September 25, 1990

Docket No. 50-461

DISTRIBUTION: Docket Files NRC & Local PDRs PDIII-3 r/f JZwolinski JHannon JHickman PKreutzer OGC-WF1 DHagan EJordan GHill(4) WJones JCalvo ACRS(10)GPA/PA OC/LFMB PDIII-3 Grav

P. 0. Box 678 Mail Code V920 Clinton, Illinois 61727

Mr. Frank A. Spangenberg

Licensing and Safety

Clinton Power Station

Dear Mr. Spangenberg:

SUBJECT: AMENDMENT NO. 47 TO FACILITY OPERATING LICENSE NO. NPF-62 (TAC NO. 73801)

The Commission has issued the enclosed Amendment No. 47 to Facility Operating License No. NPF-62 for the Clinton Power Station, Unit No. 1. This amendment is in response to your application dated February 5, 1988.

This amendment revises the Technical Specifications (TS) to remove the requirement for isolation of the Containment Monitoring (CM) and Process Sampling (PS) Systems upon a Containment Building Exhaust High Radiation signal.

A copy of the Safety Evaluation and of the notice of issueance are also enclosed. The notice of issuance is being filed with the Office of the Federal Register for publication.

Sincerely.

John B. Hickman, Project Manager Project Directorate III-3 Division of Reactor Projects - III. IV, V and Special Projects Office of Nuclear Reactor Regulation

Enclosures: 1. Amendment No. 47 to License No. NPF-62

- Safety Evaluation 2.
- 3. Notice of Issuance

cc w/enclosures: See next page

DOCUMENT NAME: 73801 AMD

PNU

Office: LA/PDIII-3 PKreutzer Surname: Date: A 1.31 /90

/PM/PDIII-3 JHickman/bj 8/31/90

NRR: PSD CMcCracken

916/90

JHannon *7*1/90

9/25

whmann ////90

00023

9010040199 900925 PDR ADDCK 05000461 Mr. Frank A. Spangenberg Illinois Power Company

cc: Mr. J. S. Perry Vice President Clinton Power Station P. O. Box 678 Clinton, Illinois, 61727

> Mr. J. A. Miller Manager Nuclear Station Engineering Department Clinton Power Station P. O. Box 678 Clinton, Illinois 61727

Sheldon Zabel, Esquire Schiff, Hardin & Waite 7200 Sears Tower 233 Wacker Drive Chicago, Illinois 60606

Resident Inspector U. S. Nuclear Regulatory Commission RR#3, Box 229 A Clinton, Illinois 61727

Mr. L. Larson Project Manager General Electric Company 175 Curtner Avenue, N/C 395 San Jose, California 95125

Regional Administrator, Region III 799 Roosevelt Road, Bldg. #4 Glen Ellyn, Illinois 60137

Chairman of DeWitt County c/o County Clerk's Office DeWitt County Courthouse Clinton, Illinois 61727

Robert Neumann Office of Public Counsel State of Illinois Center 100 W. Randolph Suite 11-300 Chicago, Illinois 60601 Clinton Power Station Unit 1

Illinois Department of Nuclear Safety Office of Nuclear Facility Safety 1035 Outer Park Drive Springfield, Illinois 62704

Mr. Donald Schopfer Project Manager Sargent & Lundy Engineers 55 East Monroe Street Chicago, Illinois 60603

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

ILLINOIS POWER COMPANY, ET AL.

DOCKET NO. 50-461

CLINTON POWER STATION, UNIT NO. 1

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 47 License No. NPF-62

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment by Illinois Power Company* (IP), and Soyland Power Cooperative, Inc. (the licensees) dated February 5, 1988 complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.
- 2. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment, and paragraph 2.C.(2) of Facility Operating License No. NPF-62 is hereby amended to read as follows:

*Illinois Power Company is authorized to act as agent for Soyland Power Cooperative, Inc. and has exclusive responsibility and control over the physical construction, operation and maintenance of the facility. (2) Technical Specifications and Environmental Protection Plan

The Technical Specifications contained in Appendix A and the Environmental Protection Plan contained in Appendix B, as revised through Amendment No. 47 , are hereby incorporated into this license. Illinois Power Company shall operate the facility in accordance with the Technical Specifications and the Environmental Protection Plan.

