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Sensitivity analysis methods for identifying 
influential parameters in a problem with a 
large number of random variables 

Sitakanta Mohanty' and Richard Codell2 

'Center for Nuclear Waste Regulatory Analyses, USA 
2U.S. Nuclear Regulatory Commission, Washington, D.C., USA 

Abstract 

Risk analysis can benefit from applications of sensitivity techniques to identify the 
important parameters. This paper compares the ranking of the ten most influential 
variables among a possible 330 variables for a model describing the performance 
of a repository for radioactive waste, using ten different statistical and non
statistical parametric sensitivity analysis methods. Because each method has its 
advantages and limitations, the selection of the final list of influential parameters 
is based on the number of times the parameter achieves a high ranking by different 
methods. The scoring method appears to successfully isolate the most influential 
parameters.  

1 Introduction 

Computer modeling provides an avenue to simulate the behavior of complex 
systems. Many of the input model parameters have large uncertainties. Sensitivity 
analysis can be used to investigate the model response to these uncertain input 
parameters. Such studies are particularly useful to identify the most influential 
parameters affecting model output and to determine the variation in model output 
that can be explained by these variables.  

There are a large variety of sensitivity analysis methods, each with its own 
strengths and weaknesses, and no method clearly stands out as the best. In this 
paper, we have picked ten different methods and have applied these methods to a 
high-level waste repository model, which is characterized by a large number of 
variables (e.g., 330), to identify influential input variables.
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2 Sensitivity Analysis Techniques

Most techniques used herein rely on the Monte Carlo (or its stratified equivalent, 
Latin Hypercube Sampling) method for probabilistically determining system 
performance. Many of the input parameters are not precisely known. The Monte 
Carlo technique makes a series of calculations (called realizations) of the possible 
states for the system, choosing values for the input parameters from their 
probability distributions.  

A sensitive parameter is one that produces a relatively large change in model 
response for a unit change in an input parameter. The goal of the sensitivity 
analyses presented in this paper is to determine the parameters to which model 
response shows the most sensitivity. The goal of the uncertainty analyses is to 
determine the parameters that are driving uncertainty (i.e., variation) in response.  

2.1 General Model 

The response of the system is denoted as y, which is generally a function of 
random parameters, xi; deterministic parameters, dk; and model assumptions, am.  
The system response for thejth realization is 

yj =f( (xIj, X2,j I.... Ixi, I,...,Xlj'j'dc, a. 1 

where I is the total number of sampled parameters in the model, k is the number of 
deterministic parameters and m is the number of model assumptions. It is assumed 
that the behavior of the system is simulated by appropriately sampling the random 
parameters and then computing the system response for each realization of the 

parameter vector X = {x 1 , Ix.j I.... 'xQ1 ..... x1j}. For the purposes of identifying 

influential random parameters and develop understanding of their relationship to 
the response, we do not consider the dependence ofy on deterministic parameters 
and model assumptions.  

2.2 Regression Analyses Methods 

Single Linear Regression on One Variable 

Single linear regression (i.e., regression with only the first power of a single 
independent variable), is useful to understand the nature and strength of 
relationships between input and response variables of a model. The coefficient of 
determination, R2, gives a quantitative measure of the correlation. Even when the 
response variable is linearly dependent on the input variable being studied, 
univariate linear regression of Monte Carlo results may fail to show unambiguous 
correlation because other sampled parameters that affect the response are varying 
at the same time. When R2 is small, it is not necessarily a good indicator of the 
importance of the variable. A better indication of influence is to determine by 
means of a T-test whether the probability that the slope of the linear regression line 
is significantly different from zero [1].  

The correlation between input and response variables can be enhanced by 
transforming the variables. In general, variables are transformed by (i) eliminating 
dimensionality, (ii) reducing the role of the tails of the distributions, (iii) properly 
scaling the resulting sensitivities to the variability of the input variables, and (iv) 
using input variable ranks. While transformations generally increase the goodness
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of-fit, they may distort the meaning of the results. For example, transformations 
such as rank, logarithmic, and power law applied to the response variable, 
frequently give unfair weight to small response values, which do not affect the 
mean results as much as the large response values. If the mean response is a 
desirable quantity, regression results based on transformed variables should be used 
cautiously.  

