

GROUND-WATER MONITORING AND PERFORMANCE REVIEW FOR HOMESTAKE'S GRANTS PROJECT

NRC LICENSE SUA-1471 AND DISCHARGE PLAN DP-200, 2001

FOR:

HOMESTAKE MINING COMPANY OF CALIFORNIA

BY:

HYDRO-ENGINEERING, LLC MARCH, 2002

Shane M Porte

SHANE M. PORTER HYDROLOGIST

GEORGE L. HOFFMAN, P.E. 5831 N.M. HYDROLOGIST

TABLE OF CONTENTS

GROUND-WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

Page Number

1.0	EXECUTIVE SUMMARY AND INTRODUCTION	1.1-1
2.0	OPERATIONS	2.1-1
3.0	SITE STANDARDS AND BACKGROUND CONDITIONS	
4.0	ALLUVIAL AQUIFER MONITORING	4.1-1
5.0	UPPER CHINLE AQUIFER MONITORING	5.1-1
6.0	MIDDLE CHINLE AQUIFER MONITORING	6.1-1
7.0	LOWER CHINLE AQUIFER MONITORING	
8.0	SAN ANDRES AQUIFER MONITORING	
9.0	REFERENCES	9.0-1

APPENDICES

APPENDIX A: WATER LEVELS

APPENDIX B: WATER QUALITY

NOTE: TABLE OF CONTENTS IS PRESENTED AFTER THE TAB OF EACH SECTION

SECTION 1

TABLE OF CONTENTS

GROUND-WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

Page Number

1.0	EXE	CUTIVE SUMMARY AND INTRODUCTION
	1.1	EXECUTIVE SUMMARY 1.1-1
	1.2	INTRODUCTION 1.2-1

FIGURES

1.2-1	LOCATION OF	THE GRANTS PROJEC	Τ	1.2	2-2	2
-------	-------------	-------------------	---	-----	-----	---

1.0 EXECUTIVE SUMMARY AND INTRODUCTION

1.1 EXECUTIVE SUMMARY

Homestake Mining Company manages a groundwater restoration program as defined by Nuclear Regulatory Commission (NRC) License SUA-1471, and New Mexico Environmental Division (ED), DP-200 permit. The current operating program is a dynamic on-going strategy based on a restoration plan, which began in 1977, and is scheduled to be completed in 2008.

Homestake's long-term goal is to restore the ground-water aquifer to levels as close as possible with respect to the up-stream background levels. A ground-water collection area (see shaded area on Figure 2.1-1, Page 2.1-10) has been established between the northern most line of injection wells and the collection wells. Ground-water flow that enters this area from the tailings areas is within the collection area. All ground water in the alluvial aquifer that is within the collection area is moving to the collection wells and will eventually be collected. Once restoration within the zone is complete and approved by the agencies, the site is to be transferred to the Department of Energy who has the responsibility for long term care and maintenance.

The data reported within this document represents the results of the monitoring program for 2001. This is a yearly reporting requirement. A similar report has been submitted to the agencies for each year since 1983 (see list in Section 1.2).

The restoration program is designed to remove the contaminants from the ground water by flushing the alluvial aquifer with water from the fresh water deep wells or water produced from the reverse osmosis (R.O.) plant. A line of upstream collection wells is used to collect the contaminated water, which is pumped to the R.O. plant or the evaporation ponds.

Historically, the contaminants are found in two different aquifer systems. The primary aquifer is the alluvial system, which averages approximately 100 foot in depth, and extends generally north to south encompassing both the Lobo Creek and San Mateo alluvial aquifers. In addition, the second aquifer system is in the Chinle formation. It is comprised of three separate aquifers, the Upper, Middle and Lower Chinle aquifers. The Upper and Middle Chinle sub-crop to the alluvial system near the project site. Low-level

concentrations have been observed in the Upper and Middle Chinle aquifers near their subcrops.

The restoration program, as described above, is made up of injection and collection well systems. R.O. product water or fresh water pumped from deep wells is injected in a continuous line across the site. The injection line forms a water barrier that contains the contaminants within the collection area. The contaminated ground water is pumped and collected from a series of wells from within the collection area. The collection area. The collected aquifer water is pumped to the R.O. plant or to two large lined evaporation ponds for solar evaporation.

In the years from 1977 to the present, the combination of injection wells and the up-stream collection system has gradually moved the contaminated ground-water plume up-stream leaving the restored portions of the aquifer at or below background levels.

An average of 493 gpm was pumped into the alluvial fresh-water injection systems in 2001. An additional 92 gpm of fresh water was injected into the Upper and Middle Chinle aquifer systems. An average rate of 222 gpm in 2001 of R.O. product water was injected into the alluvial aquifer, which is not included in the fresh-water injection rate for the alluvial aquifer. Significant production of R.O. product started in July of 1999 with consistent operation during 2000 and 2001 except during equipment repair periods and a weeklong power outage.

In 2001, an average collection rate was maintained at 276 gpm for the alluvial aquifer. An additional 41 gpm was pumped from the aquifer and re-injected within the collection area. The Upper Chinle collection averaged 27 gpm in 2001, which consisted of pumping well CE2. The upgradient collection averaged 54 gpm in 2001, while average rates of 18 and 60 gpm were pumped from the toe drains and tailings dewatering, respectively.

The continuing evaluation of the performance of the Grants restoration system, including the 2001 results, show that sulfate, uranium, selenium and molybdenum are still the key parameters at this site. During the restoration of the key parameters, the restoration of other parameters with low levels of concentrations is also completed at the same time. The monitoring program has shown that any low levels of nitrate, radium-226,

1.1-2

radium-228, vanadium and thorium-230 are also restored when the key parameters are restored in the area.

Sulfate concentrations exceed the background only near the large and small tailings in the Grants Project area.

Uranium concentrations exceed the significant level of 0.43 mg/l, within the collection area, near the tailings. There are also six wells in Felice Acres, one in southern Broadview Acres, and one well in Murray Acres that contain concentrations of uranium exceeding the background levels. Irrigation is being used to further reduce the low levels of uranium that exceed background levels in a small area southwest of Felice Acres in Section 3.

Selenium concentrations also exceed the background levels in the collection area near the large tailing pile and in portions of Section 3 as mentioned above. None of the subdivision wells contained selenium concentrations above background.

Molybdenum concentrations exist in only one subdivision well in central Felice Acres above 0.1 mg/l. All remaining elevated molybdenum concentrations are near the large and small tailings. Migration of this constituent has been limited due to natural retardation by the alluvial aquifer.

All radium concentrations in the alluvial aquifer outside of the tailings perimeter were less than the NRC site standard. This shows that this parameter should be removed as a site standard for this site.

Vanadium concentrations exceed the site standard in none of the POC wells and in only one well close to the tailings pile. Additional monitoring of this constituent will continue. This parameter is expected to continue to decline to below background levels and should be removed as a site standard in the near future.

The thorium concentration in one well near the tailings exceeded the site standard in 2001 at a level of 0.5 pCi/l. The results of this constituent vary significantly at these low levels. The wells that exceed the standard vary in location each year, giving little confidence in results less than a few pCi/l. The site records for thorium indicate that thorium is a minor parameter at this site and that it should be removed as a site standard.

Observed background concentrations at this site were similar to those in previous years with significant selenium concentration of 0.59 mg/l and uranium concentration of 0.21 mg/l. Background sulfate concentrations also range over similar amounts as in previous years up to 1380 mg/l. No significant molybdenum concentrations were observed in the background concentrations in 2001.

Nitrate background concentrations varied up to 21.1 mg/l in 2001 showing that natural levels exist upgradient from this site above the State site standard. An area between the large and small tailings contains higher nitrate concentrations than the background levels and this small area needs additional restoration. Nitrate concentrations are not important beyond the Homestake Grants Project area and, therefore, this constituent will be easily remediated with the restoration of the remaining parameters.

Fresh-water injection into Upper Chinle well CW13, east of the East Fault, continued in 2001. This injection has resulted in the water-level elevation in the Upper Chinle aquifer, east of the East Fault to be higher than the water-level elevation in the alluvial aquifer, which, therefore, prevents recharge from the alluvial aquifer into the Upper Chinle aquifer.

Fresh-water injection continued in 2001 in Upper Chinle well CW5 just north of Broadview Acres. This injection has resulted in reversal of the Upper Chinle water flowing back to the north toward the tailings piles from this area. Collection from Upper Chinle well CE2 was initiated in 1999 and continued in 2000 and 2001 and is used in conjunction with the CW5 and CW25 injection to restore this area. Injection into CW25 was started in 2000.

All sulfate concentrations in the Upper Chinle aquifer are below background concentrations and, therefore, no restoration of this constituent is needed in the Upper Chinle aquifer.

Five Upper Chinle uranium concentrations exceeded the background concentrations in 2001. Restoration of these elevated values should result from the CE2 collection and the CW5 and CW25 injection.

The selenium concentrations in the Upper Chinle aquifer do not exceed the range in background concentrations. Two selenium values in 2001 exceeded the NRC and

State standards for selenium in the Upper Chinle aquifer near the tailings. The site standard for selenium is considered by HMC to be too low since the background values continue to be higher.

The concentrations for molybdenum exceeded the site standard in six wells in the Upper Chinle aquifer during 2001. Restoration for these locations should occur from the CE2 collection and CW5 and CW25 injection.

The nitrate standard for this site is significantly greater than any of the concentrations observed in 2001 in the Upper Chinle aquifer showing that this parameter is not significant in this aquifer.

None of the radium, vanadium or thorium-230 concentrations exceeded the NRC site standards for these parameters in the Upper Chinle aquifer wells in 2001 showing that these parameters are not important in this aquifer as expected due to their very limited concentrations in the alluvial aquifer.

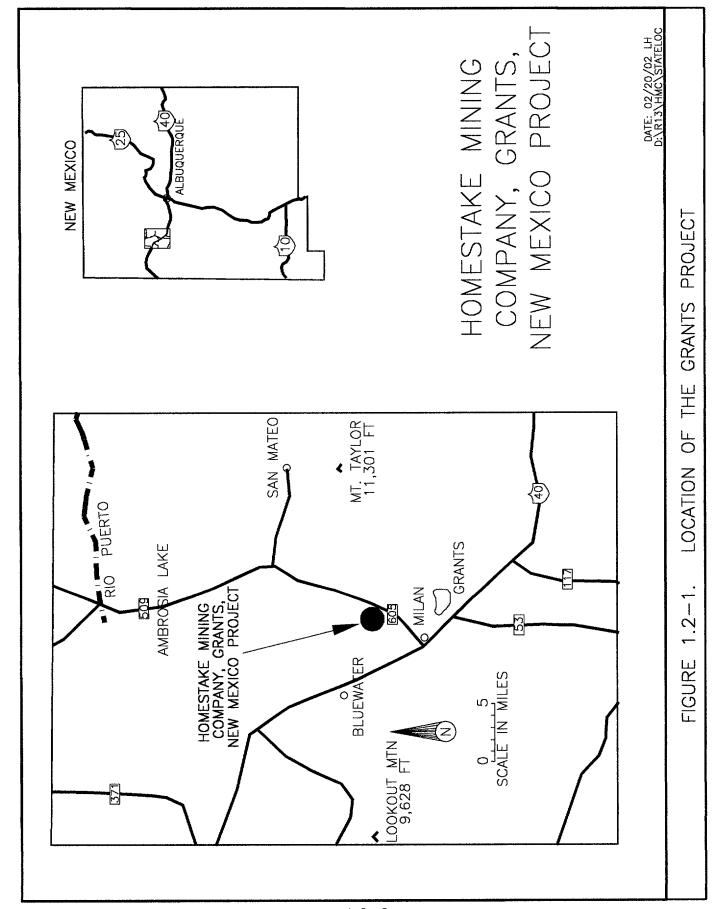
The ground-water flow in the Middle Chinle aquifer in 2001 is very similar to that observed previously. Fresh-water injection started in December of 1997 into well CW14. The fresh water is building up a mound of ground water in this area, which will result in reversing the flow of Middle Chinle water back toward the alluvial subcrop. Well CW44 is being used for irrigation supply, which will increase the flow from Broadview Acres in the Middle Chinle aquifer to the south.

Water quality in the Middle Chinle aquifer is generally good with all concentrations meeting the background sulfate concentrations. Uranium and selenium concentrations in the western portion of Felice Acres are only slightly above significant levels due to the alluvial recharge to the Middle Chinle aquifer just south of Felice Acres. Irrigation of this water is being used to reduce these slightly elevated concentrations in western Felice Acres. In the Middle Chinle formation both uranium and selenium are naturally occurring elements so it is difficult to evaluate the total impact on the aquifer.

Molybdenum, nitrate, radium, vanadium and thorium-230 concentrations in the Middle Chinle aquifer all meet the site standards for these constituents and show that only uranium and selenium are the important parameters relative to this aquifer system.

1.2 INTRODUCTION

This report, as required by the New Mexico Environmental Division (ED) discharge plan DP-200 and the Nuclear Regulatory Commission (NRC) License SUA-1471, presents results of the 2001 annual ground-water monitoring program at Homestake's Grants Project. Homestake Mining Company (HMC) conducted uranium milling operations five miles northeast of Milan, New Mexico from 1958 to 1990 (see Figure 1.2-1). Referred to as the Grants Project, HMC deposited uranium tailings from the alkaline (high pH) Grants mills into two unlined piles (large and small tailings) that overlie San Mateo alluvium. The San Mateo alluvium is simply referred to as the alluvium or alluvial aquifer in this report. In 1977, due to concerns about ground-water selenium levels, HMC installed a system of wells and pumps in order to inject fresh water into the alluvium at the property boundary and to withdraw contaminated water from the alluvium near the tailings.


Previous monitoring reports have been published in quarterly, semi-annual and annual reports¹, which were presented to the ED and the NRC.

Four subdivisions, Broadview, Murray and Felice Acres and Pleasant Valley Estates, are adjacent to the HMC site. These subdivisions are shown on the various figures of the Grants Project area.

Monitoring data for the ground water west of the project site was included in the 1995 through 2001 reports. This area has been designated the "West Area" and it is so labeled on the figures of this report.

The following information outlines the format of this report. The table of contents next to the cover page contains only the major section numbers and titles. A complete table of contents is presented behind the tabs of all of the individual sections, which also includes the list of figures and tables for the section. Figures and tables are numbered by sub-sections and, therefore, located after the text of each sub-section with figures being presented before tables. The "West Area" figures have been printed on the back of the page to enable the west and project areas to be viewed simultaneously.

¹ See Hydro-Engineering 1983b, 1983c, 1984a, 1984b, 1984c, 1985a, 1985b, 1985c, 1985d, 1986a, 1986b, 1986c, 1987a, 1987b, 1988a, 1988b, 1990, 1991, 1992, 1993a, 1994, 1995, 1996, 1997, 1998, 1999, 2000a and 2001a.

1.2-2

SECTION 2

TABLE OF CONTENTS

GROUND-WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

Page Number

2.0	OPE	RATION	IS	
	2.1	CURRE	NT OPERA	TIONS SUMMARY 2.1-1
		2.1.1	R.O. PLA	NT
		2.1.2	COLLECT	TON
			2.1.2.1	ALLUVIAL
			2.1.2.2	UPGRADIENT
			2.1.2.3	UPPER CHINLE
			2.1.2.4	QUANTITY OF CONSTITUENTS COLLECTED
				FROM THE ALLUVIAL AQUIFER 2.1-4
		2.1.3	INJECTIO	DN
			2.1.3.1	BROADVIEW AND MURRAY ACRES 2.1-4
			2.1.3.2	R.O. PRODUCT
			2.1.3.3	UPPER CHINLE 2.1-5
			2.1.3.4	MIDDLE CHINLE 2.1-6
			2.1.3.5	
		2.1.4		TION
		2.1.5	TAILING	5 CONDITIONS 2.1-7
		2.1.6	TOE DRA	IN CONDITIONS 2.1-7
		2.1.7	LINED E\	APORATION PONDS 2.1-8
		2.1.8	IRRIGAT	ION 2.1-8
	2.2	FUTURI	E OPERAT	ION 2.2-1

FIGURES

2.1-1	LOCATION OF PRESENT INJECTION AND COLLECTION SYSTEMS WITH START OF OPERATION DATES	2.1-10
2.1-2	AVERAGE MONTHLY COLLECTION RATES FOR THE ALLUVIAL AND UPPER CHINLE AQUIFERS	2.1-11
2.1-3	AVERAGE MONTHLY INJECTION RATES FOR THE ALLUVIAL AND UPPER CHINLE AQUIFERS	2.1-12
2.1-4	LOCATIONS OF TAILINGS DEWATERING WELLS, TOE DRAINS AND SUMPS	2.1-13

SECTION 2 TABLE OF CONTENTS

GROUND-WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT (continued)

Page Number

FIGURES (continued)

CUMULATIVE VOLUME OF COLLECTION FROM TAILINGS
DEWATERING WELLS AND TOE DRAINS

TABLES

2.1-1	QUANTITIES OF CONSTITUENTS COLLECTED	.2.1-	15
-------	--------------------------------------	-------	----

2.0 OPERATIONS

2.1 CURRENT OPERATIONS SUMMARY

The Grants Project ground-water remediation system consists of collection of contaminated ground water near the tailings and injection of fresh water and R.O. product water downgradient. These collection and injection systems continued to operate in 2001 along with the reverse osmosis (R.O.) plant to treat the majority of collection. The R.O. produces an R.O. product that is much better quality than the natural alluvial water and it is used for injection in place of some of the fresh water to aid the restoration program. Figure 2.1-1 on page 2.1-10 shows the location of the present (end of 2001) injection and collection systems along with their starting dates of operation. This figure also shows the location of the R.O. plant. The pink areas on Figure 2.1-1 show where the tailings piles have been re-contoured to drain and have interim cover or final reclamation barrier. The red "X" symbols show the location of alluvial collection wells. The green dots depict locations of dewatering wells in the large tailings. The green line around the large tailings indicates the location of the toe drain, which intercepts seepage from the tailings and prevents it from moving into the uppermost part of the alluvial aquifer. The open blue and cyan circles on Figure 2.1-1 show the locations where fresh water or R.O. product is presently being injected, and the solid blue circles show where re-injection is occurring. Collection wells used for re-injection are shown in magenta. The cyan circles indicate fresh-water injection into the Upper (CW5, CW13 and CW25) or Middle (CW14) Chinle aquifers. The three points of compliance (POC) are also shown on this figure as black boxes. Water collected from the site is pumped to the R.O. plant or discharged into lined collection ponds or one of two lined evaporation ponds (light blue areas).

The area where the ground-water flow is controlled by the fresh-water injection and collection system is called the "Collection Area" and is shown by the yellow crosshatched pattern on Figure 2.1-1. All of the alluvial ground water within the collection area converges to the collection wells.

2.1-1

2.1.1 R.O. PLANT

The R.O. plant consists of a pre-treatment unit, which has a discharge to the evaporation ponds and feeds the 300-gpm low-pressure R.O. unit. The R.O. product from the low-pressure unit is discharged to the injection wells, while the brine from the low-pressure unit feeds a 75-gpm high-pressure R.O. unit. The R.O. product from the high-pressure unit also goes to the injection wells, while the brine from the high-pressure R.O. unit is discharged to the evaporation ponds. Some tailings collection water was added to the R.O. plant during the first half of 2001, which averaged only 5.0 gpm based on a yearly average. The R.O. product injection piping has the capability of being discharged to the J and WR injection wells and into the X wells to the south and east of the small tailings pile. Through the end of 2001, R.O. product water was discharged into the X line and injected into wells X1 through X10, X28 through X31 and into wells K6, KE, KD and KM.

The R.O. product water injected into wells K6 and KM has been for testing of restoration of R.O. product water in the K area. The results continued to show that the R.O. product water is much more efficient at reducing the uranium and molybdenum concentrations than the fresh water.

2.1.2 COLLECTION

The alluvial aquifer collection rate was very similar to the 2000 rate in 2001 because the R.O. unit was used fulltime in both years. Upgradient collection continues north of County Road 53, collecting background alluvial aquifer water for transfer to the drainage system further west (triangle symbols on Figure 2.1-1). This collection reduces the amount of alluvial water flow into the tailings area. Upper Chinle collection continued from well CE2 as injection water for some of the tailings flushing.

2.1.2.1 ALLUVIAL

The red X's on Figure 2.1-1 show the location of five lines of collection wells. The S and D-lines are adjacent to the large tailings, and the K and C-lines are adjacent to the small tailings. No new wells were added to the collection system in 2001. All of the K line collection wells south of the small tailings had been turned off at the end of 2001. The L-line is south of the small tailings. Alluvial water is pumped from these lines of collection wells to the R.O. plant or it is pumped to the re-injection wells. Figure 2.1-2 on page 2.1-11 presents collection rates for the last six years at the Grants Project. The alluvial collection system rates are shown on this figure as red squares, which was fairly steady in 2001. Alluvial collection averaged 276 gpm in 2001. An additional average rate of 41 gpm was also pumped from the alluvium for re-injection in 2001 (magenta X's).

2.1.2.2 UPGRADIENT

Collection of alluvial water upgradient of the tailings piles started in January of 1993 and continued through 2001. Well P1 was not pumped in 2001, while well P2 was pumped continuously throughout the year (triangle symbols on Figure 2.1-1). Well P3 was pumped early in 2001 for approximately one month while well P4 was pumped for approximately ten days. This upgradient water was transferred to the next drainage channel to the west. The transfer of this upgradient water is intended to prevent this alluvial water from entering the Grants Project area at the north side of the large tailings. The upgradient collection rate for this effort averaged 54 gpm during 2001 (see green triangles on Figure 2.1-2). Monthly rates were not collected for the upgradient wells and therefore only the yearly average is presented for 2001 on Figure 2.1-2.

2.1.2.3 UPPER CHINLE

Figure 2.1-2 also shows the collection rate for Upper Chinle collection well CE2 (see Figure 5.1-1B for location), which is on the south side of the collection ponds. Upper Chinle collection was started in well CE2 in 1999 and is expected to continue for several years. Well CE2 was used to supply water to the large tailings pile for the tailings flushing for 2001. The yearly average collection rate from the Upper Chinle was 27.5 gpm.

2.1-3

2.1.2.4 QUANTITY OF CONSTITUENTS COLLECTED FROM THE ALLUVIAL AQUIFER

Table 2.1-1 (page 2.1-15) presents the quantities of chemical constituents collected from the ground-water system, the tailings and the toe drains. The ground-water collection system has produced an average pumping rate of 249 gpm between 1978 and 2001. The collection rate that has been re-injected into the alluvial aquifer is not included in the values in Table 2.1-1. The quantity of constituents removed in 2001 was computed by multiplying the average concentration of a particular constituent for each collection well by the volume of water pumped from each well for that year. The average concentration was computed by dividing the total gallons of water pumped from the collection system in the year into the total number of pounds and converting to mg/l.

2.1.3 INJECTION

The fresh-water and R.O. injection system, which aids in the reversal of the piezometric surface back toward the collection wells, consists of a line of injection wells which is oriented generally west-northwest from the south side of the small tailings to the north side of Murray Acres and continuation of this line to the northwest and north to the north side of Section 27 (Figure 2.1-1). This injection line also extends on the southeast and east sides of the small tailings and is called the X-line in the small tailings area and consists of wells X1 through X10 and wells X28 through X31. The R.O. product water was injected into the X-line during 2001. The R.O. product water has been injected in the X-line wells starting at well X28 and continuing to the northeast through well X10. R.O. product water was also injected into wells KM, KE, KD and K6 in 2001.

2.1.3.1 BROADVIEW AND MURRAY ACRES

The Broadview Acres injection system started in 1977 with the G line on the north side of this subdivision. Injection into the majority of the G-line was discontinued in mid-April in 2000 in order to supply more water to injection wells near the collection area. The J-line, wells X1 through X10, and wells X28 through X31 are also considered part of

the Broadview Acres injection system. The M line of the Murray Acres injection system was initially used in 1983. All wells adjacent to the northeast corner and to the north and west of Murray Acres are included in the Murray Acres injection system. This system includes all of the M and WR injection wells. Injection into the M-line west of well WR1R was discontinued at the end of September of 2000 and injection into the WR-line, north of WR10, began. Figure 2.1-3 (page 2.1-12) presents the combined Broadview and Murray Acres fresh water injection rates for the last six years, which averaged 493 gpm during 2001.

2.1.3.2 R.O. PRODUCT

Figure 2.1-3 also shows the rates of R.O. product water injection (see magenta stars) that were included in the total Broadview Acres rates prior to this annual report. The R.O. product injection averaged 222 gpm in 2001.

2.1.3.3 UPPER CHINLE

From 1984 through early 1995 the Upper Chinle injection system consisted of injecting fresh water into Upper Chinle well CW5 located on the north side of Broadview Acres. This effort restored most of the area in the Upper Chinle aquifer between the two faults. Injection into well CW5 was resumed in April of 1997 to complete the restoration of this aquifer.

Restoration of the Upper Chinle east of the East Fault started in 1996 by developing a head in the Upper Chinle aquifer that was greater than the alluvial head. Injection of fresh water into well CW13, an Upper Chinle well, started in June, 1996 and has prevented alluvial water from entering the Upper Chinle east of the East Fault. Injection in Upper Chinle well CW25, located on the western edge of the Upper Chinle outcrop east of Murray Acres, began in 2000. Injection into CW25 will develop a head in the Upper Chinle aquifer that forces flow in the Upper Chinle back to collection well CE2. The red squares on Figure 2.1-3 present the monthly average injection rates for 2001 into Upper Chinle wells CW5, CW13 and CW25, which averaged 61 gpm.

2.1.3.4 MIDDLE CHINLE

Injection of fresh water into Middle Chinle well CW14 was started in December of 1997. This injection was started to prevent the alluvial water that recharges the Middle Chinle on the south side of Felice Acres from moving north of Broadview Acres. The injection rate averaged 31 gpm in 2001. This injection has prevented the movement of constituents further to the north.

2.1.3.5 SECTIONS 28 AND 29

A test of fresh-water injection was initiated in late 1999 and conducted through January of 2000 by pumping San Andres well 951, which is located in Section 20, (see Figure 8.0-1A for location of supply well 951) and injection was plumbed to alluvial wells 682, 656, 894, 633 and 655. This fresh-water injection in Sections 28 and 29 is planned to block the low concentrations in Section 28 until irrigation can be used to reduce these low concentrations. This injection did not occur in 2001 but is expected to be started in early 2002.

2.1.4 RE-INJECTION

Alluvial water containing low concentrations of contaminants is being collected and is then re-injected into higher concentration alluvial areas in the collection area in order to initiate restoration of those areas. This lower concentration water will be as effective (see sulfate, uranium, selenium and molybdenum concentrations in plots for wells T and TA) as fresh water during the initial stages of restoration and, therefore, this is a beneficial use of this slightly contaminated ground water. Water collected from the K-line on the south side of the small tailings and L-line was re-injected into alluvial wells X11, X12, X21 through X24, X26, X27, 1E, DAA, DAB, DL, DW and DY in 2001 and averaged 41 gpm.

2.1.5 TAILINGS CONDITIONS

Tailings wells have been installed from 1994 through 2001. Data collected from these wells has been used to determine the amount of water in the re-contoured, stabilized tailings that is drainable. The tailings wells have also been useful in the evaluation of the tailings dewatering program. No dewatering of the tailings occurred in 1998 and 1999 due to limited capacity in the evaporation ponds except for a small rate in late 1999 for some testing. The complete dewatering program was restarted in 2000 and operated all of 2001.

Figure 2.1-4 presents the locations of tailings wells that were pumped in 2001. The cumulative volume of tailings water pumped from 1995 through 2001 is presented on Figure 2.1-5. A total volume of 80 million gallons of water had been removed from the tailings by the end of 2001. A total of 31 million gallons was pumped from the tailings in 2001. The yearly average collection rate, including down periods, from the tailings was 60 gpm in 2001.

Tables B.1-1 and B.1-2 of Appendix B present chemical analyses of tailings well water for 2001.

2.1.6 TOE DRAIN CONDITIONS

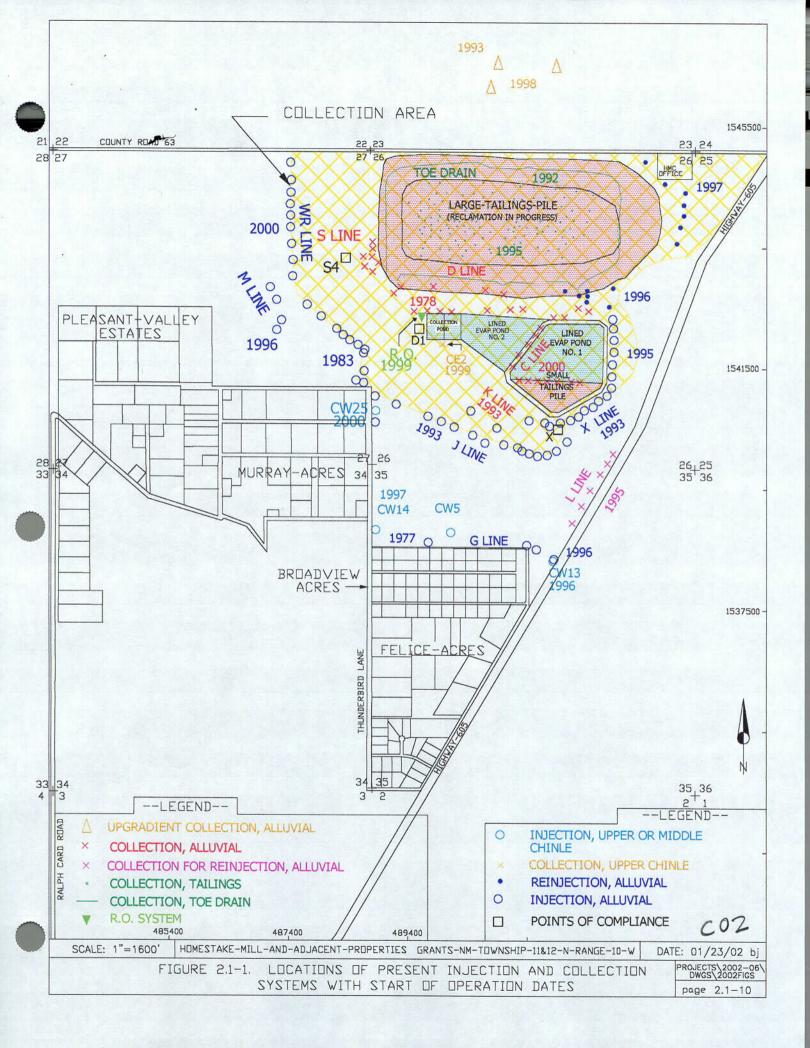
A series of toe drains has been installed around the large tailings pile to intercept perched ground water seeping from the tailings into the alluvium. The locations of the toe drains and their associated sumps are also shown on Figure 2.1-4. Ten sumps are located around the perimeter of the large tailings pile with two of these sumps tied to the old tailings decant towers (reclaim sumps). Eight of these sumps are connected to the toe drain systems, which are situated around the perimeter of the tailings.

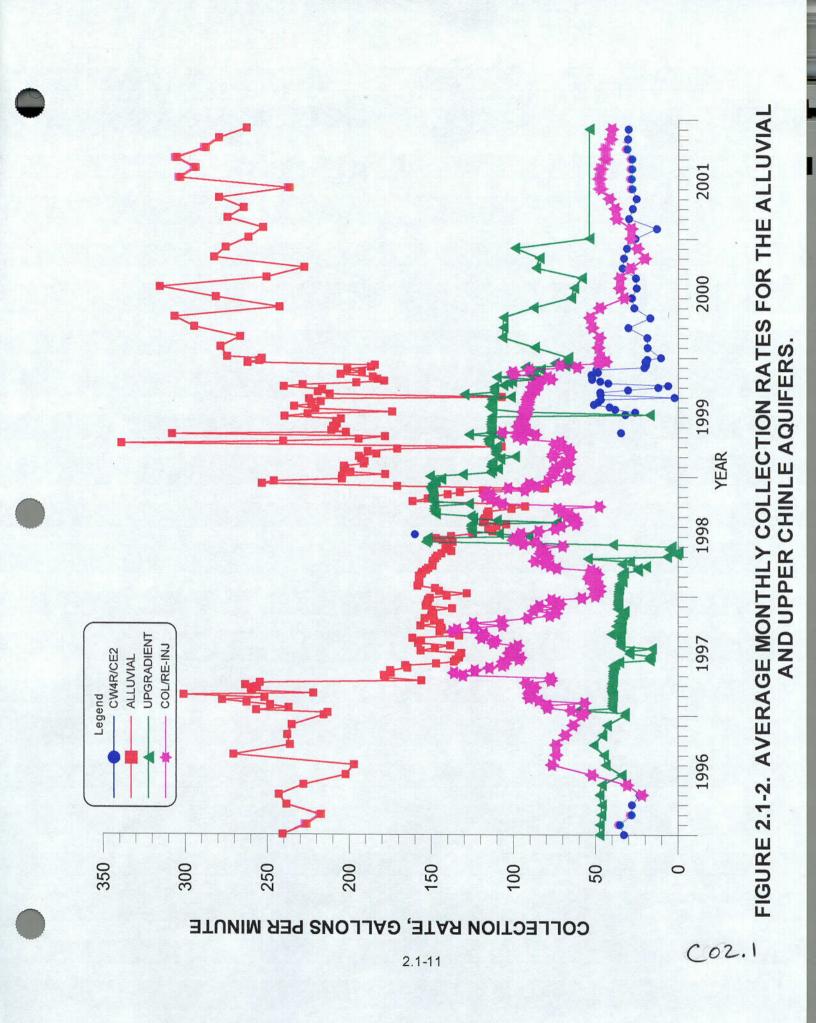
Figure 2.1-5 shows that greater than 127 million gallons of water has been pumped from the toe drains. Approximately 18 gpm of water was collected in 2001 from the toe drains, which is a 3 gpm increase from the 2000 value.

Table 2.1-1 also presents the 2001 quantity of constituents collected from the toe drains. Samples from the toe drains for 2001 are presented in Tables B.2-1 and B.2-2 of Appendix B.

2.1.7 LINED EVAPORATION PONDS

The use of lined evaporation collection ponds began in October of 1986 when the two small collection ponds were constructed. The large evaporation pond, No. 1, on the small tailings began receiving water in November of 1990. The usage of the second large evaporation pond began in March of 1996.

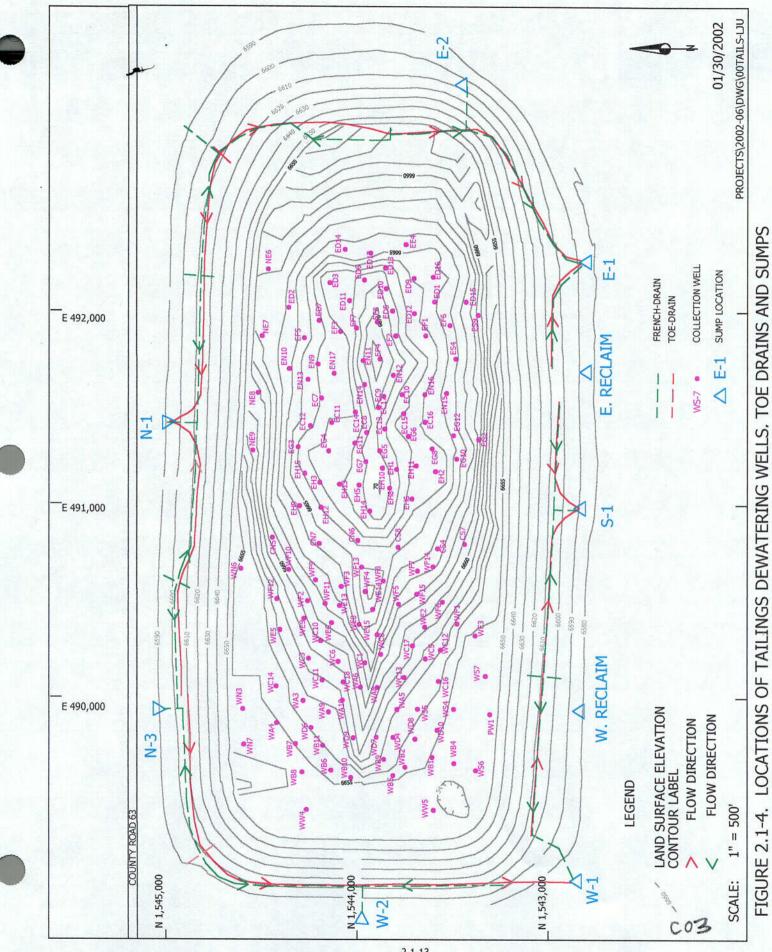

The majority of the water from the collection system, and some water from the tailings dewatering wells and toe drains is pumped to the R.O. plant as feed water. The majority of the tailings water flows directly to the collection ponds. Excess water is transferred from the East Collection pond to the No. 2 evaporation pond. When necessary, water is transferred from the No. 2 evaporation pond to the No. 1 evaporation pond. Both ponds use spray systems to enhance evaporation.

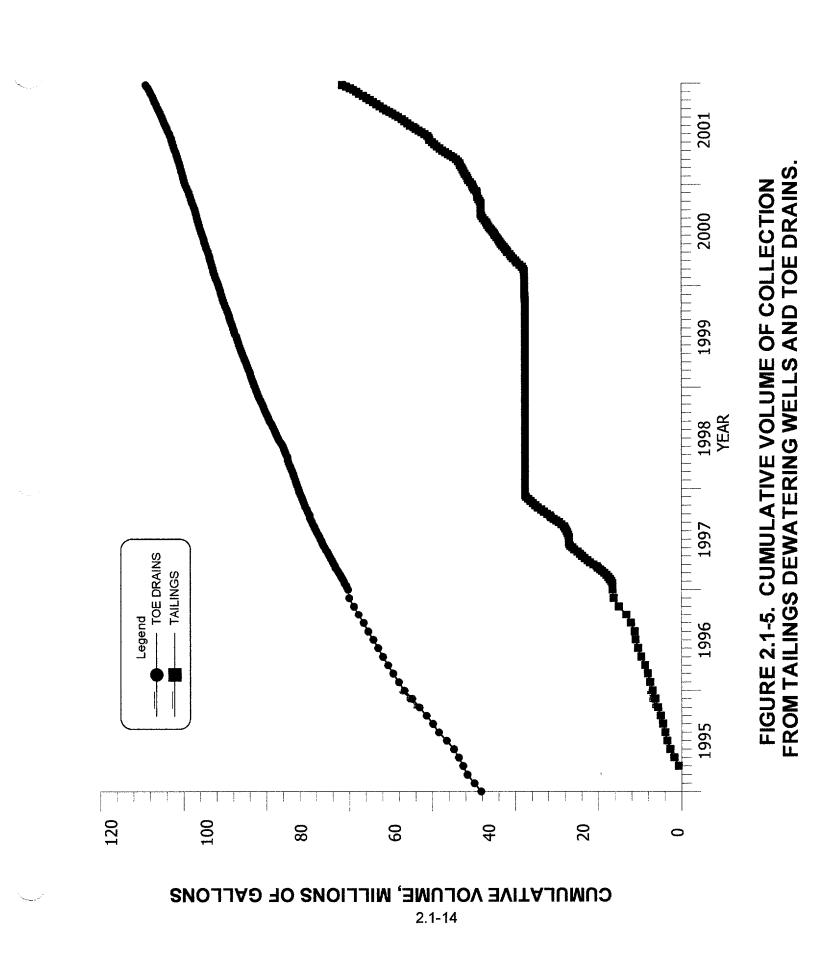

A few water samples have been collected from the No. 1 and No. 2 large evaporation ponds, discharge to the evaporation ponds from the East Collection pond (E COLL POND), and the West Collection pond (W COLL POND). The results of these samples are presented in Tables B.3-1 and B.3-2 of Appendix B.


2.1.8 IRRIGATION

Two irrigation systems were operated in 2001. A 150-acre center pivot was installed in the southwest quarter of Section 33 and 120 acres of flood irrigation in the eastern half of Section 34 were developed. Figures 4.1-4A and 4.1-4B show the supply wells for these two irrigation areas. Wells 631, 632, 862, 863, 869, 648, 649, 647, 496, 653, 657, 658 and CW44 were used for the irrigation supply in 2001. These supply wells are piped together and are used on only one irrigation area at a time. These areas were

successfully irrigated during the entire 2001 growing season. A total of 695 AC-FT of water was applied to the two irrigation areas in 2001.





2.1-12

C02.2

2.1-13

YEAR	SOURCE	TOTAL VOLUME	SULFATE (SO4) CONC AMT	(S04) AMT	URANIUM (U)	(0)	MOLYBDENUM (MO)	(OM) WO	SELENIUM (SE)	M (SE)
		(GAL)	(MG/L)	(FB)	(MG/L)	(f)	(MG/L) ((FB)	(MG/L) (I	(IB)
1978	G.W.	27670033	5200	1200620	35	8081	40	9236	2	467
1979	G.W.	46371629	5200	2012095	35	13543	4	15478	5	774
1980		39385860	5200	1708978	<u>ب</u>	11503	\$:	13146	2	657
1982		159848075	0025	CCIC/65	ຊ ເ	26/02 46684	4 €	30578	~ ~	1529 7660
1983	0.W.	167018540	5200	7247043	3 8	48778	₽ ₽	255746	4 0	20002
1984	G.W.	203258522	5200	8819519	8	59362	9 9	67842	2	3392
1985	ט.ע.	194074421	5200	8421015	35	56680	\$	64777	2	3239
1986	G.W.	199326030	5200	8648886	35	58214	\$	66530	2	3326
1987	G.W.	180881740	5200	7848576	35	52827	4	60374	2	3019
1988	G.W.	166460826	5200	7222843	35	48615	40	55560	2	2778
1989	G.W.	175780800	5200	7627243	35	51337	40	58671	2	2934
1990	G.W.	164378919	5200	7132508	35	48007	6	54865	2	2743
1991	G.W.	171497720	5200	7441397	35	50086	6	57242	7	2862
2661		128398849	4925	5276234	27.2	29134	35.9	38419	1.60	1718
7661	Ë	8544670	12117	864006	53.2	3793	106.5	7595	1.73	123
1993	6.W.	115795020	5011	4841203	28.1	27130	45.4	43885	1.47	1425
		18357680	12117	1856262	53.2	8150	106.5	16315	1.73	265
4661 -	6.W.	98294087	4423	3624762	26.0	21146	27.3	22349	1.42	1162
		18337680	12117	1854240	53.2	8141	106.5	16299	1.73	264
2661 2001		108306398	3256	2942827	16.1	14553	19.2	17355	1.65	1491
1995		1/711370	11370	1680500	54.6	6908	94.4	13952	2.25	332
C66T		04/9069	1618	403680	36.1 1	1778	89.7	4420	0.15	2
9661	۱۹	122064160	3899	3967919	20.9	21225	26.8	27259	1.92	1950
1006		010104010	/5CII	1484295	40.4	0/65	105.0	13509	1.29	166
1007		DAAAFEES	ADEC	67177/	40.2	1/05	108.0	8236	0.18	14
1997		1202001	11004	0/00000	20.9 41 0	76007	4.004	/9907	1.5	2456
1997	TATIS	21202000	10084	1877575	0110 VE 0	04.20	0.00T		10.0	01
1998	N.S.	74459130	8805	3161966	0.04 70 A	4010	47.4	10420	0.14	9 i
1998	TOF	10321780	9870	850257	2.C2 7.C4	SAAF	0.10	C7017	1.00 1	1011
1999	N.S	117752408	EYEE	3305077	16.5	16314	0.11	0200 1 A F A F		6
1999	TOE	8809890	11560	840076	2.47	LTCOT	0.71	CHCH1	00'7	47N7
1999	TALS	120550	9420	9478	404	41 41	111 5		0.40	,
2000	N.	146609842	3358	4108868	18.8	10020	900	3112 JE206	6T'0	0
2000	TOE	8032870	9734	652590	58.6	3070	118.0	7011	15.1	+/C7
2000	TAILS	12446810	9710	1008685	37.8	3927	127.0	13193	0.30	3 F
2001	G.W.	144925056	2770	3350438	19.6	23707	21.4	25884	1.65	1996
2001	TOE	9606280	9935	796529	43.1	3455	95.7	7673	0.78	59
2001	TAILS	31465370	8688	2281555	34.6	9080	89.2	23425	0.19	30
SLIM G.W.		3 138 636 760	-	04 667 640		705 062		010 LC0		
SUM TOE		127.183.420	•	12,002,462		40 584		710/076		/16/00
SUM TAILS	S	80.412.760		6.253,103		26.048		067/201		C11/1
COMBINED SUM	MNS O	3,346,232,940	-	142,913,175		871,595		1,100,908		52,458
11001										
	Average cur	Average concentrations for 1978 to 1991 were used in calculating the quantities of constituents removed Concentrations from the collection welle have credually documented from 1000 there is 1000	i 1991 were us	sed in calculati	ng the quantiti	es of constit	uents remove	ġ.		
	G.W. = Gm	concentrations invinue concentor were right grautary decreased from 1976 brough 1991. G.W. = Graund water: TOF = The desire on adva of failings: TATIC - 1 and filling collocities must	weis liave yi drains on edv	luudliy vecreds na of tailings:		urougn 199	l. Solitan and the			
		the second second		je vi umunya,		ווירה פלא וווומה	CINNI MEID			

TABLE 2.1-1. QUANTITIES OF CONSTITUENTS COLLECTED.

معمين

2.1-15

2.2 FUTURE OPERATION

Restoration in 2002 is to continue as a combination of fresh-water and R.O. product injection and contaminated water collection to maintain the overall piezometric gradient reversal between the lines of injection (M Line and J Line) and collection near the tailings piles. The reverse osmosis (R.O.) plant will be increased to 600 gpm in 2002. This plant will process 600 gpm of collection water which should result in a discharge to the lined evaporation pond of approximately 160 gpm and approximately 440 gpm of R.O. product injection into the alluvium. The larger collection rate and use of the very good quality R.O. product for injection will continue to increase the progress in restoration.

Water collected from the alluvial and Chinle aquifers, where there are relatively low levels of selenium and uranium, will continue to be used for collection for re-injection in the initial phase of restoration. This re-injection will occur in the alluvium where concentrations are greater than those of the injection water until such time as injection with fresh water or R.O. product water will better complete the restoration. The low concentration re-injection water will be limited to areas within the reversal zone upgradient of the J and M injection lines. For the purpose of this document, the reversal zone is called the collection area. To date, re-injection has occurred in wells X5 through X27, 1A, D2 through D4 and DAA, DAB, DL, DW and DY.

Collection from Upper Chinle well CE2 will continue to intercept concentrations in this aquifer. Injection into Upper Chinle wells CW5, CW13 and CW25 is planned to continue to control flow in these areas of the Upper Chinle aquifer. The injection into well CW14 will be continued to build the head in this area of the Middle Chinle aquifer to prevent alluvial water from flowing into this portion of the Middle Chinle aquifer.

Irrigation with water from Sections 3 and 33 and southern Felice Acres is planned for the entire growing season in 2002. A third irrigation area is planned for Section 28, which, used along with the Sections 28 and Section 29 fresh-water injection, should start restoration of these slightly elevated concentrations.

2.2-1

SECTION 3

TABLE OF CONTENTS

·~~~

GROUND-WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

Page Number

3.0	SITI	E STANDARDS AND BACKGROUND CONDITIONS	3.1-1
	3.1	SITE STANDARDS	3.1-1
	3.2	GROUND-WATER BACKGROUND WATER QUALITY	3.2-1
		COMPARISON OF SITE STANDARDS TO BACKGROUND	

FIGURES

3.2-1	BACKGROUND GROUND-WATER QUALITY	3,2-3
-------	---------------------------------	-------

TABLES

3.1-1	GRANTS PROJECT WATER QUALITY STANDARDS	3.1-1
3.3-1	COMPARISON OF UPPER LIMIT OF BACKGROUND WATER QUALITY AND SITE STANDARDS	3.3-1

3.0 SITE STANDARDS AND BACKGROUND CONDITIONS

3.1 SITE STANDARDS

Six water-quality site standards (U, Se, Mo, Ra226 + Ra228, Th230 and V) have been set for the Homestake site by the United States Nuclear Regulatory Commission (NRC). These site standards are applicable at three points of compliance. Points of compliance wells are S4, D1 and X (see Figure 2.1-1 for locations). Table 3.1-1 presents the six site standards (see Table 3.3-1 for comparison with background). The established site standards are presently exceeded by the full range in background values for many of the constituents. Therefore, naturally occurring concentrations will cause compliance issues at this site. The New Mexico standards for uranium, selenium, molybdenum, radium-226 plus radium-228, sulfate, chloride, TDS and nitrate for this site are also presented in Table 3.1-1. Homestake has recently submitted an updated analysis of the full range of background (see Hydro-Engineering 2001c) which should change several of the site standards.

