

 \mathcal{A}

Root Cause Analysis of the Reactor Pressure Vessel Head Degradation at the Davis-Besse Nuclear Power Station

May 7, 2002

 $\mathbf{1}$

Agenda

- Introduction-John Wood
- ***** Discovery of RPV Head Degradation -Mark McLaughlin
- Root Cause Investigation -
- **John Wood**

Root Cause Summary

Inadequate inspection of the RPV closure head prevented early detection of nozzle leakage, resulting in prolonged boric acid corrosion and significant degradation.

 \mathfrak{S}

Discovery of RPV HeadDegradation

第三字形(单)

MarkMcLaughlin

Field Activities Team Leader

 $\overline{4}$

RPV Head Configuration

RPV Head Configuration

 δ

Control Rod Drive Nozzle

FENOC

Discovery Steps

***** February **16 13** RFO (refueling outage) starts • February 24 Visual examination starts " February **26 *** February **27** Flaw found on nozzle **3** • March 5 • March 8 *FENOC* - Restraint on plant restart due to boron on head Ultrasonic **(UT)** examinations started - Restraint on plant restart due to flaw on nozzle **UT** examinations completed - Nozzle 2 **& 3** confirmed leak paths and backwall anomaly Nozzle **3** cavity confirmed and reported to NRC - Initial Root Cause Team formed 9

Examination Results UT

* Heat number M3935 material

Nozzle 2 Corrosion Profile

 \sim \sim

Root Cause Investigation

(EUTOS) (CRT)

Steve Loehlein

Root CauseInvestigationTeam Leader

Root Cause Investigation Team

- ***** Team included **FENOC** staff
	- **-** Steve Loehlein, (Beaver, Valley),Team Lead BS, PE
	- **-** Chuck Ackerman, (Davis-Besse) BS
	- Ted Lang, (Davis-Besse) **MS,** PE
	- Todd Pleune, (Davis-Besse) PhD
	- Neil Morrison, (Beaver Valley) BS

Root Cause Investigation Team

- **l** Team augmented **by** industry experts from FirstEnergy, Framatome **ANP,** Dominion Engineering, and EPRI
	- Mark Bridavsky, FirstEnergy, Beta Labs Failure Analysis Expert - PhD
	- Stephen Hunt, Dominion Engineering, Corrosion Expert - PE
	- Steve Fyfitch, Framatome ANP, Metallurgical Expert MS
	- Christine King, EPRI, Material Reliability Program Manager

Key Questions

- ***** Was there a new mechanism that caused this degradation?
- ***** Was there adequate guidance/knowledge available to have prevented the degradation to the RPV closure head?

Key Conclusions

- The degradation to the RPV closure head was caused **by** Primary Water Stress Corrosion Cracking **(PWSCC)** of the Control Rod Drive (CRD) nozzle which'led to leaks that were undetected allowing corrosion to occur
- The existing guidance/knowledge is adequate for understanding how to prevent RPV closure head degradation from any CRD nozzle leaks

Root Cause Analysis

- Purpose and Scope
- · Root Cause Investigation
	- Data Gathering & Analysis
	- Timeline of Key Events
	- Crack Initiation, Leakage, and Conclusions
	- Corrosion Rates
- Causes

19

Purpose and Scope of Investigation

- ***** Determine root and contributing causes for RPV closure head degradation experienced at CRD nozzles 2 and **3**
- Perform a prompt investigation to provide the stakeholders with potential impact and insights

全个性的健康

Data Gathering

- ***** Relevant data gathered
	- Condition Reports
	- System Engineer's System Performance Books
	- Photographs of degraded areas
	- Inspection results of degraded areas
	- **-** Plant procedures and.other station documents
	- Personnel interviews.
	- Reference Documents (NRC, Vendor, **INPO,** EPRI)
	- Videotapes

Data Analysis

- Data sorted in chronological order to create a Sequence of Relevant Events matrix
- Timeline of Key Events developed
- "• Events and Causal Factors Chart developed

95 mg mentas.

Ï

J

2

 $\mathcal{L}\circ\mathcal{L}$

PWSCC of Alloy 600 Materials

- ***** Alloy **600** materials known to be susceptible to primary water stress corrosion cracking **(PWSCC)**
	- Both wrought and weld (Alloy **82/182** materials)
- ***** Three main factors:
	- **-** Susceptible material (composition, heat treatment)
	- High tensile stress (operational and residual)
	- Aggressive environment (primary water at high temperature)

Davis-Besse Control Rod Drive Nozzles

- Cracked CRD nozzles are Alloy 600 material with Alloy 82/182 J-groove welds
- Heat treatment of nozzles met code requirements $(1600-1700 \text{ °F vs} > 1850 \text{ °F})$
- Nozzles 1 through 5 are from heat M3935
- Heat M3935 has experienced more leaks in B&W plants than other heats
- High residual tensile stress present adjacent to J-groove weld
- Higher operating temperature (605° F vs 601° F)
- No counterbore on nozzle penetrations
- Interference fit between nozzle and vessel by design

FENOC 25

Conclusions Regarding Identified Cracking

- Cracking mechanism is **PWSCC**
	- Flaw characteristics found at Davis-Besse are similar to other plants with confirmed **PWSCC**
	- No factors indicating sulfide-induced intergranular stress corrosion **cracking (IGSCC)** due to chemistry transients
	- No other cracking mechanism deemed credible

Estimated Crack Propagation Timeframe

- Longest through-wall cracks estimated to have initiated in **1990 (+/- 3** years)
- **"*** Control rod drive nozzle thickness is **0.62** inch
- **"*** Estimated time for flaw to propagate through-wall is 4-6 years
- **"*** Consistent with proposed EPRI Material Reliability Program crack growth rate curve

