NRC FORM 651 (3-1999)					U.S. NUCLEAR RE	GULATOR		1133IUN
(3-1999) 10 CFR 72				OF COMPLIANC			4	of 1
				L STORAGE CA		Page	1	of 2
Regulations, Pa CFR Part 72).	art 72, "Licensing This certificate is applicable safet cask design. This	g Requirements fo is issued in accord ty standards set fo	or Independent Sto dance with 10 CFR orth in 10 CFR Par	of Compliance pursua orage of Spent Nuclea R 72.238, certifying tha rt 72, Subpart L, and o lling the requirements	ar Fuel and High-Lev at the storage desigr on the basis of the Fi	inal Safety	ents des Analysi	scribed is Repor
Certificate No.	Effective Date	Expiration Date	Docket Number	Amendment No.	Amendment Date	Package	Identifica	ation No.
1014	05/31/00	06/01/20	72-1014	2		USA	∿/72-10	014
Issued To: (Nam								
Holtec Interr Holtec Cente 555 Lincoln Marlton, NJ	er Drive West							
Safety Analysis I	Report Title							
	national Inc., F	Final Safety Ai	halysis Report f	for the HI-STORM	100 Çask Syste)m		
CONDITION	IS	11 03						
A (Technical below: 1. CASK a. Mo The mu whi dur (PV b. Des The the Ce cas The hor sta are tho lid.	Specifications) del No.: HI-STO e HI-STORM 10 liti-purpose cani ich contains the ring loading, unl WR), fuel assen scription e HI-STORM 10 e U. S. Nuclear I rtificate of Com sk, and the HI-S e MPC is the con neycombed fue inless steel exc e optional for the se MPCs fabric vent and drain	and Appendix E ORM 100 Cask 00 Cask System isters (MPCs), we of MPC during str loading and tran mblies or 68 boil 00 Cask System Regulatory Com npliance. The cas STORM 100 or 1 onfinement syste confinement system confinement system on finement system cated under Am oport cover plate	3 (Approved Co System h (the cask) considered to contain the orage; and (3) a (hisfer operations) ling water reactor h is certified as de hmission's (NRC) ask comprises the 100S storage over em for the stored eplate, a lid, a clost tron absorbers ar cated under the co endment 2 or late es, and closure rin	d fuel. It is a welded osure ring, and the ca nd aluminum heat co original CoC or Ame er amendments to th ing are the main con	components: (1) i overpack (HI-STO RAC), which contain to 32 pressurized blies. I Safety Analysis F Report (SER) acconnents: the MPCs, I, cylindrical canister anister shell. It is onduction element endment 1. AHCEs his CoC. The can ofinement boundar	interchang RM 100 of ins the MF water rea water rea her with a made enti ts (AHCEs s are not p ister shell, ry compon	geable or 100S) PC actor SAR) and g the RAC trans irely of s). AHC bermitte , basep), nd in unsfer CEs ed for blate,
ho	neycombed ba:	sket, which is ec	quipped with neu	tron absorbers, prov	vides criticality con	itrol.		
L	<u></u>							

NRC FO	RM 651A		
(3-1999)		U.S. NUCLEAR REGU	LATORY
10 CFR		Certificate	1014
	FOR SPENT FUEL STORAGE CASKS		
	Supplemental Sheet	Page 2	of 4
1. b.	Description (continued)		
	There are eight types of MPCs: the MPC-24, MPC-24E, MPC-24EF, MPC-32, MP and MPC-68FF. The MPC-24 holds up to 24 PWR fuel assemblies, up to four of which may be classified as damaged to 24 PWR fuel assemblies, up to four of which may be classified as or in the form of fuel debris. The MPC-32 holds up to 32 PWR fuel assemblies, up classified as damaged fuel assemblies. The MPC-32F holds up to 32 PWR fuel assemblies in the form of fuel debris. The MPC-32F holds up to 32 PWR fuel assemblies are the form of fuel debris. The MPC-32F holds up to 32 PWR fuel assemblies that may be intact or damaged (i.e., with known or suspected than hairline cracks or pinholes). The number of damaged fuel assemblies is limite Dresden Unit 1 or Humboldt Bay fuel assemblies. The MPC-68F holds up to 68 Dre Bay BWR fuel assemblies that may be intact, damaged, with up to four in the form Known or suspected defects such as ruptured fuel rods, severed fuel rods, and loog 68FF holds up to 68 BWR fuel assemblies, up to sixteen of which may be classified debris. All STORM 100 System must comply with the limits specified in Appendix B to this Co have the same external dimensions.	ntact. The MPC-24E ho fuel assemblies. The M s damaged fuel assembles to eight of which may b ssemblies, up to eight o The MPC-68 holds up to d cladding defects greated to sixteen unless they esden Unit 1 or Humbol of fuel debris (i.e., with se fuel pellets). The MI d as damaged fuel or fue fuel to be stored in the H C. All eight MPC mode during loading, unload ransfer cask is a multi- ed to the exterior. Two ton HI-TRAC. The weig hloading or transfer II-TRAC transfer cask he RAC transfer cask.	olds IPC- blies of o 68 ter y are ldt PC- rel HI- RA HI RA HI- RA HI RA RA HI RA RA RA RA RA RA RA RA RA RA RA RA RA
	seismic applications. The HI-STORM 100A applies to both the standard (HI-STOR STORM 100S) overpacks that are classified as the HI-STORM 100A and HI-STOR DPERATING PROCEDURES	M 100) and short (HI- M 100SA, respectively.	
- I.	Written operating procedures shall be prepared for cask handling, loading, movemen naintenance. The user's site-specific written operating procedures shall be consiste described in Chapter 8 of the FSAR.	ent, surveillance, and ent with the technical ba	asis
3 <i>. 4</i>	ACCEPTANCE TESTS AND MAINTENANCE PROGRAM		
V	Vritten cask acceptance tests and maintenance program shall be prepared consiste lescribed in Chapter 9 of the FSAR.	ent with the technical ba	asis

NRC FORM 651A (3-1999) 10 CFR 72

CERTIFICATE OF COMPLIANCE FOR SPENT FUEL STORAGE CASKS

U.S. NUCLEAR REGULATORY

al de la come

Certificate 1014

Supplemental Sheet

Page 3 of

. QUALITY ASSURANCE

Activities in the areas of design, purchase, fabrication, assembly, inspection, testing, operation, maintenance, repair, modification of structures, systems and components, and decommissioning that are important to safety shall be conducted in accordance with a Commission-approved quality assurance program which satisfies the applicable requirements of 10 CFR Part 72, Subpart G, and which is established, maintained, and executed with regard to the cask system.

5. HEAVY LOADS REQUIREMENTS

Each lift of an MPC, a HI-TRAC transfer cask, or a HI-STORM 100 or 100S overpack must be made in accordance to the existing heavy loads requirements and procedures of the licensed facility at which the lift is made. A plant-specific safety review (under 10 CFR 50.59 or 10 CFR 72.48, if applicable) is required to show operational compliance with existing plant specific heavy loads requirements. Lifting operations outside of structures governed by 10 CFR Part 50 must be in accordance with Section 5.5 of Appendix A and/or Sections 3.4.6 and Section 3.5 of Appendix B to this certificate, as applicable.

APPROVED CONTENTS

Contents of the HI-STORM 100 Cask System must meet the fuel specifications given in Appendix B to this certificate.

DESIGN FEATURES

Features or characteristics for the site, cask, or ancillary equipment must be in accordance with Appendix B to this certificate.

8. CHANGES TO THE CERTIFICATE OF COMPLIANCE

The holder of this certificate who desires to make changes to the certificate, which includes Appendix A (Technical Specifications) and Appendix B (Approved Contents and Design Features), shall submit an application for amendment of the certificate.

9. SPECIAL REQUIREMENTS FOR FIRST SYSTEMS IN PLACE

The heat transfer characteristics of the cask system will be recorded by temperature measurements for the first HI-STORM Cask Systems (for each thermally unique MPC basket design - MPC-24/24E/24EF, MPC-32/32F, and MPC-68/68F/68FF) placed into service by any user with a heat load equal to or greater than 10 kW. An analysis shall be performed that demonstrates the temperature measurements validate the analytic methods and predicted thermal behavior described in Chapter 4 of the FSAR.

Validation tests shall be performed for each subsequent cask system that has a heat load that exceeds a previously validated heat load by more than 2 kW (e.g., if the initial test was conducted at 10 kW, then no additional testing is needed until the heat load exceeds 12 kW). No additional testing is required for a system after it has been tested at a heat load equal to or greater than 16 kW. Letter reports summarizing the results of each validation test shall be submitted to the NRC in accordance with 10 CFR 72.4.

NRC FORM 651A (3-1999) 10 CFR 72

10.

11.

CERTIFICATE OF COMPLIANCE

U.S. NUCLEAR REGULATORY

Certificate 1014

of

FOR SPENT FUEL STORAGE CASKS Supplemental Sheet Page 4 PRE-OPERATIONAL TESTING AND TRAINING EXERCISE A dry run training exercise of the loading, closure, handling, unloading, and transfer of the HI-STORM 100 Cask System shall be conducted by the licensee prior to the first use of the system to load spent fuel assemblies. The training exercise shall not be conducted with spent fuel in the MPC. The dry run may be performed in an alternate step sequence from the actual procedures, but all steps must be performed. The dry run shall include, but is not limited to the following: Moving the MPC and the transfer cask into the spent fuel pool. a. b. Preparation of the HI-STORM 100 Cask System for fuel loading. C. Selection and verification of specific fuel assemblies to ensure type conformance. Loading specific assemblies and placing assemblies into the MPC (using a dummy fuel assembly), d. including appropriate independent verification. Remote installation of the MPC lid and removal of the MPC and transfer cask from the spent fuel pool. e. MPC welding, NDE inspections, hydrostatic testing, draining, moisture removal (by vacuum drying or f. forced helium dehydration, as applicable), helium backfilling, and leakage testing. (A mockup may be used for this dry-run exercise.) Transfer cask upending/downending on the horizontal transfer trailer or other transfer device, as a. applicable to the site's cask handling arrangement. Transfer of the MPC from the transfer cask to the overpack. h. Placement of the HI-STORM 100 Cask System at the ISFSI. i. HI-STORM 100 Cask System unloading, including cooling fuel assemblies, flooding MPC i. cavity, removing MPC lid welds. (A mockup may be used for this dry-run exercise.) **AUTHORIZATION** The HI-STORM 100 Cask System, which is authorized by this certificate, is hereby approved for general use by holders of 10 CFR Part 50 licenses for nuclear reactors at reactor sites under the general license issued pursuant to 10 CFR 72.210, subject to the conditions specified by 10 CFR 72.212, and the attached Appendix A and Appendix B. FOR THE U. S. NUCLEAR REGULATORY COMMISSION E. William Brach, Director Spent Fuel Project Office Office of Nuclear Material Safety and Safeguards Attachments: 1. Appendix A 2. Appendix B

CERTIFICATE OF COMPLIANCE NO. 1014

APPENDIX A

TECHNICAL SPECIFICATIONS

FOR THE HI-STORM 100 CASK SYSTEM

TABLE OF CONTENTS

1.0	USE AND APPLICATION 1.1-
1,1 1.2 1.3 1.4	Definitions
2.0	
3.0 3.0	LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY
3.1 3.1.1 3.1.2	SFSC INTEGRITY
3.1.3	Fuel Cool-Down 3.1.3-1
3.2 3.2.1 3.2.2 3.2.3	Deleted
3.3 3.3.1	SFSC CRITICALITY CONTROL
Table	3-1 MPC Model-Dependent Limits
4.0	
5.0 5.1 5.2 5.3	ADMINISTRATIVE CONTROLS
5.3 5.4 5.5 5.6 5.7	Radioactive Effluent Control Program
Table	5-1 TRANSFER CASK and OVERPACK Lifting Requirements

Multi-Purpose Canister (MPC) 3.1.1

3.1 SFSC INTEGRITY

3.1.1 Multi-Purpose Canister (MPC)

LCO 3.1.1 The MPC shall be dry and helium filled.

APPLICABILITY: During TRANSPORT OPERATIONS and STORAGE OPERATIONS.

ACTIONS

	CONDITION	REQUIRED ACTION	COMPLETION TIME
Α.	MPC cavity vacuum drying pressure or demoisturizer exit gas temperature limit not met.	 A.1 Perform an engineering evaluation to determine the quantity of moisture left in the MPC. AND 	7 days
		A.2 Develop and initiate corrective actions necessary to return the MPC to an analyzed condition.	30 days
В.	MPC helium backfill limit not met.	B.1 Perform an engineering evaluation to determine the impact of helium differential.	72 hours
		AND	
		B.2 Develop and initiate corrective actions necessary to return the MPC to an analyzed condition.	14 days

Multi-Purpose Canister (MPC) 3.1.1

ACTIONS (continued)

			···
	CONDITION	REQUIRED ACTION	COMPLETION TIME
C.	MPC helium leak rate limit not met.	C.1 Perform an engineering evaluation to determine the impact of increased helium leak rate on heat removal capability and offsite dose.	24 hours
		AND	
		C.2 Develop and initiate corrective actions necessary to return the MPC to an analyzed condition.	7 days
D.	Required Actions and associated Completion Times not met.	D.1 Remove all fuel assemblies from the SFSC.	30 days

Multi-Purpose Canister (MPC) 3.1.1

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
In addition to t MPCs with her helium methor	Once, prior to TRANSPORT OPERATIONS	
SR 3.1.1.1	For those MPCs containing all moderate burnup (\leq 45,000 MWD/MTU) fuel assemblies, verify MPC cavity vacuum drying pressure is \leq 3 torr for \geq 30 minutes.	
	OR	
	For those MPCs containing fuel assemblies of any authorized burnup, while using the recirculating helium method to dehydrate the MPC cavity, verify that the gas temperature exiting the demoisturizer is $\leq 21^{\circ}$ F for ≥ 30 minutes.	
SR 3.1.1.2	Verify MPC helium backfill density or pressure is within the limit specified in Table 3-1 for the applicable MPC model.	Once, prior to TRANSPORT OPERATIONS
SR 3.1.1.3	Verify that the total helium leak rate through the MPC lid confinement weld and the drain and vent port confinement welds is $\leq 5.0 \times 10^{-6}$ atm-cc/sec.	Once, prior to TRANSPORT OPERATIONS

SFSC Heat Removal System 3.1.2

3.1 SFSC INTEGRITY

3.1.2 SFSC Heat Removal System

LCO 3.1.2 The SFSC Heat Removal System shall be operable

APPLICABILITY: During STORAGE OPERATIONS.

ACTIONS

•	-	

	CONDITION		REQUIRED ACTION	COMPLETION TIME
Α.	SFSC Heat Removal System inoperable.		estore SFSC Heat Removal ystem to operable status.	8 hours
В.	Required Action A.1 and associated Completion Time not met.	ac	easure SFSC dose rates in ccordance with the Radiation rotection Program.	Immediately and once per 12 hours thereafter
		AND		
		B.2.1	Restore SFSC Heat Removal System to operable status.	48 hours
		<u>o</u>	R	
		B.2.2	Transfer the MPC into a TRANSFER CASK.	48 hours

SFSC Heat Removal System 3.1.2

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.1.2.1	Verify all OVERPACK inlet and outlet air ducts are free of blockage.	24 hours
	OR	
	For OVERPACKS with installed temperature monitoring equipment, verify that the difference between the average OVERPACK air outlet temperature and ISFSI ambient temperature is \leq 161 °F.	24 hours

I

3.1 SFSC INTEGRITY

3.1.3 Fuel Cool-Down

The MPC cavity bulk helium temperature shall be $\leq 200^{\circ}$ F LCO 3.1.3

-----NOTE-----The LCO is only applicable to wet UNLOADING OPERATIONS.

APPLICABILITY: UNLOADING OPERATIONS prior to re-flooding.

ACTIONS

-----NOTE-----Separate Condition entry is allowed for each MPC.

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. MPC cavity bulk helium temperature not within limit.	A.1 Establish MPC cavity bulk helium temperature within limit.	Prior to initiating MPC re-flooding operations

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.1.3.1	Ensure via analysis or direct measurement of MPC exit gas temperature that MPC cavity bulk helium temperature is within limit.	Prior to MPC re- flooding operations.

Deleted 3.2.1

1

ł

I

3.2 Deleted.

3.2.1 Deleted.

LCO 3.2.1 Deleted.

	Deleted 3.2.2
3.2 Deleted.	
3.2.2 Deleted.	I
LCO 3.2.2 Deleted	

I

Deleted 3.2.3 Deleted.

3.3 SFSC CRITICALITY CONTROL

3.3.1 Boron Concentration

- LCO 3.3.1 As required by CoC Appendix B, Table 2.1-2, the concentration of boron in the water in the MPC shall meet the following limits for the applicable MPC model:
 - a. MPC-24 with one or more fuel assemblies having an initial enrichment greater than the value in Table 2.1-2 for no soluble boron credit and ≤ 5.0 wt% ²³⁵U: ≥ 400 ppmb
 - b. MPC-24E or MPC-24EF (all INTACT FUEL ASSEMBLIES) with one or more fuel assemblies having an initial enrichment greater than the value in Table 2.1-2 for no soluble boron credit and ≤ 5.0 wt% ²³⁵U: ≥ 300 ppmb
 - c. Deleted.
 - d. Deleted.
 - e. MPC-24E or MPC-24EF (one or more DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS) with one or more fuel assemblies having an initial enrichment > 4.0 wt% ²³⁵U and ≤ 5.0 wt% ²³⁵U: ≥ 600 ppmb
 - f. MPC-32/32F: Minimum soluble boron concentration as required by the table below.

	AII INTACT FUEL ASSEMBLIES		One or more DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS	
Array/Class	Initial Enrichment ≤ 4.1 wt% ²³⁵ U (ppmb)	Initial Enrichment ≤ 5.0 wt% ²³⁵ U (ppmb)	Initial Enrichment ≤ 4.1 wt% ²³⁵ U (ppmb)	Initial Enrichment ≤ 5.0 wt% ²³⁵ U (ppmb)
14x14A/B/C/D/E	1,300	1,900	1,500	2,300
15x15A/B/C/G	1,800	2,400	1,900	2,700
15x15D/E/F/H	1,900	2,600	2,100	2,900
16x16A	1,300	1,900	1,500	2,300
17x17A/B/C	1,900	2,600	2,100	2,900

Boron Concentration 3.3.1

APPLICABILITY: During PWR fuel LOADING OPERATIONS with fuel and water in the MPC

AND

During PWR fuel UNLOADING OPERATIONS with fuel and water in the MPC.