3. This license amendment is effective as of its date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

thn M. Ha

John N. Hannon, Director Project Directorate III-3 Division of Reactor Projects - III, IV, V and Special Projects Office of Nuclear Reactor Regulation

Attachment: Changes to the Technical Specifications

Date of issuance: September 25, 1990

ATTACHMENT TO LICENSE AMENDMENT NO. 47

FACILITY OPERATING LICENSE NO. NPF-62

DOCKET NO. 50-461

Replace the following pages of the Appendix "A" Technical Specifications with the attached pages. The revised pages are identified by amendment number and contain vertical lines indicating the area of change. Corresponding overleaf pages are provided to maintain document completeness.

Remove	Insert
3/4 3-13	3/4 3-13
3/4 3-20	3/4 3-20
3/4 3-25	3/4 3-25
3/4 3-27	3/4 3-27
3/4 6-36	3/4 6-36
3/4 6-39	3/4 6-39
3/4 6-40	3/4 6-40

CI INTON	TABLE 3.3.2-1 CRVICS INSTRUMENTATION							
ITON - UNIT	TRIP	· FUNC		ISOLATION SIGNAL <u>††</u>	MINIMUM OPERABLE CHANNELS PER TRIP SYSTEM	APPLICABLE OPERATIONAL CONDITION	ACTION	
⊢┛	1.	<u>PRIM</u> a.	MARY AND SECONDARY CONTAINMENT ISOLATION Reactor Vessel Water Level-Low Low, Level 2	_B (b)(f)	2 ^(a)	1, 2, 3 #	20 25	
		b.	Reactor Vessel Water Level-Low Low, Level 2 (ECCS Div. I and II)	В	2 ^(a)	1, 2, 3	29	
		C.	Reactor Vessel Water Level-Low Low, Level 2 (ECCS Div. III)	В	2 ^(a)	1, 2, 3	29	
		d.	Drywell Pressure - High	L ^{(b)(f)}	2 ^(a)	1, 2, 3	20	
3/4 3-		e.	Drywell Pressure - High (ECCS Div. I and II)	L	2 ^(a)	1, 2, 3	29	
3 - 13		f.	Drywell Pressure – High (ECCS Div. III)	L	2 ^(a)	1, 2, 3	29	
		g.	Containment Building Fuel Transfer Pool Ventilation Plenum Radiation - High	Z ^{(b)(f)}	2 ^(a)	##	25	
		h.	Containment Building Exhaust Radiation - High	M ^{(b)(f)}	2 ^(a)	1, 2, 3 #	29 25	
An		i.	Containment Building Continuous Containment Purge (CCP) Exhaust Radiation - High	₅ (b)(f)	2 ^(a)	" 1, 2, 3 #	29 25	
Amendment No		j.	Reactor Vessel Water Level-Low Low Low, Level 1	U	2 ^(k)	1, 2, 3 #	29 25	
nt No.		k.	Containment Pressure-High	Ρ	1 ^{(k)(1)}	1, 2, 3 #	29 25	

