Duke Energy Corporation

Duke Energy

H. B. Barron Vice President

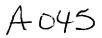
April 2, 2002

Document Control Desk U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Re: McGuire Nuclear Station Unit 1 Docket No. 50-369 McGuire Nuclear Station Unit 2 Docket No. 50-370 Changes to Emergency Plan Implementing Procedures

Attached to this letter are a revised Emergency Plan Implementing Procedure (EPIP) Index, a notice to delete three (3) Emergency Plan Implementing Procedures, and a notice of revision to one (1) Emergency Plan Implementing Procedure. These procedure deletions and revision were evaluated pursuant to the requirements of 10 CFR 50.54 (q). These changes do not constitute a reduction in the effectiveness of the emergency plan and the plan continues to meet the requirements of 10 CFR 50.47 (b) and 10 CFR 50 Appendix E. Duke implemented these changes on March 13, 2002. A copy of these changes is also being sent to the NRC Office of Nuclear Material Safety and Safeguards as per 10 CFR 72.44 (f). Revision bars in the procedure index indicate the procedure deletions. The following procedure index changes, deletions, and revision have been implemented:

EPIP Index Page 1 Dated 3/13/2002
EPIP Index Page 2 Dated 3/13/2002
EPIP Index Page 3 Dated 3/13/2002
DELETE the following three procedures:
OP/0/B/6200/090 Dated 3/13/2002
HP/1/B/1009/015 Dated 3/13/2002
HP/2/B/1009/015 Dated 3/13/2002
REVISION to the following procedure:
RP/0/A/5700/019 Dated 3/13/2002
(revision 04)


There are no new regulatory commitments in this document. Duke is also supplying two copies of this submittal to the Regional Administrator of Region II. Questions on this document should be directed to Kevin Murray at (704) 875-4672.

Very truly yours,

1AR Roun

H. B. Barron

Attachments

McGuire Nuclear Station 12700 Hagers Ferry Road Huntersville, NC 28078-9340 (704) 875-4800 OFFICE (704) 875-4809 FAX U.S. Nuclear Regulatory Commission April 2, 2002 Page 2

xc: (w/attachment) Mr. Luis Reyes, Regional Administrator U.S. Nuclear Regulatory Commission Region II 61 Forsyth St., SW, Suite 23T85 Atlanta, Georgia 30303

(w/attachment)
Mr. Martin J. Virgilio, Director
Office of Nuclear Material Safety and Safeguards
Mail Stop T-8A23
Washington, D.C. 20555-0001

R. E. Martin, USNRC U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, D.C. 20555

(w/o attachment) NRC Resident Inspector McGuire Nuclear Station

E.M. Kuhr (EC050)

M.T. Cash, Manager NRIA (EC050)

Electronic Licensing Library (EC050)

EP File 111

DUKE

McGUIRE NUCLEAR SITE

EMERGENCY PLAN IMPLEMENTING PROCEDURES

APPROVED: Myan Kolan SAFETY ASSURANCE MANAGER

DATE APPROVED 3/14/02

EPIP	Index	Page	1	Dated 3/13/2002
EPIP	Index	Page	2	Dated 3/13/2002
EPIP	Index	Page	3	Dated 3/13/2002

DELETE the following three procedures:

OP/0/B/6200/090	Dated 3/13/2002
HP/1/B/1009/015	Dated 3/13/2002
HP/2/B/1009/015	Dated 3/13/2002

REVISION to the following procedure:

RP/0/A/5700/019, Dated 3/13/2002 (Revision 04)

EMERGENCY PLAN IMPLEMENTING PROCEDURES INDEX

PROCEDURE #	TITLE	<u>REVISION</u> <u>NUMBER</u>
RP/0/A/5700/000	Classification of Emergency	Rev. 008
RP/0/A/5700/001	Notification of Unusual Event	Rev. 016
RP/0/A/5700/002	Alert	Rev. 016
RP/0/A/5700/003	Site Area Emergency	Rev. 016
RP/0/A/5700/004	General Emergency	Rev. 016
RP/0/A/5700/05	Care and Transportation of Contaminated Injured Individual(s) From Site to Offsite Medical Facility	DELETE
RP/0/A/5700/006	Natural Disasters	Rev. 009
RP/0/A/5700/007	Earthquake	Rev. 007
RP/0/A/5700/008	Release of Toxic or Flammable Gases	Rev. 004
RP/0/A/5700/009	Collisions/Explosions	Rev. 001
RP/0/A/5700/010	NRC Immediate Notification Requirements	Rev. 013
RP/0/A/5700/011	Conducting a Site Assembly, Site Evacuation or Containment Evacuation	Rev. 005
RP/0/A/5700/012	Activation of the Technical Support Center (TSC)	Rev. 019
RP/0/A/5700/013	Activation of the Emergency Operations Facility (EOF)	DELETE
RP/0/A/5700/14	Emergency Telephone Directory	DELETE
RP/0/A/5700/015	Notifications to the State and Counties from the EOF	DELETE
RP/0/A/5700/16	EOF Commodities and Facilities Procedure	DELETE
RP/0/A/5700/17	Emergency Data Transmittal System Access	DELETE
RP/0/A/5700/018	Notifications to the State and Counties from the TSC	Rev. 010
RP/0/A/5700/019	Core Damage Assessment	Rev. 004
RP/0/A/5700/020	Activation of the Operations Support Center (OSC)	Rev. 011
RP/0/A/5700/21	EOF Access Control	DELETE
RP/0/A/5700/022	Spill Response Procedure	Rev. 009
RP/0/A/5700/024	Recovery and Reentry Procedure	Rev. 002
RP/0/A/5700/026	Operations/Engineering Technical Evaluations in the Technical Support Center (TSC)	Rev. 002
RP/0/B/5700/023	Community Relations Emergency Response Plan	Rev. 002
OP/0/B/6200/090	PALSS Operation for Accident Sampling	DELETED

