

W. R. McCollum, Jr. Vice President **Duke Energy**

Oconee Nuclear Station 7800 Rochester Highway Seneca, SC 29672 (864) 885-3107 OFFICE (864) 885-3564 FAX

May 6, 2002

U.S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555

Subject: Oconee Nuclear Station Docket Nos. 50-269,-270, -287 Licensee Event Report 269/2002-01, Revision 0 Problem Investigation Process No.: 0-02-1066

Gentlemen:

Pursuant to 10 CFR 50.73 Sections (a)(1) and (d), attached is Licensee Event Report 269/2002-01, Revision 0, concerning the inability of the Pressurizer heaters powered from the Oconee Standby Shutdown Facility (SSF) to compensate for Pressurizer heat transfer losses.

This report is being submitted in accordance with 10 CFR 50.73 (a)(2)(i)(B) as "operation prohibited by Technical Specifications." This event is considered to be of no significance with respect to the health and safety of the public.

Very truly yours,

W. R. McCollum, Jr

Attachment

7622

Document Control Desk Date: May 6, 2002 Page 2 CC: Mr. Luis A. Reyes Administrator, Region II U.S. Nuclear Regulatory Commission 61 Forsyth Street, S. W., Suite 23T85 Atlanta, GA 30303 Mr. L. N. Olshan Project Manager U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, D.C. 20555 Mr. M. C. Shannon

NRC Senior Resident Inspector Oconee Nuclear Station

INPO (via E-mail)