ACTIONS

Separate Condition entry is allowed for each MPC.

COND	DITION	REQUIRED ACTION	COMPLETION TIME
A. Boron conc within limit.	entration not	A.1 Suspend LOADING OPERATIONS or UNLOADING OPERATIONS.	Immediately
		AND	
		A.2 Suspend positive reactivity additions.	Immediately
		AND	
		A.3 Initiate action to restore boron concentration to within limit.	Immediately

SURVEILLANCE REQUIREMENTS

SURVEILLANCE		FREQUENCY
This surveillance is only required to be performed if the MPC is submerged in water or if water is to be added to, or recirculated through the MPC.		Within 4 hours of entering the Applicability of this LCO.
SR 3.3.1.1	Verify boron concentration is within the applicable limit using two independent measurements.	<u>AND</u> Once per 48 hours thereafter.

MPC Model-Dependent Limits Table 3-1

Table 3-1 MPC Model-Dependent Limits		
MPC MODEL	LIMITS	
1. MPC-24/24E/24EF		
a. Deleted. b. MPC Helium Backfill ¹ i. Cask Heat Load \leq 27.77 kW (MPC-24) or \leq 28.17 kW (MPC-24E/EF)	\geq 29.3 psig and \leq 44.8 psig	
ii. Cask Heat Load > 27.77 kW (MPC-24) or > 28.17 kW (MPC-24E/EF)	\geq 40.8 psig and \leq 44.8 psig	
c. Deleted.		
2. MPC-68/68F/68FF		
a. Deleted. b. MPC Helium Backfill ¹ i. Cask Heat Load <u><</u> 28.19 kW	0.1218 +0/-10% g-moles/l OR <u>≥</u> 29.3 psig and ≤ 44.8 psig	
ii. Cask Heat Load > 28.19 kW	\geq 40.8 psig and \leq 44.8 psig	
c. Deleted.		
3. MPC-32/32F		
a. Deleted. b. MPC Helium Backfill Pressure ¹ i. Cask Heat Load <u><</u> 28.74 kW	\geq 29.3 psig and \leq 44.8 psig	
ii. Cask Heat Load > 28.74 kW	\geq 40.8 psig and \leq 44.8 psig	
c. Deleted.		

 $^{^1~}$ Helium used for backfill of MPC shall have a purity of \geq 99.995%. Pressure range is at a reference temperature of 70°F

The following programs shall be established, implemented and maintained.

- 5.1 Deleted.
- 5.2 Deleted.
- 5.3 Deleted.
- 5.4 Radioactive Effluent Control Program

This program implements the requirements of 10 CFR 72.44(d).

- a. The HI-STORM 100 Cask System does not create any radioactive materials or have any radioactive waste treatment systems. Therefore, specific operating procedures for the control of radioactive effluents are not required. Specification 3.1.1, Multi-Purpose Canister (MPC), provides assurance that there are not radioactive effluents from the SFSC.
- b. This program includes an environmental monitoring program. Each general license user may incorporate SFSC operations into their environmental monitoring programs for 10 CFR Part 50 operations.
- c. An annual report shall be submitted pursuant to 10 CFR 72.44(d)(3).

5.5 Cask Transport Evaluation Program

This program provides a means for evaluating various transport configurations and transport route conditions to ensure that the design basis drop limits are met. For lifting of the loaded TRANSFER CASK or OVERPACK using devices which are integral to a structure governed by 10 CFR Part 50 regulations, 10 CFR 50 requirements apply. This program is not applicable when the TRANSFER CASK or OVERPACK is in the FUEL BUILDING or is being handled by a device providing support from underneath (i.e., on a rail car, heavy haul trailer, air pads, etc.).

Pursuant to 10 CFR 72.212, this program shall evaluate the site-specific transport route conditions.

- a. For free-standing OVERPACKS and the TRANSFER CASK, the following requirements apply:
 - 1. The lift height above the transport route surface(s) shall not exceed the limits in Table 5-1 except as provided for in Specification 5.5.a.2. Also, the program shall ensure that the transport route conditions (i.e., surface hardness and pad thickness) are equivalent to or less limiting than either Set A or Set B in HI-STORM FSAR Table 2.2.9.
 - 2. For site-specific transport route surfaces that are not bounded by either the Set A or Set B parameters of FSAR Table 2.2.9, the program may determine lift heights by analysis based on the site-specific conditions to ensure that the impact loading due to design basis drop events does not exceed 45 g's at the top of the MPC fuel basket. These alternative analyses shall be commensurate with the drop analyses described in the Final Safety Analysis Report for the HI-STORM 100 Cask System. The program shall ensure that these alternative analyses are documented and controlled.

- 5.5 Cask Transport Evaluation Program (continued)
 - 3. The TRANSFER CASK or OVERPACK, when loaded with spent fuel, may be lifted to any height necessary during transportation between the FUEL BUILDING and the CTF and/or ISFSI pad, provided the lifting device is designed in accordance with ANSI N14.6 and has redundant drop protection features.
 - 4. The TRANSFER CASK and MPC, when loaded with spent fuel, may be lifted to those heights necessary to perform cask handling operations, including MPC transfer, provided the lifts are made with structures and components designed in accordance with the criteria specified in Section 3.5 of Appendix B to Certificate of Compliance No. 1014, as applicable.
 - b. For the transport of OVERPACKS to be anchored to the ISFSI pad, the following requirements apply:
 - 1. Except as provided in 5.5.b.2, user shall determine allowable OVERPACK lift height limit(s) above the transport route surface(s) based on site-specific transport route conditions. The lift heights shall be determined by evaluation or analysis, based on limiting the design basis cask deceleration during a postulated drop event to \leq 45 g's at the top of the MPC fuel basket. Evaluations and/or analyses shall be performed using methodologies consistent with those in the HI-STORM 100 FSAR.
 - 2. The OVERPACK, when loaded with spent fuel, may be lifted to any height necessary during transportation between the FUEL BUILDING and the CTF and/or ISFSI pad provided the lifting device is designed in accordance with ANSI N14.6 and has redundant drop protection features.

5.5 Cask Transport Evaluation Program (continued)

Table 5-1

TRANSFER CASK and Free-Standing OVERPACK Lifting Requirements

ITEM	ORIENTATION	LIFTING HEIGHT LIMIT (in.)
TRANSFER CASK	Horizontal	42 (Notes 1 and 2)
TRANSFER CASK	Vertical	None Established (Note 2)
OVERPACK	Horizontal	Not Permitted
OVERPACK	Vertical	11 (Note 3)

Notes: 1. To be measured from the lowest point on the TRANSFER CASK (i.e., the bottom edge of the cask/lid assemblage)

- 2. See Technical Specification 5.5.a.3 and 4
- 3. See Technical Specification 5.5.a.3.

5.6 Fuel Cladding Oxide Thickness Evaluation Program

A Fuel Cladding Oxide Thickness Evaluation Program shall be developed and implemented to determine the average fuel cladding oxide thickness of high burnup (> 45,000 MWD/MTU) spent nuclear fuel assemblies proposed to be stored in the HI-STORM 100 System. The program may use direct physical measurements or an appropriate predictive methodology with due consideration of all significant variables (e.g., in-core flux, cycle length and number, power history, coolant temperature profile, coolant chemistry, and metallurgy of the fuel cladding material) to determine the average oxide thickness on the fuel cladding. If a predictive methodology is used to determine average fuel cladding oxide thickness, a sufficient number of fuel cladding thickness measurements shall be made to adequately benchmark the methodology.

In order to classify a high burnup spent fuel assembly as an INTACT FUEL ASSEMBLY, the loss of fuel cladding to oxidation must not increase the fuel cladding inner radius-to-fuel cladding thickness ratio above 10.5 for PWR fuel assemblies or 9.5 for BWR fuel assemblies. The criterion is met if the computed or measured average oxidation layer thickness of the fuel rods is less than the maximum allowable average fuel cladding oxidation thickness. The maximum allowable average fuel cladding oxidation thickness the following formula:

$$t_{ox} = \left(t_{nom} - \frac{0.5 \times d_{nom} - t_{nom}}{W}\right) \times 25,400$$

where:

- tor = the maximum allowable average oxidation layer thickness (micrometers)
- W = the applicable maximum allowable fuel cladding inner radius-to-fuel cladding thickness ratio (10.5 or 9.5)

t_{nom} = the nominal, pre-irradiated fuel cladding thickness (inches)

d_{nom} = the nominal, pre-irradiated fuel cladding outer diameter (inches)

A high burnup spent fuel assembly shall be considered a DAMAGED FUEL ASSEMBLY if the computed or measured average oxidation layer thickness on any fuel rod exceeds the limit determined above.

5.7 Radiation Protection Program

Each cask user shall establish and maintain a radiation protection program governing cask loading and unloading, as well as ISFSI operations, including transport of the loaded OVERPACK or TRANSFER CASK outside of facilities governed by 10 CFR Part 50. This program may be included in the cask user's Part 50 radiation protection program or established as a separate program. The radiation protection program shall include appropriate controls for measuring dose rates, ensuring compliance with applicable regulations, and implementing actions to maintain personnel occupational exposures As Low As Reasonably Achievable (ALARA). The program shall also address the control of loose contamination of cask components. Contamination limits shall be established, as appropriate, in accordance with applicable guidance for the release of contaminated material from the Part 50 facility (i.e., NRC I&E Circular 81-07 or other appropriate guidance).

CERTIFICATE OF COMPLIANCE NO. 1014

APPENDIX B

APPROVED CONTENTS AND DESIGN FEATURES

FOR THE HI-STORM 100 CASK SYSTEM

2.0 APPROVED CONTENTS

2.1 Fuel Specifications and Loading Conditions

2.1.1 Fuel To Be Stored In The HI-STORM 100 SFSC System

- a. INTACT FUEL ASSEMBLIES, DAMAGED FUEL ASSEMBLIES, FUEL DEBRIS, and NON-FUEL HARDWARE meeting the limits specified in Table 2.1-1 and other referenced tables may be stored in the HI-STORM 100 SFSC System.
- b. For MPCs partially loaded with stainless steel clad fuel assemblies, all remaining fuel assemblies in the MPC shall meet the decay heat generation limit for the stainless steel clad fuel assemblies.
- c. For MPCs partially loaded with DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS, all remaining Zircaloy (or other alloy of zirconium) clad INTACT FUEL ASSEMBLIES in the MPC shall meet the decay heat generation limits for the DAMAGED FUEL ASSEMBLIES. This requirement applies only to uniform fuel loading.
- d. For MPCs partially loaded with array/class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A fuel assemblies, all remaining Zircaloy (or other alloy of zirconium) clad INTACT FUEL ASSEMBLIES in the MPC shall meet the decay heat generation limits for the 6x6A, 6x6B, 6x6C, 7x7A and 8x8A fuel assemblies.
- e. All BWR fuel assemblies may be stored with or without Zircaloy (or other alloy of zirconium) channels with the exception of array/class 10x10D and 10x10E fuel assemblies, which may be stored with or without Zircaloy or stainless steel channels.

2.1.2 Uniform Fuel Loading

Preferential fuel loading shall be used during uniform loading (i.e., any authorized fuel assembly in any fuel storage location) whenever fuel assemblies with significantly different post-irradiation cooling times (\geq 1 year) are to be loaded in the same MPC. Fuel assemblies with the longest post-irradiation cooling times shall be loaded into fuel storage locations at the periphery of the basket. Fuel assemblies with shorter post-irradiation cooling times shall be placed toward the center of the basket. Regionalized fuel loading as described in Technical Specification 2.1.3 below meets the intent of preferential fuel loading.

2.0 Approved Contents

2.1 Fuel Specifications and Loading Conditions (cont'd)

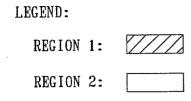
2.1.3 Regionalized Fuel Loading

Users may choose to store fuel using regionalized loading in lieu of uniform loading to allow higher heat emitting fuel assemblies to be stored than would otherwise be able to be stored using uniform loading. Regionalized loading is limited to those fuel assemblies with Zircaloy (or other alloy of zirconium) cladding. Figures 2.1-1 through 2.1-4 define the regions for the MPC-24, MPC-24E, MPC-24EF, MPC-32, MPC-68, and MPC-68FF models, respectively¹. Fuel assembly burnup, decay heat, and cooling time limits for regionalized loading are specified in Section 2.4.2. Fuel assemblies used in regionalized loading shall meet all other applicable limits specified in Tables 2.1-1 through 2.1-3.

2.2 Violations

If any Fuel Specifications or Loading Conditions of 2.1 are violated, the following actions shall be completed:

- 2.2.1 The affected fuel assemblies shall be placed in a safe condition.
- 2.2.2 Within 24 hours, notify the NRC Operations Center.
- 2.2.3 Within 30 days, submit a special report which describes the cause of the violation, and actions taken to restore compliance and prevent recurrence.
- 2.3 Deviations from Cask Content Requirements


Proposed alternatives to the contents listed in Section 2.0 may be authorized on a casespecific basis by the Director of the Office of Nuclear Material Safety and Safeguards or designee. The request for such alternative contents should demonstrate that:

- 2.3.1 The proposed alternative contents would provide an equivalent level of safety, and
- 2.3.2 The proposed alternative contents are consistent with the applicable requirements.

Requests for alternatives to contents shall be submitted in accordance with 10 CFR 72.4.

¹ These figures are only intended to distinguish the fuel loading regions. Other details of the basket design are illustrative and may not reflect the actual basket design details. The design drawings should be consulted for basket design details.

APPROVED CONTENTS 2.0

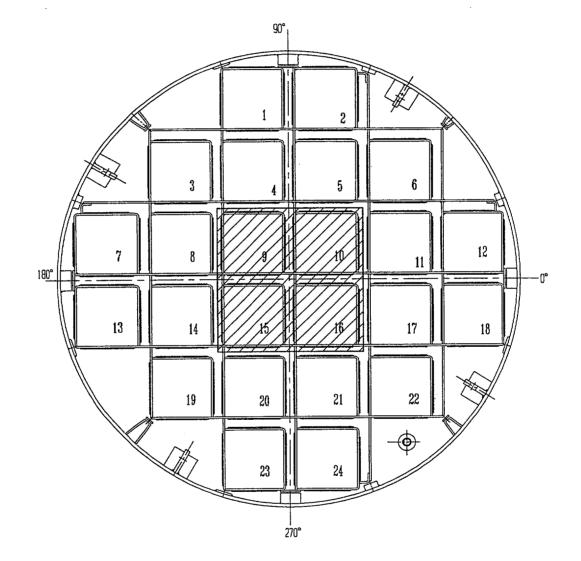
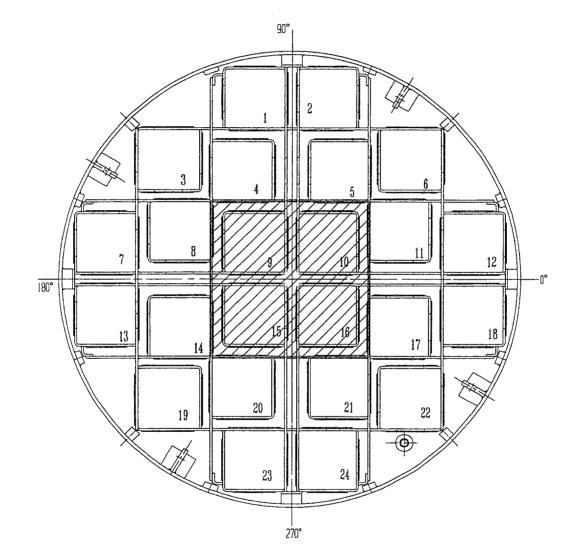



FIGURE 2.1-1 FUEL LOADING REGIONS - MPC-24

CERTIFICATE OF COMPLIANCE NO. 1014 APPENDIX B

APPROVED CONTENTS LEGEND: REGION 1: $\overline{}$ **REGION 2:**

FIGURE 2.1-2

FUEL LOADING REGIONS - MPC-24E/24EF

2-4

٦

2.0

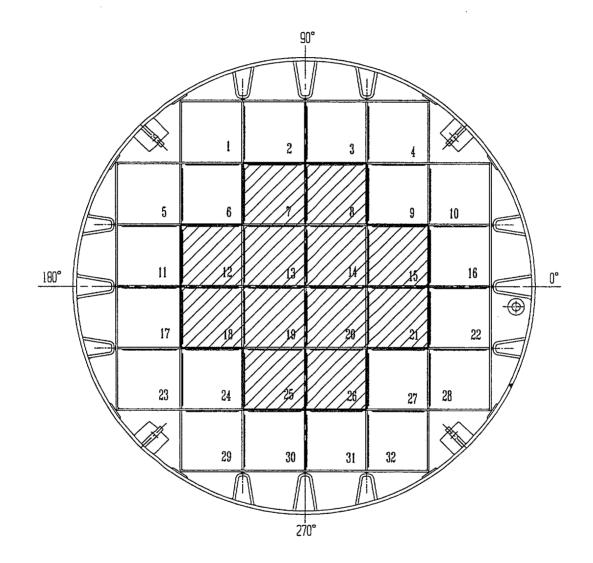
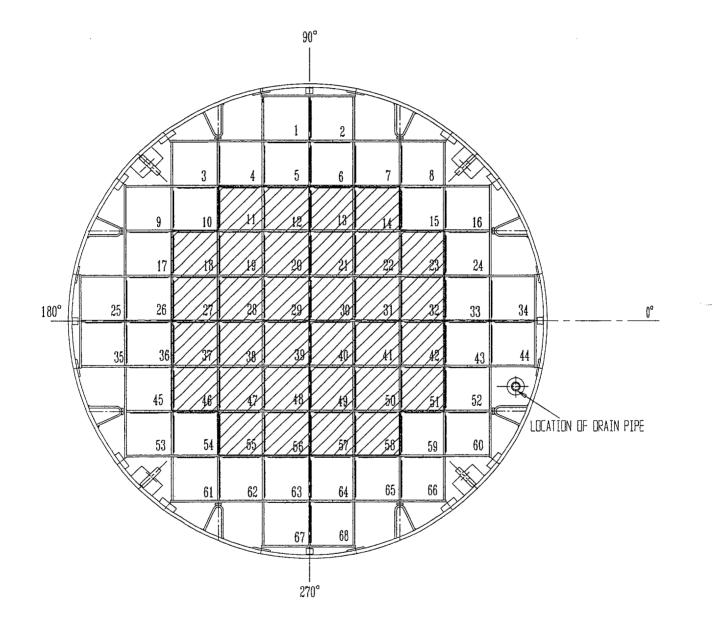


FIGURE 2.1-3


FUEL LOADING REGIONS - MPC-32/32F

CERTIFICATE OF COMPLIANCE NO. 1014 APPENDIX B

APPROVED CONTENTS 2.0

LEGEND:

REGION 1:

FIGURE 2.1-4

FUEL LOADING REGIONS - MPC-68/68FF

CERTIFICATE OF COMPLIANCE NO. 1014 APPENDIX B

Approved Contents 2.0

Table 2.1-1 (page 1 of 39) Fuel Assembly Limits

I. MPC MODEL: MPC-24

- A. Allowable Contents
 - 1. Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a. Cladding Type:	Zircaloy (Zr) or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class.
b. Initial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.
c. Post-irradiation Cooling Time and Average Burnup Per Assembly:	
i. Array/Classes 14x14D,14x14E, and 15x15G	Cooling time \geq 8 years and an average burnup \leq 40,000 MWD/MTU.
ii. All Other Array/Classes	Cooling time and average burnup as specified in Section 2.4.
iii. NON-FUEL HARDWARE	As specified in Table 2.1-8.