2.3 Stepwise Multiple Linear Regression 

Stepwise multiple linear regression (stepwise regression) determines the most 
influential input parameters according to how much each input parameter reduces 
the residual sum of squares (RSS) [2]. The form of the regression equation is 

y =m ix + m 2 X2 +... + mnXn qb (2) 

where y is the dependent variable, x, are independent variables (could be raw, 
transformed, or rank variables),mi are regression coefficients, and b is the 
intercept. The regression coefficient, which is the partial derivative of the 
dependent variable with respect to each of the independent variables, is a measure 
of linear sensitivity of y to input xi [3]. The stepwise algorithm calculates the 
reduction in RSS for the independent variables in the order that gives the greatest 
reduction first. In the implementation of the procedure, a multiple linear regression 
model is fitted to the data in an iterative fashion. The procedure starts with the 
variable, xi, that explains most of the variation in the model response, y. Then it 
adds additional variables (one at a time) to maximize the improvement in fit of the 
model according to the R' value, which is an indicator of the fraction of variability 
in the dependent variable that is explained by the variability of xi. The sequence 
in which the inputs are selected and the magnitude of the increment in R2 provides 
the measure of uncertainty importance.  

2.4 The Kolmogorov-Smirnov (K-S) Test 

The K-S test is nonparametric, i.e., a statistical test that does not require specific 

assumptions about the probability distributions of the data [4]. Probability 
distribution of a subset (e.g., top 10 percent) of the observations of the input 
variables is compared to the theoretical (i.e., true) distribution of that variable. If 
the two distributions are equivalent, then response is not sensitive to the variable 
in question. Conversely, if the distributions are different, then the variable in 
question does have an effect on response. For the present study, there are 4,000 
vectors in the entire set, and the subset consists of the 400 vectors with the highest 
responses. The significance of the K-S test was determined at the 95-percent 
confidence level.  

2.5 The Sign Test 

The Sign test is also nonparametric. In the Sign test, each observation of the input 
variable is represented by either a plus sign (+) or a minus sign (-) depending on 
if it is greater than or less than the median value of the theoretical distribution. A 
subset of the input parameter values (e.g., 10 percent) corresponding to calculated 
responses is compared to the theoretical distribution of that input variable. For the 
present study, there are 4,000 vectors in the entire set, and the subset consists of the 
400 vectors with the highest responses. The significance of the Sign test was 
determined at the 90-percent confidence level.
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2.6 Differential Analysis Technique

In the differential analysis technique for determining the most influential input 

parameters, multiple deterministic runs are made in which an input parameter, xi , 

is changed (one at a time) by a known amount, El x, , to estimate the first derivative 

of the performance: ay/ax=[y(x,+Axe)-y(x,)]/Axe. Usually Axi in this 

derivative is relatively small (e.g., 1 percent of the parameter value). Consequently, 
differential analysis determines sensitivity of parameters only at local points in 

parameter space and does not consider the wide range of parameter variations as 

does the Monte Carlo method. This concern is alleviated by evaluating derivatives 
at several randomly selected points in the sample space and averaging the 

corresponding sensitivities that are derived from these derivatives. In the analyses 
presented herein, the derivative is transformed in one of two ways to allow for 

comparison of sensitivity coefficients between parameters whose units may differ.  

The first transformation is described by S, = (ay / y) /(ax, / xi) , where xi and Y 

are the mean values of Xi and Y , respectively and S; is the dimensionless 

normalized sensitivity coefficient. These normalized sensitivity coefficients 
presented in the above equation are equivalent to the coefficients of the regression 

equation using the logs of the normalized response and independent variables.  
Because S, does not account for the range of the input parameter, a second 

transformation of the derivative is also performed where the derivative is multiplied 
by the standard deviation of the input parameter distribution. This transformation 

is described by S,, = (ay / axi )cax, • 

Differential analysis determines sensitivity unambiguously because it deals with 

changes in only one independent variable at a time. In contrast, regression analysis 
on the Monte Carlo results can only determine the most influential parameters 
when those parameters also have large-enough correlation coefficients that they are 

distinguishable from the confounding effects of the simultaneous sampling of all 

other independent variables.  

2.7 Morris Method Technique 

In the Morris method [5], the random variable, ay/axi , is evaluated using the 

current and the previous values of y: 

Ay _y(xt + Axl,...,xi + Axi, .... xI) yXxl x"'x'" (3) 

To compute ay/lx , a design matrix is constructed by (i) subdividing the range 

of each input variable xi into (p- 1) intervals using (p- 1) equally spaced points, (ii) 

randomly sampling xi (normalized) from these p intervals of size A, = p/2(p - 1).  

