NRC/PG&E Open Meeting, San Francisco, CA
Diablo Canyon Power Plant
Independent Spent Fuel Storage Installation

m 8:00

8:10
8:40
9:10
11:15
11:30
11:45

’

Introduction

Overview

Seismicity

Ground Motions

Break

Public Comments

Lunch

NRC |
Strickland/Grebel
Cluff

- McLaren

Abrahams-on\

NRC

April 11, 2002




NRC/PG&E Open Meéting, San Francisco, CA
Diablo Canyon Power Plant |
Independent Spent Fuel Storage Installation

m 12:30 Slope-Material Properties White

m 1:15 Slope Stability - Sun

m 2:15 Transport Slope stability White

m 2:45 Break

m 3:00 Cutslope Stability Bachhuber
m 3:45 Slope Stabil_ity Summary - Team

m 4:45 " Public Comment ~ NRC

m 5:00 Adjourn |

April 11, 2002

A
A\

(tl.."".‘. T



NRC/PG&E Open Meeting, San Francisco, CA
Diablo Canyon Independent Spent Fuel Storage Installation

Geology, Ground Motions,
and Geotechnical Studies

- Lloyd Cluff
Director
PG&E Geosciences Department

April 11,2002




Project Team

m PG&E
Lloyd S. Cluff, Project Management.
William D. Page, Engineering Geology
Marcia McLaren, Seismology
Norman A. Abrahamson, Ground Motions
Robert K. White, Geotechnical Engineering
Joseph I. Sun, Geotechnical Engineering |
William U. Savage, Seismology

m Consultants |
William R. Lettis, Consultant, Geology
Jeff Bachhuber, Consultant, Geology |
Faiz Makdisi, Consultant, Geotechnical Engineering




Technical Review Board

m Clarence Allen - Geology/Tectonics
u Robert Kennedy - Structural Engineering
® Bruce Bolt - Seismology/Ground Motions

m 1. M. Idriss - Geotechnical Engineering/
Ground Motions |




 Peer Reviewers and
Technical Specialists

Skip Hendron — Geotechnical
Engineering
Paul Somerville — Seismology

Dale Marcum — Geotechnical
Engineering




S

e e % o
A b 1
N .

ﬁ%ﬂz.wr s;. s

R




Y3 B
SR Ey

e
Bl L,

At
2e

Sledii




Investigations

m Site geology

m Seismicity and seismic geology
m Earthquake ground motions

m Geotechnical engineering




Previous Seismicity and Seismic
Geology Studies (LTSP)

" Detailed geologic mapping, trenching, -
surveying of coastal terraces, and offshore
geophysics to locate active faults in region

" Detailed analysis of regional seismicity

" PG&E seismic network established in 1987 to
supplement existing USGS regional network

- ® Hosgri fault confirmed to be the controlling

€ar

thquake source for the DCPP




- Ground Motions

m Compare earthquake source and distance
and ISESI site conditions with those at
DCPP to confirm applicability of DCPP
ground motions

m Use DCPP ground motions as basis for
~ developing ISFSI design ground motions,
in accordance with 10 CFR 72.102(f)




Ground Motions

m For ISFSI components sensitive to
longer-period motions need to develop

appropriate response spectra and time
histories ~

m ISFSI long-period (ILP) spectra, taking
into account the influence of near-fault
effects recorded in recent large
earthquakes, such as fault rupture
directivity and fling
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Outline

 m Tectonic setting

Seismographic station coverage
m Seismicity patterns and focal mechanisms
 w Conclusions '




Tectonic
setting

Quaternary
faults

From LTSP (PG&E, 1988)
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Seismographic station coverage
1987-present
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Magnitude 5 and greater earthquakes since 1830

| EXPLANATION

(O Event location that is
poorly constrained

Event location that is

within 20 km and
generally within 10 km

MAGNITUDES

From McLaren and Savage (2001), SAR Figure 2.6-39
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Focal
mechanisms

Magnitude 3
and greater

earthquakes,
1927-1986

1
From McLaren and Savage (2001)
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Conclusions

" Seismicity patterns and focal mechanisms of the
1987-1997 earthquakes recorded by the PG&E
and USGS networks are consistent with the data
presented in the Final Report of the Long Term
Seismic Program (PG&E, 1988).

