Axial ļ G1 C5 Vert G1 C1 Vert 0.35 v/d Clear span 28 rot 221 i. 1.48 Q-13954 TSH GAn 180 MbdR _____Vm× ●Vpp 2.52 volts 17 deg RPC 7 chan -1.48 > < TSH + 0.99 20 G-c

Att 1

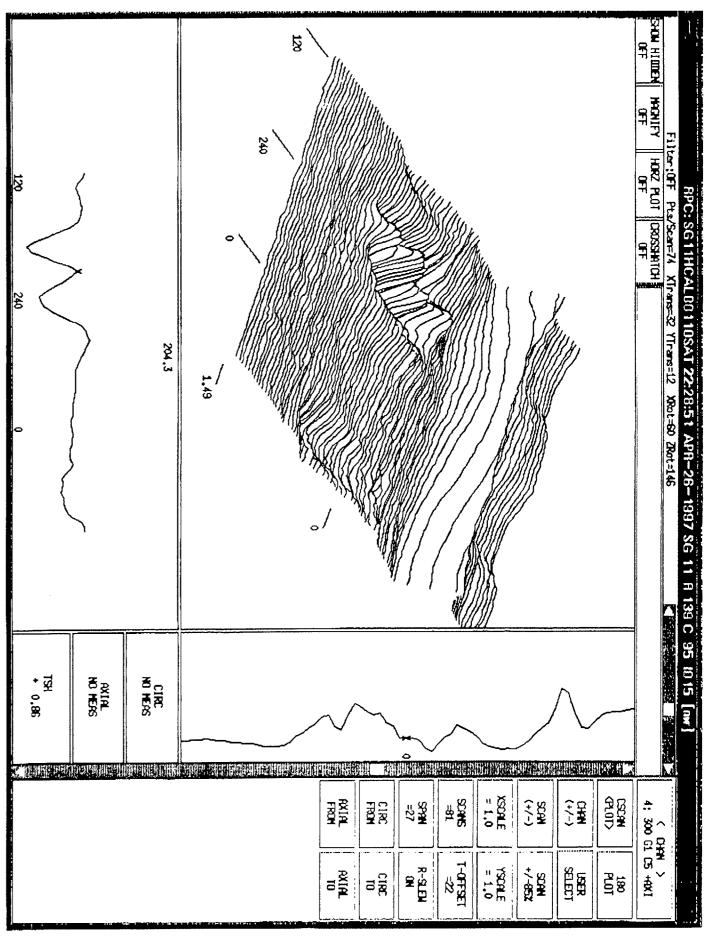
3

4 4 4


して

awa tang

CZER CRE TOC T ROIST INCZ, JI'DEC


							/	AH	- (5
						1989,90 M	2691 as	qir (A	[M]		Help
<u>File</u> <u>Analys</u>	sis <u>S</u> ystem	Tools L	ayout	Add <u>D</u> i							
	Tube Conner	nt:				40 4000		MD0	139 LIN 95 10	195	
		SG11HCALD	<u>9</u>	20	+LOC	P4:4		300	G1	C5	+AXIAL
<lmrks> Clear</lmrks>		00 +AXIAL 25 Vert	G1	C5	Vert		v/d	000	span 14		ot 223
TS	1.21					32972 √pp ▲ ♥)Vmx TSH + 0.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	□ 180

6

. . . .

								A	Ħ	/			
			Eddy	net98: A	unalysis	[C]-198	9,90 B37 1	6 as res	alution	[INT]			
File Analy	sis <u>S</u> ys	tem]	Fools L										Help
	Tube Co	ment:			· · · · · · · · · · · · · · · · · · ·				NDO				
		SG1		0110 S/				SG 11		39 COL 95	10 15		
< Lmrks >	4	300	+AXI	10	20	.115	4:		300	G1	C5		+AXI
Clear	G1	C5	Vert	G1	C1	Vert	0.21	l v/d		span 30		rot 225	
τ αι	1.04_					• • • • • • • • • • • • • • • • • • •	8721 VPP			Vmx TSH + 0.	GAn B4		chan > <

HH H

 (\mathfrak{s})

		Att 1	P
	Eddynet98: Analysis [C]-	1989,90 M2691 as qir [MB]	
File Analysis System Too	ls Layout Add Displays		Help
Tube Convent:	:Pui		
	CAL00029 SUN 8:56:35 DEC Diff 4 100 Abst		
	Diff 4 100 Absl Vert G1 C5 Vert	3: 100 G1 C1 1.67 v/d span 61	Diff rot 256
TEC TSC 01C- 02C- 03C- 03C- 04C- 05C- 06C- 07C- 088C- 058C-	Manual and a state of the state	Tubesheet Exit E Dent E Dent	180 chan > <