Constituents	Homestake Standards	
	NRC	New Mexico
Uranium	0.04	5
Selenium	0.1	0.12
Molybdenum	0.03	1.0@
Vanadium	0.02	
RA-226 + Ra-228	5	30
Thorium-230	0.3	
Sulfate	***	976
Chloride		250
TDS		1770
Nitrate		12.4

TABLE 3.1-1. GRANTS PROJECT WATER-QUALITY STANDARDS.

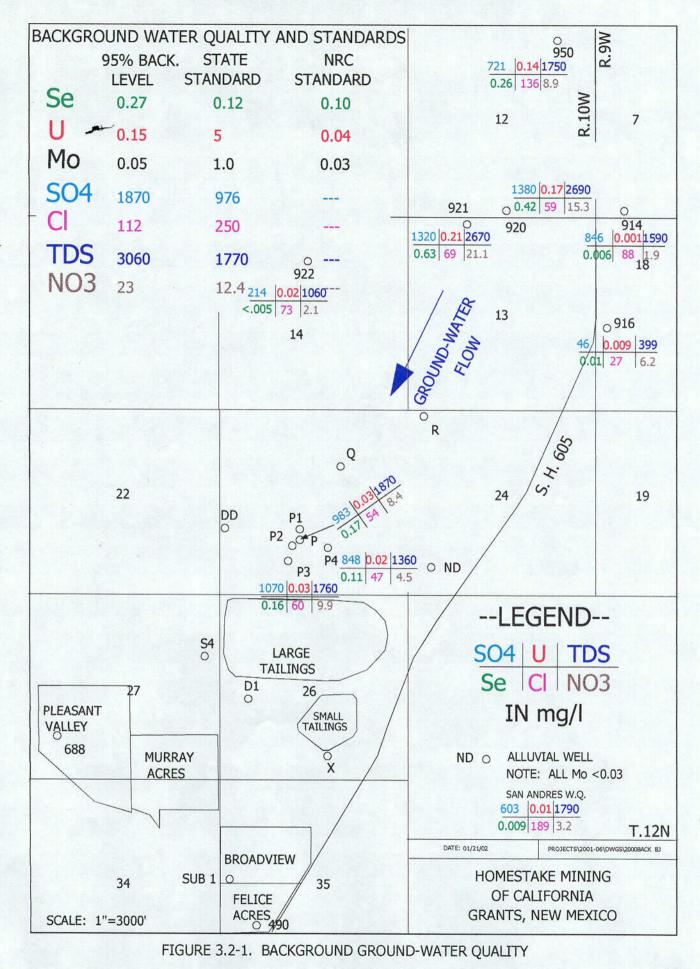
NOTE: All concentrations are in mg/l except: Ra-226 + Ra-228 and Th-230, which are in pCi/l. @ = Irrigation Standard

3.2 GROUND-WATER BACKGROUND WATER QUALITY

The hydrologic background conditions at the Grants site are those that exist upgradient or north of the large tailings pile. These conditions have been monitored since 1976. Ground-water flow in the San Mateo alluvial system is generally from the northeast to the southwest (see Figure 3.2-1). Lobo Creek joins San Mateo Creek at the Homestake site, although neither creek has a well-defined channel at the site. Surface-water flow exists only after extreme precipitation and then generally only within some reaches of the channel.

Hydrographs of upgradient wells that have been used to define the background hydrologic conditions of the alluvial aquifer are presented in Section 4 of this report. Wells DD, P, P1, P2, P3, P4, Q, R and ND, located just north of the large tailings on the Homestake property, have been used for monitoring alluvial background water quality.

Additional alluvial background wells located further north were sampled in 2001 (wells 914, 916, 920, 921, 922 and 950, see Figure 3.2-1 for locations). Information gathered from these wells has been used to further define the piezometric surface and water-quality conditions in the upgradient alluvial aquifer.


Figure 3.2-1 presents the latest 2001 water-quality data for the background wells¹ for six parameters: sulfate, uranium, selenium, chloride, TDS and nitrate. All molybdenum concentrations in these upgradient wells are less than 0.03 mg/l. The sulfate concentrations for these wells upgradient of the large tailings vary from 46 to 1380 mg/l in 2001. Uranium concentrations also vary over a large range, from 0.001 to 0.21 mg/l. Three natural uranium concentrations are nearly four times the NRC site standard of 0.04 mg/l. Selenium concentrations vary over an even larger range, from less than 0.005 to 0.63 mg/l. The largest 2001 background for selenium is six times the NRC site standard.

Chloride concentrations in water sampled from the upgradient wells ranged from a low of 27 mg/l to a high of 136 mg/l. The TDS concentrations varied from 399 to 2690 mg/l. Nitrate concentrations also vary naturally over a large range in the alluvial

¹ Wells P, P3, P4, 914, 916, 920, 921, 922 and 950.

aquifer from 1.9 to 21.1 mg/l in 2001. Time versus concentration plots for upgradient wells P, P3 and P4 are presented in Section 4.3 of this report.

The 95th percentile of the historical background data for this site was defined by ERG (1999a and 1999b). These document with a hydrologic support document (Hydro-Engineering 2001c) were submitted in 2001 to the NRC with a request to adjust some of the site standards based on the full range of natural background. The 95% level is being used to define the upper limit of background. The average background concentration has been used in the past for establishing the standards and discussion of background values. The 95% level is a better value for use in background discussions because it better defines the natural full upper limit of background. Figure 3.2-1 presents the 95% background levels for the Grants constituents.

COH

3.3 COMPARISON OF SITE STANDARDS TO BACKGROUND

The range in concentrations (see Section 3.2) in the upgradient wells during 2001 was such that water in 6 out of 9 concentrations in background wells¹ were equal to, or exceeded, the NRC site standards for selenium. Additionally, 3 out of 9 uranium values were equal to, or exceeded, the NRC site standard. These site standards were set based on an average of concentrations in three samples² collected from December 1988, January 1989 and February 1989 from upgradient well P. As shown by the present data, there is a large natural areal variability in the background water quality. Therefore, the historical database for all of the background wells more adequately defines background concentrations as used in the two ERG (1999a and 1999b) studies. Naturally occurring background variation is demonstrated by the uranium concentrations, where concentrations in the Fall of 2001 varied from less than 0.001 to 0.21 mg/l (see red values on Figure 3.2-1). The higher values are four times the site standard of 0.04 mg/l.

Table 3.3-1 presents the 95th percentile of background concentrations (see ERG 1999a and 1999b for computation of 95% levels) for selenium, uranium, molybdenum, sulfate, chloride, TDS and nitrate along with the State and NRC standards. The 95% values for selenium and uranium are significantly greater than the NRC standards, while sulfate, TDS and nitrate levels are significantly greater than the State standards.

Constituents	95% Background Level	State Standard	NRC Standard
Selenium	0.27	0.12	0.1
Uranium	0.15	5	0.04
Molybdenum	0.05	1.0@	0.03
Sulfate	1870	976	
Chloride	112	250	
TDS	3060	1770	
Nitrate	23	12.4	
IOTE: All values an	e in mg/l		

TABLE 3.3-1. COMPARISON OF UPPER LIMIT OF BACKGROUND WATER QUALITY AND SITE STANDARDS.

@ = Irrigation Standard

¹Wells P, P3, P4, 914, 916, 920, 921, 922 and 950.

² Average of 3 samples from well P in 1988 and 1989.

SECTION 4

TABLE OF CONTENTS

GROUND-WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

Page Number

4.0	ALLU		QUIFER MONITORING	4.1-1
	4.1	ALLUVI	AL WELL COMPLETIONS	
	4.2	ALLUVI	AL WATER LEVELS	4.2-1
		4.2.1	WATER-LEVEL ELEVATIONS - ALLUVIAL	4.2-1
		4.2.2	WATER-LEVEL CHANGE - ALLUVIAL	4.2-2
	4.3	ALLUVI	AL WATER QUALITY	4.3-1
		4.3.1	SULFATE - ALLUVIAL	4.3-1
		4.3.2	TOTAL DISSOLVED SOLIDS - ALLUVIAL	4.3-4
		4.3.3	CHLORIDE - ALLUVIAL	
		4.3.4	URANIUM - ALLUVIAL	4.3-5
		4.3.5	SELENIUM - ALLUVIAL	
		4.3.6	MOLYBDENUM - ALLUVIAL	
		4.3.7	NITRATE - ALLUVIAL	
		4.3.8	RADIUM-226 AND RADIUM-228 - ALLUVIAL	
		4.3.9	CHROMIUM - ALLUVIAL	
		4.3.10	VANADIUM - ALLUVIAL	
		4.3.11	THORIUM-230 - ALLUVIAL	.4.3-13
		4.3.11		
			FIGURES	
4.1-1A	ALLU	VIAL WE	LL LOCATIONS (WEST AREA)	4.1-3

4.1-1B	ALLUVIAL WELL LOCATIONS	4.1-4
4.2-1A	WATER-LEVEL ELEVATION FOR THE ALLUVIAL AQUIFER (WEST AREA), FALL 2001, FT-MSL	4.2-5
4.2-1B	WATER-LEVEL ELEVATION FOR THE ALLUVIAL AQUIFER, FALL 2001, FT-MSL	4.2-6
4.2-2	LOCATIONS OF ALLUVIAL WELLS WITH WATER-LEVEL PLOTS	4.2-7
4.2-3	WATER-LEVEL ELEVATION FOR WELLS N, NC, O and P	4.2-8
4.2-4	WATER-LEVEL ELEVATION FOR WELLS SO AND SP	4.2-9

TABLE OF CONTENTS

GROUND-WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

	Page Numbe
4.2-5	WATER-LEVEL ELEVATION FOR WELLS S1 AND S24.2-10
4.2-6	WATER-LEVEL ELEVATION FOR WELLS BC, DC, MO, S4 AND MU4.2-1
4.2-7	WATER-LEVEL ELEVATION FOR WELLS MQ, MY, W AND S3
4.2-8	WATER-LEVEL ELEVATION FOR WELLS B AND BA
4.2-9	WATER-LEVEL ELEVATION FOR WELLS BP, D1, M5 AND PM4.2-14
4.2-10	WATER-LEVEL ELEVATION FOR WELLS KF AND KZ
4.2-11	WATER-LEVEL ELEVATION FOR WELLS B11, DQ, L6 AND TB4.2-16
4.2-12	WATER-LEVEL ELEVATION FOR WELLS I, KN, X AND Y4.2-17
4.2-13	WATER-LEVEL ELEVATION FOR WELLS SUB1, 453, 490 AND 4974.2-18
4.2-14	WATER-LEVEL ELEVATION FOR WELLS 844, 846, 688, FB AND MX4.2-19
4.3-1A	SULFATE CONCENTRATIONS FOR THE ALLUVIAL AQUIFER (WEST AREA), FALL 2001, mg/I4.3-14
4.3-1B	SULFATE CONCENTRATIONS FOR THE ALLUVIAL AQUIFER, FALL 2001, mg/l4.3-15
4.3-2	LOCATION OF ALLUVIAL WELLS WITH WATER-QUALITY PLOTS
4.3-3	SULFATE CONCENTRATIONS FOR WELLS NC, P, P3 AND P44.3-17
4.3-4	SULFATE CONCENTRATIONS FOR WELLS S2, S3, S4 AND S114.3-18
4.3-5	SULFATE CONCENTRATIONS FOR WELLS BC, DC, MO, MU AND W4.3-19
4.3-6	SULFATE CONCENTRATIONS FOR WELLS B, BP, D1, M5 AND PM4.3-20

TABLE OF CONTENTS

GROUND-WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

FIGURES (continued)

Page Number

4.3-7	SULFATE CONCENTRATIONS FOR WELLS B11, DQ, S5, T, TA AND TB4.3-21
4.3-8	SULFATE CONCENTRATIONS FOR WELLS C5, C6, C9 AND C124.3-22
4.3-9	SULFATE CONCENTRATIONS FOR WELLS KC, K2, X AND Y4.3-23
4.3-10	SULFATE CONCENTRATIONS FOR WELLS K4, K5, K7 AND K104.3-24
4.3-11	SULFATE CONCENTRATIONS FOR WELLS L5, L6, L9 AND L104.3-25
4.3-12	SULFATE CONCENTRATIONS FOR WELLS SUB1, 453, SUB2 AND SUB34.3-26
4.3-13	SULFATE CONCENTRATIONS FOR WELLS 490, 492, 496 AND 497 4.3-27
4.3-14	SULFATE CONCENTRATIONS FOR WELLS 802, 846, 844, 688 AND FB4.3-28
4.3-15A	TDS CONCENTRATIONS FOR THE ALLUVIAL AQUIFER (WEST AREA), FALL 2001, mg/l4.3-29
4.3-15B	TDS CONCENTRATIONS FOR THE ALLUVIAL AQUIFER, FALL 2001, mg/l4.3-30
4.3-16	CHLORIDE CONCENTRATIONS FOR THE ALLUVIAL AQUIFER, FALL 2001, mg/l4.3-31
4.3-17A	URANIUM CONCENTRATIONS FOR THE ALLUVIAL AQUIFER (WEST AREA), FALL 2001, mg/l4.3-32
4.3-17B	URANIUM CONCENTRATIONS FOR THE ALLUVIAL AQUIFER, FALL 2001, mg/l4.3-33
4.3-18	URANIUM CONCENTRATIONS FOR WELLS NC, P, P3 AND P44.3-34

TABLE OF CONTENTS

GROUND-WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

Page Numb	er
.3-19 URANIUM CONCENTRATIONS FOR WELLS S2, S3, S4 AND S114.3-3	35
3-20 URANIUM CONCENTRATIONS FOR WELLS BC, DC, MO, MU AND W4.3-3	36
3-21 URANIUM CONCENTRATIONS FOR WELLS B, BP, D1, M5 AND PM4.3-3	37
3-22 URANIUM CONCENTRATIONS FOR WELLS B11, DQ, S5, T, TA AND TB	38
3-23 URANIUM CONCENTRATIONS FOR WELLS C5, C6, C9 AND C124.3-3	39
3-24 URANIUM CONCENTRATIONS FOR WELLS KC, K2, X AND Y4.3-4	40
3-25 URANIUM CONCENTRATIONS FOR WELLS K4, K5, K7 AND K104.3-4	41
3-26 URANIUM CONCENTRATIONS FOR WELLS L5, L6, L9 AND L104.3-4	12
3-27 URANIUM CONCENTRATIONS FOR WELLS SUB1, 453, SUB2 AND SUB3	1 3
3-28 URANIUM CONCENTRATIONS FOR WELLS 490, 492, 496 AND 4974.3-4	14
3-29 URANIUM CONCENTRATIONS FOR WELLS 802, 846, 844, 688 AND FB4.3-4	ł5
3-30A SELENIUM CONCENTRATIONS FOR THE ALLUVIAL AQUIFER (WEST AREA), FALL 2001, mg/I4.3-4	16
B-30B SELENIUM CONCENTRATIONS FOR THE ALLUVIAL AQUIFER, FALL 2001, mg/l4.3-4	7
S-31 SELENIUM CONCENTRATIONS FOR WELLS NC, P, P3 AND P44.3-4	8
S-32 SELENIUM CONCENTRATIONS FOR WELLS S2, S3, S4 AND S114.3-4	9

TABLE OF CONTENTS

GROUND-WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

	(Page Number
4.3-33	SELENIUM CONCENTRATIONS FOR WELLS BC, DC, MO, MU AND W	4.3-50
4.3-34	SELENIUM CONCENTRATIONS FOR WELLS B, BP, D1, M5 AND PM	4.3-51
4.3-35	SELENIUM CONCENTRATIONS FOR WELLS B11, DQ, S5, T, TA AND TB	4.3-52
4.3-36	SELENIUM CONCENTRATIONS FOR WELLS C5, C6, C9 AND C12	4.3-53
4.3-37	SELENIUM CONCENTRATIONS FOR WELLS KC, K2, X AND Y	4.3-54
4.3-38	SELENIUM CONCENTRATIONS FOR WELLS K4, K5, K7 AND K10	4.3-55
4.3-39	SELENIUM CONCENTRATIONS FOR WELLS L5, L6, L9 AND L10	4.3-56
4.3-40	SELENIUM CONCENTRATIONS FOR WELLS SUB1, 453, SUB2 AND SUB3	4.3-57
4.3-41	SELENIUM CONCENTRATIONS FOR WELLS 490, 492, 496 AND 497	4.3-58
4.3-42	SELENIUM CONCENTRATIONS FOR WELLS 802, 846, 844, 688 AND FB	4.3-59
4.3-43	MOLYBDENUM CONCENTRATIONS FOR THE ALLUVIAL AQUIFER, FALL 2001, mg/l	4.3-60
4.3-44	MOLYBDENUM CONCENTRATIONS FOR WELLS NC, P, P3 AND P4	4.3-61
4.3-45	MOLYBDENUM CONCENTRATIONS FOR WELLS S2, S3, S4 AND S11	4.3-62
4.3-46	MOLYBDENUM CONCENTRATIONS FOR WELLS BC, DC, MO, MU AN	D W4.3-63
4.3-47	MOLYBDENUM CONCENTRATIONS FOR WELLS B, BP, D1, M5 AND PM	4.3-64
4.3-48	MOLYBDENUM CONCENTRATIONS FOR WELLS B11, DQ, S5, T, TA AND TB	4.3-65

TABLE OF CONTENTS

GROUND-WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

	Page Nur	nber
4.3-49	MOLYBDENUM CONCENTRATIONS FOR WELLS C5, C6, C9 AND C124	
4.3-50	MOLYBDENUM CONCENTRATIONS FOR WELLS KC, K2, X AND Y4	.3-67
4.3-51	MOLYBDENUM CONCENTRATIONS FOR WELLS K4, K5, K7 AND K104	.3-68
4.3-52	MOLYBDENUM CONCENTRATIONS FOR WELLS L5, L6, L9 AND L104	.3-69
4.3-53	MOLYBDENUM CONCENTRATIONS FOR WELLS SUB1, 453, SUB2 AND SUB3	.3-70
4.3-54	MOLYBDENUM CONCENTRATIONS FOR WELLS 490, 492, 496 AND 4974	.3-71
4.3-55	MOLYBDENUM CONCENTRATIONS FOR WELLS 802, 846, 844, 688 AND FB4.	.3-72
4.3-56A	NITRATE CONCENTRATIONS FOR THE ALLUVIAL AQUIFER (WEST AREA), FALL 2001, mg/l4.	.3-73
4.3-56B	NITRATE CONCENTRATIONS FOR THE ALLUVIAL AQUIFER, FALL 2001, mg/l4.	3-74
4.3-57	RADIUM-226 AND RADIUM-228 CONCENTRATIONS FOR THE ALLUVIAL AQUIFER, FALL 2001, pCi/l4.	3-75
4.3-58	VANADIUM CONCENTRATIONS FOR THE ALLUVIAL AQUIFER, FALL 2001, mg/l4.	3-76
4.3-59	THORIUM-230 CONCENTRATIONS FOR THE ALLUVIAL AQUIFER, FALL 2001, pCi/l4.	3-77

TABLE OF CONTENTS

GROUND-WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

TABLES

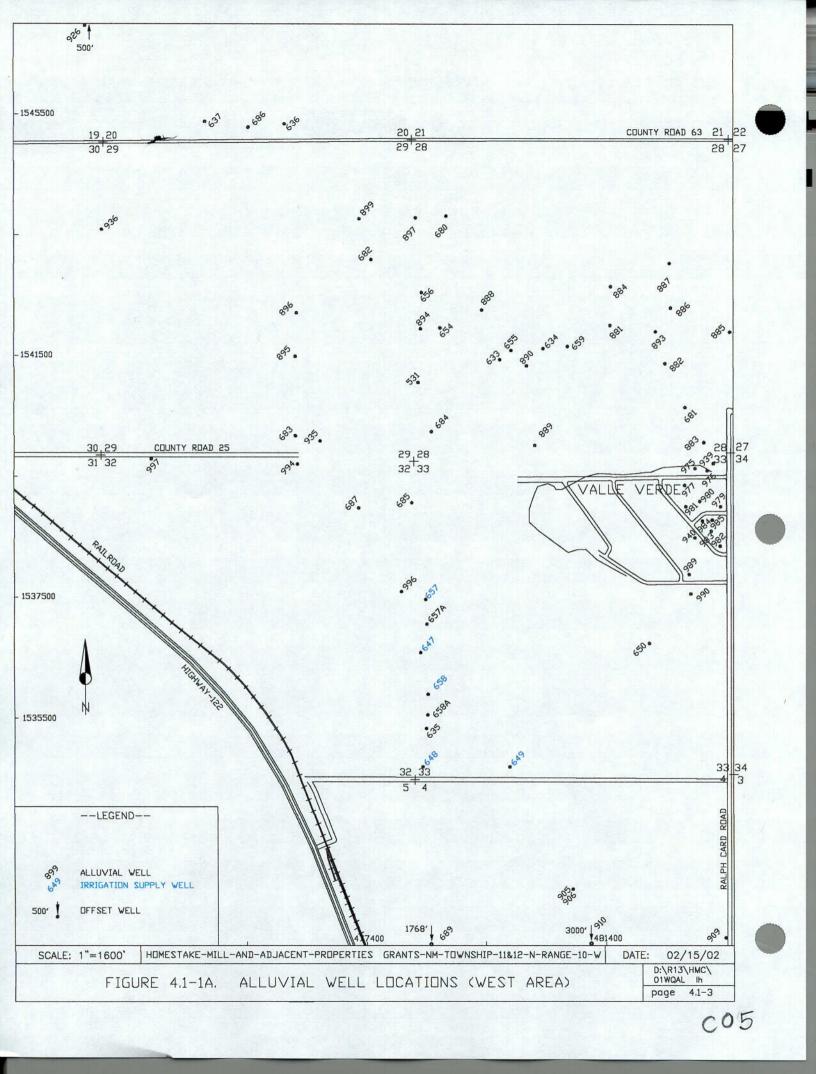
Page Number

4.1-5	1 BASIC WELL DATA FOR THE ALLUVIAL HOMESTAKE WELLS
4.1-15	2 BASIC WELL DATA FOR THE ALLUVIAL AQUIFER BROADVIEW AND FELICE ACRES WELLS
4.1-17	3 BASIC WELL DATA FOR THE ALLUVIAL AQUIFER MURRAY ACRES AND PLEASANT VALLEY WELLS
4.1-18	4 BASIC WELL DATA FOR THE ALLUVIAL AQUIFER REGIONAL WELLS

4.0 ALLUVIAL AQUIFER MONITORING

This section presents 2001 monitoring results for the alluvial aquifer, the most important ground-water system at the Grants site. Well completions are presented first, with the water levels and water-quality results following.

4.1 ALLUVIAL WELL COMPLETIONS


New alluvial wells drilled in 2001 are DA3, DA4, J13 through J15, SUR, 520, 521, 638 and 639. Discussion of the new and previously installed alluvial wells is presented in this section. Wells DA3, DA4 and SUR were drilled for new collection wells near the large tailings with collection planned for early 2002. Wells J13 through J15 were drilled on the southeast side of the small tailings for fresh water injection, planned for 2002, while wells 520, 521, 638 and 639 were drilled on the east side of the highway to the southeast of the small tailings. Initial testing of these wells is being conducted but results will not be available until 2002. Figures 4.1-1A and 4.1-1B show locations of the alluvial wells west of and near the Homestake Grants Project, respectively. These figures are plotted at a scale of 1" = 1600'. Each of the new wells are located on Figure 4.1-1B.


Alluvial wells 532, 914, 916, 920, 921, 922, 950 and 999 contain data but exist outside of Figures 4.1-1A and 4.1-1B. Drawing 1.1-1 of Hydro-Engineering, 1996 shows the wells that exist outside of the figures in this report.

The currently active injection and collection wells are labeled with different colors on Figures 4.1-1A and 4.1-1B so that they can be distinguished from monitoring wells. These figures also show the wells used for irrigation water supply during the 2001 irrigation season. Table 4.1-1 presents basic well data for alluvial wells located on the Homestake property that have been used to define the alluvial ground-water hydrology. Many additional alluvial wells outside of the Homestake property have also been used for that purpose. The basic well data table presents the location, well depth, casing diameter, water-level information, depth to the base of the alluvium and casing perforation intervals for each well.

Table 4.1-2 presents the same type of basic well data for alluvial wells in Broadview and Felice Acres. These two subdivisions are just south of the Homestake property. Figure 4.1-1B also shows the locations of the subdivision wells. Table 4.1-3 presents similar basic data for alluvial wells located in Murray Acres and Pleasant Valley Estates.

Table 4.1-4 presents data for regional wells located outside of the subdivisions and the Homestake property. The limits of the Grants Project site boundary are delineated with a heavy line on Figure 4.1-1B. Wells outside this area are considered to be regional, and data for them are included in the regional water-quality and basic well data tables. The project site boundary includes Broadview, Felice and Murray Acres and Pleasant Valley Estates subdivisions. Slightly greater than 100 alluvial wells have been included on the regional table, which brings the total number of alluvial wells used to characterize this site to greater than 400. The wells are listed in numerical or alphabetic order based on their well names.

COG

WELL NAME	NORTH. COORD.	EAST. COORD.	WELL DEPTH (FT-MP)	CASING DIAM (IN)		iter leve Depth e FT-MP) (F	LEV.	MP ABOVE LSD (FT)	MP ELEV. (FT-MSL)	DEPTH TO Base of Alluvium (FT-LSD)	ALLUVIUM	Casing Perfor- Ations (FT-LSD)	SATURATED THICKNESS
0690	1540279	493465	65.0	5.0	9/16/98	62.50	6519.56	2.5	6582.06	55	6524.6 A	25-65	0.0
0691	1540276	493860	66.0	5.0	9/16/98	57.36	6531.45	2.9	6588.81	55	6530.9 A	26-66	0.5
0891	1540904	493751	54.0	5.0	9/16/98	54.30	6526.82	2.1	6581.12	50	652 9 .0 A	24-54	0.0
0892	1540954	494317	50.0	5.0	9/16/98	51.00	6536.21	2.0	6587.21	42	6543.2 A	30-50	0.0
1 A	1543790	493768	64.6	5.0	10/30/01	39.08	6546.35	2.6	6585.43	47	6535.8 A	39-51	10.5
18	1544502	494412	51.8	5.0	10/30/01	38.70	6545.72	1.5	6584.42	50	6532.9 A	20-50	12.8
1C	1545018	494799	52.9	5.0	9/28/00	43.26	6544.73	2.5	6587.99	43	6542.5 A	34-54	2. 2
1D	1544142	494752	42.9	5.0	9/29/00	29.00	6556.97	2.2	6585.97	40	6543.8 A	22-42	13.2
1E	1544481	494116	51.4	5.0	9/24/01	2.00	6582.31	2.1	6584.31	43	6539.2 A	34-54	43.1
1F	1544952	493831	61.8	5.0	9/24/01	44.63	6542.75	1.8	6587.38	54	6531.6 A	30-60	11.2
1G	1545034	494170	57.5	5.0	9/24/01	42.71	6544.36	2.3	6587.07	48	6536.8 A	35-55	7.6
1H	1543363	494266	55.4	5.0	9/24/01	31.16	6555.23	1.8	6586.39	43	6541.6 A	25-55	13.6
11	1542627	493928	49.8	5.0	10/3/00	34.26	6564.09	1.3	6598.35	35	6562.1 A	27-47	2.0
1J	1541986	493695	50.3	5.0	9/24/01	33.04	6552.36	2.0	6585.40	40	6543.4 A	30-50	9.0
1K	1541992	493275	55.6	5.0	9/24/01	29.86	6554.27	1.8	65 84 .13	47	6535.3 A	30-55	18.9
1L	1541256	493416	53.4	5.0	9/24/01	29.31	6549.30	3.1	6578.61	40	6535.5 A	35-55	13.8
1M	1541327	493133	43.1	5.0	9/24/01	23.48	6552.05	1.3	6575.53	33	6541.2 A	25-54	10.8
1N	1543100	494396	45.6	5.0	10/3/00	29.60	6561.25	2.4	6590.85	25	6563.5 A	15-44	0.0
10	1542592	494175	44.0	5.0	10/3/00	43.88	6551.06	0.8	6594.94	29	6565.1 A	14-34	0.0
1P	1541902	493924	52.8	5.0	10/3/00	38.14	6547.10	2.6	6585.24	35	6547.6 A	20-40	0.0
A1	1542365	491539	55.6	4.0	1/12/94	45.29	6527.86	i 1.1	6573.15	55	651 7.1 A	37-57	10.8
A2	1542356	491539	46.4	4.0	12/23/91	47. 9 8	6525.42	1.1	6573.40		4	27-47	
в	1541684	489311	68.6	4.0	3/12/02	42.34	6528.56	2.4	6570.90	60	6508.5 A	49-69	20.1
B1	1542071	489370	90.9	5.0	7/13/00	45.11	6526.54	0.6	6571.65	82	6489.1 A	62-82	37.5
B2	1542475	489515	83.0	5.0	12/5/00	49.78	6524.47	2.0	6574.25	72	6500.3 A	55-75	24.2
B3	1542480	489731	87.0	5.0	12/5/00	62.15	6512.14	2.6	6574.29	77	6494.7 A	58-78	17.4
B4	1542471	489942	88.8	5.0	12/5/00	59.60	6515.06	7.4	6574.66	82	6485.3 A	63-83	29.8
85	1542474	490141	91.0	5.0	12/5/00	57.23	6516.23	1.4	6573.46	81	6491.1 A	62-82	25.2
B6	154247B	490341	90.0	5.0	12/5/00	48.94	6528.75	2.0	6577.69	80	6495.7 A	63-83	33.1
B7	1542488	490540	87.0	5.0	9/22/95	43.82	6530.58	2.2	6574.40	77	6495.2 A	53-78	35.4
B8	1542488	490734	87.0	5.0	12/5/00	49.94	6525.81	2.3	6575.75	77	6496.5 A	53-78	29.4
B9	1542514	490935	86.0	5.0	12/5/00	50.32	6525.85	5 2.2	6576.17	76	6498.0 /	51-78	27.9
B10	1542517	491133	84.8	5.0	12/5/00	70.46	6506.31		6576.77	75	6499.5 /	51-78	6.8
B11	1542517	491329	84.9	5.0	9/21/01	49.28	6528.11		6577.39	77	6498.2 🗸	42-80	29.9
BA	1541835	489440	86.0	5.0	3/12/02	44.58	6527.00		6571.58	76	6493.9 /	64-78	33.1
BB2	1543791	486213	56.6	4.0	12/14/00	48.84	6524.96		6573.80	•••	A	42-62	
					_		4.1 - 5						3/12/2002

								/					
WELL NAME	NORTH. COORD.	EAST. COORD.	WELL DEPTH (FT-MP)	CASING DIAM (IN)		ATER LEV DEPTH (FT-MP) (ELEV.	MP ABOVE LSD (FT)	MP ELEV. (FT•MSL)	DEPTH TO BASE OF ALLUVIUM (FT-LSD)	ELEV. TO BASE OF ALLUVIUM (FT-MSL)	CASING PERFOR- ATIONS (FT-LSD)	SATURATED THICKNESS
BC	1543655	487910	82.8	4.0	6/4/01	47.68	6526.93	2.6	6574.61	75	6497.0	4 63-83	29.9
BP	1541882	489841	85.4	4.0	7/23/01	45.45	6526.85	i 3.0	6572.30	75	6494.3	40-85	32.5
* C	1541762	490854	79.7	4.0	5/16/94	41.50	6529.34	0.3	6570.84	75	6495.5	59 -79	33.8
C1	1541533	490780	76.0	5.0	12/5/00	40.50	6531.36	0.8	65 7 1.86	67	6504.1 <i>j</i>	41-68	27.3
C2	1541630	490566	76.0	5.0	12/5/00	36.10	6528.92	0.9	6565.02	66	6498.1	42-67	30.8
* C3	1541344	490481	75.0	5.0	6/20/94	36.20	6532.33	0.9	6568.53	65	6502.6	45-67	29.7
C3R	1541338	490472	75.0	5.0	12/5/00	37.72	6531.57	2.0	6569.29	66	6501.3 A	43-68	30.3
C4	1541348	490675	75.0	5.0	10/2/00	39.66	6531.18	1.3	6570.84	66	6503.5 A	46-66	27.6
C5	1541344	490869	72.0	5.0	10/17/01	36.20	6533.65	0.8	6569.85	62	6507.1 A	43-63	26.6
C6	1541533	491142	80.8	5.0	12/5/00	61.52	6523.37	1.6	6584.89	72	6511.3 A	34-74	12.1
C7	1541734	491280	72.4	5.0	12/5/00	62.48	6521.96	1.5	6584.44	61	6521.9 A	25-65	0.0
C8	1541906	491415	78 .1	5.0	12/5/00	53.97	6530.52	1.6	6584.49	67	6515.9 A		14.6
C9	1542075	491545	77.0	5.0	12/5/00	66.26	6518.29	1.5	6584.55	65	6518.1 A	27-67	0.2
C10	1542182	491629	71.6	5.0	12/5/00	65. 98	6519.28	2.7	6585.26	65	6517.6 A	30-70	1.7
C11	1542376	491844	68.2	5.0	12/5/00	43.20	6538.18	2.4	6581.38	60	6519.0 A	35-65	19.2
C12	1542375	492029	63.5	5.0	12/5/00	41.25	6539.30	2.6	6580.55	55	6523.0 A	34-64	16.4
C13	1541394	490655	63.0	5.0	10/29/01	37.58	6532.43	2.0	6570.01	63	6505.0 A		27.4
C14	1541 41 3	490713	63.0	5.0	10/29/01	37.32	6532.37	2.0	6569.69	63	6504.7 A	36-70	27.7
* D	1542127	490118	89.7	4.0	7/28/86	48.04	6524.85	0.8	6572.89	90	6482.1 A	71-91	42.8
D1	1542140	489615	89.4	4.0	5/30/01	46.05	6524.85	1.0	6570.90	80	6489.9 A	58-90	35.0
D2	1542641	492107	70.0	5.0	11/29/99	0.50	6579.67	3.0	6580.17	62	6515.2 A	40-70	64.5
D3	1542646	491917	80.0	5.0	11/29/99	0.50	6579.63	2.5	6580.13	72	6505.6 A		74.0
D4	1542652	491724	78.0	5.0	11/29/99	0.50	6578.93	2.5	6579.43	70	6506.9 A	48-78	72.0
DA	1542864	489488	99.1	5.0	12/4/97	61.40	6524.15	3.0	6585.55	90	6492.6 A	50-100	31.6
DA2	1542881	489656	82.1	5.0	1/13/95	51.11	6536.18	2.8	6587.29	83	6501.5 A	64-74	34.7
DA3	1542664	489390	81.0	5.0				2.6	6574.36	72	6499.8 A	30-81	
DA4	1542598	489756	81.0	5.0				1.7	6573.97	71	6501.3 A	31-81	
DAA	1542733	492411	62.7	5.0	12/5/00	2.00	6578.60	2.2	6580.60	54	6524.4 A		54.2
DAB	1542633	492399	65.1	5.0	12/5/00	0.50	6579.38	2.3	6579.88	56	6521.6 A	30-60	57.8
DAC	1543218	492851	6 7. 7	5.0				4.1	6620.36	45	6571.3 A		
DB	1542874	489842	73.2	5.0	9/8/98	66.15	6523.33	0.5	6589.48			55-85	
DBR	1542877	489855	55.6	5.0	1/25/95	52.19	6536.97	4.8	6589.16		A		
DC	1543646	487060	64.1	4.0	6/4/01	44.08	6527.23	2.7	6571.31			45-65	
DD	1546989	488943	78.5	4.0	4/6/00	57.96	6534.63	1.9	6592.59	83	6507.7 A		26.9
DE	1542877	490193	70.2	5.0	10/5/98	63.70	6527.65	0.8	6591.35	80	6510.6 A		17.1
	45.0000									<i>vv</i>	0010.0A	00-00	

60.75 6529.84 0.6

4.1 - 6

6590.59

DF

1542839

490869

88.5

5.0

11/2/98

(cont'd.)

3/12/2002

•••

---A 65-95

(cont'd.)

			WELL	CASING	W	ATER LE	VEL	MP ABOVE		DEPTH TO BASE OF	ELEV. TO BASE OF	CASING PERFOR-	
WELL NAME	NORTH. COORD.	EAST. COORD.	DEPTH (FT-MP)	DIAM (IN)		DEPTH	ELEV. (FT-MSL)	LSD (FT)	MP ELEV. (FT-MSL)	ALLUVIUM (FT-LSD)	ALLUVIUM (FT-MSL)	ATIONS (FT-LSD)	SATURATED THICKNESS
DG	1542839	491157	88.9	5.0	2/14/96	61.8	0 6529.9	3 0.4	6591.78		A	65-95	
DH	1542835	491365	61.7	5.0	12/24/91	52.6	5 6538.69) 4.8	6591.34		A	65-95	
DI	1542821	491788	86.1	5.0	12/9/97	57.8	7 6531.7	5 2.3	6589.62	75	6512.3 A	35-85	19.4
DIA	1542821	491793		4.0	12/23/91	50.4	1 6543.22	2 1.4	6593.63		م A		
LD	1542821	491793	85.7	5.0	8/24/88	46.8	7 6542.69	9 0.7	6589.56	75	6513.9 A	35-85	28.8
DK	1542799	492094	65.4	5.0	12/23/91	43.5	8 6542.3	3 0.7	6585.91	55	6530.2 A	35-55	12.1
DL	1542813	492398	64.4	5.0	12/5/00	2.0	0 6582.8	7 2.9	6584.87	55	6527.0 A	35-55	55.9
DM	1542628	490035	62.8	5.0	12/14/00	52.0	0 6523.00	3 3.0	6575.08		م A		
DN	1542776	490020	66.7	4.0	12/14/00	51.5	2 6525.14	4 3.7	6576.66		A		
DNR	1542779	490031	79.7	4.0	12/5/00	51.8	0 6525.26	5 3.3	6577.06		A		•
DO	1542874	490049	75.8	5.0	12/5/00	65.2	0 6525.13	3 1.6	6590.33	75	6513.7 A	65-75	11.4
DP	1542754	491012	79.8	5.0	12/7/98	51.4	2 6528.29	9 3.5	6579.71		A	. •	
DQ	1542592	491006	85.3	5.0	7/23/01	47.9	4 6528.4	9 2.2	6576.43		م	•	
DR	1542884	489966	87.8	5.0	12/5/00	66.0	5 6524.70	3 2.7	6590.83	85	6503.1 A	65-85	21.6
DS	1542876	490118		5.0	8/2/99	65.2	2 6523.5	9 0.9	6588. 81	77	6510.9 A	62-77	12.7
DT	1542871	489293	72.3	5.0	12/5/00) 59.8	0 6524.0	1 2.7	6583.81	99	6482.1 A	59-99	41.9
DU	15 428 79	490380	84.6	5.0	7/6/88	51.5	6 6539.5	1 1.8	6591.07	81	6508.3 A	61-81	31.2
DV	1542826	490702	80.0	5.0	12/5/00	58.4	5 6527.1	5 2.9	6585.60	77	6505.7 p	60-80	21.4
DW	1542818	492029	73.4	5.0	12/5/00) 2.5	0 6586.1	6 3. 6	6588.66	59	6526.1 A	45-60	60.1
DX	1542838	491074	90.0	6.0	8/2/99	61.8	0 6530.1	B 1.0	6591.98	80	6511.0 A	60-90	19.2
DY	1542737	492271	65.7	5.0	12/5/00) 1.5	0 6579.1	1 2.3	6580.61	56	6522.3 A	15-65	56.8
DZ	1542834	491501	81.8	5.0	12/14/00) 59.9	2 6530.6	1 2.2	6590.53		A	· ·	
E	1540553	490187	61.7	4.0	12/5/00) 2.0	0 6566.9	4 1.7	6568.94	60	6507.2 A	44-64	59.7
EE	1542853	490523	91.2	5.0	1/31/95	45.2	6 6542.8	5 0.6	6588.11	80	6507.5 A	50-90	35.3
F	1539908	489554	63.8	4.0	7/23/01	31.8	0 6533.0	2 1.2	6564.82	62	6501.6 A	45-65	31.4
FB	1540417	488857	62.0	4.0	10/9/01	35.1	0 6530.5	6 2.0	6565.66	58	6505.7 A	43-58	24.9
FF	1542878	490017		4.0	6/21/83	41.0	8 6535.4	6 0.2	6576.54	124	6452.3 A	52-132	83.1
G	1538672	488890	78.3	4.0	4/3/00) 4.0	0 6559.0	9 2.0	6563.09	75	6486.1 /	50-80	73.0
GA	1538657	489255		4.0	4/3/00) 4.0	0 6558.7	9 1.8	6562.79	62	6499.0 <i>4</i>	45-65	59.8
GB	1538654	489456	65.2	4.0	4/3/00) 4.0	0 6558.9	9 1.9	6562.99	64	6497.1 ¢	45-65	61.9
GC	1538650	489654		4.0	4/3/00) 4.0	0 6561.1	7 2.5	6565.17	78	6484.7 <i>j</i>	60-80	76.5
GD	1538646	489855		4.0	12/4/95	6 0.5	0 6565.1	2 1.8	6565.62	72	6491.8 <i>j</i>	55-75	73.3
GE	1538637	489972	117.0	4.0	4/3/00) 4.0	0 6562.2	7 2.4	6566.27	65	6498.9 ¢	50-120	63.4
GF	1538632	490097	119.2	4.0	4/3/00) 4.0	0 6562.0	1 1.8	6566.01	67	6497.2 🗸	50-120	64.8
GG	1538662	489055	58.7	4.0	4/3/00) 4.0	0 6559.1	3 1.8	6563.13	57	6504.3 /	48-68	54.8
GH	1538807	489509		4.0	3/12/01			4 1.3	6562.76	67	6494.5	55-65	36.1
							4.1 - 7						3/12/2002

4.1 - 7

WELL NAME	North. Coord.	EAST. COORD.	WELL DEPTH (FT-MP)	CASING Diam (IN)		ATER LEVI Depth e (FT-MP) (F	ELEV.	MP ABOVE LSD (FT)	MP ELEV. (FT-MSL)	DEPTH TO BASE OF Alluvium (FT-LSD)	ALLUVIUM	CASING PERFOR- ATIONS (FT-LSD)	SATURATED THICKNESS
GI	1538631	490218	119.0	4.0	4/3/00	4.00	6561.85	1.5	6565.85	67	6497.4 A	50-120	64.5
GJ	1538629	490382	119.2	4.0	4/3/00	4.00	6562.15	2.0	6566.15	65	6499.2 A	50-120	63.0
GK	1538622	490482	115.7	4.0	4/3/00	4.00	6562.76	2.4	6566.76	67	6497.4 A	50-120	65.4
GL	1538614	490701	119.3	4.0	4/3/00	4.00	6563.15	2.1	6567.15	71	6494.1 A	50-120	69.1
GM	1538605	490824	118.2	4.0	4/3/00	4.00	6563.65	2.1	6567.65	69	6496.6 A	50-120	67.1
GN	1538602	490944	116.5	4.0	4/3/00	4.00	6563.97	1.8	6567.97	70	6496.2 A	50-120	67.8
GO	1538663	488973	122.3	4.0	4/3/00	4.00	6559.00	1.6	6563.00	75	6486.4 A	50-120	72.6
GP	1538649	489752	121.4	4.0	12/5/00	5.00	6559.87	2.1	6564.87	68	6494.8 A	50-120	65.1
GQ	1538599	491067	70.0	4.0	12/23/91	41.17	6526.99	0.9	6568.16	71	6496.3 A	50-70	30.7
GR	1538619	490619		4.0	12/23/91	36.55	6528.66	1.0	6565.21	75	6489.2 A	50-85	39.5
GS	1538597	491408	86.4	5.0	12/5/00	33.00	6541.31	2.0	6574.31	80	6492.3 A	50-85	49.0
GT	1538534	491565	84.0	5.0	12/5/00	8.30	6567.87	2.1	6576.17	76	6498.1 A	60-84	69.8
GU	1538367	491854	80.0	5.0	12/5/00	5.00	6570.65	2.0	6575.65	73	6500.7 A	60-80	70.0
GV	1537701	491428	83.0	5.0	9/24/01	50.08	6527.30	2.5	6577.38	74	6500.9 A	62-82	26.4
GW1	1539755	490530	73.0	5.0	5/4/93	34.17	6531.10	1.0	6565.27	65	6499.3 A	48-73	31.8
GW2	1539471	490497	75.0	5.0	5/4/93	34.47	6531.61	1.0	6566.08	68	6497.1 A	47-75	34.5
GW3	1539532	490835	72.0	5.0	5/4/93	34.42	6531.86	1.0	6566.28	62	6503.3 A	45-72	28.6
4	1538703	490582	69.3	4.0	12/23/91	37.93	6528.65	1.8	6566.58	69	6495.8 A	50-70	32.9
	1539319	490954	70.0	4.0	5/30/01	32.18	6535.02	1.6	6567.20	68	6497.6 A	52-72	37.4
F	1540174	491302	65.6	4.0	12/5/00	6.00	6564.19	3.4	6570.19	56	6510.8 A	46-68	53.4
11	1540082	491585	57.0	6.0	12/5/00	18.80	6553.05	3.8	6571.85	55	6513.1 A	50-57	40.0
2	1540271	491013	58.0	6.0	12/5/00	26.00	6544.19	2.9	6570.19	55	6512.3 A	50-58	31.9
3	1540414	490499	70.0	6.0	12/5/00	27.40	654 1.74	2.6	6569.14	66	6500.5 A	43-70	41.2
4	1540643	489974	80.0	6.0	12/5/00	18.00	6551.52	3.9	6569.52	68	6497.6 A	40-70	53. 9
5	1540728	489747	65.0	6.0	12/5/00	10.55	6559.24	2.8	6569.79	61	6506.0 A	50-65	53.2
6	1540919	489221	67.0	6.0	12/5/00	7.10	6563.00	3.7	6570.10	65	6501.4 A	48-67	61.6
7	1540168	491892	61.9	5.0	12/5/00	19.50	6550.88	2.1	6570.38	53	6515.3 A	40-60	35.6
8	1540318	492064	63.2	5.0	12/5/00	23.30	6547.49	2.4	6570.79	52	6516.4 A	35-61	31.1
9	1540101	491759	68.0	5.0	12/5/00	24.60	6546.60	2.0	6571.20	58	6511.2 A	36-68	35.4
10	1540138	491436	66.0	5.0	12/5/00	18.00	6552.91	3.5	6570.91	36	6531.4 A		21.5
11	1540545	490909	66.0	5.0	12/5/00	12.00	6557.86	2.0	6569.86	55	6512.9 A		45.0
12	154082 7	490466	70.0	5.0	12/5/00	18.44	6551.86	3.0	6570.30	60	6507.3 A		44.6
13	1540451	492218	55.0	5.0				1.8	6568.40	46	6520.6 A		
4	1540585	492367	55.0	5.0				1.7	6568.98	44	6523.3 A		
15	1540719	492521	55.0	4.0	•			2.2	6569.63	46	6521.4 A		
2	1540215	491240	60.0	5.0	12/5/00	22.10	6546.34	1.8	6568.44	50	6516.6 A		29.7

(cont'd.)

4.1 - 8

لتعمينهم

(cont'd.)