® Focal mechanisms aldng the Hosgri fault zone
show consistent strike-slip motion along northwest
trending, nearly vertical fault planes.
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A Outline

m Lessons from recent earthquakes
e Three large earthquakes in 1999

m Application of those lessons to the ground
~ motions for the ISFSI |




Importance of Recent
Earthquakes

- m LTSP Evaluation Earthquake
¢ M=7.2, Dist=4.5 km

o Prior to 1999, few empirical recordings were available
for this magnitude and distance range

m Recent Earthquakes Have Greatly Increased the Empirical
- Data Base of Strong Motion Recordings Close to Large
Crustal Earthquakes

¢ 1999 Kocaeli, Turkey (M=7.4)
¢ 1999 Chi-Chi, Taiwan (M=7.6)
¢ 1999 Duzce, Turkey (M=7.1) |
m Resulting in new models for long period ground motion




Strong Motion Recordings Close
to Large Crustal Earthquakes

OM270 | M270 | M27.0
| D<20km | D<L10km | D<£5km

Prior to 9 | 5 2 »

1999 | |

1999 6 | 3. 2
Kocaeli |

1999 Chi- 63 | 32 14

Chi | | -

1999 6 2 1
Duzce |




Evaluation of Ground Motions
from Recent Earthquakes

Compare response spectra to predicted
values from recent attenuation relations

m Compute residuals (observed - calculated)
from Sadigh et al (1997) attenuation relation

¢ Mean residual
¢ Standard deviation of the residuals




Mean Residuals for Short Distances
‘ | (D< 20 km)
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Ground Motion Variability

(D<20 km)
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Lessons for Low and Moderate
Periods "

m Compared to current attenuation relations
used in for California earthquakes:
~ #Median ground motion lower than
expected (T< 2 sec)

¢ Variability (standard deviation)' of the
ground motion is larger than expected at
short periods (T<0.2 sec)




Lessons for Long Periods
(T>2 seconds)

m Recordings close to the fault showed strong near-
fault effects

+ Large velocity pulse

¢ Increased long period spectral values
m Two Causes of large velocity pulses
¢ Directivity - |
¢ Fling |




Example of Near-Fault Effects

(Kocaeli Earthquake)
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Causes of Velocity Pulses

m Directivity |
« Related to the direction of the rupture front
- e Forward directivity: rupture toward the site
(site away from the epicenter)

¢ Backward directivity: rupture away from the
site (site near the epicenter)

m Fling

¢ Related to the permanent tectonic deformation
at the site |




Velocity Pulses

m Forward Directivity
+ Two-sided velocity pulse due to constructive

interference of SH waves from generated from parts of
the rupture located between the site and epicenter

+ Constructive interference occurs if slip direction is
aligned with the rupture direction

¢+ Occurs at sites located close to the fault but away
from the epicenter for strike-slip

m Fling
¢ One-sided Velomty pulse due to tectonic deformation

¢ Occurs at sites located near the fault rupture
independent of the epicenter location




~ Observations of Directivity

and Fling
Sense of Slip Directivity Fling
Strike-Slip | Fault Normal Fault ParalleI
Fault Normal Fault Normal

Dip-Slip




Directivity Effects
(Somerville et al, 1997)

Two Effects on Ground Motion Amplitudes

m Changes in the average horizontal component as compared
to standard attenuation relations

¢ Increase in the amplitude of long period ground motion
for rupture toward the site |

¢ Decrease in the amplitude of long period ground
motion for rupture away from the site

m Systematic differences in the ground motions on the two
horizontal components

¢ Fault normal component is larger than the fault parallel
component at long periods




Landers
Karthquake
(1992)

Directivity

34

Figure 1. | Map of the 1992 Landers earthquake showing the velocity time histories at
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Model for Directivity Effects

Additional Parameters Required
m Strike-Slip Fault |

X = fraction of fault rupture between the
epicenter and the site

0 = angle between the fault strike and the
epicentral direction from the site




- Dairectivity Parameters for
Strike-Slip Faults
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Somerville et al (1997) Scale Factors

for FN/Ave Horiz
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Kocaeli Rupture and Strong
Motion Stations

41




IZT (near epicenter)
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IZT (near epicenter)
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ARC (off end of fault, down strike from epicenter)
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ARC (off end of fault, down strike from epicenter)
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 YPT (near fault, down strike from epicenter)
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YPT (neaf fault, down strike from epicenter)
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Strong
Motion
Stations
from the
Chi-Chi
Earthquake|




Chi-Chi Earthquake
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Fling Effects
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‘Time Domain Fling Model
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Separation of Fling and Wave Propagation Effects
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Parameters Required for Fling

n Amphtude of Flmg
¢ From fault slip and geodetlc data
m Duration (perlod) of Fling
- e From strong motion data
m Arrival Time of Fling
¢ From numerical modeling
o+ Relative timing of fling and S-waves
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Attenuation of Fling Amplitude