EMERGENCY PLAN IMPLEMENTING PROCEDURES INDEX

PROCEDURE #	TITLE	<u>REVISION</u> <u>NUMBER</u>
HP/0/B/1009/002	Alternative Method for Determining Dose Rate Within the Reactor Building	Rev. 002
HP/0/B/1009/003	Recovery Plan	Rev. 003
HP/0/B/1009/05	Initial Evaluation of Protective Action Guides Due to Abnormal Plant Conditions	DELETED
HP/0/B/1009/006	Procedure for Quantifying High Level Radioactivity Releases During Accident Conditions	Rev. 005
HP/0/B/1009/010	Releases of Radioactive Effluents Exceeding Selected Licensee Commitments	Rev. 006
HP/1/B/1009/015	Unit 1 Nuclear Post-Accident Containment Air Sampling System Operating Procedure	DELETED
HP/2/B/1009/015	Unit 2 Nuclear Post-Accident Containment Air Sampling System Operating Procedure	DELETED
HP/0/B/1009/016	Distribution of Potassium Iodide Tablets in the Event of a Radioiodine Release	Rev. 002
HP/0/B/1009/020	Manual Procedure for Offsite Dose Projections	DELETED
HP/0/B/1009/021	Estimating Food Chain Doses Under Post-Accident Conditions	Rev. 001
HP/0/B/1009/022	Accident and Emergency Response	Rev. 003
HP/0/B/1009/023	Environmental Monitoring for Emergency Conditions	Rev. 004
HP/0/B/1009/024	Personnel Monitoring for Emergency Conditions	Rev. 001
HP/0/B/1009/029	Initial Response On-Shift Dose Assessment	Rev. 005
SH/0/B/2005/001	Emergency Response Offsite Dose Projections	Rev. 001
SH/0/B/2005/002	Protocol for the Field Monitoring Coordinator During Emergency Conditions	Rev. 002
SR/0/B/2000/01	Standard Procedure for Public Affairs Response to the Emergency Operations Facility	Rev. 003
SR/0/B/2000/002	Standard Procedure for EOF Commodities and Facilities	Rev. 002
SR/0/B/2000/003	Activation of the Emergency Operations Facility	Rev. 008
SR/0/B/2000/004	Notification to States and Counties from the Emergency Operations Facility	Rev. 004

EMERGENCY PLAN IMPLEMENTING PROCEDURES INDEX

PROCEDURE #	TITLE		<u>REVISION</u> NUMBER
McGuire Site Directive 280	Site Assembly. Evacuation	Accountability and Evacuation/Containment	DELETED
EP Group Manual	Section 1.1	Emergency Organization	Rev. 017
MNS RP Manual:	Section 18.1	Accident and Emergency Response	DELETED
	Section 18.2	Environmental Monitoring for Emergency Conditions	DELETED
	Section 18.3	Personnel Monitoring for Emergency Conditions	DELETED
	Section 18.4	Planned Emergency Exposure	DELETED
PT/0/A/4600/088	Functional Ch	eck of Emergency Vehicle and Equipment	Rev. 007

.

(R04-01)	Duke Power Compa PROCEDURE PROCESS	•	(1) ID No. F Revision No.		/5700/019
PREPARATION (2) Station	MCGUIRE NUCLEAR STATION				
(3) Procedure Titl	e Core Damage Assessment				
	<u></u>				
(4) Prepared By	Thomas M. Luniein	shi		Date	03/01/02
(5) Requires NSD	228 Applicability Determination?				
□ No (Revi	v procedure or revision with major changes) ision with minor changes) ncorporate previously approved changes)				
(6) Reviewed By	Juin Moxen	_ (QR)		Date	307/02
Cross-Discipli	inary Review By	_ (QR)		Date	3/07/02
Reactivity Mg	mt. Review By	_ (QR)	NA ZI	Date	3/07/02
Mgmt. Involve	ement Review By	(Ops Supt.)	NA CA	Date	3/07/02
(7) Additional Re Reviewed By	() o h			Date	3/12/0Z
Reviewed By			- <u>-</u>	. Date	
(8) Temporary Aj By	pproval (<i>if necessary</i>)		(OSM/QR)	Date	
Ву			(QR)	Date	
(9) Approved By	Sc. Ballavet			Date	3-13-02
	E (Compare with Control Copy every 14 calenda	ar days while v	vork is being pe	•	·····
(10)Compared with	-			Date	
Compared with	th Control Copy			Date	
Compared with	th Control Copy			Date	
(11) Date(s) Perform	rmed				
Work Order 1	Number (WO#)				
COMPLETION					
()	ompletion Verification				
	NA Check lists and/or blanks initialed, signed, date NA Required enclosures attached?	ed, or filled in N	VA, as appropria	te?	

- Yes I NA Data sheets attached, completed, dated, and signed?
 Yes NA Charts, graphs, etc. attached dated, identified, and marked?
- □ Yes □ NA Procedure requirements met?