WELL	NORTH.	EAST.	WELL DEPTH	CASING DIAM		ATER LEV DEPTH	ELEV.	MP ABOVE LSD	MP ELEV.	DEPTH TO BASE OF ALLUVIUM	BASE OF ALLUVIUM	ATIONS	SATURATED
NAME	COORD.	COORD.	(FT-MP)	(IN)	DATE	(FT-MP)	(FT-MSL)	(FT)	(FT-MSL)	(FT-LSD)	(FT-MSL)	(FT-LSD)	THICKNESS
к	1540730	491590	61.7	4.0	10/31/97	45.9	6 6527.55	i 3.8	6573.51	60	6509.7 A	44-64	17.8
K2	1540736	491587	58.9	4.0	9/19/01	27.4	1 6544.80	2.5	6572.21	58	651 1.7 A	46-56	33.1
кз	1540744	491571	56.7	2.0	10/31/97	43.4	4 6527.23	1.3	6570.67		A	53-58	
K4	1541211	492371	86.2	5.0	10/24/01	76.9	5 6525.07	2.5	6602.02	80	6519.5 A	65-85	5.6
K5	1541269	491935	86.4	5.0	10/24/01	82.5	3 6519.20) 2.8	6601.73	80	6518.9 A	55-85	0.3
K6	1540689	491459	58.0	5.0	12/5/00	18.0	6552.07	2.0	6570.07		A	33-58	
K7	1541232	492237	86.0	5.0	10/24/01	56.5	7 6544.96	6 2.0	6601.53	79	6520.5 A	56-86	24.4
K8	1541250	492081	86.0	1.0	10/24/01	81.7	6518.76	5 2.0	6600.49	78	6520.5 A	66-86	0.0
K9	1541287	491787	86.0	5.0	7/26/01	68 .5	4 6531.80) 2.0	6600.34	79	6519.3 A	56-86	12.5
K10	1541305	491638	87.0	5.0	7/26/01	83.7	6517.11	2.0	6600.81	81	651 7.8 A	47-87	0.0
K11	1541325	491490	84.0	5.0	7/26/01	64.4	5 6536.16	5 2.0	6600.61	78	6520.6 A	64-84	15.6
ка	1540959	491331	67.8	5.0	10/18/01	32.1	B 6540.01	1 .9	6572.19	65	6505.3 A	42-72	34.7
КВ	1540893	491406	61.8	5.0	9/19/01	30.5	8 6541.07	0.8	6571.65	60	6510.9 A	40-70	30.2
кс	1540826	491477	68.6	5.0	12/13/01	25.9	2 6544.39	0.7	6570.31	59	6510.6 A	42-72	33.8
KD	1540627	491701	62.1	5.0	4/16/01	25.0	4 6545.18	3 0.6	6570.22		A	40-70	
KE	1540566	491776	60.8	5.0	1/22/01	25.7	B 6546.50) 2.5	6572.28		A	40-70	
KEB	1540570	491487	59.9	5.0	9/19/01	25.0	0 6544.73	3 1.5	6569.73	50	6518.2 A	40-60	26.5
KF	1540870	491169	63.5	5.0	3/12/02	24.0	4 6546.17	2.2	6570.21	50	6518.0 A	30-60	28.2
км	1540671	491444	52.4	5.0	12/5/00	19.0	6550.7	2.2	6569.77	•	A		
KN	1540734	491492	50.1	5.0	9/19/01	26.7	2 6542.83	2.3	6569.59		A		
кz	1541100	491183	58.4	5.0	3/12/02	27.7	1 6544.0 ⁻	1 1.2	6571.72		A	-	
L	1538970	492150	67.0	4.0	4/17/01	42.9	8 6531.99	0.8	657 4.9 7	59	6515.2 A	46-66	16.8
L5	1539946	4 9 2730	60.2	5.0	9/17/01	50.1	6525.93	1 1.3	6576.07	50	6524.8 A	25-55	1.2
.6	1540526	49 3110	51.1	5.0	9/21/01	27.2	1 6547.43	3 2.1	6574.64	50	6522.5 A	25-55	24.9
L7	1540113	492842	67.8	5.0	9/17/01	50.3	0 6526.3	1 2.3	6576.61	. 62	6512.3 A	36-66	14.0
.8	1539773	492621	73.9	5.0	9/17/01	55.0	0 6521.4	2.1	6576.49	65	6509.4 A	32-72	12.1
L9	1539509	492463	74.9	5.0	9/17/01	52.7	7 6524.4	5 2.2	6577.23	64	6511.0 A	43-73	13.4
_10	1539250	492310	74.2	5.0	9/17/01	52.6	3 6524.20	2.0	6576.83	63	6511.8 A	53-73	12.4
M1	1542797	489157	103.4	4.0	1/3/89	79.8	0 6505.1	7 1.5	6584.97	120	6463.5 A	66-106	41.7
W 2	1542785	489159	40.4	4.0	1/20/ 9 5	34.8	5 6541.4	1.4	6576.26		A	-	
MЗ	1542805	489151	105.3	4.0	5/1/00	60.5	2 6515.5	3 1.0	6576.10		4	79-99	
V 14	1542804	489134	81.8	5.0	10/31/00	56.7	2 6521.5	4 3.7	6578.26		A	78-82	
M5	1542360	489080	92.3	5.0	8/14/01	49.1	6 6526.1	3 3.2	6575.34	84	6488.1 A	60-90	38.0
V 1 6	1543097	486674	110.0	5.0	9/5/00	2.1	6 6572.8	9 2.2	6575.04	65	م 6507.9	60-110	65.0
V17	1542790	486523		5.0	9/5/00				6572.85	71	6499.4 A	63-83	70.1
M8	1542960	486567		5.0	9/5/00		1 6541.5	2 2.4	6575.23	57	6515.8 A	53-83	25.7
			-				4.1 - 9						3/12/2002

							u.	-					
WELL NAME	North. Coord.	EAST. COORD.	WELL Depth (FT-MP)	Casing Diam (IN)		ater lev Depth (FT-MP) (ELEV.	MP ABOVE LSD (FT)	MP ELEV. (FT-MSL)	DEPTH TO Base of Alluvium (FT-LSD)	ELEV. TO BASE OF ALLUVIUM (FT-MSL)	CASING PERFOR- ATIONS (FT-LSD)	SATURATED THICKNESS
M9	1543310	486699	103.0	5.0	9/5/00	37.10	6539.71	3.2	6576.81	78	6495.6	63-103	44.1
M10	1543677	486723	88.0	5.0	9/5/00	52.55	6520.81	2.4	6573.36	86	6485.0	58-88	35.9
M11	1542358	486486	118.0	5.0	9/5/00	48.72	6524.50	3.0	6573.22	109	6461.2	58-118	63.3
M12	1542174	487209	124.0	5.0	12/5/00	3.87	6569.64	2.5	6573.51	118	6453.0 A	57-124	116.7
M13	1542450	487336	117.0	5.0	12/5/00	29.81	6546.35	3.0	6576.16	108	6465.2 A	57-117	81.2
M14	1542661	487216	117.0	5.0	12/5/00	29.42	6547.75	2.7	6577.17	109	6465.5 A	57-117	82.3
M15	1542872	487094	102.0	5.0	12/5/00	3.71	6575.37	3.5	6579.08	93	6482.6 A	52-102	92.7
MA	1541290	487767	85.0	4.0	10/2/00	39.30	6532.92	1.0	6572.22	85	6486.2 A	70-85	46.7
MB	1541296	487512	90.0	4.0	9/5/00	2.05	6570.01	1.0	6572.06	85	6486.1 A	60-90	84.0
MC	1541304	487264	100.0	4.0	9/5/00	2.12	6569.94	1.0	6572.06	95	6476.1 A	70-100	93.9
MD	1541311	487050	105.0	4.0	9/5/00	2.00	6569.46	1.0	6571.46	105	6465.5 A	75-105	104.0
ME	1541537	486934	105.0	4.0	9/5/00	1.61	6569.31	1.0	6570.92	105		75-105	104.4
MF	1541757	486808	110.0	4.0	9/5/00	2.22	6570.06	1.0	6572.28	110	6461.3 A	90-110	108.8
MG	1541972	486694	110.0	4.0	9/5/00	1.72	6571.36	1.0	6573.08	110	6462.1 A	90-110	109.3
ИH	1542208	486569	110.0	4.0	9/5/00	2.13	6571.79	1.0	6573.92	110	6462.9 A	90-110	108.9
M	1542486	486413	110.0	4.0	9/5/00	2.24	6574.03	1.0	6576.27	110	6465.3 A	90-110	108.8
LN	1542682	486350	60.0	4.0	9/5/00	47.12	6525.82	1.8	6572.94	60	6511.1 A	40-60	14.7
ИK	1543373	486324	57.0	4.5	9/5/00	25.62	6548.17	1.5	6573.79	92	6480.3 A	-	67.9
٨L	1543902	486691	76.0	5.0	9/5/00	3.46	6569.24	2.3	6572.70	80	6490.4 A	56-76	78.9
ИМ	1544154	486324	63.0	5.0	9/5/00	3.46	6573.99	2.4	6577.45	50	6525.1 A	33-63	48.9
ИN	1544613	486325	63.0	5.0	12/18/96	64.15	6513.41	1.9	6577.56	42	6533.7 A	23-63	0.0
ю	1543620	485518	88.0	4.5	10/9/01	64.38	6508.51	2.0	6572.89	80	6490.9 A	45-85	17.6
ΛP	1544164	485492	80.0	5.0	12/18/96	62.66	6511.82	2.1	6574.48	50	6522.4 A	33-63	0.0
I Q	1543173	486326	98.0	5.0	10/22/01	65.04	6509.26	1.6	6574.30	88	6484.7 A	58-98	24.6
A R	1542609	483574	100.0	5.0	10/22/01	68.58	6497.68	1.8	6566.26	100	6464.5 A	54-94	33.2
ńS	1542607	485570	82.0	5.0	10/22/01	62.00	6508.67	1.5	6570. 67	89	6480.2 A	52-82	28.5
ΛT	1543221	483531	98.0	4.5	10/22/01	68.40	6499.03	2.3	6567.43	87	6478.1 A	34-94	20.9
łU	1544461	487143	80.0	5.0	10/22/01	44.19	6530.00	1.5	6574.19	72	6500.7 A	50-80	29.3
٨V	1542618	484418	105.0	4.5	10/22/98	65.97	6503.81	1.3	6569.78	95	6473.5 A	75-105	30.3
ŧW	1543802	486346	85.0	5.0	9/5/00	3.09	6571.82	1.9	6574.91	83	6490.0 A	35-85	81.8
١X	1541287	486244	103.0	5.0	10/18/01	52.07	6516.54	1.7	6568.61	94	6472.9 A		43.6
IY	1542200	486213	112.0	5.0	10/18/01	58.07	6515.49	3.0	6573.56	1 02	6468.6 A		46.9
IZ	1543485	486757	92.0	5.0	9/5/00	22.61	6554.03	0.0	6576.64	84	6492.6 A		61.4
	1545101	489665	92.0	4.0	8/29/01	53.41	6530.56	0.9	6583.97	80	6503.1 A		27.5
A	1545000	491488	91.4	5.0	9/9/01	57.75	6533.23	1.1	6590.98	80	6509.9 A		23.4
	1545000	491296	96.4	5.0	9/10/01	50.48	6542.82	3.5	6593.30	80		50-90	

4.1 - 10

(cont'd.)

·-----

(cont)	'd.)
--------	------

						(C	ont a.)					
WELL	NORTH. COORD.	EAST. COORD.	WELL DEPTH (FT-MP)	CASING DIAM (IN)		ATER LEVE DEPTH EI (FT-MP) (F	EV.	MP Above LSD (FT)	MP ELEV. (FT-MSL)	DEPTH TO Base of Alluvium (FT-LSD)	ELEV. TO BASE OF ALLUVIUM (FT-MSL)	CASING PERFOR- ATIONS (FT-LSD)	SATURATED THICKNESS
NC	1545220	491282	95.0	4.0	8/29/01	53.21	6532.62	. 0.8	6585.83	85	6500.0	A 65-95	32.6
ND	1545927	4 94872	70.0	4.0	8/2/00	47.67	6545.22	! 1.1	6592.89	65	6526.8	50-70	18.4
NE5	1544279	492332	156.8	5.0	2/15/01	93.90	6573.10) 3.2	6667.00	150 150		r 50-110 A 135-155	 59.3
NW5	1544408	489433	149.8	5.0	2/20/01	128.60	6528.98	2.7	6657.58	155 155		г 39- 79 _А 119-159	 29.1
0	1545060	492725	69.9	4.0	8/29/01	48.86	6538.97	1.3	6587.83	77	6509.5	40-70	29.4
Р	1546691	491058	109.1	4.0	7/23/01	56.57	6530.69	1.7	6587.26	107	6478.6	82-112	52.1
P1	1547017	491060	105.0	6.0	11/28/00	55.75	6536.72	. 0.8	6592.47	105	6486.7	4 60-105	50.1
P2	1546555	490912	105.0	6.0	12/4/00	61.41	6528.38	0.9	6589.79	105	6483.9	60-105	44.5
P3	1546159	490785	95.0	5.0	3/8/01	66.91	6523.04	2.2	6589.95	85	6502.8	\$ 55-95	20.3
P4	1546504	491899	92.0	5.0	3/8/01	85.77	6503.75	3.6	6589.52	84	6501.9	52-92	1.8
РМ	1541426	490292	81.9	4.0	8/14/01	36.14	6531.28	3 1.8	6567.42)	A -	
Q	1548693	492153	98.3	4.0	3/14/00	50.11	6543.71	2.3	6593.82	100	6491.5	72-102	52.2
R	1550372	494514	85.0	4.0	5/11/00	43.51	6560.52	2 0.3	6604.03	95	6508.7	60-90	51.8
s	1543871	488816	72.2	4.0	5/10/01	55.61	6525.56	2.0	6581.1 7	75	6504.2	52-72	21.4
S1	1543288	488401	85.0	2.0	3/12/02	5 1. 46	6523.73	5.3	6575.19	85	6484.9	60-85	38.8
S2	1543127	488299	100.0	3.0	3/12/02	48.99	6524.73	2.0	6573.72	100	6471.7	90-100	53.0
S 3	1542857	488714	122.6	5.0	7/23/01	50.50	6524.28	6.2	6574.78	116	6452.6	80-120	71.7
S4	1543344	488359	112.4	5.0	7/23/01	51.00	6524.29	2.3	6575.29	108	6465.0	50-110	59.3
S5	1543269	488923	115.0	5.0	12/5/00	60.21	6514.48	3 1.0	6574.69	105	6468.7	54-106	45.8
S6	1543515	488874	113.2	5.0	1/3/00	55.85	6524.22	! 1.3	6580.07	105	6473.8	\$ 55-105	50.5
S7	1543763	488874	97.0	5.0	1/4/99	57.38	6522.51	1.0	6579.89	82	6496.9	4 0-84	25.6
S8	1543968	488879	43.8	5.0	8/22/95	43.28	6537.06	1.0	6580.34	40	6539.3	a 12-42	0.0
S11	1544793	488150	76.2	5.0	10/17/01	51.28	6527.11	1.9	6578.39	70	6506.5	48-78	20.6
S12	1543297	488628	93.0	5.0	3/19/01	56.56	6522.29	2.1	6578.85	80	6496.7	4 53-93	25.5
SA	1543122	488811	123.7	5.0	12/5/00	67.24	6513.07	1.0	6580.31	115	6464.3	100-130	48.8
SB	1543371	488811	125.0	5.0	12/5/00	57.43	6523.66	6 0.9	6581.09	115	6465.2	A 100-130	58.5
SC	1543617	488815	105.4	5.0	12/5/00	57.11	6521.69	1.2	6578.80	103	6474.6	\$ 55-105	47.1
SD	1543490	488564	90.1	5.0	12/23/91	63.14	6515.17	0.6	6578.31	107	6470.7	\$ 50-110	44.5
SD4	1543497	488556	95.0	5.0	6/1/93	61.44	6517.33	3 1.1	6578.77	95	6482.7	45-95	34.7
SE	1543301	488550	111.8	5.0	3/19/01	55.38	6522.61	0.5	6577.99	88	6489.5	\$ 50-90	33.1
SE4	1543308	488560	105.3	2.0	3/19/01	53.71	6524.29)	6578.00		/	A ·	
SM	1543748	488566	86.0	5.0	12/5/00	55.21	6523.53	0.7	6578.74		/	A -	
SN	1543752	488716	67.5	4.0	12/5/00	55.48	6523.78	3 1.1	6579.26		;	4 -	
SO	1543652	488381	92.3	5.0	3/12/02	54.84	6523.95	0.6	6578.79)	۹.	

WELL	North. Coord.	EAST. COORD.	Well Depth (FT-MP)	CASING DIAM (IN)		ATER LEV DEPTH /ET_MP)		MP ABOVE LSD	MP ELEV.	DEPTH TO BASE OF ALLUVIUM	ALLUVIUM		SATURATED
						(1 1 - 141 - 3	(1-11-51)	(FT)	(FT-MSL)	(FT-LSD)	(FT-MSL)	(* 1-LSU)	THICKNESS
SP	1543630	488531	94.4	4.0	3/12/02		6 6523.20) 2.0	6578. 66		4		
SQ	1543507	488814	95.0	5.0	12/5/00	55.10	6524.10	0.9	6579.20	95	6483.3	55-95	40.8
SR	1543611	488669	95.0	5.0	11/2/98	58.2	5 6520.94	0.8	6579.19	95	6483.4 🗸	50-90	37.6
SS	1543374	488666	101.0	5.0	12/5/00	66.88	6511.50	1.2	6578.38	90	6487.2 /	51-101	24.3
ST	1543215	488688	97.0	5.0	12/5/00	57.62	6521.69	2.2	6579.31	96	6481.1 A	55-97	40.6
SU	1542946	488953	110.0	5.0	9/5/95	35.60	6542.50	0.7	6578.10	110	6467.4 A	50-110	75.1
SUR	1542991	488968	115.0	5.0				2.6	6580.72	106	6472.1 A	35-115	
SV	1543676	488813	78.2	6.0	7/18/00	55.70	6523.55	1.7	6579.25	100	6477.6 A	55-105	46.0
SW	1543783	488812	81.9	6.0	7/3/94	60.70	6520.59	2.9	6581.29	75	6503.4 A	35-80	17.2
SX	1544510	489025	45.0	5.0				1.0	6581.49	40	6540.5 A	20-40	
SZ	1544367	488833	62.6	5.0	12/5/00	49.63	6531.84	0.4	6581.47	60	6521.1 A	40-70	10.8
Т	1542536	492260	70.2	4.0	9/21/01	53.00	6526.23	2.4	6579.23	68	6508.8 A	61-71	17.4
T1	1543285	490027		5.0	12/12/86	146.13	6517.78	1.0	6663.91	161	6501.9 A	12 1 -171	15. 9
T2	1543538	489303	186.0	5.0	3/13/01	134.88	6529.94	5.0	6664.82	180	6479.8 A	100-186	50.1
TA	1542471	492426	62.4	5.0	9/21/01	34.90	6545.40	2.4	6580.30	55	6522.9 A	35-65	22.5
тв	1542351	492616	64.4	5.0	9/19/01	31.55	6552.02	1,9	6583.57	55	6526.7 A	35-65	25.4
W	1542302	487297	99.3	4.0	10/17/01	46.90	6525.24	0.3	6572.14	117	6454.8 A	58-118	70.4
W2	1542251	486654	79.1	4.0	3/2/98	56.21	6515.29	0.9	6571.50		···· A	-	•••
WN4	1543958	489961	142.4	5.0	2/20/01	124.40	6538.38	2.7	6662.78	165 165	T 6495.1 A	40-100 50-190	43.3
WR1	1541280	488529		5.0	6/27/89	46.54	6521.86	0.8	6568.40		A		
WR1R	1541302	488536	85.0	5.0	12/5/00	28.62	6539.85	0.0	6568.47	85	6483.5 A	-	56.4
WR2	1541290	488678	94.1	5.0	12/5/00	2.52	6566.07	0.9	6568.59	85	6482.7 A	65-95	83.4
WR3	154 1490	488671	82.3	5.0	12/5/00	32.96	6536.58	2.7	6569.54	83	6483.8 A	63-93	52.7
WR4	1541788	488678	62.0	5.0	12/5/00	1.92	6570.89	0.0	6572.81		A		
WR5	1541813	488683	72.4	5.0	12/5/00	38.69	6532.54	0.6	6571.23	80	6490.6 A		41.9
WR6	1541902	488566	96.8	5.0	12/5/00	3.04	6569.99	1.3	6573.03	84	6487.7 A	55-85	82.3
WR7	1541997	488456	97.3	5.0	12/5/00	38.91	6534.82	2.0	6573.73	84	6487.8 A	55-85	47.0
WR8	1542095	488328	110.2	5.0	12/5/00	38.72	6533.88	0.4	6572.60	100	6472.2 A		61.7
WR9	1542185	488217	111.3	5.0	12/5/00	46.82	6526.23	0.8	6573.05	100	6472.3 A		54.0
WR10	154238 9	487961	120.6	5.0	12/5/00	48.52	6524.67	0.7	6573.19	110	6462.5 A		62.2
WR11	1542586	487728	120.5	5.0	12/5/00	48.29	6526.20	0.3	6574.49	110	6464.2 A		62.0
WR12	1541280	488277	96.7	4.0	10/2/00	12.70	6555.49	1.1	6568,19	85	6482.1 A		73.4
WR13	1541068	488861	70.0	5.0	12/5/00	18.98	6550.19	3.2	6569.17	60	6506.0 A		44.2
WR14	1540638	488863	70.0	5.0	12/5/00	17.75	6549.16	2.3	6566.91	61	6503.6 A		44.2
							0010.10		0000.01		5505.0 A	30.00	40.0

(cont'd.)

4.1 - 12

(cont'd.)

			WELL	CASING	W	ATER LE		MP ABOVE		DEPTH TO BASE OF		CASING PERFOR-	
WELL NAME	North. Coord.	EAST. COORD.	DEPTH (FT-MP)	DIAM (IN)	DATE		ELEV. (FT-MSL)	LSD (FT)	MP ELEV. (FT-MSL)	ALLUVIUM (FT-LSD)	ALLUVIUM (FT-MSL)	ATIONS (FT-LSD)	SATURATED
WR16	1543051	487495	122.3	5.0	12/5/00	44.2	2 6528.5	6 1.9	6572.78	100	م 6470.9	40-120	57.7
WR17	1543328	487485	124.4	5.0	12/5/00	4.7	1 6568.31	8 2.2	6573.09	75	6495.9 A	40-120	72.5
WR18	1543597	487465	73.6	5.0	12/5/00	2.4	3 6570.4	B 2.2	6572. 9 1	70	6500.7 A	20-70	69.8
WR19	1543873	487458	87.8	5.0	12/5/00	3.9	1 6571.02	2 2.2	6574.93	74	6498.7 p	25-85	72.3
WR20	1544059	487449	102.3	5.0	12/5/00	8.2	6 6566.2	1 2.1	6574.47	80	6492.4 A	42-102	73.8
WR21	1544241	487449	88.9	5.0	12/5/00	24.0	0 6552.0	5 2.1	6576.05	77	م 6497.0	28-88	55.1
WR22	1544434	487462	91.5	5.0	12/5/00	35.6	5 6542.24	4 2.4	6577.89	86	6489.5 A	30-90	52.7
WR23	1544632	487445	94.3	5.0	12/5/00	3.3	0 6573.13	7 2.2	65 76 .47	77	6497.3 A	32-92	75.9
WR24	1544938	487438	89.2	5.0	12/5/00	32.0	0 6556.6	7 3.0	6588.67	82	6503.7 A	50-90	53.0
х	1540512	491892	50.7	4.0	10/10/01	21.9	8 6549.6	3 1.7	6571.61		A		
X1	1540671	492129	54.0	5.0	12/5/00	8.4	5 6565.0	9 3.9	6573.54	47	6522.6 A	37-47	42.5
X2	1540836	492363	53.0	6.0	12/5/00	10.1	3 6561.8	0 1.9	6571.93	45	6525. 0 A	40-45	36.8
X3	1540992	492599	52.0	5.0	12/5/00	6.0	0 6567.2	B 2.0	6573.28	42	6529.3 A	32-42	38.0
X4	1541210	492814	54.0	5.0	12/5/00	21.7	0 6555.2	4 3.2	6576.94	45	6528.7 A	37-45	26.5
X5	1541408	492821	44.0	6.0	12/5/00	16.4	0 6561.2	1 3.6	6577.61	35	6539.0 A	24-36	22.2
X6	1541609	492828	46.0	6.0	12/5/00	9.1	0 6569.6	2 3.5	6578.72	35	6540.2 A	22-37	29.4
X7	1541808	492851	56.0	6.0	12/5/00	8.6	0 6571.8	3 3.4	6580.43	45	6532.0 A	32-46	39.8
X8	1542007	492852	61.0	5.0	12/5/00	13.0	0 6568.7	6 3.4	6581.76	51	6527.4 A	32-52	41.4
X9	1542194	492852	61.0	5.0	12/5/00	27.0	0 6555.9	2 3.6	6582.92	51	6528.3 A	24-52	27.6
X10	1542352	492835	61.0	5.0	12/5/00	27.0	0 6555.4	3 3.6	6582.43	53	652 5.8 A	30-55	29.6
X11	1542553	492782	57.0	5.0	12/5/00	0.5	0 6581.5	0 3.0	6582.00	53	6526.0 A	17-57	55.5
X12	1542861	492852	57.0	5.0	12/5/00	0.5	0 6582.8	3 3.0	6583.33	53	6527.3 /	17-57	55.5
X13	1543640	493665	56.0	5.0	10/30/01	40.3	5 6546.5	9 2.5	6586.94	51	653 3 .4 A	16-56	13.2
X14	1544002	493777	56.0	5.0	10/30/01	39.2	2 6546.9	B 2.1	6586.20	49	6535.1 A	16-56	11.9
X15	1544222	493800	57.0	5.0	10/30/01	40.0	5 6542.8	6 2.3	6582.91	51	6529.6 A	17-57	13.3
X16	1544473	493795	47.0	5.0	10/30/01	40.2	0 6544.5	9 2.3	6584.79	47	6535.5 A	22-47	9.1
X17	1544356	493793	55.0	5.0	10/20/01	40.6	0 6545.2	4 3.3	6585.84	48	6534.6 /	35-55	10.7
X18	1544593	493569	57.0	5.0	10/30/01	28.8	6557.2	8 3.8	6586.08	49	6533.3 ¢	37-57	24.0
X19	1544753	493437	63.0	5.0	10/30/01	43.5	5 6541.6	5 4.5	6585.20	56	6524.B 🗸	33-63	16.9
X20	1544855	493256	71.0	5.0	12/5/00	46.3	1 6539.4	2 3.5	6585.73	64	6518.2	31-71	21.2
X21	1543606	493894	55.0	5.0	12/5/00	38.9	9 6547.3	4 2.7	6586.33	51	6532.6 ¢	35-55	14.7
X22	1543874	493946	56.0	5.0	12/5/00	39.2	1 6546.4	9 2.6	6585.70	50	6533.1 ¢	36-56	13.4
X23	1544064	494012	56.0	5.0	12/5/00	38.9	6 6546.9	8 2.8	6585.94	47	6536.1	36-56	10.8
X24	1544244	494011	56.0	5.0	12/5/00				6585.72	46	6537.1	36-56	8.7
X25	1544445	494042	53.0	5.0	12/5/00	39.4			6585.63	46	6536.9 <i>j</i>	33-53	9.3
X26	1544693	493702	53.0	5.0	12/5/00				6587.64	43	6541.8	33-53	10.5

WELL NAME	North. Coord.	EAST. COORD.	WELL DEPTH (FT-MP)	Casing Diam (IN)		ATER LEV DEPTH (FT-MP) (ELEV.	MP ABOVE LSD (FT)	MP ELEV. (FT-MSL)	DEPTH TO BASE OF ALLUVIUM (FT-LSD)	ALLUVIUM	CASING PERFOR- ATIONS (FT-LSD)	SATURATED THICKNESS
X27	1544953	493374	71.0	5.0	12/5/00	46.27	6539.03	5.1	6585.30	64	6516.2 A	31-71	22.8
X28	1540545	4919 71	56.0	5.0	12/5/00	16.80	6553.16	2.0	6569.96	48	6520.0 A	16-56	33.2
X29	1540735	492256	51.0	5.0	12/5/00	8.00	6562.03	2.0	6570.03	43	6525.0 A	11-51	37.0
X30	1540897	492493	51.0	5.0	12/5/00	8.00	6564.53	2.0	6572.53	43	6527.5 A	11-51	37.0
X31	1541052	492731	51.0	5.0	12/5/00	16.50	6557.63	2.0	6574.13	44	6528.1 A	11-51	29.5
γ	1541025	491256	60.8	4.0	10/10/01	39.47	6533.41	2.4	6572.88	57	6513.5 A	54-59	19.9
Z	1540290	490701	73.9	4.0	12/5/00	5.00	6564.22	0.6	6569.22	68	6500.6 A	60-70	63.6

(cont'd.)

Note: A = Alluvial Aquifer

M = Middle Chinle Aquifer

T = Tailings Aquifer

* = Well Abandoned

? = Uncertain Identity

TABLE 4.1-2 BASIC WELL DATA FOR THE ALLUVIAL AQUIFER BROADVIEW AND

	<u></u>							MP		DEPTH TO	ELEV. TO	CASING	
WELL NAME	NORTH. COORD.	EAST. COORD.	WELL DEPTH (FT-MP)	CASING DIAM (IN)		fer leve Epth Ei T-MP) (Fi	LEV.	ABOVE LSD (FT)	MP ELEV. (FT-MSL)	BASE OF ALLUVIUM (FT-LSD)		PERFOR- ATIONS (FT-LSD)	SATURATED THICKNESS
						Br	oadviev	L					
0410	1537440	489840	105.0	6.0	12/6/94	33.36	6526.30	0.0	6559.66	75	6484.7 A	90-105	41.6
0411	1537400	489510	70.0	6.0	8/7/96	35.10	6524.9	0.0	6560.00	70	6490.0 A	65-70	34.9
0412	1537940	488830		6.0				- 0.0	6561.00		A		
0413	1537900	490100			4/27/94	35.25	6530.7	5 0.0	6566.00		A		
0421	1538450	491100	88.0	5.0	1/30/96	37.58	6534.42	2 0.9	6572.00	92	6479.1 A	72-102	55.3
0422	1538440	490810	80.0	4.0	4/6/94	32.82	6537.11	3 0.0	6570.00	75	6495.0 A	60-80	42.2
0423	1538230	490800						- 0.0	6570.00		A	. -	•••
0425	1538430	490630	90.0	6.0	4/7/94	32.42	6534.5	в 0.0	6567.00	71	6496.0 A	50-90	38.6
0426	1538230	490620	100.0		11/10/81	30.65	6534.3	5 0.0	6565.00	80	6485.0 A	80-100	49.4
0427	1538450	490410	121.0	6.0	4/12/94	35.00	6535.0	0.0	6570.00	81	6489.0 A	62-120	46.0
0428	1538280	490390	110.0	4.0				- 0.0	6570.00	66	6504.0 A	83-104	
0429	1538210	490430	100.0	6.0	9/1/95	37.21	6532.7	9 0.0	6570.00	74	6496.0 A	58-75	36.8
0430	1538469	490300	145.0					- 0.0	6568.00		A	. -	•
										114	6454.0 L	j -	***
0431	1538045	490090	130.0	6.0	4/12/94	35.00	6533.0	0.0 C	6568.00	60		125-130	25.0
										60		J 125-130	
0432	1538210	489840						- 0.0	6565.00		A		
0433	1538220	489620	90.0	4.0	5/2/97	36. 0 5	6527.9	5 1.5	6564.00	75	6487.5 A		40.5
0435	1538220	489300	85.0	6.0	8/7/96	34.75	6526.2	5 1.3	6561.00	85	6474.7 A		51.6
0438	1537940	490810	120.0	4.0				- 0.0	6571.00	105		70-100	•••
0439	1537940	490490	97.0	4.0	8/7/96	39.80	6527.2	0.0	6567.00	75	6492.0 A	77-97	35.2
0440	1537700	490230					-	- 0.0	6566.00		A	x -	***
0441	1537720	490090	116.0	6.0	1/30/95	35.19	6530.8	1 0.0	6566.00	78	6488.0 <i>A</i>	106-116	42.8
0442	1537940	489840	100.0	4.0	8/7/96	37.15	6527.8	5 0.0	6565.00	80	6485.0 A	70-100	42.8
0443	1537940	489280		4.0				- 0.0	6561.00	75	6486.0 <i>F</i>	60-80	
0444	1537940	489180	80.0		5/18/94	28.84	6532.1	6 0.0	6561.00		<i>F</i>	X -	
0445	1537720	489300	108.0	6.0				- 0.0	6561.00	79	6482.0 <i>F</i>	75-105	
0446	1537720	488850	110.0	6.0	9/8/83	41.28	6518.7	2 0.0	6560.00	60	6500.0 L		18.7
										60		60-95	18.7
0447	1537490	490480	142.0	6.0	4/11/85	41.18	6526.8	2 0.0	6568.00	 80		120-142 J 120-142	
0442	4203100	100400						00	6561 00			, 120-142	
0448	1537400	489100			1/06/05		6600 7		6561.00			A 70-105	42.7
0450	1537480	490710		6.0	1/25/95	42.29	6528.7		6571.00	85			
0451	1537700	490600							0.00	 0E		A . 	
0452	1537880	490420	100.0	4.0	8/7/96	41.20	6525.8	0 0.8	6567.00	85	0481.2 <i>F</i>	40-100	44.6

فسيريد ويستأ

FELICE ACRES WELLS

3/8/2002

4.1 - 15

TABLE 4.1-2 BASIC WELL DATA FOR THE ALLUVIAL AQUIFER BROADVIEW AND

WELL NAME	NORTH. COORD.	EAST. COORD.	WELL DEPTH (FT-MP)	CASING DIAM (IN)		ATER LEV DEPTH (FT-MP)	ELEV.	MP ABOVE LSD (FT)	MP ELEV. (FT-MSL)	DEPTH TO BASE OF ALLUVIUM (FT-LSD)	ALLUVIUM	Casing Perfor- Ations (FT-LSD)	SATURATED THICKNESS
0453	1538375	490300	110.0	4.0	6/5/01	34.5	0 6533.5	0.9	6568.00	80	6487.1 A	60-110	46.4
0454	1537920	489025		4.0				- 0.0	0.00		A		
SUB1	1537620	489100		4.0	4/16/01	33.6	B 6527.3	2 0.0	6561.00		A		
SUB2	1537395	490320		4.0	7/ 17/98	40.92	2 6526.6	5 0.0	6567.57		A	•	
SUB3	1538280	489420	84.0	6.0	5/2/01	28.2	6528.7	ə 0.0	6557.07	72	6485.1 A	56-72	43.7
SUB4	1538440	489840	100.0	4.0	9/21/78	49.11	6515.89	0.0	6565.00	78	6487.0 A	60-85	28.9
SUB5	1537940	489470	86.0	4.0				- 0.0	6562.31	66	6496.3 A	55-80	
SUB6	153 7 940	490090	82.0	4.0				- 0.0	6566.00	80	6486.0 A	52-82	
SUB7	1537940	490630	98.0	4.0				- 0.0	6568.00	85	6483.0 A	78-98	
SUB8	1538450	490210	150.0	5.0				- 0.0	6568.00	72	6496.0 A	60-90	
SUB9							· -	0.0	0.00		A	•	
						E	elice Acre	S					
0481	1538350	490180	320.0	4.0				0.0	6568.00	110 1 1 0		270-310 270-310	
0482	15369 85	489604	260.0	5.0	4/11/96	35.85	6526.81	0.0	6562.66	80 80		220-260 220-260	44.2 174.2
0483	1536586	489753	280.0		7/24/96	36.93	6525.73	0.0	6562.66		A M		
0490	1536540	489756	63.0	4.0	6/5/01	37.80	6524.62	0.0	6562.42	75	6487.4 A	20-80	37.2
0491	1537025	489662	63.0	4.0	8/22/01	39.32	6523.30	0.0	6562.62	40	6522.6 A	30-63	0.7
0492	1537220	489280	60.0	4.0	3/3/99	32.13	6528.55	1.2	6560.68	55	6504.5 A	40-60	24.1
0495	1537400	497100					•	0.0	6571.00		A		
0496	1534650	489603	94.4	5.0	8/20/01	74.51	6488.01	1.6	6562.52	86	6474.9 A	53-93	13.1
0497	1535039	489503	94.0	5.0	8/20/01	55.71	6506.91	2.0	6562.62	89	6471.6 A	64-94	35.3
CW44	1535048	488891	208.0	6.0	12/12/01	60.07	6500.67	2.5	6560.74	94 94	6464.2 A 6428.2 M		36.4 72.4

FELICE ACRES WELLS (cont'd.)

Note: A = Alluvial Aquifer

M = Middle Chinle Aquifer

T = Tailings Aquifer

* = Well Abandoned

? = Uncertain Identity

3/8/2002

TABLE 4.1-3 BASIC WELL DATA FOR THE ALLUVIAL AQUIFER MURRAY ACRES AND

			WELL	CASING		ATER LEV	EL	MP ABOVE	- 	DEPTH TO BASE OF	ELEV. TO BASE OF	CASING PERFOR-	
WELL NAME	NORTH. COORD.	EAST. COORD.	DEPTH (FT-MP)	DIAM (IN)		DEPTH (FT-MP) (ELEV.	LSD (FT)	MP ELEV. (FT-MSL)	ALLUVIUM (FT-LSD)	ALLUVIUM	ATIONS (FT-LSD)	SATURATED THICKNESS
							Murray						
0801	1541020	488600	100.0	4.0	12/21/94	36.85	6530.88	0.0	6567.73	85	6482.7 A	80-100	48.2
0802	1540790	488190	98.0	6.0	5/22/97	40.20	6522.52	0.0	6562.72	81	6481.7 A	75-81	40.8
0803	1540800	487430		6.0	9/19/83	84.86	6476.14	0.0	6561.00	85	C	85-180	
										85	6476.0 A	85-180	0.1
0804	1540790	486790	137.0	6.0	5/10/01	45.80	6516.20	0.0	6562.00	85	6477.0 A	125-136	39.2
0805	1540695	486373	140.0	5.0	10/6/94	59.34	6507.66	0.0	6567.00	110	6457.0 A	100-140	50,7
0810	1540290	486700	105.0	6.0	***	•••		0.0	6562.00	81	6481.0 A	75-101	
0811	1540320	486373	140.0	4.0				0.0	6563.00	110	6453.0 A	100-140	
0815	1539090	488100	255.0	4.0	5/22/91	29.14	6526.12	0.0	6555.26		A		
0844	1538376	487002	75.0	4.0	7/24/01	34.26	6521.87	1.2	6556.13	70	6484.9 A	35-75	36.9
0845	1537280	487833	65.0	4.0	7/24/01	34.50	6522.55	1.7	6557.05	55	6500.4 A	45-65	22.2
AW	1540235	488015	156.0	6.0	1/5/98	15.00	6548.43	0.1	6563.43	63	6500.3 A	• •	48.1
										63	6463.3 L	66-155	85.1
нw	1540900	487430	115.0	6.0	11/9/94	40.00	6517.00	0.0	6557.00	95	6462.0 A	60-94	55.0
						Ple	asant Vall	ey					
0688	1541257	48395 5	105.0	5.0	6/5/01	60.51	6502.11	2.9	6562.62	95	6464.7 A	65-105	37.4
0831	1540090	486030			9/6/83	i 54.95	6506.05	0.0	6561.00		A	· ·	
0833	1539250	485350	110.0	6.0	12/10/96	46.61	6511.39	0.0	6558.00	103	6455.0 A	60-90	56.4
0834	1540260	484800	100.0	4.0				0.0	6560.00	80	6480.0 A	60-80	
0835	1539610	4 847 9 5	98.0	5.0	5/2/00	49.74	6509.26	6 0.0	6559.00	94	6465.0 A	73-94	44.3
0836	1540250	4 84 0 10	90.0	4.0				0.0	6558.00	80	6478.0 A	65-80	
0838	1540600	485640	100.0		7/22/95	i 49.03	6513.97	0.0	6563.00		4	N -	
0839	1541120	485465	100.0	5.0	12/19/94	50.00	6510.00	0.0	6560.00	94	6466.0 A	80-96	44.0
0840	1540440	485360	98.0	6.0	9/8/83	47.32	6513.68	0.0	6561.00	94	6467.0 A	73-94	46.7
0841	1540835	485020	100.0		7/22/95	54.66	6506.34	0.0	6561.00	***	A	\ -	
0843	1541265	485995	120.0	4.0	6/27/89	52.40) 6517.60) 0.0	6570.00	112	6458.0 A	100-110	59.6

PLEASANT VALLEY WELLS

Note: A = Alluvial Aquifer

M = Middle Chinle Aquifer

T = Tailings Aquifer

* = Well Abandoned

? = Uncertain Identity

3/8/2002

			WELL	CASING	W	ATER LEI	/EL	MP ABOVE		DEPTH TO BASE OF	ELEV. TO BASE OF	CASING PERFOR-	
WELL NAME	NORTH. COORD.	EAST. COORD.	Depth (FT-MP)	DIAM (IN)		DEPTH (FT-MP)	ELEV.	LSD (FT)	MP ELEV. (FT-MSL)	ALLUVIUM (FT-LSD)	ALLUVIUM (FT-MSL)	ATIONS (FT-LSD)	SATURATED THICKNESS
0520	1538934	492935	75.0	5.0	12/10/01	56.70	6529.32	0.3	6586.02	68	6517.7	35-75	11.6
0521	1539105	492588	75.0	5.0	12/10/01	53.8	6530.63	2.5	6584.44	65	6516.9 A	35-75	13.7
0531	1541086	478262			10/30/96	79.24	6474.55	2.0	6553.79		¢		
0532	1518700	482400	214.0					0.0	6515.00		A	· -	
0533			195.0	•••			•	0.0	6520.00		A	· -	
0631	1532234	483756	118.0	6.0	9/17/ 0 1	102.28	6438.82	2.2	6541.10	109	6429.9 A	58-118	8.9
0632	1531850	483767	110.0	6.0	9/17/01	103.00	6438.30	3.0	6541.30	102	6436.3 A	70-110	2.0
0633	1541467	479642	83.0	8.0	5/2/00	74.83	6482.73	0.0	6557.56	95	6462.6 A	11-83	20.2
0634	1541652	4803625	103.0	4.5	9/20/01	72.39	6487.68	2.8	6560.07	95	6462.3 A	80-100	25.4
0635	1535363	478401	63.0	12.0			·	•	6546.25		A	4-63	
0636	1545374	476038	123.0	4.5	9/18/01	98.40	6475.04	2.3	6573.44	119	6452.1 A	103-123	22.9
0637	1545409	474710	124.0	4.5	9/18/01	102.40	6472.80	2.5	6575.20	118	6454.7 A	104-124	18.1
)638	1539628	493264	75.0	5.0	12/10/01	59.21	6526.35	0.0	6585.56	65	6520.6 A	35-75	5.8
0639	1539370	492960	80.0	5.0	12/10/01	57.46	6530.42	2.5	6587.88	71	6514.4 A	35-80	16.0
640	1537790	491961	84.0	5.0	7/24/01	52.51	6527.46	2.2	6579.97	77	6500.8 A	64-84	26.7
)641	1536494	491110	95.0	5.0	7/25/01	50.99	6522.37	2.5	6573.36	87	6483.9 A	65- 9 5	38.5
)642	1536104	490932	95.0	5.0	7/25/01	51.63	6520.25	2.4	6571.88	89	6480.5 A	65-95	39.8
643	1533760	487386	108.0	5.0	10/15/01	71. 70	6479.63	1.5	6551.33	93	6456.8 A	58-108	22.8
644	1533481	485450	110.0	5,0	10/15/01	71.53	6472.37	2.2	6543.90	102	6439.7 A	55-110	32.7
1645	1532924	485282	B0.0	5.0	10/19/98	66.48	6477.31	2.5	6543.79	70	6471.3 A	60-80	6.0
646	1533246	484953	100.0	5.0	10/23/01	73.40	6469.95	1.5	6543.35	91	6450.9 A	60-100	19.1
647	1536623	478308	140.0	4.5	8/15/01	89.84	6462.07	1.4	6551.91	132	6418.5 A	80-140	43.6
648	1534730	478343	120.0	4.5	8/15/01	91. 86	6455.93	0.5	6547.79	120	6427.3 A	80-120	28.6
649	1534730	479798	124.0	4.5	8/15/01	85.5 2	6457.77	0.3	6543.29	115	6428.0 A	84-124	29.8
650	1536779	482135	109.0	4.5	4/14/98	71.10	6476.01	2.2	6547.11	103	6441.9 A	89-109	34.1
652	1531170	483779	88.0	5.0	10/23/01	81.03	6457.12	1.5	6538.15	79	6457.7 A	60-88	0.0
653	1533283	486570	206.0	6.0	9/17 /0 1	171.44	6373.53	1.3	6544.97	97	6446.7 A		0.0
654	1541994	170626	120.0	45	0/10/01	74.00	C 47C 01			97	6408.7 L		0.0
655	1541620	478636	120.0	4.5	9/18/01	74.69	6475.81	1.4	6550.50	106	6443.1 A		32.7
		479830	96.0	8.0	5/2/00	75.15			6558.18	88		21-84	•••
656	1542578	478333	88.0	8.0	5/2/00	77.32	6476.75		6554.07	88		6-88	
657	1537497	478392	128.0	6.0	9/17/01	100.00	6451.81	2.2	6551.81	120	6429.6 A		22.2
657A	1537083	478412	35.0	12.0	4/13/99	37.00	6512.00		6549.00			17-35	
558	1535922	478436	130.0	6.0	9/17/01	105.50	6444.68	0.4	6550.18	129	6420.8 A		23.9
558A	1535589	478423	30.6						6546.10		A	14-31	
659	1541689	480772	101.0	4.5	9/20/01	71.34	6488.83	2.0	6560.17	97	6461.2 A	61-101	27.7

4.1 - 18

3/12/2002

. -

(cont'd.)