Example from Kocaeli Geodetic Data
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A Duration of Fling

Measured from Strong Motion Recordings
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Fling Period
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Model for Duration of Fling
(slope fixed by assuming median slip-velocity is
independent of magnitude)
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- Lessons for Long Period Ground
‘Motions '

Near fault ground motions can have large
velocity pulses caused by directivity and/or fling

- m Forward Directivity Effects
¢ Observed in Kocaeli earthquake
+ Consistent with previously derived models

¢ Not observed in Chi-Chi earthquake due to
~ shallow depth of hypocenter

m Fling
o Observed in both Kocaeli and Chi-Chi




Lessons for Long Period Ground
Motions
m Directivity

+ Current scaling relations for directivity effects are
generally consistent with data from new earthquakes

+ Directivity effects result in narrow band peak in the
long period spectrum




Lessons for Long Period Ground

Motions

u Fling
¢ Commonly used attenuation relations do not include
fling
+ Fling effects are not represented in the empirical data
prior to 1999
m A separate ground motion model is needed for the fling,

¢ Fling effects scale differently with magnitude and
distance than ground motion due to wave propagation

m Ground motion from fling effects needs to be combined
with the ground motion due to wave propagation
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DCPP Ground Motions

m Design Basis Ground Motions
¢ Design Earthquake (DE)
+ Double Design Earthquake (DDE)
¢ Hosgri Earthquake (HE)
¢ Newmark Hosgri
¢ Blume Hosgri
m Margin Evaluations
& Long Term Seismic Program (LTSP)




Response Spectra (5% damping)

Blume Hosgri

Newmark Hosgri
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Time Histories for Hosgri Eqk

~m Approach
o Develop spectrum compatible time histories

¢ Use recorded ground motions as the reference

¢ Lucerne recording from the 1992 Landers
earthquake -

M= 7_.3,»Strike-slip, Dist=1km

¢ Satisfy SRP 3.7.1 requirements for time
histories )







Example Spectrum for HE

Time History




Accounting for Lessons from
Recent Earthquakes '

No change was made to account for smaller ground
motions at short-periods from recent earthquakes

An ISFSI Long-Period (ILP) spectrum was developed to
account for the new information on long period ground
motions

+ Envelope of HE and LTSP for T<2 sec

+ Extended to T=10 seconds using attenuation relatlons developed
by PG&E

+ Increased at T> 0.5 sec for directivity effects
Fling effects were added to the time history
ILP ground motions were used for ISFSI Part 72 analyses




ILP Spectra w/o Directivi
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Directivity Effects on the

Average Horizontal Component

emmmm  Scale factor from Model

Extrapolation
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ombined Directivity Effects

esmm= Total FN directivity factor (from model)

e Total FP directivity factor
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ILP Spectra: Vertical

Vertical Envelope
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ILP Spectra (5% damping)
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ILP Time Histories

m 5 Sets of 3-component spectrum-compatible time
histories were developed (SRP 3.7.1 criteria)

m Time histories are matched to the ILP spectra

Set Earthquake Station
1 1992 Landers Lucerne
2a 1999 Kocaeli Yarimca
3 1989 Loma Prieta | "LGPC
5 1940 Imperial Valley| El Centro
6 1989 Loma Prieta Saratoga
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for ILP (Set 1 FN)

Example of Time Histories
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Fling

m Use 84th Percentile |
& Two parameters: Displacement at site and Fling period
¢+ Use 84th percentile displacement
+ Use fling period to give 84th percentile acceleration
- Fling Displacement
Median slip on fault =233 cm
Median disp at site = 59 cm
84th percentile disp at site =115 cm
Fling Period |
3.2 sec
(84th percentile acc = 0.072g)




Issues for Combining Fling and
Vibratory Ground Motion

m What is the timing between fling and S-waves?

¢ For sites close to the fault, fling arrives near the
S-wave

m Polarity of fling and S-waves?

¢ For design ground motions, require
constructive interference of velocity




Example Timing of Fling
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== Average FP with Fling

Average FP Spectrum Including Fling




Effects of Directivity and Fling

=== [N Directivity Effects

== [P Directivity Effects
— FP Directivity and Fling Effects %~
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Ground Motion Summary

- Used DCPP design ba31s ground motlons
& HE, DDE spectra
+ HE time histories

m Applied new research results for directivity and
fling ~*

o ILP spectra and time histories
‘& Increase in the long period ground motions

¢ Approaches are new and are not standard in
- earthquake engineering practice |




NRC/PG&E '()pen Meeting, San Francisco, CA
- Diablo Canyon Independent Spent Fuel Storage Installation

Geology
- William Page

Engineering Geologist
PG&E Geosciences Department

April 11, 2002




Geology Team

m Bill Page, PG&E Geosciences Dept.

m Jeff Bachhuber, William Lettis & Assoc.