Table 2.1-1 (page 2 of 39) Fuel Assembly Limits

I. MPC MODEL: MPC-24 (continued)

A. Allowable Contents (continued)

d. Decay Heat Per Assembly:

		Array/Classes 14x14D, 14x14E, and 15x15G	<u><</u> 710 Watts
	ii	All Other Array/Classes	As specified in Section 2.4.
e.	Fue	Assembly Length:	<u> 176.8 inches (nominal design) </u>
f.	Fue	I Assembly Width:	\leq 8.54 inches (nominal design)
g.	Fue	Assembly Weight:	≤ 1,680 lbs (including NON-FUEL HARDWARE)

- B. Quantity per MPC: Up to 24 fuel assemblies.
- C. Deleted.
- D. DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS are not authorized for loading into the MPC-24.
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement rod guide tubes, orifice rod assemblies, or vibration suppressor inserts may be stored in any fuel cell location. Fuel assemblies containing CRAs, RCCAs, CEAs, or APSRs may only be loaded in fuel storage locations 9, 10, 15, and/or 16. These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

I

Table 2.1-1	(page 3 of 39)
Fuel Asse	embly Limits

II. MPC MODEL: MPC-68

A. Allowable Contents

1. Uranium oxide, BWR INTACT FUEL ASSEMBLIES listed in Table 2.1-3, with or without channels, and meeting the following specifications:

a. Cladding Type:	Zircaloy (Zr) or Stainless Steel (SS) as specified in Table 2.1-3 for the applicable fuel assembly array/class.
b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
c. Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
d. Post-irradiation Cooling Time and Average Burnup Per Assembly:	
i. Array/Classes 6x6A, 6x6C, 7x7A, and 8x8A:	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTU
ii. Array/Class 8x8F	Cooling time \geq 10 years and an average burnup \leq 27,500 MWD/MTU.
iii. Array/Classes 10x10D and 10x10E	Cooling time \geq 10 years and an average burnup \leq 22,500 MWD/MTU.
iv. All Other Array/Classes	As specified in Section 2.4.

Approved Contents 2.0

Table 2.1-1 (page 4 of 39) Fuel Assembly Limits

II. MPC MODEL: MPC-68 (continued)

A. Allowable Contents (continued)

e. Decay Heat Per Assembly:

	i.	Array/Classes 6x6A, 6x6C, 7x7A, and 8x8A	<u><</u> 115 Watts
	ii.	Array/Class 8x8F	<u><</u> 183.5 Watts.
	iii.	Array/Classes 10x10D and 10x10E	<u><</u> 95 Watts
	iv.	All Other Array/Classes	As specified in Section 2.4.
f.	Fu	el Assembly Length:	176.5 inches (nominal design)
g.	Fu	el Assembly Width:	\leq 5.85 inches (nominal design)
h.	Fu	el Assembly Weight:	\leq 700 lbs, including channels

Table 2.1-1 (page 5 of 39) Fuel Assembly Limits

II. MPC MODEL: MPC-68 (continued)

A. Allowable Contents (continued)

2. Uranium oxide, BWR DAMAGED FUEL ASSEMBLIES, with or without channels, placed in DAMAGED FUEL CONTAINERS. Uranium oxide BWR DAMAGED FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 and meet the following specifications:

a. Cladding Type:	Zircaloy (Zr) or Stainless Steel (SS) as specified in Table 2.1-3 for the applicable fuel assembly array/class.
b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	
i. Array/Classes 6x6A, 6x6C, 7x7A, and 8x8A	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
ii. All Other Array/Classes specified in Table 2.1-3	4.0 wt% ²³⁵ U
c. Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
 Post-irradiation Cooling Time and Average Burnup Per Assembly: 	
i. Array/Classes 6x6A, 6x6C, 7x7A,and 8x8A	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTU.
ii. Array/Class 8x8F	Cooling time \geq 10 years and an average burnup \leq 27,500 MWD/MTU.
iii. Array/Classes 10x10D and 10x10E	Cooling time \geq 10 years and an average burnup \leq 22,500 MWD/MTU.
iv. All Other Array Classes	As specified in Section 2.4.

|

	Fuel Asse	mbly Limits
II. MPC MO	DEL: MPC-68 (continued)	
A. Allow	able Contents (continued)	
e. Dec	ay Heat Per Assembly:	
i.	Array/Class 6x6A, 6x6C, 7x7A, and 8x8A	<u><</u> 115 Watts
ii.	Array/Class 8x8F	<u><</u> 183.5 Watts
iii.	Array/Classes 10x10D and 10x10E	<u><</u> 95 Watts
iv.	All Other Array/Classes	As specified in Section 2.4.
f. Fuel Assembly Length:		
i.	Array/Class 6x6A, 6x6C, 7x7A, or 8x8A	< 135.0 inches (nominal design)
ii.	All Other Array/Classes	< 176.5 inches (nominal design)
g. Fue	Assembly Width:	
i.	Array/Class 6x6A, 6x6C, 7x7A, or 8x8A	4.70 inches (nominal design)
ii.	All Other Array/Classes	5.85 inches (nominal design)
h. Fuel	Assembly Weight:	
i.	Array/Class 6x6A, 6x6C, 7x7A, or 8x8A	\leq 550 lbs, including channels and DFC
ii.	All Other Array/Classes	\leq 700 lbs, including channels and DFC

Table 2.1-1 (page 6 of 39) Fuel Assembly Limits

1

Table 2.1-1 (page 7 of 39) Fuel Assembly Limits

II. MPC MODEL: MPC-68 (continued)

A. Allowable Contents (continued)

3. Mixed oxide (MOX), BWR INTACT FUEL ASSEMBLIES, with or without channels. MOX BWR INTACT FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6B, and meet the following specifications:

a. Cladding Type:	Zircaloy (Zr)
b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for fuel assembly array/class 6x6B.
c. Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for fuel assembly array/class 6x6B.
d. Post-irradiation Cooling Time and Average Burnup Per Assembly:	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTIHM.
e. Decay Heat Per Assembly:	<u><</u> 115 Watts
f. Fuel Assembly Length:	\leq 135.0 inches (nominal design)
g. Fuel Assembly Width:	4.70 inches (nominal design)
h. Fuel Assembly Weight:	\leq 400 lbs, including channels

Table 2.1-1 (page 8 of 39) Fuel Assembly Limits

II. MPC MODEL: MPC-68 (continued)

A. Allowable Contents (continued)

4. Mixed oxide (MOX), BWR DAMAGED FUEL ASSEMBLIES, with or without channels, placed in DAMAGED FUEL CONTAINERS. MOX BWR DAMAGED FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6B, and meet the following specifications:

a. Cladding Type:	Zircaloy (Zr)
b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for array/class 6x6B.
c. Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for array/class 6x6B.
d. Post-irradiation Cooling Time and Average Burnup Per Assembly:	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTIHM.
e. Decay Heat Per Assembly:	<u><</u> 115 Watts
f. Fuel Assembly Length:	\leq 135.0 inches (nominal design)
g. Fuel Assembly Width:	\leq 4.70 inches (nominal design)
h. Fuel Assembly Weight:	\leq 550 lbs, including channels and DFC

Table 2.1-1 (page 9 of 39) Fuel Assembly Limits

II. MPC MODEL: MPC-68 (continued)

A. Allowable Contents (continued)

5. Thoria rods (ThO₂ and UO₂) placed in Dresden Unit 1 Thoria Rod Canisters and meeting the following specifications:

a. Cladding Type:	Zircaloy (Zr)
b. Composition:	98.2 wt.% ThO ₂ , 1.8 wt. % UO ₂ with an enrichment of 93.5 wt. % ²³⁵ U.
c. Number of Rods Per Thoria Rod Canister:	<u>≤</u> 18
d. Decay Heat Per Thoria Rod Canister:	<u><</u> 115 Watts
e. Post-irradiation Fuel Cooling Time and Average Burnup Per Thoria Rod Canister:	A fuel post-irradiation cooling time \geq 18 years and an average burnup \leq 16,000 MWD/MTIHM.
f. Initial Heavy Metal Weight:	27 kg/canister
g. Fuel Cladding O.D.:	≥ 0.412 inches
h. Fuel Cladding I.D.:	<u><</u> 0.362 inches
i. Fuel Pellet O.D.:	<u><</u> 0.358 inches
j. Active Fuel Length:	\leq 111 inches
k. Canister Weight:	\leq 550 lbs, including fuel

Certificate of Compliance No. 1014 Appendix B

ł

Table 2.1-1 (page 10 of 39) Fuel Assembly Limits

II. MPC MODEL: MPC-68 (continued)

- B. Quantity per MPC:
 - 1. Up to one (1) Dresden Unit 1 Thoria Rod Canister;
 - 2. Up to 68 array/class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A DAMAGED FUEL ASSEMBLIES in DAMAGED FUEL CONTAINERS;
 - 3. Up to sixteen (16) other BWR DAMAGED FUEL ASSEMBLIES in DAMAGED FUEL CONTAINERS in fuel storage locations 1, 2, 3, 8, 9, 16, 25, 34, 35, 44, 53, 60, 61, 66, 67, and/or 68; and/or
 - 4. Any number of BWR INTACT FUEL ASSEMBLIES up to a total of 68.
- C. Array/Class 10x10D and 10x10E fuel assemblies in stainless steel channels must be stored in fuel storage locations 19 22, 28 31, 38 -41, and/or 47 50.
- D. Dresden Unit 1 fuel assemblies with one Antimony-Beryllium neutron source are authorized for loading in the MPC-68. The Antimony-Beryllium source material shall be in a water rod location.
- E. FUEL DEBRIS is not authorized for loading in the MPC-68.

Table 2.1-1 (page 11 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F

- A. Allowable Contents
- 1. Uranium oxide, BWR INTACT FUEL ASSEMBLIES, with or without Zircaloy channels. Uranium oxide BWR INTACT FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array class 6x6A, 6x6C, 7x7A or 8x8A, and meet the following specifications:

a. Cladding Type:	Zircaloy (Zr)
b Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
c. Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
d. Post-irradiation Cooling Time and Average Burnup Per Assembly:	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTU.
e. Decay Heat Per Assembly	<u><</u> 115 Watts
f. Fuel Assembly Length:	\leq 135.0 inches (nominal design)
g. Fuel Assembly Width:	\leq 4.70 inches (nominal design)
h. Fuel Assembly Weight:	\leq 400 lbs, including channels

Table 2.1-1 (page 12 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

2. Uranium oxide, BWR DAMAGED FUEL ASSEMBLIES, with or without Zircaloy channels, placed in DAMAGED FUEL CONTAINERS. Uranium oxide BWR DAMAGED FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6A, 6x6C, 7x7A, or 8x8A, and meet the following specifications:

a. Cladding Type:	Zircaloy (Zr)
b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
c. Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
d. Post-irradiation Cooling Time and Average Burnup Per Assembly:	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTU.
e. Decay Heat Per Assembly:	≤ 115 Watts
f. Fuel Assembly Length:	\leq 135.0 inches (nominal design)
g. Fuel Assembly Width:	4.70 inches (nominal design)
h - Einel Anne and h - Mateir Li	
h. Fuel Assembly Weight:	\leq 550 lbs, including channels and DFC

Certificate of Compliance No. 1014 Appendix B Table 2.1-1 (page 13 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

3. Uranium oxide, BWR FUEL DEBRIS, with or without Zircaloy channels, placed in DAMAGED FUEL CONTAINERS. The original fuel assemblies for the uranium oxide BWR FUEL DEBRIS shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6A, 6x6C, 7x7A, or 8x8A, and meet the following specifications:

a. Cladding Type:	Zircaloy (Zr)
b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for the applicable original fuel assembly array/class.
c Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for the applicable original fuel assembly array/class.
d. Post-irradiation Cooling Time and Average Burnup Per Assembly	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTU for the original fuel assembly.
e. Decay Heat Per Assembly	≤ 115 Watts
f. Original Fuel Assembly Length	\leq 135.0 inches (nominal design)
g. Original Fuel Assembly Width	\leq 4.70 inches (nominal design)
h. Fuel Debris Weight	\leq 550 lbs, including channels and DFC

Table 2.1-1 (page 14 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

<u>.</u>...

4. Mixed oxide (MOX), BWR INTACT FUEL ASSEMBLIES, with or without Zircaloy channels. MOX BWR INTACT FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6B, and meet the following specifications:

a. Cladding Type:		Zircaloy (Zr)
b.	Maximum PLANAR- AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for fuel assembly array/class 6x6B.
C.	Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for fuel assembly array/class 6x6B.
d.	Post-irradiation Cooling Time and Average Burnup Per Assembly:	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTIHM.
e. Decay Heat Per Assembly		<u><</u> 115 Watts
f. Fuel Assembly Length:		< 135.0 inches (nominal design)
g. F	uel Assembly Width:	\leq 4.70 inches (nominal design)
h. Fuel Assembly Weight:		\leq 400 lbs, including channels

Table 2.1-1 (page 15 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

5. Mixed oxide (MOX), BWR DAMAGED FUEL ASSEMBLIES, with or without Zircaloy channels, placed in DAMAGED FUEL CONTAINERS. MOX BWR DAMAGED FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6B, and meet the following specifications:

a. Cladding Type:		Zircaloy (Zr)
b.	Maximum PLANAR- AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for fuel assembly array/class 6x6B.
C.	Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for fuel assembly array/class 6x6B.
d. Post-irradiation Cooling Time and Average Burnup Per Assembly:		Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTIHM.
e. Decay Heat Per Assembly \leq		≤ 115 Watts
f. Fi	uel Assembly Length:	\leq 135.0 inches (nominal design)
g. F	uel Assembly Width:	< 4.70 inches (nominal design)
h. F	uel Assembly Weight:	\leq 550 lbs, including channels and DFC

Table 2.1-1 (page 16 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

6. Mixed Oxide (MOX), BWR FUEL DEBRIS, with or without Zircaloy channels, placed in DAMAGED FUEL CONTAINERS. The original fuel assemblies for the MOX BWR FUEL DEBRIS shall meet the criteria specified in Table 2.1-3 for fuel assembly array/class 6x6B, and meet the following specifications:

a. Cladding Type:	Zircaloy (Zr)
b. Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for original fuel assembly array/class 6x6B.
c. Initial Maximum Rod Enrichment:	As specified in Table 2.1-3 for original fuel assembly array/class 6x6B.
 Post-irradiation Cooling Time and Average Burnup Per Assembly: 	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTIHM for the original fuel assembly.
e. Decay Heat Per Assembly	<u><</u> 115 Watts
f. Original Fuel Assembly Length:	\leq 135.0 inches (nominal design)
g. Original Fuel Assembly Width:	\leq 4.70 inches (nominal design)
h. Fuel Debris Weight:	\leq 550 lbs, including channels and DFC

Table 2.1-1 (page 17 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

A. Allowable Contents (continued)

- 7. Thoria rods (ThO₂ and UO₂) placed in Dresden Unit 1 Thoria Rod Canisters and meeting the following specifications:
- a. Cladding Type:

Zircaloy (Zr)

b. Composition:

98.2 wt.% ThO₂, 1.8 wt. % UO₂ with an enrichment of 93.5 wt. % 235 U.

- c. Number of Rods Per Thoria Rod Canister:
- d. Decay Heat Per Thoria Rod Canister:
- e. Post-irradiation Fuel Cooling Time and Average Burnup Per Thoria Rod Canister:

f. Initial Heavy Metal Weight:

- g. Fuel Cladding O.D.:
- h. Fuel Cladding I.D.:
- i. Fuel Pellet O.D.:
- j. Active Fuel Length:
- k. Canister Weight:

≤ 115 Watts

<u>< 18</u>

A fuel post-irradiation cooling time \geq 18 years and an average burnup \leq 16,000 MWD/MTIHM.

- \leq 27 kg/canister
- \geq 0.412 inches
- < 0.362 inches
 </p>
- <u><</u> 0.358 inches
- \leq 111 inches
- \leq 550 lbs, including fuel

Table 2.1-1 (page 18 of 39) Fuel Assembly Limits

III. MPC MODEL: MPC-68F (continued)

B. Quantity per MPC (up to a total of 68 assemblies): (All fuel assemblies must be array/class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A):

Up to four (4) DFCs containing uranium oxide BWR FUEL DEBRIS or MOX BWR FUEL DEBRIS. The remaining MPC-68F fuel storage locations may be filled with fuel assemblies of the following type, as applicable:

- 1. Uranium oxide BWR INTACT FUEL ASSEMBLIES;
- 2. MOX BWR INTACT FUEL ASSEMBLIES;
- 3. Uranium oxide BWR DAMAGED FUEL ASSEMBLIES placed in DFCs;
- 4. MOX BWR DAMAGED FUEL ASSEMBLIES placed in DFCs; or
- 5. Up to one (1) Dresden Unit 1 Thoria Rod Canister.
- C. Fuel assemblies with stainless steel channels are not authorized for loading in the MPC-68F.
- D. Dresden Unit 1 fuel assemblies with one Antimony-Beryllium neutron source are authorized for loading in the MPC-68F. The Antimony-Beryllium source material shall be in a water rod location.