WELL NAME	North. Coord.	EAST. COORD.	WELL DEPTH (FT-MP)	CASING DIAM (IN)		ATER LEVE DEPTH E (FT-MP) (F	LEV.	MP ABOVE LSD (FT)	MP ELEV. (FT-MSL)	DEPTH TO BASE OF ALLUVIUM (FT-LSD)	ELEV. TO BASE OF ALLUVIUM (FT-MSL)	CASING PERFOR- ATIONS (FT-LSD)	SATURATED THICKNESS
0680	1543850	478746	80.0	4.5	10/25/96	77.39	6481.48	2.0	6558.87	75	6481.9	50-80	0.0
0681	1540676	482734	117.0	6.0	9/24/98	64.18	6496.34	2.1	6560.52	111	6447.4	67-117	48.9
0682	1543125	477489	94.0	4.0	4/3/01	80.80	6473.17	2.8	6553.97	102	6449.2	54-94	24.0
0683	1540198	476217	120.0	6.0	9/18/01	86.41	6469.63	2.0	6556.04	140	6414.0	80-120	55.6
0684	1540273	478499	143.0	6.0	9/25/01	83.78	6469.50	2.0	6553.28	118	6433.3	83-143	36.2
0685	1539098	478170	100.0	4.5	12/23/01	91.03	6465.54	1.7	6556.57	116	6438.9	60-100	26.7
0686	1545319	475438	115.0	4.5	9/18/01	105.96	6472.84	1.8	6578.80	136	6441.0	75-115	31.8
0687	1539011	477276	102.0	6.0	12/23/01	90.20	6465.76	2.2	6555.96	120	6433.8	62-102	32.0
0689	1530024	478478	80.0	4.5	7/25/01	69.78	6472.24	2.6	6542.02	75	6464.4	60-80	7.8
0692	1535892	493175	90.0	5.0	7/25/01	65.87	6518.95	2.5	6584.82	80	6502.3	58-90	16.6
0846	1537219	484730	75.0	4.0	7/24/01	43.90	6505.02	1.1	6548.92	65	6482.8	40-65	22.2
0847	1534736	488508	92.0	5.0	11/22/96	53.88	6504.39	2.6	6558.27	80	6475.7	52-92	28.7
0848	1534634	490660	92.0	5.0	7/24/01	59.34	6513.15	2.7	6572.49	91	6478.8	52-92	34.3
0851	1534692	483909	91.0	5.0	8/23/01	73.84	6472.60	3.3	6546.44	80	6463.1	41-91	9.5
0852	1535610	493989	74.0	5.0	11/22/96	73.26	6516.88	2.5	6590.14	70	6517.7	54-74	0.0
0855	1532111	484184	105.0	5.0	8/23/01	80.53	6460.58	2.1	6541.11	97	6442.0	70-105	18.6
0861	1534332	488702	100.0	5.0	8/29/01	70.24	6489.61	2.3	6559.85	65	6492.6	50-100	0.0
0862	1534265	487800	110.0	5.0	8/20/01	90.72	6465.46	3.3	6556.18	97	6455.9	\$ 63-103	9.6
0863	1533867	487912	110.0	5.0	8/20/01	89.55	6467.01	2.5	6556.56	94	6460.1	63 -103	6.9
0864	1533735	486464	95.0	5.0	8/29/01	69.68	6477.04	1.9	6546.72	78	6466.9	44-84	10.2
0865	1534123	488429	97.0	5.0	8/20/01	67.84	6488.94	2.2	6556.78	88	6466.6	37-97	22.4
0866	1534494	488340	120.0	5.0	8/23/01	63.67	6494.48	1.8	6558.12	80	6476.3	33-113	18.1
0867	1533762	488409	88.0	5.0	8/23/01	68.00	6487.90	2.0	6555.90	86	6467.9	48-88	20.0
0868	1534848	491033	103.0	5.0	8/29/01	60.78	6513.96	2.2	6574.74	94	6478.5,	4 53-103	35.4
0869	1533251	486073	9 4.0	5.0	8/20/01	84.53	6459.96	5 2.0	6544.49	99	6443.5	44-94	16.4
0870	1532680	484906	93.0	5.0	1/11/96	68.56	6475.60) 1.9	6544.16	95	6447.3	69-89	28.3
0871	1533603	485400	100.0	5.0	1/11/96	66.86	6477.85	5 2.4	6544.71	93	6449.3	4 60-100	28.5
0872	1533092	485407	100.0	5.0	1/11/96	65.80	6477.51	1.8	6543.31	96	6445.5	\$ 55-100	32.0
0873	1533286	484505	100.0	5.0	1/11/96	67.55	6475.46	6 1.9	6543.01	96	6445.1	4 60-100	30.3
0874	1533968	484925	105.0	5.0	1/11/96	68.68	6476.66	i 2.2	6545.34	110	6433.1	a 55-105	43.5
0875	1532785	483634	125.0	5.0	1/11/96	69.85	6472.99) 1.7	6542.84	116	6425.1	4 65 -125	47.9
0876	1532853	486088	9 5.0	5.0	8/20/01		6475.02	2 1.9	6544.26	85	6457.4	a 58-88	17.7
0877	1533068	488067	70.0	5.0	8/18/98	63.58	6489.50) 1.9	6553.08	65	6486.2	a 58-68	3.3
0879	1532401	486104	70.0	5.0	8/18/97		6479.87		6544.55	62	6480.4	48-6 8	0.0
0881	1542034	481478	96.0	4.5	9/20/01		6490.44		6565.04	103		4 76-96	30.4
	1541404	482396	110.0	4.5	9/20/01		6494.61		6561.16	98		A 70-110	33.4

							conc a.	/					
WELL	NORTH. COORD.	EAST. COORD.	WELL DEPTH (FT-MP)	CASING DIAM (IN)		ATER LEV Depth (FT-MP) (ELEV.	MP Above LSD (FT)	MP ELEV. (FT-MSL)	DEPTH TO BASE OF ALLUVIUM (FT-LSD)	ELEV. TO BASE OF ALLUVIUM (FT-MSL)	CASING PERFOR- ATIONS (FT-LSD)	SATURATED THICKNESS
0883	1540097	483039	100.0	5.0	9/20/01	59.85	6497.28	1.9	6557.13	96	6459.3	60-90	38.0
0884	1542 6 77	481498	90.0	5.0	9/21/01	75.16	6490.94	1.0	6566.10	85	6480.2 🗸	58-88	10.8
0885	1541919	483474	100.0	5.0	9/20/01	67.00	6497.64	1.5	6564.64	95	6468.1	70-100	29.5
0886	1542327	482487	90.0	5.0	9/20/01	70.52	6494.03	1.5	6564.55	87	6476.1	60-90	18.0
0887	1543063	482469	67. 0	5.0	3/12/98	69.21	6498.52	1.5	6567.73	60	6506.2	42-67	0.0
0888	1542285	479335	105.0	5.0	9/18/01	78.26	6479.07	1.1	6557.33	90	6466.2 A	75-105	12.8
0889	1540047	480222	65.0	5.0	10/24/96	63.31	6486.32	1.5	6549.63	60	6488.2 A	35-65	0.0
0890	1541365	480088	101.0	5.0	9/20/01	74.76	6483.67	1.7	6558.43	93	6463.7 A	81-101	19.9
0893	1541934	482244	98.0	4.5	9/20/01	70.68	6493.29	2.1	6563.97	93	6468.9 A	78-98	24.4
0894	1541976	478317	78.0	4.5	9/18/01	78.00	6476.29	3.0	6554.29	97	6454.3 A	58-78	22.0
0895	1541521	476222	104.0	5.0	9/18/01	82.00	6471.84	2.4	6553.84	116	6435.4 A	61-101	36.4
0896	1542246	476237	113.0	5.0	9/18/01	83.11	6472.50	2.0	6555.61	117	6436.6 A	73-113	35.9
0897	1543819	478237	93.0	4.0	9/27/98	83.28	6478.97	2.0	6562.25	70	6490.3 A	63-93	0.0
0899	1543801	477288	110.0	4.0	9/18/01	97.32	6473.52	2.0	6570.84	120	6448.8 A	70-110	24.7
0905	1532700	489450	120.0	5.0				0.0	6545.00	120	6425.0 A	100-120	•••
0906	1532900	489450			8/29/95	74.65	6462.75	0.0	6537.40		A	-	
0909	1531900	483400	140.0	4.0	11/19/82	77.45	6461.45	0.0	6538.90	112 112	6426.9 L 6426.9 A		34.6 34.6
0910	1528800	481150	138.0	5.0				0.0	6535.00	132		120-134	JT.U
0912	1471000	478250						0.0	6530.00		A		
0913	1555800	500950	•••	8.0	1/24/96	38.40	6604.60	0.3	6643.00		A		
0914	1555500	500850		6.0	5/8/01	40.25	6601.75	1.4	6642.00		A		
0915	1552650	499650	100.0	4.0				0.0	6625.00	70	6555.0 A		
0916	1552350	499600	160.0	4.0	4/26/94	40.00	6585.00	0.0	6625.00			45-70	
0917	1542200	514600						0.0	6800.00				
0920	1555800	496900	44 -1	7.0	5/11/94	33.40	6594.20	0.7	6627.60		A		
0921	1555400	495800		5.0	5/8/01	38.58	6585.42	1.9	6624.00		A A		
0922	1555200	492500		6.0	5/8/01	52.68	6569.02	1.7	6621.70				
0924	1547500	438900	135.0	4.0				0.0	6592.90	112	A 6480.9 A		
0925	1548600	480800	150.0	4.0		•••		0.0	6601.40	140	6461.4 A		
0926	1547500	472700	134.0	4.0				0.0	6596.90	132	6464.9 A		
0935	1540115	476629	300.0	16.0	9/25/01	88.66	6469.46	2.6	6558.12	132	6430.5 A		38.9
0936	1543621	472978	160.0	5.0				0.0	6573.38	123	6413.4 A		
0939	1539750	483200	97.0	8.0	7/25/96	59.31	6497.69	2.3	6557.00				
0940	1537750	482850	70.0		7/24/96	57.30	6495.70	2.3 8.8	6553.00		A		
0942	1538300	483710	102.0		1124190		0493.70				A		
	1000000	100710	102.0					0.0	6550.20	95	6455.2 A	00-90	

(cont'd.)

4.1 - 20

(cont'd.)

						.,		/				··	
WELL NAME	NORTH. COORD.	EAST. COORD.	WELL Depth (FT-MP)	CASING DIAM (IN)		ATER LEVE DEPTH E (FT-MP) (F	LEV.	MP ABOVE LSD (FT)	MP ELEV. (FT-MSL)	DEPTH TO BASE OF ALLUVIUM (FT-LSD)		Casing Perfor- Ations (FT-LSD)	SATURATED THICKNESS
0947	1536206	491841	100.0	4.0	7/27/94	54.63	6520.5	5 0.0	6575.18	95	6480.2 A	70-100	40.4
0950	1560400	498300	81.0	5.0	7/12/00	25.70	6631.30	0.5	6657.00		A	· ·	
0952	1534550	477800	140.0					- 0.0	6550.00		A	۰.	
0975	1539640	482880						- 0.0	6556.00		 A	· ·	
0976	1539630	483100	115.0					- 0.0	0.00		A	· ·	•••
0977	1539400	482730			12/9/95	61.47	6495.53	3 1.0	6557.00		A	· -	-4-
0979	1539010	483280	105.0	5.0				- 0.0	6651.00	100	6551.0 A	90-100	
0980	1539040	483080			11/8/95	57.70	6497.30	0.0	6555.00		A	· ·	
0981	1538970	482820	÷					- 0.0	6554.00		A	۱ ۰	
0982	1538370	483290	110.0	5.0	•••			- 0.0	6651.00	105	6546.0 A	90-105	
0983	1538590	483100		•				- 0.0	6552.00		A	•	
0984	1538750	482950	103.0	5.0				- 0.0	6651.00	98	6553.0 A	88-98	
0985	1538820	483180	115.0	5.0	7/18/96	58,75	6592.2	5 0.0	6651.00	102	6549.0 A	90-110	43.3
0989	1537890	482760			11/2/95	58.10	6494.90) 1.0	6553.00		4	• •	
0992	1539340	483780	100.0	5.0				- 0.0	6652.00	95	6557.0 🗚	85-95	
0993	1537860	483680	102.0	5.0				- 0.0	6650.00	98	6552.0 A	85-98	
0994	1539700	476240	144.0	6.0	12/23/01	89.25	6465.7	5 0.0	6555.00		_	95-110	
0996	1537621	477989	138.0	5.0	12/11/01	90.25	6462.2	7 1.7	6552.52	136	6414.8 A	126-136	47.5
0997	1539821	473807			3/12/96	76.90	6491.4	0.0	6568.30		A	١.	
0999	1524230	480187	185.0			. <u></u> .		- 0.0	6527.00		A	١.	
1012				6.0		. <u></u>		- 0.0	0.00		¢	١.	
1013				4.0		· ···		- 0.0	0.00		··· ¢	۰ ،	
1014				9.0				- 0.0	0.00	•	<i>p</i>	\ -	
1015				6.0				- 0.0	0.00		/	۸ -	
1018				5.0				- 0.0	0.00		··· /	ι.	
1020				5.0	1/18/96	15.17	-15.1	7 0.0	0.00		/	۹	
1021					1/18/96	18.00	-18.0	0.0	0.00		#	۹ -	

