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Investigations 

"* Site geology 
"* Seismieity and seismic geology 
"- Earthquake ground motions 
"* Geotechnical engineering 
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Previous Seismicity and Seismic 
Geology Studies (LTSP) 

"* Detailed geologic mapping, trenching, 
surveying of coastal terraces, and offshore 
geophysics to locate active-faults in region 

"* Detailed analysis of regional seismicity 
"* PG&E seismic network established in 1987 to 

supplement existing USGS regional network 
"* Hosgri fault confirmed to be the controlling 

earthquake source for the DCPP



Ground Motions 

n Compare earthquake source and distance 
and ISFSI site conditions with those at 
DCPP to confirm applicability of DCPP 
ground motions 

n Use DCPP ground motions as basis for 
developing ISFSI design ground motions, 
in accordance with 10 CFR 72.102(f)



Ground Motions 

m For ISFSI components sensitive to 
longer-period motions need to develop 
appropriate response spectra and time 
histories 

u ISFSI long-period (ILP) spectra, taking 
into account the influence of near-fault 
effects recorded in recent large 
earthquakes, such as fault rupture 
directivity and fling 
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Outline 

m Tectonic setting 

m Seismographic station coverage 

M Seismicity patterns and focal mechanisms 

m Conclusions



Tectonic 
setting 

Quatemary 
faults

From LTSP (PG&E, 1988)
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30 120'

From LTSP (PG&E, 1988)

Tectonic 
setting 

Los Osos 
domain

SSalinian Terrane 

SStanley Mountain Terrane 1 
SSSur-Obispo Composite 

-' San Simeon Terrane (McCulloch, 1987) 
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Seismographic station coverage 
1987-present

360

Seismographic stations

A PG&E (Vertical)

)VPG&E (3-component)

A USGS I 
1200

From LTSP (PG&E, 1988)



Magnitude 5 and greater earthquakes since 1830 

19 % ~ 1955 
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Seismicity 
recorded by 
the PG&E 
network 

Oct. 1987 
through 
Jan. 1997

30' 121 30 1200 

From McLaren and Savage (2001), SAR Figure 2.6-40
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Focal 
mechanisms 

Oct. 1987 
through 
Jan. 1997

From McLaren and Savage (2001), SAR Figure 2.6-42
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Conclusions 

* Seismicity patterns and focal mechanisms of the 
1987-1997 earthquakes recorded by the PG&E 
and USGS networks are consistent with the data 
presented in the Final Report of the Long Term 
Seismic Program (PG&E, 1988).  

" Focal mechanisms along the Hosgri fault zone 
show consistent strike-slip motion along northwest 
trending, nearly vertical fault planes.
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Outline 

"* Lessons from recent earthquakes 
*Three large earthquakes in 1999 

"* Application of those lessons to the ground 
motions for the ISFSI



Importance of Recent 
Earthquakes 
"* LTSP Evaluation Earthquake 

"* M=7.2, Dist = 4.5 km 
"* Prior to 1999, few empirical recordings were available 

for this magnitude and distance range 
"* Recent Earthquakes Have Greatly Increased the Empirical 

Data Base of Strong Motion Recordings Close to Large 
Crustal Earthquakes 
* 1999 Kocaeli, Turkey (M=7.4) 
* 1999 Chi-Chi, Taiwan (M=7.6) 
* 1999 Duzce, Turkey (M=7.1) 

"* Resulting in new models for long period ground motion



Strong Motion Recordings Close 
to Large Crustal Earthqualkes 

M">_7.0 Mý_7.0 M_'7.0 

DZ 20km D:_ 10km D• 5 km 

Prior to 9 5 2 
1999 

.1999 6 3. 2 
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1999 Chi- 63 32 14 
Chi 

1999 6 2 1 
Duzce



Evaluation of Ground Motions 
from Recent Earthqualkes 
"* Compare response spectra to predicted 

values from recent attenuation relations 
"* Compute residuals (observed - calculated) 

from Sadigh et al (1997) attenuation relation 
* Mean residual 
* Standard deviation of the residuals 
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Mean Residuals for Short Distances 
(D< 20 km) 
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Ground Motion Variability 
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Lessons for Low and Moderate 
Periods 
m Compared to current attenuation relations 

used in for California earthquakes: 
* Medianground motion lower than 

expected (T< 2 sec) 
* Variability (standard deviation) of the 

ground motion is larger than expected at 
short periods (T<0.2 sec)