Table 2.1-1 (page 19 of 39) Fuel Assembly Limits

IV. MPC MODEL: MPC-24E

- A. Allowable Contents
 - 1. Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a. Cladding Type:	Zircaloy (Zr) or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class
b. Initial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.
c. Post-irradiation Cooling Time and Average Burnup Per Assembly:	
i. Array/Classes 14x14D, 14x14E, and 15x15G	Cooling time \geq 8 years and an average burnup \leq 40,000 MWD/MTU.
ii. All Other Array/Classes	As specified in Section 2.4.
iii. NON-FUEL HARDWARE	As specified in Table 2.1-8.

2-25

Table 2.1-1 (page 20 of 39) Fuel Assembly Limits

IV. MPC MODEL: MPC-24E (continued)

A. Allowable Contents (continued)

- d. Decay Heat Per Assembly:
 - i. Array/Classes 14x14D, 14x14E, and 15x15G
 - ii. All other Array/Classes
- e. Fuel Assembly Length:
- f. Fuel Assembly Width:
- g. Fuel Assembly Weight:

- \leq 710 Watts.
- As specified in Section 2.4.
 - < 176.8 inches (nominal design)
 - \leq 8.54 inches (nominal design)
- ≤ 1,680 lbs (including NON-FUEL HARDWARE)

1

Table 2.1-1 (page 21 of 39) Fuel Assembly Limits

IV. MPC MODEL: MPC-24E (continued)

A. Allowable Contents (continued)

2. Uranium oxide, PWR DAMAGED FUEL ASSEMBLIES, with or without NON-FUEL HARDWARE, placed in DAMAGED FUEL CONTAINERS. Uranium oxide PWR DAMAGED FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-2 and meet the following specifications (Note 1):

a. Cladding Type:	Zircaloy (Zr) or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class
b. Initial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.
c. Post-irradiation Cooling Time and Average Burnup Per Assembly:	
i. Array/Classes 14x14D, 14x14E, and 15x15G	Cooling time \geq 8 years and an average burnup \leq 40,000 MWD/MTU.
ii. All Other Array/Classes	As specified in Section 2.4.
iii. NON-FUEL HARDWARE	As specified in Table 2.1-8.

Certificate of Compliance No. 1014 Appendix B

Table 2.1-1 (page 22 of	39)
Fuel Assembly Limits	S

IV. MPC MODEL: MPC-24E (continued)

A. Allowable Contents (continued)

d. Decay Heat Per Assembly

	i. Array/Classes 14x14D, 14x14E, and 15x15G	≤ 710 Watts.
	ii. All Other Array/Classes	As specified in Section 2.4.
e.	Fuel Assembly Length	\leq 176.8 inches (nominal design)
f.	Fuel Assembly Width	\leq 8.54 inches (nominal design)
g.	Fuel Assembly Weight	\leq 1,680 lbs (including NON-FUEL HARDWARE and DFC)

- B. Quantity per MPC: Up to four (4) DAMAGED FUEL ASSEMBLIES in DAMAGED FUEL CONTAINERS, stored in fuel storage locations 3, 6, 19 and/or 22. The remaining MPC-24E fuel storage locations may be filled with PWR INTACT FUEL ASSEMBLIES meeting the applicable specifications.
- C. FUEL DEBRIS is not authorized for loading in the MPC-24E.
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement rod guide tubes, orifice rod assemblies, or vibration supressor inserts may be stored in any fuel cell location. Fuel assemblies containing CRAs, RCCAs, CEAs, or APSRs may only be loaded in fuel storage locations 9, 10, 15, and/or 16. These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

Table 2.1-1 (page 23 of 39) Fuel Assembly Limits

V. MPC MODEL: MPC-32

- A. Allowable Contents
 - 1. Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):
 - a. Cladding Type: Zircaloy (Zr) or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class
 - b. Initial Enrichment: As specified in Table 2.1-2 for the applicable fuel assembly array/class.
 - c. Post-irradiation Cooling Time and Average Burnup Per Assembly
 - i. Array/Classes 14x14D, 14x14E, and 15x15G

ii. All Other Array/Classes

iii. NON-FUEL HARDWARE

Cooling time \geq 9 years and an average burnup \leq 30,000 MWD/MTU or cooling time \geq 20 years and an average burnup \leq 40,000 MWD/MTU.

As specified in Section 2.4.

As specified in Table 2.1-8.

Certificate of Compliance No. 1014 Appendix B

Table 2.1-1 (page 24 of 39) Fuel Assembly Limits

V. MPC MODEL: MPC-32 (continued)

A. Allowable Contents (continued)

d. Decay Heat Per Assembly

	i. Array/Classes 14x14D, 14x14E, and 15x15G	<u><</u> 500 Watts
	ii. All Other Array/Classes	As specified in Section 2.4.
e.	Fuel Assembly Length	\leq 176.8 inches (nominal design)
f.	Fuel Assembly Width	\leq 8.54 inches (nominal design)
g.	Fuel Assembly Weight	≤ 1,680 lbs (including NON-FUEL HARDWARE)

Table 2.1-1 (page 25 of 39) Fuel Assembly Limits

V. MPC MODEL: MPC-32 (continued)

A. Allowable Contents (continued)

2. Uranium oxide, PWR DAMAGED FUEL ASSEMBLIES, with or without NON-FUEL HARDWARE, placed in DAMAGED FUEL CONTAINERS. Uranium oxide PWR DAMAGED FUEL ASSEMBLIES shall meet the criteria specified in Table 2.1-2 and meet the following specifications (Note 1):

a. Cladding Type:	Zircaloy (Zr) or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class
b. Initial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.
c. Post-irradiation Cooling Time and Average Burnup Per Assembly:	
i. Array/Classes 14x14D, 14x14E, and 15x15G	Cooling time \geq 8 years and an average burnup \leq 40,000 MWD/MTU.
ii. All Other Array/Classes	As specified in Section 2.4.
iii. NON-FUEL HARDWARE	As specified in Table 2.1-8.

Table 2.1-1 (page 26 of 39) Fuel Assembly Limits			
V. MPC MOD	V. MPC MODEL: MPC-32 (continued)		
A. Allowab	A. Allowable Contents (continued)		
d. I	Decay Heat Per Assembly		
i.	. Array/Classes 14x14D, 14x14E, and 15x15G	<u><</u> 710 Watts.	
i	i. All Other Array/Classes	As specified in Section 2.4.	
e. I	Fuel Assembly Length	176.8 inches (nominal design)	
f.	Fuel Assembly Width	\leq 8.54 inches (nominal design)	
g. I	Fuel Assembly Weight	\leq 1,680 lbs (including NON-FUEL HARDWARE and DFC)	

- B. Quantity per MPC: Up to eight (8) DAMAGED FUEL ASSEMBLIES in DAMAGED FUEL CONTAINERS, stored in fuel storage locations 1, 4, 5, 10, 23, 28, 29, and/or 32. The remaining MPC-32 fuel storage locations may be filled with PWR INTACT FUEL ASSEMBLIES meeting the applicable specifications.
- C. FUEL DEBRIS is not authorized for loading in the MPC-32.
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement rod guide tubes, orifice rod assemblies, or vibration suppressor inserts may be stored in any fuel cell location. Fuel assemblies containing CRAs, RCCAs, CEAs, or APSRs may only be loaded in fuel storage locations 13, 14, 19, and/or 20. These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

Table 2.1-1 (page 27 of 39) Fuel Assembly Limits

VI. MPC MODEL: MPC-68FF

A. Allowable Contents

1. Uranium oxide or MOX BWR INTACT FUEL ASSEMBLIES listed in Table 2.1-3, with or without channels and meeting the following specifications:

a. Cladding Type:		Zircaloy (Zr) or Stainless Steel (SS) as specified in Table 2.1-3 for the applicable fuel assembly array/class
b.	Maximum PLANAR-AVERAGE INITIAL ENRICHMENT:	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
C.	Initial Maximum Rod Enrichment	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
d.	Post-irradiation Cooling Time and Average Burnup Per Assembly	
	i. Array/Classes 6x6A, 6x6B, 6x6C, 7x7A, and 8x8A	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTU (or MTU/MTIHM).
	ii. Array/Class 8x8F	Cooling time \geq 10 years and an average burnup \leq 27,500 MWD/MTU.
	iii. Array/Classes 10x10D and 10x10E	Cooling time \geq 10 years and an average burnup \leq 22,500 MWD/MTU.
	iv. All Other Array/Classes	As specified in Section 2.4.

Certificate of Compliance No. 1014 Appendix B

Fuel Assembly Limits		
VI. MPC MODEL: MPC-68FF (continued)		
A. Allowable Contents (continued)		
e. Decay Heat Per Assembly		
i. Array/Classes 6x6A, 6X6b, 6x6C, 7x7A, and 8x8A	<u><</u> 115 Watts	
ii. Array/Class 8x8F	≤ 183.5 Watts	
iii. Array/Classes 10x10D and 10x10E	<u><</u> 95 Watts	
iv. All Other Array/Classes	As specified in Section 2.4.	
f. Fuel Assembly Length		
i. Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A	\leq 135.0 inches (nominal design)	
ii. All Other Array/Classes	\leq 176.5 inches (nominal design)	
g. Fuel Assembly Width		
i. Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A	\leq 4.70 inches (nominal design)	
ii. All Other Array/Classes	5.85 inches (nominal design)	
h. Fuel Assembly Weight		
i. Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A	\leq 550 lbs, including channels and DFC	
ii. All Other Array/Classes	\leq 700 lbs, including channels and DFC	

Table 2.1-1 (page 29 of 39) Fuel Assembly Limits

VI. MPC MODEL: MPC-68FF (continued)

A. Allowable Contents (continued)

2. Uranium oxide or MOX BWR DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS, with or without channels, placed in DAMAGED FUEL CONTAINERS. Uranium oxide and MOX BWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS shall meet the criteria specified in Table 2.1-3, and meet the following specifications:

a. (Cladding	Туре:	Zircaloy (Zr) or Stainless Steel (SS) in accordance with Table 2.1-3 for the applicable fuel assembly array/class.
b.		IM PLANAR-AVERAGE . ENRICHMENT:	
	•	y/Classes 6x6A, 6x6B, C, 7x7A, and 8x8A.	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
	ii. All O	ther Array Classes	\leq 4.0 wt.% ²³⁵ U.
C.	Initial M	laximum Rod Enrichment	As specified in Table 2.1-3 for the applicable fuel assembly array/class.
		diation Cooling Time age Burnup Per Assembly:	
	i.	Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A	Cooling time \geq 18 years and an average burnup \leq 30,000 MWD/MTU (or MWD/MTIHM).
	ii.	Array/Class 8x8F	Cooling time \geq 10 years and an average burnup \leq 27,500 MWD/MTU.
	iii.	Array/Class 10x10D and 10x10E	Cooling time \geq 10 years and an average burnup \leq 22,500 MWD/MTU.
	iv.	All Other Array/Classes	As specified in Section 2.4.

|

	Table 2.1-1 (page 30 of 39) Fuel Assembly Limits		
VI. MPC MC	VI. MPC MODEL: MPC-68FF (continued)		
A. Allov	vable Contents (continued)		
e. Dec	ay Heat Per Assembly		
i.	Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A	≤ 115 Watts	
ii.	Array/Class 8x8F	<u><</u> 183.5 Watts	
iii.	Array/Classes 10x10D and 10x10E	≤ 95 Watts	
iv.	All Other Array/Classes	As specified in Section 2.4.	
f. Fuel	Assembly Length		
i.	Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A	\leq 135.0 inches (nominal design)	
ii.	All Other Array/Classes	\leq 176.5 inches (nominal design)	
g. Fuel	Assembly Width		
i.	Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A	\leq 4.70 inches (nominal design)	
ii.	All Other Array/Classes	\leq 5.85 inches (nominal design)	
h. Fuel	Assembly Weight		
i.	Array/Class 6x6A, 6x6B, 6x6C, 7x7A, or 8x8A	\leq 550 lbs, including channels and DFC	
ii.	All Other Array/Classes	\leq 700 lbs, including channels and DFC	

Table 2.1-1 (page 31 of 39) Fuel Assembly limits

VI. MPC MODEL: MPC-68FF (continued)

- B. Quantity per MPC (up to a total of 68 assemblies)
 - For fuel assembly array/classes 6x6A, 6X6B, 6x6C, 7x7A, or 8x8A, up to 68 BWR INTACT FUEL ASSEMBLIES and/or DAMAGED FUEL ASSEMBLIES. Up to eight (8) DFCs containing FUEL DEBRIS from these array/classes may be stored.
 - For all other array/classes, up to sixteen (16) DFCs containing BWR DAMAGED FUEL ASSEMBLIES and/or up to eight (8) DFCs containing FUEL DEBRIS. DFCs shall be located only in fuel storage locations 1, 2, 3, 8, 9, 16, 25, 34, 35, 44, 53, 60, 61, 66, 67, and/or 68. The remaining MPC-68FF fuel storage locations may be filled with fuel assemblies of the following type:
 - i. Uranium Oxide BWR INTACT FUEL ASSEMBLIES; or
 - ii. MOX BWR INTACT FUEL ASSEMBLIES.
- C. Dresden Unit 1 fuel assemblies with one Antimony-Beryllium neutron source are authorized for loading in the MPC-68FF. The Antimony-Beryllium source material shall be in a water rod location.
- D. Array/Class 10x10D and 10x10E fuel assemblies in stainless steel channels must be stored in fuel storage locations 19 22, 28 31, 38 -41, and/or 47 50.

Table 2.1-1 (page 32 of 39) Fuel Assembly Limits

VII. MPC MODEL: MPC-24EF

- A. Allowable Contents
 - 1. Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a. Cladding Type:	Zircaloy (Zr) or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class
b. Initial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.
c. Post-irradiation Cooling Tir Average Burnup Per Asser	*
i. Array/Classes 14x14D, and 15x15G	14x14E, Cooling time ≥ 8 years and an average burnup $\le 40,000$ MWD/MTU.
ii. All Other Array/Classes	As specified in Section 2.4.
iii. NON-FUEL HARDWAF	As specified in Table 2.1-8.

Table 2.1-1 (page 33 of 39) Fuel Assembly Limits

VII. MPC MODEL: MPC-24EF (continued)

A. Allowable Contents (continued)

- d. Decay Heat Per Assembly:
 - i. Array/Classes 14x14D, 14x14E, and 15x15G
 - ii. All other Array/Classes
- e. Fuel Assembly Length:
- f. Fuel Assembly Width:
- g. Fuel Assembly Weight:

≤ 710 Watts.

As specified in Section 2.4.

< 176.8 inches (nominal design)</p>

- < 8.54 inches (nominal design)
- \leq 1,680 lbs (including NON-FUEL HARDWARE)

Table 2.1-1 (page 34 of 39) Fuel Assembly Limits

VII. MPC MODEL: MPC-24EF (continued)

A. Allowable Contents (continued)

2. Uranium oxide, PWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS, with or without NON-FUEL HARDWARE, placed in DAMAGED FUEL CONTAINERS. Uranium oxide PWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS shall meet the criteria specified in Table 2.1-2 and meet the following specifications (Note 1):

a. Cladding Type:	Zircaloy (Zr) or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class
b. Initial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.
 c. Post-irradiation Cooling Time and Average Burnup Per Assembly: 	
i. Array/Classes 14x14D, 14x14E, and 15x15G	Cooling time \geq 8 years and an average burnup \leq 40,000 MWD/MTU.
ii. All Other Array/Classes	As specified in Section 2.4.
iii. NON-FUEL HARDWARE	As specified in Table 2.1-8.

Table 2.1-1 (page 35 of 39) Fuel Assembly Limits

VII. MPC MODEL: MPC-24EF (continued)

A. Allowable Contents (continued)

f.

- d. Decay Heat Per Assembly
 - i. Array/Classes 14x14D, ≤ 710 Watts. 14x14E, and 15x15G
 - ii. All Other Array/Classes As specified in Section 2.4.
- e. Fuel Assembly Length \leq 176.8 inches (nominal design)
 - Fuel Assembly Width ≤ 8.54 inches (nominal design)
- g. Fuel Assembly Weight ≤ 1,680 lbs (including NON-FUEL HARDWARE and DFC)
- B. Quantity per MPC: Up to four (4) DAMAGED FUEL ASSEMBLIES and/or FUEL DEBRIS in DAMAGED FUEL CONTAINERS, stored in fuel storage locations 3, 6, 19 and/or 22. The remaining MPC-24E fuel storage locations may be filled with PWR INTACT FUEL ASSEMBLIES meeting the applicable specifications.
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement rod guide tubes, orifice rod assemblies, or vibration suppressor inserts may be stored in any fuel cell location. Fuel assemblies containing CRAs, RCCAs, CEAs, or APSRs may only be loaded in fuel storage locations 9, 10, 15, and/or 16. These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

Table 2.1-1 (page 36 of 39) Fuel Assembly Limits

VIII. MPC MODEL: MPC-32F

A. Allowable Contents

1. Uranium oxide, PWR INTACT FUEL ASSEMBLIES listed in Table 2.1-2, with or without NON-FUEL HARDWARE and meeting the following specifications (Note 1):

a. Clá	adding Type:	Zircaloy (Zr) or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class
b. Ini	tial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.
	ost-irradiation Cooling Time and verage Burnup Per Assembly:	
i.	Array/Classes 14x14D, 14x14E, and 15x15G	Cooling time \geq 8 years and an average burnup \leq 40,000 MWD/MTU.
ii.	All Other Array/Classes	As specified in Section 2.4.
iii.	NON-FUEL HARDWARE	As specified in Table 2.1-8.

Table 2.1-1 (page 37 of 39) Fuel Assembly Limits

VIII. MPC MODEL: MPC-32F (cont'd)

A. Allowable Contents (cont'd)

- d. Decay Heat Per Assembly
 - I. Array/Classes 14x14D, 14x14E, and 15x15G
 - ii. All Other Array/Classes
- e. Fuel Assembly Length
- f. Fuel Assembly Width
- g. Fuel Assembly Weight

- \leq 710 Watts.
- As specified in Section 2.4.
- ≤ 176.8 inches (nominal design)
- \leq 8.54 inches (nominal design)
- \leq 1,680 lbs (including NON-FUEL HARDWARE and DFC)

Table 2.1-1 (page 38 of 39) Fuel Assembly Limits

VIII. MPC MODEL: MPC-32F (cont'd)

- A. Allowable Contents (cont'd)
 - 2. Uranium oxide, PWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS, with or without NON-FUEL HARDWARE, placed in DAMAGED FUEL CONTAINERS. Uranium oxide PWR DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS shall meet the criteria specified in Table 2.1-2 and meet the following specifications (Note 1):

a. Cladding Type:	Zircaloy (Zr) or Stainless Steel (SS) as specified in Table 2.1-2 for the applicable fuel assembly array/class
b. Initial Enrichment:	As specified in Table 2.1-2 for the applicable fuel assembly array/class.
c. Post-irradiation Cooling Time and Average Burnup Per Assembly:	
i. Array/Classes 14x14D, 14x14E, and 15x15G	Cooling time \geq 8 years and an average burnup \leq 40,000 MWD/MTU.
ii. All Other Array/Classes	As specified in Section 2.4.
iii. NON-FUEL HARDWARE	As specified in Table 2.1-8.