•

CLINTON - UNIT 1

3/4 3-13

Amendment No. 47

CRVICS INSTRUMENTATION

I TTNII	TRIPF 1 m	 Fuel Building Exhaust Radiation - High 	ISOLATION <u>SIGNAL ††</u> C (b)(f)(j) R(b)(f)	MINIMUM OPERABLE CHANNELS PER TRIP SYSTEM 2 ^(a) 2 ^(a)	APPLICABLE OPERATIONAL CONDITION 1, 2, 3 1, 2, 3 # 1, 2, 3 #	ACTION 23 25 25 25 26 25
	a. b. c. d. e. f. g.	Low Low, Level 1 Main Steam Line Radiation - High Main Steam Line Pressure - Low Main Steam Line Flow - High Condenser Vacuum - Low Main Steam Line Tunnel Temp. - High Main Steam Line Tunnel ∆ Temp. - High	ISOLATION <u>SIGNAL</u> U C H D J E F	APPLICABLE TABLE NOTES NA d NA NA NA NA	APPLICABLE OPERATIONAL CONDITIONS 1, 2, 3 1, 2, 3 1, 2, 3 1, 2**, 3** 1, 2, 3 1, 2, 3 1, 2, 3	ACTION 20 23 23 23 23 23 23 23 23
,	h. i.	Main Steam Line Turbine Bldg. Temp High	G R	P NA	1, 2, 3 1, 2, 3 1, 2, 3	23 23 22

25

CRVICS INSTRUMENTATION

ACTION

- ACTION 20 Be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- ACTION 21 Deleted.
- ACTION 22 With one channel in either trip system inoperable restore the manual initiation function to OPERABLE status within 48 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- ACTION 23 Be in at least STARTUP with the associated isolation valves closed within 6 hours or be in at least HOT SHUTDOWN within 12 hours and in COLD SHUTDOWN within the next 24 hours.
- ACTION 24 Be in at least STARTUP within 6 hours.
- ACTION 25 CORE ALTERATIONS, operations with a potential for draining the reactor vessel, and handling irradiated fuel in the primary or secondary containment may continue provided that SECONDARY CONTAINMENT INTEGRITY is established with the standby gas treatment system operating within 1 hour.
- ACTION 26 Restore the manual initiation function to OPERABLE status within 8 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- ACTION 27 Close the affected system isolation valves within 1 hour and declare the affected system inoperable.
- ACTION 28 Lock the affected system isolation valves closed within 1 hour and declare the affected system inoperable.
- ACTION 29 Operations may continue provided that the affected CRVICS isolation valve(s) are closed within 1 hour and, as appropriate, declare the affected system or component inoperable and follow any ACTIONS appropriate to Specifications of the affected system. Otherwise, be in HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

CLINTON - UNIT 1

9 - 1	TABLE 3.3.2-2						
			<u>CRVICS INST</u>	RUMENTATION SETPOINTS			
_	RIP		CTION MARY AND SECONDARY CONTAINMENT ISOLATION	TRIP SETPOINT	ALLOWABLE VALUE		
		a.	Reactor Vessel Water Level - Low Low, Level 2	<u>></u> -45.5 in.*	<u>></u> -47.7 in.		
		b.	Reactor Vessel Water Level - Low Low, Level 2 (ECCS Div. I and II)	<u>></u> -45.5 in.*	<u>></u> -47.7 in.		
		c.	Reactor Vessel Water Level - Low Low, Level 2 (ECCS Div. III)	<u>></u> -45.5 in.*	≥ -47.7 in.		
		d.	Drywell Pressure - High	<u><</u> 1.68 psig	<u><</u> 1.88 psig		
		e.	Drywell Pressure - High (ECCS Div. I and II)	<u><</u> 1.68 psig	≤ 1.88 psig		
		f.	Drywell Pressure – High (ECCS Div.III)	<u><</u> 1.68 psig	<u><</u> 1.88 psig		
		g.	Containment Building Fuel Transfer Pool Ventilation Plenum Radiation - High	<u><</u> 100 mR/hr	<u><</u> 500 mR/hr		
		h.	Containment Building Exhaust Radiation - High	< 100 mR/hr	<u><</u> 400 mR/hr		
		i.	Containment Building Continuous Containment Purge (CCP) Exhaust Radiation - High	< 100 mR/hr	<u><</u> 400 mR/hr		
		j.	Reactor Vessel Water Level Low Low Low-Level 1	<u>></u> -145.5 in.*	<u>></u> -147.7 in.		