Note: A = Alluvial Aquifer

```` ``~~~~~

M = Middle Chinle Aquifer

T = Tailings Aquifer

\* = Well Abandoned

? = Uncertain Identity

4.1 - 21

#### 4.2 ALLUVIAL WATER LEVELS

#### 4.2.1 WATER-LEVEL ELEVATION - ALLUVIAL

This section presents information necessary to define the direction that ground water moves in the alluvial aquifer. Water-level elevations are used to define the gradient of the alluvial water table, which in turn can be used to define the direction of ground-water flow.

Figures 4.2-1A and 4.2-1B present Fall of 2001 alluvial aquifer water-level elevations for what has been termed the west area and the Grants Project area near Homestake's tailings, respectively. Additionally, these figures show, with patterned areas, where the alluvial aquifer is absent due to lack of saturation. These areas were defined based on the 1998 water-level elevation map and base of the alluvium map. Adjustments in the alluvial aquifer limits using 2001 water-level elevation data were not done, because the differences were very small. These unsaturated areas exist where the elevation of the base of the alluvium is equal to or greater than the water-level Locations of the alluvial wells, with their respective well names listed elevation. adjacent to the well symbol, are plotted on Figures 4.1-1A and 4.1-1B. The 2001 ground-water flow patterns in the alluvial aquifer are very similar to those observed in the Fall of 2000, with a similar depression on the south side of the large tailings due to the collection system (see Figures 4.2-1A and 4.2-1B of Hydro-Engineering, L.L.C., 2001a). The ridge of water on the southeast side of the small tailings was increased in 2001. One-foot water-level elevation contour intervals were drawn near the collection wells where space allowed. Water-level elevations define the area of collection and a pattern outlines this area on Figure 2.1-1. The area of collection is between the freshwater injection and the collection wells where water is flowing back to the collection wells. The area of the large tailings is also within the collection area because alluvial ground water in this area flows to the collection wells.

The water-level contours declined in Section 3 due to the irrigation supply from six wells in this section (see Figure 4.2-1B). The main changes in water levels in Figure 4.2-1A are in Section 33 due to the five irrigation supply wells in this area and the below natural recharge level in 2001.

Several wells have been drilled in the area of the zero saturation boundaries to better define the limits of the alluvial aquifer. Water was observed in some of these wells in the Chinle shale below the alluvium, indicating that there may be zones of perched water in the upper part of the Chinle shale. These wells have been used to help define where the zero saturation of the alluvium occurs and their water levels should be used with caution.

Figure 4.2-1A shows the direction of alluvial ground-water flow in the area immediately west of the Grants Project area with red flow arrows. Flow in the San Mateo alluvium is forced to flow through the western portion of Section 28 due to the zero saturation limits to the north and south of this area. The San Mateo alluvial water then mixes with the Rio San Jose alluvial water, which continues to flow to the south. The gradient has been increased due to the irrigation but is still very flat in the Rio San Jose alluvium due to its large transmitting ability. Alluvial ground water that flows through the northern portion of Section 3 (see Figure 4.2-1B) joins the Rio San Jose ground-water system in the eastern portion of Section 4.

Water-level data for the HMC alluvial wells are presented in Table A.1-1 of Appendix A. Table A.1-2 presents alluvial water-level data measured in wells located in Murray Acres, Broadview Acres, Felice Acres, and Pleasant Valley Estates. The water levels from the four subdivisions are presented in numeric and alphabetical order, with wells 453, Sub1 and Sub3 from Broadview Acres and wells 490, 491, 496, 497 and CW44 from Felice Acres. Water levels from wells 804, 844 and 845 are from Murray Acres, while well 688 is located in Pleasant Valley. The alluvial water-level data for the regional wells are presented in Table A.1-3 of Appendix A.

#### 4.2.2 WATER-LEVEL CHANGE - ALLUVIAL

Figure 4.2-2 presents wells that were grouped together on water-level elevation versus time plots. The figure number of the water-level elevation plots for each group of wells is shown by the well groupings. The colors used for the well name and well symbol on Figure 4.2-2 are the same as those used on the water-level elevation plots. Water-level elevation data considered to be inaccurate were removed

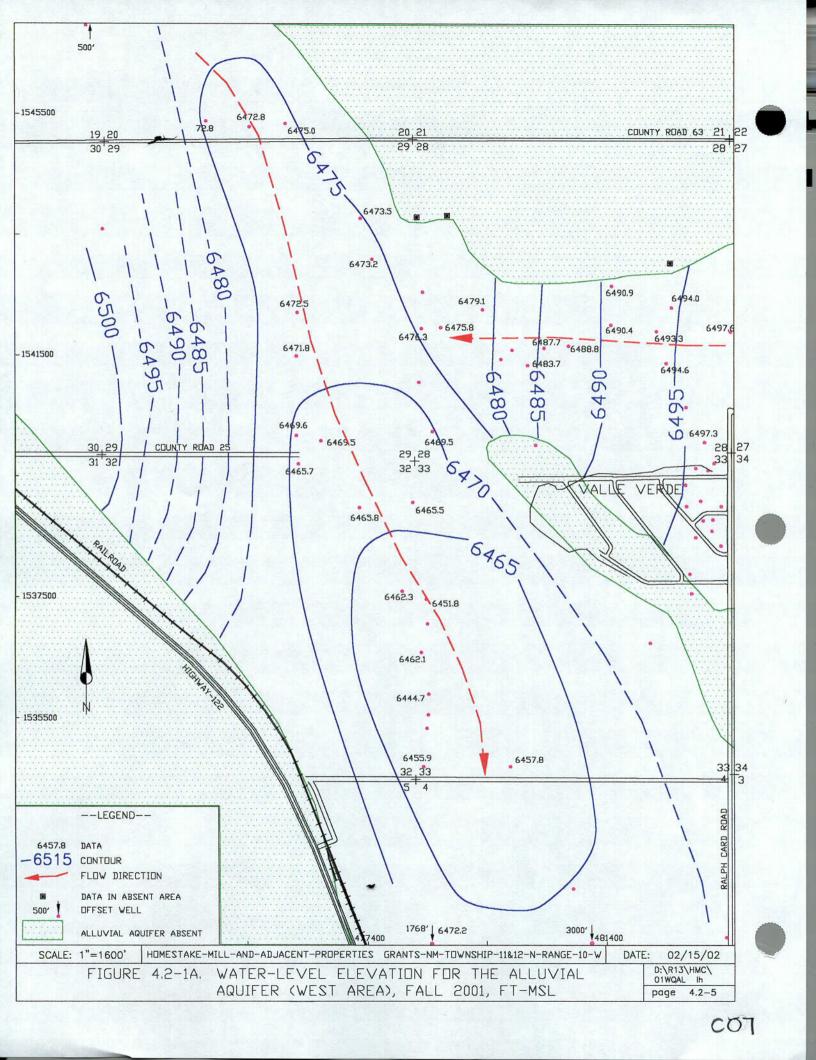
from the plots for better visual presentation of trends, but the excluded data remains in the Appendix A tabulations. These time plots present only the last six years of data to better show the 2001 trends.

Water levels in the alluvial aquifer have been fairly stable during the last year. Figure 4.2-3 presents water-level elevation data for upgradient wells N, NC, O and P. A very gradual decreasing trend has been observed in these upgradient wells in 2001. The larger decline in well P is probably caused by the upgradient alluvial pumping.

Water-level elevation data are presented for two sets of gradient reversal wells located near the S line of the collection system. Reversal wells SP and SO are located just northeast of the majority of the S line of collection wells. Figure 4.2-4 presents water-level elevation data for these two wells and shows that the alluvial hydraulic gradient is reversed between wells SO and SP. Water levels rose in these two wells in 2001. An adequate reversal was maintained during this rise. Wells S1 and S2 are the two reversal wells downgradient of the S line of collection wells (see Figures 4.1-1B and 4.2-2 for location). Recent data from these two wells show reversal of the ground-water surface downgradient of the S collection wells (see Figure 4.2-5) with a water level rise in 2001.

Figure 4.2-6 presents water-level elevation data for a group of wells located west of the S line of collection wells. Water-level elevations in wells DC, S4 and MU increased in 2001, while the level dropped in wells BC and MO.

The alluvial water levels north of the Murray Acres declined in 2001 in wells MQ, MY and W. Water level was steady in well S3 in 2001 (see Figure 4.2-7).


The pair of reversal wells B and BA is used to define the gradient between the M and J injection lines and the D collection line. Figure 4.2-8 presents water-level elevation data for wells B and BA. Well B is downgradient of well BA, and a groundwater reversal is demonstrated when its water-level elevation is greater than that in well BA. A ground-water gradient from the south to the north exists in this area and the gradient reversal was maintained in 2001. Water levels in this area overall were steady in 2001. Figure 4.2-9 presents water-level elevation plots for alluvial wells BP, D1, M5 and PM, which are located near the collection ponds (lined). This plot shows that the water levels gradually increased in 2001 in all of these wells.

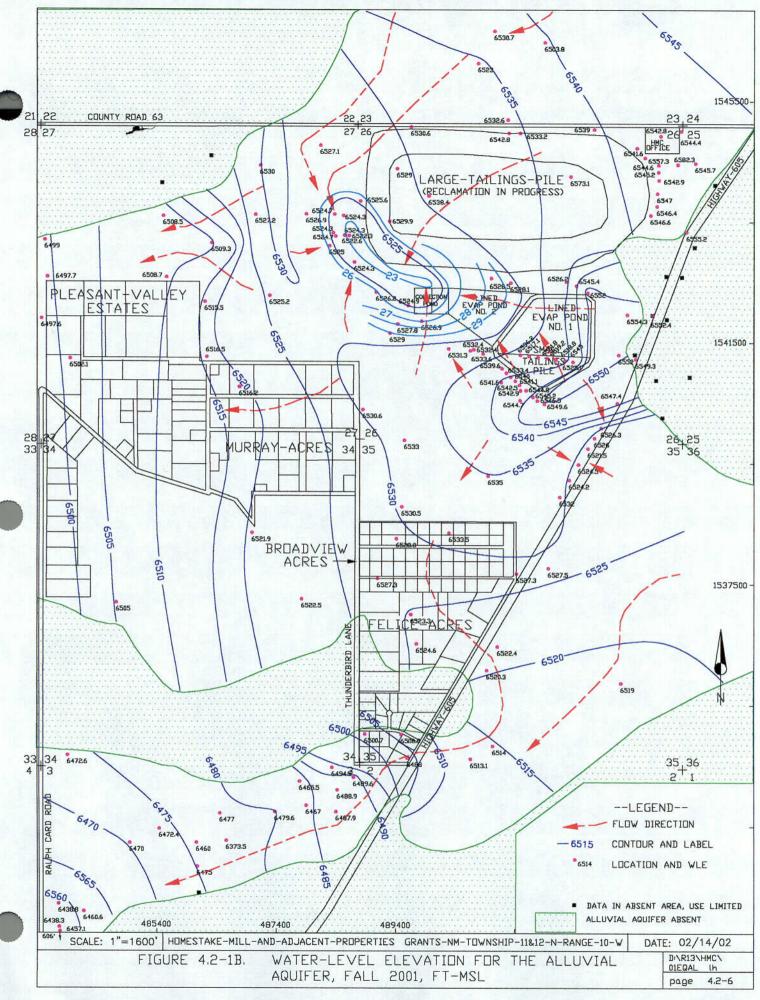
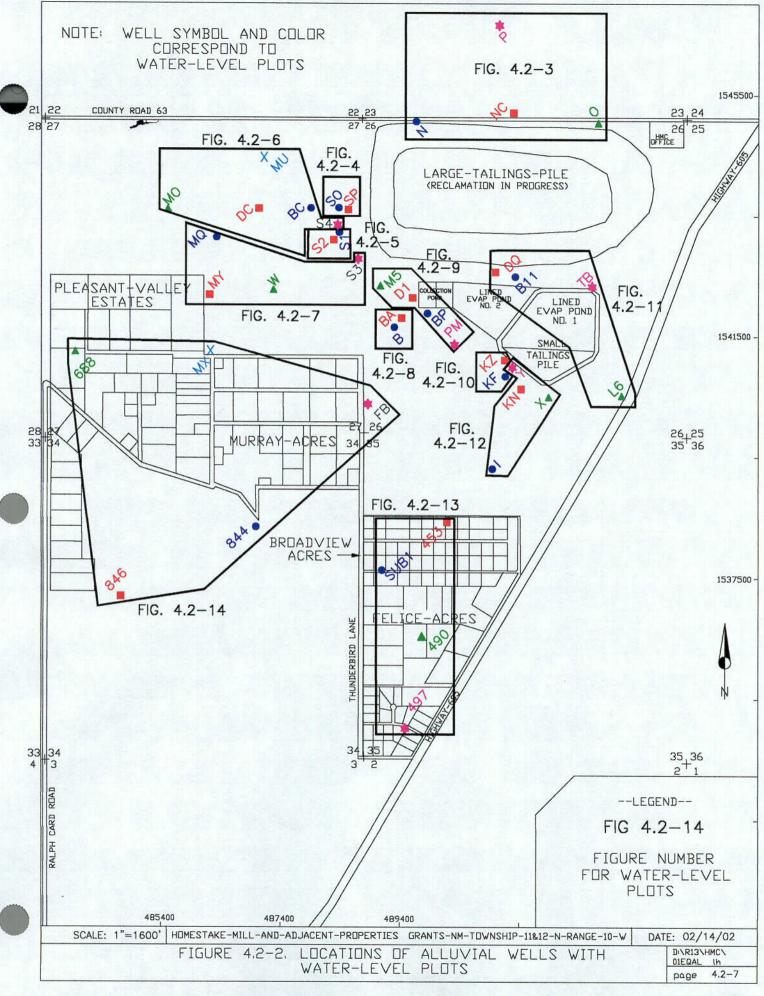
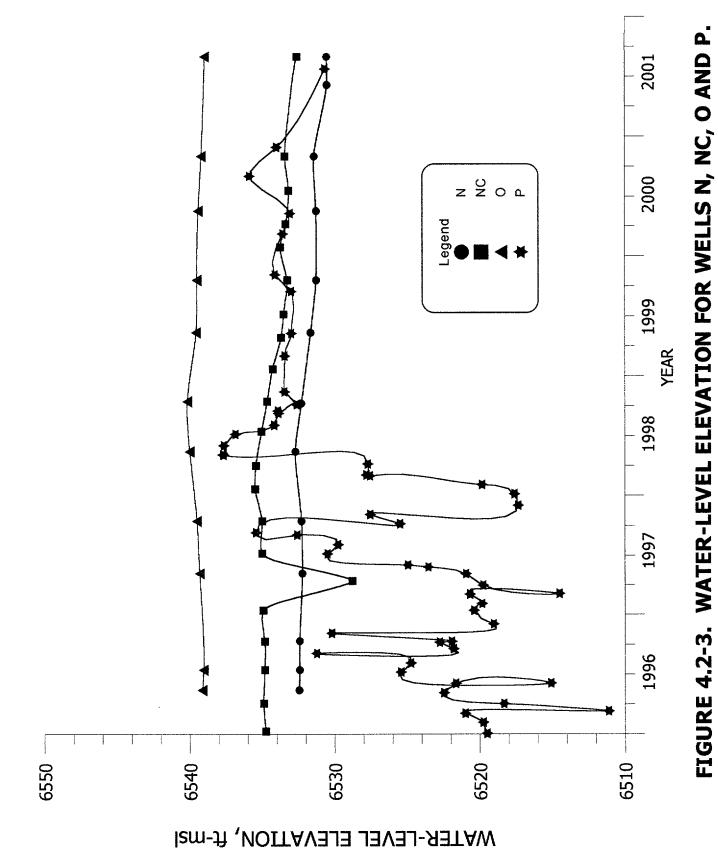
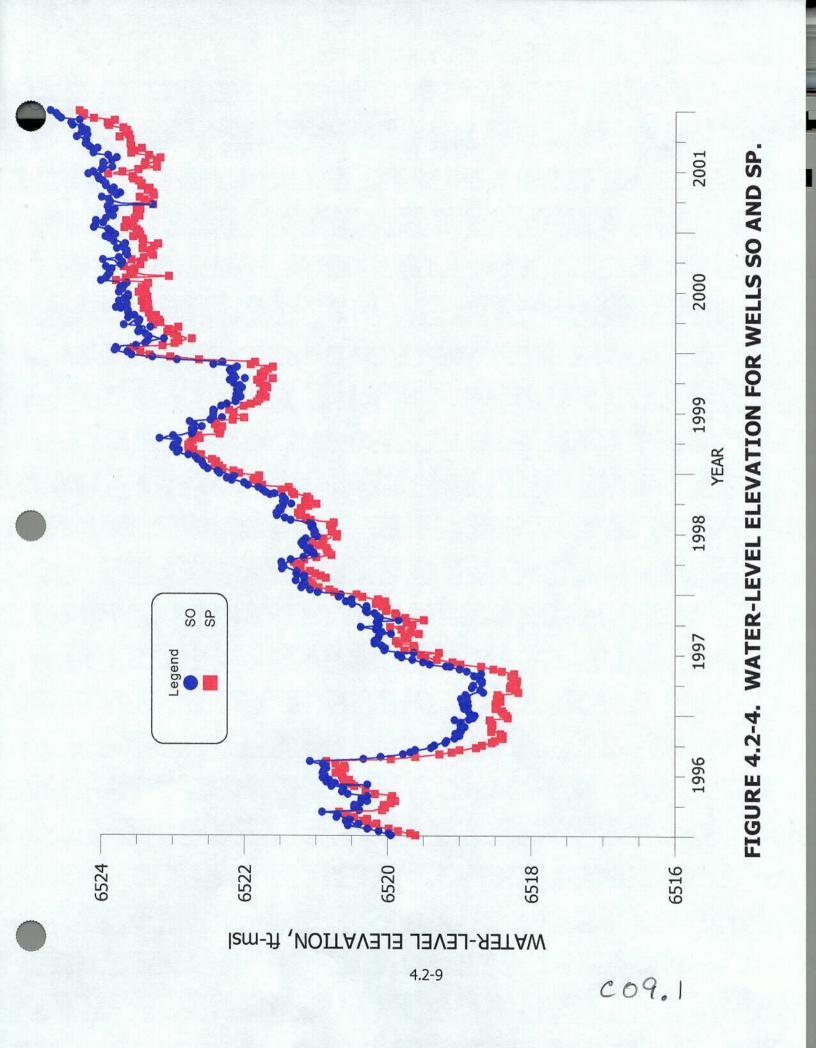

Water-level elevations in the alluvial aquifer near the small tailings collection system, at reversal wells KF and KZ, are presented on Figure 4.2-10. Well KF is further south and closer to the J injection line and, therefore, naturally downgradient of well KZ. This plot shows that during 2001 a reversal of the ground-water gradient was maintained. This pair of reversal wells will be adequate to define the ground-water gradient between the major zone of fresh-water injection and the collection system until the injected fresh water moves to the north of these wells. Injection between these two wells is planned for 2002, which makes these two wells unusable as a pair of reversal wells. Water levels in well KZ will continue to be used to define the head of the injection mound in this area.

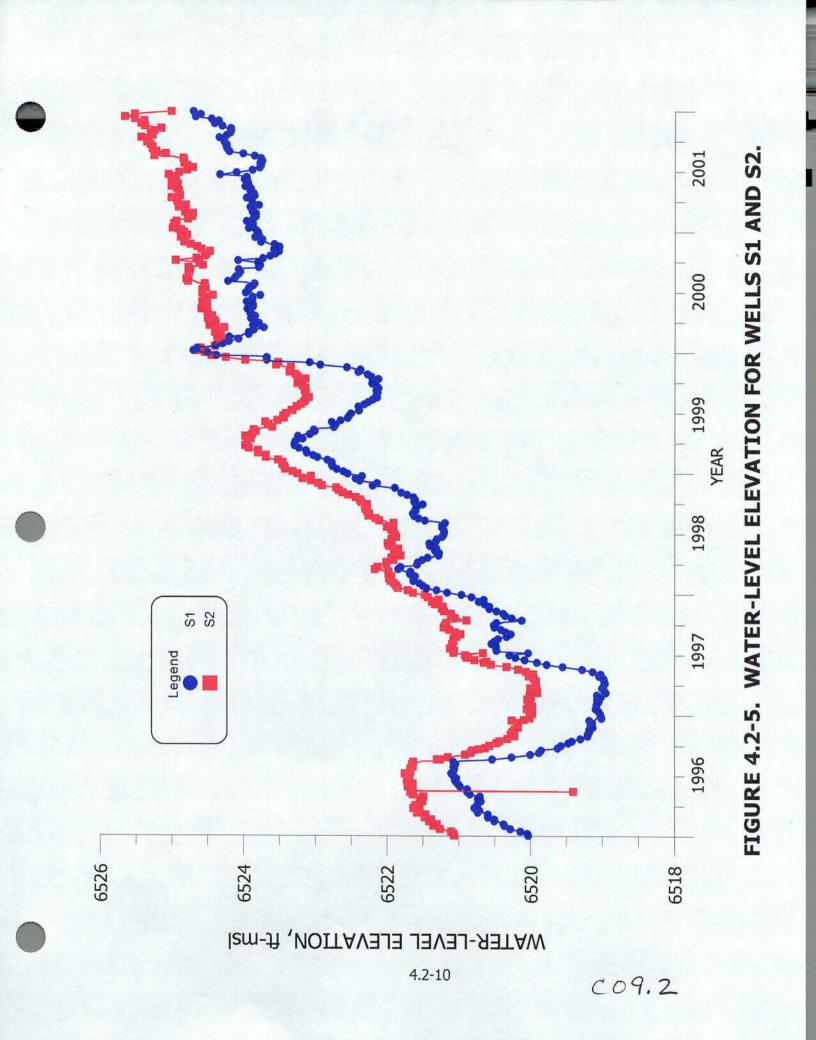
Figure 4.2-11 presents water-level elevation data for wells B11, DQ, L6 and TB. This data demonstrates the changes in water levels near the north and east sides of the small tailings. The variable water levels in well B11 are due to the collection from this well. The R.O. injection to the east of well TB has caused the higher water-level elevations in this area and in the area of well L6. Figure 4.2-12 shows the water-level elevation plots for wells I, KN, X and Y. Water levels were maintained high in wells KN, X and Y in 2001 except for one low value from well X, which is thought to be in error.

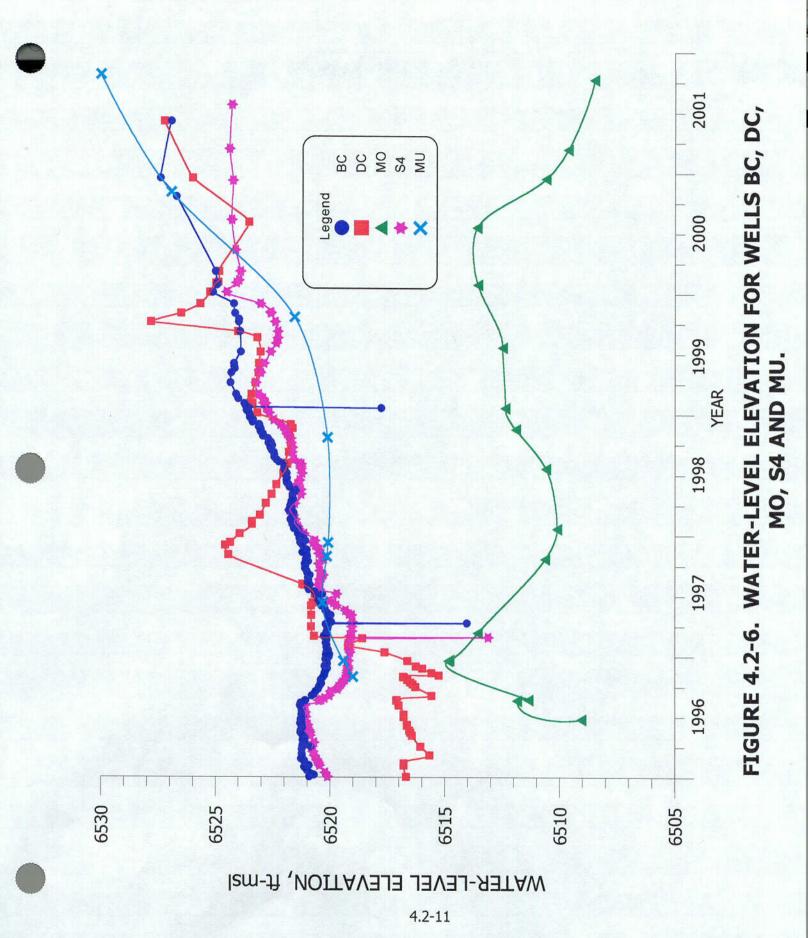

Water-level elevations in the alluvial aquifer south of the Broadview Acres injection system were fairly steady during 2001 (see water levels for wells Sub1, 453 and 490 on Figure 4.2-13). Some decline in water level was observed in alluvial well 497 with one of the 2001 water levels being an outlier. Water levels were fairly steady in alluvial wells FB, 844, 846, 688 and MX during 2001 (see Figure 4.2-14).

4.2-4

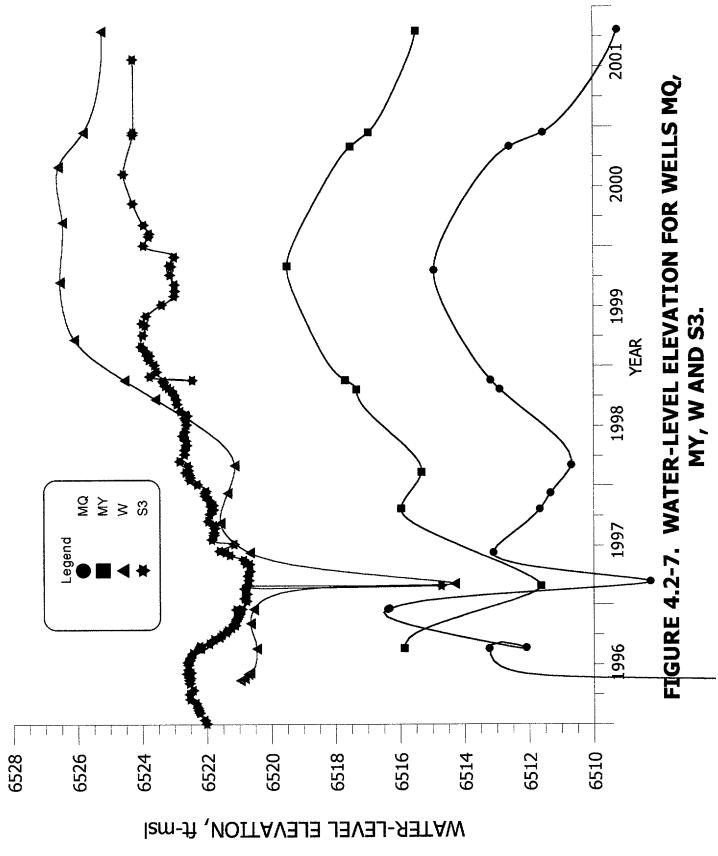


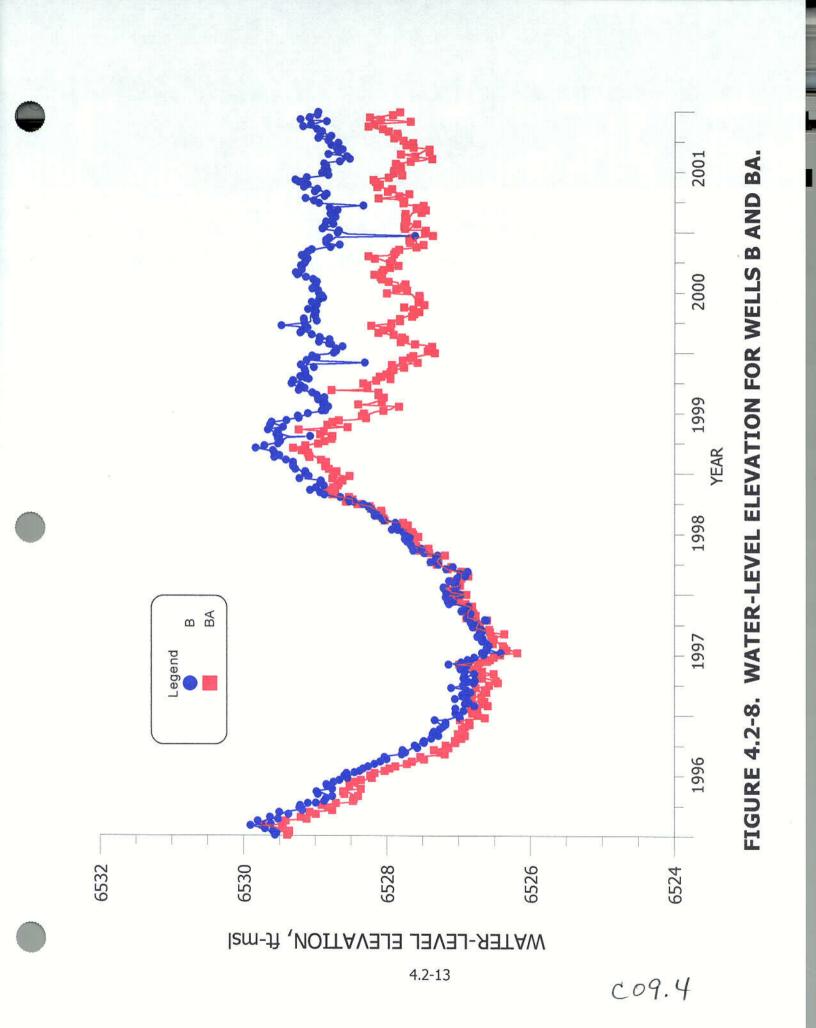


C08

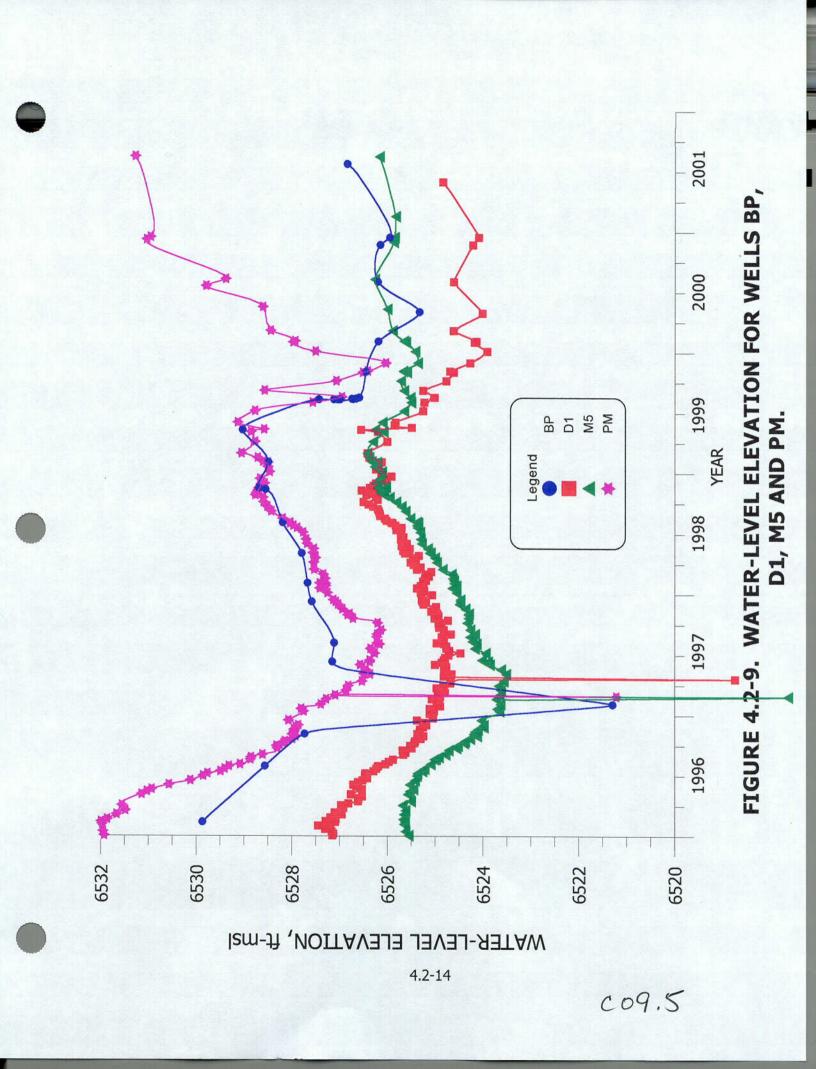


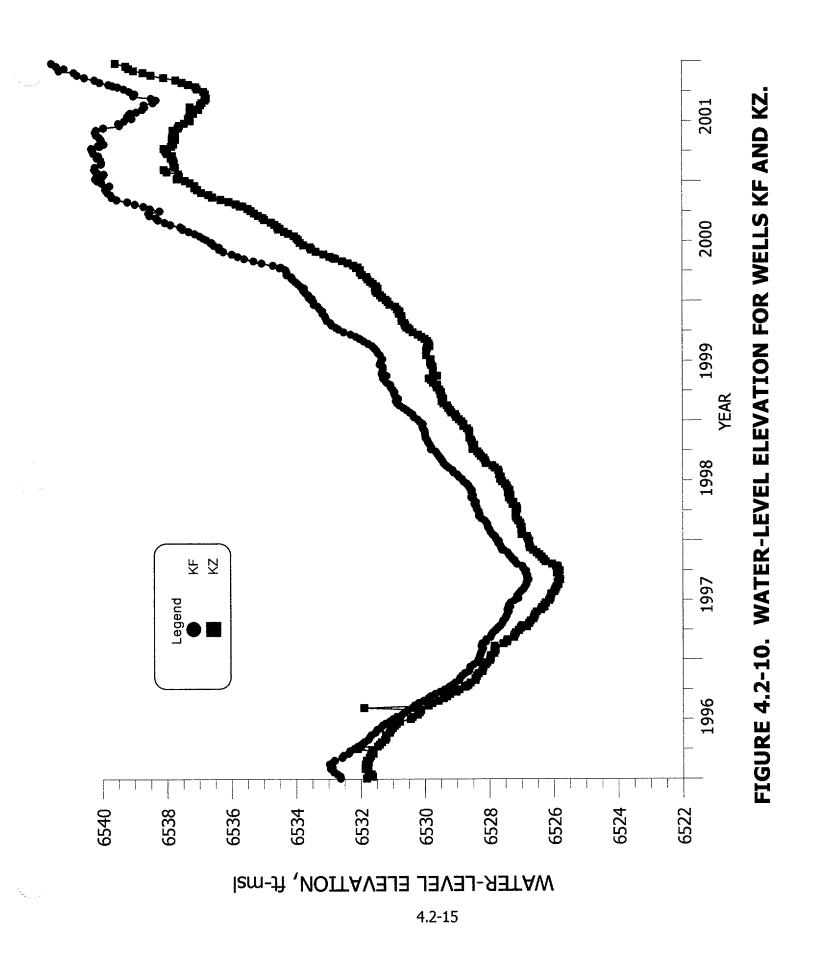

C09

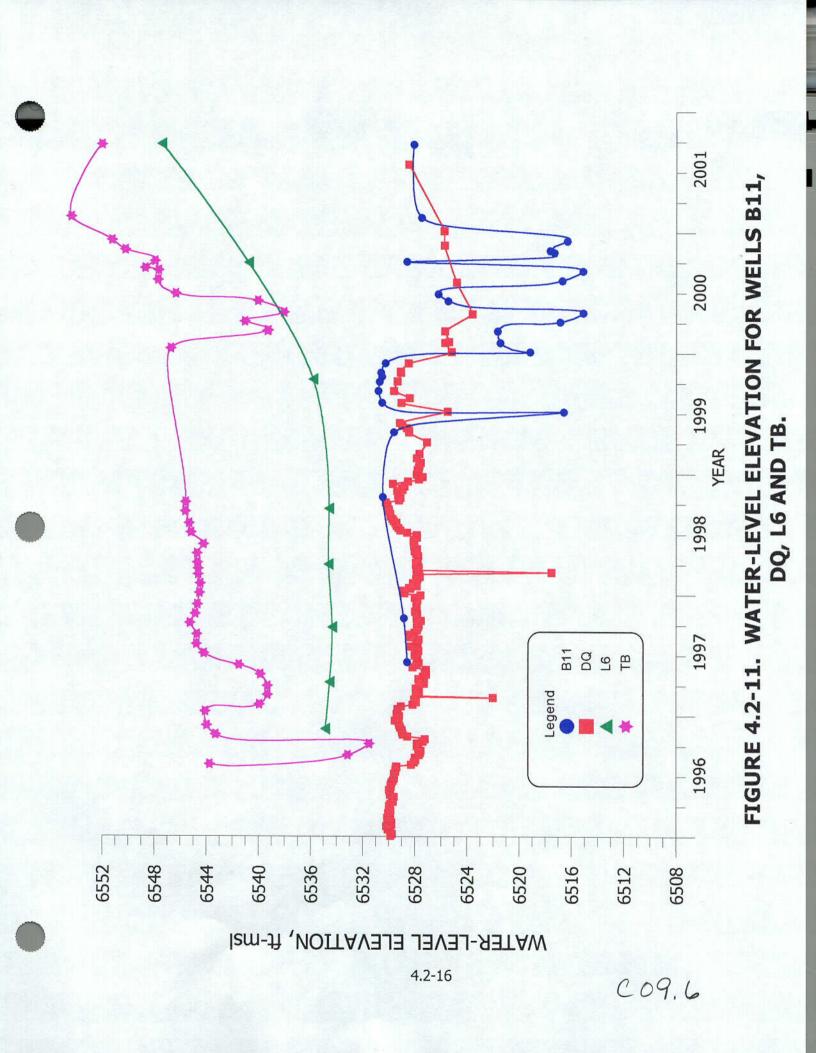


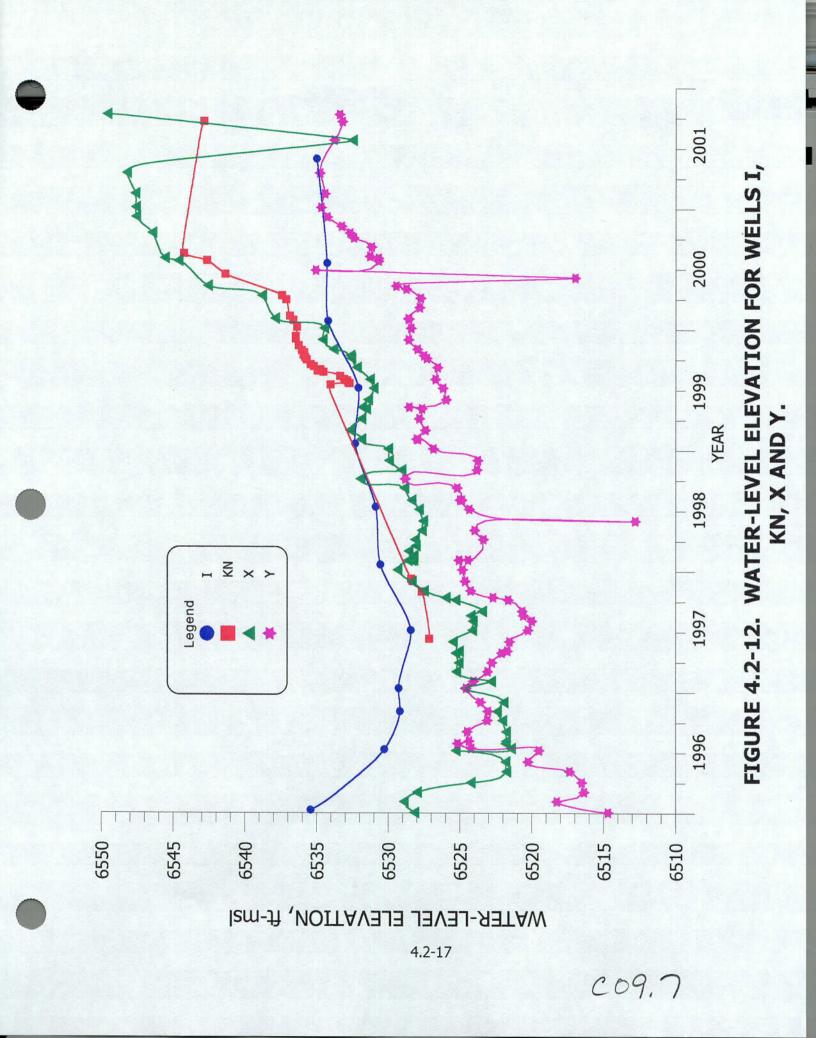


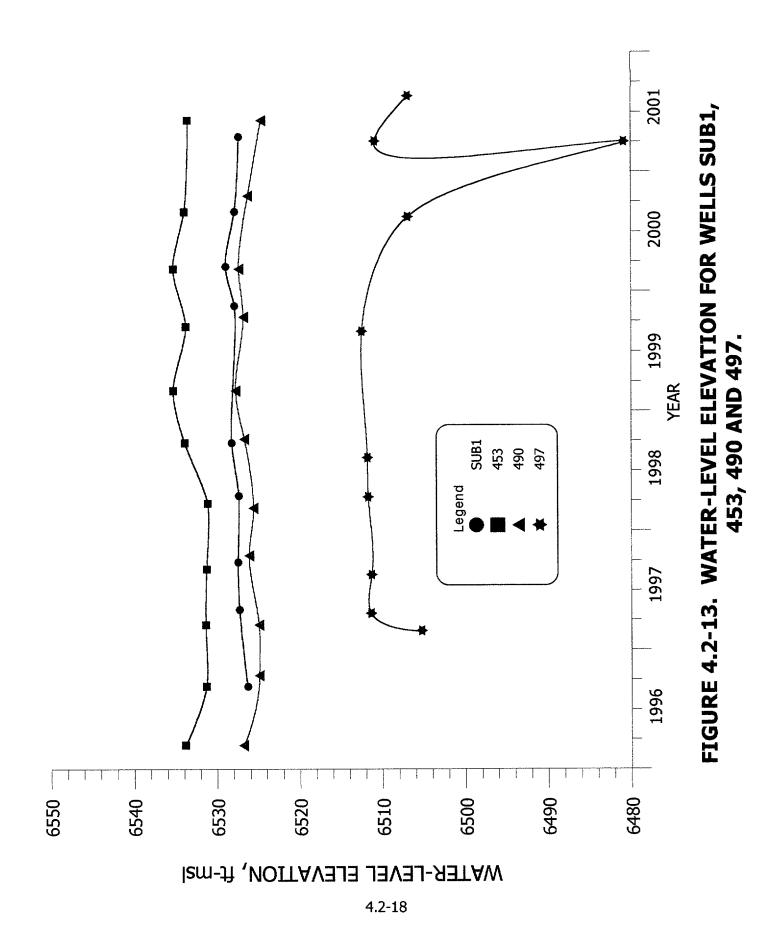



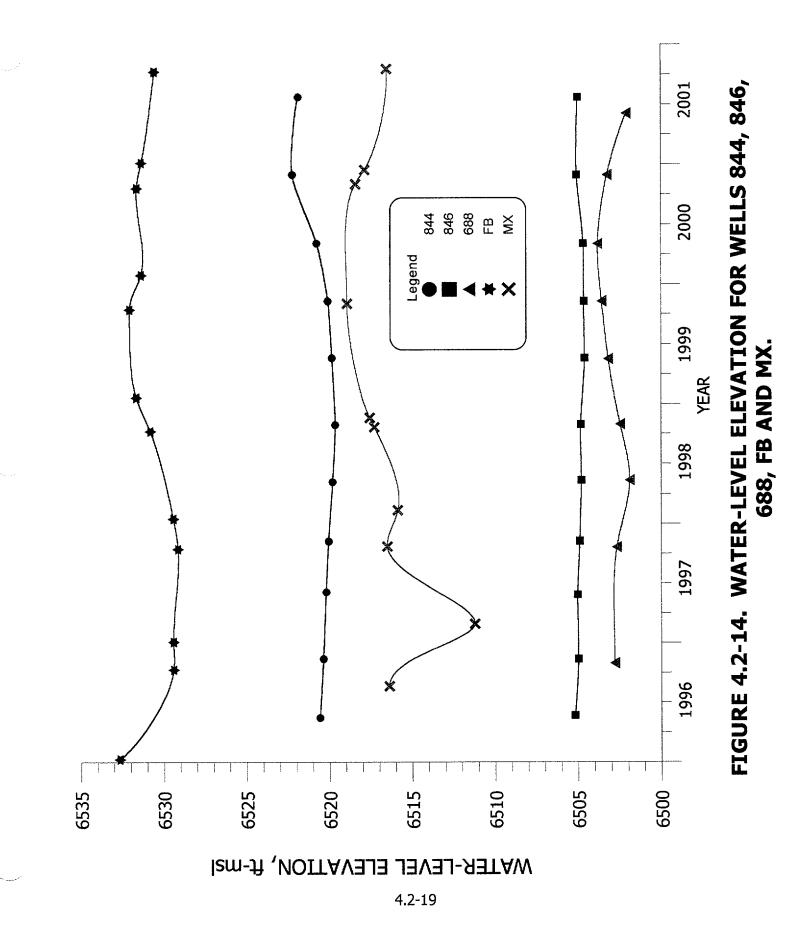





C09.3





4.2-12














### 4.3 ALLUVIAL WATER QUALITY

This section presents the 2001 water-quality data for the alluvial aquifer. The major constituents that are typically measured at this site are sulfate, chloride and TDS, with sulfate concentrations being the most important indication for contaminant remediation. Selenium, uranium and molybdenum are the hazardous constituents of most concern at this site. Nitrate, radium, chromium, vanadium and thorium are also discussed in the monitoring report but are not very important at this site. Tables B.4-1 through B.4-6 of Appendix B present the 2001 alluvial water-quality data for each well. The most recent value observed during the monitoring in 2001 was used for the concentration contour figures. The basic well data tables are presented in Section 4.1 for the alluvial wells.