The Morris method considers ay/lxi as a random variable and uses its mean and 

standard deviation of the random variable to determine the sensitivity ofy to xi. A 

large value of mean ay/ax1 implies that x, has a large overall influence on y. A 

large value of standard deviation implies that either xi has significant interactions 
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with other input parameters (i.e., x*, k = 1, 2, ..., I, k •9 or its influence is highly 
nonlinear.  

2.8 The Fourier Amplitude Sensitivity Test (FAST) Method 

Both the differential analysis and the Morris method handle one input parameter 
at a time. For a nonlinear computational model, in which input parameters are 
likely to have strong interactions, it would be desirable to have a sensitivity 
analysis method that would investigate the influence of all input parameters at the 
same time. The FAST method [6] does this. It first applies the trigonometric 

transformation x, = gi (sin cvis) to the input parameters. Transformations for 

various input distribution functions can be found in Lu and Mohanty [7]. The 
output variable can then be expanded into a Fourier series 

y(s) A + Aisin(wois) = y(s + 2ff) (4) y~)=2 i=1 

where Ai's are the Fourier amplitudes of the output variables corresponding to 
frequencies co).  

The trigonometric transforms relate each input variable, x,, to a unique integer 

frequency, coi. All transforms have a common parameter s, where 0 • s 27'r. As 
s varies from 0 to 2r, all the input parameters vary through their ranges 
simultaneously at different rates controlled by the integer frequencies assigned to 

them through x, = g, (sin avs) .Equally spaced values of s between 0 and 27t are 

chosen to generate values of x,. Because trigonometric transforms and integer 
frequencies are used, the response, y, becomes periodic in s, and the discrete 
Fourier analysis can be used to obtain the Fourier coefficients ofy with respect to 
each integer frequency. The sensitivity ofy to xi is measured by the magnitudes of 
the Fourier coefficients with respect to o,, andy is considered sensitive to the input 
parameters with larger magnitudes of Fourier coefficients.  

The use of integer frequencies causes some errors due to "aliasing"(see [7] for an 
explanation) among Fourier coefficients. The integer frequencies in 

x, = g, (sin ao•s) were chosen to minimize interactions among Fourier coefficients 

to ensure, as much as possible, that the particular coefficient, A, , through the 
particular integer frequency, i,, represents only the influence of the corresponding 

input parameter, x,. Assuming 0:< x. < 1, the trigonometric transformation 

functions used here is xi = I / 2 + 1 /z arcsin[sin(wis + r)], where ri's are 

random numbers.  

Because implementing the FAST method is computationally intensive, the number 
of input variables was limited to 50. According to Cukier et al. [8], as many as 
43,606 realizations are needed to perform a satisfactory analysis on 50 input 
parameters to avoid aliasing among any four Fourier amplitudes.  

2.9 Parameter Tree Method 

The parameter tree method evaluates relative sensitivity and correlations of the 
output variable to one or a subgroup of input parameters. In this technique, the 
Monte Carlo method is used to produce a pool of realizations, which is then 
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partitioned into bins according to several rules; e.g., all sampled input parameters 
above their median value. The bins are then examined to determine which input 
variables appear to have significant effects on the output variable [9].  

A tree structure develops by partitioning input parameter space into bins, each 
forming a branch of the tree based on a partitioning criterion similar to an event 
tree. The simplest branching criterion is a classification based on parameter 
magnitude that treats sampled input values as either a + or a - depending on 
whether the sampled value is greater or less than the branching criterion value.  
First, a number of Monte Carlo realizations are generated for a given scenario 
class. Next, the realizations are partitioned into two subsets determined by whether 
the first influential parameter, x,, is greater than or less than a specified level.  
Realizations with a high value are all treated as a + and low as a -, regardless of 
their position within the subset. For example, realizations with all five influential 
input parameters in a subgroup of five influential parameters sampled above the 
median would be placed in the same bin. Similarly, all realizations where the first 
four influential parameters are a + and the last one is a - would be placed in 
another bin and so on.  

Let the number of realizations associated with the two branches be N,+ and N,-.  
Next, the response variable is examined for realization associated with each branch 
of the tree. The number of realizations withy greater than a partition criterion (e.g., 
mean) is counted for both the branches. Let these numbers be L, (L,+•N,+) and L,_ 
(L,•_N _). The difference betweenL L. / N, and L,_ / N,- is a measure of sensitivity 
of y to x,. The procedure is repeated in each of these two subsets with the next 
influential parameter to be considered and so on until each of the influential 
parameters is considered. Note that, in this approach, the selection of the second 
parameter is dependent on the first and so on.  

