www.exeloncorp.com

Exelon Nuclear

10CFR50, Appendix E

February 13, 2002

Exelon Nuclear 200 Exelon Way Kennett Square, PA 19348

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

Subject: Limerick Generating Station, Units 1 & 2 Facility Operating License Nos. NPF-39 and NPF-85 NRC Docket Nos. 50-352 and 50-353

> ERP-316, Revision 1, "Operation of the Dose Assessment Computer" ERP-326, Revision 1, "Shift Dose Assessment Personnel (SDAP)" ERP-360, Revision 4, "Adjustment of Wide Range Gas Monitor Conversion Factors"

Dear Sir/Madam:

Enclosed are revised Emergency Response Procedures (ERPs) for Limerick Generating Station (LGS), Units 1 and 2. These procedures are required to be submitted within thirty (30) days of their revision in accordance with 10CFR50, Appendix E, and 10CFR50.4.

Also, enclosed is a copy of a computer generated report index identifying the latest revisions of the LGS ERPs.

If you have any questions or require additional information, please do not hesitate to contact us.

Very truly yours,

mitach P. Sallach

M. P. Gallagher Director - Licensing & Regulatory Affairs Mid-Atlantic Regional Operating Group

Enclosures

cc: H. J. Miller, Administrator, Region I, USNRC (2 copies) A. L. Burritt, USNRC Senior Resident Inspector, LGS

A045

ATTACHMENT 1

LIMERICK GENERATING STATION, UNITS 1 & 2

Docket Nos. 50-352 50-353

License Nos. NPF-39 NPF-85

EMERGENCY RESPONSE PROCEDURES

ERP-316, "Operation of the Dose Assessment Computer" - Revision 1

ERP-326, "Shift Dose Assessment Personnel (SDAP)" Revision 1

ERP-360, "Adjustment of Wide Range Gas Monitor Conversion Factors" - Revision 4 Effective Date: 2/15/02

ERP-316, Rev. 1 Page 1 of 16 KLM/mes

EXELON NUCLEAR LIMERICK UNITS 1 AND 2 EMERGENCY RESPONSE PROCEDURE

ERP-316 OPERATION OF THE DOSE ASSESSMENT COMPUTER (CM-3)

WARNING

THIS PROCEDURE SHALL BE IMPLEMENTED UPON DECLARATION OF AN EMERGENCY OR AT THE DISCRETION OF THE SHIFT MANAGEMENT AT THE AFFECTED SITE.

1.0 RESPONSIBILITIES

1.1 The Dose Assessment Coordinator (DAC) shall perform dose projections using this procedure when required.

2.0 INITIAL ACTIONS

- 2.1 Activate computers used for dose assessment.
 - 2.1.1 Turn on computer power.
 - 2.1.2 IF computer and printer do not activate THEN ensure individual switches are turned on.
 - 2.1.3 Verify paper is loaded in adequate supply.
 - 2.1.4 Log onto the Computer Dose Assessment System.

2.1.4.1 Control Room a. Password = MCR b. User ID = 111111

- 2.1.4.2 TSC a. Password = TSC b. User ID = 222222
- 2.2 **IF** equipment failure occurs in the MCR, <u>THEN</u> using a D1512 key relocate to the Technical Support Center (TSC) Dose Assessment Room.

NOTE

THE PASSWORD AND USER ID FOR THE CONTROL ROOM DOSE ASSESSMENT COMPUTER WILL ALLOW ACCESS TO FAST MODE A, AUTO MODE A, OR LIQUID DOSE CALCULATIONS.

THE PASSWORD AND USER ID FOR THE TSC DOSE ASSESSMENT COMPUTER WILL ALLOW ACCESS TO FAST MODE A, MODE A, AUTO MODE A, LIQUID DOSE CALCULATIONS, OR BACK CALCULATION SOURCE TERM.

2.3 Collect appropriate data for section(s) of attachment 1 and 6, IF actual values are not available THEN use default values as stated in Mesorem. CM-1

3.0 CONTINUING ACTIONS

1 5

- 3.1 IF performing dose projections in the Limerick Control Room, THEN select either, Fast Mode A or Auto Mode A.
 - 3.1.1 For Auto Mode A, see attachment 2 titled, "Auto Mode A".
 - 3.1.2 For Fast Mode A, see attachment 3 titled, "Fast Mode A".
 - 3.1.3 For Liquid Dose Calculations, see attachment 5 titled, "Liquid Release".
- 3.2 <u>IF</u> performing dose projections in the Limerick TSC, <u>THEN</u> select F2, Execute Dispersion Model from the command menu.
 - 3.2.1 For Auto Mode A, see attachment 2 titled, "Auto Mode A".
 - 3.2.2 For Fast Mode A, see attachment 3 titled, "Fast Mode A".
 - 3.2.3 For Mode A, see attachment 4 titled, "Mode A".
 - 3.2.4 For Liquid Dose Calculations, see attachment 5 titled, "Liquid Release".
 - 3.2.5 For unmonitored releases, evaluate source term based on field survey data.
 - 3.2.5.1 Select F5, Back Calculate Source Term from the command menu <u>AND</u> enter data from attachment 1 titled, "Input Parameters" Part 4, in response to system prompts.
- 3.3 Verify all data inputs on printout match data sheet.

