NOTE: THIS IS NOT CONSIDERED OFFICIAL OR FINAL INFORMATION. THIS IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY TO ASSIST WITH THE REVIEW OF IST-RR-6.

The following examples are in addition to the examples previously provided by letter dated February 20, 2002, as discussed in a conference call on March 11, 2002.

FOUR ADDITIONAL EXAMPLES FROM PAST DATA

FCV-1933B

Maintenance performed on 1/3/98 resulted in a stroke test closure time of 1.34 seconds. Based on application of the ASME OM 95/96 Code, this result would have been established as the new reference value.

Date	Lower (50%)	Upper (50%)	Lower (75%)	Upper (75%)	Test Result
12/5/98	0.67 sec.	2.01 sec.	0.34 sec.	2.34 sec.	2.11 sec.
8/14/99	0.67 sec.	2.01 sec.	0.34 sec.	2.34 sec.	2.05 sec.
3/25/01	0.67 sec.	2.01 sec.	0.34 sec.	2.34 sec.	2.25 sec.

The subsequent test results exceeded the 50% threshold; however, the proposed 75% threshold would have been met. The subsequent test results of 2.11 seconds on 12/5/98, 2.05 seconds on 8/14/99, and 2.25 seconds on 3/25/01 are consistent and repeatable results for this valve. This example shows that the relief request would have prevented an unwarranted declaration of inoperability based on nominal stroke time deviations.

<u>PS-956A</u>

Maintenance performed on 3/18/98 resulted in a stroke test closure time of 1.24 seconds. Based on application of the ASME OM 95/96 Code, this result would have been established as the new reference value. Adaptation to a rapid-acting designation may have been considered, although it would not normally be used for a valve that has typical test results that are very close to or greater than 2 seconds.

Date	Lower (50%)	Upper (50%)	Lower (75%)	Upper (75%)	Test Result
2/17/99	0.62 sec.	1.86 sec.	0.31 sec.	2.17 sec.	1.97 sec.

The subsequent test result exceeded the 50% threshold; however, the proposed 75% threshold would have been met. This example shows that the relief request would have prevented an unwarranted declaration of inoperability based on nominal stroke time deviations.

<u>PS-956H</u>

Maintenance performed on 3/18/98 resulted in a stroke test closure time of 1.57 seconds. Based on application of the ASME OM 95/96 Code, this result would have been established as the new reference value.

Date	Lower (50%)	Upper (50%)	Lower (75%)	Upper (75%)	Test Result
6/6/98	0.79 sec.	2.35 sec.	0.40 sec.	2.74 sec.	2.59 sec.
10/24/98	0.79 sec.	2.35 sec.	0.40 sec.	2.74 sec.	2.37 sec.

The subsequent test results exceeded the 50% threshold; however, the proposed 75% threshold would have been met. This example shows that the relief request would have prevented an unwarranted declaration of inoperability based on nominal stroke time deviations.

<u>RC-519A</u>

Maintenance performed on 10/7/99 resulted in a stroke test closure time of 1.76 seconds. Based on application of the ASME OM 95/96 Code, this result would have been established as the new reference value. Adaptation to a rapid-acting designation may have been considered, although it would not normally be used for a valve that has typical test results that are very close to or greater than 2 seconds.

Date	Lower (50%)	Upper (50%)	Lower (75%)	Upper (75%)	Test Result
11/28/99	0.88 sec.	2.64 sec.	0.44 sec.	3.08 sec.	2.84 sec.
6/29/00	0.88 sec.	2.64 sec.	0.44 sec.	3.08 sec.	2.78 sec.

The subsequent test results exceeded the 50% threshold; however, the proposed 75% threshold would have been met. This example shows that the relief request would have prevented an unwarranted declaration of inoperability based on nominal stroke time deviations.

THREE ADDITIONAL EXAMPLES SINCE FEBRUARY 19, 2002

Since implementation of the new OM Code requirements, HBRSEP, Unit No. 2, has experienced three events in which the as-found stroke time was greater than 50% of the reference value and less than 75%. HBRSEP, Unit No. 2, procedures are currently written to the OM Code requirements as amended by IST-RR-6 as submitted to the NRC on 2/20/2002, therefore, corrective actions, e.g., additional stroke time measurements and subsequent analysis of the deviation was not performed. The following table depicts the events occurring since 2/19/2002.

Note: Reference values were established by averaging the results obtained from recent 'as-found' testing (no maintenance) encompassing five consecutive tests.

Valve I.D: FCV-1933A ReferenceValue = 1.90 seconds Limiting Value = 5 seconds.

	0.95 sec.	2.85 sec.		3.32 sec.	0.91 sec.
Date	Lower (50%)	Upper (50%)	Lower (75%)	Upper (75%)	Test result

Valve I.D: WD-1789

Reference Value = 2.29 seconds Limiting Value = 7 seconds.

	1.15 sec.	3.43 sec.	0.58 sec.	4.00 sec.	3.71 sec.
Date	Lower (50%)	Upper (50%)	Lower (75%)	Upper (75%)	Test result

Valve I.D: WD-1794

Reference Value = 2.41 seconds Limiting Value = 7 seconds.

0 10 1 10 0	1.21 sec.	3.61 sec.	0.61 sec.	4.21 sec.	4.08 sec.
Date	Lower (50%)	Upper (50%)	Lower (75%)	Upper (75%)	Test result

The results were reviewed and test personnel were contacted. There was no conclusive determination pertaining to the cause of the deviations. It was postulated that the most likely cause was a result of the inherent timing inconsistencies associated with the coordination of the measurement between separate individuals using verbal communications in conjunction with the inherent deviation associated with the valve type.