While the parameter tree method is powerful method for dealing with a subgroup 
of parameters, it is limited to determining a relatively small number of significant 
variables because at each new branch of the tree, the number of realizations 
available for analysis decreases on average by half.  

2.10 Fractional Factorial Method 

Factorial methods are used in the design of experiments[ 10] and more recently, in 
testing of computer codes and models [11]. The basic approach is to sample each 
of the parameters at two or three levels (e.g., a median value divides the parameter 
range into two levels) and then to run the model to determine the response. A full
factorial design looks at all possible combinations of sampled input variables; e.g., 
for two levels, there would have to be 2N samples, where N is the number of 
variables. Since the current problem has as many as 330 sampled variables, and 
each run requires several minutes of computer time, a full-factorial design in 
infeasible.  

Fractional factorial designs require fewer than 2N runs, but at the expense of 
ambiguous results. For example, a so-called "level 4" design for 330 variables 
requires 2048 runs. The results from such a level-4 experimental design can yield 
results for which the main effects of all variables are distinct from each other and 
two-way interactions of other variables, but can be confounded by some three-way 
or higher interactions of other variables. However it is possible to use other 
information generated in the runs to determine in many cases if the results of the 
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fractional factorial design are truly measuring the response to the variable or 
combinations of other variables.  

In general, the fractional factorial analysis was conducted in the following steps; 
(1) Develop a fractional factorial design for all variables in the problem taking into 
account the largest number of runs that can reasonably be handled; (2) From the 
results of the preliminary screening, perform an analysis of variance (ANOVA) to 
determine those variables that appear to be significant to a specified statistical 
significance; (3) Further screen the list of statistically significant variables on the 
basis of information other than the ANOVA results; and (4) repeat the analyses 
with a refined set of variables and higher-resolution designs until results are 
acceptably unambiguous.  

3 TEST PROBLEM 

The test problem is the TPA Version 4.1 Code [ 12] for which the most influential 
input parameters are to be identified. The analyses have been conducted using the 
nominal case data set (i.e., includes the most likely scenario and excludes low 
probability and high consequence events), which does not include disruptive 
external events. The parameters sampled are the ones where a significant amount 
of uncertainty remains in their value or they have been shown potentially 
significant to estimating response (output variable) in the process-level sensitivity 
analyses. Out of 965 input parameters, 330 input parameters are sampled 
parameters, 635 are deterministic parameters, and there are numerous model 
assumptions. Only a few of the 330 sampled parameters contribute significantly 
to the uncertainty in response 

4 RESULTS AND ANALYSES 

This section presents the sensitivity and uncertainty analysis results generated using 
methods described in the previous section. Statistical results are treated separately 
from the non-statistical methods. The nonstatistical methods include differential 
analysis, Morris method, FAST method and the fractional factorial design method.  
Detailed description of the meaning of the parameters and their relevance to the 
performance assessment is outside the scope of this paper.  

4.1 Sensitivity Results from Statistical Methods 

This section presents the sensitivity analyses based on an initial screening by 
statistical analysis of a 4,000-vector Monte Carlo analysis of the nominal case. The 
statistical tests used in the screening were (1) the K-S test; (2) the Sign tests; (3) 
Single-variable regression including (a) t-test on the regression of the raw data and 
(b) t-test on the regression of the ranks of the data; (4) Stepwise regression of (a) 
raw data, (b) the ranks of the data, and (c) the logarithms of the data.  

For each of the statistical tests, the resulting regression coefficients were sorted, 
giving the highest values receiving the best score. Sensitivities that ranked below 
the 5th percentile in terms of either a t-statistic or F-statistic, were eliminated from 
consideration (score = -). The overall score for a variable consisted of two parts; 
(1) the number of times that the variable appeared in the six tests with a finite rank 
(0 to 6), and (2) the sum of the reciprocal of the rank for the six tests. A variant of 
the second test replaced the rank with its square, but the results did not change the
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conclusions. The top 10 ranks from the statistical screening that combines method 
1 to 4 are presented in the second column of table 1.  

4.2 Sensitivity from Nonstatistical Methods 

Results from Differential Analyses: Seven baseline values were randomly sampled 
for each of the 330 parameters around which values were perturbed. Perturbations 
(+-I% of the baseline or local value) to the parameters in these random sets were 
selected so that the parameter values were maintained in their respectively defined 
ranges. The selection of random values yields calculations similar to one realization 
of a probabilistic TPA code run. Sensitivities calculated using arithmetic mean of 
the absolute values of Si (at 7 points) weighted by the standard deviation of x.  
Then the xi 's were sorted in the descending order of the sensitivities to identify the 
influential variables. The top 10 influential input variables are presented in column 
3 of table 1.  