Lessons for Long Periods 
(T>2 seconds) 
"* Recordings close to the fault showed strong near

fault effects 
"* Large velocity pulse 
"* Increased long period spectral values 

"* Two Causes of large velocity pulses 
+ Directivity 
* Fling



Example of Near-Fault Effects 
(Kocaeli Earthquake) 
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Causes of Velocity Pulses 

"- Directivity 
* Related to the direction of the rupture front 

+ Forward directivity: rupture toward the site 
(site away from the epicenter) 

+ Backward directivity: rupture away from the 
site (site near the epicenter) 

"* Fling 
* Related to the permanent tectonic deformation 

at the site 
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Velocity Pulses 
"* Forward Directivity 

* Two-sided velocity pulse due to constructive 
interference of SH waves from generated from parts of 
the rupture located between the site and epicenter 

+ Constructive interference occurs if slip direction is 
aligned with the rupture direction 

* Occurs at sites located close to the fault but away 
from the epicenter for strike-slip 

"* Fling 
"* One-sided velocity pulse due to tectonic deformation 
"* Occurs at sites located near the fault rupture 

independent of the epicenter location



Observations of Directivity 
and Fling 

Sense of Slip Directivit Fling 

Strike-Slip Fault Normal Fault Parallel 

Dip-Slip Fault Normal Fault Normal



Directivity Effects 
(Somerville et al, 1997) 

Two Effects on Ground Motion Amplitudes 
n Changes in the average horizontal component as compared 

to standard attenuation relations 
"* Increase in the amplitude of long period ground motion 

for rupture toward the site 
"* Decrease in the amplitude of long period ground 

motion for rupture away from the site
* Systematic differences in the ground 

horizontal components
motions on the two

* Fault normal component is 
component at long periods

larger than the fault parallel



Landers
Earthquake

(1992)

Directivity

34.5 

PIepicenter 

SJoshua Tree 

34" 

0 Km 30 

F- i 
20 sec 

-116.5 -116 

Figure 1. Map of the 1992 Landers earthquake showing the velocity time histories at 
Lucerene (forward directivity) and Joshua Tree (backward directivity).  
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Model for Directivity Effects 

Additional Parameters Required 
m Strike-Slip Fault 

X = fraction of fault rupture between the 
epicenter and the site 

o = angle between the fault strike and the 
epicentral direction from the site



Directivity Parameters for 
Strike-Slip Faults
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Abrahamson (2000) Directivity Factors 
5% damping, Ave Horiz, Strike-Slip 
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Somerville et al (1997) Scale Factors 
for FN/Ave Horiz 
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Kocaeli Rupture and Strong 
Motion Stations
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IZT (near epicenter) 
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ARC (off end of fault, down strike from epicenter) 
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ARC (off end of fault, downstrike from epicenter) 
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YPT (near fault, down strike from epicenter) 
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YPT (near fault, down strike from epicenter)
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Strong 
Motion 
Stations 
from the 
Chi-Chi 24 

Earthqualke 
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Chi-Chi Earthquake 
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Fling Effects 
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Time Domain Fling Model 
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Separation of Fling and Wave Propagation Effects 
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Parameters Required for Fling 

"i Amplitude of Fling 

+ From fault slip and geodetic data 

"i Duration (period) of Fling 

* From strong motion data 

m Arrival Time of Fling 

+ From numerical modeling 

+ Relative timing of fling and S-waves
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Attenuation of Fling Amplitude 
Example from Kocaeli Geodetic Data

o 1999 Kocaeli 

-- model
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Duration of Fling 
Measured.from Strong Motion Recordings 

(SKR from Kocaeli) 
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Fling Period 
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Model for Duration of Fling 
(slope fixed by assuming median slip-velocity is 
independent of magnitude)
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Lessons for Long Period Ground 
Motions 
"* Near fault ground motions can have large 

velocity pulses caused by directivity and/or fling 
"i Forward Directivity Effects 

"* Observed in Kocaeli earthquake 
* Consistent with previously derived models 

"* Not observed in Chi-Chi earthquake due to 
shallow depth of hypocenter 

"* Fling 
* Observed in both Kocaeli and Chi-Chi 
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Lessons for Long Period Ground 
Motions 
m Directivity 

* Current scaling relations for directivity effects are
generally consistent with data from new 

