VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261

April 19, 2002

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555 Serial No. 02-251

NL&OS/ETS R0

Docket Nos. 50-280

50-281

License Nos. DPR-32

DPR-37

Gentlemen:

VIRGINIA ELECTRIC AND POWER COMPANY
SURRY POWER STATION UNITS 1 AND 2
ASME SECTION XI REVISED RELIEF REQUESTS SR-27 AND SR-32
ALTERNATIVE REPAIR TECHNIQUE - REACTOR VESSEL HEAD AND
SUPPORTING PROCEDURE QUALIFICATION RECORD

In a letter dated December 3, 2001 (Serial No. 01-637B), Virginia Electric and Power Company (Dominion) committed to provide a welding procedure qualification record (PQR) to support the NRC review of Relief Requests SR-27 and SR-32 for Surry Units 1 and 2, respectively. These relief requests would permit the use of an alternative repair technique in the event that any flaws requiring repair in reactor vessel head penetrations were discovered during reactor vessel head penetration inspections. This letter submits the PQR and a revision to relief requests SR-27 and SR-32 to resolve the one item in the PQR that did not meet a previously identified material condition in the relief request.

The PQR met the conditions of the relief request in each area except one. Specifically, the relief request required that "the average values of the three HAZ impact tests will be equal to or greater than the average values of the three unaffected base metal tests." However, testing indicated that at 30°F the average base metal impact test for mils lateral expansion was 50.3 mils compared to 47.7 mils for the HAZ. In lieu of running another PQR, Dominion is modifying the relief requests to use the PQR acceptance criteria in ASME Section III. In this instance Dominion does not seek additional relief from ASME III, but rather requests use of the provisions of ASME III for acceptance of the welding PQR.

Attachment 1 to this letter provides the PQR and Attachment 2 provides the basis and additional acceptance criteria for the welding procedure qualification. Please substitute the revised acceptance criteria to complete your review of Relief Requests SR-27 and SR-32.

Robil

Please contact Mr. Thomas Shaub at (804) 273-2763, if there are any questions about this submittal.

Very truly yours,

Leslie N. Hartz

Vice President - Nuclear Engineering

Commitments made in this letter: None

Attachments

- 1. Framatome ANP Procedure Qualification Record 55-PQ7183-01
- 2. Revision to Relief Requests SR-27 and SR-32

cc: U.S. Nuclear Regulatory Commission Region II Sam Nunn Atlanta Federal Center 61 Forsyth Street, SW Suite 23 T85 Atlanta, Georgia 30303

> Mr. R. A. Musser NRC Senior Resident Inspector Surry Power Station

Mr. R. A. Smith Authorized Nuclear Inspector Surry Power Station

Relief Requests 27 and 32 Ambient Temperature Temperbead Weld Repair Technique

Framatome ANP
Procedure Qualification Record

Surry Power Station Units 1 and 2 Virginia Electric and Power Company (Dominion)

PROCEDURE QUALIFICATION RECORD

FRAMATOME ANP

55-PQ7183-01

PROCEDURE QUALIFICATION RECORD

PQ7183-01

PREPARED BY:

WELDING ENGINEER

DATE: 02 20 02

WELDING ENGINEER

DATE: 420/02

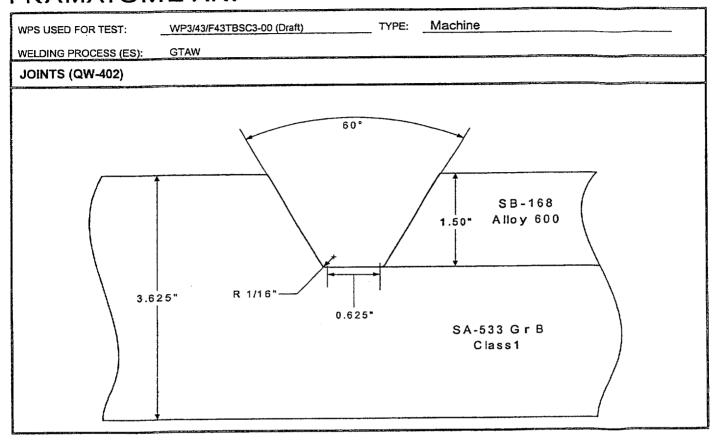
COGNIZANT ENGINEER

DATE: 420/02

APPROVED BY:

MANAGER, WELDING SERVICES

PROCEDURE QUALIFICATION RECORD


FRAMATOME ANP 55-PQ7183-01

RECORD OF REVISIONS

REVISION	<u>DATE</u>	DESCRIPTION OF REVISION
00	February 15, 2002	Öriginal Issue
01	February 20, 2002	Corrected toughness testing column headings (MLE & % shear)

PROCEDURE QUALIFICATION RECORD

FRAMATOME ANP 55-PQ7183-01

BASE METALS (QW-	403)	POSITIONS (QW-405)			
Material Spec:	SA-533 to SB-168	Position of Groove:	3G		
Type & Grade:	Grade B Class 1 to UNS N06600	Welding Progression (Vertical):	Vertical up		
P-No. / Gr. No.	P-3 Group 3 to P-43	Other:	None		
Thickness of Coupon:	P-3 = 3.625", P-43 = 1.5"				
Diameter of Coupon:			POSTWELD HEAT TREATMENT (QW-407)		
Backing Materials:	N/A	Soak Temperature:	None		
Other:	SA-533 material was stress relieved	Time at Temperature:	N/A		
	for 66 hrs. @ 1150°F before welding.	Heating/Cooling Rates:	N/A		
	Weld cavity has 6" of BM restraint.	Other:	None		
SA-533 Heat Number:	B9064-4				
SB-168 Heat Number:	34985-1B				

PROCEDURE QUALIFICATION RECORD

FRAMATOME ANP 55-PQ7183-01

FILLER METALS (QW-404)			ELECTRICAL CHARACTERISTICS (QW-409)				
Weld Metal Analysis	A-No.: <u>N/A</u>	N/A		Electrode Type:		EWTh-2	
Filler Metal F- No.:	43	43		Electrode Size:		1/8" diameter	
SFA Specification:	SFA-5.14	SFA-5.14		Pulse Current (Freq/Width):		All Layers (2.0 pps / 40%)	
AWS Classification: ERNiCrFe-7 (Code Case 2142)		Arc Voltag	Arc Voltage Control: Automatic				
Maximum Pass Thick	ness: 1st Layer -	0.080"	Electrode Extension:		1/8" to 3/4"		
	2 nd Layer	- 0.110"	Current - F	Current - Polarity:		DC-SP (Electrode Negative)	
3 rd Layer - 0.110"		0.110"	Layer	Voltage:	Amps (P/B)	Travel (ipm)	
Consumable Insert: N/A			1	9.5	210 / 115	4.5	
Deposited Thickness: 1.5"			2	9.8	280 / 120	4.0	
Size of Filler Material	: .035" dian	neter	3	10.0	280 / 120	4.0	
Heat Number: HT# NX2424JK		Bal	10.0	310 / 130	3.8		
	Wire Feed Speed (ip	m):	Heat Input (j/In) = (A x V x 60) / TS			TS	
Layer	Primary	Background		Layer		ut (J/In)	
1 ^{s1}	40	30	1 st		19,380		
2 nd	60	50		2 nd)48	
3 rd	60	50		3 _{tq}		000	
Balance	60	50	В	alance	31,895 M	laximum	

PREHEAT (QW-406)				TECHNIQUE (QW-410)	
Preheat Temperature:	69° F Min	imum		String or Weave:	Stringer
Interpass Temperature:	99.4° F Maximum		Bead Width:	.270" to .420"	
Other:	Water backing was utilized on the		Single/Multiple Electrode:	Single	
	backside of the weld		Single/Multipass (per side):	Multipass	
GAS (QW-408)				Orifice / Cup / Nozzle Size:	#12
Purge Gas:	N/A	_ Flow Rate:	N/A	Peening:	None
Shield Gas (CFH):	Argon	_ Flow Rate:	35 CFH	Bead Overlap:	50% ± 25%
Trailing Gas:	N/A	_ Flow Rate:	N/A	Welding System:	Dimetrics MPC & F Head
Gas Composition:	Welding (Grade Argon		Other:	None
Other:	None				