Colored patterns are used on some of the figures to delineate important concentration limits for each of the constituents. Wells located near the unsaturated portion of the alluvial aquifer are depicted with a square symbol and water-quality data from these sources are potentially unreliable.

#### 4.3.1 SULFATE - ALLUVIAL

Sulfate concentrations have been used as the main indicator constituent for this site because concentrations are large in the tailings solution. Concentrations of sulfate in the alluvial aquifer for the Fall of 2001 are presented on Figures 4.3-1A and 4.3-1B. Background concentrations observed in 2001 range from 46 to 1380 mg/l. The background and standard information is presented in the left upper corner on the east area figure for each parameter. The New Mexico sulfate standard for this site is 976 mg/l. An updated statistical evaluation of the background sulfate concentration with data through 1998 showed that concentrations as great as 1870 mg/l could be naturally occurring at this site. Therefore, this concentration has been used to show a blue pattern where significant sulfate concentrations exist. This information is presented in a box in the upper left side of Figure 4.3-1B for sulfate. No sulfate concentrations in the alluvial aquifer exceed 1870 mg/l on the west map (see Figure 4.3-1A). The areas that exceed this concentration and, therefore, contain the blue shading on Figure 4.3-1B are primarily adjacent to the two tailings piles. Sulfate concentrations in an area of the large tailings pile still exceed 10,000 mg/l. A significant amount of additional

reduction in sulfate concentration has existed along the restoration zone, south and east of the small tailings pile, in 2001. The sulfate concentrations observed in Broadview and Felice Acres were less than 1000 mg/l in 2001, except for values of 1440 and 1200 mg/l from wells Sub3 and 491 respectively. Sulfate concentrations have declined in Section 3 and are all less than 850 mg/l in 2001. Sulfate concentrations exceed 1000 mg/l in the southwest portion of Murray and Pleasant Valley. Sulfate concentrations exceed 1000 mg/l adjacent to the zero saturation boundary in the northern portion of Section 27 (see Figure 4.3-1B) and continuing into Section 28 (see Figure 4.3-1A). Downgradient of the Grants Project site, the sulfate concentrations are all within natural range of background and, therefore, no restoration of sulfate is needed beyond the Grants Project area.

Water-quality concentrations versus time have been developed for the alluvial aquifer for sulfate, uranium, selenium and molybdenum. The groupings of wells used for these plots are shown on Figure 4.3-2. This figure shows the sulfate figure numbers for each of these groupings. The color and symbol used for each well are the same as those used in the time plots for each constituent. The sulfate figure number is shown on Figure 4.3-2 near each group of wells. Figure numbers for other water-quality parameters are not shown on this map but the location map should be useful for the other time concentration plots because the color, symbol and well groupings are the same.

Figure 4.3-3 presents the sulfate concentrations plotted versus time for upgradient wells NC, P, P3 and P4. This plot shows that an overall, gradual increasing trend is possibly occurring in the upgradient wells P and P3. The historical values for well P shows similar periods of short term increasing period for the alluvial aquifer. The changes in sulfate concentration in these wells are well within the range observed for sulfate in the upgradient wells. The increases could be due to higher concentrations upgradient of Homestake's background wells flowing into this area.

Sulfate concentrations in alluvial well S3 were fairly steady in 2001 with an overall declining trend since 1995 (see Figure 4.3-4). The sulfate concentration for well S2 declined in 2001 to a value similar to those in wells S3 and S4. Overall steady sulfate concentrations were observed in well S4 in 2001. Concentrations have been steady to the northwest of the large tailings at well S11.

Figure 4.3-5 presents the sulfate concentrations versus time for alluvial wells BC, DC, MO, MU and W. The sulfate concentrations declined in alluvial wells MO and MU in 2001, while concentrations slightly increased in wells BC and DC. Concentrations stayed small in well W in 2001.

The fourth sulfate concentration plot for the alluvial wells is presented for wells B, BP, D1, M5 and PM (see Figure 4.3-6). This figure shows that the overall sulfate concentrations in each of these wells declined in 2001 with the exception of fairly gradual rise in concentrations in BP.

Figure 4.3-7 presents the sulfate concentrations versus time for wells B11, DQ, S5, T, TA and TB. The sulfate concentrations in collection wells B11 and DQ have decreased during 2001, while sulfate concentrations in well S5 gradually increased. Values in wells T, TA and TB have decreased, showing the influence of the R.O. injection.

Figure 4.3-8 presents the sulfate concentrations versus time for alluvial wells on the west side of the small tailings. This plot shows fairly steady sulfate concentrations in wells C5 and C6 in 2001, while concentrations in wells C9 and C12 declined in 2001.

Figure 4.3-9 presents the sulfate concentrations versus time for alluvial wells on the south side of the small tailings. This figure shows that the sulfate concentrations in these wells varied with time in 2001 due to variations in the amount of the R.O. product injection flowing to these wells. Figure 4.3-10 shows the sulfate concentrations for the small tailings collection wells K4, K5, K7 and K10. Some increase in 2001 was observed in wells K4 and K5, while sulfate concentrations declined in wells K7 and K10.

Sulfate concentrations in collection wells to the southeast of the small tailings are presented in Figure 4.3-11. This figure shows fairly steady concentrations in 2001 after a significant decrease in sulfate concentrations. Concentrations are low and very similar in these four L wells.

Figure 4.3-12 presents the sulfate concentration time plots for Broadview Acres alluvial wells 453, Sub1, Sub2 and Sub3. Small variations were observed in three of these Broadview wells in 2001 and their concentrations are all near the injection concentration. Concentrations in well Sub3 in 2001 were similar to the 1997 and 1998 higher values.

Figure 4.3-13 presents sulfate concentrations versus time for Felice Acres alluvial wells 490, 492, 496 and 497. The sulfate concentrations in these four wells were fairly steady in 2001.

Figure 4.3-14 shows sulfate concentrations for Murray Acres and Pleasant Valley alluvial wells 802, 844, 846, 688 and FB. This plot shows that sulfate concentrations for alluvial wells 802 and 844 gradually declined in 2001. Concentrations were fairly steady in alluvial wells 688, 846 and FB in 2001.

## 4.3.2 TOTAL DISSOLVED SOLIDS - ALLUVIAL

Total dissolved solids (TDS) concentration contours for the alluvial aquifer during the Fall of 2001 are presented on Figures 4.3-15A and 4.3-15B. The background TDS concentrations measured upgradient of the large tailings in the Fall of 2001 varied from 399 to 2690 mg/l. Based on our updated statistical analysis, a TDS concentration of 3060 mg/l or larger is needed to be confident that the concentrations are not naturally occurring. A light blue pattern is shown on Figure 4.3-15B to indicate where the TDS concentrations exist above 3060 mg/l. None of the concentrations in the west area exceed this level. The TDS concentrations near the tailings exceed 3060 mg/l for approximately 800 feet to the west of the large tailings. Some TDS concentrations in the large tailings area exceed 20,000 mg/l. A zone of 2000 mg/l extends to the west of the large tailings to the west side of Section 28 (see Figure 4.3-15A). An additional area of TDS concentrations greater than 2000 mg/l exists in the southern portion of Pleasant Valley and the southwest portion of Murray Acres and to the south of this area. A small area of TDS concentrations above 2000 mg/l extends into the southeast corner of Section 28. The only other areas of TDS concentrations above 2000 is a small area of TDS concentrations slightly above 2000 mg/l in western Broadview Acres, two wells in Felice Acres and one well in Section 3. Only the areas adjacent to the two tailings piles need restoration based on TDS.

## 4.3.3 CHLORIDE - ALLUVIAL

Chloride concentrations are important in defining tailings seepage due to the conservative nature of this constituent and low concentrations upgradient. The 2001 chloride concentration figure for the alluvial aquifer near the tailings is presented in

4.3-4

Figures 4.3-16. Upgradient chloride concentrations in the alluvial aquifer varied from 27 to 136 mg/l in the Fall of 2001. The fresh-water injection systems have used water with chloride concentrations of approximately 200 mg/l. A significant portion of the alluvial aquifer around the large and small tailings contained chloride concentrations in excess of the State drinking water standard of 250 mg/l. A light blue pattern is shown to define where concentrations exceed 250 mg/l. This figure shows that restoration is only needed near the tailings for chloride. No chloride concentrations have existed in the past in the west area above 250 mg/l.

### 4.3.4 URANIUM - ALLUVIAL

Uranium is also a very important parameter to this site due to the significant levels in the tailings seepage. Uranium data for the Fall of 2001 are presented on Figures 4.3-17A and 4.3-17B. Background uranium concentrations during the Fall of 2001 varied from 0.001 to 0.21 mg/l and the site standard is 0.04 mg/l (see notes in upper left corner of Figure 4.3-17B). A uranium concentration of 0.43 mg/l has been chosen as the important uranium value at this site. The light blue pattern on Figures 4.3-17A and 4.3-17B shows where uranium concentrations exceed 0.43 mg/l. Uranium concentrations exceed this level in the area of the large and small tailings pond and extend approximately 1300 feet to the west of the large tailings pile. Uranium concentrations above 0.43 mg/l also extend down to the L collection wells to the south of the small tailings. Uranium concentrations also exceed 0.43 mg/l in two small areas in the central and western portions of Section 27 and a narrow band through the central portion of Section 28. These uranium concentrations only slightly exceed the 0.43 mg/l value. Lower uranium concentrations extend further to the west, joining the Rio San Jose alluvial system in the eastern portion of Section 29. Uranium concentrations are also input to this area from the Rio San Jose alluvial system from Section 20. These lower concentrations have joined together and extend down to the southwest corner of Section 33.