CLINTON - UNIT 1

TABLE 3.3.2-3

CRVICS INSTRUMENTATION RESPONSE TIME

TRIP FUNCTION

RESPONSE TIME (Seconds)

ł

ł

1. PRIMARY AND SECONDARY CONTAINMENT ISOLATION

	a. Reactor Vessel Water Level - Low Low, Level 2 b. Reactor Vessel Water Level - Low Low, Level 2	NA
	(ECCS Div. I and II)	NA
	c. Reactor Vessel Water Level - Low Low, Level 2	
	(ECCS Div. III)	NA
	d. Drywell Pressure - High	NA
	e. Drywell Pressure - High (ECCS Div. I and II)	NA
	f. Drywell Pressure - High (ECCS Div. III)	NA
	g. Containment Building Fuel Transfer Pool Ventilation Plenum Radiation - High	NA
	h. Containment Building Exhaust Radiation - High	NA
	i. Containment Building Continuous Containment	inty.
	Purge (CCP) Exhaust Radiation - High	NA
	j. Reactor Vessel Water Level-Low Low Low, Level 1	NA
	k. Containment Pressure - High	NA
	1. Main Steam Line Radiation - High	NA
	m. Fuel Building Exhaust Radiation - High	NA
	n. Manual Initiation	NA
2.	MAIN STEAM LINE ISOLATION	
	a. Reactor Vessel Water Level - Low Low Low, Level 1	< 1.0*
	b. Main Steam Line Radiation - High	ŇA
	c. Main Steam Line Pressure - Low	< 1.0*
	d. Main Steam Line Flow - High	< 0.5*
	e. Condenser Vacuum - Low	NA
	f. Main Steam Line Tunnel Temp High	NA
	g. Main Steam Line Tunnel ∆ Temp High	NA
	h. Main Steam Line Turbine Bldg. Temp High	NA
	i. Manual Initiation	NA
3.	REACTOR WATER CLEANUP SYSTEM ISOLATION	
	a. ∆ Flow - High	NA
	b. Δ Flow Timer	NA
	c. Equipment Area Temp High	NA
	d. Equipment Area ∆ Temp High	NA
	e. Reactor Vessel Water Level - Low Low, Level 2	NA
	f. Main Steam Line Tunnel Ambient Temp High	NA

TABLE 3.3.2-3 (Continued)

CRVICS INSTRUMENTATION RESPONSE TIME

TRIP FUNCTION

RESPONSE TIME (Seconds)

3.	REACTOR WATER CLEANUP SYSTEM ISOLATION (Continued)	
	g. Main Steam Line Tunnel ∆ Temp High h. SLCS Initiation i. Manual Initiation	NA NA NA

4. REACTOR CORE ISOLATION COOLING SYSTEM ISOLATION

· _--

a.	RCIC Steam Line Flow - High	NA
b.	RCIC Steam Line Flow High - Timer	NA
c.	RCIC Steam Supply Pressure - Low	NA
d.	RCIC Turbine Exhaust Diaphragm Pressure - High	NA
e.	RCIC Equipment Room Ambient Temp High	NA
f.	RCIC Equipment Room Δ Temp High	NA
g.	Main Steam Line Tunnel Ambient Temp High	NA
ĥ.	Main Steam Line Tunnel Δ Temp High	NA
i.	Main Steam Line Tunnel Temp. Timer	NA
j.	Drywell Pressure - High	NA
k.	Manual Initiation	NA
1.		NA
m.		ina.
	Temp High	NA
n.	RHR Heat Exchanger Rooms A, B Δ Temp	NA.
•••	High	NA
		NA

5. RHR SYSTEM ISOLATION

a.	RHR Heat Exchanger Rooms A, B Ambient Temp.	
b.	- High PHP Host Exchangen Peers A. P. A. Terra	NA
0.	RHR Heat Exchanger Rooms A, B ∆ Temp. - High	NA
c.	Reactor Vessel Water Level - Low, Level 3	NA
d.	Reactor Vessel Water Level - Low Low Low,	na
	Level 1	NA
e.	Reactor Vessel (RHR Cut-in Permissive)	
	Pressure - High	NA
f.	Drywell Pressure - High	NA
g.	Manual Initiation	NA

*CRVICS instrumentation response time for MSIVs only. No diesel generator delays assumed.