÷

							,							
NRC FORM 366 (7-2001)	;		U.S. N	IUCLEAR REG	gula Dmmi	TORY SSION	Estima	APPRO	ove per	T response to a	o. 3150 comply with learned are	-0104 h this	4 EXPIRES 7 mandatory info	-31-2004 rmation collection
							and fe	d back to	indu	stry. Send con	ments reg	arding	burden estima	te to the Records
	ISEE	EVEN	T RE	PORT (LI	=K)		20555	0001, or b	y int	ternet ê-mail to	bjs1@nrc.	gov, a	and to the Desk	Officer, Office of
	(See re digits	verse for n	equired n	umber of block)			Budge	t, Washingt	egui on, i	DC 20503. If a	means use	ed to i	mpose informati	on collection does
	aigna	ondidotor					and a	play a curre	entiy t rec	valid OMB con nuired to respon	trol numbe	r, the i ormati	on collection	onduct or sponsor,
1. FACILITY NAM	IE						2. DO	CKET NUM	BEF	7		3. P	AGE	
Oconee N	uclea	ar St	atio	n, Unit	. 1			05	50-	- 0269			1 OF	9
4. TITLE														
Pressu Capaci	rizeı tv	r Hea	t Lo	ss Exce	eda	s Sta	andb	y Shu	tđ	lown Fac	cility	γP	owered	Heater
5 EVE			6	LEB NUMBER		7	REPORT	DATE	T		OTHER I	FACIL	ITIES INVOLVE	D
					·		1		FA	CILITY NAME		DOC	KET NUMBER	_
MO	DAY		YEAR	SEQUENTIAL	RËV	мо	DAY	YEAR	Ų	nit 2			0500270	
IVIC							0.01	10.701	FA	CILITY NAME		DOC		
03	07	02	02	- 01 -	00	05	06	2002	U	nit 3			0500287	
				11. THIS REPO	ORTIS	SUBMI	TTED PL	JRSUANT	ro T		ENTS OF	10 CF	R §: (Check all	hat apply)
MODE	inte	1	20.	2201(b)		20.220	03(a)(3)	(ii)		50.73(a)(2)(ii)(B)	Į	50.73(a)(2)(ix)	(A)
10. POWE	ER		20.	2201(d)		20.220	03(a)(4)			50.73(a)(2)(iii)	Ę,	50.73(a)(2)(x)	
LEVEL		100	20.	2203(a)(1)		50.36((c)(1)(i)(A)		50.73(a)(2)(iv)(A)		73.71(a)(4)	
			20.	2203(a)(2)(i)		50.36((c)(1)(ii)	(A)		50.73(a)(2)(v)(A)		73.71(a)(5)	
			20.	2203(a)(2)(ii)		50.36((c)(2)		50.73(a)(2)(v)(B)		\square	OTHER		
			20.	2203(a)(2)(iii)		50.46((a)(3)(ii)		50.73(a)(2)(v)(C)		 Specify in Abstract below o NRC Form 366A 		act below or in A	
			20.	2203(a)(2)(iv)		50.73((a)(2)(i)(<u>A)</u>	_	50.73(a)(2)(v)(D)	Statistics and		
		6	20.	2203(a)(2)(v)		50.73	(a)(2)(i)(B)	+	50.73(a)(2)(
			20.	2203(a)(2)(VI)		50.73	(a)(2)(i)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)		╉──	50.73(a)(2)(VIII)(A)			
			20.	2203(a)(3)(1) 12		NSFF			THIS	1 50.7 5(a)(2)(S I FR	viii)(D)	No.		
NAME							•••••		TE	ELEPHONE NUI	MBER (Incl	ude Ar	rea Code)	
L.E. N	ichols	son, R	egula	tory Com	pli	ance	Mana	aer			(864)	8	85-3292	
		13. COM	PLETE	ONE LINE FO	DR E	ACH CC	MPON	ENT FAIL	URI	E DESCRIBE	D IN THIS	REP	ORT	
CAUSE	SYSTEM	сом	PONENT	MANU- FACTURER	REP T(ortable D epix		CAUSE		SYSTEM	COMPON		MANU- FA CTURER	REPORTABLE TO EPIX
<u>_</u>	14	SUPPLE	MENTA		XPF	TFD	2005			15. EXPE	CTED	МО	NTH DAY	YEAR
VE0 (4							v I.			SUBMIS	SION	<u> </u>		
	es, comp	DIETE EXP	ECIED	SUBMISSIO	AUA	IE).	<u>X]r</u>	10				1		
16. ABSTRACT	(Limit to	o 1400 sp	aces, i.e	e., approximate	ely 15	single-	spaced	typewritte	n lin	ies)				
0 0	2 107 15		ito T	naincori	-	aonal		that	~m]	hiont ho	at log	60 0	from the	
UN U.	5/0//2 curi <i>ze</i>	2002 S Sr (P7	ILE E	all thr	ng i ee i	Cone	uueu	its ex	anu Cee	eded the	capac	itv	of PZR	:
heate	ers po	wered	from	the Sta	ndb	v Shu	itdow	n Faci	lit	tv (SSF)	. The	refo	ore, the	
abil	ity to	o main	tain	a steam	bub	ble i	n th	e PZR	foi	r system	press	ure	control	
durii	ng SSE	r even	ts (F	ire, Flo	ođ,	and	Secu	rity) :	mig	ght be lo	ost and	d th	ne existi	ng
proce	edural	l guid	ance	would no	t fi	ully	addr	ess so	me	expected	1 cond	iti	ons. Nor	mal
syste	em ope	eratio	n or	other em	erg	ency	scen	arios '	wei	re not a:	Efecte	d be	ecause	
addi	tional	L PZR	heate	rs are a	vai	lable	e in	those	COI	nditions	•			
ם מימים	h		nowt	onorahi 1		of t	ho C	CE 71115	. 1 .	ione Con	tico M	at 01	c Sustom	
PZR I	neater	rs sup Der	Tech	operabli nical Sn	LLY	or t ficet	ion	5F AUX 3 10 1	. ⊥ ⊥ 1	tary Serv the SSF 7	A CM Ma	alei alei	a System	
inope	arable	for	all t	hree Oco	nee	unit	S.	Abnorm	al	Procedu	res we	re s	subsequer	tlv
revi	sed to	prov	ide a	dequate	gui	dance	and	all o	n-0	coming Op	perato	rs i	received	
simu	lator	train	ing o	n the ne	w gi	uidan	ice p	rior t	o a	accepting	g shif	t đi	uties.	
Addi	tional	corr	ectiv	e action	s a:	re pl	anne	d.						
The a	appare	ent ca	use w	as a fun	dam	ental	. lac	k of a	ppi	reciation	n for	the	potentia	1
impac	ct of	PZR i	nsula	tion def	ici	encie	es. '	This e	vei	nt is com	nsider	ed t	to have n	0
sign:	iticar	nce wi	th re	spect to	th	e hea	alth a	and sa	ret	ty of the	e publ	10.		