 Verified By
 Date

 (13)Procedure Completion Approved
 Date

(14) Remarks (Attach additional pages, if necessary)

Duke Power Company McGuire Nuclear Station	Procedure No. RP/ 0 /A/5700/019
	Revision No.
Core Damage Assessment	004
Multiple Use	Electronic Reference No.
	MC0048MM

Core Damage Assessment

1. Symptoms

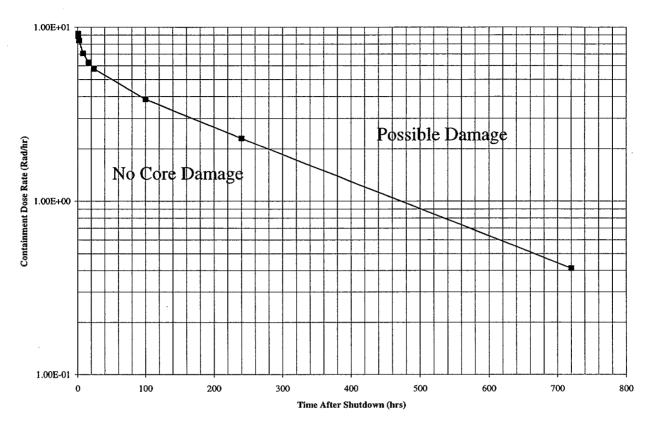
- **NOTE:** This procedure will normally be performed by Nuclear Engineers while in the Technical Support Center (TSC) to provide a means of determining the status of the core based on various parameters.
 - 1.1 1(2) EMF 51, "Containment Radiation Monitor" in alarm.
 - 1.2 High Core Exit Thermocouple (CET) readings.
 - 1.3 Low Reactor Vessel Level Indication System (RVLIS) levels.
 - 1.4 Any condition in which failed fuel is suspected.

2. Immediate Actions

None

3. Subsequent Actions

NOTE:	1.	Perform each of the following sections as data is available.
	2.	Test Coordinator may elect to perform some or all of the following sections in the order that best suits the situation.
	3.	Since the plant status may change during the performance of this procedure it may be desirable to repeat certain parts of this procedure.
	4.	Results of the various instrument readings are estimates. The results from different methods may disagree.
	5.	Some of the key OAC points are listed in Enclosure 4.5.


3.1 Initial Estimate of Core Conditions

3.1.1 Figure 1 and Figure 2 (and associated tables).

Figure 1 Containment Radiation Level vs. Time for RCS Release

RP/**0**/A/5700/019

Page 3 of 11

Figure 1	Containment Radiation Level vs. Time for RCS Release		
Time		Containment Dose Rate	
Shutdov		(Rad/hr)	
0.	5	9.1808	
1		8.8621	
2		8.3792	
8		7.0574	
16		6.2611	
24		5.7672	
100		3.8545	
24	0	2.3002	
720		0.41169	

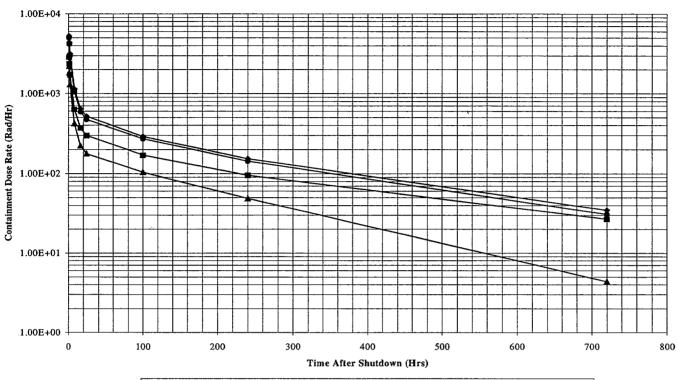
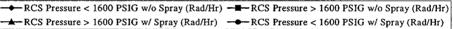



Figure 2 Containment Radiation Level vs. Time for 1% Fuel Overtemperature Release

Figure 2	Containment Radiation Level vs. Time for 1% Fuel Overtemperature Release				
Time After Shutdown (hrs)	RCS Pressure < 1600 PSIG w/o Spray (Rad/Hr)	RCS Pressure > 1600 PSIG w/o Spray (Rad/Hr)	RCS Pressure > 1600 PSIG w/ Spray (Rad/Hr)	RCS Pressure < 1600 PSIG w/ Spray (Rad/Hr)	
0.5	5.30E+03	2.86E+03	2.19E+03	5.03E+03	
1	4.39E+03	2.37E+03	1.82E+03	4.17E+03	
2	3.16E+03	1.71E+03	1.29E+03	2.99E+03	
8	1.13E+03	6.33E+02	4.20E+02	1.05E+03	
16	6.45E+02	3.71E+02	2.21E+02	5.88E+02	
24	5.15E+02	2.98E+02	1.78E+02	4.72E+02	
100	2.90E+02	1.70E+02	1.04E+02	2.73E+02	
240	1.54E+02	9.56E+01	4.88E+01	1.43E+02	
720	3.49E+01	2.68E+01	4.37E+00	3.08E+01	