.

TABLE 4.3.2.1-1

CRVICS INSTRUMENTATION SURVEILLANCE REQUIREMENTS

<u>TRIP</u>	FUNC	TION	CHANNEL CHECK	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION	OPERATIONAL CONDITIONS IN WHICH SURVEILLANCE REQUIRED
1.	PRIM	ARY AND SECONDARY CONTAINMENT	ISOLATION			
	a.	Reactor Vessel Water Level - Low Low, Level 2	S	М	R(p)	1, 2, 3, #
	b.	Reactor Vessel Water Level - Low Low, Level 2 (ECCS Div. I and II)	S	М	R ^(b)	1, 2, 3
	c.	Reactor Vessel Water Level - Low Low, Level 2 (ECCS Div. III)	S	М	R(p)	1, 2, 3
	d.	Drywell Pressure - High	S	М	R ^(b)	1, 2, 3
	e.	Drywell Pressure - High (ECCS Div. I and II)	S	М	R ^(b)	1, 2, 3
	f.	Drywell Pressure - High (ECCS Div. III)	S	М	R ^(b)	1, 2, 3
	g.	Containment Building Fuel Transfer Pool Ventilation Plenum Radiation - High	S	м	R	##
	h.	Containment Building Exhaust Radiation - High	S	М	R	1, 2, 3, #
	i.	Containment Building Contin- uous Containment Purge (CCP) Exhaust Radiation - High	S	м	R	1, 2, 3, #

TABLE 4.3.2.1-1 (Continued)

CRVICS INSTRUMENTATION SURVEILLANCE REQUIREMENTS

TRIF	P FUNC	TION	CHANNEL CHECK	CHANNEL FUNCTIONAL TEST	CHANNEL CALIBRATION	OPERATIONAL CONDITIONS IN WHICH SURVEILLANCE REQUIRED
1.	PRIM	ARY AND SECONDARY CONTAINMENT	ISOLATION (C	Continued)		
	j.	Reactor Vessel Water Level- Low Low Low, Level 1	S	м	R ^(b)	1, 2, 3, #
	k.	Containment Pressure - High	S	М	R	1, 2, 3, #
	1.	Main Steam Line Radiation - High	S	м	R	1, 2, 3
	M.	Fuel Building Exhaust Radiation - High	S	М	R	1, 2, 3, #
	n.	Manual Initiation	NA	R	NA	1, 2, 3, #
2.	MAIN	STEAM LINE ISOLATION				
	a.	Reactor Vessel Water Level - Low Low Low, Level 1	S	м	R(p)	1, 2, 3
	b.	Main Steam Line Radiation - High	S	м	R	1, 2, 3
	c.	Main Steam Line Pressure - Low	S	М	R ^(b)	1
	d.	Main Steam Line Flow - High	S	Μ	R ^(b)	1, 2, 3
	e.	Condenser Vacuum - Low	S	Μ	R ^(b)	1, 2**, 3**
	f.	Main Steam Line Tunnel Temp High	S	м	R	1, 2, 3
	g.	Main Steam Line Tunnel Δ Temp High	S	м	R	1, 2, 3
	h.	Main Steam Line Turbine Bldg. Temp High	S	м	R	1, 2, 3
	i.	Manual Initiation	NA	R	NA	1, 2, 3