An additional area of uranium concentrations above 0.43 mg/l exists in the southern portion of Felice Acres and to the southwest into Section 3 (see Figure 4.3-17B). These concentrations extend for approximately one-half mile to the southwest of the southwest corner of Felice Acres. A small area also exists in the northern portion of

Felice Acres. One small additional area in the northeast portion of Murray Acres at well 802 exceeds the 0.43 mg/l concentration. Some additional restoration is needed in each of these areas based on uranium concentrations.

Uranium versus time plots are presented for this constituent to demonstrate the variations observed with time. Figure 4.3-2 shows the location of the alluvial wells used for the uranium time plots. The figure numbers shown on Figure 4.3-2 correspond to the sulfate time plots. The same grouping of wells was used for the uranium plots and their symbols and colors are the same as the sulfate plots. Figure 4.3-18 presents the uranium concentrations versus time for upgradient wells NC, P, P3 and P4. The uranium concentrations in these four wells have been fairly steady for the last four years. The range in background uranium concentration for 2001 and the NRC site standard are shown on Figure 4.3-17B.

A decrease in uranium concentrations was observed in 2001 for well S4 (see Figure 4.3-19). Uranium concentrations in wells S2 and S3 also are showing an overall decline with time, while concentrations stayed low in well S11.

Figure 4.3-20 presents the uranium concentration plots for alluvial wells west of the large tailings pile. This plot shows that uranium concentrations are low and gradually declining in wells BC and MO, while concentrations were low in wells DC, MU and W.

Figure 4.3-21 presents the uranium concentrations for alluvial wells B, BP, D1, M5 and PM. Fairly steady 2001 concentrations have been observed in each of these wells except for a gradual decline in well D1.

Uranium concentrations versus time for alluvial wells B11, DQ, S5, T, TA and TB are presented in Figure 4.3-22. This figure shows that overall concentrations in collection well B11, T and TA and monitoring wells DQ and TB were declining in 2001. Fairly steady concentrations are observed in 2001 in well S5.

Figure 4.3-23 presents the uranium concentrations for collection wells on the west side of the small tailings. This plot shows that uranium concentrations in collection wells C6, C9 and C12 show an overall decline in concentration. Uranium concentrations stayed low in well C5.

Figure 4.3-24 presents uranium concentrations for wells on the south side of the small tailings. Uranium concentrations are low in each of these wells, due to the

R.O. product injection into this area. The rate of decline in uranium concentrations in wells K5, K7 and K10 decreased in 2001 (see Figure 4.3-25). An increasing trend was observed in collection well K4.

Uranium concentrations for alluvial wells L5, L6, L9 and L10 are presented on Figure 4.3-26. This plot shows a large decrease in uranium concentrations in 2001 in wells L5 and L6. The uranium concentrations in collection wells L9 and L10 show a gradual decline in 2001.

Figure 4.3-27 presents uranium concentrations versus time for four Broadview Acres alluvial wells: Sub1, 453, Sub2 and Sub3. Uranium concentrations in wells Sub1 and Sub2 have been similar and fairly steady in 2001. Uranium concentrations to the north in wells 453 and Sub3 have been small for several years.

Figure 4.3-28 presents the uranium concentrations for Felice Acres wells 490, 492, 496 and 497. Uranium concentrations in these four alluvial wells have also been fairly steady for the last four years, except for a small decline in uranium in wells 496 and 497.

Figure 4.3-29 presents the uranium concentrations for wells in the Murray and Pleasant Valley subdivision areas. Uranium concentrations peaked in late 1998 in well 802 with a small increase in 2001. Uranium concentrations in the remaining alluvial wells in this area are low and concentrations in alluvial well 802 would be expected to gradually decrease with time.

### 4.3.5 SELENIUM - ALLUVIAL

Selenium is one of the important parameters at the Grants site due to significant levels of this constituent historically in the tailings. Figures 4.3-30A and 4.3-30B present the selenium concentrations for the west and east sides. Although the selenium site standard is 0.1 mg/l, only values equaling or exceeding 0.27 mg/l can be considered non-naturally occurring, based on statistical analysis. The important selenium concentration at this site has been selected to be greater than 0.27 mg/l. A blue pattern on the concentration contour figures is used to show where concentrations exceed 0.27 mg/l. No areas of selenium concentrations above 0.27 exist in the west area (see Figure 4.3-30A). A 0.1 mg/l contour extends approximately one mile into the

4.3-7

west area in the central portion of Section 28 and also extends slightly into Section 4 from the Section 3 area.

Concentrations exceeding 0.27 mg/l exist around the large and small tailings pile (see Figure 4.3-30B). The 0.27 mg/l concentrations extend approximately 1200 feet to the west of the large tailings and extends down to the south of the small tailings in the area of the L collection wells. An additional two areas of concentrations that exceed 0.27 mg/l exists in Section 3, southwest of Felice Acres. None of the concentrations in the subdivisions exceed 0.1 mg/l. This shows that the area near the tailings and portions of Section 3 need additional restoration based on selenium.

The time concentration plots for selenium are presented to define the variations with time for this constituent in the alluvial aquifer. Figure 4.3-2 should be used to determine the location of wells in each of the groups of plots. The symbols and colors used on Figure 4.3-2 are the same on each constituent time plot. Figure 4.3-31 presents the selenium concentrations for upgradient wells NC, P, P3 and P4. This plot shows variable concentration from well P has been higher since well P has not been continuously pumped as part of the upgradient collection in early 1998. Selenium concentrations in upgradient well NC have been fairly steady in 2001. The NRC and State site standards and the 2001 range in selenium values for all upgradient wells are also shown on Figure 4.3-30B.

Figure 4.3-32 shows an overall declining trend in well S4. An overall gradual decreasing trend has been observed in well S3 for the last few years. A significant decrease has been observed in well S2 during 2001. Steady concentrations have been observed in well S11 for the last three years.

Figure 4.3-33 presents the selenium concentrations for wells BC, DC, MO, MU and W. Selenium concentrations have stayed low in these wells.

The selenium concentrations for alluvial wells to the southwest of the large tailings are presented in Figure 4.3-34. This figure shows an overall decrease in selenium concentrations in wells B, D1, M5 and PM during 2001. Overall steady concentrations were observed in well BP.

Figure 4.3-35 presents the selenium concentrations for wells B11, DQ, S5, T, TA and TB. A decreasing trend in selenium is being observed in well B11 in 2001, while

selenium concentrations in well DQ were fairly steady in 2001. A decline in selenium concentrations in wells TA and TB occurred in 2001, while fairly steady concentrations were observed in well S5.

The selenium concentrations versus time for collection wells on the west side of the small tailings pile are presented in Figure 4.3-36. This plot shows that the selenium concentrations in wells C9 and C12 exhibit a general decline the last few years. Fairly steady concentrations are being observed in wells C5 and C6.

Figure 4.3-37 presents selenium concentrations versus time for wells on the south side of the small tailings. This figure presents values for wells KC, K2, X and Y. This plot shows small concentrations in 2001 in each of these wells due to the R.O. product injection in this area. Selenium concentrations in wells K5 and K10 declined in 2001 (see Figure 4.3-38). Concentrations in 2001 in collection well K7 were steady while levels increased in well K4.

Figure 4.3-39 presents the selenium concentrations for wells L5, L6, L9 and L10. A large decreasing trend is indicated by the data for well L6. Fairly steady selenium concentrations with time are being observed in collection wells L5, L9 and L10 in 2001.

Figures 4.3-40 and 4.3-41 present the selenium concentrations for the Broadview and Felice Acres alluvial wells. These plots show that the selenium concentrations have been reduced and maintained at low levels for the last several years in these two subdivisions, except for the slightly higher values in southern Felice wells 496 and 497. Selenium concentrations slightly declined in 2001 in well 496. Selenium concentrations are presented for the Murray Acres and Pleasant Valley areas in Figure 4.3-42. This plot shows low selenium concentrations in these monitoring wells in this area of the alluvial aquifer. A very gradual increasing trend within the background range has been observed in well 846.

## 4.3.6 MOLYBDENUM - ALLUVIAL

This section discusses the molybdenum concentrations in the alluvial aquifer at the Grants Project during the Fall of 2001. Figure 4.3-43 presents the concentration contours. Molybdenum concentrations in the west area have been less than 0.03 mg/l and therefore are not routinely measured. Therefore, no molybdenum figure for the west area was developed for 2001. The extent of movement of molybdenum is significantly less than that of selenium and uranium. Molybdenum concentrations exceed 100 mg/l near the large tailings and a 10 mg/l contour extends around both the small and large tailings. Significant molybdenum concentrations extend approximately 800 feet west of the large tailings pile and also to the southeast of the small tailings pile to the L collection wells. One alluvial well in Felice Acres slightly exceeds 0.1 mg/l of molybdenum.

The light blue patterned area on Figure 4.3-43 shows the area where molybdenum concentrations exceed 0.73 mg/l. This concentration has been chosen as the significant level of this constituent at this site. This shows that molybdenum concentrations need to be restored only adjacent to the tailings and near the L collection line.