RP/**0**/A/5700/019

Page 5 of 11

3.1.2 Complete the following table based on Current Plant Data (OAC PID's can be found on Enclosure 4.5).

Time of data, (mm/dd/yy hh:mm)	
Time of Reactor Shutdown, T ₀	Hours
Core Exit Thermocouples (CET)	Deg F
RVLIS Lower Range	%
Containment Radiation Monitors	R/hr
1(2)EMF 51A or B	
OAC PID A0829 or A0835	

_____3.1.3 Use the above data in 3.1.2 the figures in 3.1.1 to determine the condition that best represents the core.

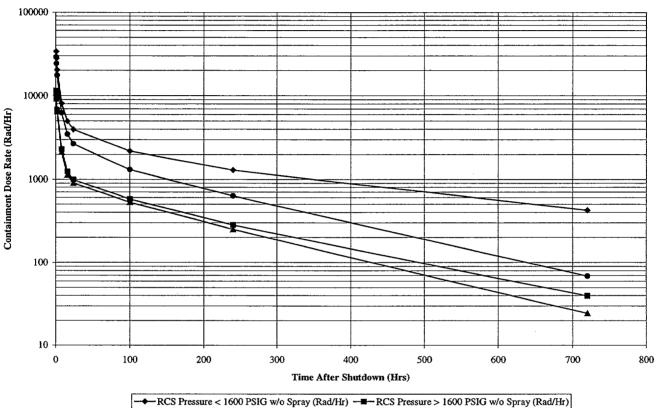
	No Core Damage	Cladding Damage	Fuel Overtemp Damage
CET °F	< 700	< 2000	>1400
RVLIS (%)	> 55	< 55 to 40	< 40
EMF (R/hr)	< Figure 1	< Figure 2	> Figure 2

Condition Best Representing Core	Date/Time

_____3.1.4 **IF** 'NO CORE DAMAGE' is found, exit this procedure and continue to monitor plant conditions. If conditions warrant, re-run this procedure at any time.

IF 'CLADDING DAMAGE' is found, proceed to Step 3.2.

IF 'FUEL OVERTEMPERATURE DAMAGE' is found, proceed to Step 3.3.


3.2 Clad Damage Assessment

- **NOTE:** EMF 51 may not be useful to assess core damage for containment bypass sequences (e.g., S/G tube ruptures).
 - _____3.2.1 Record 1(2)EMF 51 reading:

_____ R/hr at _____ hours after shutdown.

RCS Pressure: _____ psig

3.2.2 Figure 3 (and associated table)

Figure 3 Containment Radiation Level vs. Time for 100% Clad Damage Release

→ RCS Pressure < 1600 PSIG w/o Spray (Rad/Hr) → RCS Pressure > 1600 PSIG w/o Spray (Rad/Hr) → RCS Pressure > 1600 PSIG w/ Spray (Rad/Hr) → RCS Pressure < 1600 PSIG w/ Spray (Rad/Hr)

Figure 3	Containment Radiation Level vs. Time for 100% Clad Damage							
	Release							
Time After	RCS Pressure	RCS Pressure	RCS Pressure	RCS Pressure				
Shutdown	< 1600 PSIG	> 1600 PSIG	> 1600 PSIG	< 1600 PSIG				
(hrs)	w/o Spray	w/o Spray	w/ Spray	w/ Spray				
(115)	(Rad/Hr)	(Rad/Hr)	(Rad/Hr)	(Rad/Hr)				
0.5	3.37E+04	1.15E+04	1.10E+04	2.91E+04				
1	2.78E+04	9.53E+03	9.14E+03	2.42E+04				
2	2.03E+04	6.80E+03	6.51E+03	1.75E+04				
8	8.09E+03	2.28E+03	2.13E+03	6.26E+03				
16	4.96E+03	1.23E+03	1.12E+03	3.48E+03				
24	3.98E+03	9.90E+02	9.02E+02	2.68E+03				
100	2.19E+03	5.75E+02	5.28E+02	1.30E+03				
240	1.29E+03	2.81E+02	2.49E+02	6.28E+02				
720	4.22E+02	3.96E+01	2.43E+01	6.88E+01				

- 1

RP/**0**/A/5700/019 Page 7 of 11

_____ 3.2.3 Using RCS Pressure from Step 3.2.1 and Figure 3 (and associated table), find the "Predicted Containment Radiation Level at 100% Clad Damage"

Predicted Containment Radiation Level at 100% Clad Damage:

 $\label{eq:clad Damage} = \frac{\text{Current Containment Radiation Level}}{\text{Predicted Containment Radiation Level for 100% Clad Damage}} \\ _3.2.4 \\ \end{tabular} & \end{tabular} &$

Number of CET's > 1200°F from Enclosure 4.1: _____ CET's

Number of Operable CET's from Enclosure 4.1: _____ CET's

% Clad Damage =
$$\left[\frac{\text{Number of CET's > 1200°F}}{\text{Total Operable CET's}}\right] \times 100$$

% Clad Damage = $\longrightarrow 100 =$ %

- 3.2.6 Record Results From Steps 3.2.4 and 3.2.5 onto Enclosure 4.4.
 - 3.2.7 Confirm Reasonableness of Clad Damage Estimates using Expected Responses below. Record any Comments on Enclosure 4.4.