CONTAINMENT ISOLATION VALVES

0

Z
0
z

- UNIT		VALVE NUMBER	PENETRATION NUMBER	ISOLATION SIGNAL†	APPLICABLE OPERATIONAL CONDITIONS	MAXIMUM ISOLATION TIME <u>(Sec</u> onds)	SECONDARY CONTAINMENT BYPASS PATH _(YES/NO)	TEST PRESSURE
Ч	<u>Aut</u>	omatic Isolation Valves (Continued	1)			(00001105)	(123/10)	<u>(psig)*</u>
	28)	Instrument Air Supply 1IA005 1IA006	57	U U	1, 2, 3,#	20 20	Yes	9.0
	29)	Instrument Air Bottles 1IA012B	58	L, B, R	1, 2, 3,#	19	Yes	9.0
3/4 6	30)	Service Air Supply 1SA030 1SA029	59	B, L, R B, L, R	1, 2, 3,#	16	Yes	9.0
6-35	31)	RWCU Suction Line 1G33-F001	60		1, 2, 5**	16	No	9.0
		1G33-F004		B, F, N, 1, 2, E, X, R B, F, N, 1, 2, E, X, R		20 20		
	32)	RWCU Return to Filter 1G33-F053	61	B, F, N, 1, 2, F	1, 2, 3	21	No	9.0
		1G33-F054		X, R B, F, N, 1, 2, E,				
	33)	Hydrogen Recombiner Supply 1HG008	62	X, R	1, 2, 3,#	21	fes	9.0
	34)	RWCU To RHR/FW 1G33-F040	54	•	1, 2, 3	117 N	ło g	9.0
		1G33-F039		B, F, N, 1, 2, E, X, R B, F, N, 1, 2, E, X, R		21 21		•

CONTAINMENT ISOLATION VALVES

- UNIT 1		VALVE NUMBER	PENETRATION NUMBER	ISOLATION SIGNAL†	APPLICABLE OPERATIONAL CONDITIONS	MAXIMUM ISOLATION TIME (Seconds)	SECONDARY CONTAINMENT BYPASS PATH (YES/NO)	TEST PRESSURE (psig)*
	Automatic Isolation Valves (Continued)							
	35)	RWCU Transfer To Radwaste 1WX019 1WX020	65	B, L, R B, L, R	1, 2, 3,#	2 2	Yes	9.0
3/4 6-36	36)	Process Sampling 1PS016 1PS017 1PS022 1PS023 1PS034 1PS035 1PS055 1PS056 1PS069 1PS070	68	B, L, R B, L, R	1, 2, 3,#	NA	Yes	9.0
	37)	DW/Cont. Equip. Drain 1RE021 1RE022	69	B, L, R B, L, R	1, 2, 3	16 16	No	9.0
Amendment	38)	DW/Cont. Floor Drain 1RF021 1RF022	70	B, L, R B, L, R	1, 2, 3	16 16	No	9.0
ment No.	39)	Hydrogen Recombiner Supply 1HG001	71	B, L, R	1, 2, 3,#	117	Yes	9.0
o. 47	40)	Hydrogen Recombiner Return 1HG004	72	B, L, R	1, 2, 3,#	117	Yes	9.0