A

Attachment 1

PROCEDURE QUALIFICATION RECORD

FRAMATOME ANP

55-PQ7183-01

TOUGHNESS TESTS (QW 170)								
SPECIMEN NO.	NOTCH LOCATION	SPECIMEN SIZE	TEST TEMP.	FT. LBS	MILS LATERAL EXPANSION	% SHEAR	DROP WEIGHT BREAK (Y / N)	
BMDW-1	Base Metal	5/8" x 2" x 5"	-40°F	N/A	N/A	N/A	Yes	
BMDW-2	Base Metal	5/8" x 2" x 5"	-30°F	N/A	N/A	N/A	No Break	
BMDW-3	Base Metal	5/8" x 2" x 5"	-30°F	N/A	N/A	N/A	No Break	
BMCVN-4	Base Metal	.394 x .394 x 2.165	+20°F	54	48	30	N/A	
BMCVN-5	Base Metal	.394 x .394 x 2.165	+20°F	46	43	30	N/A	
BMCVN-6	Base Metal	.394 x .394 x 2.165	+20°F	55	54	30	N/A	
BMCVN-2	Base Metal	.394 x .394 x 2.165	+20°F	47	40	. 20	N/A	
BMCVN-3	Base Metal	.394 x .394 x 2.165	+20°F	51	44	30	N/A	
BMCVN-7	Base Metal	.394 x .394 x 2.165	+30°F	59	53	20	N/A	
BMCVN-8	Base Metal	.394 x .394 x 2.165	+30°F	54	51	30 ·	N/A	
BMCVN-9	Base Metal	.394 x .394 x 2.165	+30°F	61	47	20	N/A	
HAZCVN-1	Heat Affected	.394 x .394 x 2.165	+30°F	82	41	65	N/A	
HAZCVN-2	Heat Affected	.394 x .394 x 2.165	+30°F	95	48	70	N/A	
HAZCVN-8	Heat Affected	.394 x .394 x 2.165	+30°F	94	54	70	N/A	
HAZCVN-6	Heat Affected	.394 x .394 x 2.165	+35°F	95	49	45	N/A	
HAZCVN-7	Heat Affected	.394 x .394 x 2.165	+35°F	84	52	35	N/A	
HAZCVN-9	Heat Affected	.394 x .394 x 2.165	+35°F	95	50 .	55	N/A	

Comments: Base Material RT_{NDT} = -30°F.

The average absorbed energy and mils lateral expansion values obtained for Heat Affected Zone specimens 6, 7 & 9, at test temperature of +35°F equals or exceeds the base material average absorbed energy and mils lateral expansion values for Base Metal specimens 7, 8 & 9 at a test temperature of +30°F. When welding with this procedure 5°F should be added to the RT_{NDT} of the base material on which welding is performed.

All Charpy V-Notch specimens were removed at a depth of .750" transverse to the maximum working direction of the plate, which is equivalent to ½ the weld groove depth. All base metal specimens were machined with the V – notch perpendicular to the plate surface. All HAZ specimens were machined with their longitudinal axis inclined so that the V-notch would contain as much HAZ as possible.

All Base Metal Drop Weight specimens were also removed at a depth of .750".

PROCEDURE QUALIFICATION RECORD

FRAMATOME ANP 55-PQ7183-01

TENSILE TESTS (QW-150)								
SPECIMEN NO.	WIDTH (inches)	THICKNESS (inches)	AREA (sq. inches)	ULTIMATE TOTAL LOAD (ib.)	ULTIMATE UNIT STRESS (psi)	TYPE OF FAILURE & LOCATION		
RSTT-1	1.4406	0.74920	1.079297520	102,474	95.0	Ductile / Weld		
RSTT-2	1.5074	0.75065	1.131529810	104,612	92.5	Ductile / Weld		

GUIDED BEND TESTS (QW-160)						
SPECIMEN NO.	TYPE	FIGURE NUMBER	RESULTS			
TSB-1	Side Bend	QW 462.2	Acceptable			
TSB-2	Side Bend	QW - 462.2	Acceptable			
TSB-3	Side Bend	QW – 462.2	Acceptable			
TSB-4	Side Bend	QW 462.2	Acceptable			

OTHER TESTS & INFORMATION:

Type of Test:

Metallographic examination of the HAZ of three (3) weld cross-section specimens was performed. No evidence of untempered martensite was observed per WMT&R report 2-21455.