Molybdenum concentrations versus time plots have been developed for the alluvial aquifer because this parameter is significant to this aquifer. Figure 4.3-44 presents the molybdenum concentrations for the upgradient wells NC, P, P3 and P4. This plot shows that the concentrations have remained low in these four wells. The color and symbol used on the molybdenum plots are shown on Figure 4.3-2.

A decreasing trend with time is being observed in wells S2 and S3 in 2001, while the molybdenum concentrations in well S4 were fairly steady in 2001 (see Figure 4.3-45). Molybdenum concentrations in well S11 were not detected prior to dropping this constituent from this well.

Figure 4.3-46 presents the molybdenum concentrations for wells BC, DC, MO, MU and W. Molybdenum concentrations in each of these wells are low and steady.

Figure 4.3-47 presents the molybdenum concentrations for wells B, BP, D1, M5 and PM. Molybdenum concentrations in well M5 were fairly steady in 2001 after significantly declining prior to 2000. A fairly steady concentration will time is being observed in wells B, BP, D1 and PM.

Figure 4.3-48 presents the molybdenum concentrations for wells B11, DQ, S5, T, TA and TB. A sharp decline in the molybdenum concentration in well DQ was observed in 2000 and 2001 after an overall increase during the previous few years. Molybdenum concentrations in well S5 were steady in 2001. Molybdenum concentrations in wells B11, TA and TB gradually declined in 2001.

Molybdenum concentrations for wells on the west side of the small tailings are presented in Figure 4.3-49. This figure shows large molybdenum concentrations in wells C6, C9 and C12 with each declining in 2001. Small concentrations were maintained in well C5.

Figure 4.3-50 presents the molybdenum concentrations for the wells on the south side of the small tailings. This plot shows small molybdenum concentrations in wells KC, K2, X and Y during the last year. Figure 4.3-51 shows a decline in concentrations in well K10, fairly steady levels in wells K5 and K7 and an increase in well K4 in 2001.

Figure 4.3-52 presents molybdenum concentrations further to the southeast in wells L5, L6, L9 and L10. A significant decreasing trend was observed in wells L5, L6 and L9 during 2001. Fairly steady molybdenum concentrations in well L10 were observed.

Molybdenum concentrations for alluvial wells in Broadview and Felice Acres are presented in Figure 4.3-53 and 4.3-54. The molybdenum concentrations in Broadview wells Sub1, Sub2, 453 and Sub3 have been low for the last several years. A slightly higher molybdenum concentration exists in well 490 in Felice Acres with a small declining trend with time during the last three years.

Figure 4.3-55 shows the molybdenum concentration in wells in the Murray Acres and Pleasant Valley area. This plot shows that molybdenum concentrations have remained low in these alluvial wells except for the first value in 2001 for well FB. This value is thought to be an outlier.

### 4.3.7 NITRATE - ALLUVIAL

Some of the nitrate concentrations upgradient of the Grants site generally exceed the State drinking water standard of 12.4 mg/l of nitrate for this site (see Table 3.1-1). A statistical analysis of the upgradient data through 1998 shows that a nitrate concentration of 23 mg/l is needed to be 95% confident that it is not from natural upgradient levels. Figures 4.3-56A and 4.3-56B present the nitrate concentrations during the Fall of 2001 for the alluvial aquifer. The nitrate concentrations north and upgradient of the tailings at this site have affected the nitrate concentrations downgradient of the large tailings in the northern portion of Sections 27 and 28. It is

difficult to determine whether the tailings has affected the nitrate concentrations in this area due to the naturally higher concentrations upgradient. The nitrate concentrations in the northeast portion of Section 27 that exceed 23 mg/l are likely natural levels due to the ground-water flow in this area. Figure 4.3-56A shows that higher nitrate concentrations exist in Section 20 and extend down into Section 29. These higher nitrate concentrations in the Rio San Jose alluvial system are also upgradient and enter the combination San Mateo and Rio San Jose system upgradient of where the Homestake site alluvial water meets the Rio San Jose. Therefore, none of these nitrate concentrations can be attributed to the Homestake tailings seepage.

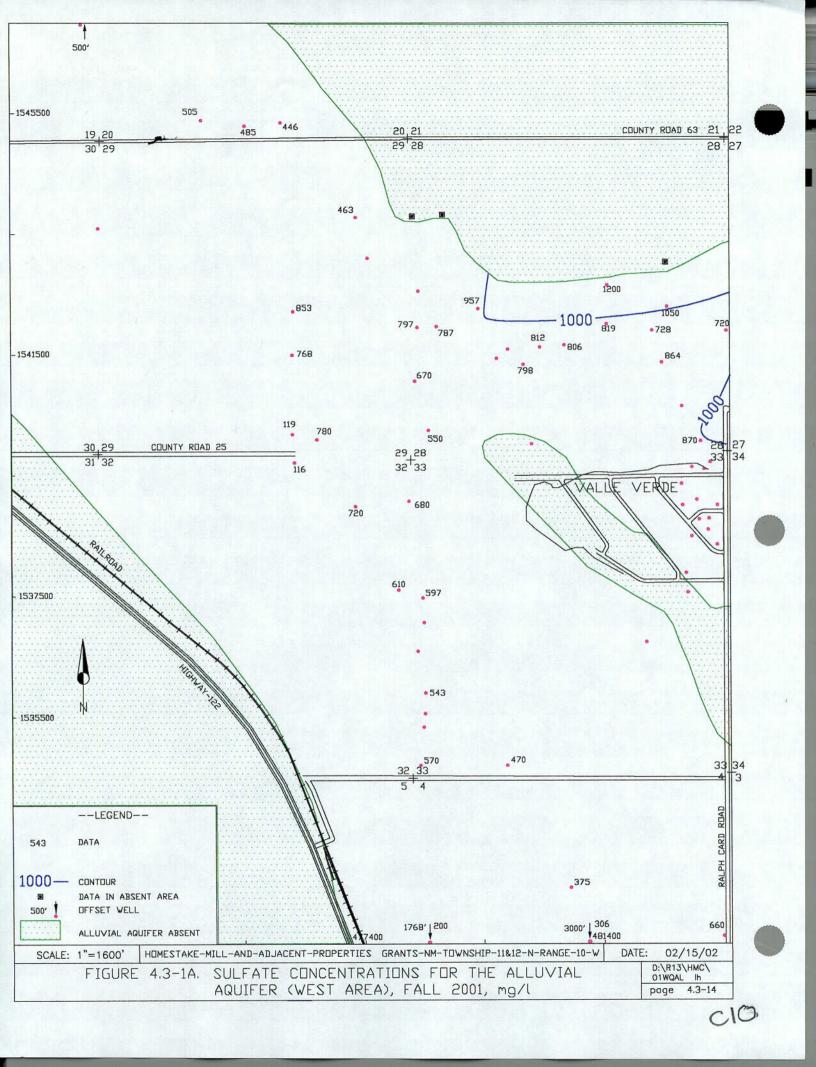
Nitrate concentrations exceed 10 mg/l in an area between the large and small tailings but none of these values exceed 23 mg/l. This parameter has been adequately restored. Time plots for nitrate concentrations in the alluvial aquifer have not been developed because this parameter is not very important to this site.

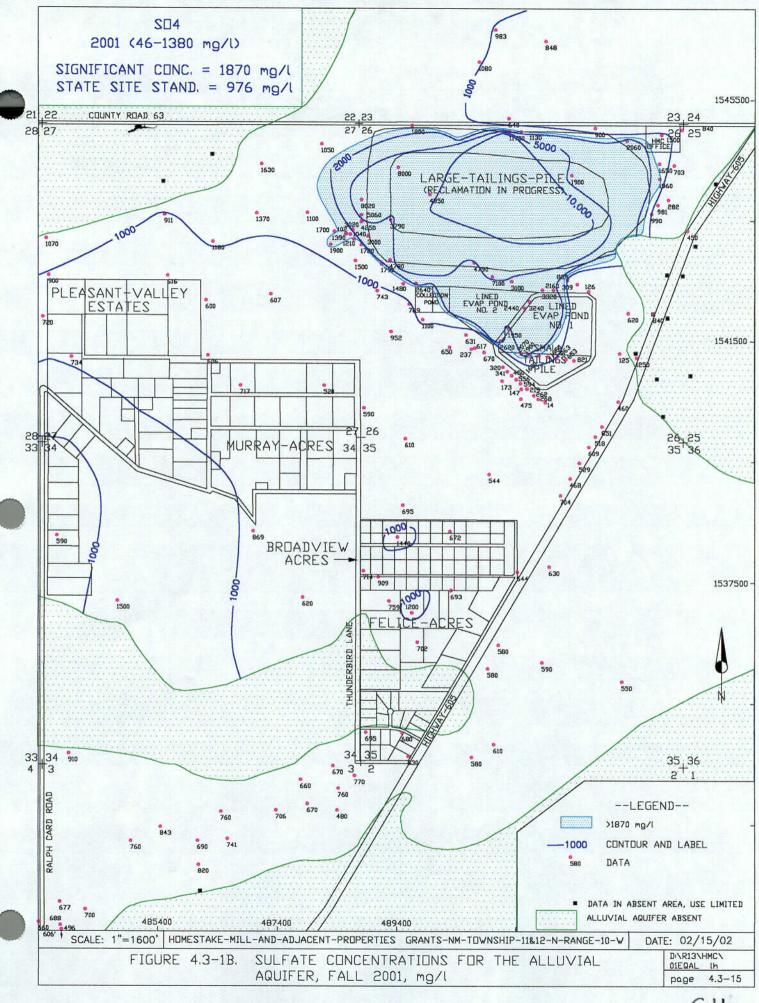
# 4.3.8 RADIUM-226 AND RADIUM-228 - ALLUVIAL

Figure 4.3-57 presents radium concentrations in the Grants Project area. The radium concentrations are very small in the alluvial aquifer. A figure for radium for the west area was not developed. Monitoring of radium concentrations have been reduced due to the insignificant concentrations in the alluvial aquifer. The radium-226 concentrations are presented horizontally, while the radium-228 values are shown at a 45° angle and in a magenta color. The State standard for radium-226 plus radium-228 is 30 pCi/l, while the NRC site standard is 5 pCi/l (see upper left corner of Figure 4.3-57 for this information). Three radium-226 concentrations in the three vertical drains in the large tailings exceeded the site standard in 2001. No radium concentrations outside of the tailings exceeded the standard. Past data has shown that radium is not mobile at this site in the alluvial aquifer. Radium concentrations at the Grants Site are, therefore, not significant, and these parameters should be dropped as a site standard. Radium-226 should be monitored annually at the three POC wells to demonstrate that concentrations are not increasing.

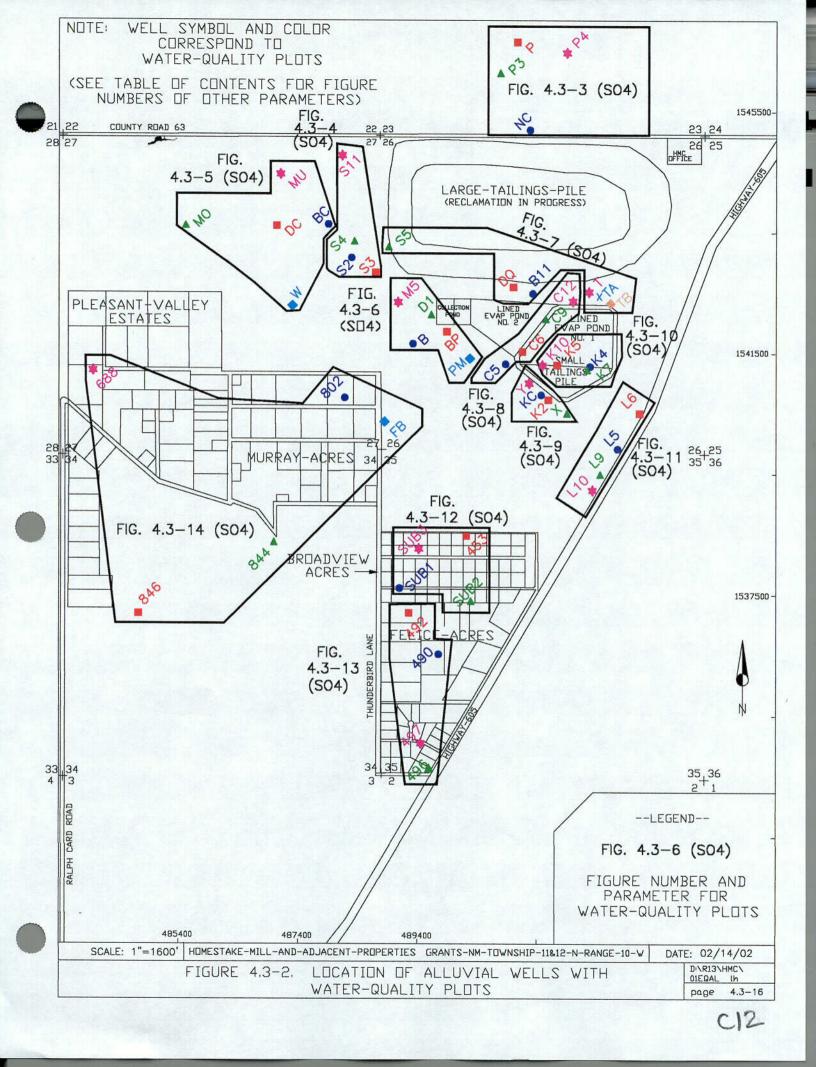
### 4.3.9 CHROMIUM - ALLUVIAL

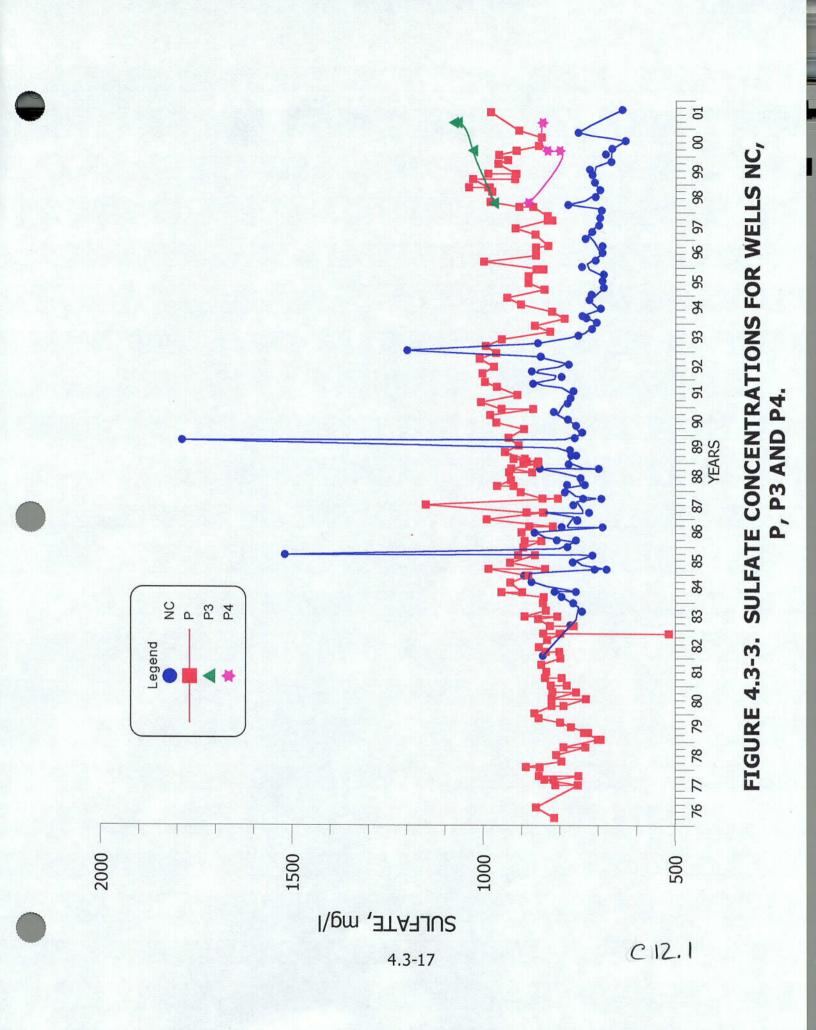
Chromium has been removed as a standard for this site. The few chromium concentrations measured during the Fall of 2001 show that concentrations of this constituent are not increasing at the POC wells.

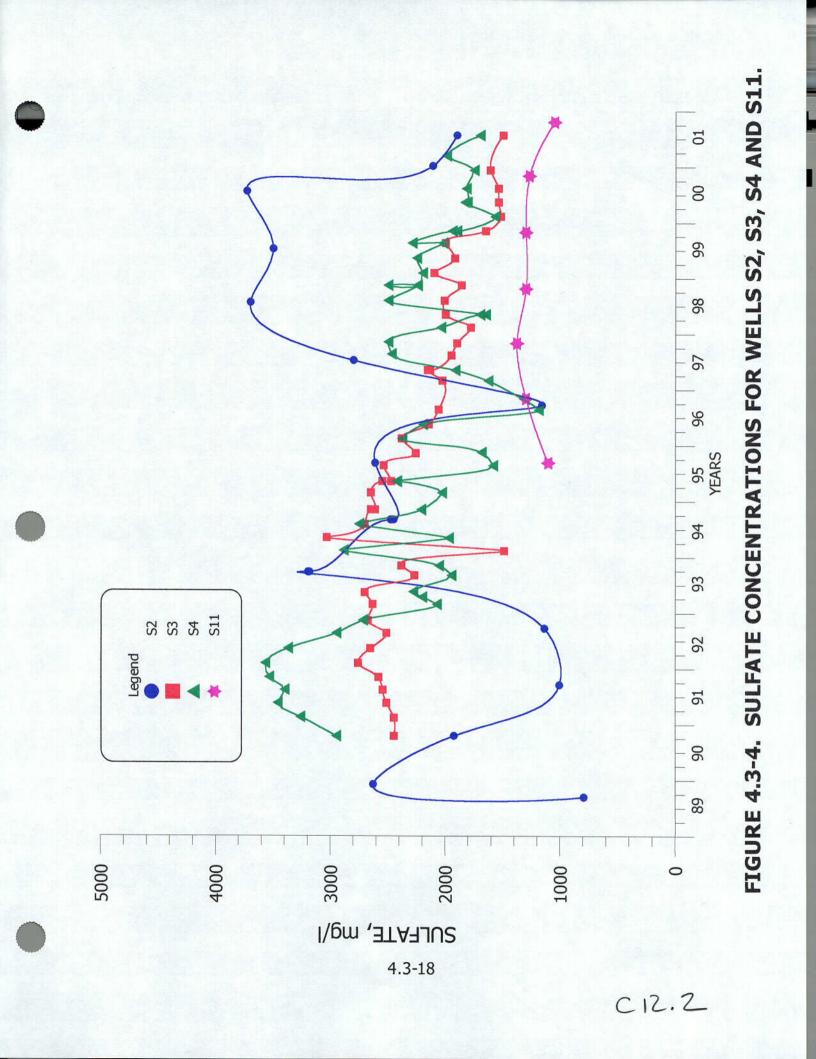

### 4.3.10 VANADIUM - ALLUVIAL

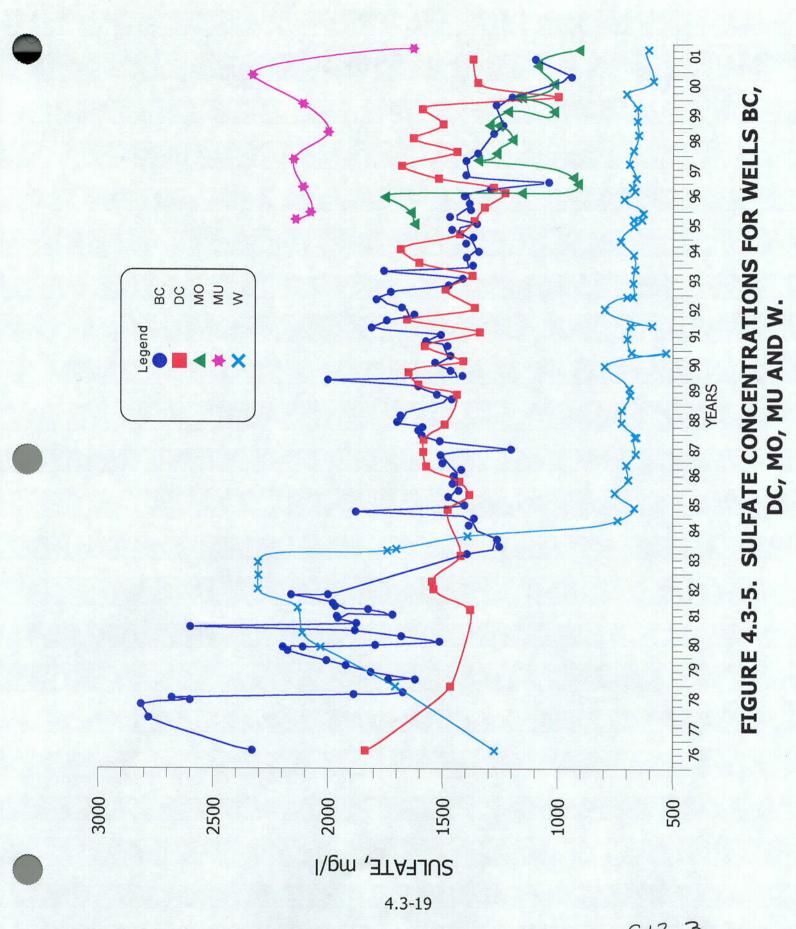

Vanadium concentrations are shown on Figure 4.3-58 for 2001. None of the vanadium concentrations in the POC wells exceeded the site standard of 0.02 mg/l. POC well X with the last 2001 value of 0.01 mg/l was the only POC well that routinely contained a vanadium concentration above the site standard prior to restoration of the area. Therefore, none of the POC wells are expected to contain vanadium concentrations above the site standard of 0.02 mg/l in the future. The R.O. product injection has effectively restored the area near well X.

One well near the large tailings contained vanadium concentrations above the site standard in 2001. Vanadium values for well DQ of 0.03 mg/l was measured in 2001. This parameter will easily restore with the restoration of the key parameters.

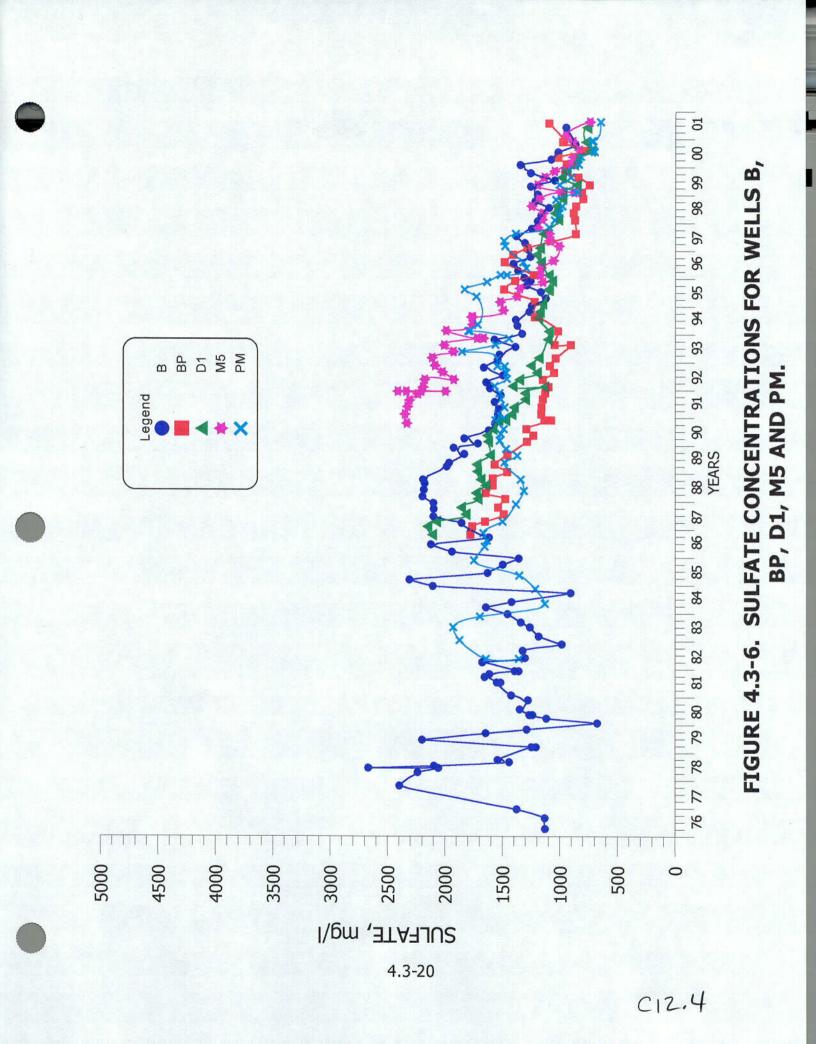

### 4.3.11 THORIUM-230 - ALLUVIAL

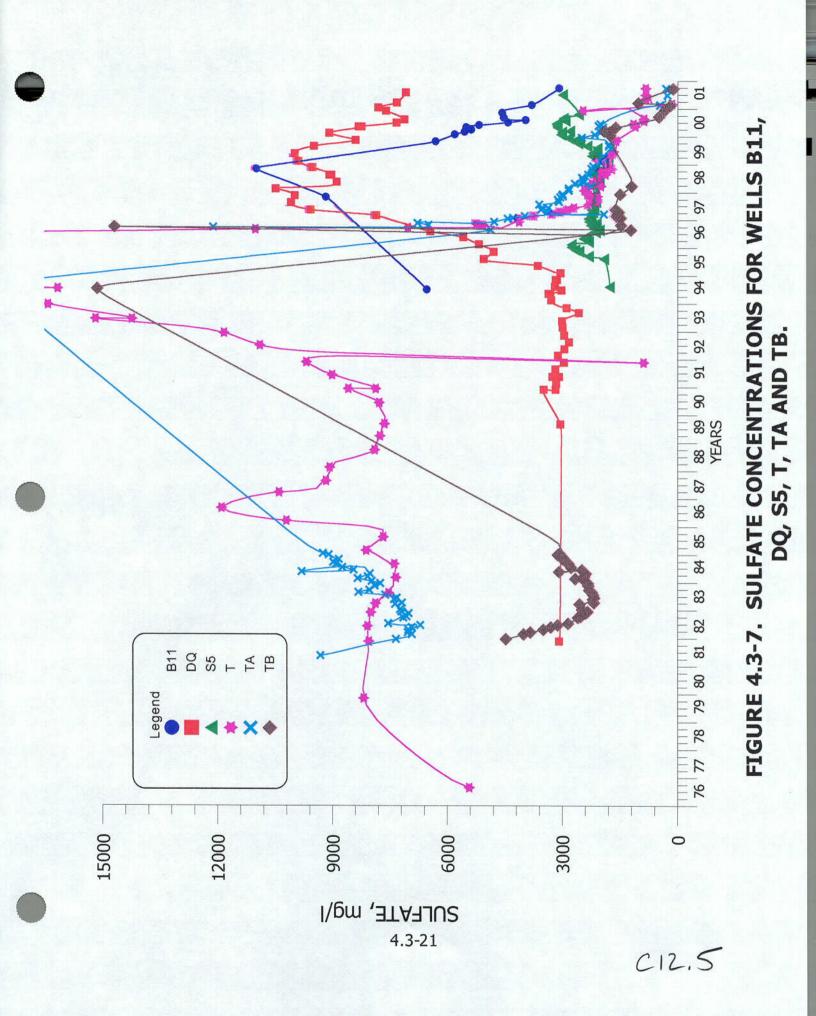

Figure 4.3-59 presents the 2001 thorium concentrations for the alluvial aquifer. Thorium concentrations are low at this site. The very low site standard of 0.3 pCi/l is due to the low background concentrations and no drinking water standard has been established for this constituent. The maximum thorium-230 concentration in the Fall of 2001 from a POC well was 0.5 pCi/l for well D1 with a split of 0.4 pCi/l. Thorium-230 should be removed as a site standard and only monitored at the three POC wells annually.

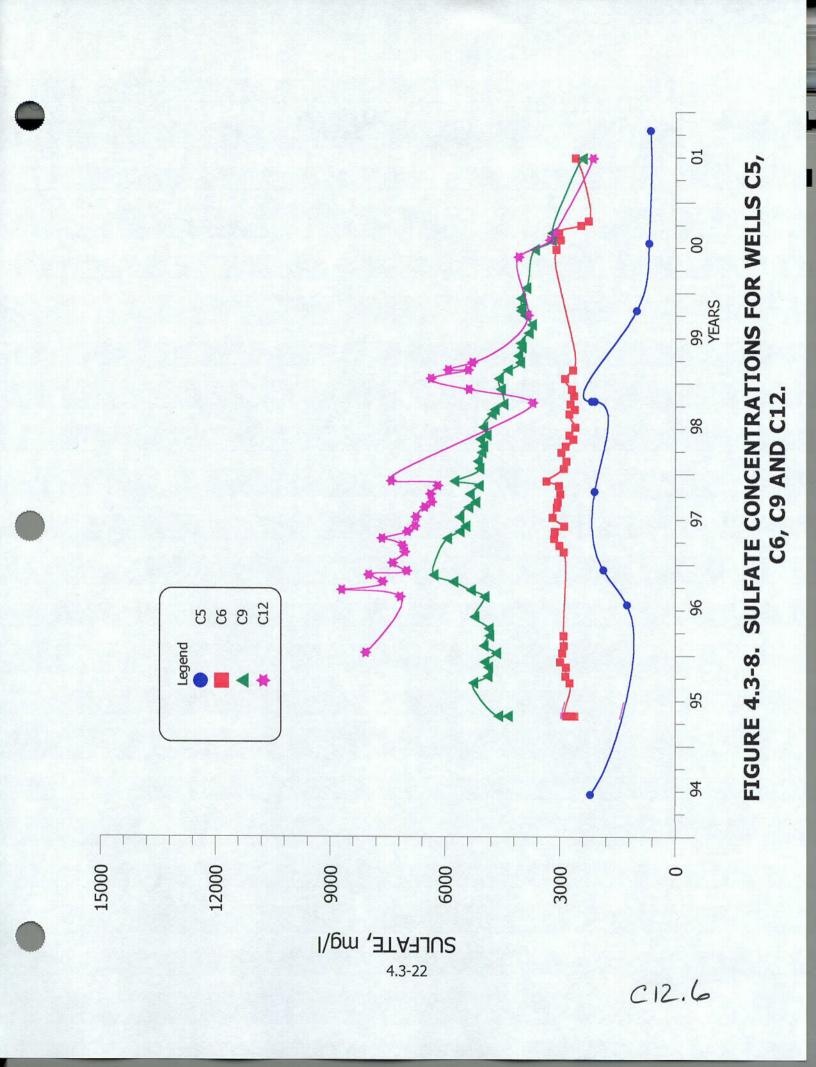


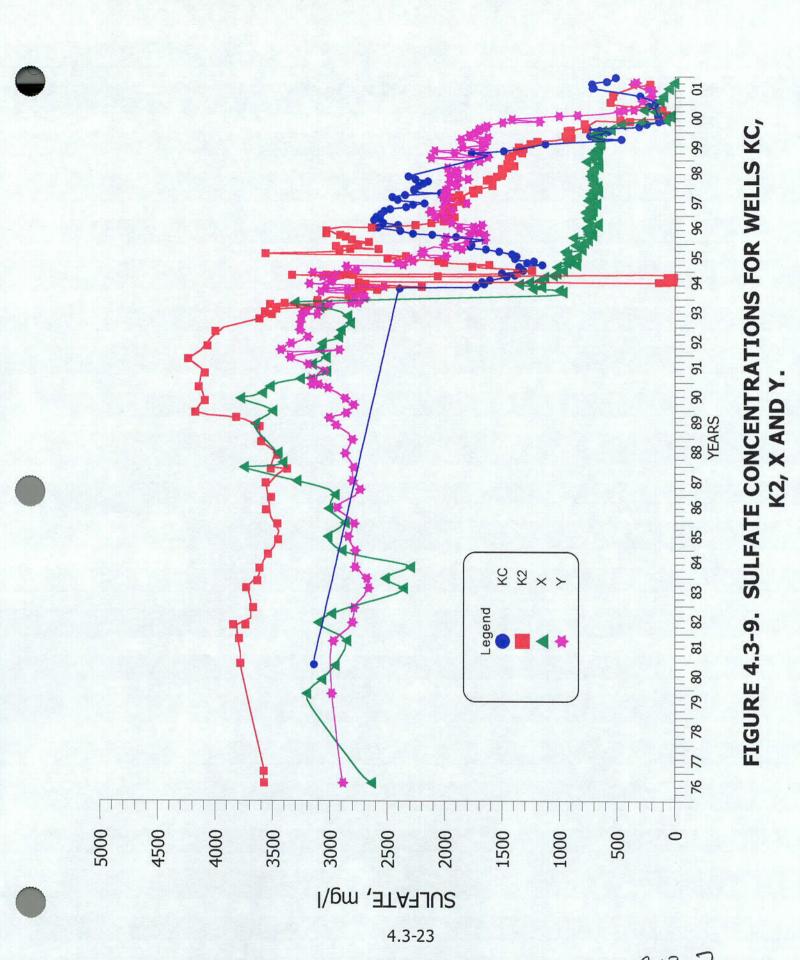




CII

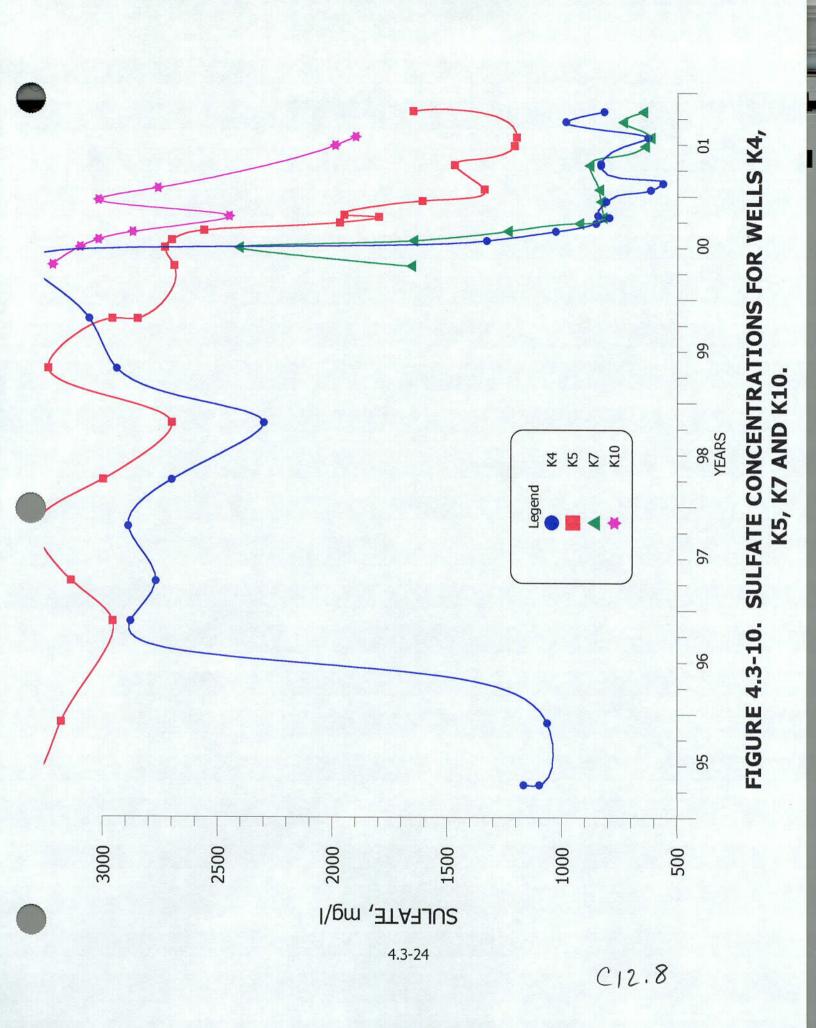


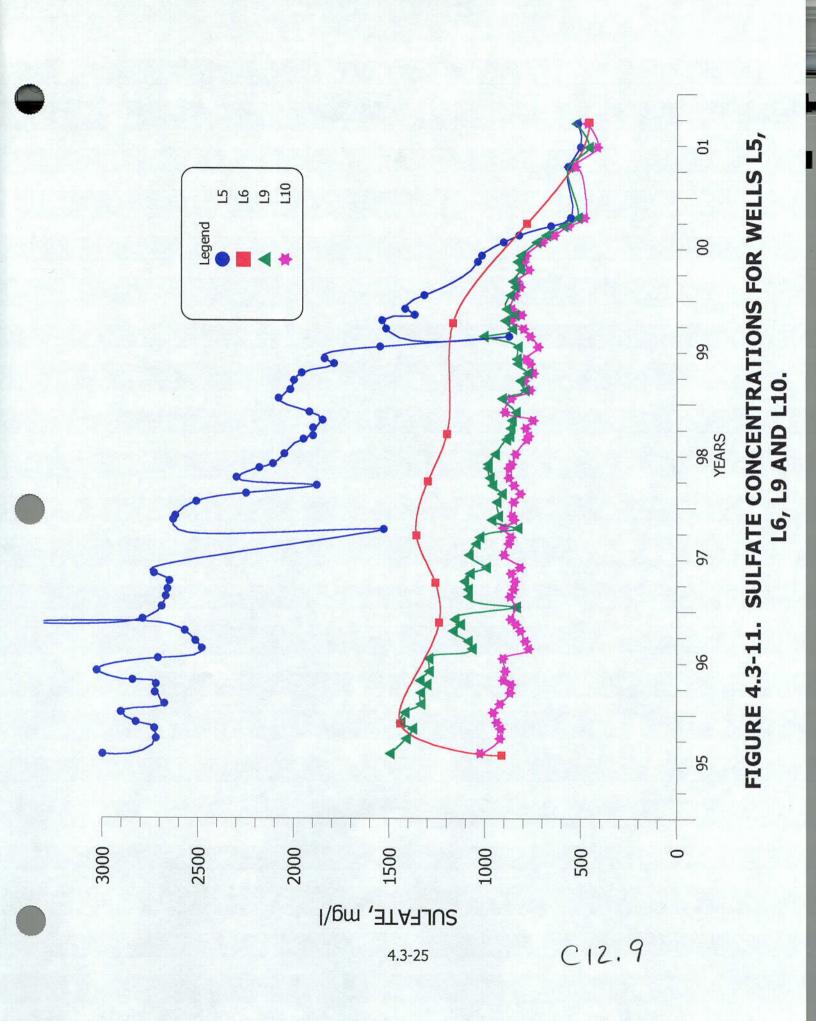



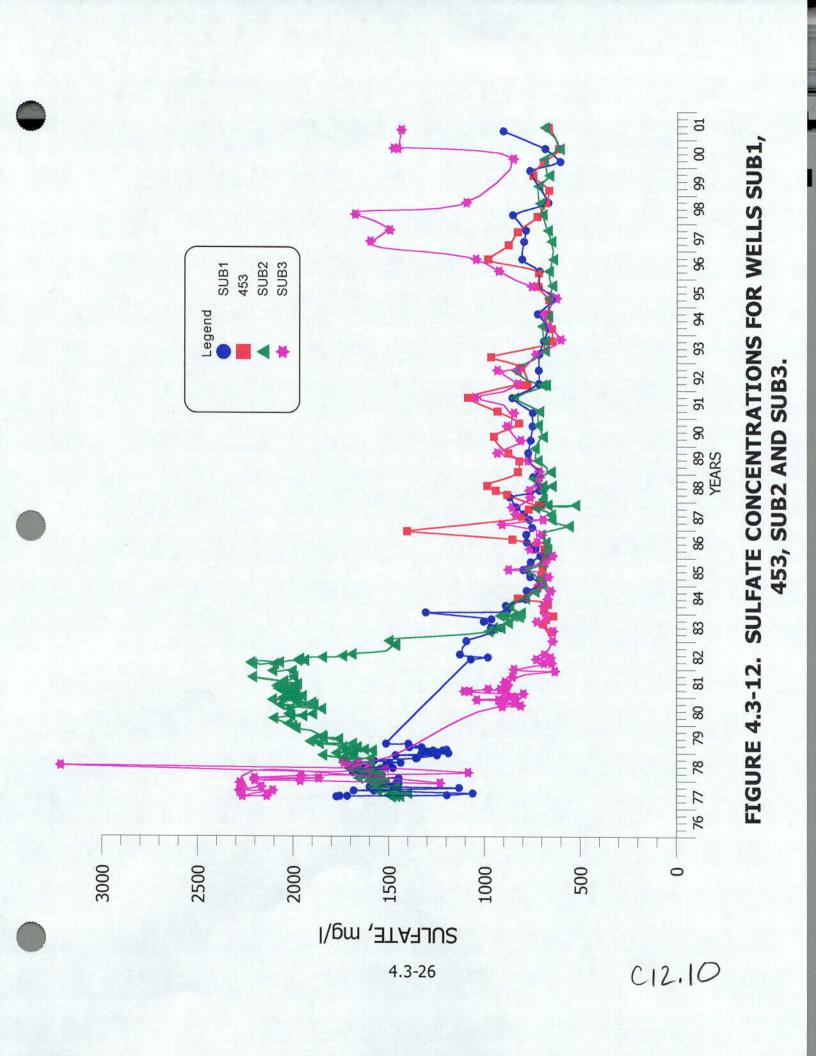



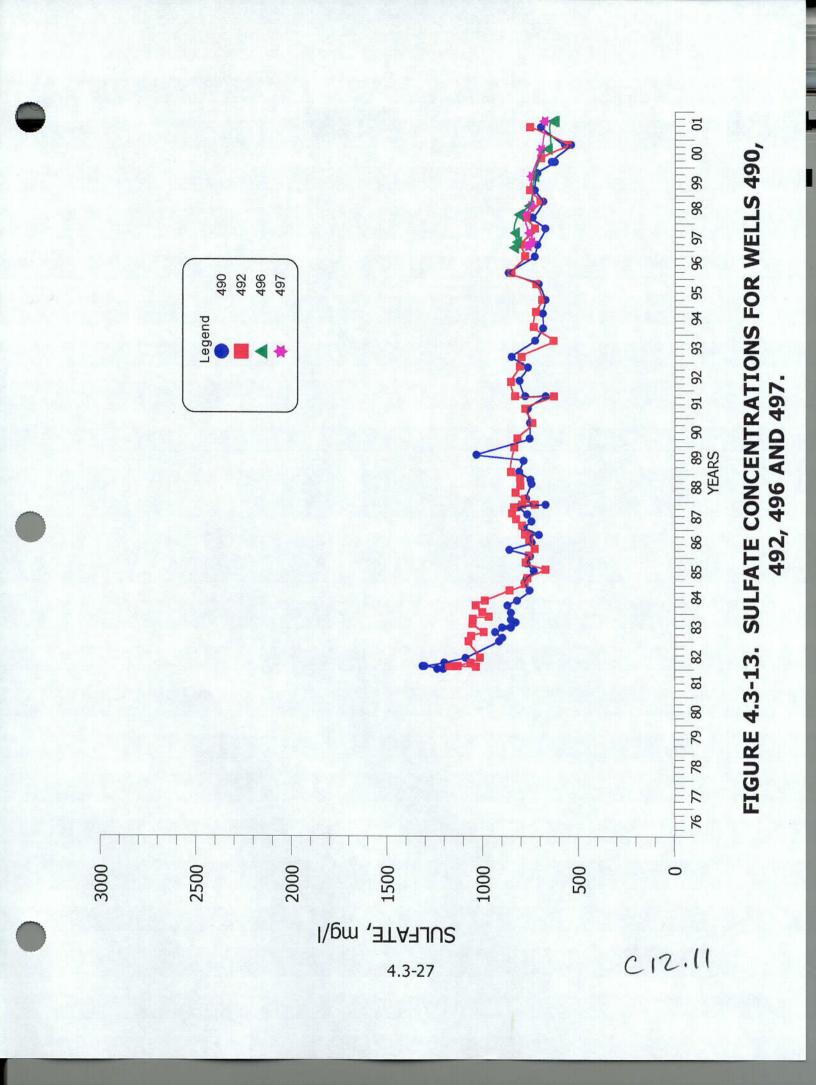



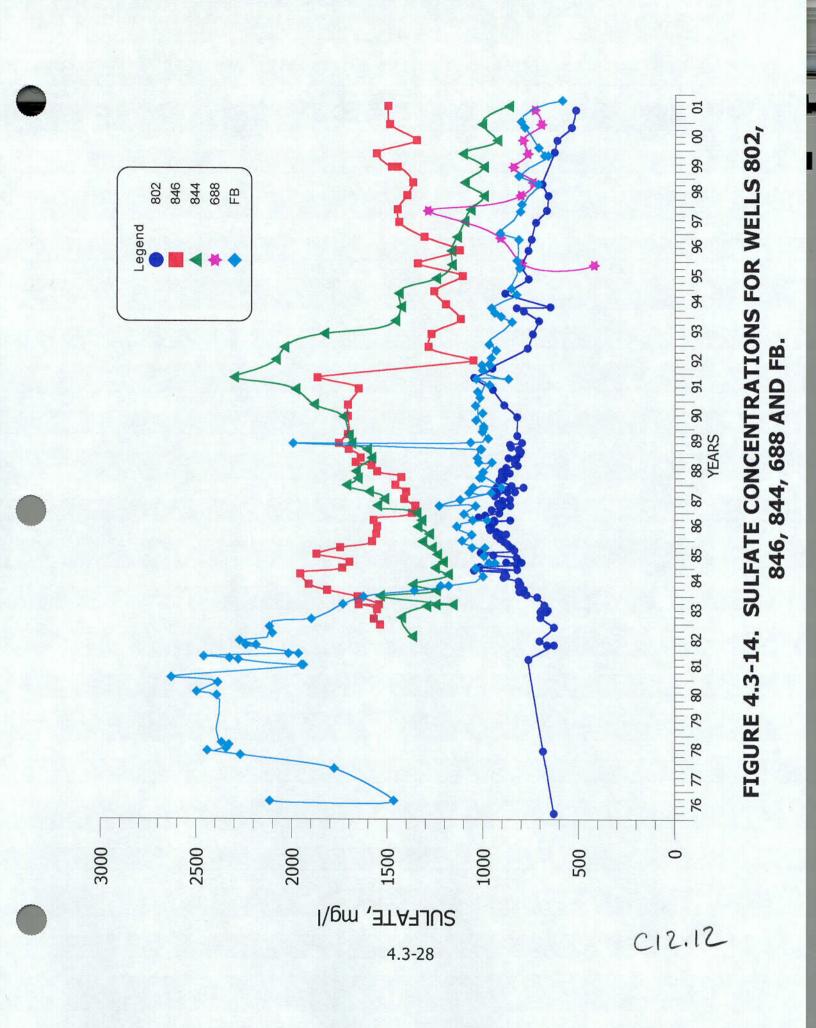

C12.3

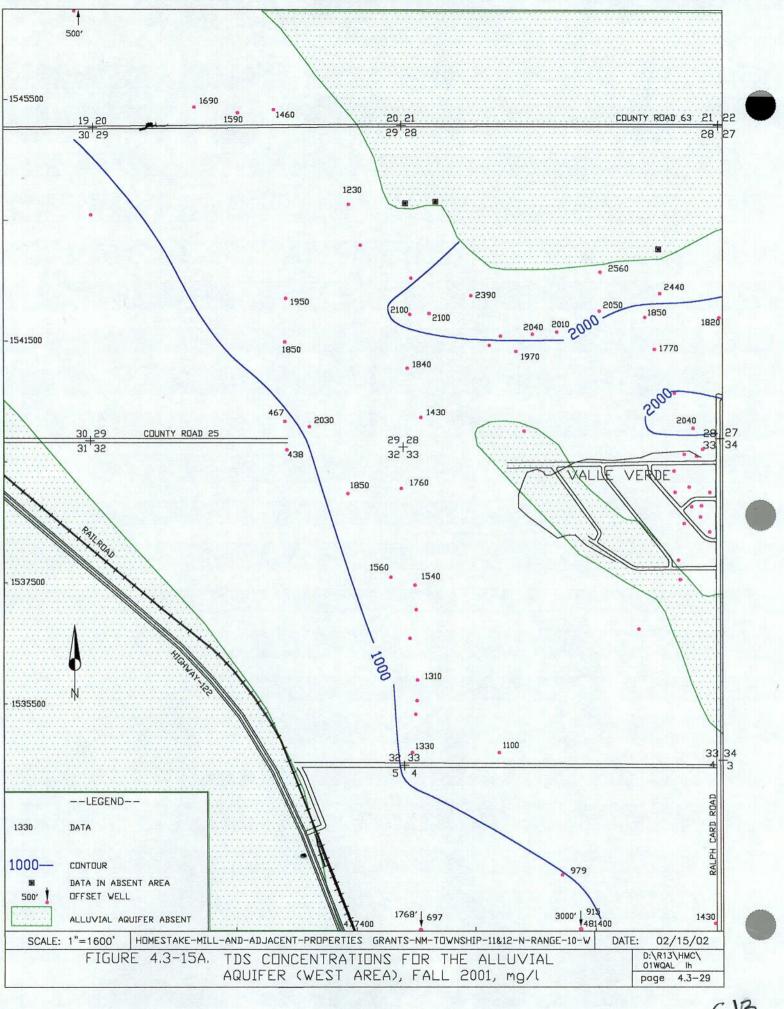


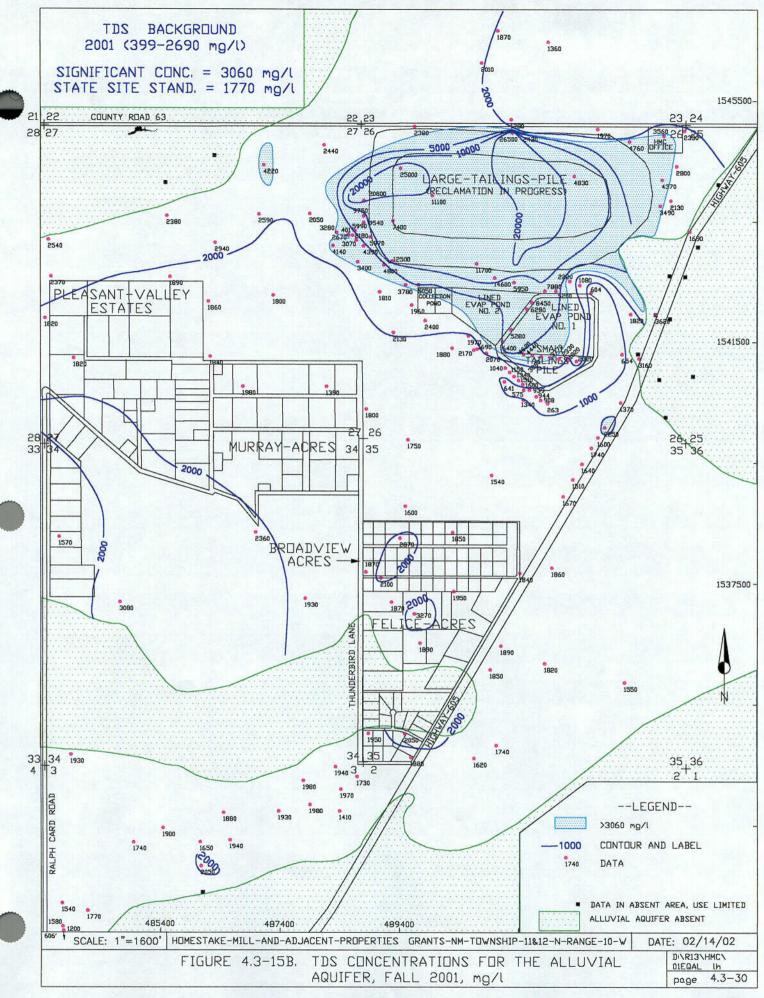



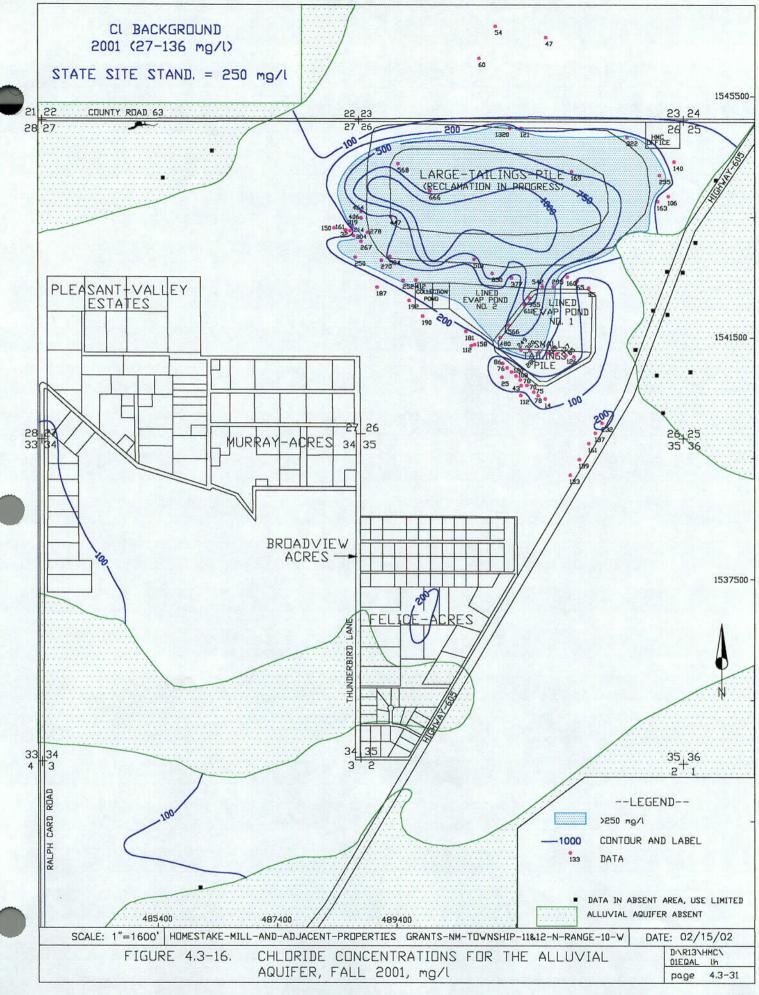





C12.7

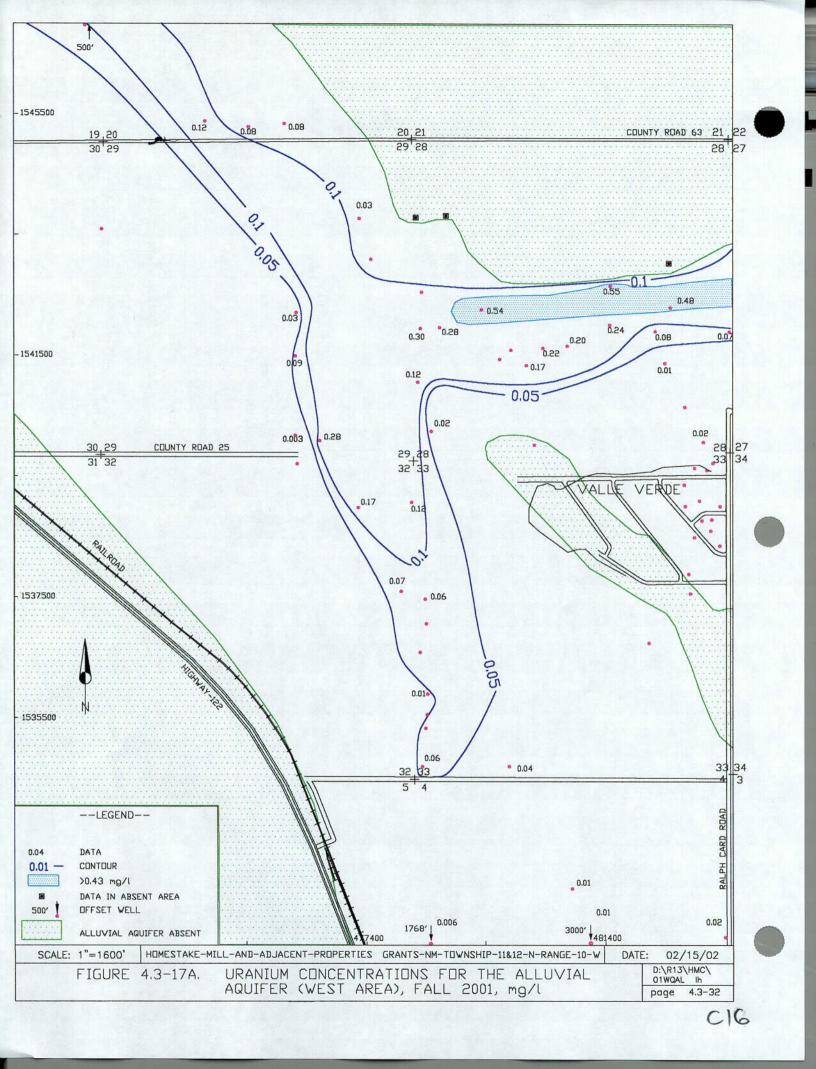


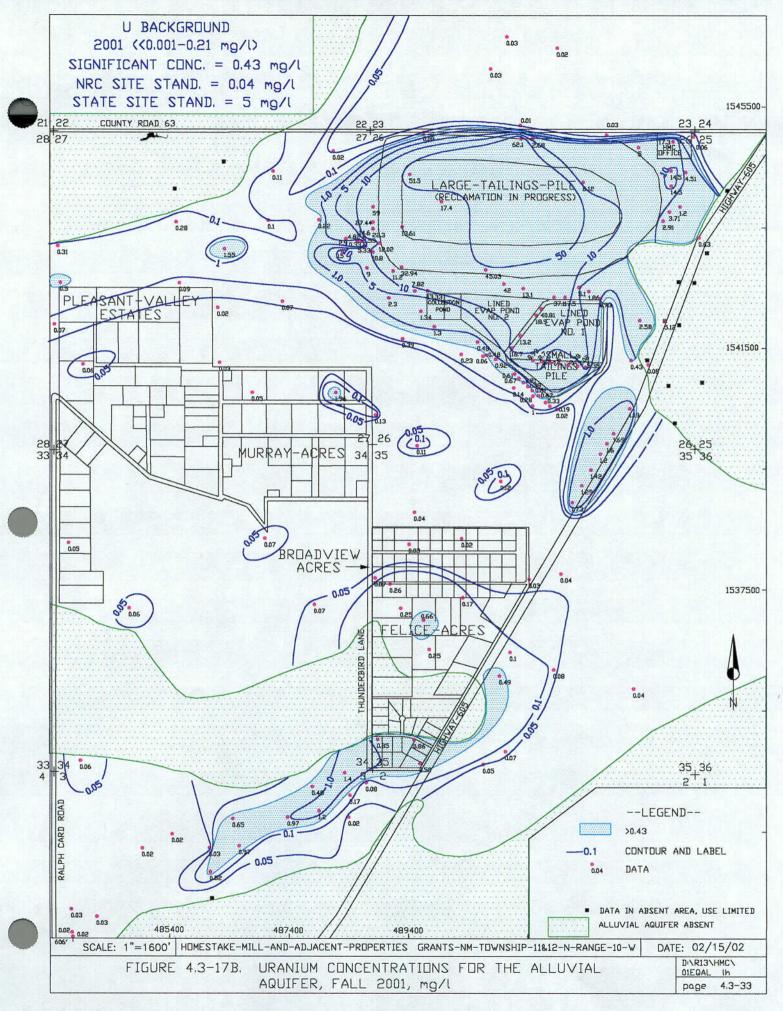


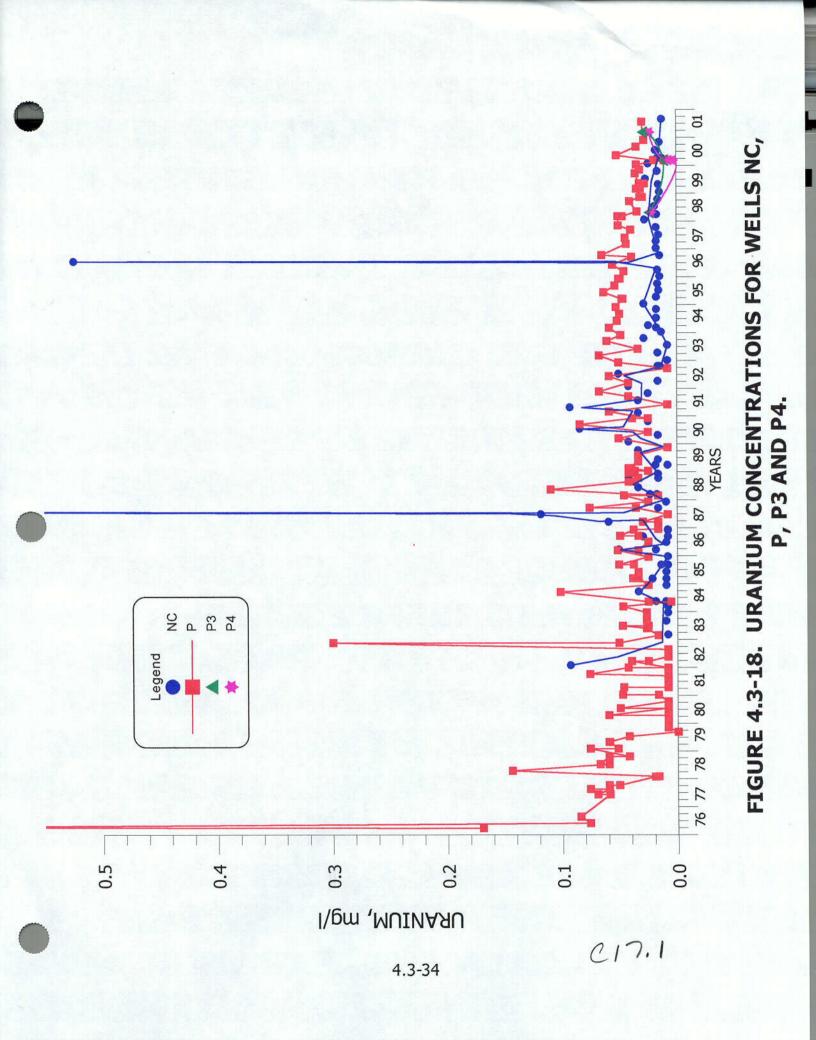



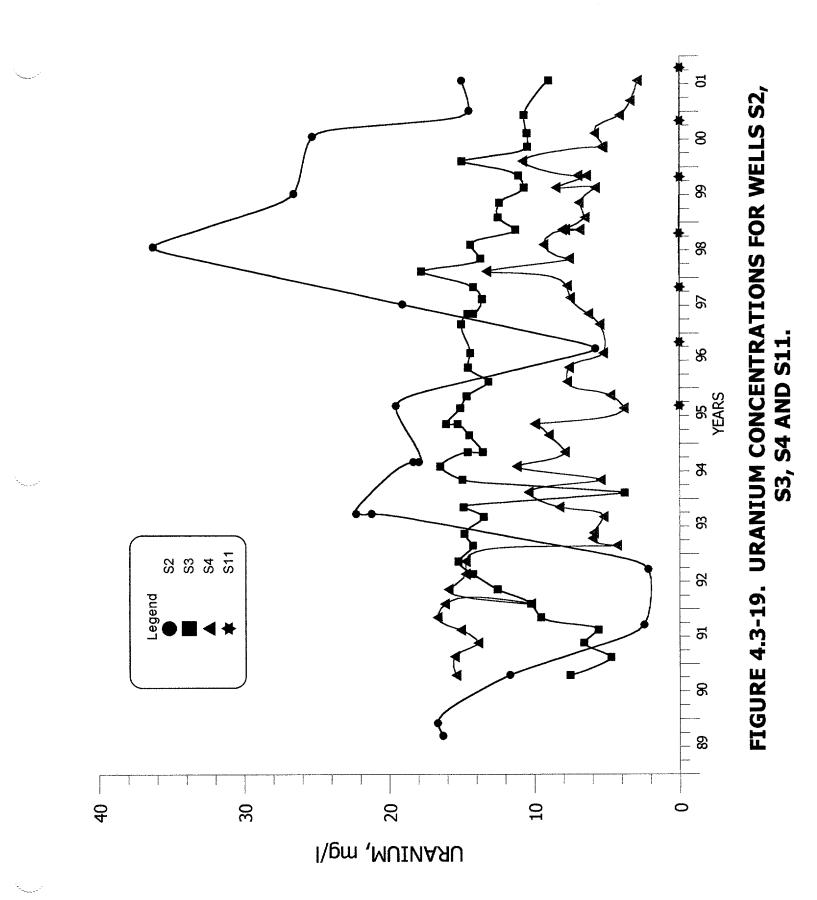



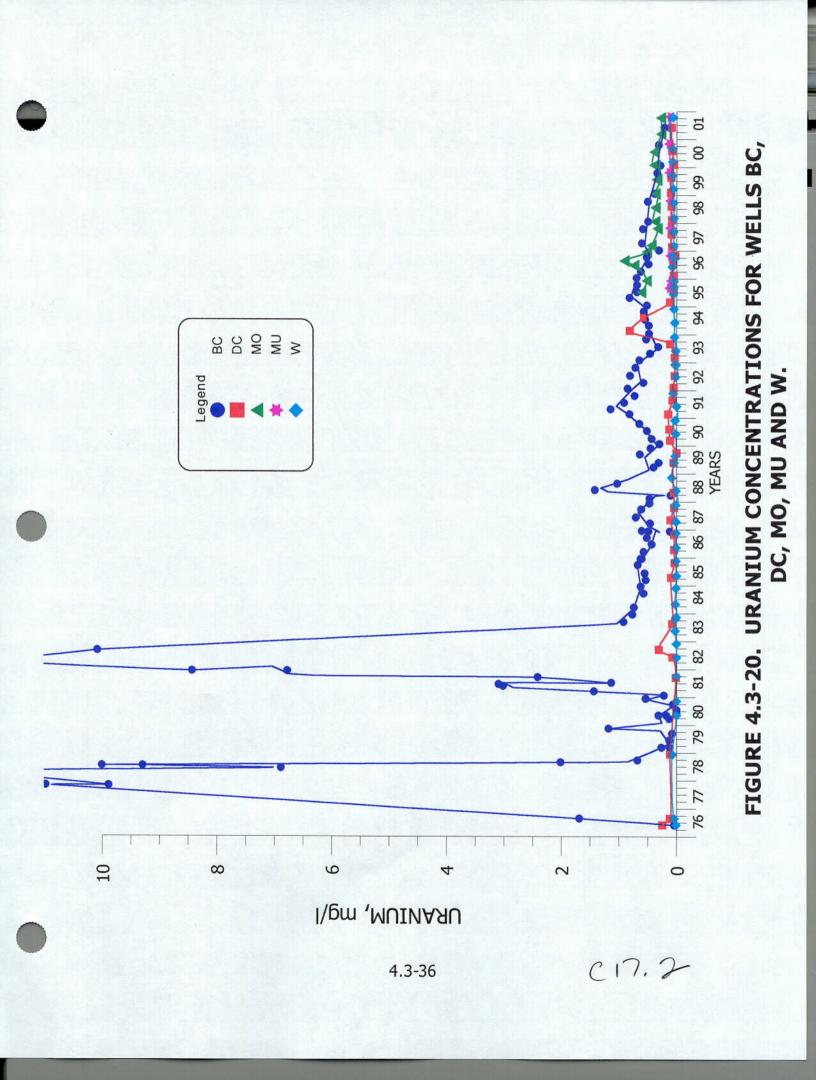


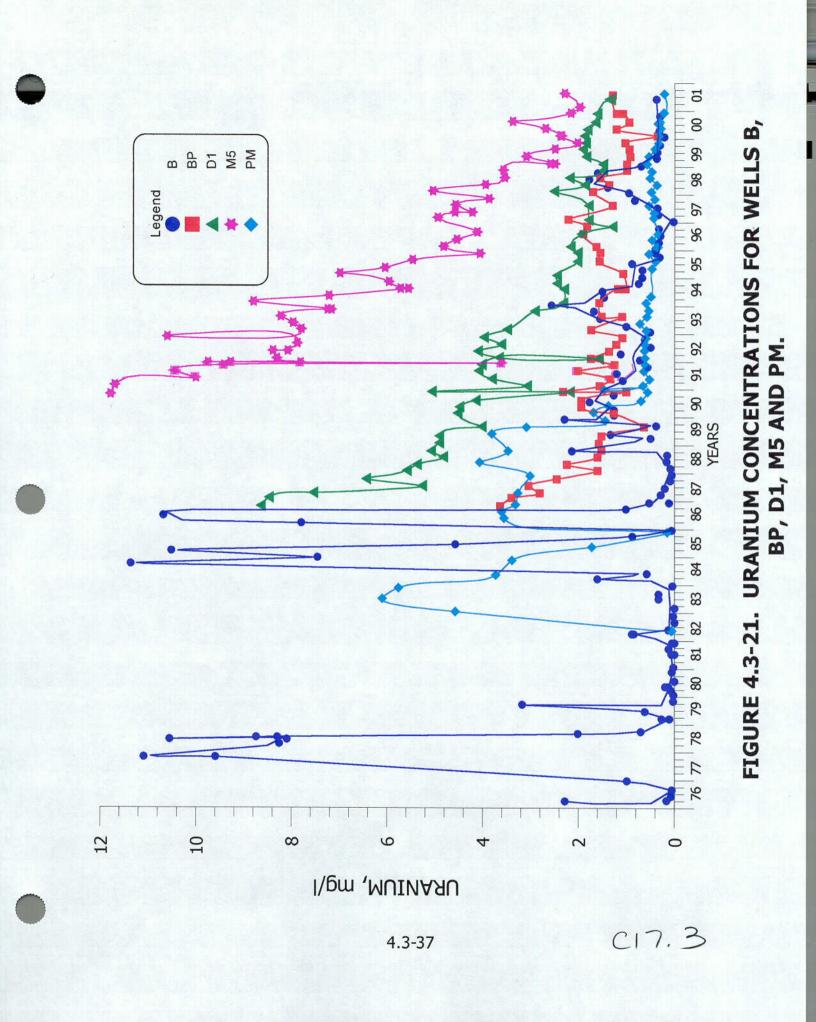



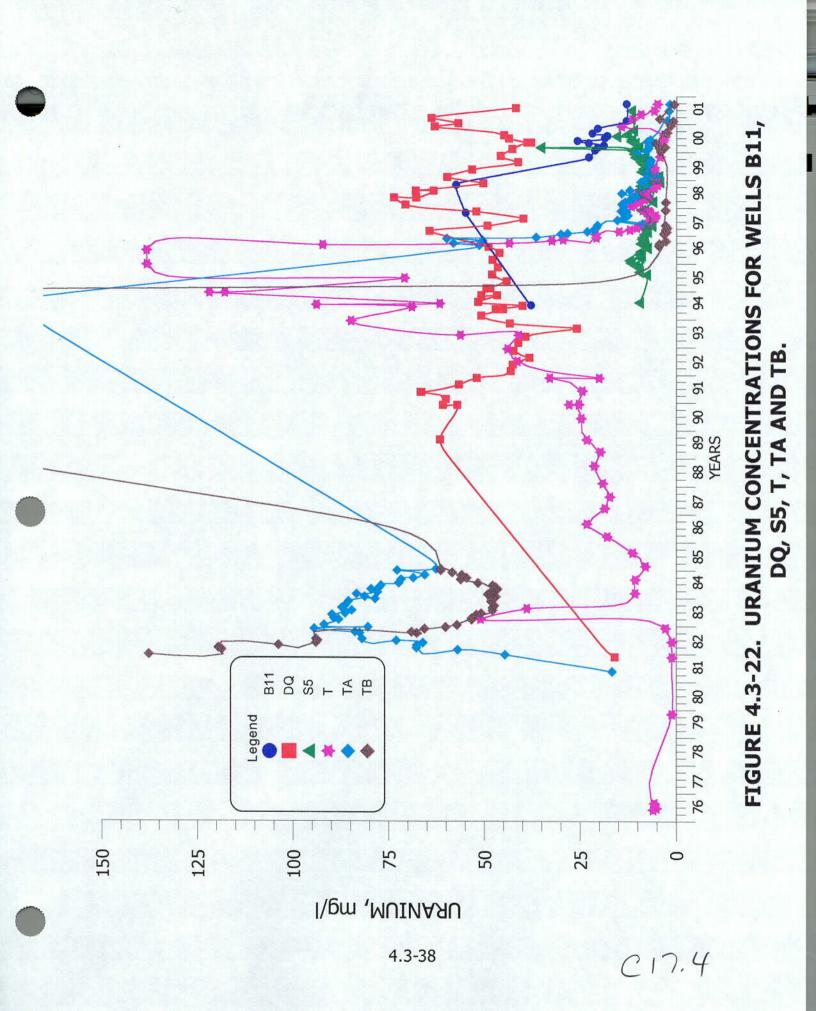


CB

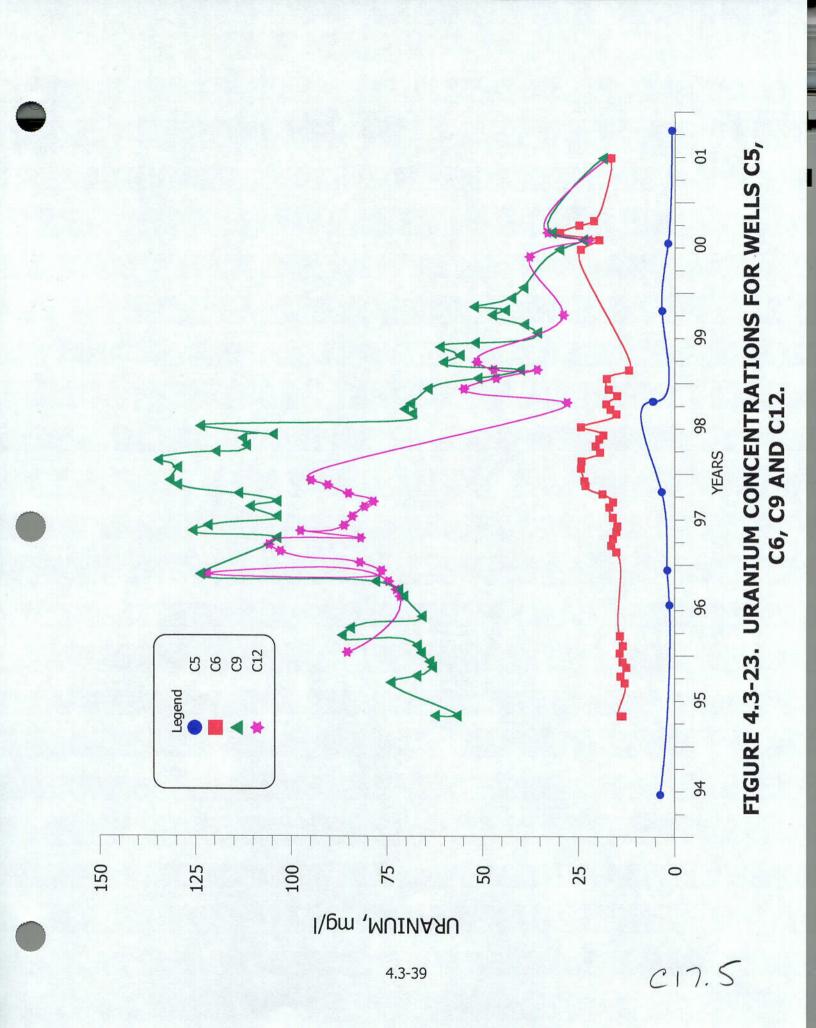


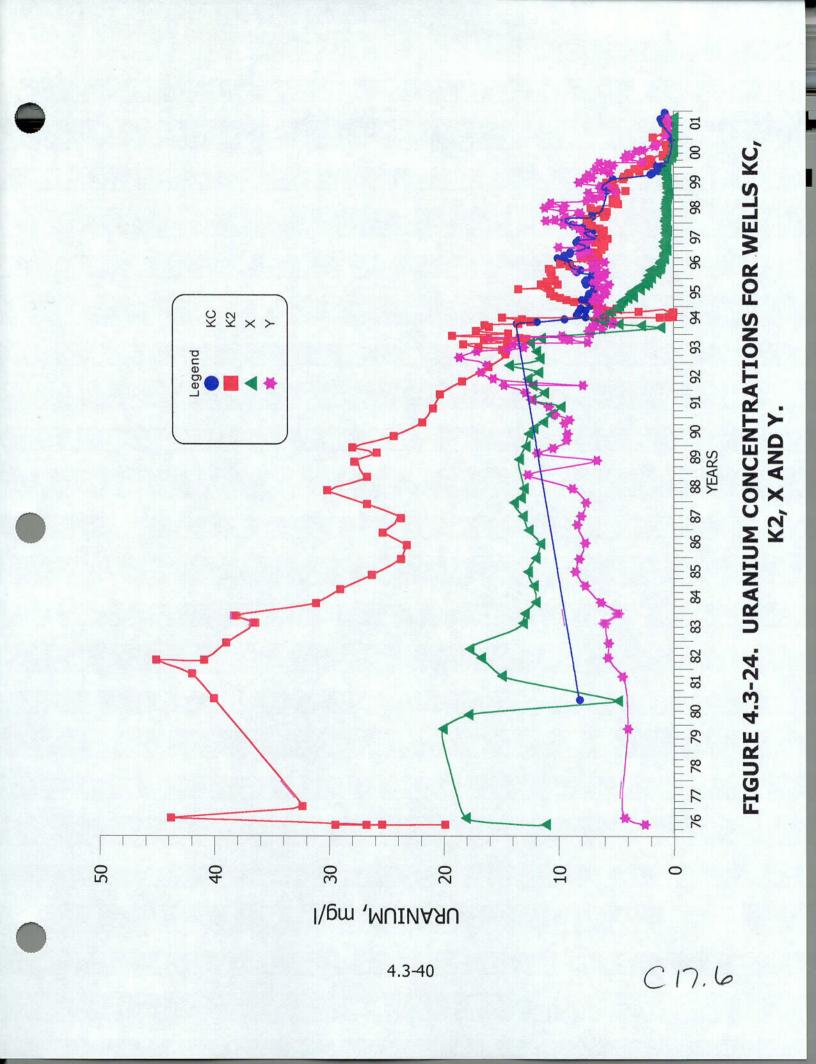



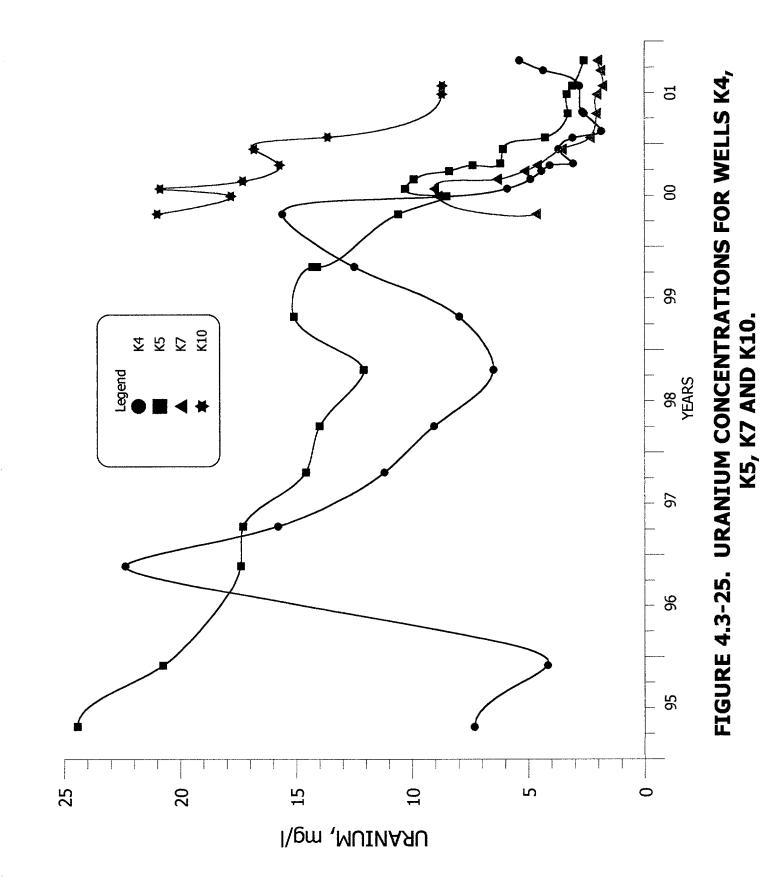


C15

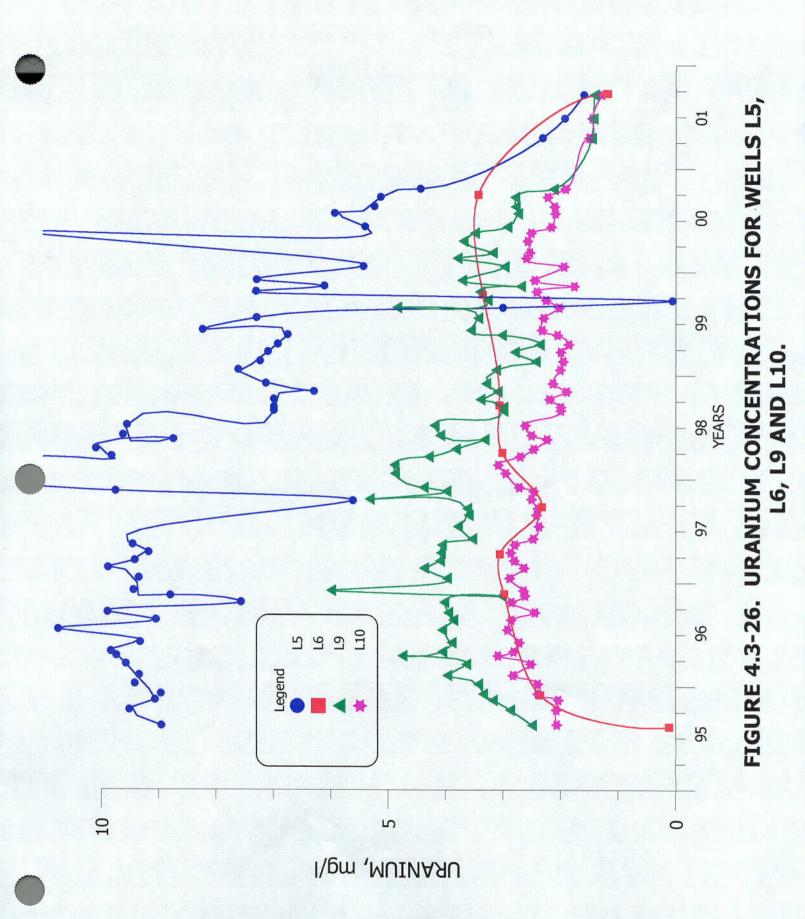


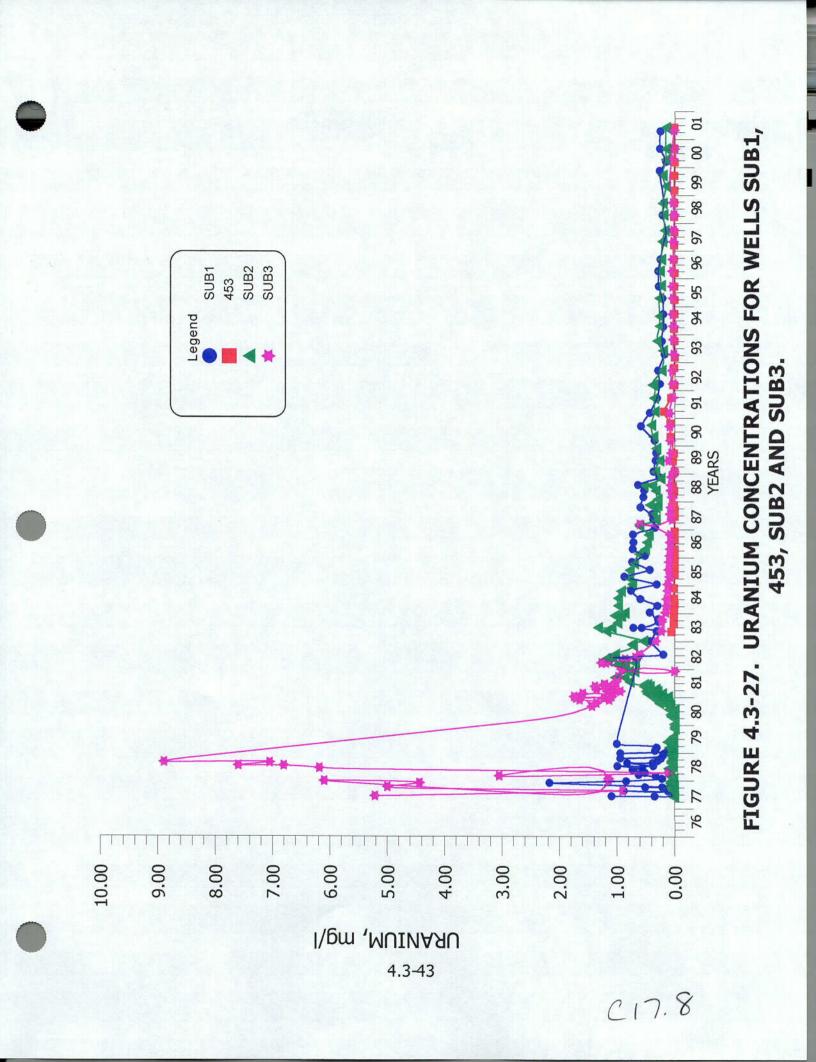



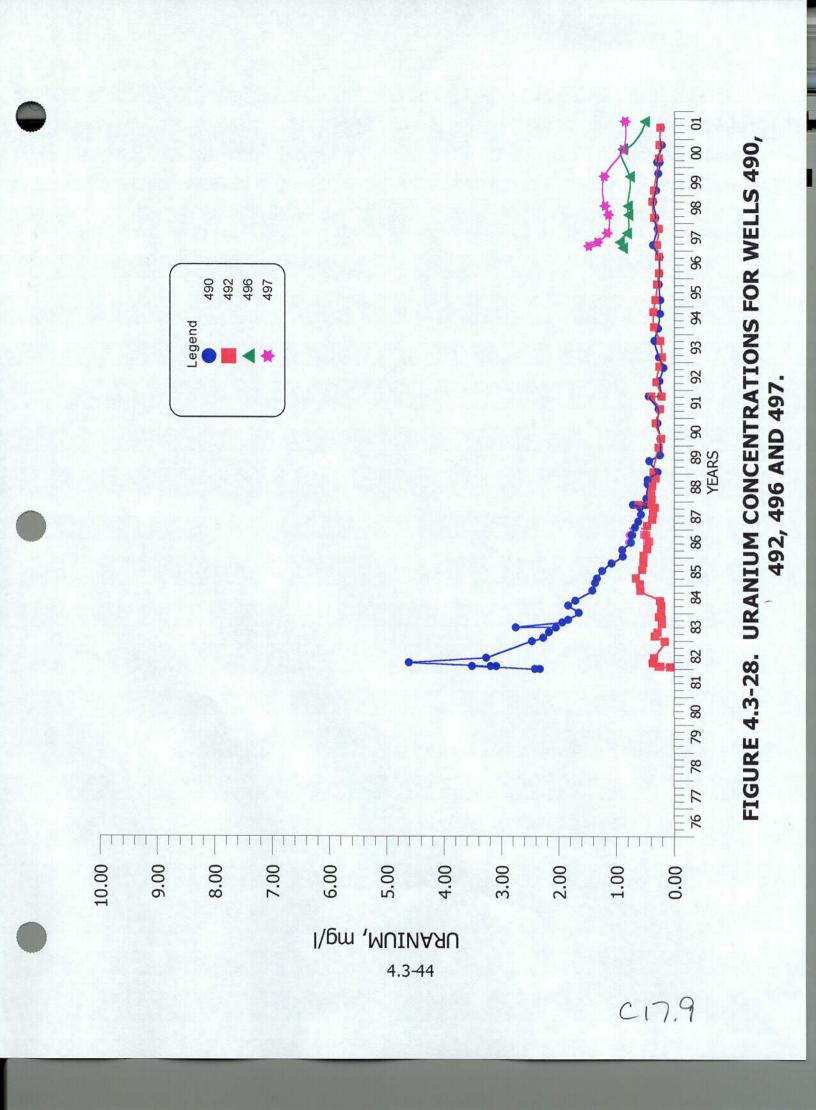



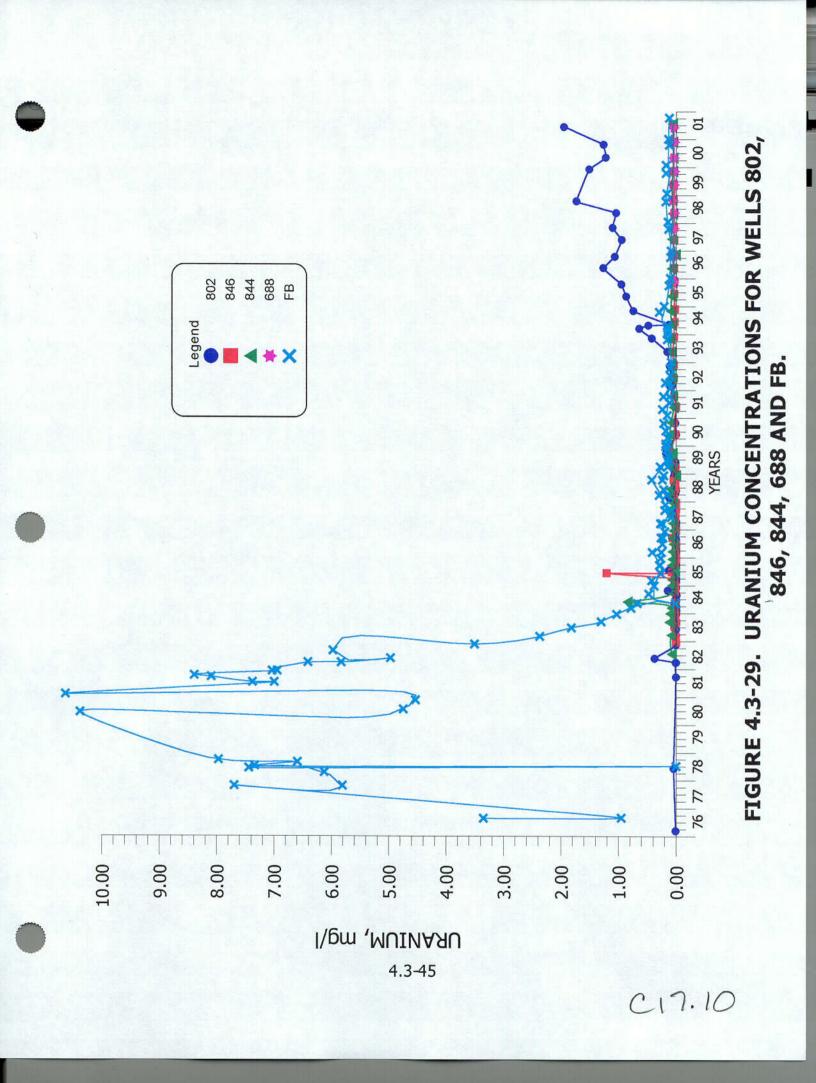



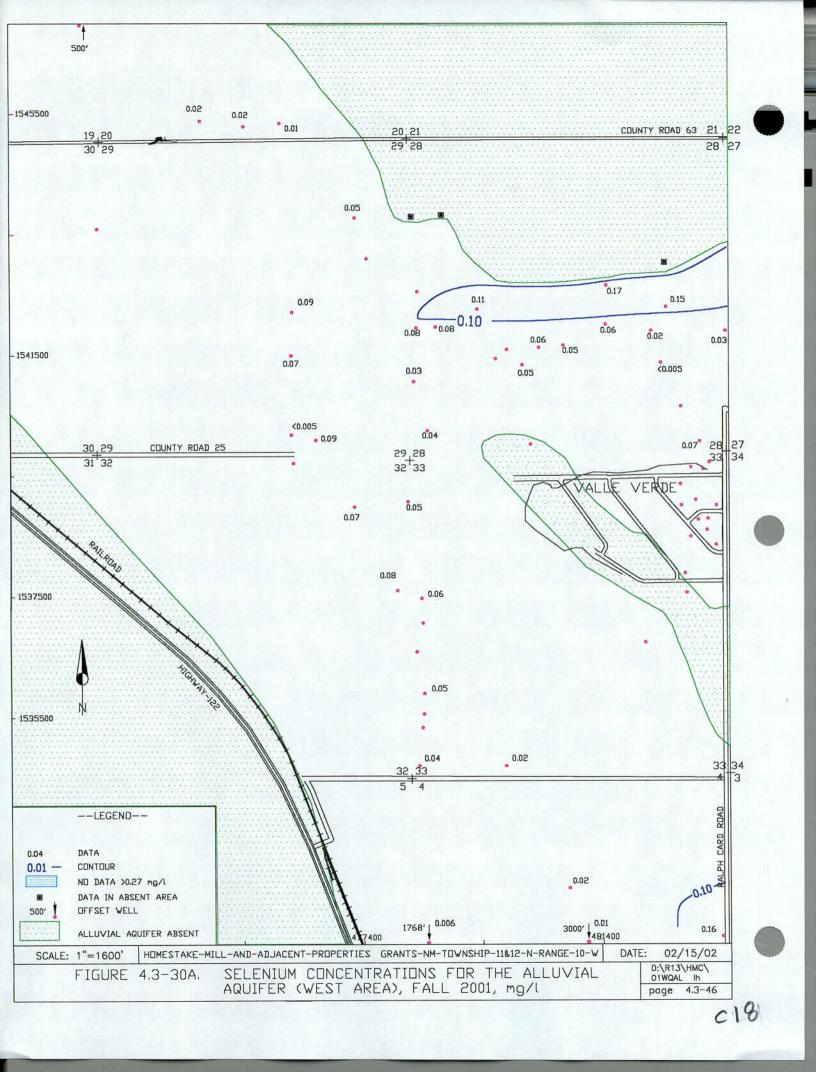


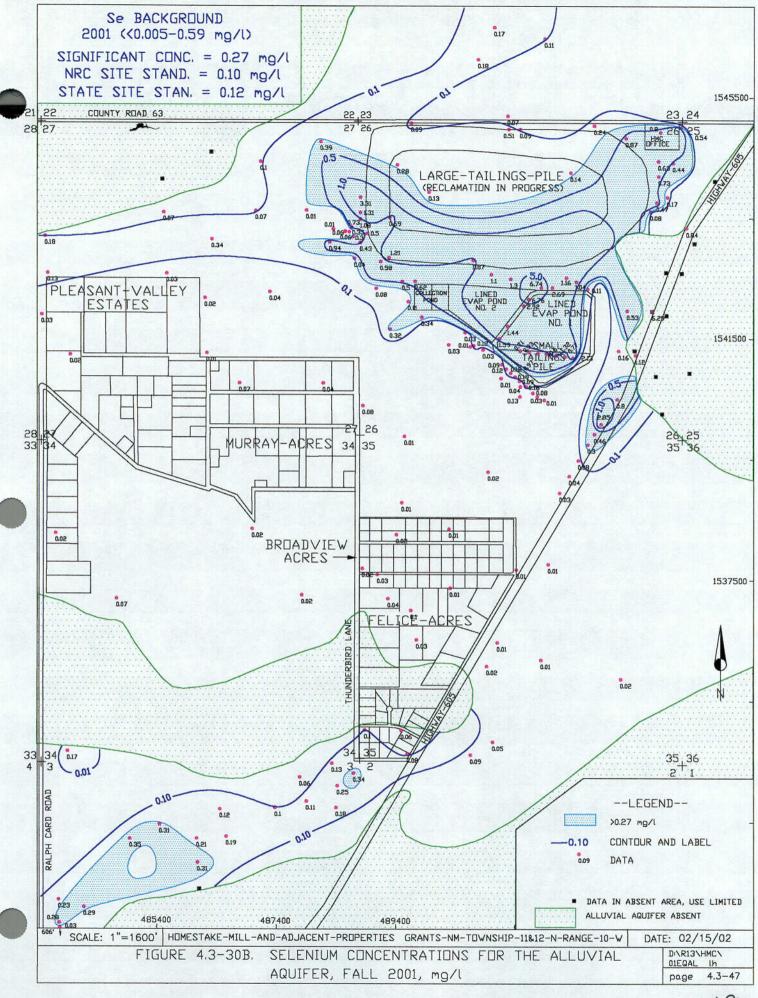


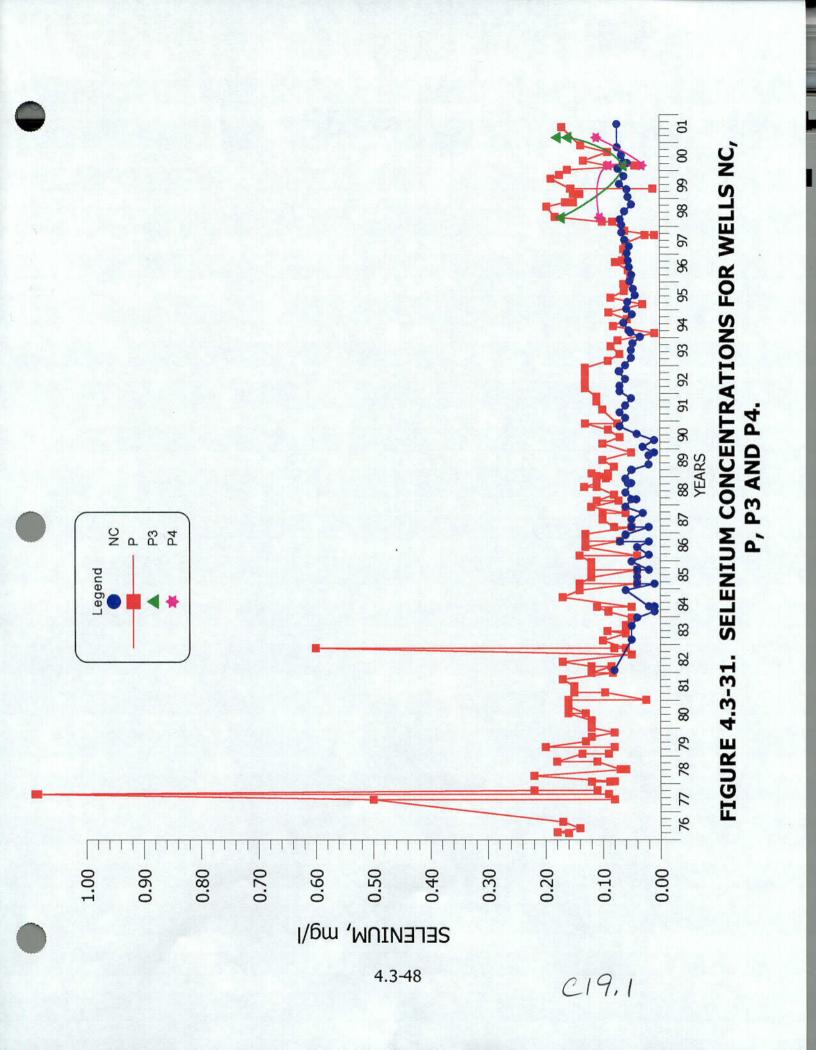



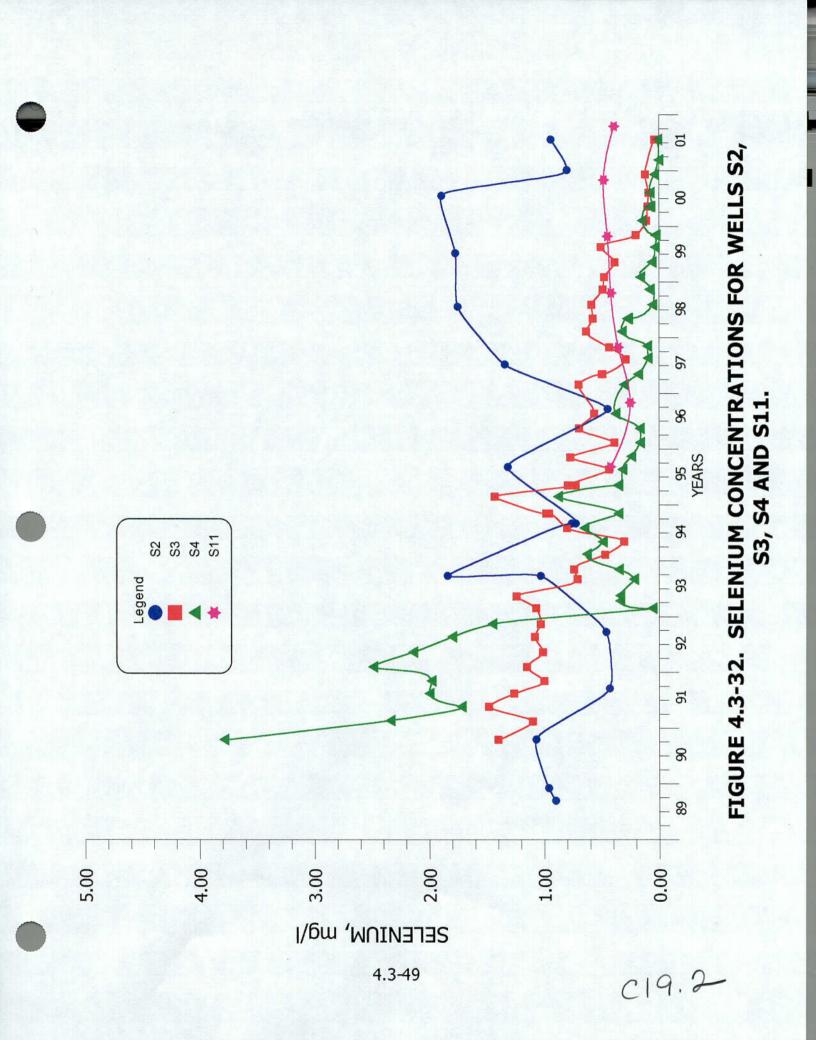



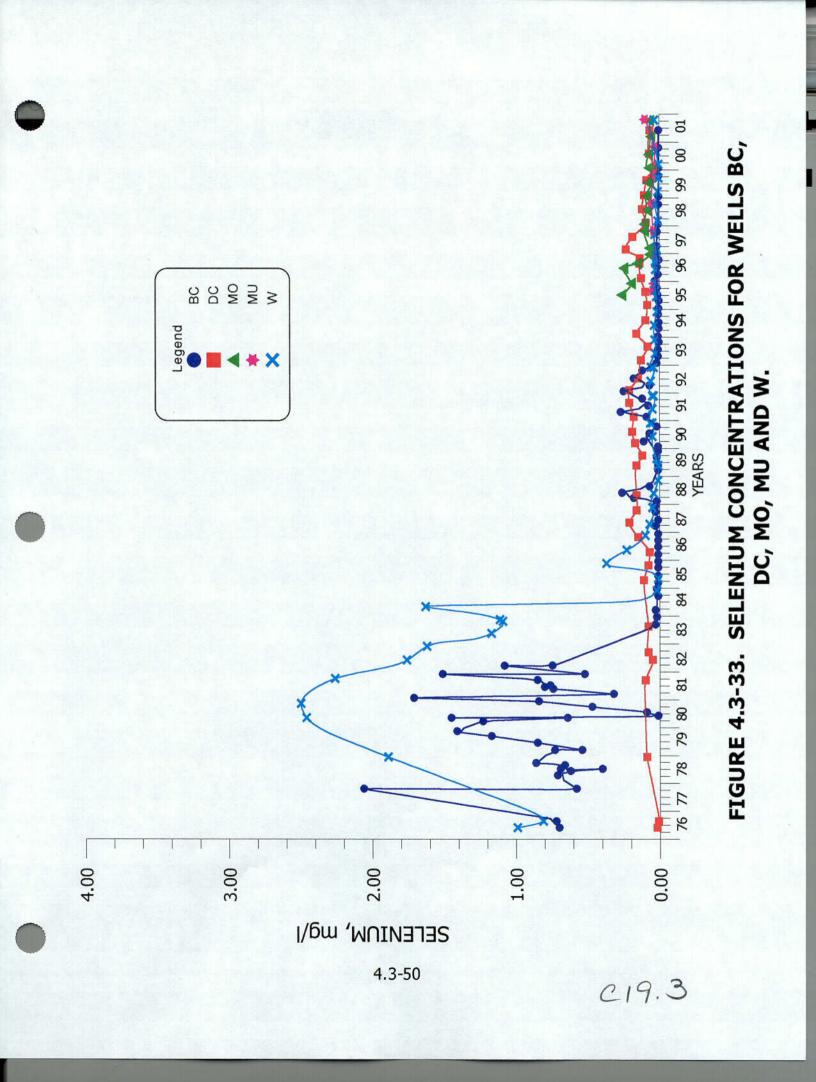



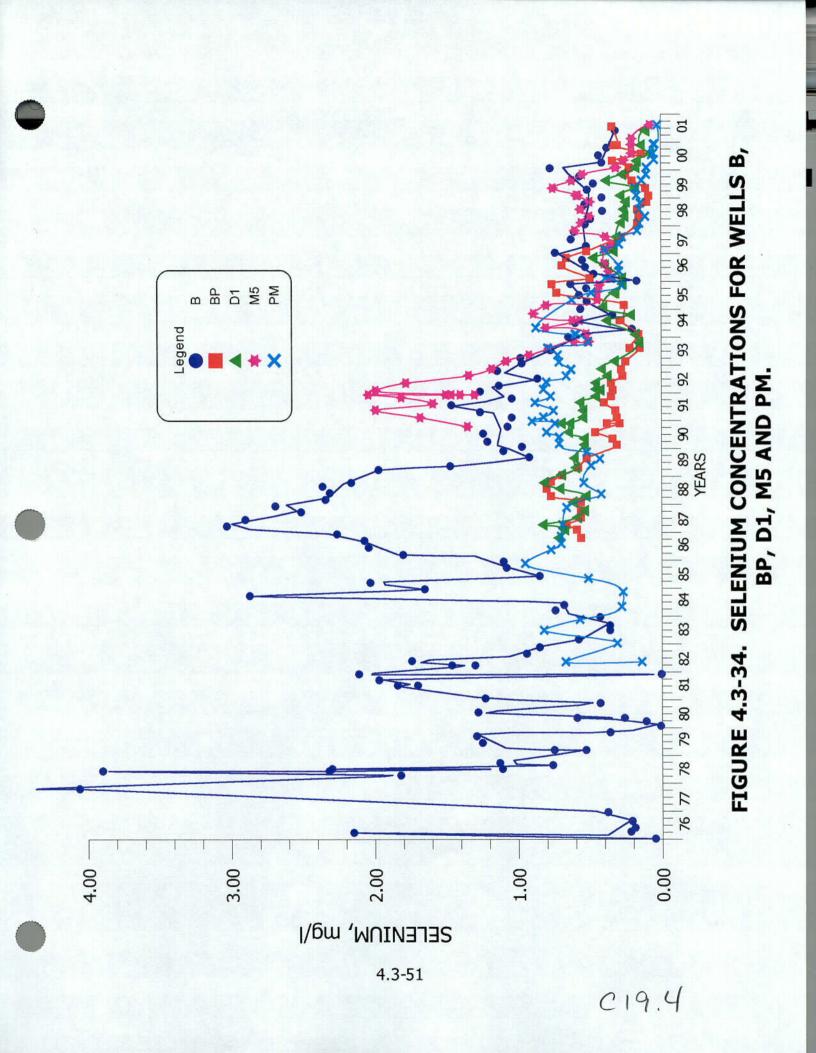


4.3-42

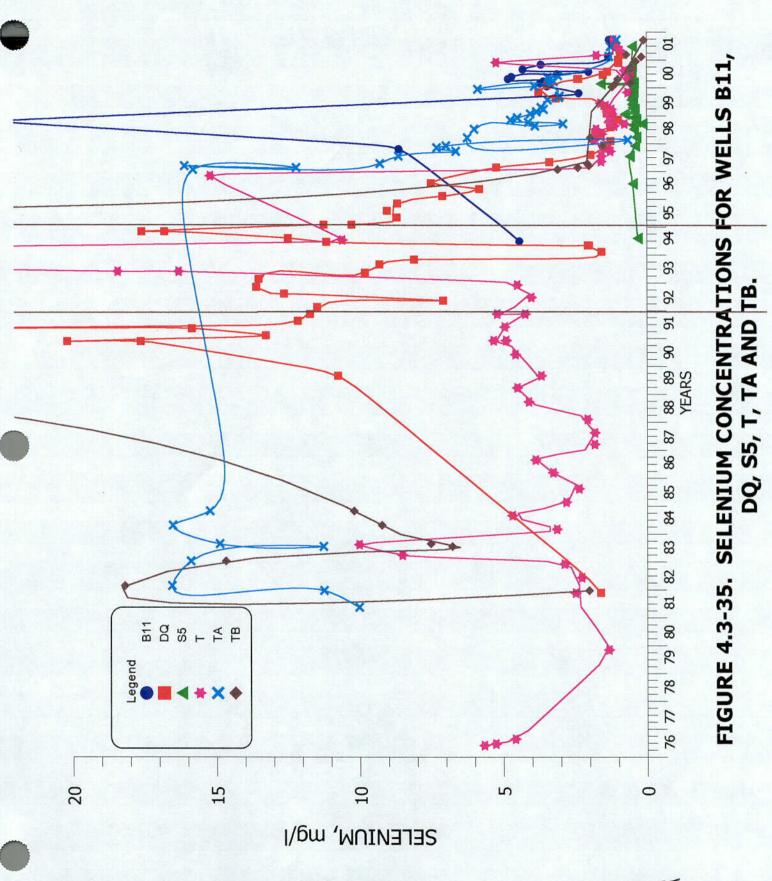

C17.7



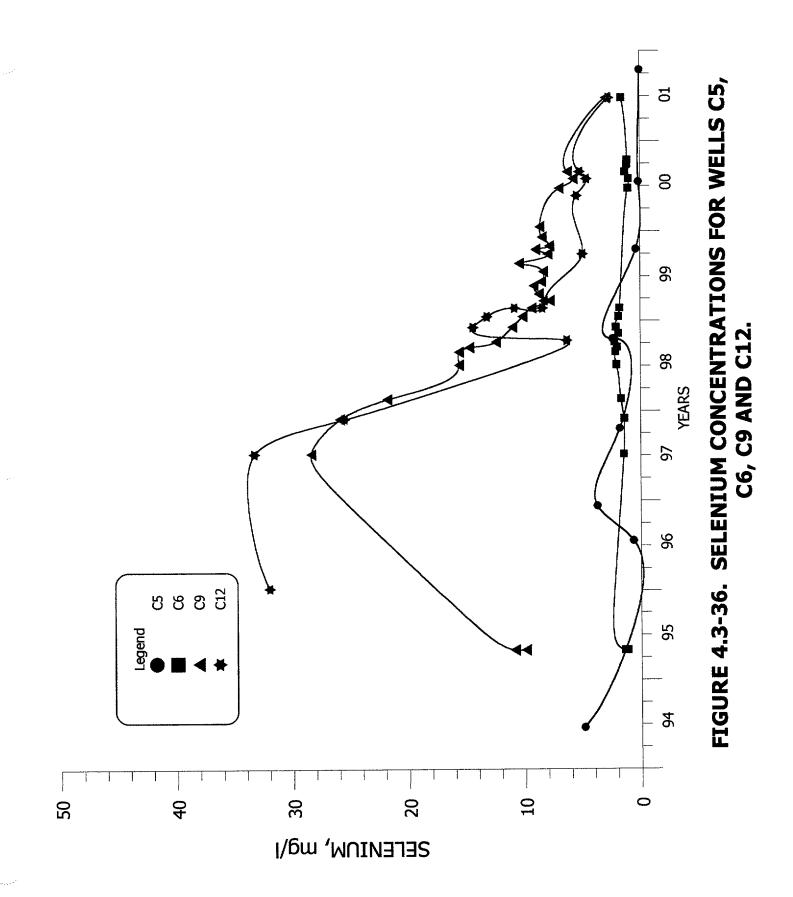



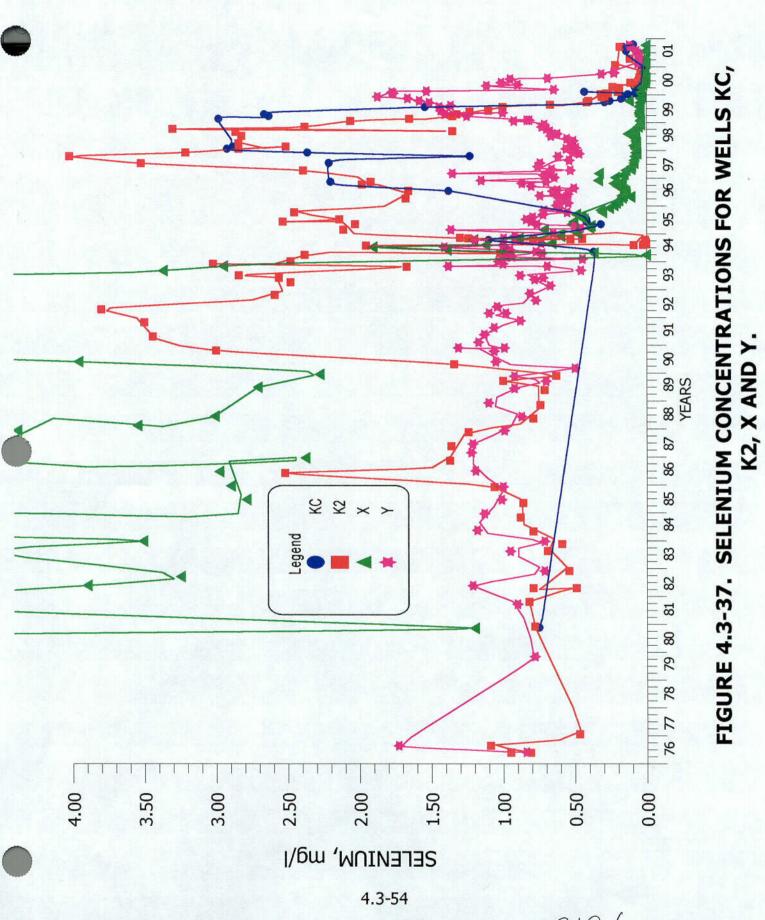



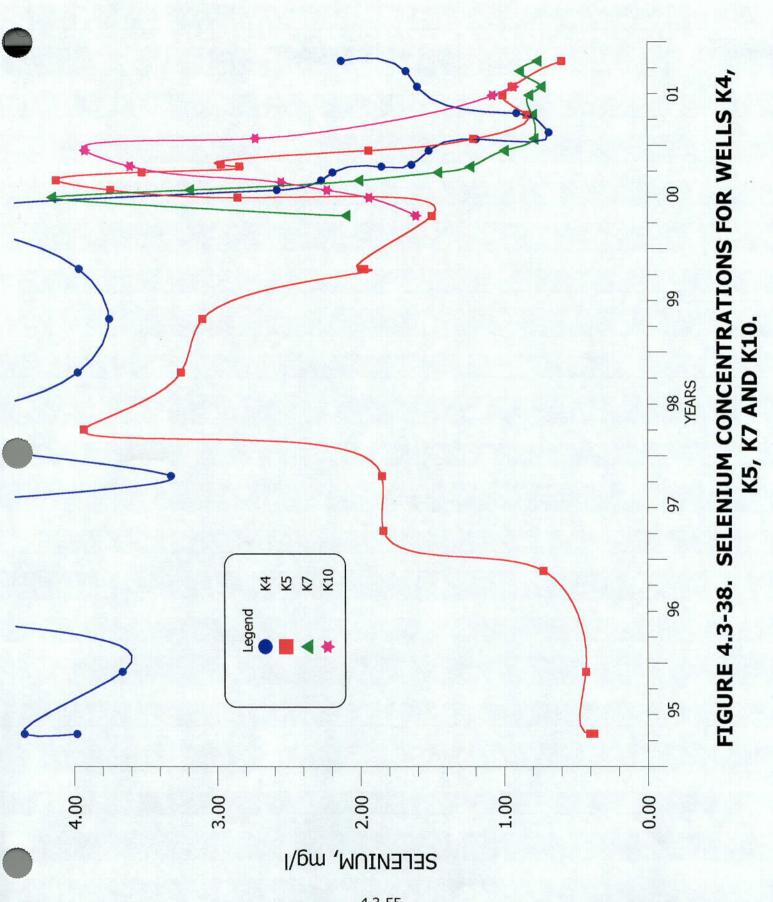





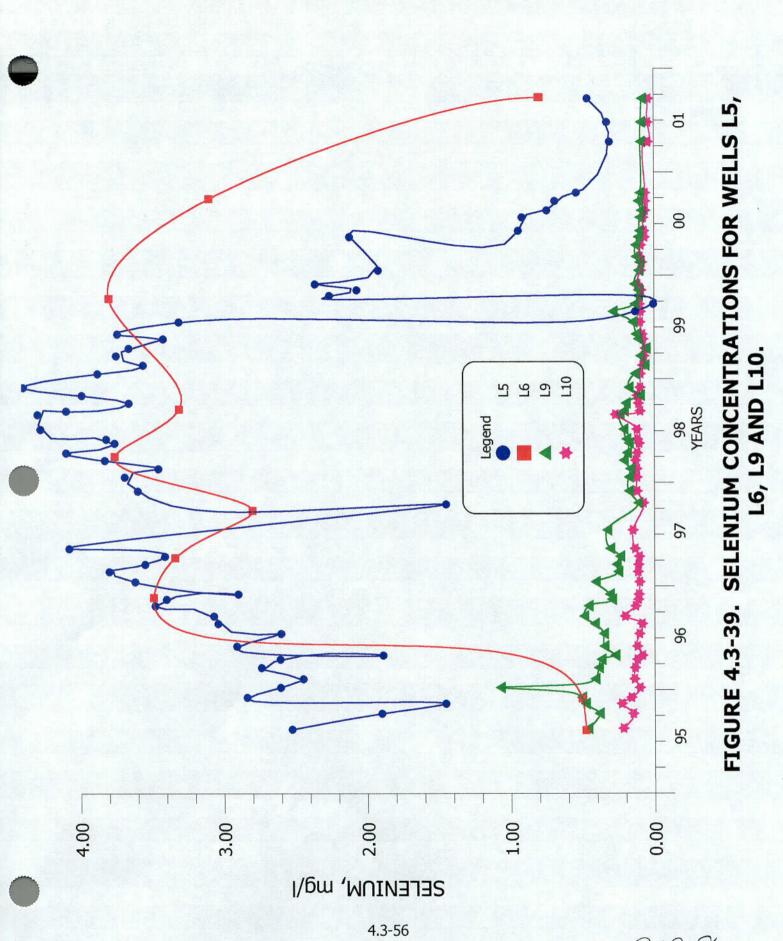



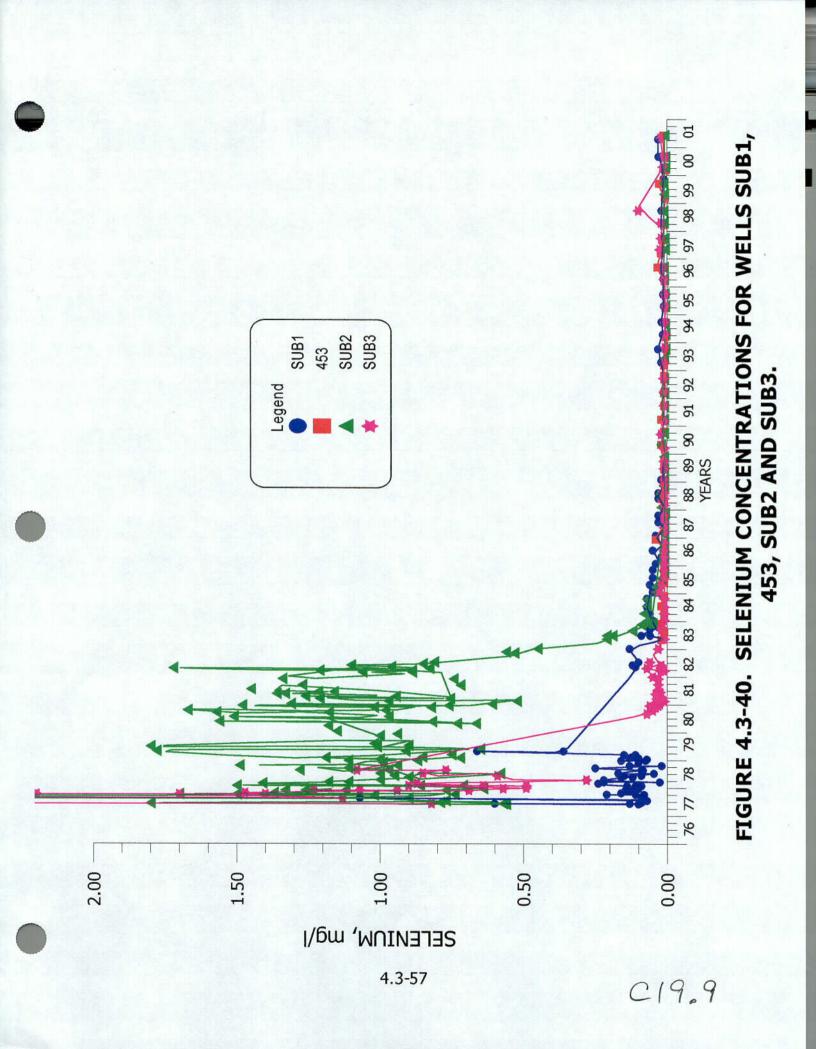


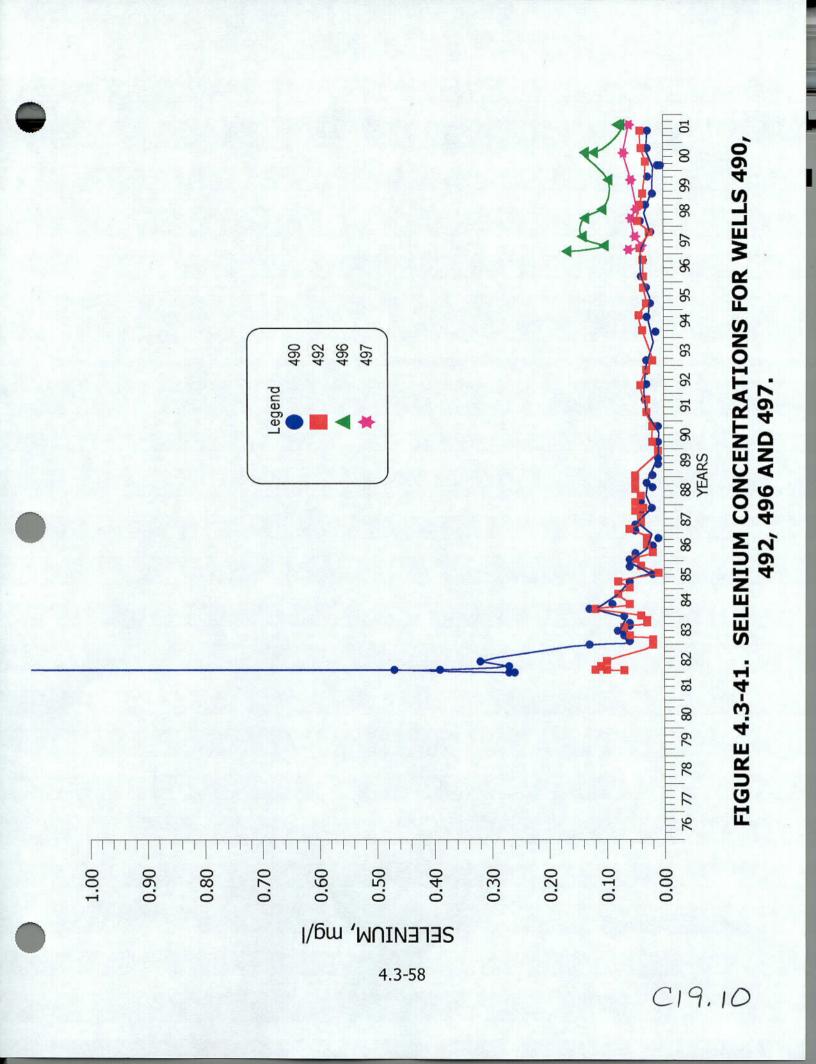



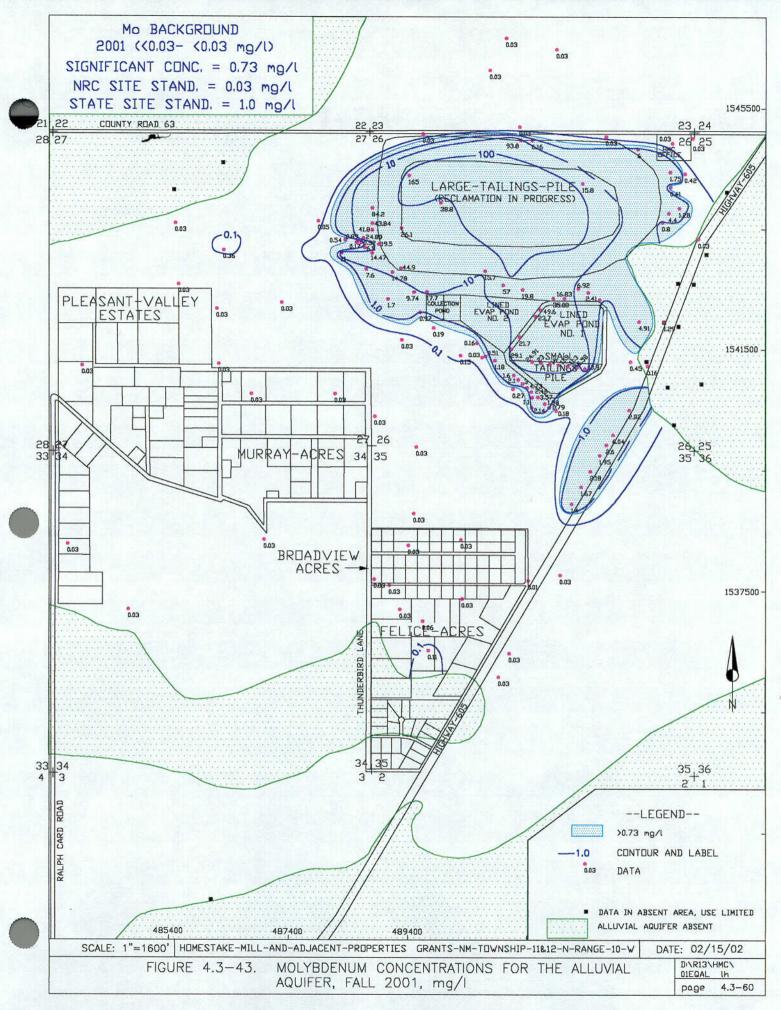


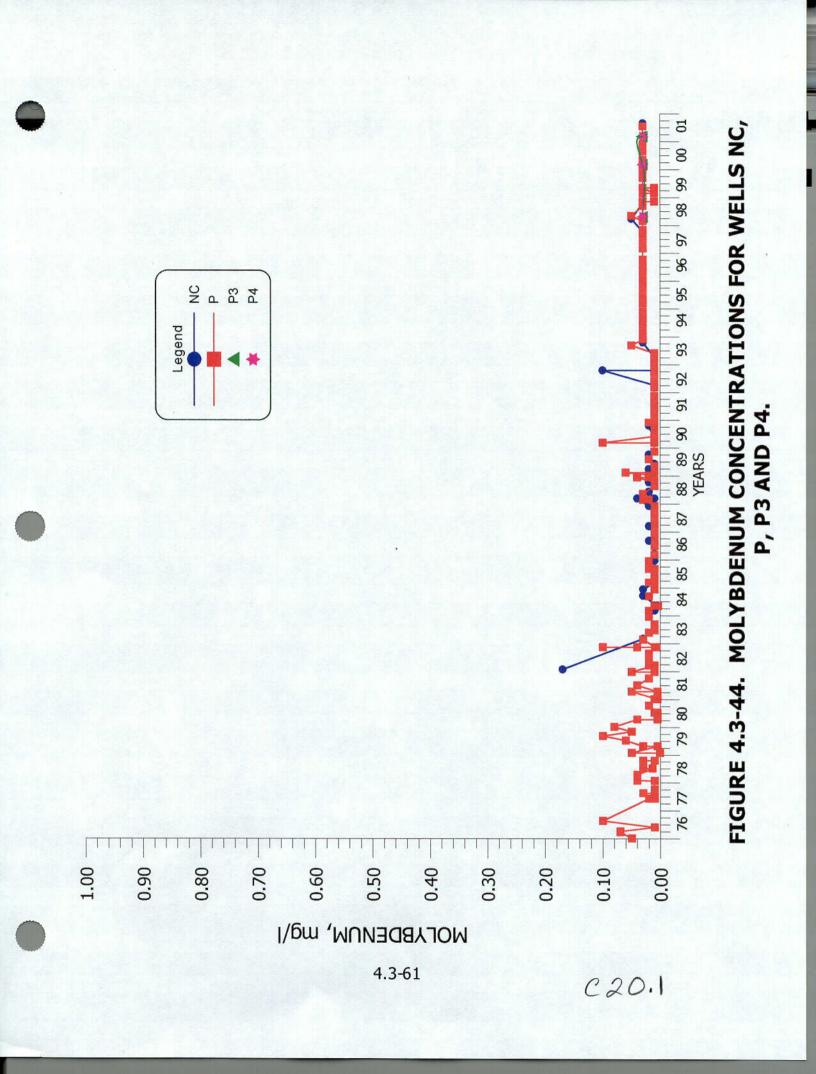



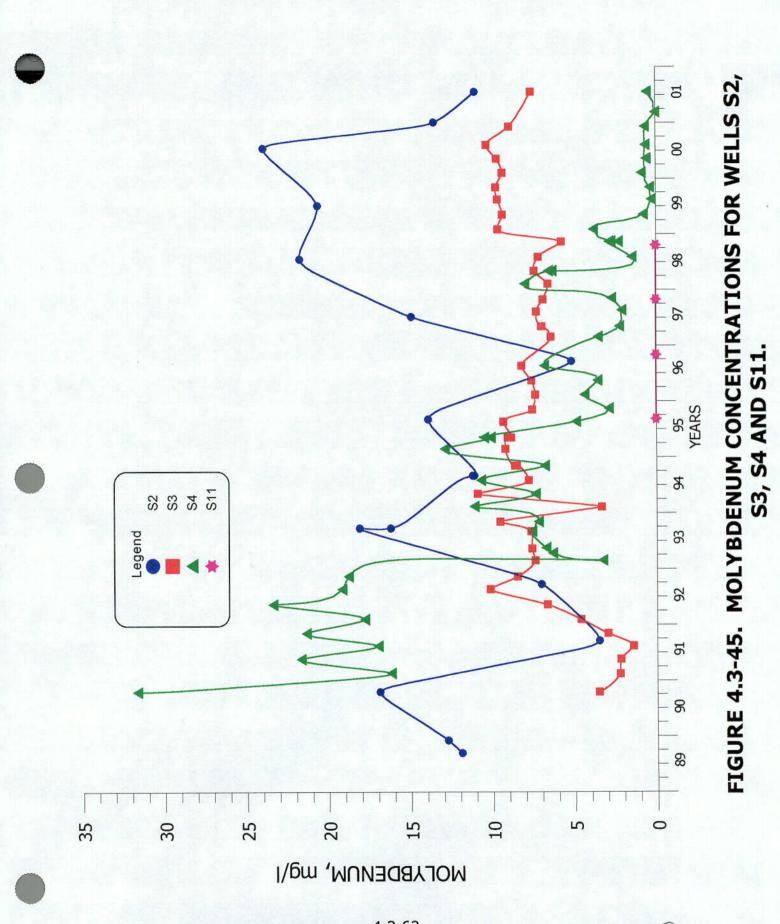







4.3-55

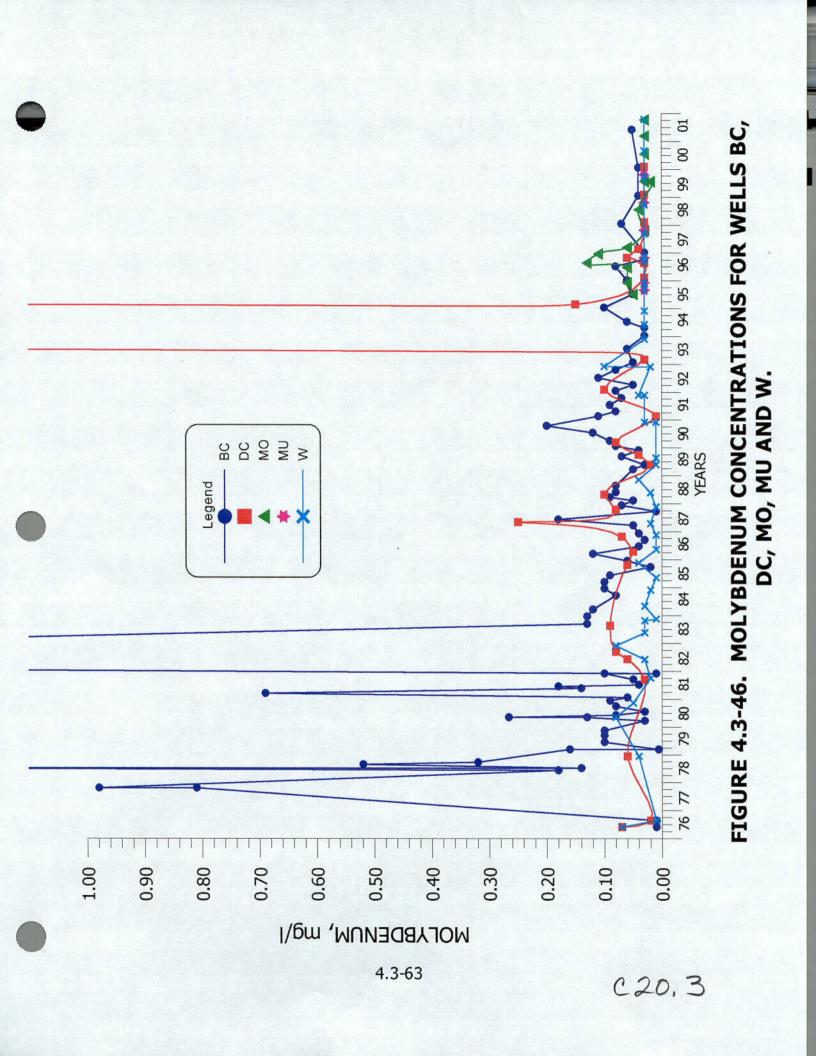


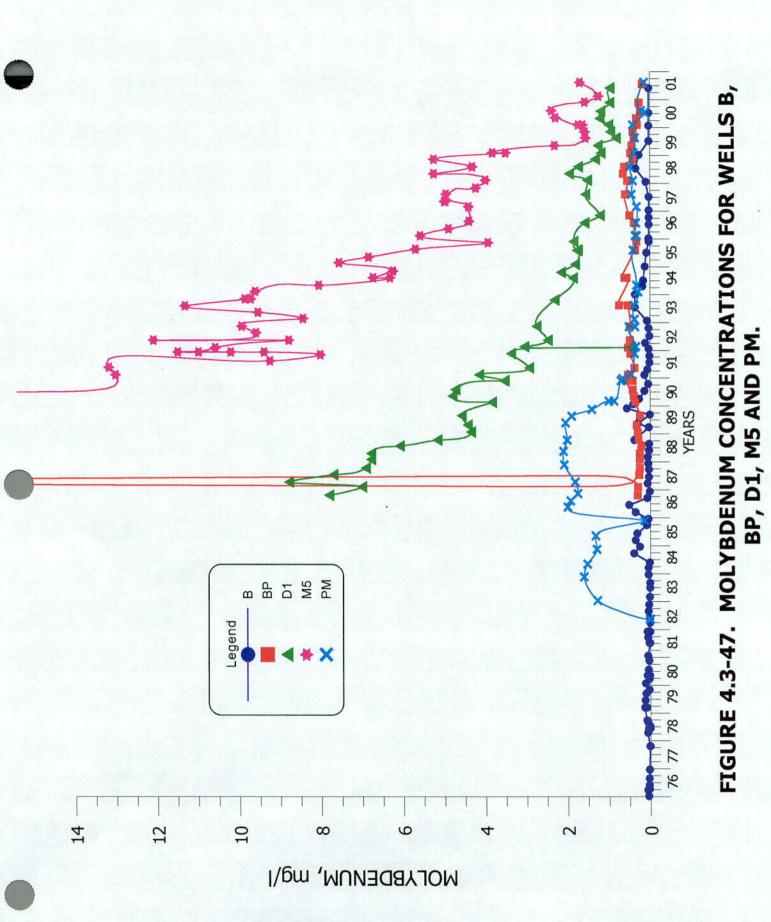


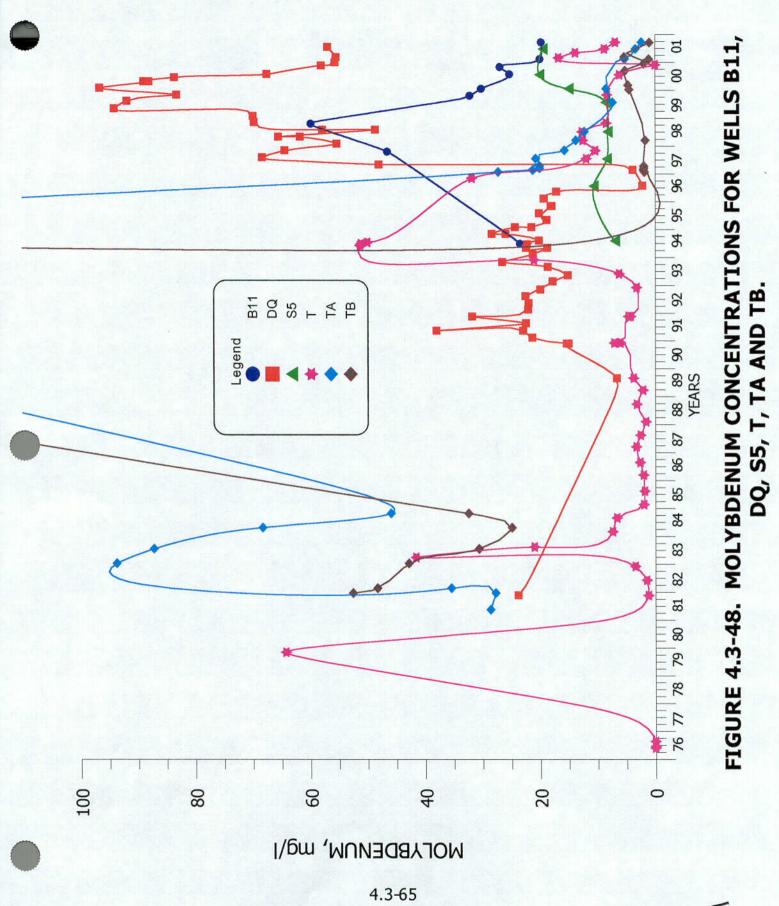


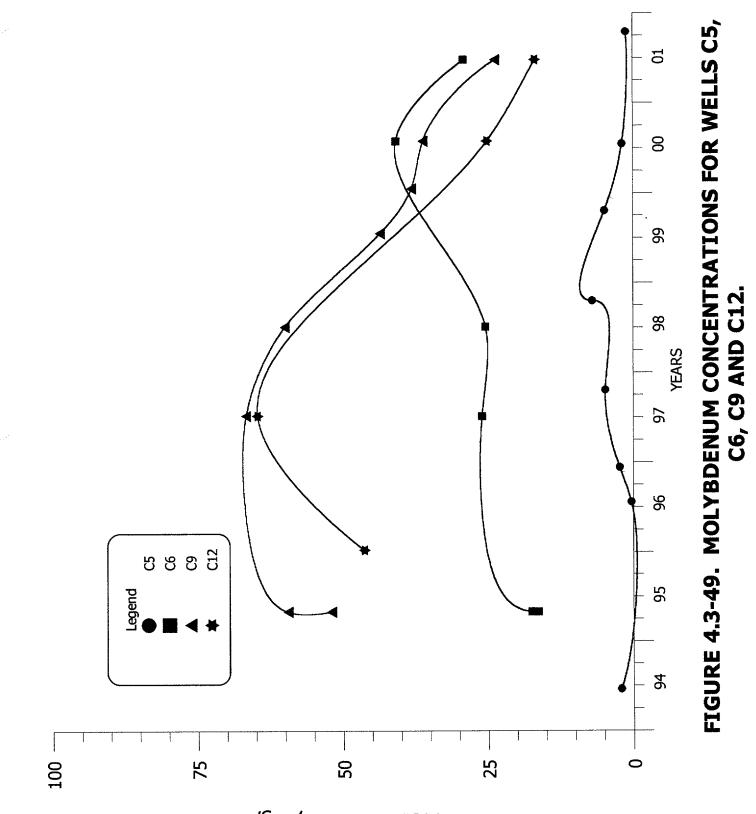




C20

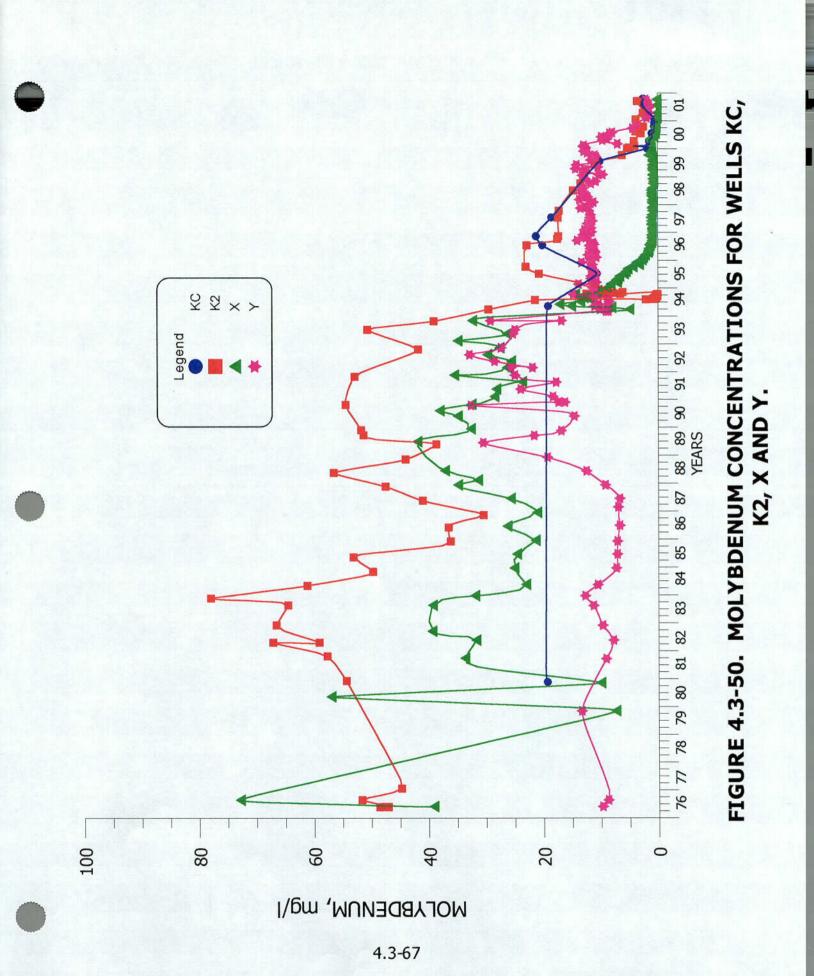


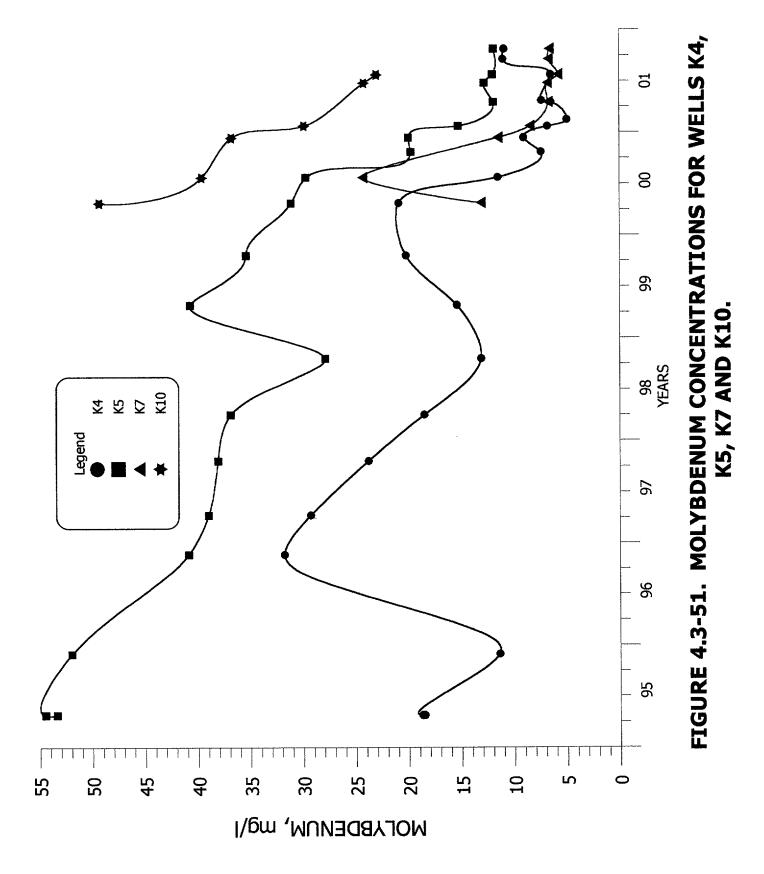


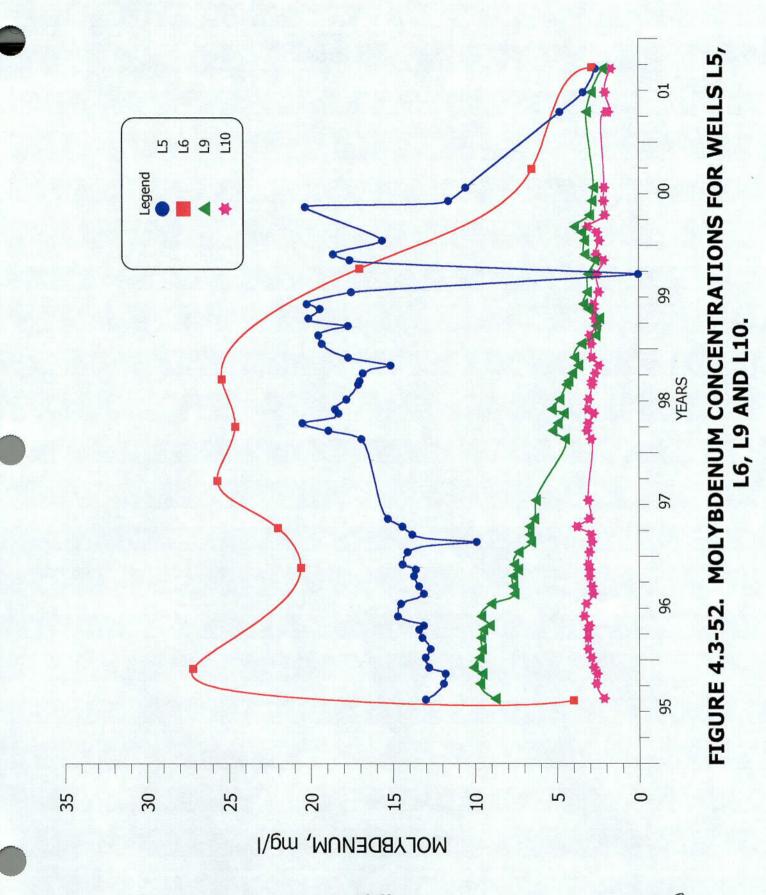


4.3-62

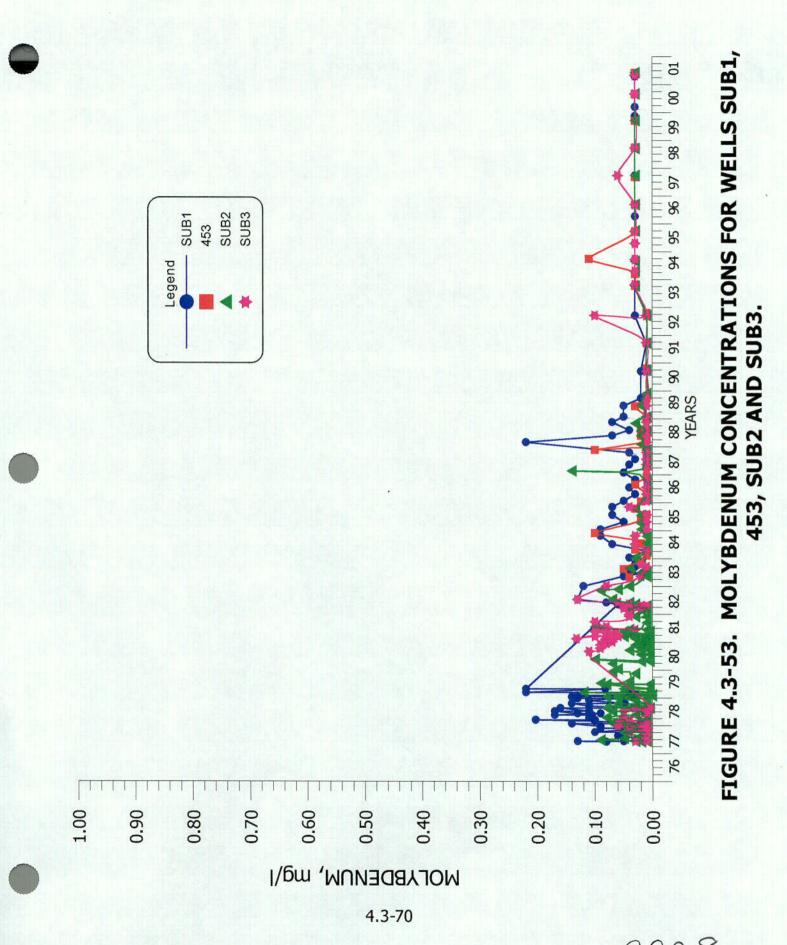

C20.2

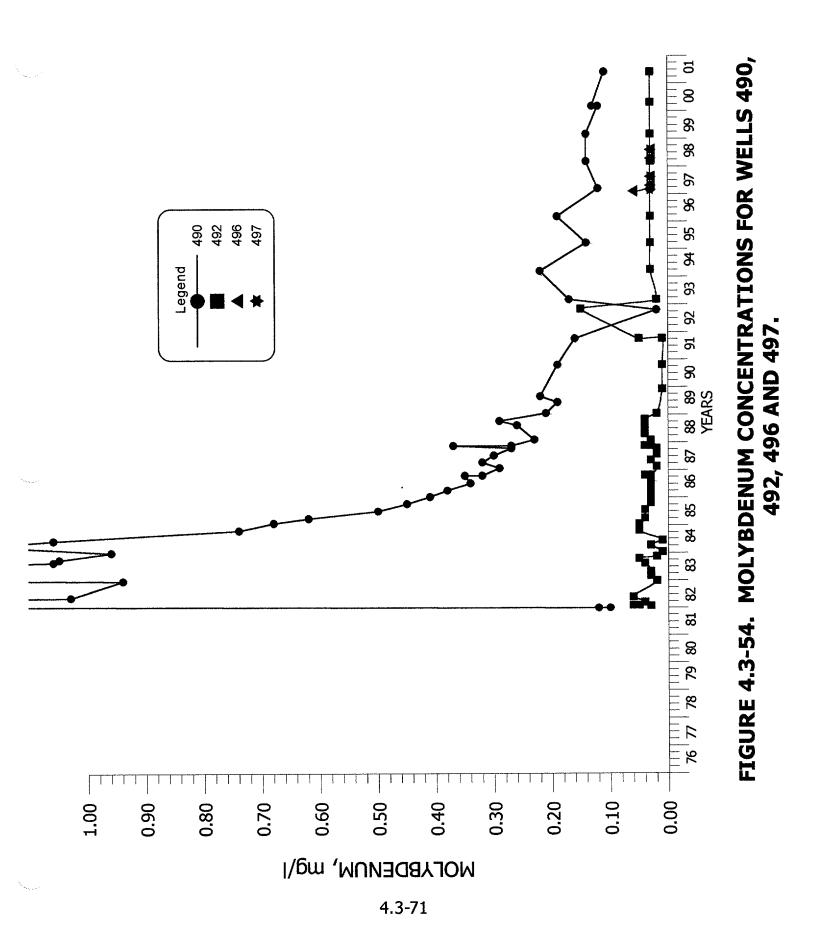


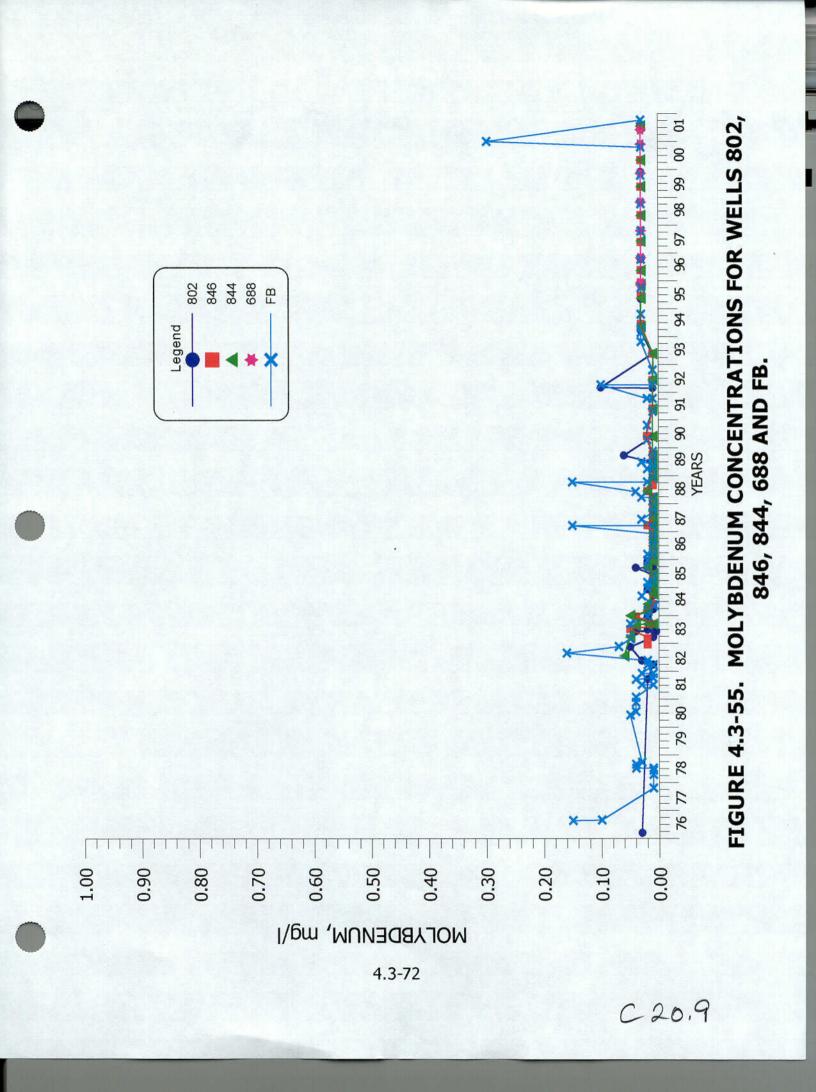


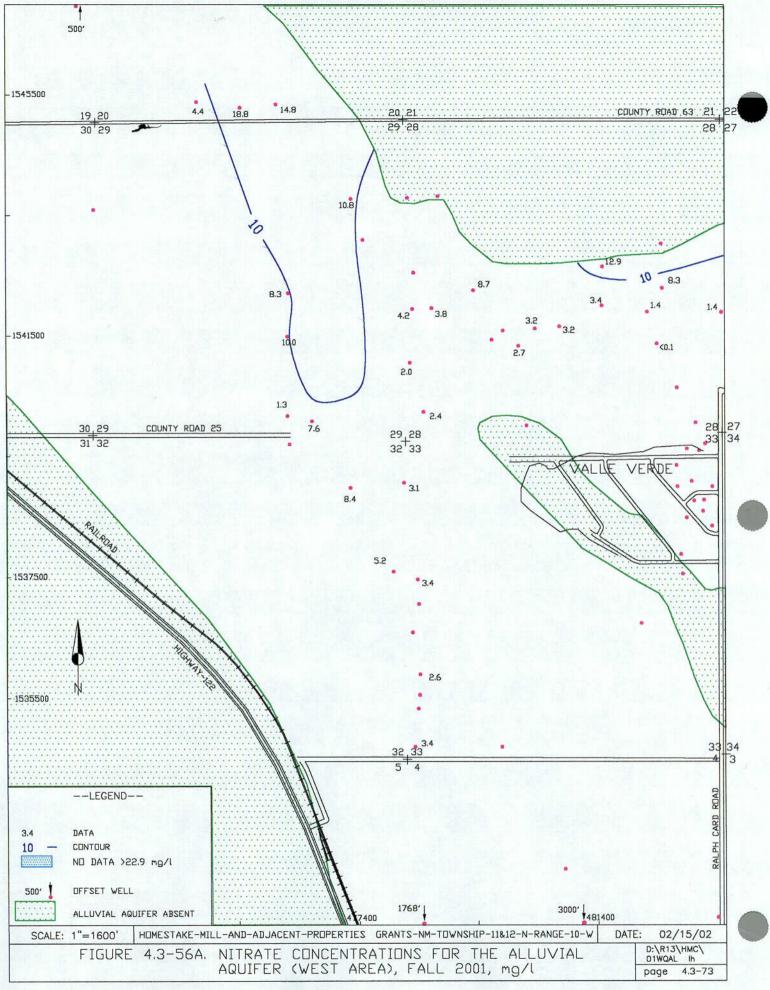


4.3-64



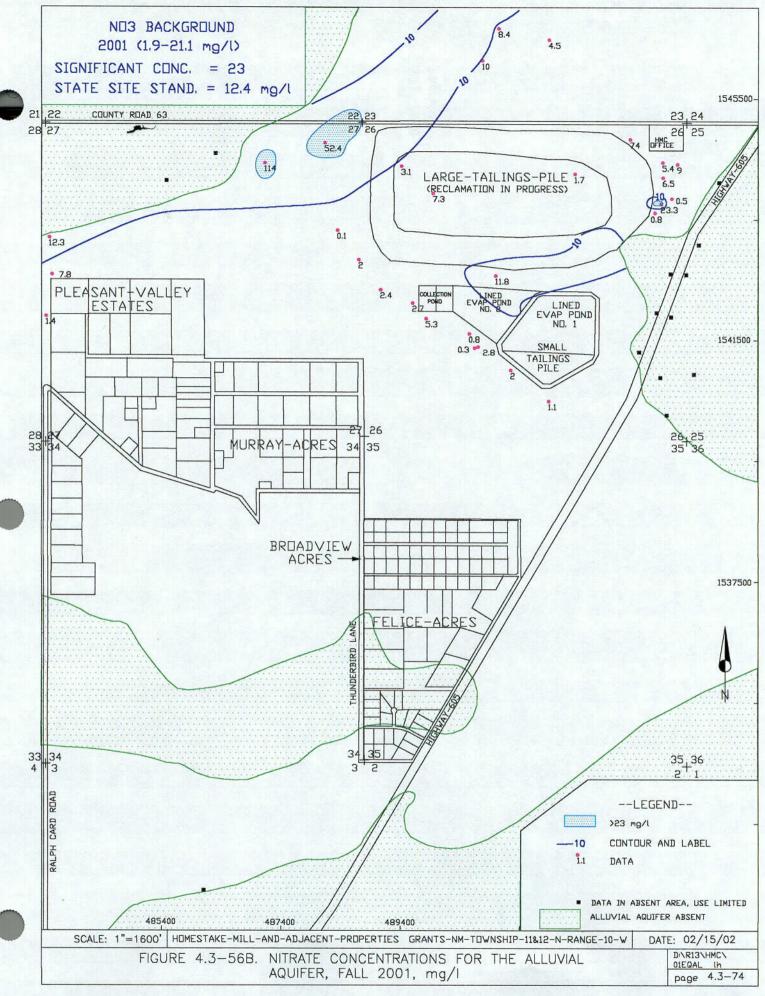





MOLYBDENUM, mg/l

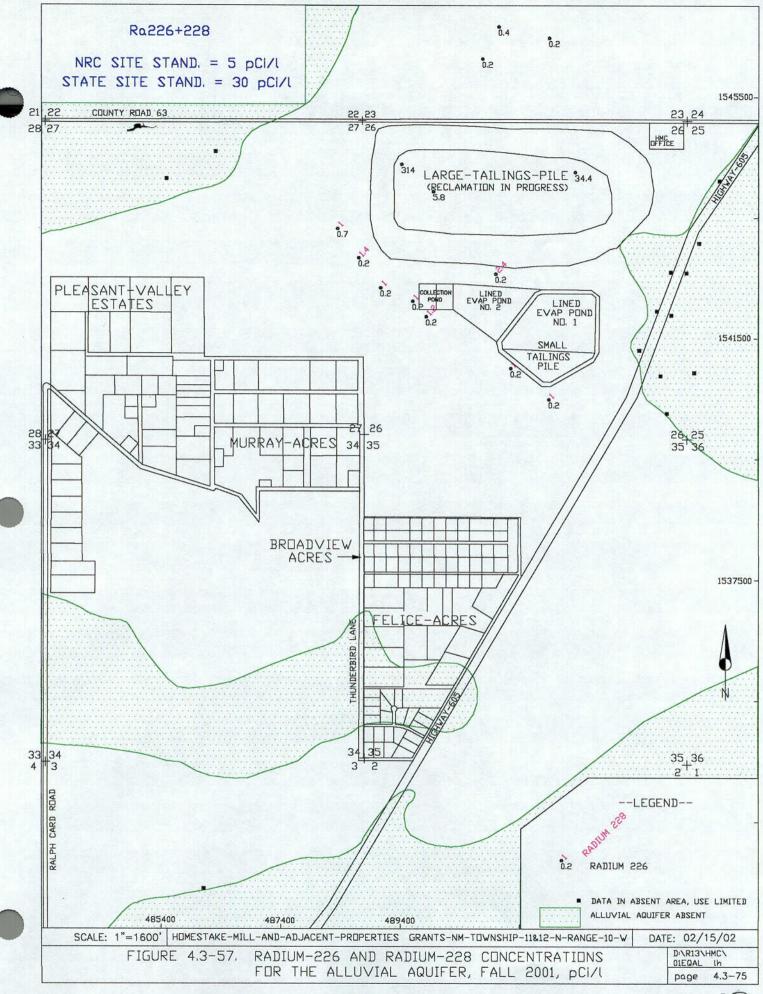


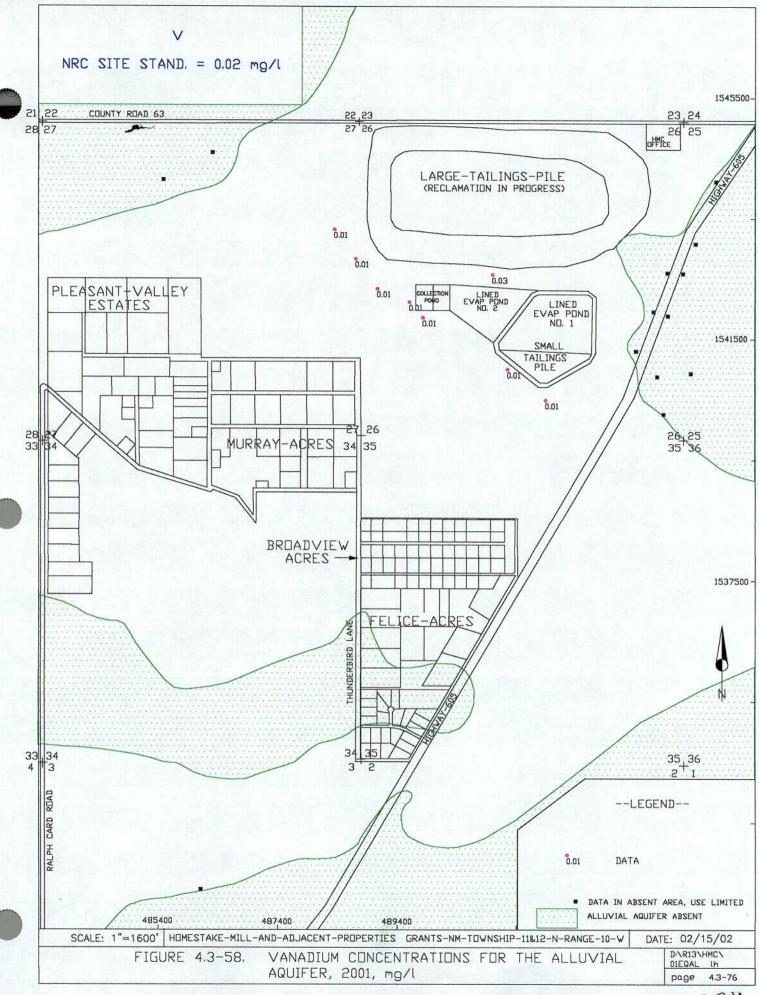


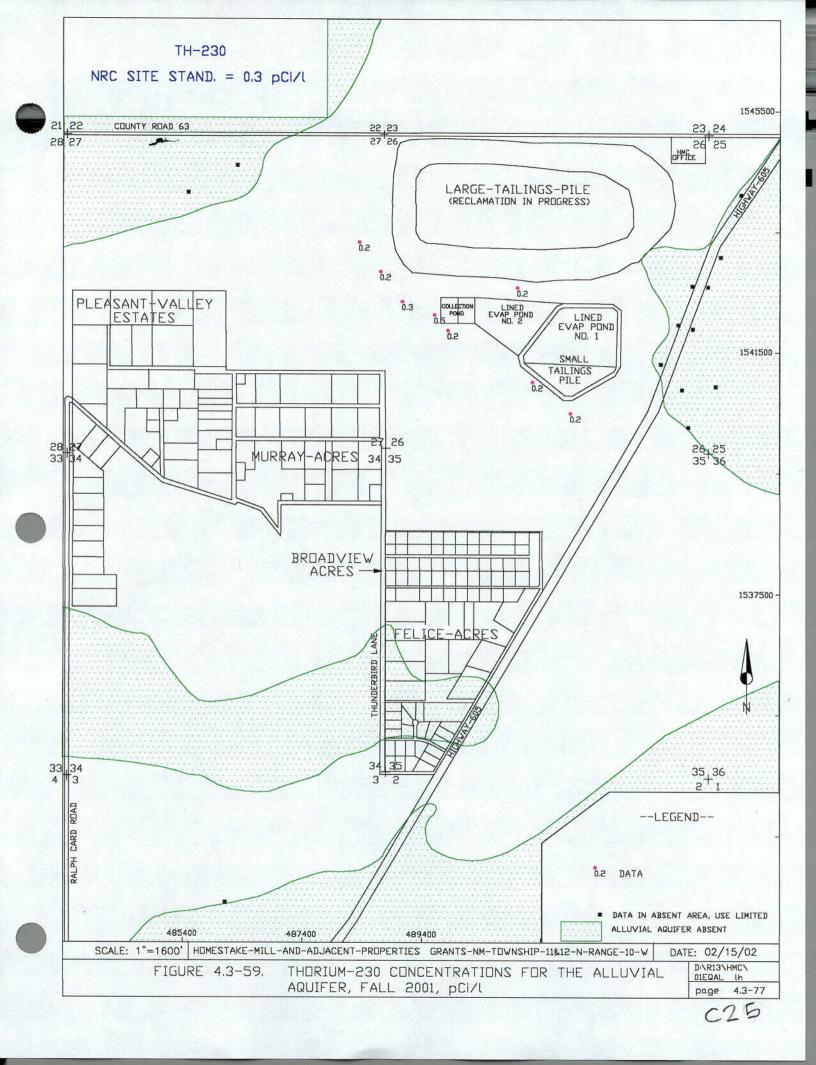






C21




C22



C23



C24