'm Charlie Brankman, William Lettis & Assoc.
m Bill Lettis, William Lettis & Assoc.




Purpose of Geologic
Investigations '

m Foundation conditions
+ Rock characteristics
« Surficial deposits
m Slope stability
o Landslides, debris flows
‘& Rock characteristics
¢+ Bedding, joints, faults
¢ Clay beds
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Rose Diagrams for Joints and Faults
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Explanation

73 Friable Sandstone and
::ii} / or Dolomite

w2 Friable rock within
kol five feet
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Comparison of Bedrock at
ISFSI and Power Block

m Same stratigraphic unit
¢ Obispo Formation Tofy,
m Same lithology and density
¢ Dolomite and sandstone
Similar shear wave velocity
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Geologic Constraints for Modeling
Potential Large-scale Rock Mass
Movements

m Geometry of clay beds

m Clay strength

m Discontinuity of clay beds
Rock mass discontinuities
Groundwater
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Geometry of Clay Beds

m Change in dip directions across the structural -
transitions from monocline to syncline

¢ Upper part of slope bedding dips out of slope

¢ 10 to 20 degrees

+ Lower part of slope bedding dips to the west;
apparent dip is subhorizontal

m These structural changes limit size of potential
rock mass movements
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Discontinuity of Clay Beds

m Clay beds have limited lateral extent
¢ Limited correlation between borings and
outcrops " | |
o+ Clay beds more common in dolomite, do not
extend across facies contacts

¢ Analysis indicates beds extend a few tens to a
few hundreds of feet |

- m Potential large rock mass movements would step
between clay beds along joints and through rock
in a “staircase” profile.
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- Clay Strength

m Clay bed thickness varies laterally from a '
few inches to less than 1/8-inch thick

m Rock to rock contact through the clay bed 1s
typical, increasing effective shear strength

m Clay strength measured in laboratory used
in the modeling analysis (presented later)
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- Rock Mass Discontinuities

m Joints and minor faults disrupt the continuity of -
~ the clay beds causing large-scale rock mass
movement to break through rock.

m Faults and joint sets that are subparallel to the
potential down slope motion would form the
Tateral margins of potential rock slides
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Groundwater In ISFSI Area

m Main water table 200 feet below ISFSI

¢

(100 ft elevation)

‘e Hence, not an issue for slope stability

m  Temporary perched ground water

4

. .

4

Top of clay beds in slope above ISFSI

Assume clay beds are saturated in large
rock mass models

Assume perched water in cutslope rock
wedge models




Potential Large-scale Rock Mass Model —Upper Slope
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Potential Large-scale Rock Mass Model —Intermediate Slope
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Evidence of No Landslides at ISFSI

m No evidence on pre-1970 air photos

m No evidence at the borrow site in studies
thereof or during excavation

= No evidence of any fissures or fissure fills
~ in trenches for ISFSI

m Topography of ridge 430,000 years old

Slope has been subjected to numerous large
earthquakes in this time period




“Back Calculation”

m Never the less, assume 3 to 4 inches of -
movement for a “back calculation™.

m Results indicate that undrained clay
strengths are substantially greater than those

~ from the laboratory tests.




Conclusions

m The ISFSI and CTF sites will Vbe founded
on bedrock

+ Sandstone and dolomite
~ « Contain zones of friable rock

m The ISFSI will be founded on bedrock that '
- is the same as the DCPP power block.




Conclusions (cont’d)

m The slope above the ISFSI site has
~ stratigraphy and geometry that allows for
potential large rock mass movements.
m This is extremely unlikely because
+ no rock slides have occurred in the past
430,000 years =

+ modeling ignores several geologic factors
that tend to resist down slope movements




Conclusions (cont’d)

m The transport route has variable foundation
conditions — rock, dense surﬁcnal deposits,

and engineered ﬁll

m Small debris flows could potentlally close
portions of the transport route during or
immediately following intense rainstorms.




Conclusions (cont’d)

m The seVeral minor bedrock faults at the
ISFSI site are not capable. Therefore, there
is no potential for surface faulting at the

ISFSI or CTF sites.