NRC FORM 366A U.S. NUCLEAR REGULATORY COMMISSION (1-2001)

LICENSEE EVENT REPORT (LER)

FACILITY NAME (1)	DOCKET (2) NUMBER (2)	L	ER NUMBER (6)	,		PAGE (3)	
		YEAR	SEQUENTIAL NUMBER	REVISION NUMBER				
Oconee Nuclear Station, Unit 1	0500269	2002		00	2	OF	9	

NARRATIVE (If more space is required, use additional copies of NRC Form 366A) (17)

EVALUATION:

BACKGROUND

This event is reportable per 10CFR 50.73(a) (2) (i) (B) as "operation prohibited by Technical Specifications (TS)."

The Reactor Coolant System (RCS) [EIIS:AB] Pressurizer (PZR) [EIIS:PZR] establishes and maintains RCS pressure within prescribed limits using electric heaters and a water spray nozzle. The PZR heaters replace heat lost during normal steady state operation, and restore system pressure following transients. The PZR spray line cools the PZR to reduce RCS pressure.

Technical Specification (TS) 3.4.9 requires that 126 kw of heater capacity powered from an emergency power supply be operable. Several banks of heaters are capable of independently meeting this requirement.

The Standby Shutdown Facility (SSF) [EIIS:NB] functions as a backup to existing safety systems for additional "defense in-depth" protection under extreme emergency conditions. The SSF was not included in the original plant design when the first Oconee Unit began operation in 1973. Following initial licensing of Oconee, NRC concern increased for issues beyond the traditional accidents analyzed in Chapter 15 of the Oconee Updated Final Safety Analysis Report (UFSAR). In the late 1970's, Duke Energy designed the SSF as an alternate means to achieve and maintain all three Oconee units in Mode 3 following postulated fire, sabotage, or flooding events. The Oconee SSF was made operational in 1986. The SSF was subsequently credited as a source of alternate AC power and decay heat removal during station blackout and tornado events.

The SSF includes a diesel generator [EIIS:AD], associated electrical switchgear including the SSF Essential AC Power System, an auxiliary service water (ASW) pump [EIIS:BA], ASW piping from the condenser circulating water piping through the ASW pump to the steam generators, reactor coolant makeup pumps, reactor coolant makeup piping from the spent fuel pools through the makeup pump to the reactor coolant pumps seals, SSF HVAC equipment, and SSF instrumentation and controls.

NRC FORM 366A U.S. NUCLEAR REGULATORY COMM (1-2001) LICENSEE EVENT REPORT (LER)	IISSION						
FACILITY NAME (1)	DOCKET (2) NUMBER (2)	1	ER NUMBER (6)			PAGE	(3)
		YEAR	SEQUENTIAL NUMBER	REVISION NUMBER			
Oconee Nuclear Station, Unit	1 0500269	2002		00	3	OF	9
NABBATIVE (If more space is required use additional con	ies of NBC Form 3664	(17)					

Technical Specification (TS) 3.10.1 requires the SSF and its subsystems to be operable in modes 1, 2, and 3. One of the functional requirements is to maintain reactor coolant pressure control following an event. Manually controlled PZR heaters (126 kW of PZR heater capacity) are capable of being powered from the SSF to meet this functional requirement. Per the Bases of the TS, these PZR heaters are considered a support system for the SSF ASW, so an adequate number of these PZR heaters must be OPERABLE for the SSF ASW system to be considered OPERABLE.

At time of discovery, all three Oconee Units were operating at 100% power with no safety systems or components out of service that would have contributed to this event.