- A. Expected Responses
- RVLIS Less Than 53.5% and Greater Than 39%
- Hot Leg RTD Greater Than T_{sat} and Less Than 650°F
- Source Range Monitor Greater Than 1e+5 cps
- Difference in clad damage estimates from Containment Radiation Monitors (CRM) and CET's less than 50%, using:

$$ABS \left[\frac{\%CladDamage_{CRM} - \%CladDamage_{CET}}{\%CladDamage_{CRM}} \right]$$

B. If the expected response is not obtained, determine if the deviation can be explained from the accident progression

•Injection of water to the RCS

•Bleed Paths from the RCS

•Direct radiation to the containment radiation monitors

or

If the expected response is not obtained, determine if the deviation can be explained from conservatism in the predictive model

- •fuel burnup
- •fission product retention in the RCS
- •fission product removal from containment
- 3.2.8 **IF** time permits, complete Enclosure 4.2, Source Range Detector Response.
- _____3.2.9 IF time permits, complete Enclosure 4.3, Movable Detector Surveillance in an Accident Condition

3.3 Fuel Overtemperature Damage Assessment

_____3.3.1 Record 1(2)EMF 51 reading:

_____ R/hr at _____ hours after shutdown.

Containment Spray:

RCS Pressure: _____ psig

RP/**0**/A/5700/019 Page 9 of 11

3.3.2 Figure 4 (and associated table)

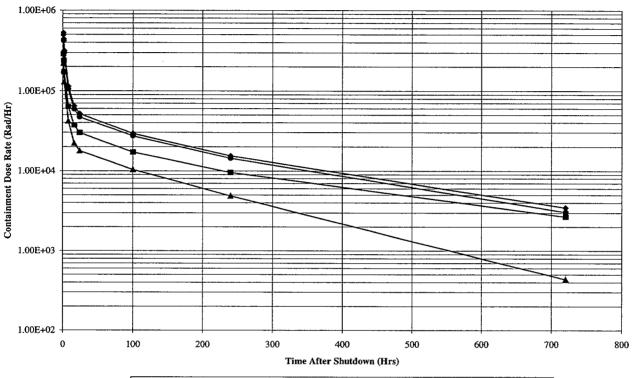


Figure 4 Containment Radiation Level vs. Time for 100% Fuel Overtemperature Release

----RCS Pressure < 1600 PSIG w/o Spray (Rad/Hr) ----RCS Pressure > 1600 PSIG w/o Spray (Rad/Hr) -----RCS Pressure > 1600 PSIG w/ Spray (Rad/Hr) -----RCS Pressure < 1600 PSIG w/ Spray (Rad/Hr)

Figure 4	Containment Radiation Level vs. Time for 100% Fuel						
···guio	Overtemperature Release						
Time	RCS Pressure	RCS Pressure	RCS Pressure	RCS Pressure			
After	< 1600 PSIG	> 1600 PSIG	> 1600 PSIG	< 1600 PSIG			
Shutdown	w/o Spray	w/o Spray	w/ Spray	w/ Spray			
(hrs)	(Rad/Hr)	(Rad/Hr)	(Rad/Hr)	(Rad/Hr)			
0.5	5.30E+05	2.86E+05	2.19E+05	5.03E+05			
1	4.39E+05	2.37E+05	1.82E+05	4.17E+05			
2	3.16E+05	1.71E+05	1.29E+05	2.99E+05			
8	1.13E+05	6.33E+04	4.20E+04	1.05E+05			
16	6.45E+04	3.71E+04	2.21E+04	5.88E+04			
24	5.15E+04	2.98E+04	1.78E+04	4.72E+04			
100	2.90E+04	1.70E+04	1.04E+04	2.73E+04			
240	1.54E+04	9.56E+03	4.88E+03	1.43E+04			
720	3.49E+03	2.68E+03	4.37E+02	3.08E+03			

	RP/ 0 /A/5700/019 Page 10 of 11
3.3.3	Using RCS Pressure from Step 3.3.1 and Figure 4 (and associated table), find the "Predicted Containment Radiation Level vs. Time for 100% Fuel Overtemperature Release"
	Predicted Containment Radiation Level For 100% Fuel OT Release:
3.3.4	% Core Damage = $\frac{\text{Current Containment Radiation Level}}{\text{Predicted Containment Radiation Level for 100% OT Release}}$
	% Core Damage = \longrightarrow ×100 = $_$ %
3.3.5	Estimate Fuel OT Damage based on Core Exit Thermocouple Readings.
	_A. Complete Enclosure 4.1.
	B. Number of CET's > 2000°F from Enclosure 4.1: CET's
	Number of Operable CET's from Enclosure 4.1: CET's
	% Core Damage = $\left[\frac{\text{Number of CET's} > 2000^{\circ}\text{F}}{\text{Total Operable CET's}}\right] \times 100$
	% Core Damage =
3.3.6	Record Results From Steps 3.3.4 and 3.3.5 onto Enclosure 4.4.
3.3.7	Confirm Reasonableness of Expected Core OT Damage Estimate using Predicted Responses below. Record any Comments on Enclosure 4.4.
	A. Expected Responses for Fuel Overtemperature Damage
	• RVLIS Less Than 39 %
	• Hot Leg RTD Greater than 650°F
	• Source Range Monitor Greater Than 1e+5 cps
	• Difference fuel overtemperature estimates from Containment Radiation Monitors (CRM) and CET's less than 50%, using:
	$ABS\left[\frac{\% \text{ Core Damage}_{CRM} - \% \text{ Core Damage}_{CET}}{\% \text{ Core Damage}_{CRM}}\right]$

RP/**0**/A/5700/019

Page 11 of 11

B. If the expected response is not obtained, determine if the deviation can be explained from the accident progression

•Injection of water to the RCS

•Bleed Paths from the RCS

•Direct radiation to the containment radiation monitors

or

If the expected response is not obtained, determine if the deviation can be explained from conservatism in the predictive model

•fuel burnup

•fission product retention in the RCS

•fission product removal from containment

- 3.3.8 IF time permits, complete Enclosure 4.2, Source Range Detector Response.