* Directivity effects result in narrow band 
long period spectrum

earthquakes 

peak in the



Lessons for Long Period Ground 
Motions 
"* Fling 

* Commonly used attenuation relations do not include 
fling 

+ Fling effects are not represented in the empirical data 
prior to 1999 

"* A separate ground motion model is needed for the fling, 

*Fling effects scale differently with magnitude and 
distance than ground motion due to wave propagation 

"* Ground motion from fling effects needs to be combined 
with the ground motion due to wave propagation
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DCPP Ground Motions 

"* Design Basis Ground Motions 
"* Design Earthquake (DE) 
"* Double Design Earthquake (DDE) 
"4 Hosgri Earthquake (HE) 

+ Newmark Hosgri 
+ Blume Hosgri 

"* Margin Evaluations 
* Long Term Seismic Program (LTSP)



Response Spectra (5% damping)
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Time Histories for Hosgri Eqk 

E Approach 

" Develop spectrum compatible time histories 

" Use recorded ground motions as the reference 
* Lucerne recording from the 1992 Landers 

earthquake 

M = 7.3, Strike-slip, Dist-= 1 km 

" Satisfy SRP 3.7.1 requirements for time 
histories
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Example Spectrum for HE 
Time History

II T



Accounting for Lessons from 
Recent Earthqual es 
"* No change was made to account for smaller ground 

motions at short-periods from recent earthquakes 

"* An ISFSI Long-Period (ILP) spectrum was developed to 
account for the new information on long period ground 
motions 
* Envelope of HE'and LTSP for T<2 sec 

* Extended to T= 10 seconds using attenuation relations developed 
by PG&E 

* Increased at T> 0.5 sec for directivity effects 

"* Fling effects were added to the time history 

"* ILP ground motions were used for ISFSI Part 72 analyses



ILP Spectra w/o Directivity
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Directivity Parameters

X = 70km/13Okm 
X = 0.64 

0 = 3 degrees



Directivity Effects on the 
Average Horizontal Component
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Combined Directivity Effects 
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ILP Spectra with Directivity



ILP Spectra: Vertical



ILP Spectra (5% damping)

I I



ILP Time Histories 
* 5 Sets of 3-component spectrum-compatible time 

histories were developed (SRP 3.7.1 criteria) 

* Time histories are matched to the ILP spectra 

Set Earthquake Station 

1 1992 Landers Lucerne 

2a 1999 Kocaeli Yarimca 

3 1989 Loma Prieta LGPC 

5 1940 Imperial Valley El Centro 

6 1989 Loma Prieta Saratoga



ectra of ILP (5 sets)



Example of Time Histories 
for ILP (Set 1 FN)
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Fling 

m Use 84th Percentile 
* Two parameters: Displacement at site and Fling period 

* Use 84th percentile displacement 
+ Use fling period to give 84th percentile acceleration 

Fling Displacement 
Median slip on fault = 233 cm 
Median disp at site = 59 cm 
84th percentile disp at site = 115 cm 

Fling Period 
3.2 sec 
(84th percentile acc = 0.072g)



Issues for Combining Fling and 
Vibratory Ground Motion 
m What is the timing between fling and S-waves? 

* For sites close to the fault, fling arrives-near the 
S-wave 

m Polarity of fling and S-waves? 

* For design ground motions, require 
constructive interference of velocity



Example Timing of Fling
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Average FP Spectrum Including Fling 
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Effects of Directivity and Fling



Ground Motion Summary 

"- Used DCPP design basis ground motions 
+HE, DDE spectra 
* HE time histories 

"* Applied new research results for directivity and 
fling 
" ILP spectra and time histories 
* Increase in the long period ground motions 
" Approaches are new and are not standard in 

earthquake engineering practice

III



NRC/PG&E Open Meeting, San Francisco, CA 
Diablo Canyon Independent-Spent Fuel Storage Installation 

Geology 

William Page 

Engineering Geologist 

PG&E Geosciences Department

April 11, 2002



Geology Team 

"* Bill Page, PG&E Geosciences Dept.  

"* Jeff Bachhuber, William Lettis & Assoc.  