EVENT DESCRIPTION

An Engineering effort was initiated to develop a test to determine the ambient heat losses from the PZR on each Oconee unit. A list of necessary data was developed to determine the source for each input parameter. It was expected that the need for installation of test instrumentation would preclude any actual testing until such instrumentation could be installed during upcoming outages. However, as the project progressed, Engineering found that all necessary data could be obtained with the exception of one flow parameter, which could be approximated by calculation.

Upon analysis of the initial results, the PZR heat losses were estimated to be:

Unit	Total Demand ((kw)	Ambient	Losses	(kw)
1	201		143		
2	207		149		
3	236		178		

The differences between the total demand and the ambient losses are attributed to the heat transferred to PZR spray and spray bypass Variations between units appear to be due to differences in flows. the condition of PZR insulation. The total demand and ambient loss numbers exceeded the value of 70 kw previously used as the expected heat loss from the PZRs and exceeded the 126 kw capacity required by TS 3.4.9 to be powered from plant emergency power and the nominal 126 kw PZR heater capacity powered from the SSF.

NRC FORM 366A U.S. NUCLEAR REGULATORY COMMISSI (1-2001) LICENSEE EVENT REPORT (LER)	ON							
FACILITY NAME (1)	DOCKET (2) NUMBER (2)	LER NUMBER (6)			PAGE (3)			
		YEAR	SEQUENTIAL NUMBER	REVISION NUMBER				
Oconee Nuclear Station, Unit 1	0500269	2002		00	4	OF	9	

Although the UFSAR states that letdown and makeup can be balanced for RCS pressure control without heaters, and single phase RCS natural circulation flow can still be maintained, this identified condition constitutes a loss of functional capability of the PZR heaters powered from the SSF to maintain pressure control using a steam bubble.

After review and verification of the data and methods, Operations was notified and, at 14:00 on 3/7/2002, Operations declared the SSF ASW to be inoperable and entered TS 3.10.1 Condition A on all three Oconee units. This condition requires the SSF ASW system to be restored within 7 days.

An 8 hour ENS notification was made at 2003 on 3/7/2002 under 10 CFR 50.72(b)(2)(v) as a "condition which at time of discovery could have prevented fulfillment" of a safety function. Duke Energy subsequently concluded that this condition would NOT have prevented fulfillment of the safety function. (See the Safety Assessment section below.)

For non-SSF events, the available PZR heater capacity powered from an emergency power supply exceeds the TS 3.4.9 requirement and the worst case total demand indicated by the testing. Therefore, the intent of TS 3.4.9 is met, even though the specific requirement is non-conservative for certain scenarios.

Procedural guidance was generated and validated to permit operation with the RCS water solid following an SSF event. In order to determine if the higher than expected ambient losses from the PZR would interrupt single phase RCS natural circulation, simulations of an SSF event were run using the RETRAN computer program. Based on the RETRAN analysis results, a post-trip subcooled natural circulation condition can be maintained from the SSF using the new guidance.

Operations shift personnel received training on the changes being made to the applicable SSF operating procedures. This training included use of an SSF simulator which allowed hands on experience throttling ASW flow and throttling SSF RC letdown to maintain RCS pressure within the desired control band.

On 3/12/2002, the Plant Operations Review Committee reviewed and approved the new procedural guidance as a compensatory measure to

NRC FORM 366A U.S. NUCLEAR REGULATORY COMMI (1-2001) LICENSEE EVENT REPORT (LER)	SSION		
FACILITY NAME (1)	DOCKET (2) NUMBER (2)	LER NUMBER (6)	PAGE (3)
		YEAR NUMBER NUMBER	
Oconee Nuclear Station, Unit :	L 0500269	 2002 - 01 - 00	5 of 9
NARRATIVE (If more space is required, use additional copie	es of NRC Form 366A) (17)	

restore operability. The fact that the ambient PZR heat loss continued to exceed the capacity of the heaters powered from the SSF was considered a loss of functional capability and was declared to be an Operable but Degraded/Nonconforming condition.

On 3/13/2002 at 0150 OPS exited TS 3.10.1 Condition A on all three Oconee units following implementation of these procedure changes and training of oncoming shift personnel. Subsequent shifts were required to receive the training prior to assuming their shift duties.