							Ĥ	# 1	/				(0)
			Ει	ldynet9	8: Analy	sis [C]-	1989,90 M289	1 as cpir	[M8]				
File Analys	is <u>S</u> yst	tem <u>T</u>	ools L	_ayout	Add Di	splays							Help
Т	ube Conn					:Pul		HEOO]	<u></u>			
						_	-02-2001 SG		138 LIA				
<lmrks> Clear</lmrks>	P1 G1	400 C1	Diff Vert	4 G1	100 C5	Absl Vert	3: 1.67 v/	100		G1 n 61	C1	t 256	Diff
TEC- TSC- 01C- 02C- 03C- 04C- 05C- 07C- 09C- 09C- 09C- DCB- DCB- PCT- VS3- VS1- VS1- DHT-					1 min home		Normel Adjærn 1838			.0			
046-		L L			2			Modifier (_)Vm×_		GAn (] 180	
091		{			- <u></u> - <u></u> - <u></u>				TSH	+ 0.78			chan ><
08H- 07H- 06H- 05H- 04H- 03H- 02H- 02H- 15H- TSH-	1.49_				- Muhuhhhh				>				

t. t

Tube Convent: :Pull N00 SG10CCAL00029 SUN P:58:35 DEC-02-2001 SG 10 ROW 139 LIN 95 1071 C Limrks > P1 400 Diff 4 Diff Clear G1 C1 Vert 0.84 v/d span 30 rot 258 TEC GE OC GE OC OC OC OC							,	AHI			
Ide Covent: :Pull N00 SG 10CCAL00029 SUN 8:56:35 DEC-02-2001 SG 10 ROW 139 LIN 95 1071 SG 10 COL00029 SUN 8:56:35 DEC-02-2001 SG 10 ROW 139 LIN 95 1071 <lmrks> P1 400 Diff 4 100 Absi 3: 100 G1 C1 Diff Clear G1 C1 Vert G1 C5 Vert D.84 v/d span 30 rot 258 Iff G2 G3 G4 G4</lmrks>			Eddyne	98: Analy	sis [C]-	1989,90 M2	691 a	asiqir [M8]			
SG 10CCAL00029 SUN 8:58:35 DEC-02-2001 SG 10 RW 139 LIN 95 1071 <lmrks> P1 400 Diff 4 100 Absi 3: 100 G1 C1 Diff Clear G1 C1 Vert G1 C5 Vert D.84 v/d span 30 rot 258 TEC T G1 C5 Vert D.84 v/d span 30 rot 258 010- G2 G2<!--</th--><th><u>File Analysis</u></th><th>System 1</th><th>ools Layout</th><th>Add Di</th><th>splays</th><th></th><th></th><th></th><th></th><th></th><th>Help</th></lmrks>	<u>File Analysis</u>	System 1	ools Layout	Add Di	splays						Help
< Limits P1 400 Diff 4 100 Absl 3: 100 G1 C1 Diff Clear G1 C1 Vert G1 C5 Vert 0.84 v/d span 30 rot 256 Tec	Tub									***************************************	
Citear G1 C1 Vert G1 C5 Vert 0.84 v/d span 30 rot 256 180	Climites >		and the second			7	SG 1				
Image: State	••••••••••••••••••••••••••••••••••••••						<u> </u>			المحمد ويجمعه ومحمد والمحمد وال	
	02C- 03C- 04C- 05C- 06C- 07C- 08C- 09C- 09C- 09C- 09C- 09C- 09C- 09C- 09	1.49		when here have been break and be have been been been been been break and a branch and a branch and a branch and)Vpp (+ 0.78		180 chan > <

Eddynet98: Anelysis [C]- 1989,90 M2691 as gir [RM] File Analysis System Tools Layout Add Displays <u>H</u>e**ip** Tube Connent: NCO SG10CCAL00020 SUN 11:46:28 APR-23-2000 SG 10 ROW 139 LIN 95 1034 < Lmrks > **P**1 400 Diff 4 100 Absl 3: 100 G 1 C1 Diff Clear G1 C1 Vert G1 C5 Vert 0.86 v/d span 3D rot 254 tec-tsc-01C-020-**03**C-04C-05C--060 07C-080-090-DCB-DCT-VS5-VS3-VS1-DHT-1780)Vpp MxR ()Vmx GAn 180 DHB-▲ chan TSH + 0.78 09H-> < 08H-07H-06H-05H-04H-0**3H**-02H 0.00 **01**H-..... tsh-Teh--0.00