WELDER (S) NAME:	Don VanSteen / Neil Whaley	ID/STAMP NO:	V1124 / W9849	
TEST CONDUCTED BY:	Westmoreland Mechanical Testing			
LABORATORY TEST NO:	WMT&R 2-20928			
	its in this record are correct and that the ion XI and Code Case N-638.	test welds were prepared,	welded and tested in a	accordance with the
	Framatome ANP	Da Q	M. Da	02/20/02
_	Company	FRA-ANP Welding Engineer		Date

Revision to Relief Requests 27 and 32 Ambient Temperature Temperbead Weld Repair Technique

> Surry Power Station Units 1 and 2 Virginia Electric and Power Company (Dominion)

Discussion of the Revision to SR-27 and SR-32 for Welding Procedure Acceptance Criteria

The welding procedure qualification record (PQR) complies with Relief Requests SR-27 and SR-32 in each area except one. Paragraph 2.1 (g) of the SR-27 and SR-32 states "the average values of the three HAZ impact tests will be equal to or greater than the average values of the three unaffected base metal tests." At 30°F the average base metal impact test for mils lateral expansion was 50.3 mils compared to 47.7 mils for the HAZ. In lieu of running another PQR, Dominion is modifying the relief requests to use the PQR acceptance criteria in ASME Section III. In this instance, Dominion does not seek additional relief from ASME III, but rather requests use of the provisions of ASME III for acceptance of the welding PQR. Specifically, the applicable portions of ASME III (1989 Edition) found in subsubparagraphs NB-4335.2 (b)(2) and NB-4335.2(b)(3) will be used. The changes to the ASME III wording are summarized below:

- 1. The sentence in subsubparagraph NB-4335.2 (b)(3) which referred to determining RT_{NDT} per NB-2331 and NB-2332 for the base materials to be welded in production was modified to reflect that the nil ductility (RT_{NDT}) temperature of the base materials to be welded was determined using the original construction Code.
- 2. The final three sentences of subsubparagraph NB-4335.2 (b)(3) are deleted since they would not be needed to support utilization of the Framatome PQR (the PQR produced a positive temperature adjustment).

When using the revised relief request wording to evaluate the Framatome PQR the average mils lateral expansion for the HAZ at 35°F equaled that of the average for base metal at 30°F. This yields an RT_{NDT} adjustment temperature of +5°F. In the case of the SPS 1 repairs this will result in the adjusted RT_{NDT} for the affected RV head base metal being increased from +0°F to +5°F. The increased RT_{NDT} for the head will have no impact on the operability of the head because other parts of the head and RV have higher RT_{NDT} values.

In conclusion, revising relief requests SR-27 and SR-32 to include the criteria identified above will continue to assure sound permanent repair welds and an acceptable level of quality and safety.

Revised Wording for Relief Request SR-27 and SR-32

Insert new text after existing paragraph 2.1 (g) on page 20 of 34 in Enclosure 1 of Attachment 1 to the October 30, 2001 letter. (Serial No. 01-637A)

- (h) If the average Charpy V-notch lateral expansion for the heat affected zone of 2.1(g) above is less than that for the unaffected base material, and the qualification test meets the other criteria of acceptance, the Charpy V-notch test results may be recorded on the Welding Procedure Qualification Record. Data shall then be obtained as specified in 2.1(i) below to provide an additive temperature for any base material for which the welding procedure is being qualified, and shall be included. Alternatively, the welding procedure qualification may be rewelded and retested.
- (i) The data for use in 2.1 (h) above shall be developed by performing additional Charpy V-notch tests on either the welding procedure qualification heat affected zone or the unaffected base material, or both, at temperatures which provide lateral expansion values equal to or greater than 35 mils. The average lateral expansion data for the heat affected zone and the unaffected base material shall be plotted on a lateral expansion-temperature chart. The temperatures at which these two sets of data exhibit a common lateral expansion value equal to or greater than 35 mils shall be determined. The determined temperature for the unaffected base material shall be subtracted from the similarly determined temperature for the heat affected zone. This difference shall be used in 2.1 (h) above as the adjustment temperature. The adjustment temperature shall be added to the highest nil ductility temperature (*RT_{NDT}*) temperature established by the tests from the original construction Code for all of the base material to be welded by this procedure in production.