Table 2.1-1 (page 39 of 39) Fuel Assembly Limits						
VIII. M	PC M	IODEL: MPC-32F (cont'd)				
Α.	Allo	wable Contents (cont'd)				
	d.	Decay Heat Per Assembly				
		I. Array/Classes 14x14D, 14x14E, and 15x15G	<u><</u> 710 Watts.			
		ii. All Other Array/Classes	As specified in Section 2.3.			
	e.	Fuel Assembly Length	\leq 176.8 inches (nominal design)			
	f.	Fuel Assembly Width	\leq 8.54 inches (nominal design)			
	g.	Fuel Assembly Weight	\leq 1,680 lbs (including NON-FUEL HARDWARE and DFC)			

- B. Quantity per MPC: Up to eight (8) DAMAGED FUEL ASSEMBLIES and/or FUEL DEBRIS in DAMAGED FUEL CONTAINERS, stored in fuel storage locations 1, 4, 5, 10, 23, 28, 29, and/or 32. The remaining MPC-32 fuel storage locations may be filled with PWR INTACT FUEL ASSEMBLIES meeting the applicable specifications.
- C. Neutron sources
- Note 1: Fuel assemblies containing BPRAs, TPDs, WABAs, water displacement rod guide tubes, orifice rod assemblies, or vibration suppressor inserts may be stored in any fuel cell location. Fuel assemblies containing CRAs, RCCAs, CEAs, or APSRs may only be loaded in fuel storage locations 13, 14, 19 and/or 20. These requirements are in addition to any other requirements specified for uniform or regionalized fuel loading.

Fuel Assembly Array/Class	14x14A	14x14B	14x14C	14x14D	14x14E
Clad Material (Note 2)	Zr	Zr	Zr	SS	SS
Design Initial U (kg/assy.) (Note 3)	<u><</u> 361	<u>≤</u> 408	<u><</u> 433	<u><</u> 400	<u><</u> 206
Initial Enrichment (MPC-24, 24E and 24EF without soluble boron credit) (wt % ²³⁵ U) (Note 7)	≤ 4.6 (24) ≤ 5.0 (24E/24EF)	<u>≤</u> 4.6 (24) <u>≤</u> 5.0 (24E/24EF)	<u>≤</u> 4.6 (24) <u>≤</u> 5.0 (24E/24EF)	≤ 4.0 (24) ≤ 5.0 (24E/24EF)	≤ 5.0 (24) ≤ 5.0 (24E/24EF)
Initial Enrichment (MPC-24, 24E, 24EF, 32, or 32F with soluble boron credit - see Note 5) (wt % ²³⁵ U)	<u><</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0	<u>≤</u> 5.0
No. of Fuel Rod Locations	179	179	176	180	173
Fuel Rod Clad O.D. (in.)	<u>≥</u> 0.400	<u>≥</u> 0.417	<u>≥</u> 0.440	<u>></u> 0.422	<u>></u> 0.3415
Fuel Rod Clad I.D. (in.)	<u><</u> 0.3514	<u><</u> 0.3734	<u><</u> 0.3880	<u><</u> 0.3890	<u><</u> 0.3175
Fuel Pellet Dia. (in.)	<u><</u> 0.3444	<u><</u> 0.3659	<u><</u> 0.3805	<u><</u> 0.3835	<u>≤</u> 0.3130
Fuel Rod Pitch (in.)	<u><</u> 0.556	<u><</u> 0.556	<u><</u> 0.580	<u>≤</u> 0.556	Note 6
Active Fuel Length (in.)	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u><</u> 144	<u><</u> 102
No. of Guide and/or Instrument Tubes	17	17	5 (Note 4)	16	0
Guide/Instrument Tube Thickness (in.)	<u>≥</u> 0.017	<u>></u> 0.017	<u>≥</u> 0.038	<u>≥</u> 0.0145	N/A

Table 2.1-2 (page 1 of 4) PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

_

ł

ł

Fuel Assembly Array/Class	15x15A	15x15B	15x15C	15x15D	15x15E	15x15F
Clad Material (Note 2)	Zr	Zr	Zr	Zr	Zr	Zr
Design Initial U (kg/assy.) (Note 3)	<u>≤</u> 468	<u>≤</u> 468	<u><</u> 468	<u>≤</u> 495	<u><</u> 495	<u><</u> 495
Initial Enrichment (MPC-24, 24E and 24EF without soluble boron credit) (wt % ²³⁵ U) (Note 7)	<u>≤</u> 4.1 (24) <u>≤</u> 4.5 (24E/24EF)	≤ 4.1 (24) ≤ 4.5 (24E/24EF)				
Initial Enrichment (MPC-24, 24E, 24EF, 32, or 32F with soluble boron credit - see Note 5) (wt % ²³⁵ U)	<u><</u> 5.0	<u><</u> 5.0	<u>≤</u> 5.0	<u><</u> 5.0	<u>≺</u> 5.0	<u>≤</u> 5.0
No. of Fuel Rod Locations	204	204	204	208	208	208
Fuel Rod Clad O.D. (in.)	<u>></u> 0.418	<u>≥</u> 0.420	<u>≥</u> 0.417	<u>></u> 0.430	<u>≥</u> 0.428	<u>≥</u> 0.428
Fuel Rod Clad I.D. (in.)	<u>≤</u> 0.3660	<u><</u> 0.3736	<u><</u> 0.3640	<u><</u> 0.3800	<u><</u> 0.3790	<u><</u> 0.3820
Fuel Pellet Dia. (in.)	<u><</u> 0.3580	_ <u><</u> 0.3671	<u><</u> 0.3570	<u><</u> 0.3735	<u><</u> 0.3707	<u>≤</u> 0.3742
Fuel Rod Pitch (in.)	<u><</u> 0.550	<u><</u> 0.563	<u>≤</u> 0.563	<u><</u> 0.568	<u><</u> 0.568	<u><</u> 0.568
Active Fuel Length (in.)	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u>≤</u> 150
No. of Guide and/or Instrument Tubes	21	21	21	17	17	17
Guide/Instrument Tube Thickness (in.)	<u>></u> 0.0165	<u>≥</u> 0.015	<u>></u> 0.0165	<u>></u> 0.0150	<u>≥</u> 0.0140	<u>≥</u> 0.0140

Table 2.1-2 (page 2 of 4) PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Certificate of Compliance No. 1014 Appendix B

1

1

Fuel Assembly Array/ Class	15x15G	15x15H	16x16A	17x17A	17x17B	17x17C
Clad Material (Note 2)	SS	Zr	Zr	Zr	Zr	Zr
Design Initial U (kg/assy.) (Note 3)	<u>≤</u> 420	<u><</u> 495	<u>≤</u> 443	<u><</u> 428	<u>≤</u> 469	<u><</u> 475
Initial Enrichment (MPC-24, 24E, and 24EF without soluble boron credit) (wt % ²³⁵ U) (Note 7)	≤ 4.0 (24) ≤ 4.5 (24E/24EF)	≤ 3.8 (24) ≤ 4.2 (24E/24EF)	≤ 4.6 (24) ≤ 5.0 (24E/24EF)	≤ 4.0 (24) ≤ 4.4 (24E/24EF)	≤ 4.0 (24) ≤ 4.4 (24E/24EF)	≤ 4.0 (24) ≤ 4.4 (24E/24EF)
Initial Enrichment (MPC-24, 24E, 24EF, 32, or 32F with soluble boron credit - see Note 5) (wt % ²³⁵ U)	<u>≤</u> 5.0	<u><</u> 5.0				
No. of Fuel Rod Locations	204	208	236	264	264	264
Fuel Rod Clad O.D. (in.)	<u>≥</u> 0.422	<u>></u> 0.414	<u>≥</u> 0.382	<u>≥</u> 0.360	<u>></u> 0.372	<u>≥</u> 0.377
Fuel Rod Clad I.D. (in.)	<u><</u> 0.3890	<u><</u> 0.3700	<u><</u> 0.3320	<u><</u> 0.3150	<u><</u> 0.3310	<u>≤</u> 0.3330
Fuel Pellet Dia. (in.)	<u><</u> 0.3825	<u><</u> 0.3622	<u><</u> 0.3255	<u><</u> 0.3088	<u><</u> 0.3232	<u>≤</u> 0.3252
Fuel Rod Pitch (in.)	<u>≤</u> 0.563	<u>≤</u> 0.568	<u><</u> 0.506	<u>≤</u> 0.496	<u>≤</u> 0.496	<u><</u> 0.502
Active Fuel Length (in.)	<u><</u> 144	<u><</u> 150				
No. of Guide and/or Instrument Tubes	21	17	5 (Note 4)	25	25	25
Guide/Instrument Tube Thickness (in.)	<u>≥</u> 0.0145	≥ 0.0140	≥ 0.0400	<u>></u> 0.016	<u>≥</u> 0.014	<u>≥</u> 0.020

Table 2.1-2 (page 3 of 4) PWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Table 2.1-2 (page 4 of 4) PWR FUEL ASSEMBLY CHARACTERISTICS

Notes:

- 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.
- 2. Zr designates cladding material made of zirconium or zirconium alloys.
- 3. Design initial uranium weight is the nominal uranium weight specified for each assembly by the fuel manufacturer or reactor user. For each PWR fuel assembly, the total uranium weight limit specified in this table may be increased up to 2.0 percent for comparison with users' fuel records to account for manufacturer's tolerances.
- 4. Each guide tube replaces four fuel rods.
- 5. Soluble boron concentration per LCO 3.3.1.
- 6. This fuel assembly array/class includes only the Indian Point Unit 1 fuel assembly. This fuel assembly has two pitches in different sectors of the assembly. These pitches are 0.441 inches and 0.453 inches.
- 7. For those MPCs loaded with both INTACT FUEL ASSEMBLIES and DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS, the maximum initial enrichment of the INTACT FUEL ASSEMBLIES, DAMAGED FUEL ASSEMBLIES and FUEL DEBRIS is 4.0 wt.% ²³⁵U.

Fuel Assembly Array/Class	6x6A	6x6B	6x6C	7x7A	7x7B	8x8A
Clad Material (Note 2)	Zr	Zr	Zr	Zr	Zr	Zr
Design Initial U (kg/assy.) (Note 3)	110	110	110	<u><</u> 100	<u><</u> 195	<u><</u> 120
Maximum PLANAR- AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	<u><</u> 2.7	\leq 2.7 for the UO ₂ rods. See Note 4 for MOX rods	<u><</u> 2.7	<u><</u> 2.7	<u>≤</u> 4.2	≤ 2.7
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u>≤</u> 4.0	<u><</u> 4.0	<u><</u> 4.0	<u><</u> 5.5	<u><</u> 5.0	<u>≤</u> 4.0
No. of Fuel Rod Locations	35 or 36	35 or 36 (up to 9 MOX rods)	36	49	49	63 or 64
Fuel Rod Clad O.D. (in.)	<u>></u> 0.5550	<u>≥</u> 0.5625	<u>></u> 0.5630	<u>≥</u> 0.4860	<u>≥</u> 0.5630	≥ 0.4120
Fuel Rod Clad I.D. (in.)	<u><</u> 0.5105	<u><</u> 0.4945	<u><</u> 0.4990	<u>≤</u> 0.4204	<u><</u> 0.4990	<u><</u> 0.3620
Fuel Pellet Dia. (in.)	<u><</u> 0.4980	<u>≤</u> 0.4820	<u><</u> 0.4880	<u><</u> 0.4110	<u><</u> 0.4910	<u>≤</u> 0.3580
Fuel Rod Pitch (in.)	<u>≤</u> 0.710	<u><</u> 0.710	<u><</u> 0.740	<u><</u> 0.631	<u><</u> 0.738	<u>≤</u> 0.523
Active Fuel Length (in.)	<u><</u> 120	<u><</u> 120	<u><</u> 77.5	<u><</u> 80	<u><</u> 150	<u>≤</u> 120
No. of Water Rods (Note 11)	1 or 0	1 or 0	0	0	0	1 or 0
Water Rod Thickness (in.)	> 0	> 0	N/A	N/A	N/A	<u>></u> 0
Channel Thickness (in.)	<u><</u> 0.060	<u><</u> 0.060	<u><</u> 0.060	<u><</u> 0.060	<u><</u> 0.120	<u><</u> 0.100

Table 2.1-3 (page 1 of 5) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Fuel Assembly Array/Class	8x8B	8x8C	8x8D	8x8E	8x8F	9x9A
Clad Material (Note 2)	Zr	Zr	Zr	Zr	Zr	Zr
Design Initial U (kg/assy.) (Note 3)	<u><</u> 192	<u><</u> 183	<u><</u> 183	< 183	<u><</u> 191	<u><</u> 180
Maximum PLANAR- AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	<u>≤</u> 4.2	<u>≤</u> 4.2	<u>≺</u> 4.2	<u><</u> 4.2	<u>≤</u> 4.0	<u><</u> 4.2
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u><</u> 5.0					
No. of Fuel Rod Locations	63 or 64	62	60 or 61	59	64	74/66 (Note 5)
Fuel Rod Clad O.D. (in.)	<u>></u> 0.4840	<u>></u> 0.4830	<u>></u> 0.4830	<u>≥</u> 0.4930	<u>></u> 0.4576	<u>></u> 0.4400
Fuel Rod Clad I.D. (in.)	<u><</u> 0.4295	<u><</u> 0.4250	<u><</u> 0.4230	<u><</u> 0.4250	<u><</u> 0.3996	<u>≤</u> 0.3840
Fuel Pellet Dia. (in.)	<u><</u> 0.4195	<u><</u> 0.4160	<u><</u> 0.4140	<u><</u> 0.4160	<u><</u> 0.3913	<u><</u> 0.3760
Fuel Rod Pitch (in.)	<u><</u> 0.642	<u><</u> 0.641	<u><</u> 0.640	<u><</u> 0.640	<u><</u> 0.609	<u>≤</u> 0.566
Design Active Fuel Length (in.)	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u>≤</u> 150	<u><</u> 150
No. of Water Rods (Note 11)	1 or 0	2	1 - 4 (Note 7)	5	N/A (Note 12)	2
Water Rod Thickness (in.)	<u>></u> 0.034	> 0.00	> 0.00	<u>≥</u> 0.034	<u>≥</u> 0.0315	> 0.00
Channel Thickness (in.)	<u><</u> 0.120	<u><</u> 0.120	<u><</u> 0.120	<u>≤</u> 0.100	<u><</u> 0.055	<u><</u> 0.120

Table 2.1-3 (2 of 5) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Fuel Assembly Array/Class	9x9B	9x9C	9x9D	9x9E (Note 13)	9x9F (Note 13)	9x9G
Clad Material (Note 2)	Zr	Zr	Zr	Zr	Zr	Zr
Design Initial U (kg/assy.) (Note 3)	<u><</u> 173	<u><</u> 175	<u><</u> 175	<u><</u> 183	<u><</u> 183	<u><</u> 157
Maximum PLANAR- AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	<u><</u> 4.2	<u>≤</u> 4.2	<u><</u> 4.2	<u><</u> 4.0	<u>≤</u> 4.0	<u>≤</u> 4.2
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u><</u> 5.0					
No. of Fuel Rod Locations	72	80	79	76	76	72
Fuel Rod Clad O.D. (in.)	<u>></u> 0.4330	<u>≥</u> 0.4230	<u>≥</u> 0.4240	<u>≥</u> 0.4170	<u>></u> 0.4430	<u>></u> 0.4240
Fuel Rod Clad I.D. (in.)	<u><</u> 0.3810	<u>≤</u> 0.3640	<u><</u> 0.3640	<u><</u> 0.3640	<u><</u> 0.3860	<u><</u> 0.3640
Fuel Pellet Dia. (in.)	<u><</u> 0.3740	<u><</u> 0.3565	<u><</u> 0.3565	<u>≤</u> 0.3530	<u><</u> 0.3745	<u><</u> 0.3565
Fuel Rod Pitch (in.)	<u><</u> 0.572					
Design Active Fuel Length (in.)	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u>≤</u> 150	<u><</u> 150	<u><</u> 150
No. of Water Rods (Note 11)	1 (Note 6)	1	2	5	5	1 (Note 6)
Water Rod Thickness (in.)	> 0.00	<u>></u> 0.020	<u>></u> 0.0300	<u>></u> 0.0120	<u>></u> 0.0120	<u>></u> 0.0320
Channel Thickness (in.)	<u><</u> 0.120	<u><</u> 0.100	<u><</u> 0.100	<u><</u> 0.120	<u><</u> 0.120	<u><</u> 0.120

Table 2.1-3 (page 3 of 5) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Fuel Assembly Array/Class	10x10A	10x10B	10x10C	10x10D	10x10E
Clad Material (Note 2)	Zr	Zr	Zr	SS	SS
Design Initial U (kg/assy.) (Note 3)	<u><</u> 188	<u><</u> 188	<u><</u> 172	<u><</u> 125	<u><</u> 125
Maximum PLANAR-AVERAGE INITIAL ENRICHMENT (wt.% ²³⁵ U) (Note 14)	<u><</u> 4.2	<u><</u> 4.2	<u><</u> 4.2	<u><</u> 4.0	<u><</u> 4.0
Initial Maximum Rod Enrichment (wt.% ²³⁵ U)	<u><</u> 5.0	<u><</u> 5.0	<u><</u> 5.0	<u><</u> 5.0	<u>≤</u> 5.0
No. of Fuel Rod Locations	92/78 (Note 8)	91/83 (Note 9)	96	100	96
Fuel Rod Clad O.D. (in.)	<u>≥</u> 0.4040	<u>></u> 0.3957	<u>≥</u> 0.3780	<u>></u> 0.3960	<u>></u> 0.3940
Fuel Rod Clad I.D. (in.)	<u>≤</u> 0.3520	<u><</u> 0.3480	<u><</u> 0.3294	<u><</u> 0.3560	<u>≤</u> 0.3500
Fuel Pellet Dia. (in.)	<u><</u> 0.3455	<u><</u> 0.3420	<u>≤</u> 0.3224	<u>≤</u> 0.3500	<u><</u> 0.3430
Fuel Rod Pitch (in.)	<u><</u> 0.510	<u><</u> 0.510	<u>≤</u> 0.488	<u>≤</u> 0.565	<u>≤</u> 0.557
Design Active Fuel Length (in.)	<u><</u> 150	<u><</u> 150	<u><</u> 150	<u>≤</u> 83	<u><</u> 83
No. of Water Rods (Note 11)	2	1 (Note 6)	5 (Note 10)	0	4
Water Rod Thickness (in.)	≥ 0.0300	> 0.00	<u>≥</u> 0.031	N/A	<u>≥</u> 0.022
Channel Thickness (in.)	<u>≤</u> 0.120	<u>≤</u> 0.120	<u><</u> 0.055	<u>≤</u> 0.080	<u>≤</u> 0.080

