Part 52 Design Certification

US NRC Framatome ANP

March 13, 2002 Rockville, MD

Agenda

- Background, Purpose, & Introduction
- Presentation of the SWR 1000
- Discussion of Certification Process
- Discussion of Key Technical Points
- Future Interactions with the NRC

Background

- Framatome ANP plans to submit an Application for Design Certification of the SWR 1000
- Work on the Design Certification Application will be initiated in early 2003

Meeting Purpose

- Provide NRC information necessary for resource scheduling
- Begin Defining Process and Schedule for Design Certification
- Begin Defining Content of Design Certification Application

Specific Objectives

• We Seek Clear Policy Statements on the Following:

- NRC position on the application of PRA and its relationship to Regulatory Treatment of Non-Safety Systems
- NRC position on the treatment of potential reactor vessel failure
- NRC position on the treatment of passive systems
- Influence of new security measures on plant design
- Criteria for Acceptance of: non-US Codes & Standards, and Testing

Framatome ANP is active virtually everywhere there is commercial nuclear power

FRAMATOME ANP

C02

Recent Framatome ANP Plants

Ling Ao

2 Units 935 MWe PWR Unit 1 - Commercial - 2002 Unit 2 - Commercial - 2003

FRAMATOME ANP

Since 1990, 28 new LWR's (non VVER) have been started up, 13 of which are Framatome ANP

Recent Framatome ANP Plants

11

Civaux - N4 Plant 2 Units 1450 MWe PWR

Unit 1 - Commercial - 1997 Unit 2 - Commercial - 1999

FRAMATOME ANP

Two of the highest power nuclear units in the world

Recent Framatome ANP Plants

Contract Signed in 1976

- Site Activity Begun in 1977
- Construction Suspended in 1985 at ~70% Completion
- Decision to Complete in 1995
- Site Work Resumed in 1996
- Commercial Operation in 2002

Angra 2 1229 MWe PWR

12

Framatome ANP has Recent Experience Completing Suspended Nuclear Power Plants

Gundremmingen B/C

SWR 1000

FRAMATOME ANP D

COY

History of Framatome ANP's BWR Development

Project History - SWR 1000 Development

Major Development Objectives

Improved Safety

Economic Feasibility

			10.00
Thermal power	2,778	MW	
Gross power output	~1,000	MW	
Reactor Pressure	70.6 bar	(1010 psig)	
Type of fuel assemblies	ATRIUM	12	1.000 5000 5000 500
Number of fuel assemblies	624		
Number of control rods	145		
Length of active core	2.8 m. (9	.2 ft.)	
Max. accident pressure			
of containment	7.5 bar (95 psig)	

FRAMATOME ANP

Improved Safety Objective

Safety

- Clear and simple system design
- Increased safety margins
- Reduction of core damage frequency
- Limiting the effects of core melt accident to plant itself
- Passive safety systems (Diversity and redundancy)
- Minimization of human error impact
- Grace period (> 3 days)

Improved Economic Objective

Operation & Economics

Use of existing technology

High plant availability

Low maintenance

High fuel burn-up (65 GWd/t) Flexible fuel cycle length (12 to 24 m)

ದ

ವ

4

Reduction of process waste

Design life of 60 years

Competitive power production cost

FRAMATOME ANP

206

Basic Diagram of SWR 1000

SWR 1000 Design

- All active systems have passive Safety Related backup to perform nuclear safety functions
- SWR 1000 Defense-in-Depth design incorporates Safety Related passive systems that are designed to meet all nuclear safety criteria without reliance on active systems

Defense in Depth Safety Concept

Safety Levels	Previous Nuclear Plants	SWR 1000	
1st level	High-quality design, construction and operation to prevent off-normal operating conditions and accidents	Maintained	
2nd level	Reliable control and limitation equipment for preventing off- normal operating conditions from developing into accidents	Proven technology utilized Plus Lower core power density, and Large water volume in RPV	
3rd level	Safety systems for accident control and limitation of fuel cladding damage	 Proven technology partially utilized Plus Diverse passive system for activation of safety systems Passive safety systems Large water reservoirs for long grace period 	
4th level	Beyond DBA	Equipment and provisions for control a core melt accident so that NO offsit emergency response actions are necessary	

Passive Safety Systems

Containment Cooling Condenser Passive Safety Systems:

30

FRAMATOME ANP

C12

D

LOCA Events Core Flooding Redundancy

SF Single failure CF Conseq. failure	Active Systems		Passive Systems				Effective Capacity
Core flooding	2 RHR/LPCI systems		4 Flooding lines				
	100%	100%	100%	100%	100%	100%	
Feedwater line break	CF	Maintenance	SF	~	~	~	300%
Core flooding	Maintenance	SF	CF	~	~	~	300%
line break	Maintenance	✓	CF	SF	✓	✓	300%
Leak below core (15 cm ²)	Maintenance	SF	50%	50%	50%	50%	200%
200 - 300% Core Flooding Capacity without Active Systems and one Core Flood Line Unavailable							

Systems and one Core Flood Line Unavailable able

31

ひ FRAMATOME ANP

Containment Heat Removal Capacities

SF Single failure	Active	e Systems	P	assive	System	າຣ	Effective Capacity
Heat removal from containment	2 RHF	R systems	4 co	ontainm conde	ent coo ensers	ling	
	100%	100%	50%	50%	50%	50%	
Failure assumptions	SF	Maintenance	1	~	~	~	200%
200% (Containr	nent Heat F	Remo	oval (Capa	city	
	WITh	out Active 3	Jyste	;,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*******		
	With(out Active 3	Syste	;1112	***********	Δ	

FRAMATOME ANP

C15

SWR 1000 Reactor Building and Containment

Reactor building

Designed against external loads

- Earthquake
- Military airplane crash
- Explosion pressure wave

Containment

- Reinforced concrete with steel liner, designed against severe accident pressure
- (7.5bar, 95psig)
- Inert (nitrogen) atmosphere during operation

Simplified Systems Design

System Trefford States	SWR 1000	1100 MAV6 BA/R
Emergency condenser		-
HPCI-system		3 x 100%
Spent fuel pool cooling system	Cooler Inside idel pool	3 x 100%
LPCI-system		3 x 100%
Reactor water cleanup system		2 x 100%
MCP-sealwater system	2 x 100%	3 x 100%
CRD-purging system	combined system	2 x 100%
Boron injection system	_	2 x 100%
Main steam lines	3	4
Feedwater lines	1/2	2/4
Feedwater heater train	single train	double train
Electrical- / I&C-system	double train	3 trains
	(+ passive systems)	
		A
	F	RAMATOME ANP

Current Status

- A preliminary safety analysis report has been completed
- The new passive safety systems features have been tested, other testing continues
 - The SWR 1000 is one of the innovative options being considered for a 5th unit in Finland

SWR 1000 Design

- All active systems have passive Safety Related backup to perform nuclear safety functions
- SWR 1000 Defense-in-Depth design incorporates Safety Related passive systems that are designed to meet all nuclear safety criteria without reliance on active systems
- Framatome ANP believes the SWR 1000 is an Evolutionary BWR design

Specific Objectives

We Seek Clear Policy Statements on the Following:

- NRC position on the application of PRA and its relationship to Regulatory Treatment of Non-Safety Systems
- NRC position on the treatment of potential reactor vessel failure
- NRC position on the treatment of passive systems
- Influence of new security measures on plant design
- Criteria for Acceptance of: non-US Codes & Standards, and Testing