"* Charlie Brankman, William Lettis & Assoc.  
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Purpose of Geologic 
Investigations 

m Foundation conditions 
+ Rock characteristics 
* Surficial deposits 

m Slope stability 
*Landslides, debris flows 
* Rock characteristics 

+ Bedding, joints, faults 

* Clay beds
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Bedrock in ISFSI Area
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Friable 
Rock
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Clay beds



Folds



Rose Diagrams for Joints and Faults
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1/16- to 314-inch thick clay beds 

Clay Beds in 
Trench T- 14

1- to 4-inch thick clay beds



Optical televiewer image Core 

Thick Clay Bed in Boring OOBA-1 at 55 Feet 
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Clay bed 01-1 at 130 feet Clay bed 01-G at 19 feet 

Thin Clay Beds in Boring 01-I and 01-G
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Comparison of Bedrock at 
ISFSI and Power Block 

w Same stratigraphic unit 

* Obispo Formation Tofb 

n Same lithology and density 

+ Dolomite and sandstone 

m Similar shear wave velocity
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Geologic Constraints for Modeling 
Potential Large-scale Rock Mass 
Movements 

"i Geometry of clay beds.  

"* Clay strength 

"* Discontinuity of clay beds 

"* Rock mass discontinuities 

"* Groundwater
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Geometry of Clay Beds 

" Change in dip directions across the structural 
transitions from monocline to syncline 
"* Upper part of slope bedding dips out of slope 

*10 to 20 degrees 
"* Lower part of slope bedding dips to the west; 

apparent dip is subhorizontal 

"* These structural changes limit size of potential 
rock mass movements 
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Discontinuity of Clay Beds 

m Clay beds have limited lateral extent 

. Limited correlation between borings and 
outcrops 

* Clay beds more common in dolomite, do not 
extend across facies contacts 

* Analysis indicates beds extend a few tens to a 
few hundreds of feet

* Potential large rock mass 
between clay beds along 
in a "staircase" profile.

movements would step 
joints and through rock
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Clay Strength 

"* Clay bed thickness varies laterally from a 
few inches to less than 1/8-inch thick 

"* Rock to rock contact through the clay bed is 
typical, increasing effective shear strength 

"* Clay strength measured in laboratory used 
i the modeling analysis (presented later)



Joints and Faults



Rock Mass Discontinuities 

m Joints and minor faults disrupt the continuity of 
the clay beds causing large-scale rock mass 
movement to break through rock.  

m Faults and joint sets that are subparallel to the 
potential down slope motion would form the 
.lateral margins of potential rock slides
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Groundwater in ISFSI Area 

i Main water table 200 feet below ISFSI 

* (100 ft elevation) 
* Hence, not an issue for slope stability 

m Temporary perched ground water 

* Top of clay beds in slope above ISFSI 

* Assume clay beds are saturated in large 
rock mass models 

* Assume perched water in cutslope rock 
wedge models 
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Potential Large-scale Rock Mass Model -Intermediate Slope 
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Potential Large-scale Rock Mass Model -Lower Slope 
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Evidence of No Landslides at ISFSI



Evidence of No Landslides at ISFSI 

"* No evidence on pre-1970 air photos 

"* No evidence at the borrow site in studies 
thereof or during excavation 

"* No evidence of any fissures or fissure fills 
in trenches for ISFSI 

"* Topography of ridge 430,000 years old 

"* Slope has been subjected to numerous large 

earthquakes in this time period 
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"Back Calculation" 

m Never the less, assume 3 to 4 inches of 

movement for a "back calculation".  

m Results indicate that undrained clay 

strengths are substantially greater than those 

from the laboratory tests.



Conclusions

m The ISFSI and CTF sites will be founded

on bedrock 

. Sandstone and dolomite

+ Contain zones of friable rock

SThe ISFSI will be founded on bedrock that 

is the same as the DCPP power block.



Conclusions (cont' d) 

"* The slope above the ISFSI site has 

stratigraphy and geometry that allows for 

potential large rock mass movements.  

"* This is extremely unlikely because 

"* no rock slides have occurred in the past 

430,000 years 

" modeling ignores several geologic factors 

that tend to resist down slope movements



Conclusions (cont' d) 

a The transport route has variable foundation 

conditions - rock, dense surficial deposits, 
and engineered fill.  

0 Small debris flows could potentially close 
portions of the transport route during or 
immediately following intense rainstorms.  
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Conclusions (cont' d) 

m The several minor bedrock faults'at the 

ISFSI site are not capable. Therefore, there 

is no potential for surface faulting at the 

ISFSI or CTF .sites.  
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