Results from the Morris Method: In Morris method, seven samples are collected 

for each random variable o•/oj .A 2316 x 330 matrix was generated and used in 

sampling input parameters to the TPA code. The 2317 realizations [(330 +1)x 7] 

produced seven samples for each ay/axi , which were used to calculate mean and 

standard deviation for each ay/ax, . Seven samples were chosen to be consistent 

with the differential analysis method.  

The greater the distance ay/dxi for parameter xi is from zero the more influential 

the parameter xi is. Physically, a point with large values of both mean and 

standard deviation suggests that the corresponding input parameter has not only a 
strong nonlinear effect itself, but also strong interactive effects with other 
parameters on the response. Results are presented in column 4 of table 1.  

Results from the FAST Method: Conducting sensitivity analyses for all 330 
sampled parameters in the TPA code using the FAST method is impractical 
because it would take more than 40,000 realizations for only 50 parameters. Such 
a large number of realizations is needed to avoid aliasing among Fourier 
coefficients [8]. Therefore, preliminary screening was necessary to reduce the 
number of parameters evaluated with the FAST method. In this paper, the FAST 
method is applied to the 20 parameters identified by the Morris method. For the 
20 parameters, only 4,174 realizations are needed to avoid aliasing among any four 
Fourier amplitudes. To account for the range of an input parameter, each Fourier 
amplitude was multiplied by the standard deviation of the corresponding input 
parameter.  

Results from the FAST methods are somewhat limited by the initial selection of 
20 parameters from the Morris method.  

Results from the Parameter Tree Method: In the parameter tree approach, median, 
mean, and 90th percentile values were used for parameter distribution for the 
identified influential input parameters and the response variable. Using a median 
value cutoff criterion for the input and output variables, 143 out of 
4,000 realizations had all 5 of the influential parameters with values above the 
median. Of these 143 realizations, 128 had responses above the median value for
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all 4,000 realizations. These 143 realizations accounted for 24 percent of the 
population mean of responses. This analysis reinforces the notion that these are 
indeed influential parameters because 3.5 percent of the realizations account for 
over 24 percent of the mean from all realizations.  

The number of variables that can be captured by this method is limited by the 
number of realizations because each new branch of the tree cuts the number of 
samples by approximately half. In table 1 there may be reasonable assurance that 
only approximately the top 5 variables are significant, and the others are likely to 
be spurious.  

Results from Fractional Factorial Method: The initial screening with the fractional 
factorial method used a level-4 design for 330 input variables that needed 2,048 
runs. There were two levels for each of the input parameter models, chosen to be 
the 5th and 95 th percentiles of the parameter distributions. The TPA code was then 
run for this experimental design to calculate the responses.  

Results from the set of 2,048 runs were then analyzed by ANOVA, using a 
probability cutoff of 0.05. The ANOVA yielded a set of 100 potentially influential 
variables. The results were refined to a list of only 37 variables by observations 
from other information generated by the code; for example, it was possible to 
eliminate all variables related to seismic failure of the waste packages by observing 
from other code outputs that there were no seismic failures in any of the runs.  

Using the reduced set of variables from the initial screening, we then set up another 
fractional factorial design with higher discriminatory power. We set up a level 5 
run for 37 variables that yielded the list presented in Table 1. With only 37 
variables, it was also possible to look at some of the two-way and 3-way 
interactions that were combinations of the main effects, and to make conjectures 
about 4 "h and higher order interactions of those variables that might be explored by 
additional factorial designs. With less than 10 variables from the second screening, 
a full factorial design would require only 1024 additional runs. This experiment 
will be run in the near future.  

5 CONCLUSIONS 

This paper describes a suite of sensitivity analysis techniques to identify model 
variable whose uncertainty and variability strongly influence model response.  
These techniques help focus attention on what are likely to be the most important 
to response and also can be used to identify deficiencies in the models and data.  