Subsequently, an NRC Special Inspection Team performed a review of SSF operability with the new procedural guidance in place. This team reviewed the applicable Abnormal Operating Procedure, Operator training (including simulator performance), and the RETRAN analysis used to support the new guidance. There were no significant findings.

Selected Licensee Commitment (SLC) 16.5.8a "PZR Heaters" was implemented on 3/27/2002 to address PZR heater capacity to compensate for ambient heat losses. This SLC provides more restrictive requirements for PZR heater capacity pending revision of TS 3.4.9 to correct the current non-conservative requirement.

CAUSAL FACTORS

Due to the historical nature of this event, Duke Energy did not determine a root cause. Instead a Duke Energy team performed an assessment of various aspects of the event, including investigation of the historical information available on the issue of PZR heat loss versus heat capacity, and identification of factors that contributed to the event.

The assessment team determined that:

- 1. The original SSF design basis for PZR heaters to support natural circulation cooling was inadequate.
- 2. The potential impact of PZR heat loss on natural circulation, and therefore system operability, was not well recognized or generally understood by site personnel.

FACILITY NAME (1)	DOCKET (2) NUMBER (2)	L	.ER NUMBER (6)	ť		PAGE (3)
		YEAR	SEQUENTIAL NUMBER	REVISION NUMBER			
)conee Nuclear Station, Unit 1	0500269	2002		00	6	OF	9

3. There were several missed opportunities to identify PZR insulation deficiencies.

Although there were problems in the past now recognized as missed opportunities to identify the issue, the current discovery occurred as a result of a voluntary initiative to develop a PZR ambient heat loss test, which was recommended by a recent, previous Oconee assessment. Problem evaluations and corrective actions for those previous problems were influenced by an underlying assumption that the original design and calculations were adequate and a lack of appreciation of the impact of PZR insulation on SSF operability. The assessment team concluded that the discovery and reaction to this issue is reflective of an organization that is challenging previously accepted ideas and taking the necessary steps to achieve lasting resolution.

CORRECTIVE ACTIONS

Immediate:

1. Operations declared the SSF ASW inoperable and entered appropriate Action Statements.

Subsequent:

- 1. The Abnormal Procedure used for SSF operation during postulated events was revised to provide adequate guidance for maintaining stable Mode 3 conditions with the RCS system water solid. Implementation included hands on simulator training for all shift operators prior to assuming their shift duties.
- 2. A Selected Licensee Commitment (SLC) was created as an interim measure to provide more restrictive requirements related to PZR heater capacity pending revision of TS 3.4.9 to correct the current non-conservative requirement. This SLC includes surveillances to verify the required capacity is maintained.

Planned:

 Implement appropriate option(s) to restore the ability to control system pressure while maintaining a steam bubble in the PZR. This may include actions to:

NRC FORM 366A U.S. NUCLEAR REGULATORY COMMISSIO	N				
FACILITY NAME (1)	DOCKET (2) NUMBER (2)	LER NUMBER (6)	PAGE (3)		
		YEAR SEQUENTIAL REVISION NUMBER NUMBER			
Oconee Nuclear Station, Unit 1	0500269	2002 - 01 - 00	7 OF 9		

- A. Assess the current status of the PZR heater insulation on all three Oconee units. Perform visual and thermal imaging examinations of the current insulation (completed on Unit 1 during shut down for a scheduled refueling outage). After these inspections, appropriate short term actions should be taken to address noted defects.
- B. Perform an improved PZR heat loss calculation which addresses identified deficiencies in the current approved calculation. This calculation may also include a sensitivity analysis calculation for PZR ambient losses. One of the cases should consider expected losses from an un-insulated PZR in order to provide a baseline for potential insulation efficiency gains due to improving the overall condition of insulation in the field.
- C. Write an enhanced Periodic Test Procedure to better determine and monitor actual ambient losses from the PZR.
- D. Evaluate options to repair and/or upgrade insulation and/or modifications to provide additional heater capacity powered from the SSF.
- 2. Submit revisions to TS 3.4.9, TS 3.10.1 Bases, and the UFSAR as needed to correct current non-conservative heater requirements.
- 3. Revise appropriate SSF Design Basis Documents to address the role of PZR heaters in SSF operability.