Table 2.1-3 (page 4 of 5) BWR FUEL ASSEMBLY CHARACTERISTICS (Note 1)

Table 2.1-3 (page 5 of 5) BWR FUEL ASSEMBLY CHARACTERISTICS

Notes:

- 1. All dimensions are design nominal values. Maximum and minimum dimensions are specified to bound variations in design nominal values among fuel assemblies within a given array/class.
- 2. Zr designates cladding material made of zirconium or zirconium alloys.
- 3. Design initial uranium weight is the nominal uranium weight specified for each assembly by the fuel manufacturer or reactor user. For each BWR fuel assembly, the total uranium weight limit specified in this table may be increased up to 1.5 percent for comparison with users' fuel records to account for manufacturer tolerances.
- 4. ≤ 0.635 wt. % ²³⁵U and ≤ 1.578 wt. % total fissile plutonium (²³⁹Pu and ²⁴¹Pu), (wt. % of total fuel weight, i.e., UO₂ plus PuO₂).
- 5. This assembly class contains 74 total rods; 66 full length rods and 8 partial length rods.
- 6. Square, replacing nine fuel rods.
- 7. Variable.
- 8. This assembly contains 92 total fuel rods; 78 full length rods and 14 partial length rods.
- 9. This assembly class contains 91 total fuel rods; 83 full length rods and 8 partial length rods.
- 10. One diamond-shaped water rod replacing the four center fuel rods and four rectangular water rods dividing the assembly into four quadrants.
- 11. These rods may also be sealed at both ends and contain Zr material in lieu of water.
- 12. This assembly is known as "QUAD+." It has four rectangular water cross segments dividing the assembly into four quadrants.
- 13. For the SPC 9x9-5 fuel assembly, each fuel rod must meet either the 9x9E or the 9x9F set of limits for clad 0.D., clad 1.D., and pellet diameter.
- 14. For those MPCs loaded with both INTACT FUEL ASSEMBLIES and DAMAGED FUEL ASSEMBLIES or FUEL DEBRIS, the maximum PLANAR AVERAGE INITIAL ENRICHMENT for the INTACT FUEL ASSEMBLIES is limited to 3.7 wt.% ²³⁵U, as applicable.

Table 2.1-4

TABLE DELETED

Table 2.1-5

TABLE DELETED

Certificate of Compliance No. 1014 Appendix B

Table 2.1-6 (page 1 of 2)

TABLE DELETED

Table 2.1-6 (page 2 of 2)

TABLE DELETED

Table 2.1-7 (page 1 of 2)

TABLE DELETED

~~ .

Table 2.1-7 (page 2 of 2)

TABLE DELETED

Post-irradiation Cooling Time (years)	INSERTS (Note 3) BURNUP (MWD/MTU)	GUIDE TUBE HARDWARE (Note 4) BURNUP (MWD/MTU)	CONTROL COMPONENT (Note 5) BURNUP (MWD/MTU)	APSR BURNUP (MWD/MTU)
<u>></u> 3	<u><</u> 24,635	NA (Note 6)	NA	NA
<u>></u> 4	<u>≤</u> 30,000	<u>≤</u> 20,000	NA	NA
<u>≥</u> 5	<u><</u> 36,748	<u>≤</u> 25,000	<u>≤</u> 630,000	<u><</u> 45,000
<u>></u> 6	<u><</u> 44,102	<u>≤</u> 30,000	-	<u><</u> 54,500
<u>></u> 7	<u><</u> 52,900	<u><</u> 40,000	-	<u>≤</u> 68,000
<u>></u> 8	<u>≤</u> 60,000	<u><</u> 45,000	-	<u><</u> 83,000
<u>></u> 9	-	<u><</u> 50,000	-	<u><</u> 111,000
<u>≥</u> 10	-	<u>≤</u> 60,000	-	<u><</u> 180,000
<u>> 11</u>	-	<u><</u> 75,000	-	<u>≤</u> 630,000
<u>></u> 12	-	<u><</u> 90,000	-	-
<u>≥</u> 13	-	<u>≤</u> 180,000	-	-
<u>≥</u> 14	-	<u>≤</u> 630,000	-	-

Table 2.1-8 NON-FUEL HARDWARE COOLING AND AVERAGE BURNUP

Notes: 1. Linear interpolation between points is permitted, except that TPD and APSR burnups > 180,000 MWD/MTU and \leq 630,000 MWD/MTU must be cooled \geq 14 years and \geq 11 years, respectively.

2. Applicable to uniform loading and regionalized loading.

3. Includes Burnable Poison Rod Assemblies (BPRAs), Wet Annular Burnable Absorbers (WABAs), and vibration suppressor inserts..

4. Includes Thimble Plug Devices (TPDs), water displacement guide tube plugs, and orifice rod assemblies.

- 5. Includes Control Rod Assemblies (CRAs), Control Element Assemblies (CEAs), and Rod Cluster Control Assemblies (RCCAs).
- 6. NA means not authorized for loading.

2.4 Allowable Cask and Fuel Assembly Burnup, Decay Heat, and Cooling Time

2.4.1 Uniform Fuel Loading

Tables 2.4-1 through 2.4-3 provide the maximum allowable decay heat and burnup per assembly as a function of minimum cooling time for uniform loading for each MPC model.

2.4.1 Uniform Fuel Loading (cont'd)

Table 2.4-1
Maximum Allowable Decay Heat and Burnup for the MPC-24/24E/24EF - Uniform Loading

		Maximum Burnup per Assembly (MWD/MTU) (Note 1)							
Minimum Cooling Time (yrs)	Maximum Decay Heat per Assembly (kW)	Array/ Class 14x14A	Array/ Class 14X14B	Array/ Class 14X14C	Array/ Class 15X15 A/B/C	Array/ Class 15X15 D/E/F/H	Array/ Class 16X16A	Array/ Class 17X17A	Array/ Class 17X17B/C
з	1.575	43,284	38,568	38,891	32,207	30,402	34,992	34,467	31,367
4	1.535	57,577	51,209	51,110	44,181	43,034	47,626	47,678	44,564
5	1.535	69,383	61,513	60,967	53,609	50,972	57,603	58,411	53,019
6	1.472	75,000	66,618	65,717	58,517	55,738	62,738	64,180	58,068
7	1.393	75,000	68,922	67,695	60,844	57,926	65,068	66,951	60,444
8	1.379	75,000	72,552	71,158	64,213	61,097	68,714	70,816	63,883
9	1.364	75,000	75,000	73,758	66,771	63,493	71,379	73,732	66,477
10	1.350	75,000	75,000	75,000	68,826	65,405	73,548	75,000	68,512
11	1.344	75,000	75,000	75,000	70,921	67,288	75,000	75,000	70,604
12	1.338	75,000	75,000	75,000	72,707	68,979	75,000	75,000	72,353
13	1.331	75,000	75,000	75,000	74,361	70,499	75,000	75,000	73,957
14	1.325	75,000	75,000	75,000	75,000	71,844	75,000	75,000	75,000
15	1.319	75,000	75,000	75,000	75,000	73,176	75,000	75,000	75,000
16	1.313	75,000	75,000	75,000	75,000	74,479	75,000	75,000	75,000
17	1.306	75,000	75,000	75,000	75,000	75,000	75,000	75,000	75,000
18	1.300	75,000	75,000	75,000	75,000	75,000	75,000	75,000	75,000
19	1.294	75,000	75,000	75,000	75,000	75,000	75,000	75,000	75,000
20	1.288	75,000	75,000	75,000	75,000	75,000	75,000	75,000	75,000

1. Burnup for fuel assemblies with cladding made of materials other than Zircaloy-2 or Zircaloy-4 is limited to 45,000 MWD/MTU or the value in this table, whichever is less.

2. Linear interpolation between points is permitted.

3. Decay heat limits include all sources of decay heat (i.e., fuel and NON-FUEL HARDWARE).

2.4.1 Uniform Fuel Loading (cont'd)

Table 2.4-2 Maximum Allowable Decay Heat and Burnup for the MPC-32/32F - Uniform Loading

			Maximum Burnup per Assembly (MWD/MTU) (Note 1)						
Minimum Cooling Time (yrs)	Maximum Decay Heat per Assembly (kW)	Array/ Class 14x14A	Array/ Class 14X14B	Array/ Class 14X14C	Array/ Class 15X15 A/B/C	Array/ Class 15X15 D/E/F/H	Array/ Class 16X16A	Array/ Class 17X17A	Array/ Class 17X17B/C
3	1.216	32,631	29,026	29,146	24,198	22,851	26,331	26,019	23,633
4	1.186	45,012	41,048	40,895	35,342	33,646	38,109	38,202	34,791
5	1.186	55,080	48,888	48,382	43,605	41,548	45,874	46,504	43,193
6	1.140	60,434	53,505	52,714	47,024	44,970	50,417	51,619	46,739
7	1.079	62,836	55,583	54,563	49,193	46,960	52,617	54,057	48,976
8	1.069	66,394	58,629	57,449	51,932	49,643	55,544	57,268	51,745
9	1.058	69,116	60,925	59,611	54,072	51,642	57,780	59,677	53,885
10	1.047	71,280	62,756	61,325	55,761	53,124	59,539	61,570	55,571
11	1.043	73,518	64,611	63,106	57,406	54,709	61,282	63,452	57,199
12	1.038	75,000	66,201	64,616	58,849	55,989	62,796	65,070	58,622
13	1.033	75,000	67,646	66,015	60,121	57,145	64,144	66,512	59,848
14	1.029	75,000	69,022	67,319	61,344	58,285	65,456	67,921	61,063
15	1.024	75,000	70,234	68,547	62,457	59,273	66,622	69,194	62,153
16	1.019	75,000	71,446	69,686	63,503	60,228	67,746	70,367	63,174
17	1.015	75,000	72,711	70,860	64,584	61,207	68,892	71,618	64,220
18	1.010	75,000	73,797	71,995	65,567	62,097	69,928	72,769	65,195
19	1.006	75,000	74,978	73,090	66,580	63,030	71,033	73,904	66,197
20	1.001	75,000	75,000	74,187	67,583	63,887	72,084	75,000	67,151

- 1. Burnup for fuel assemblies with cladding made of materials other than Zircaloy-2 or Zircaloy-4 is limited to 45,000 MWD/MTU or the value in this table, whichever is less.
- 2. Linear interpolation between points is permitted.
- 3. Decay heat limits include all sources of decay heat (i.e., fuel and NON-FUEL HARDWARE).

Table 2.4-3 (page 1 of 2) Maximum Allowable Decay Heat and Burnup for the MPC-68/68FF - Uniform Loading

		Maxi	mum Burnup	per Assembly (MWD/MTU) (Ni	ote 1)
Minimum Cooling Time (yrs)	Maximum Decay Heat per Assembly (kW)	Array/Class 7x7B	Array/Class 8x8B	Array/Class 8x8C/D/E	Array/Class 9x9A	Array/Class 9x9B
3	0.606	32,082	33,600	34,819	35,324	36,770
4	0.606	44,601	46,563	48,271	48,905	50,970
5	0.606	53,753	55,978	58,044	58,954	61,529
6	0.575	57,681	60,065	62,302	63,332	66,186
7	0.527	58,017	60,335	62,661	63,689	66,609
8	0.523	61,223	63,706	66,163	67,314	70,000
9	0.519	63,742	66,330	68,914	70,000	70,000
10	0.514	65,705	68,329	70,000	70,000	70,000
11	0.512	67,663	70,000	70,000	70,000	70,000
12	0.509	69,365	70,000	70,000	70,000	70,000
13	0.507	70,000	70,000	70,000	70,000	70,000

1. Burnup for fuel assemblies with cladding made of materials other than Zircaloy-2 or Zircaloy-4 is limited to 45,000 MWD/MTU or the value in this table, whichever is less.

^{2.} Linear interpolation between points is permitted.

^{3.} Decay heat limits include all sources of decay heat (i.e., fuel and NON-FUEL HARDWARE).

Table 2.4-3 (page 2 of 2)Maximum Allowable Decay Heat and Burnup for the MPC-68/68FF - Uniform Loading

		Maxi	mum Burnup	per Assembly ((MWD/MTU) (N	ote 1)
Minimum Cooling Time (yrs)	Maximum Decay Heat per Assembly (kW)	Array/Class 9x9C/D	Array/Class 9x9E/F	Array/Class 9x9G	Array/Class 10x10A/B	Array/Class 10x10C
3	0.606	36,303	34,411	39,837	33,894	36,811
4	0.606	50,399	47,540	55,217	46,867	50,961
5	0.606	60,809	57,109	66,865	56,318	61,466
6	0.575	65,353	61,257	70,000	60,435	66,088
7	0.527	65,723	61,625	70,000	60,716	66,563
8	0.523	69,459	64,996	70,000	64,084	70,000
9	0.519	70,000	67,726	70,000	66,743	70,000
10	0.514	70,000	69,850	70,000	68,774	70,000
11	0.512	70,000	70,000	70,000	70,000	70,000

- 1. Burnup for fuel assemblies with cladding made of materials other than Zircaloy-2 or Zircaloy-4 is limited to 45,000 MWD/MTU or the value in this table, whichever is less.
- 2. Linear interpolation between points is permitted.
- 3. Decay heat limits include all sources of decay heat (i.e., fuel and NON-FUEL HARDWARE).

2.4.2 Regionalized Fuel Loading

The allowable maximum decay heat and burnup per assembly as a function of mimimum cooling time for regionalized fuel loading shall be calculated as follows (Regions are defined in Figures 2.1-1 through 2.1-4) :

2.4.2.5	Linear interpolation is permitted between points after the values for fuel assembly decay heat in Region 1 ($q_{Region 1}$) and burnup (B) are calculated.
2126	Decay boot limits per accombly are applicable to all sources of decay boot

2.4.2.6 Decay heat limits per assembly are applicable to all sources of decay heat (i.e., fuel and NON-FUEL HARDWARE).

Table 2.4-4 summarizes the sources for the generic values for the coefficients that are based on the thermal analysis, the values input by the cask user, and the values that are calculated to determine the allowable maximum decay heat and burnup per assembly for Regions 1 and 2 as a function of cooling time.

VARIABLE	SOURCE
N _{Region 1}	Provided in Table 2.4-5
N _{Region 2}	Provided in Table 2.4-5
Q	Provided in Tables 2.4-6, 7, and 8
A _o	Provided in Tables 2.4-6, 7, and 8
A ₁	Provided in Tables 2.4-6, 7, and 8
A ₂	Provided in Tables 2.4-6, 7, and 8
Do	Provided in Tables 2.4-9 and 10
D ₁	Provided in Tables 2.4-9 and 10
Q _{Region 2}	Input by user
Q _{Region 1}	Calculated
В	Calculated

Table 2.4-4
Source of Values for Regionalized Storage Computations

Table 2.4-5 provides the values for $N_{\text{Region 1}}, N_{\text{Region 2}}$, and $q_{\text{Region 2}}$ for the various MPC models.

Table 2.4-5Regionalized Storage Non Cooling Time-Dependent Inputs

MPC MODEL	N _{Region 1} (Maximum)	N _{Region 2} (Maximum)	q _{Region 2} (Minimum) (kW)	q _{Region 2} (Maximum) (KW)
24/24E/24EF	4	20	0.900	1.300
32/32F	12	20	0.600	1.000
68/68FF	32	36	0.275	0.500

Tables 2.4-6 through 2.4-10 provide the cooling time-dependent values used to calculate the maximum allowable fuel assembly decay heat and burnups for regionalized fuel loading, using the preceding equations.