CLINTON - UNIT 1

CONTAINMENT ISOLATION VALVES

CLIN	CONTAINMENT ISOLATION VALVES							
CLINTON - UNIT		VALVE NUMBER	PENETRATION NUMBER	ISOLATION SIGNAL†	APPLICABLE OPERATIONAL CONDITIONS	MAXIMUM ISOLATION TIME (Seconds)	SECONDARY CONTAINMENT BYPASS PATH (YES/NO)	TEST PRESSURE (psig)*
نى	<u>Auto</u>	matic Isolation Valves (Continue	d)					
	55)	DW Chilled Water Supply 1VP004A 1VP005A	109	L, U L, U	1, 2, 3	74 74	No	9.0
3/4 6-39	56)	DW Chilled Water Return 1VP014A 1VP015A	110	L, U L, U	1, 2, 3	74 74	No	9.0
	57)	Cont. Bldg. HVAC 1VR006A 1VR006B	113	B, L, M, Z, 5, R B, L, M, Z, 5, R	1, 2, 3,#	6 6	Yes	9.0
	58)	Cont. Monit. 1CM022 1CM023 1CM025 1CM026	153	B, L, R B, L, R B, L, R B, L, R	1, 2, 3	NA	No	9.0
	59)	Hydrogen Recombiner Supply 1HG005	166	B, L, R	1, 2, 3,#	117	Yes	9.0 (
Amendment No. 47	60)	Containment HVAC 1VR035 1VR036 1VR040 1VR041	169	B, L, M, Z, 5, R B, L, M, Z, 5, R B, L, M, Z, 5, R B, L, M, Z, 5, R	1, 2, 3	NA	No	9.0
	61)	Cont. Monit. 1CM048 1CM047 1CM011 1CM012	173	B, L, R B, L, R B, L, R B, L, R	1, 2, 3	NA	No	9.0

CONTAINMENT ISOLATION VALVES

	Auto	VALVE <u>NUMBER</u> matic Isolation Valves (Continued	PENETRATION <u>NUMBER</u>)	ISOLATION SIGNAL†	APPLICABLE OPERATIONAL CONDITIONS	MAXIMUM ISOLATION TIME (Seconds)	SECONDARY CONTAINMENT BYPASS PATH (YES/NO)	TEST PRESSURE (psig)*
	62)	Instrument Air Bottles 1IAO13B	206	L, B, R	1, 2, 3,#	19	Yes	9.0 (
5 /A C-10	63)	Process Sampling 1PS038 1PS037 1PS048 1PS047 1PS004 1PS005 1PS010 1PS009 1PS031 1PS032	210	B, L, R B, L, R	1, 2, 3,#	NA	Yes	9.0

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555 1

SAFETY EVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATION

RELATED TO AMENDMENT NO. 47 TO FACILITY OPERATING LICENSE NO. NPF-62

ILLINOIS POWER COMPANY, ET AL.

CLINTON POWER STATION, UNIT NO. 1

DOCKET NO. 50-461

1.0 INTRODUCTION

By letter dated February 5, 1988, Illinois Power Company, et al., (the licensee) requested several changes to the Technical Specifications for the Clinton Power Station. Package number 5 of that submittal requested a change that would remove the isolation requirement for the Containment Monitoring (CM) and Process Sampling (PS) systems upon a Containment Exhaust Duct High Rad signal from Section 3.4.3-2, the Containment and Reactor Vessel Isolation Control System (CRVICS). The proposed change would also revise the list of containment isolation valves in Section 3.6.4 to delete the Containment Exhaust Duct High Rad trip from the list of isolation signals for the affected CM and PS valves.

2.0 EVALUATION

Clinton Technical Specifications (TS Tables 3.3.2-1, 3.3.2-2, 3.3.2-3, and 4.3.2-1) list the operability requirements, the setpoints, the response times, and the surveillance requirements for the Containment and Reactor Vessel Isolation Control System channels. Item 1.h in the aforementioned tables is the Containment Building Exhaust Radiation - High trip and includes as subsystems:

- 1) Containment Bildg. HVAC (VR) and Drywell Purge (VQ)
- 2) Containment Monitoring (CM) and Process Sampling (PS)

Currently the TS require that the CM and PS systems automatically isolate upon receiving a Containment Building Exhaust High Radiation signal. However, the CM and PS systems are designed to be operable at high radiation levels. The Hydrogen and Oxygen monitoring function of the CM system and the Post Accident Sampling System function of the PS system are functions normally used during post-accident conditions. The CM and PS systems have small diameter (3/4-inch) lines, are normally closed loops and, therefore, are unlikely to have their integrity challenged by a condition which generates high containment radiation without associated increases in pressure and/or temperature. The isolation of the CM and PS valves initiated by high pressure and/or temperature would be unaffected by this change. The only isolation proposed to be deleted is the Containment Building Exhaust High Radiation signal. The required isolation on a Loss of Coolant Accident (LOCA) signal is unaffected by this change. The proposed change to the CRVICS tables, deleting the CM and PS isolation requirement upon a Containment Building Exhaust Radiation - High signal, is consistent with containment isolation requirements and, therefore, is acceptable.