Leakage From Cracked Nozzles

- Through-wall cracking in nozzle or J-groove weld leads to leaks into annulus region
- Leakage rate is a function of crack length above J-groove weld and degree of cracking through the weld
- Leakage rate increases significantly as crack lengthens above the J-groove weld due to increase in crack width
- Previous industry observations indicated very low leakage rates

Davis-Besse Leakage Rate from Cracked Nozzle

- Davis-Besse axial cracks above weld were longer than reported from other plants **(1.1** inches for nozzle 2 and 1.2 inches for nozzle **3)**
- Analytical leakage predictions yield wide range of results **(.025** to **>1** gpm) depending on method and assumed geometry used
- **"*** Estimated leak rate based on boric acid deposits and unidentified leakage are in the range of 0.04 to 0.2 gpm

Analytically Predicted Leak Rates

Leakage Rate Conclusions

Estimated leakage rate from nozzle **3** crack is consistent with analytical predictions

图 雪海区的小 $\mathcal{F}^{(1)}=\sum_{i=1}^N\mathcal{F}_{i}^{(1)}$ and $\mathcal{F}^{(2)}$.

Source of Corrosion

- Degradation at nozzle 2 and 3 is due to boric acid corrosion
- "• Boric acid corrosion is a known mechanism capable of producing such significant degradation
- There is a history of boric acid corrosion incidents on RPV heads in the industry

Degradation Sequence

Stage **1** - Crack Initiation Progression Stage 2 - Minor Weepage **/** Latency Period Stage **3** - Deep Annulus Corrosive Attack Stage 4 - General Boric Acid Corrosion

Stage 1 Crack InitiationProgression

- **"*** Nozzle **3** cracks resulted from **PWSCC**
- Cracks grew at rate consistent with industry data

 $\label{eq:2} \mathcal{L} = \mathcal{L} \left(\frac{S}{\sqrt{2}} \sum_{i=1}^N \left(\frac{1}{2} \sum_{i=1}^N \frac{1}{2} \sum_{i=1}^$

• RCS leakage miniscule

FENOC

Stage 2

Minor Weepage/Latency Period

- ***** Leakage entered annulus between Alloy **600** nozzle and low alloy steel RPV closure head
- ***** Fit allowed capillary flow path
- ***** Latency period could involve several mechanisms (e.g., steam cutting, galvanic corrosion, crevice corrosion, and flow accelerated corrosion)
- "• Annular gap increased **due** to localized corrosion resulting in leakage flow (residualand dry steam) reaching surface
- "• Leak rate controlled **by** number of cracks and size of cracks (length and width)

Stage 3 Deep Annulus Corrosive Attack

- Oxygen penetration in annulus increased due to decreasing velocity and differential pressure in annulus
- Preferential corrosion occurred in the vicinity of crack (consistent with EPRI-6 test)
- Exiting steam mass flow from annulus region not sufficient to wet surrounding areas
- Nozzle 2 progressed to this stage

Stage 4 General Boric Acid Corrosion

- **"*** Corrosion progression limited **by** crack growth rate and leakage through crack
- Annulus flooded with moist steam
- Boric acid accumulates on head
- Increased leakage provides localized cooling of head allowing greater wetted area
- Affected area governed by thermodynamics and material properties (e.g., viscosity, density, slope)
- **"*** General corrosion of oxygenated surface

Corrosion Rates From Industry Testing

EPRI and industry testing (effect of boric acid on low alloy steel) demonstrates corrosion rates of 0.6 to 5.0 inches per year

- Test was performed using deaerated, high temperature water (600'F)
- Orientation, geometry and materials simulated RPV head nozzles
- Flow rates of 0.01 and 0.10 gpm used in test

Davis-Besse Estimated Reactor Vessel Closure Head Corrosion Rates

- ***** 4 years of stage 4 corrosion
- ***** Maximum radial progression **-7** inches
- Average rate ~2 inches per year
- Lateral direction corrosion rate ~1/2 that of axial direction
- ***** Consistent with EPRI Boric Acid Corrosion Guidebook

Probable Timeline

- **o 1990 (+/-** 3yrs) Nozzle **3** cracking initiated
- *** 1994-1996** Nozzle **3** cracking propagates through-wall
- 1998 and 2000 Nozzle leak not identified ***** 2002 Corrosion discovered at nozzle **3,** minor degradation at nozzle 2 *FENOC* 41

Root Cause Summary

Inadequate inspection of the RPV closure head prevented early detection of nozzle leakage, resulting in prolonged boric acid corrosion and significant degradation.

VALUE

Root Cause Confirmation

• Phases 1 and 2

- Samples contain iron oxide
- Chemical form of boric acid

• Phase 3

- Rule out IGSCC
- Characterization of nozzle 3 cavity

Root Cause Confirmation

- **"*** Sample Phase **1**
	- Corrosion products/boric acid deposits from top of head
	- Deposits scraped from CRD nozzle **3** below the flange
- **"*** Sample Phase 2

- Corrosion products/boric acid deposits from nozzle 2 removal

钢丝的 的现代

 $\mathcal{V}^{\mathcal{N}}$ and $\mathcal{V}^{\mathcal{N}}$

- "• Sample Phase **3**
	- Nozzle **3** and nozzle **3** corrosion area
	- Nozzle 2

Concluding Remarks

 $\label{eq:2.1} \frac{1}{2}\int_{0}^{2\pi} \frac{1}{2\pi} \frac{d\mu}{2\pi} \left(\frac{d\mu}{2\pi} \right)^{\mu} \frac{d\mu}{2\pi} \, \frac{d\mu}{2\pi} \$

45