Att 1

1010

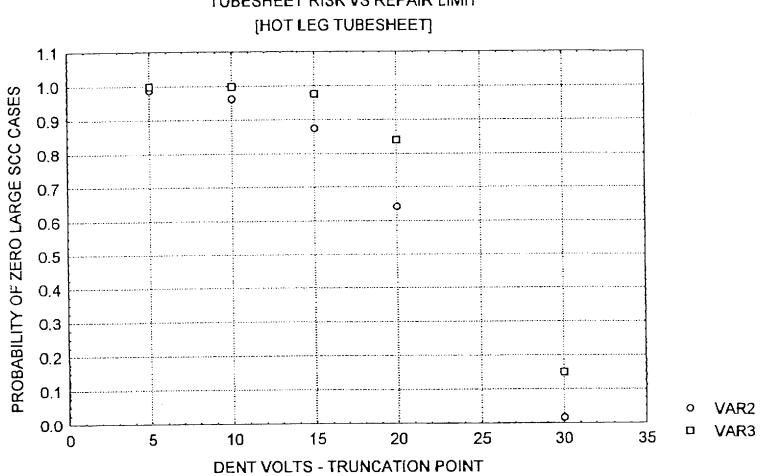
- ,

					At	F 1				(13)
			(klynet9	a: Analysis [C]-	1989,90 M2691 a	s gir [M8]				
<u>File Analys</u>	is <u>S</u> ys			Add <u>D</u> isplays						Help
	Tube Co					NDIO				
		SG10CCALE		JN 18:35:13 NO	V-15-1998 SG 1		LIN 95 101	7		
<lmrks> Clear</lmrks>	P1 G1	400 Diff C1 Vert	4	100 Abst	3:	100	G1	C1]:	Diff
Clear	61		G1	C5 Vert	1.67 v/d	S	pan 65		rot 258	
024-		and and for a she saw and a	52	Array harrow						
01H-		Noral Lord Contraction	Æ	M	1776 ◯Vpp ◯Mxf	n √() F	×	GAn	180	
		Ş		5						chan
TSH-						TS	H + 1.01			> <
TEH	<					2			>	

:

NRC / FPL ST. LUCIE 2 DISCUSSION - 12/11/01

- Frank - Sirva


ATTACHMENT 2

4 PAGES

HOTLEG TUBESHEET RISK MODEL

- BASED ON SG-A DATA [4 SCC INDICATIONS]
- HIGHEST RISK
- LOGISTIC REGRESSION MODEL
 - CONDITIONAL PROBABILITY OF SCC GIVEN DENT VOLTAGE
 - APPLIED TO INDIVIDUAL TUBES
 - COMBINED OVER VOLTAGE SPECTRUM
- RISK VS REPAIR LIMIT FOR TUBESHEET AREA

i i i

TUBESHEET RISK VS REPAIR LIMIT

House Crick

....

ATTACHMENT 3

3 PAGES

STEAM GENERATOR TUBE INSPECTION DISCUSSION POINTS PREPARED BY THE OFFICE OF NUCLEAR REACTOR REGULATION FLORIDA POWER AND LIGHT COMPANY ST. LUCIE PLANT, UNIT 2 DOCKET NO. 50-389

···- -···

December 10, 2001

The following discussion points have been prepared to facilitate the phone conference arranged with the St. Lucie licensee to discuss the results of the steam generator (SG) tube inspections to be conducted during the upcoming St. Lucie Plant, Unit 2 refueling outage. This phone call is scheduled to occur towards the end of the planned SG tube inspection interval, but before the unit exits its refueling outage.

It is the staff's expectation that any significant results or relevant trends discussed during the phone conference, as well as any materials provided by your staff to assist us during the phone conference in the understanding of the SG tube results, will be included in one of the special reports required by the plant Technical Specifications.

1. For each steam generator, provide a general description of areas examined, including the expansion criteria utilized and type of probe used in each area.

Response:	Exar	mination Scope	<u>% Complete @ 0400</u>
<u></u> ,	Bobbin Probe	100% Full Length	100%
	Plus Point Probe	100% Hot Leg Tubesheet	100%
		30% Row 1&2 U-bends	100%
		30% Hot Leg Dents	100%

Remaining Items:

- Diagnostic testing
- In Situ Pressure Testing
- Tube plugging

Update on two issues:

レガン・エム ロマンコーニンドンローニ マンエーヴァマ マンビン

- Axial indications at dents are OD based on additional review of data (i.e., 100 kHz)
- Axial indications at dents were present in prior inspection but at lower level

 For analyzed eddy current results, describe bobbin indications (those not examined with rotating pancake coil (RPC) and RPC/Plus Point/Cecco indications. Include the following information in the discussion: location, number, degradation mode, disposition, and voltages/depths/lengths of significant indications.