4. Enclosures

- 4.1 Core Exit Thermocouple Analysis
- 4.2 Source Range Detector Response
- 4.3 Movable Incore Detector Response
- 4.4 Results and Comments
- 4.5 OAC Points

5. References

- 5.1 Duke Power Calculation DPC-1507.03-00-0001, "Core Damage Assessment Guidelines.", Rev 0, 6/30/92.
- 5.2 "Accident Response of Instrumentation" by Westinghouse.

Core Exit Thermocouple Analysis

- **NOTE:** 1. Safety grade thermocouples do not need any temperature correction but non-safety grade thermocouples need temperature correction since they are still tied into the reference junction.
 - 2. OAC Program Nuclear, Incore Thermocouple Map, will show both safety and non-safety grade thermocouples.
 - 3. Thermocouple calibration may be incorrect if they experience temperatures in excess of 1650 Deg. F.
 - 4. The calibrated range of the CET system is 32 Deg F to 2300 Deg F. Once core uncovery occurs, CET readings will be considerably lower than the average maximum fuel temperature.
- 4.1.1 **IF** possible, obtain a printout of OAC Program Nuclear, Incore Thermocouple Map and attach to this enclosure.
- **NOTE:** Each reference junction box, located in containment, has 2 RTDs which feed into the OAC. Either RTD can be used for step 4.3.2.
 - - A. Reference Junction Box Temperature = _____Deg F
 - B. Verify Reference Junction Box Temperature is reading 160 ± 100 Deg F. If not, record the difference between the actual junction box reading and 160 Deg F at the Top of Page 3.

Actual Reading $-160^{\circ}F = __{\circ}F$

 $__\circ F - 160^\circ F = __\circ F$

4.3.3 Complete the **CET Readings** table on Page 3 of this enclosure to record the readings from available CETs.

Core Exit Thermocouple Analysis

RP/**0**/A/5700/019

Page 2 of 3

CET Core Locations

NORTH →

														NO.		
1						T-53		180° T-48		T-43#]				
2	·		T-62*		T-21*		T-16*		T-11*		T-7*]		
3				T-58				T-49				T-39		T-34*]	
4			T-26*		T-22*				T-12*				T-3*			
5		T-63				T-54				T-44 *				T-35]
6	T -31*		T-27*				T-17*				T-8*		T-4*		T-1*	
7		T-64		T-59#				T -50				T -40				-
8 90°	T-32*				T-23*		T-18*		T-13#				T-5*			270°
` — –		T-65				T-55				T-45*				T-36		-
10	T-33*		T-28*				T-19*				T-9*				T-2#	-
11				T- 60				T-51	<u> </u>			T-41		T-37		-
12			T-29*		T-24*				T-14	 			T-6*			
13				T-61		T-56				T-46		T -42	 	T-38*		
14			T-30		T-25*		T-20*		T-15*		T-10*] ' 	
15				 		T-57		T-52		T-47*			 	I 	I 	
	I	I	1	1	l	<u> </u>	<u> </u>		1	I	l] 1	ı I	I I	1	
I			1 	1	I	1		 	1	I	I		1	1 	l	
ł	R	Р	N	М	L	К	J	H 0°	G	F	Е	D	с	В	А	

T-XX

XX - Thermocouple #

T-XX* Safety Grade T-XX# These thermocouples are temporarily located in the upper head on U-1 only.

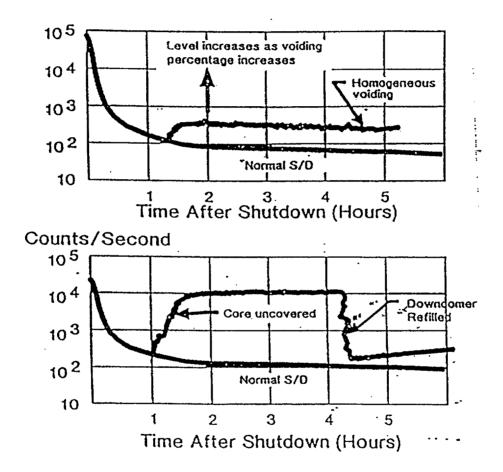
RP/**0**/A/5700/019

Core Exit Thermocouple Analysis

Page 3 of 3

CET Readings

	Thermocouple		Temperatur	e Readings	¹ Corrections		
Number	Core Location	OAC Point ID	Incore Inst Panel Deg F.	OAC Deg F.	Corrected Panel Deg F	Corrected OAC Deg F	
T35	B-5	A1275					
T36	B-9	A0113					
T37	B-11	A1281					
T39	D-3	A0131					
T40	D-7	A0137					
T41	D-11	A0143					
T42	D-13	A1287					
T43	F-1	A0155					
T46	F-13	A0173					
T48	H-1	A0185					
T49	Н-3	A0191					
T50	H-7	A0197		· - · · · · · · · · · · · · · · · · · ·			
T51	H-11	A1311					
T52	H-15	A0209			· · · · · · · · · · · · · · · · · · ·		
T53	K-1	A1317					
T54	K-5	A1323					
T55	К-9	A0227					
T56	K-13	A1326			- <u> </u>		
T57	K-15	A1335					
T58	M-3	A0245					
T60	M-11	A1341		<u></u>			
T61	M-13	A1348					
T63	P-5	A1360					
T64	P-7	A0281					
T65	P-9	A1366		· · · · · · · · · · · · · · · · · · ·	1		