The sensitivity analyses employed in this work were conducted using the functional 
relations between the model input variables and the response variable embodied in 
the TPA code. Variety of statistical techniques (e.g., regression-based methods and 
parameter tree method) using a large set of Monte Carlo runs (4,000 vectors) and 
nonstatistical techniques (differential analysis, Morris method, FAST method, and 
fractional factorials) using 250-4,000 TPA realizations were used in this analysis.  
The parameter tree method allowed the determination of combinations of variables 
that led to the highest responses. The Morris method and the FAST method were 
used to determine what further insights could be gained from techniques 
specifically designed for nonlinear models.
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Results from the regression analyses were based on normalized, log-transforms of 
the normalized inputs and ranks. The normalized results weight each result equally, 
whereas the log-normalized results tend to overemphasize smaller doses. However, 
the log-transformed results generally provide a better fit for the regression 
equations. Results of the regression analyses are standardized to account for the 
ranges of the input variables and allow a more accurate ranking of sensitivity 
coefficients.  
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Table 1. Top 10 influential parameters from statistical and non-statistical 

analyses. Entries in the columns under each method represents numerical 
representation of the variable name.
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237 (*) 

131 (*)

* These parameters are included for reference, but were below the 5 percentile 

cutoff from ANOVA probability.
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ABSTRACT 

Two sensitivity (or uncertainty importance) measures particularly relevant to the disposal of HLW are 
presented. These measures are referred to as performance-mean-based sensitivity measures, 

d•, / dp,, and d•, / dai, where y, is the mean of the model output Y and ax, is the standard 

deviation of the input variable Xi. These two sensitivity measures are demonstrated using the U.S.  
Nuclear Regulatory Commission's total-system performance assessment model, for evaluating the 

proposed repository at Yucca Mountain. Based on du, / dux,, fifteen out of 330 variables are 

identified as significantly contributing to sensitivities at 95% acceptance limit. Similarly, based on the 
calculated odu,/ da-x , twenty variables are identified as significantly contributing to sensitivities.  

Because of the large variability in the performance, approximately 700 samples are needed for the 
ranking of the variables to be stabilized.  

KEYWORDS 

Sensitivity Analysis, Uncertainty Analysis, Risk Assessment, System Modeling, Nuclear Fuel Cycle, 
and Waste Management 

INTRODUCTION 

Physics-based probabilistic analysis of engineered and natural systems is emerging as an important 
tool for studying reliability in addition to field and laboratory tests. However, new challenges exist 
because highly complicated physics-based models are computationally intensive and involve a large 
number of parameters. The performance assessment of a high-level radioactive waste (HLW) disposal 
is an example. The performance assessment model has a large number of input parameters that are 
described by probability distribution functions representing uncertainty and variability. Sensitivity 
analysis of the performance assessment model is conducted to explain the variability in the output due 
to uncertainties in the model (not considered in the paper) and input parameters and to determine the 
most influential input parameters that control the behavior of the output. Knowledge of the most 
influential input parameters is important because (among other reasons) it can provide an insight on
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where more efforts should be devoted to reduce the uncertainties in the output and to significantly 
improve the understanding of the system.  

A variety of sensitivity measures have been used in the literature to identify influential parameters 
emphasizing different aspects of the input-output relationships. In a recently published article by 
Mohanty and Wu [1], two sampling-based sensitivity measures in the context of the CDF-sensitivity 
analysis function were presented. However, the HLW problem requires sensitivity measures that are 
consistent with the regulatory criteria, such as the peak expected dose for compliance [2]. Two 

performance-mean-based sensitivity measures, au, / alix, and a/y / D ax,, have been proposed in the 

past in [3] for importance analysis for HLW applications in which components of the repository are 
artificially neutralized to identify important components. However, applicability of these measures has 
not been established in the context of sensitivity analysis.  

This paper summarizes the development and application of these two mean-based sensitivity 
measures. Details of the development of these measures in conjunction with the cumulative 
distribution function (CDF)-based sensitivity analysis method and their comparison with the 
previously developed [4] and implemented [1] sensitivity measures is a subject of a future paper. In 
the following sections, we present a very brief description of the processes involved in the 
performance assessment model, a brief description of the mean-based sensitivity measures, and the 
results from the application of these measures to the NRC performance assessment model.  

THE PERFORMANCE ASSESSMENT COMPUTER MODEL 

Performance assessment models often use a probabilistic approach to propagate uncertainties 
(sometimes variability) in model parameters, conceptual models, and future system states (i.e., 
scenario classes). A probabilistic model, as implemented in the NRC TPA code [5], simulates (at the 
process level) thermal, hydrological, mechanical, and chemical processes of the repository system.  
This paper uses only the portion of the TPA code that models the most likely scenario. This scenario 
involves the degradation of waste package (WP) in which high-level waste is disposed in the 
engineered barrier system (EBS), the release of radionuclides when the water infiltrating the ground 
surface contacts exposed spent nuclear fuel, and transports the radionuclides through the partially 
water-saturated geologic medium beneath the repository and subsequently in the saturated zone to a 
reasonably maximally exposed individual assumed to be located at 20 km down-gradient of the 
repository [5]. The TPA code estimates dose from released radionuclides during specified time periods 
(e.g. regulatory compliance period). Input parameters are sampled from assigned probability 
distributions using Latin Hypercube Sampling (LHS). The code contains 961 input parameters out of 
which 330 are sampled from specified distribution functions. Several sampled input parameters are 
specified to have correlation with other parameters.  