· · · · ·

DEVALE CLUE ECALE E COL CRU ROLL

Plus Point rotating probe indications are summarized in the following table. All corrosion-type indications will be plugged, and circumferential indications will be stabilized.

Туре	Mode	Location	No.	Voltages	Depths	Lengths
Axial	OD	Eggcrate	257	0.14 - 0.60	24-60%	0.16-1.94"
Axial	OD	Sludge Pile	24	0.09 - 0.55	24-75%	0.13 – 0.30"
Axial	OD	Dents	6	1.43 - 3.35 ⁽¹⁾	44-99%	0.20 - 0.43"
Axial	ID	Tubesheet	2	0.32 - 0.38	58-82%	0.16 - 0.20"
Circ	OD	Tubesheet	12	0.12 - 0.42	19-94%	25-123 Degrees
Vol	OD	Eggcrate / TS	1/1	0.23 - 0.27	47-85%	0.20 - 0.45"

(1) Indication depth and voltage estimates influenced by a dent.

St. Lucie Unit 2 Steam Generator Dent Inspection Results									
Plus PointDentsLocationInspection of DentsDefectiveLocation									
All Hot Leg Dents Top of Tubesheet to 1 ^{er} Support	4 OD Axial	3 at TSH + ~1" , 1 at TSH+24" 22 – 44 Volts							
All Hot Leg Dents 1st Eggcrate to Hot Leg Bend 5 > Volts	0	1st Eggcrate to Hot Leg Bend							
Review All Dents 1 st Tube Support to Hot Bend < 5 Volts	1 OD Axial	Plus Point Inspection of Distorted Dent Indications and all dents at Eggcrates							
All Dents Row 1-18 U-Bends	1 OD Axial	Row 13 U-Bend 6.1 Volts							
Majority of Cold Leg Dents at Top of Tubesheet	0								

Preventatively plug all dents >10 Volts below 1st tube support on Hot Leg

•

しわく・チチ

	PRELIMARY IN SITU TEST CANDIDATE LIST									
SIG	Row	Line	Location	FLAW TYPE	TEST REASON	RESULT				
A	139	95	TSH+0.82	ASI-OD / Dent	Burst <3NODP / Leak TBD / Voltage	Passed				
A	140	80	TSH+0.86	ASI-OD / Dent	Burst <3NODP / Leak TBD / Voltage / Depth	Full Tube Required				
A	20	2	TSH+0.83	ASI-OD / Dent	Burst <3NODP / Leak 0.040 gpm / Voltage / Depth	Full Tube Required				
Α	39	103	TSH-1.82	ASI-ID	Burst <3NODP / Leak 0.032 gpm / Multiple	Passed				
4	u	ц	TSH-2.05	ASI-ID	Burst <3NODP / Leak 0.011 gpm / Multiple	Passed				
A	70	76	TSH+0.56	ASI-OD	Burst <3NODP / Leak	Passed				
A	49	57	TSH+0.23	ASI-OD	Depth	Passed				
A	55	113	TSH+24.6	ASI-OD / Dent	Voltage	Full Tube Required				
A	117	61	1H-0.22	ASI-OD	Burst <3NODP / Longest Length	Passed				
A	8	1 44	3H+0.80	ASI-OD	Length	Passed				
A	109	65	1H+0.16	ASI-OD	Length	Passed				
В	41	115	TSH-0.03	CSI-OD	Length / Depth / Leak 0.184 gpm					
В	53	61	TSH-0.12	CSI-OD	Depth / Leak 0.029 gpm					
В	58	88	2H+0.19	ASI-OD	Burst <3NODP / Max Leakage					
В	64	108	1H-0.37	ASI-OD	Length					
В	47	51	1H025	ASI-OD	Length / Multiple Flaw					
u	u	u	1H+0.25	ASI-OD	Long Length / Multiple Flaw					
В	70	78	TSH+0.31	ASI-OD	Burst <3NODP / Depth					
В	64	108	1H-0.37	ASI-OD	Length					
В	83	111	TSH+0.20	VOL-OD	Depth					

NOTE: S/G 2B Test List is still preliminary