NOTE:

1. To make correction add the reference junction difference to the recorded readings.

Prepared By/Date:_

Source Range Detector Response

- 4.2.1 Obtain a plot of the Source Range Detectors (OAC points A1177 and A1206) response since they were energized following the shutdown. If available attach a hard copy of the plots to this Enclosure.
- **NOTE:** For a detailed description of the possible accident response of the excore instrumentation see "Accident Response of Instrumentation" of the Westinghouse Advanced Station Nuclear Engineer Training.

4.2.2 Using the plots above as a guide, examine the Source Range plots from Step 4.2.1 to determine if the core experienced voiding and for how long.

Core Experienced Voiding	\Box YES	□ NO
IF Core Experienced Voiding, What was the Duration of the Voiding:		hrs

- **NOTE:** IF the Keithley picoammeter is not able to be set up or if it is not desirable to set it up, the ENA system can still be used to estimate the 3-D location of core damage by attempted insertion of the detectors.
 - ____4.3.1 Set up ENA System for special low level measurement per OP/0/A/6150/007 (Incore Instrumentation), Section 8.
 - _4.3.2 Select thimble locations trying to put at least one detector in each quadrant and one near the center of the core.
 - 4.3.3 Record the selected thimble locations in the table in step 4.3.8 (Page 2 of this enclosure).

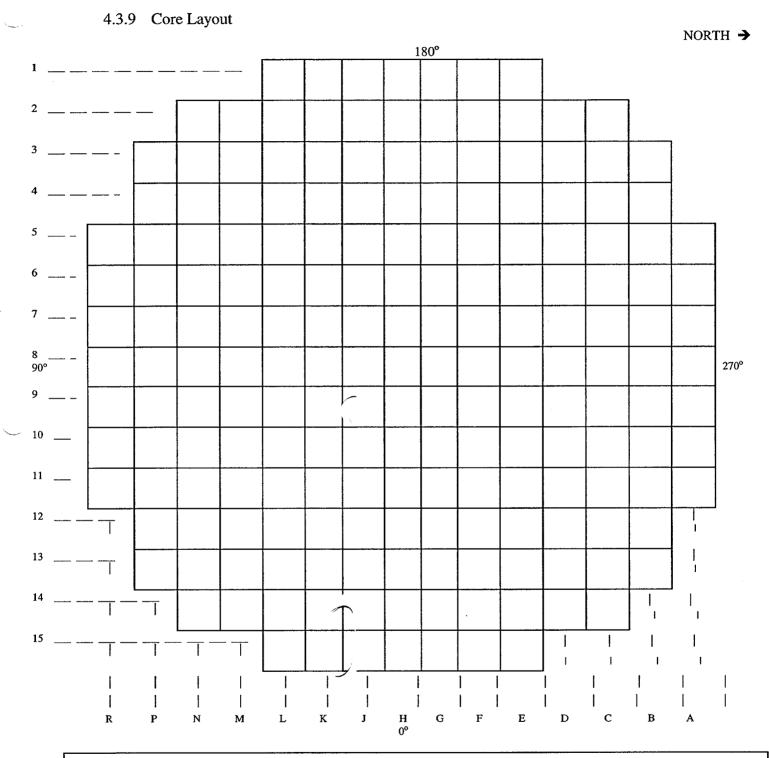
NOTE: Operate the ENA System in MANUAL LOW SPEED.

- 4.3.4 Insert the detectors to top of core.
 - 4.3.5 IF any detector will not insert to top of core complete the following steps in this section.
 - 1. Record actual distance reading the detector(s) were able to be inserted in the table in step 4.3.8 (Page 2 of this enclosure).
 - 2. Record expected Top Of Core, from Enclosure 4.3, Table 2.7 of the applicable Units Data Book in the table in step 4.3.8 (Page 2 of this enclosure).
 - 3. Calculate the difference in inches on 4.3.8 (Page 2 of this enclosure) and record on the Core Layout in step 4.3.9 (Page 3 of this enclosure).
- **NOTE:** For detailed description of the possible accident response of the incore instrumentation see "Accident Response of Instrumentation" of the Westinghouse Advanced Station Nuclear Engineer Training.
 - _____ 4.3.6 Obtain a flux trace and attach to this enclosure.
 - _4.3.7 Compare flux traces with the anticipated traces on Pages 4 and 5 of this enclosure ("Anticipated Low Level Trace With Partial core Voiding" and "Anticipated Low Level Trace With Significant Core Damage) and identify/record indications of core voiding and/or core damage.