Planned corrective actions 1 and 2 are considered NRC Commitment items. There are no other NRC Commitment items contained in this LER.

SAFETY ANALYSIS

As this report addresses the ability to respond to postulated scenarios which have not actually occurred, there was no actual impact on the health and safety of the public.

For any event or transient scenario involving decay heat removal via the steam generators, an adequate number of PZR heaters must be functional to compensate for ambient losses in order to maintain a

NRC FORM 366A U.S. NUCLEAR REGULATORY COMMISSION (1-2001) LICENSEE EVENT REPORT (LER)	N						
FACILITY NAME (1)	DOCKET (2) NUMBER (2)	LEF	R NUMBER (6)		· /···	PAGE (3	1)
		YEAR	SEQUENTIAL NUMBER	REVISION NUMBER			
Oconee Nuclear Station, Unit 1	0500269	- 2002 -	- 01 -	00	8	OF	9

PZR steam bubble for RCS pressure control and ensure adequate natural circulation cooling. Therefore TS 3.4.9 and the Bases of TS 3.10.1 require a number of PZR heaters to be operable.

For non-SSF events, the available PZR heater capacity powered from an emergency power supply (even allowing for single failure) exceeds both the TS 3.4.9 requirement and the worst case total demand indicated by the heat loss testing. For some SSF events, such as a turbine building flood, control room access and plant power remain available, so that adequate PZR heater capacity would exist. Thus, this issue is only a concern for a sub-set of SSF event scenarios.

Per the Bases of TS 3.10.1, the SSF ASW system is used to maintain single phase RCS natural circulation flow. The PZR heaters powered from the SSF are considered a support system for the SSF ASW.

The limited historical data indicates that the PZR heat losses have exceeded the expected value of 70 kw since initial operation of the SSF in 1986. Also the current loss data on all three units significantly exceeds the 126 kw requirement. Thus, in the past, given an SSF event challenging the PZR heaters, the system would not have responded as expected to maintain RCS pressure control and natural circulation. The SSF abnormal procedures did not provide guidance to assure that a subcooled condition was maintained with heater capacity less than heat loss. There was a potential for RCS natural circulation flow to be lost.

However, the plant can still be safely shut down, even for those SSF events which do specifically result in loss of plant systems affecting PZR heater power or control so that SSF powered PZR heaters would be challenged. The event assessment team concluded that the previous procedures using the SSF ASW were sufficient to achieve boiler-condenser mode cooling (a saturated, not subcooled condition) successfully without complications. Boiler-condenser mode cooling was reviewed and approved by the NRC Staff as part of the B&W Owners Group Abnormal Transient Operator Guideline program and is incorporated in the Technical Bases Document (Rev 9) and the Oconee Emergency Operating Procedure.

The current Probability Risk Assessment (PRA) plant model does not include the PZR heaters. Therefore inoperable PZR heaters have no calculated impact on risk. As stated above, the boiler-condenser

NRC FORM 366A U.S. NUCLEAR REGULATORY COMMISSIO (1-2001) LICENSEE EVENT REPORT (LER)	DN		
FACILITY NAME (1)	DOCKET (2) NUMBER (2)	LER NUMBER (6)	PAGE (3)
		YEAR SEQUENTIAL REVISION NUMBER NUMBER	
Oconee Nuclear Station, Unit 1	0500269	 2002 - 01 - 00	9 OF 9

mode provides adequate secondary side heat removal, therefore inability to maintain natural circulation has no impact on actual risk. Thus, from a safety and risk perspective, the lack of adequate heater capacity is not a core damage issue.

The safety function to remove decay heat would not be lost, therefore Duke Energy has concluded that this event did not include a Safety System Functional Failure and is not reportable under 10CFR 50.73(a)(2)(v).

ADDITIONAL INFORMATION

There were no releases of radioactive materials, radiation exposures or personnel injuries associated with this event.

This event is not considered reportable under the Equipment Performance and Information Exchange (EPIX) program.

There have been no previous occurrences of this event at Oconee.