SENSITIVITY MEASURES 

Based on a reliability sensitivity concept [4], the response CDF is defined as the integral of the joint 
probability-density-function of the parameters, with a domain of integration that corresponds to the 
domain of the identified samples. The response CDF sensitivities are then calculated from the 
derivatives of the probability integral. The derivatives are statistically estimated from the samples and 
used to identify and rank the importance of the random variables.

2



The CDF of a performance Y = Y (X) can be represented as: 

p=F,(yo)=P(Y < y 0 )= f"...fx(x)dx (1) 

where a is the region of X for Y(X) < y0 . From Eq. 1, the sensitivity of p with respect to a 

distribution parameter 0 (e.g., mean or standard deviation) can be formulated as: 

p/ f ... 0f- (-)dx (2) 

dO/ x do p 

in which (f,,/p) is the sampling density function that corresponds to the sampling region Q. By 

applying Eq. 2 for a number of different percentiles, the sensitivities for the entire CDF of Y can be 
estimated from random samples. Two CDF sensitivities, the standard-deviation sensitivity, 

S, = (dpi p) l(da Ic/q), and the mean sensitivity, S,, =(dpIp) l(di / or), were developed in [4] 

and implemented in [1]. Parameters ut, and a, are the mean and the standard deviation, respectively, 

of the random variable X1 .  

New Mean Response-Based Sampling Sensitivity Measures 

Other sensitivity measures proposed for HLW applications include two performance mean-based 

measures ajr/latxand a l/ aox. The sampling-based methods for estimating these two 

sensitivities have been derived and a summary is given herein. More detailed derivations will be 
published in a future paper.  

The variable transformation is used to transform X, to Z,. This transformation can be expressed as 

Zj /-Uz, _ ' (Fx)(x,))=ui (3) 

Urz, 

where Z, is a normal variable with mean value of uz, = 0 and standard deviation of o'z, = 1.  

Sensitivities with respect to the original variables can be expressed as: 

,x. o 'o ' (4) 

a j , - aZ-• a or, (5) 

Ja~r~ ac auai 
In Eqs. 3-4, aliz,/il~x, and aaz,/Cax are calculated numerically or analytically based on Eq. 3. The 

sensitivities Dyy / apu and Dluy /a az, are calculated from the random samples as described below.  

apt / a/7 , Sensitivity from Random Samples 

After the transformation using Eq. 3, the mean value of Y is: 

pr = fYo. (u,pz,az )du (6) 

in which 0, is the joint standard normal pdf. The mean-based sensitivity is (several 

intermediate steps are not presented): 

s __ = _P_ = J Y(u) a, az) du = E [uY(u)] (7) 
alzi Allu az
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To distinguish if the sensitivity is statistically significant or not, we can test the hypothesis that 

St/ = 0 and develop the acceptance limits. The test statistics is 

Syý - Sy (= 0) Zo = 7ýl (8) 0 y 

in which the sampling estimate is 
Sr, =-J[uY]j (9) 

Using normal distribution approximation, justified for sufficiently large k based on the central limit 
theorem, the following probability statement can be made: 

P# - SYP _ -EZ_- 12 (10) 

where E[Y2] can be estimated using the Monte Carlo or LHS samples. a is the significant 

probability level or the risk of making a wrong conclusion about the null hypothesis that u is unrelated 
to the performance Y and has zero sensitivity.  

ap/ / auz, Sensitivity from Random Samples 

The mean-based sensitivity is: 

Sr- = _z,•tr- JY(u) du =E[(ui2 -)Y(u)j (11) 

To test the hypothesis that Sy. = 0, the test statistics is 

SY, - Syo (= 0) (12) 

in which the sampling estimate is 

S =_1-[(•• ,1)Y] (13) 

Using the normal distribution approximation, the following probability statement can be made: 

P -Z./2 < 2.E[y2I]k l-/211a (14) 

where E[Y2] can be estimated using the samples.  