RP/**0**/A/5700/019 Page 2 of 5

4.3.8 Complete the Following Table

PASS		Drive A	Drive B	Drive C	Drive D	Drive E	Drive F
1	Thimble Location						
	Expected T.O.C.						
	Actual Reading						
	Difference (inches)						
2	Thimble Location						
	Expected T.O.C.						
	Actual Reading						
	Difference (inches)						
3	Thimble Location						
	Expected T.O.C.						
	Actual Reading						
	Difference (inches)						
4	Thimble Location						
	Expected T.O.C						
	Actual Reading						
	Difference (inches)						
5	Thimble Location						
	Expected T.O.C						
	Actual Reading						
	Difference (inches)						
6	Thimble Location						
	Expected T.O.C.						
	Actual Reading						
	Difference (inches)						

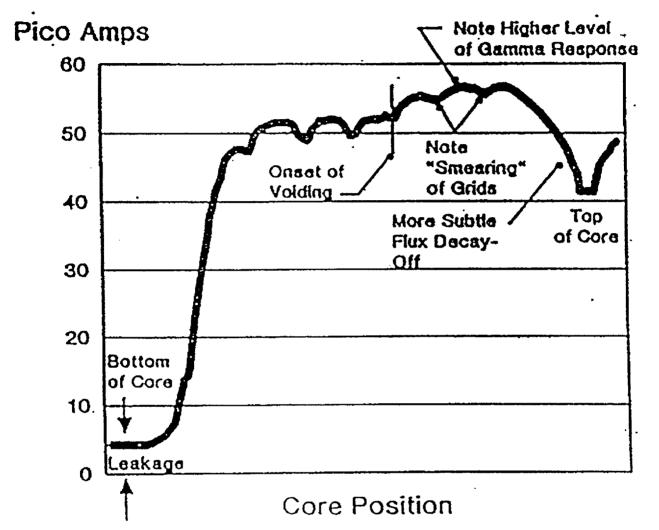

NOTE: 1) T.O.C. = Top of Core nixie tube readout

 $1) \quad 1.0.0. = 100 \text{ of Core materiale feation}$

 Difference = (Expected T.O.C.) - (Actual Reading) This difference represents where core damage impairs incore movement relative to the T.O.C.

3) Expected T.O.C. can be found in Enclosure 4.3, Table 2.7 of the applicable Unit's Data Book.

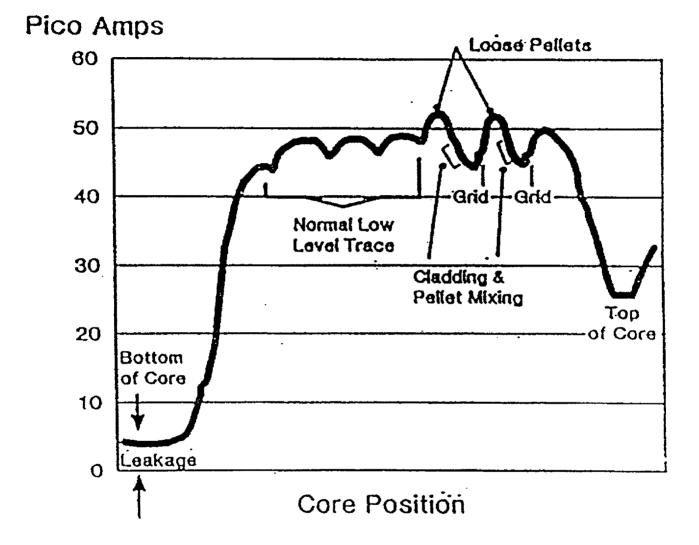
RP/**0**/A/5700/019 Page 3 of 5



NOTE:

•

Enter difference between expected and measured detector insertion value in appropriate thimble location.



Movable Incore Detector Response

 $\langle \cdot \rangle$

RP/**0**/A/5700/019 Page 5 of 5

ANTICIPATED LOW LEVEL TRACE WITH SIGNIFICANT CORE DAMAGE (Gamma Response)

RP/**0**/A/5700/019 Page 1 of 1

nd Comments 14 D

Kesuli	ts an

RESULTS	
D Possible Fuel Rod Clad Damage (Step 3.2)	D Possible Fuel OT Damage (Step 3.3)
% Damage Based on CRM's (Step 3.2.4)	% Damage Based on CRM's (Step 3.3.4)
% Damage Based on CET's (Step 3.2.5)	% Damage Based on CET's (Step 3.3.5)

Comments from Step 3.2.6 or Step 3.3.6/Additional Comments:

OAC Points

RP/**0**/A/5700/019 Page 1 of 1

The points below make up the NUC01 group on the OAC.

This can be displayed by typing "GD NUC01" to bring up the group display.

OAC Point Ids	Description
P0828	5 Highest CET's (Deg F)
P1457	Burnup, EFPD
A1047	Containment Pressure A (psig)
A0665	Containment Pressure B (psig)
A1041	Containment Sump Level A (Ft)
A0671	Containment Sump Level B (Ft)
A0829	EMF 51A (R/hr)
A0835	EMF 51B (R/hr)
A0848	Hydrogen Concentration A (%)
A0854	Hydrogen Concentration B (%)
P0755	Lower Cont Weighted Avg Temperature (Deg F)
P1461	NC Loops Temp AVG-AVG From OK Loops, (Deg F)
P0829	NC Pressure, Best Estimate (psig)
P1470	Pressurizer Level, Best Estimate (%)
A1306	RVLIS Low Range A (%)
A1330	RVLIS Low Range B (%)
A1177	Source Range Level Channel 1 (cps)
A1206	Source Range Level Channel 2 (cps)
A1204	Upper Containment Ambient Air Temp. A
A1210	Upper Containment Ambient Air Temp. B