9010040268 900925 PDR ADOCK 05000461 P PNU The proposed change to delete the reference in Table 3.6.4-1 to the Containment Building Exhaust Radiation - High signal as a trip for the affected CM and PS valves is necessary to remain consistent with the previous change and is, therefore, acceptable. The administrative change to delete the specific reference to the VR and VQ systems as subsystems under Containment Building Exhaust Radiation - High in Tables 3.3.2-1, 3.3.2-2, 3.3.2-3, and 4.3.2-1 is acceptable since no other subsystems will now have individual requirements under that trip and the appropriate valves are still listed in Table 3.6.4-1.

3.0 ENVIRONMENTAL CONSIDERATION

Pursuant to 10 CFR 51.21, 51.32, and 51.35, an environmental assessment and finding of no significant impact has been prepared and published in the <u>Federal</u> <u>Register</u> on August 14, 1990 (55 FR 33192). Accordingly, based upon the environmental assessment, the Commission has determined that the issuance of this amendment will not have a significant effect on the quality of the human environment.

4.0 CONCLUSION

The staff has concluded, based on the considerations discussed above, that: (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner; and (2) such activities will be conducted in compliance with the Commission's regulations and the issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public.

Principal Contributor: John Hickman, NRR

Dated: September 25, 1990

UNITED STATES NUCLEAR REGULATORY COMMISSION ILLINOIS POWER COMPANY, ET AL. DOCKET NO. 50-461 NOTICE OF ISSUANCE OF AMENDMENT TO

FACILITY OPERATING LICENSE

The U.S. Nuclear Regulatory Commission (Commission) has issued Amendment No. 47 to Facility Operating License No. NPF-62, issued to Illinois Power Company and Soyland Power Cooperative, Inc. (the licensee), which revised the Technical Specifications for operation of the Clinton Power Station, Unit No. 1 (the facility), located in DeWitt County, Illinois. The amendment was effective as of the date of issuance.

This amendment revised the Technical Specifications (TS) to remove the requirement for isolation of the Containment Monitoring (CM) and Process Sampling (PS) Systems upon a Containment Building Exhaust High Radiation signal.

The application for the amendment complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations. The Commission has made appropriate findings as required by the Act and the Commission's rules and regulations in 10 CFR Chapter I, which are set forth in the license amendment.

Notice of Consideration of Issuance of Amendment and Opportunity for Hearing in connection with this action was published in the FEDERAL REGISTER on June 14, 1988 (53 FR 22247). No request for hearing or petition for leave to intervene was filed following this notice.

For further details with respect to the action see (1) the application for amendments dated February 5, 1988 (2) Amendment No. 47 to License No. NPF-62, (3) the Commission's related Safety Evaluation dated Sept. 25, 1990and (4) the Environmental Assessment dated August 6, 1990 (55 FR 33192). All of these items are available for public inspection at the Commission's Public Document Room, Gelman Building, 2120 L Street N.W., Washington, D.C., and at the Vespasian Warner Public Library, 120 West Johnson Street, Clinton, Illinois 61727.

A copy of items (2), (3) and (4) may be obtained upon request addressed to the U.S. Nuclear Regulatory Commission, Washington, D.C. 20555, Attention: Director, Division of Reactor Projects - III, IV, V and Special Projects.

Dated at Rockville, Maryland this 25th day of September 1990.

FOR THE NUCLEAR REGULATORY COMMISSION

John N. Hannon, Director Project Directorate III-3 Division of Reactor Projects - III, IV, V and Special Projects Office of Nuclear Reactor Regulation