Acceptance Limits and Adaptive Sampling 

If the calculated sensitivities are outside of the acceptance limits defined by Eqs. 10 or 14, we will 
accept the alternative hypotheses that the sensitivities are greater than zero at the corresponding 
confidence level. If the calculated point lies well outside of the limits, then the variable is likely to be 
important. In such cases, the magnitudes of the sensitivities may be used to rank the important 
variables. The number of samples can be adaptively increased to reduce the sampling error and to 
identify the important variables and their ranking with confidence.
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RESULTS 

Figure 1 shows the calculated sensitivities from 1000 LHS samples and the nominal case 10,000-yr 
compliance period response (peak dose) calculations using the TPA code. Based on 8, /2•Iu,, 15 

variables (corresponding to the data that are outside the acceptance limits) are identified as having 
significant sensitivities at a 5%. Similarly, based on a#/. Da/ ', 20 variables are identified as 

significant at a 5%. The identified important variables are listed in table 1. The results show that 
the two sensitivity measures produce substantially different set of influential variables. But, when 
these two measures are applied to the previous version of the TPA code, the difference between the 
two sets of influential variables is small. Therefore, we believe that the difference between these two 
measures when applied to the latest version of the TPA code is a result of the new process models and 
the associated parameter ranges. A formal validation study is currently underway to ensure that the 
differences are logical and justified.  

-- ioaIV if Siicn Vrte 

]1F 

,0 
04 

2 5. 1(210 20 20 305 ~ E 0 5 

(a) (b) 
Figure 1. Influential variables identified by (a) S, and (b) S1, sensitivities (see table I for top 10) 

Table 1. Top ten random variables identified by Sr, and S., sensitivity

Sr, or (ayr I ,U) sensitivity S1, or ( 11, / ac',) sensitivity 

Rank Variable Name Rank Variable Name 

I WastePaekageFlowMultiplicationFactor I W_ astePaekageFlowMultiplicationFaclor 

2 Preexponential SFDissolutionModel2 MatrixKD UFZ Ra[m3/kgl 

DefectiveFractionOfWps/cell MatrixKD_CHnvPbfm3/kgl 

4 SubAreaWelFraction FracturePorosityTSw 

5 realAvgMeanAnnualInfiltrationAtStartxmm/yr] Preexponential SFDissolutionModel2 

6 DripShieldFailureTime[yr] KDSoilSe[cm3/g] 

FWettedFraction SEISMOL 7 7 FWettedFraction FAULTO 

S atrixPermeability TSw [m2] FWefted~ractionrSEISMOl 6 

9 ractionOfCondensateTowardRepositoy1/yr] nat rixKD CH nzTh[rn3/kgl 

10 ractionOfCondensateRemoved[1/yr] 10 atrixKD CHnzUJ[m3/kg] 

The mean sensitivity is expected to stabilize as the number of samples is increased. Figure 2 shows 

that the ranking convergence seems to become stabilized as the number of samples exceeds about 700.  
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More samples will be generated to confirm the convergence. Several parameters that are known to 
have very little significance show up in table I (Rank 7 for S Y sensitivity), but this variable drops out 

as the number of samples is increased from 1000 to 2000. Investigation continues to address this issue.  

x 10, 
81  K I Wasteseckagsrlowtultiplication 

/•<• • 3, Pýentiw~actol~fssleeo 

3 p1 nti3sF.tlon S• +' -+ • > L•4 Sýl.A.eWet orax,ýo 

4- : 5. ArealAwageMeenAnnuallnfilt.  
4.. J - - 6. DnpShiedFailurrT'me 

V.' * . 7. SFWettedFrac~tiSE1SMO1-7 

y •< . 8. MatdxPevneabitiyl~w •L•/• • 9. FmactiocOfCocdensaleyohwardRep.  

c'•4 -+-• • 10 FractionO1CcdensaleRemOVed 
> 950% Acceptonce Limits 

I > 

0 500 1•OO 

Number of Rsndom Sampes 

Figure 2. Mean sensitivity of performance to top 10 variables as a function of sample size 

CONCLUSIONS 

The development and successful implementation of two performance-mean-based sensitivity (or 
uncertainty importance) measures, dur / d•,, and dpi, / dca',, that are particularly relevant to the 

disposal of HLW regulatory criteria are summarized. Based on dpr / dUx, and d, / Ay-x, sensitivities, 

fifteen and twenty out of 330 variables are identified as having significant sensitivities at 95% 
acceptance limit. Further studies are underway to determine the reason for significant differences m 
the list of influential variables identified through these two mean-based measures. It appears that 700 
samples are sufficient for obtaining stable results at 95% confidence limit for the S, sensitivity.  
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