MINIMUM COOLING TIME (yr)	Q (kW)	Ao	A ₁ x 10 ³	A₂ x 10⁵
3	36.84	0.62086	-2.1748	47.312
4	36.84	0.62086	-2.1748	47.312
5	36.84	0.62086	-2.1748	47.312
6	35.32	0.60538	2.0075	3.8731
7	33.44	0.46408	17.466	6.3343
8	33.09	0.46154	17.922	5.8191
9	32.74	0.45973	18.305	5.4881
10	32.40	0.47380	17.389	7.7778
11	32.25	0.46553	18.121	6.5728
12	32.10	0.47425	17.442	8.2707
13	31.95	0.45761	19.120	4.7004
14	31.80	0.46688	18.386	6.5360
15	31.65	0.47677	17.589	8.5288

 Table 2.4-6

 MPC-24/24E/24EF Cooling Time-Dependent Inputs

2.4.2 Regionalized Fuel Loading (cont'd)

MINIMUM COOLING TIME (yr)	Q (kW)	A _o	A ₁ x 10 ³	A₂ x 10 ⁵
3	37.96	0.77978	8.0741	5.0924
4	37.96	0.77978	8.0741	5.0924
5	37.96	0.77978	8.0741	5.0924
6	36.47	0.77540	9.2125	2.8126
7	34.54	0.77677	9.8042	2.4851
8	34.19	0.78022	9.5937	3.2369
9	33.85	0.78663	8.8042	6.0565
10	33.51	0.78105	9.5755	4.1946
11	33.36	0.78233	9.5350	4.3392
12	33.21	0.77414	10.542	1.6358
13	33.06	0.77539	10.506	1.7641
14	32.91	0.77624	10.527	1.6885
15	32.77	0.76791	11.555	-1.0895

Table 2.4-7 MPC-32/32F Cooling Time-Dependent Inputs

MINIMUM COOLING TIME (yr)	Q (kW)	Ao	A ₁ x 10 ³	A₂ x 10⁵
3	41.22	0.80263	8.4592	2.6829
4	41.22	0.80263	8.4592	2.6829
5	41.22	0.80263	8.4592	2.6829
6	39.09	0.80428	8.8938	2.7234
7	35.82	0.80946	9.4288	3.2653
8	35.54	0.81256	9.0704	4.7402
9	35.26	0.82269	7.8373	8.8999
10	34.98	0.81642	8.9240	5.3424
11	34.80	0.81066	9.7526	2.8473
12	34.63	0.81154	9.7731	2.7626
13	34.45	0.81266	9.7523	2.8484
14	34.28	0.81714	8.9890	5.9894
15	34.11	0.81108	9.8697	3.2795

Table 2.4-8 MPC-68/68FF Cooling Time-Dependent Inputs

·	Array/Class 14x14A			Array/Class 14X14B		Array/Class 14X14C		/Class 5A/B/C
Minimum Cooling Time (yrs)	Do	D,	D₀	D ₁	Do	D,	Do	D ₁
3	-3,452	29,674	-3,295	26,580	-3,863	27,146	-2,932	22,311
4	2,313	36,003	2,318	31,851	1,958	32,021	1,651	27,707
5	6,476	40,982	5,986	36,174	5,615	36,060	5,473	31,359
6	8,932	45,178	8,480	39,496	8,068	39,164	7,561	34,617
7	10,277	48,711	9,744	42,483	9,435	41,824	9,157	37,105
8	11,126	51,701	10,619	44,912	10,174	44,224	9,583	39,616
9	11,727	54,243	11,153	47,044	10,697	46,233	10,167	41,499
10	12,211	56,418	11,641	48,821	10,745	48,310	10,616	43,119
11	12,131	58,857	11,596	50,830	11,105	49,858	10,577	44,899
12	12,501	60,571	11,908	52,306	10,964	51,688	10,901	46,193
13	12,252	62,835	11,781	54,081	10,809	53,443	10,756	47,778
14	12,762	64,097	11,672	55,734	11,126	54,610	10,559	49,354
15	12,591	66,102	12,049	56,822	10,945	56,252	10,864	50,384
16	12,794	67,586	11,853	58,482	11,199	57,397	10,739	51,781
17	12,668	69,452	11,607	60,201	11,122	58,856	10,524	53,262
18	13,122	70,568	11,946	61,239	10,970	60,382	10,822	54,203
19	12,924	72,471	11,736	62,865	11,129	61,592	10,660	55,587
20	12,802	74,333	12,182	63,735	10,884	63,240	10,428	57,098

Table 2.4-9 (page 1 of 2) PWR Fuel Cooling Time-Dependent Inputs

	Array/Class 15x15D/E/F/H			Array/Class 16x16A		//Class x17A	Array/Class 17x17B/C	
Minimum Cooling Time (yrs)	Do	D ₁	Do	D ₁	Do	D ₁	D₀	D ₁
3	-2,723	21,032	-3,003	24,124	-2,597	23,533	-2,564	21,544
4	1,847	26,151	1,834	29,832	2,080	29,706	1,690	27,222
5	5,627	29,541	6,017	33,607	6,043	34,116	5,741	30,800
6	7,997	32,433	8,111	37,111	8,489	37,834	7,842	34,121
7	9,276	34,925	9,833	39,652	9,748	41,065	9,569	36,522
8	10,146	36,948	10,129	42,484	10,551	43,702	9,889	39,155
9	10,666	38,730	10,761	44,442	11,083	45,931	10,349	41,150
10	10,690	40,530	11,129	46,237	11,019	48,282	10,853	42,711
11	11,123	41,790	11,069	48,143	11,423	49,884	10,751	44,534
12	11,044	43,300	11,472	49,446	11,245	51,855	11,113	45,770
13	10,855	44,812	11,349	51,109	11,564	53,193	10,939	47,347
14	11,148	45,809	11,119	52,806	11,388	54,940	10,779	48,867
15	11,011	47,131	11,439	53,890	11,116	56,717	11,063	49,893
16	10,833	48,474	11,246	55,447	11,441	57,828	10,924	51,276
17	11,167	49,301	11,082	56,956	11,238	59,488	10,788	52,643
18	10,957	50,634	11,342	58,006	11,060	61,099	10,949	53,709
19	10,804	51,915	11,183	59,494	11,353	62,178	10,819	55,048
20	10,663	53,171	11,035	60,989	11,043	63,938	10,626	56,469

Table 2.4-9 (page 2 of 2) PWR Fuel Cooling Time-Dependent Inputs

	Array/Class 7x7B					Array/Class 8x8C/D/E		Class 9A	Array/Class 9x9B	
Minimum Cooling Time (yrs)	D₀	D ₁	Do	D ₁	Do	D ₁	D₀	D ₁	Do	D ₁
3	-3,108	58,070	-3,485	61,198	-3,271	62,856	-3,250	63,655	-3,718	66,812
4	725	72,403	518	75,982	668	78,553	830	79,333	719	82,923
5	, 4,237	81,711	4,187	85,465	4,593	88,204	4,539	89,794	4,486	94,131
6	6,483	89,040	6,375	93,374	6,825	96,482	6,737	98,427	6,718	103,424
7	7,565	95,735	7,920	99,461	8,114	103,505	7,989	105,694	7,957	111,296
8	8,311	101,172	8,220	106,093	8,637	109,994	8,625	112,217	8,520	118,470
9	8,700	106,055	8,614	111,207	9,135	115,182	8,958	117,846	8,847	124,675
10	8,775	110,760	9,050	115,329	9,037	120,884	9,405	122,419	8,897	130,461
11	8,984	114,609	8,909	120,252	9,333	124,937	9,277	127,541	9,147	135,087
12	8,752	119,084	9,058	123,931	9,348	129,214	9,403	131,835	9,243	139,505
13	8,874	122,457	8,877	128,204	9,439	132,999	9,519	135,466	9,319	143,799
14	8,979	125,614	9,102	131,306	9,413	136,918	9,635	139,196	9,872	146,416
15	8,874	129,275	8,920	135,292	9,666	139,956	9,487	143,368	9,920	150,231
16	8,896	132,463	8,880	138,838	9,442	144,090	9,373	147,315	9,516	155,447
17	8,967	135,457	9,099	141,468	9,321	147,823	9,711	150,043	9,755	158,439
18	8,673	139,379	8,981	145,106	9,305	151,561	9,583	154,061	9,582	162,837
19	8,856	142,079	8,688	149,308	9,511	154,395	10,041	156,191	10,329	164,705
20	8,789	145,330	9,189	151,243	9,328	158,504	9,735	160,688	9,888	169,600

Table 2.4-10 (page 1 of 2) BWR Fuel Cooling Time-Dependent Inputs

	Array/Class 9x9C/D		Array/Class 9x9E/F			/Class 9G	1 -	/Class 0A/B		/Class 10C	
Minimum Cooling Time (yrs)	Do	D ₁	Do	D ₁	Do	D ₁	Do	D ₁	Do	D ₁	
3	-3,421	65,552	-3,036	61,795	-4,038	72,401	-3,270	61,327	-3,507	66,533	1
4	773	81,892	977	76,838	864	89,692	774	76,062	933	82,556	1
5	4,396	93,091	4,923	86,117	4,574	102,791	4,693	85,190	4,809	93,495	1
6	6,634	102,121	7,198	9 4,016	6,900	113,239	6,623	93,587	7,062	102,655]
7	8,052	109,433	8,342	101,107	8,059	122,558	8,185	99,680	8,247	110,658	
8	8,693	116,189	9,041	106,990	8,708	130,518	8,767	105,770	8,833	117,680	
9	8,868	122,554	9,406	112,370	9,152	137,270	8,984	111,290	9,205	123,746	.
10	9,129	127,725	9,469	117,473	9,828	142,025	9,297	115,715	9,302	129.505	1
11	9,318	132,394	9,767	121,401	10,537	145,909	9,158	120,625	9,730	133 <u>,</u> 637	
12	9,305	137,044	9,572	126,067	10,263	151,870	9,331	124,390	9,570	138,712	
13	9,723	140,106	9,903	129,164	10,502	156,166	9,390	128,008	9,938	142,149	
14	9,465	144,861	9,741	133,237	10,448	160,869	9,404	131,729	10,379	145,109	
15	9,940	147,584	9,602	137,141	10,975	163,765	9,383	135,289	10,281	149,291	
16	9,671	152,067	9,981	139,608	10,640	169,223	9,161	139,248	9,897	154,252	
17	9,759	155,614	9,658	143,909	10,914	172,628	9,434	141,834	10,273	157,172	
18	9,818	159,043	10,169	145,848	11,131	175,965	9,150	146,012	10,259	160,778	
19	9,783	162,824	10,061	149,594	12,795	174,974	9,501	148,390	10,818	163,033	
20	10,646	163,852	9,997	153,051	12,250	180,885	9,552	151,491	10,149	168,851	

Table 2.4-10 (page 2of 2) BWR Fuel Cooling Time-Dependent Inputs

3.0 DESIGN FEATURES

3.1 Site

3.1.1 Site Location

The HI-STORM 100 Cask System is authorized for general use by 10 CFR Part 50 license holders at various site locations under the provisions of 10 CFR 72, Subpart K.

- 3.2 Design Features Important for Criticality Control
 - 3.2.1 <u>MPC-24</u>
 - 1. Flux trap size: \geq 1.09 in.
 - 2. ¹⁰B loading in the neutron absorbers: ≥ 0.0267 g/cm²

3.2.2 MPC-68 and MPC-68FF

- 1. Fuel cell pitch: \geq 6.43 in.
- 2. ¹⁰B loading in the neutron absorbers: ≥ 0.0372 g/cm²

3.2.3 MPC-68F

- 1. Fuel cell pitch: ≥ 6.43 in.
- 2. ¹⁰B loading in the neutron absorbers: ≥ 0.01 g/cm²

3.2.4 MPC-24E and MPC-24EF

- 1. Flux trap size:
 - i. Cells 3, 6, 19, and 22: \geq 0.776 inch
 - ii. All Other Cells: > 1.076 inches
- 2. ¹⁰B loading in the neutron absorbers: ≥ 0.0372 g/cm²

3.2.5 MPC-32 and MPC-32F

- 1. Fuel cell pitch: \geq 9.158 inches
- 2. ¹⁰B loading in the neutron absorbers: ≥ 0.0372 g/cm²
- 3.2.6 Fuel spacers shall be sized to ensure that the active fuel region of intact fuel assemblies remains within the neutron poison region of the MPC basket with water in the MPC.

DESIGN FEATURES

3.3 Codes and Standards

The American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code), 1995 Edition with Addenda through 1997, is the governing Code for the HI-STORM 100 System, as clarified in Specification 3.3.1 below, except for Code Sections V and IX. The latest effective editions of ASME Code Sections V and IX, including addenda, shall be used for activities governed by those sections. American Concrete Institute (ACI) 349-85 is the governing Code for plain concrete as clarified in Appendix 1.D of the Final Safety Analysis Report for the HI-STORM 100 Cask System.

3.3.1 Alternatives to Codes, Standards, and Criteria

Table 3-1 lists approved alternatives to the ASME Code for the design of the HI-STORM 100 Cask System.

3.3.2 <u>Construction/Fabrication Alternatives to Codes, Standards, and Criteria</u>

Proposed alternatives to the ASME Code, Section III, 1995 Edition with Addenda through 1997 including exceptions allowed by Specification 3.3.1 may be used on a case-specific basis when authorized by the Director of the Office of Nuclear Material Safety and Safeguards or designee. The request for such alternative should demonstrate that:

- 1. The proposed alternatives would provide an acceptable level of quality and safety, or
- 2. Compliance with the specified requirements of the ASME Code, Section III, 1995 Edition with Addenda through 1997, would result in hardship or unusual difficulty without a compensating increase in the level of quality and safety.

Requests for alternatives shall be submitted in accordance with 10 CFR 72.4

(continued)

DESIGN FEATURES

Table 3-1 (page 1 of 8) LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM

Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures
MPC, MPC basket assembly, HI-STORM OVERPACK steel structure, and HI-TRAC TRANSFER CASK steel structure	Subsection NCA	General Requirements. Requires preparation of a Design Specification, Design Report, Overpressure Protection Report, Certification of Construction Report, Data Report, and other administrative controls for an ASME Code stamped vessel.	 Because the MPC, OVERPACK, and TRANSFER CASK are not ASME Code stamped vessels, none of the specifications, reports, certificates, or other general requirements specified by NCA are required. In lieu of a Design Specification and Design Report, the HI-STORM FSAR includes the design criteria, service conditions, and load combinations for the design and operation of the HI-STORM 100 System as well as the results of the stress analyses to demonstrate that applicable Code stress limits are met. Additionally, the fabricator is not required to have an ASME-certified QA program. All important-to-safety activities are governed by the NRC-approved Holtec QA program. Because the cask components are not certified to the Code, the terms "Certificate Holder" and "Inspector" are not germane to the manufacturing of NRC-certified cask components. To eliminate ambiguity, the responsibilities assigned to the Certificate Holder in the various articles of Subsections NB, NG, and NF of the Code, as applicable, shall be interpreted to apply to the NRC Certificate of Compliance (CoC) holder (and by extension, to the component fabricator) if the requirement must be fulfilled. The Code term "Inspector" means the QA/QC personnel of the CoC holder and its vendors assigned to oversee and inspect the manufacturing process.
MPC	NB-1100	Statement of requirements for Code stamping of components.	MPC enclosure vessel is designed and will be fabricated in accordance with ASME Code, Section III, Subsection NB to the maximum practical extent, but Code stamping is not required.

Design Features 3.0

Table 3-1 (page 2 of 8) LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM

Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures
MPC	NB-1130	NB-1132.2(d) requires that the first connecting weld of a nonpressure- retaining structural attachment to a component shall be considered part of the component unless the weld is more than 2t from the pressure-retaining portion of the component, where t is the nominal thickness of the pressure-retaining material. NB-1132.2(e) requires that the first connecting weld of a welded nonstructural attachment to a component shall conform to NB-4430 if the connecting weld is within 2t from the pressure-retaining portion of the component.	The MPC basket supports (nonpressure-retaining structural attachment)and lift lugs (nonstructural attachments used exclusively for lifting an empty MPC) are welded to the inside of the pressure-retaining MPC shell, but are not designed in accordance with Subsection NB. The basket supports and associated attachment welds are designed to satisfy the stress limits of Subsection NG and the lift lugs and associated attachment welds are designed to satisfy the stress limits of Subsection NF, as a minimum. These attachments and their welds are shown by analysis to meet the respective stress limits for their service conditions. Likewise, non-structural items, such as shield plugs, spacers, etc. if used, can be attached to pressure- retaining parts in the same manner.

Table 3-1 (page 3 of 8)
LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM

Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures
MPC	NB-2000	Requires materials to be supplied by ASME-approved material supplier.	Materials will be supplied by Holtec-approved suppliers with Certified Material Test Reports (CMTRs) in accordance with NB-2000 requirements.
MPC, MPC basket assembly, HI-STORM OVERPACK and HI-TRAC TRANSFER CASK	NB-3100 NG-3100 NF-3100	Provides requirements for determining design loading conditions, such as pressure, temperature, and mechanical loads.	These requirements are not applicable. The HI-STORM FSAR, serving as the Design Specification, establishes the service conditions and load combinations for the storage system.
MPC	NB-3350	NB-3352.3 requires, for Category C joints, that the minimum dimensions of the welds and throat thickness shall be as shown in Figure NB- 4243-1.	Due to MPC basket-to-shell interface requirements, the MPC shell-to-baseplate weld joint design (designated Category C) <i>does not include a reinforcing fillet weld or a bevel in the MPC baseplate, which makes it</i> different than any of the representative configurations depicted in Figure NB-4243-1. The transverse thickness of this weld is equal to the thickness of the adjoining shell (1/2 inch). The weld is designed as a full penetration weld that receives VT and RT or UT, as well as final surface PT examinations. Because the MPC shell design thickness is considerably larger than the minimum thickness required by the Code, a reinforcing fillet weld that would intrude into the MPC cavity space is not included. Not including this fillet weld provides for a higher quality radiographic examination of the full penetration weld. From the standpoint of stress analysis, the fillet weld serves to reduce the local bending stress (secondary stress) produced by the gross structural discontinuity defined by the flat plate/shell junction. In the MPC design, the shell and baseplate thicknesses are well beyond that required to meet their respective membrane stress intensity limits.

.

Table 3-1 (page 4 of 8)
LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM

Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures
MPC, MPC Basket Assembly, HI-STORM OVERPACK steel structure, and HI-TRAC TRANSFER CASK steel structure	NB-4120 NG-4120 NF-4120	NB-4121.2, NG- 4121.2, and NF- 4121.2 provide requirements for repetition of tensile or impact tests for material subjected to heat treatment during fabrication or installation.	In-shop operations of short duration that apply heat to a component, such as plasma cutting of plate stock, welding, machining, coating, and pouring of lead are not, unless explicitly stated by the Code, defined as heat treatment operations. For the steel parts in the HI-STORM 100 System components, the duration for which a part exceeds the off-normal temperature limit defined in Chapter 2 of the FSAR shall be limited to 24 hours in a particular manufacturing process (such as the HI-TRAC lead pouring process).
MPC, MPC basket assembly, HI-STORM OVERPACK steel structure, and HI-TRAC TRANSFER CASK steel structure	NB-4220 NF-4220	Requires certain forming tolerances to be met for cylindrical, conical, or spherical shells of a vessel.	The cylindricity measurements on the rolled shells are not specifically recorded in the shop travelers, as would be the case for a Code-stamped pressure vessel. Rather, the requirements on inter-component clearances (such as the MPC-to-TRANSFER CASK) are guaranteed through fixture-controlled manufacturing. The fabrication specification and shop procedures ensure that all dimensional design objectives, including inter-component annular clearances are satisfied. The dimensions required to be met in fabrication are chosen to meet the functional requirements of the dry storage components. Thus, although the post-forming Code cylindricity requirements are not evaluated for compliance directly, they are indirectly satisfied (actually exceeded) in the final manufactured components.
MPC Lid and Closure Ring Welds	NB-4243	Full penetration welds required for Category C Joints (flat head to main shell per NB-3352.3).	MPC lid and closure ring are not full penetration welds. They are welded independently to provide a redundant seal. Additionally, a weld efficiency factor of 0.45 has been applied to the analyses of these welds.

Design Features 3.0

Table 3-1 (page 5 of 8)
LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM

Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures
MPC Lid to Shell Weld	NB-5230	Radiographic (RT) or ultrasonic (UT) examination required	Only UT or multi-layer liquid penetrant (PT) examination is permitted. If PT alone is used, at a minimum, it will include the root and final weld layers and each approximately 3/8 inch of weld depth.
MPC Closure Ring, Vent and Drain Cover Plate Welds	NB-5230	Radiographic (RT) or ultrasonic (UT) examination required	Root (if more than one weld pass is required) and final liquid penetrant examination to be performed in accordance with NB-5245. The MPC vent and drain cover plate welds are leak tested. The closure ring provides independent redundant closure for vent and drain cover plates.
MPC Enclosure Vessel and Lid	NB-6111	All completed pressure retaining systems shall be pressure tested.	The MPC enclosure vessel is seal welded in the field following fuel assembly loading. The MPC enclosure vessel shall then be hydrostatically tested as defined in Chapter 9. Accessibility for leakage inspections preclude a Code compliant hydrostatic test. All MPC enclosure vessel welds (except closure ring and vent/drain cover plate) are inspected by volumetric examination, except the MPC lid-to-shell weld shall be verified by volumetric or multi-layer PT examination. If PT alone is used, at a minimum, it must include the root and final layers and each approximately 3/8 inch of weld depth. For either UT or PT, the maximum undetectable flaw size must be demonstrated to be less than the critical flaw size. The critical flaw size must be determined in accordance with ASME Section XI methods. The critical flaw size shall not cause the primary stress limits of NB-3000 to be exceeded. The inspection process, including findings (indications), shall be made a permanent part of the user's records by video, photographic, or other means which provide an equivalent retrievable record of weld integrity. The video or photographic records should be taken during the final interpretation period described in ASME Section V, Article 6, T-676. The vent/drain cover plate weld is confirmed by leakage testing and liquid penetrant examination and the closure ring weld is confirmed by liquid penetrant examination. The inspection of the weld must be performed by qualified personnel and shall meet the acceptance requirements of ASME Code Section III, NB-5350 for PT or NB-5332 for UT.

Table 3-1 (page 6 of 8) LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM

Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures
MPC Enclosure Vessel	NB-7000	Vessels are required to have overpressure protection	No overpressure protection is provided. The function of the MPC enclosure vessel is to contain the radioactive contents under normal, off-normal, and accident conditions. The MPC vessel is designed to withstand maximum internal pressure considering 100% fuel rod failure and maximum accident temperatures.
MPC Enclosure Vessel	NB-8000	States requirements for nameplates, stamping and reports per NCA-8000.	The HI-STORM100 System is to be marked and identified in accordance with 10CFR71 and 10CFR72 requirements. Code stamping is not required. QA data package to be in accordance with Holtec approved QA program.
MPC Basket Assembly	NG-2000	Requires materials to be supplied by ASME-approved material supplier.	Materials will be supplied by Holtec-approved supplier with CMTRs in accordance with NG-2000 requirements.
MPC basket assembly	NG-4420	NG-4427(a) requires a fillet weld in any single continuous weld may be less than the specified fillet weld dimension by not more than 1/16 inch, provided that the total undersize portion of the weld does not exceed 10 percent of the length of the weld. Individual undersize weld portions shall not exceed 2 inches in length.	Modify the Code requirement (intended for core support structures) with the following text prepared to accord with th geometry and stress analysis imperatives for the fuel basket: Fc. the longitudinal MPC basket fillet welds, the following criteria apply: 1) The specified fillet weld throat dimension must be maintained over at least 92 percent of the total weld length. All regions of undersized weld must be less than 3 inches long and separated from each other by at least 9 inches. 2) Areas of undercuts and porosity beyond that allowed by the applicable ASME Code shall not exceed 1/2 inch in weld length. The total length of undercut and porosity over any 1-foot length shall not exceed 2 inches. 3) The total weld length in which items (1) and (2) apply shall not exceed a total of 10 percent of the overall weld length. The limited access of the MPC basket panel longitudinal fillet welds makes it difficult to perform effective repairs of these welds and creates the potential for causing additional damage to the basket assembly (e.g., to the neutron absorber and its sheathing) if repairs are attempted. The acceptance criteria provided in the foregoing have been established to comport with the objectives of the basket design and preserve the margins demonstrated in the supporting stress analysis. From the structural standpoint, the weld acceptance criteria are established to ensure that any departure from the ideal, continuous fillet weld seam would not alter the primary bending stresses on which the design of the fuel baskets is predicated. Stated differently, the permitted weld discontinuities are limited in size to ensure that they remain classifiable as local stress elevators ("peak stress", F, in the ASME Code for which specific stress intensity limits do not apply).

Table 3-1 (page 7 of 8)
LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM

Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures
MPC Basket Assembly	NG-8000	States requirements for nameplates, stamping and reports per NCA-8000.	The HI-STORM100 System is to be marked and identified in accordance with 10CFR71 and 10CFR72 requirements. Code stamping is not required. The MPC basket data package to be in accordance with Holtec approved QA program.
OVERPACK Steel Structure	NF-2000	Requires materials to be supplied by ASME-approved material supplier.	Materials will be supplied by Holtec-approved supplier with CMTRs in accordance with NF-2000 requirements.
TRANSFER CASK Steel Structure	NF-2000	Requires materials to be supplied by ASME-approved material supplier.	Materials will be supplied by Holtec-approved supplier with CMTRs in accordance with NF-2000 requirements.
OVERPACK Baseplate and Lid Top Plate	NF-4441	Requires special examinations or requirements for welds where a primary member of thickness 1 inch or greater is loaded to transmit loads in the through thickness direction.	The margins of safety in these welds under loads experienced during lifting operations or accident conditions are quite large. The OVERPACK baseplate welds to the inner shell, pedestal shell, and radial plates are only loaded during lifting conditions and have large safety factors during lifting. Likewise, the top lid plate to lid shell weld has a large structural margin under the inertia loads imposed during a non-mechanistic tipover event.
OVERPACK Steel Structure	NF-3256 NF-3266	Provides requirements for welded joints.	Welds for which no structural credit is taken are identified as "Non-NF" welds in the design drawings by an "*". These non-structural welds are specified in accordance with the pre-qualified welds of AWS D1.1. These welds shall be made by welders and weld procedures qualified in accordance with AWS D1.1 or ASME Section IX. Welds for which structural credit is taken in the safety analyses shall meet the stress limits for NF-3256.2, but are not required to meet the joint configuration requirements specified in these Code articles. The geometry of the joint designs in the cask structures are based on the fabricability and accessibility of the joint, not generally contemplated by this Code section governing supports.

Design Features 3.0

Table 3-1 (page 8 of 8)
LIST OF ASME CODE ALTERNATIVES FOR HI-STORM 100 CASK SYSTEM

Component	Reference ASME Code Section/Article	Code Requirement	Alternative, Justification & Compensatory Measures
HI-STORM OVERPACK and HI-TRAC TRANSFER CASK	NF-3320 NF-4720	NF-3324.6 and NF- 4720 provide requirements for bolting	These Code requirements are applicable to linear structures wherein bolted joints carry axial, shear, as well as rotational (torsional) loads. The OVERPACK and TRANSFER CASK bolted connections in the structural load path are qualified by design based on the design loadings defined in the FSAR. Bolted joints in these components see no shear or torsional loads under normal storage conditions. Larger clearances between bolts and holes may be necessary to ensure shear interfaces located elsewhere in the structure engage prior to the bolts experiencing shear loadings (which occur only during side impact scenarios). Bolted joints that are subject to shear loads in accident conditions are qualified by appropriate stress analysis. Larger bolt-to-hole clearances help ensure more efficient operations in making these bolted connections, thereby minimizing time spent by operations personnel in a radiation area. Additionally, larger bolt-to-hole clearances allow interchangeability of the lids from one particular fabricated cask to another.

DESIGN FEATURES (continued)

3.4 Site-Specific Parameters and Analyses

Site-specific parameters and analyses that will require verification by the system user are, as a minimum, as follows:

- 1. The temperature of 80° F is the maximum average yearly temperature.
- 2. The allowed temperature extremes, averaged over a 3-day period, shall be greater than -40° F and less than 125° F.
- 3. a. For free-standing casks, the resultant horizontal acceleration (vectorial sum of two horizontal Zero Period Accelerations (ZPAs) at a threedimensional seismic site), G_H , and vertical ZPA, G_V , expressed as fractions of 'g', shall satisfy the following inequality:

$$G_H + \mu G_V \le \mu$$

where μ is the Coulomb friction coefficient for the HI-STORM 100/ISFSI pad interface. Unless demonstrated by appropriate testing that a higher value of μ is appropriate for a specific ISFSI, the value of μ used shall be 0.53. Representative values of G_H and G_V combinations for μ = 0.53 are provided in Table 3-2.

Table 3-2

Representative DBE Acceleration Values to Prevent HI-STORM 100 Sliding ($\mu = 0.53$)

Equivalent Vectorial Sum of Two Horizontal ZPA's (G _H in g's)	Corresponding Vertical ZPA (G _v in g's)	
0.445	0.160	
0.424	0.200	
0.397	0.250	

(continued)

- 3.4 Site-Specific Parameters and Analyses (continued)
 - b. For those ISFSI sites with design basis seismic acceleration values higher than those allowed for free-standing casks, the HI-STORM 100 System shall be anchored to the ISFSI pad. The site seismic characteristics and the anchorage system shall meet the following requirements:
 - i. The site acceleration response spectra at the top of the ISFSI pad shall have ZPAs that meet the following inequalities:

 $G_{H} \leq 2.12$

AND

$$G_v \leq 1.5$$

Where:

 G_H is the vectorial sum of the two horizontal ZPAs at a three-dimensional seismic site (or the horizontal ZPA at a two-dimensional site) and G_v is the vertical ZPA.

ii. Each HI-STORM 100 dry storage cask shall be anchored with twenty-eight (28), 2-inch diameter studs and compatible nuts of material suitable for the expected ISFSI environment. The studs shall meet the following requirements:

Yield Strength at Ambient Temperature: \geq 80 ksi

Ultimate Strength at Ambient Temperature: ≥ 125 ksi

Initial Tensile Pre-Stress: ≥ 55 ksi AND ≤ 65 ksi

- NOTE: The above anchorage specifications are required for the seismic spectra defined in item 3.4.3.b.i. Users may use fewer studs or those of different diameter to account for site-specific seismic spectra less severe than those specified above. The embedment design shall comply with Appendix B of ACI-349-97. A later edition of this Code may be used, provided a written reconciliation is performed.
- iii. Embedment Concrete Compressive Strength: \geq 4,000 psi at 28 days

(continued)

- 3.4 Site-Specific Parameters and Analyses (continued)
 - 4. The analyzed flood condition of 15 fps water velocity and a height of 125 feet of water (full submergence of the loaded cask) are not exceeded.
 - 5. The potential for fire and explosion shall be addressed, based on site-specific considerations. This includes the condition that the on-site transporter fuel tank will contain no more than 50 gallons of diesel fuel while handling a loaded OVERPACK or TRANSFER CASK.
 - 6. a. For free-standing casks, the ISFSI pad shall be verified by analysis to limit cask deceleration during design basis drop and non-mechanistic tip-over events to ≤ 45 g's at the top of the MPC fuel basket. Analyses shall be performed using methodologies consistent with those described in the HI-STORM 100 FSAR. A lift height above the ISFSI pad is not required to be established if the cask is lifted with a device designed in accordance with ANSI N14.6 and having redundant drop protection features.
 - b. For anchored casks, the ISFSI pad shall be designed to meet the embedment requirements of the anchorage design. A cask tip-over event for an anchored cask is not credible. The ISFSI pad shall be verified by analysis to limit cask deceleration during a design basis drop event to ≤ 45 g's at the top of the MPC fuel basket, except as provided for in this paragraph below. Analyses shall be performed using methodologies consistent with those described in the HI-STORM 100 FSAR. A lift height above the ISFSI pad is not required to be established if the cask is lifted with a device design in accordance with ANSI N14.6 and having redundant drop protection features.

(continued)

3.4 Site-Specific Parameters and Analyses (continued)

- 7. In cases where engineered features (i.e., berms and shield walls) are used to ensure that the requirements of 10CFR72.104(a) are met, such features are to be considered important to safety and must be evaluated to determine the applicable Quality Assurance Category.
- 8. LOADING OPERATIONS, TRANSPORT OPERATIONS, and UNLOADING OPERATIONS shall only be conducted with working area ambient temperatures $\geq 0^{\circ}$ F.
- 9. For those users whose site-specific design basis includes an event or events (e.g., flood) that result in the blockage of any OVERPACK inlet or outlet air ducts for an extended period of time (i.e, longer than the total Completion Time of LCO 3.1.2), an analysis or evaluation may be performed to demonstrate adequate heat removal is available for the duration of the event. Adequate heat removal is defined as fuel cladding temperatures remaining below the short term temperature limit. If the analysis or evaluation is not performed, or if fuel cladding temperature limits are unable to be demonstrated by analysis or evaluation to remain below the short term temperature limit below the short term temperature limit for the duration of the event, provisions shall be established to provide alternate means of cooling to accomplish this objective.

(continued)

3.5 Cask Transfer Facility (CTF)

3.5.1 TRANSFER CASK and MPC Lifters

Lifting of a loaded TRANSFER CASK and MPC using devices that are not integral to structures governed by 10 CFR Part 50 shall be performed with a CTF that is designed, operated, fabricated, tested, inspected, and maintained in accordance with the guidelines of NUREG-0612, "Control of Heavy Loads at Nuclear Power Plants" and the below clarifications. The CTF Structure requirements below do not apply to heavy loads bounded by the regulations of 10 CFR Part 50.

3.5.2 CTF Structure Requirements

3.5.2.1 Cask Transfer Station and Stationary Lifting Devices

- The metal weldment structure of the CTF structure shall be designed to comply with the stress limits of ASME Section III, Subsection NF, Class 3 for linear structures. The applicable loads, load combinations, and associated service condition definitions are provided in Table 3-3. All compression loaded members shall satisfy the buckling criteria of ASME Section III, Subsection NF.
- 2. If a portion of the CTF structure is constructed of reinforced concrete, then the factored load combinations set forth in ACI-318 (89) for the loads defined in Table 3-3 shall apply.
- 3. The TRANSFER CASK and MPC lifting device used with the CTF shall be designed, fabricated, operated, tested, inspected and maintained in accordance with NUREG-0612, Section 5.1.
- 4. The CTF shall be designed, constructed, and evaluated to ensure that if the MPC is dropped during inter-cask transfer operations, its confinement boundary would not be breached. This requirements applies to CTFs with either stationary or mobile lifting devices.

(continued)

3.5.2.2 <u>Mobile Lift Devices</u>

If a mobile lifting device is used as the lifting device, in lieu of a stationary lifting device, is shall meet the guidelines of NUREG-0612, Section 5.1, with the following clarifications:

- Mobile lifting devices shall have a minimum safety factor of two over the allowable load table for the lifting device in accordance with the guidance of NUREG-0612, Section 5.1.6(1)(a) and shall be capable of stopping and holding the load during a Design Basis Earthquake (DBE) event.
- 2. Mobile lifting devices shall conform to meet the requirements of ANSI B30.5, "Mobile and Locomotive Cranes," in lieu of the requirements of ANSI B30.2, "Overhead and Gantry Cranes."
- 3. Mobile cranes are not required to meet the requirements of NUREG-0612, Section 5.1.6(2) for new cranes.
- 4. Horizontal movements of the TRANSFER CASK and MPC using a mobile crane are prohibited.

(continued)

Table 3-3

Load Combinations and Service Condition Definitions for the CTF Structure (Note 1)

Load Combination	ASME III Service Condition for Definition of Allowable Stress	Comment
D* D + S	Level A	All primary load bearing members must satisfy Level A stress limits
D + M + W' (Note 2)		Factor of safety against overturning shall be ≥ 1.1
D + F	Level D	
D + E		
D + Y		

D = Dead load

D* = Apparent dead load

S = Snow and ice load for the CTF site

M = Tornado missile load for the CTF site

W' = Tornado wind load for the CTF site

F = Flood load for the CTF site

E = Seismic load for the CTF site

Y = Tsunami load for the CTF site

Notes: 1. The reinforced concrete portion of the CTF structure shall also meet the factored combinations of loads set forth in ACI-318(89).

2. Tornado missile load may be reduced or eliminated based on a PRA for the CTF site.

- 3.6 Forced Helium Dehydration System
 - 3.6.1 System Description

Use of the Forced Helium Dehydration (FHD) system, (a closed-loop system) is an alternative to vacuum drying the MPC for moderate burnup fuel (\leq 45,000 MWD/MTU) and mandatory for drying MPCs containing one or more high burnup fuel assemblies. The FHD system shall be designed for normal operation (i.e., excluding startup and shutdown ramps) in accordance with the criteria in Section 3.6.2.

- 3.6.2 Design Criteria
 - 3.6.2.1 The temperature of the helium gas in the MPC shall be at least 15°F higher than the saturation temperature at coincident pressure.
 - 3.6.2.2 The pressure in the MPC cavity space shall be ≤ 60.3 psig (75 psia).
 - 3.6.2.3 The hourly recirculation rate of helium shall be \geq 10 times the nominal helium mass backfilled into the MPC for fuel storage operations.
 - 3.6.2.4 The partial pressure of the water vapor in the MPC cavity will not exceed 3 torr if the helium temperature at the demoisturer outlet is \leq 21°F for a period of 30 minutes.
 - 3.6.2.5 The condensing module shall be designed to de-vaporize the recirculating helium gas to a dew point $\leq 120^{\circ}$ F.
 - 3.6.2.6 The demoisturizing module shall be configured to be introduced into its helium conditioning function after the condensing module has been operated for the required length of time to assure that the bulk moisture vaporization in the MPC (defined as Phase 1 in FSAR Appendix 2.B) has been completed.
 - 3.6.2.7 The helium circulator shall be sized to effect the minimum flow rate of circulation required by these design criteria.
 - 3.6.2.8 The pre-heater module shall be engineered to ensure that the temperature of the helium gas in the MPC meets these design criteria.

(continued)

- 3.6 Forced Helium Dehydration System (continued)
 - 3.6.3 Fuel Cladding Temperature

A steady-state thermal analysis of the MPC under the forced helium flow scenario shall be performed using the methodology described in HI-STORM 100 FSAR Subsections 4.4.1.1.1 through 4.4.1.1.4, with due recognition of the forced convection process during FHD system operation. This analysis shall demonstrate that the peak temperature of the fuel cladding under the most adverse condition of FHD system operation, is below the peak cladding temperature limit for normal conditions of storage for the applicable fuel type (PWR or BWR) and cooling time at the start of dry storage.