- 3.4 Advise the Emergency Director and/or Shift Management of results of dose projection.
- 3.5 Repeat dose projections as new information becomes available or until relieved by the PBAPS DAC or EOF Dose Assessment Team.

4.0 FINAL CONDITIONS

. .

- 4.1 Terminate use of the procedure when:
 - 4.1.1 The Emergency Director determines that the dose assessment function is not longer required.
 - 4.1.2 The potential for and/or actual airborne release has been alleviated.
 - 4.1.3 The Peach Bottom DAC or EOF Dose Assessment Team has taken over the dose assessment function.
- 4.2 Records generated are compiled for review and submitted to the Nuclear Records Management System (NRMS).

5.0 ATTACHMENTS AND APPENDICES

- 5.1 Attachment 1 "Input Parameters"
- 5.2 Attachment 2 "Auto Mode A"
- 5.3 Attachment 3 "Fast Mode A"
- 5.4 Attachment 4 "Mode A"
- 5.5 Attachment 5 "Liquid Release"
- 5.6 Attachment 6 "Meteorological Parameter Resources"

6.0 SUPPORTING INFORMATION

6.1 PURPOSE

To provide directions for using the Dose Assessment Computer System.

6.2 CRITERIA FOR USE

This procedure shall be implemented when an Alert or higher level emergency has been declared in accordance with ERP-101, Classification of Emergencies, or at the discretion of the affected site Emergency Director.

6.3 SPECIAL EQUIPMENT

6.3.1 Mesorem Jr.

6.4 REFERENCES

. .

- 6.4.1 Nuclear Emergency Plan
- 6.4.2 ERP-301, "Dose Assessment Coordinator (DAC)"
- 6.4.3 ERP-300, " Dose Assessment Coordinator" (LGS)
- 6.4.4 ERP-315, "Operation of the Dose Assessment Computer" (PBAPS)
- 6.4.5 ERP-325, "Shift Dose Assessment Personnel" (PBAPS)
- 6.4.6 ERP-326, "Shift Dose Assessment Personnel" (LGS)
- 6.4.7 Offsite Dose Calculation Manual (ODCM)
- 6.4.8 MESOREM, Jr., System Atmospheric Dispersion and Dose Assessment Program (Version 8.3)
- 6.4.9 EPA-400, "Manual for Protective Action Guides and Protective Actions for Nuclear Incidents"
- 6.5 COMMITMENT ANNOTATION
 - 6.5.1 CM-1, NRC Inspection 93-03/03, T02541 (section 2.3)
 - 6.5.2 CM-2, Letter to NRC, 08/15/86, T01949 (attachment 5)
 - 6.5.3 CM-3, Letter to NRC, 12/30/83, T03167 (refers to entire procedure)

ATTACHMENT 1 INPUT PARAMETERS

. .

	INPUT PARAMETERS (Page 1 of 3)
I.	EVENT INFORMATION
	Unit
	Accident Type 🗌 LOCA. 🗌 Minor damage, 🗌 MCA Data (Default = LOCA)
	Time of Release in Military Format: (HH:MM)
	Date of Release in Standard Format// (MM/DD/YY)
	Night or Day? (N or D)
	Adverse Weather or Normal Weather? (A or N)
	Estimated Release Duration:: (HH:MM) (Default Value 4:00)
	Has the Release been in Progress? (Y or N)
	- If Yes: Time Release has been in Progress: (HH:MM)
	- If No: Time Until Release Begins:: (HH:MM)
	Has the Reactor reached 0% Power? (Y or N)
	Time of Reactor reaching 0% Power: (HH:MM)
	Account for Wet Deposition? (Y or N)
I	Release Points (check one or more)
I	Main Stack Image: Main Stack Image: Unmonitored Release
	Is release from 🛛 Drywell 🗍 Suppression Pool 🗍 Other
	Drywell sprays 🗌 ON 🗌 OFF
	Is Suppressions Chamber 🛛 Saturated 🔲 Supercooled 🗌 Unknown
	Simultaneous Release? (Y or N)
	is a will for Treatment Efficiency Utilize 95 0% default value un

Verify Standby Gas Treatment Efficiency. Utilize 95.0% default value un the current efficiency can be verified by Peach Bottom Shift Management til and/or System Engineer or by the most recent surveillance test.

ATTACHMENT 1 INPUT PARAMETERS (Page 2 of 3)

PART 2. Information required only if Auto Mode A is unavailable.

I. METEOROLOGICAL PARAMETERS

. .

(For backup or alternate source inputs, refer to the attachment 6 titled, "Meteorological Parameter Resources")

IA. For Main Stack Release

Wind Speed _____ mph from Tower 2, 320 ft.

Wind Direction _____ from Tower 2, 320 ft.

Delta Temperature °F from Tower 2, 316' - 33'

Ambient Temperature _____ °F for Tower 2, 33 ft.

Precipitation _____ (60 minute total from MET screen or 'N' = not available)

- IB. For Unmonitored Release
 - Wind Speed _____ mph from River Tower
 - Wind Direction from River Tower
 - Delta Temperature °F from Tower 2, 316' 33'

Ambient Temperature _____ °F for Tower 2, 33 ft.

Precipitation _____ (60 minute total from MET screen or 'N' = not available)

ATTACHMENT 1 INPUT PARAMETERS (Page 3 of 3)

II. EFFLUENT PARAMETERS

. .

.

IIA. For Main Stack Release

Count Rate _____µCi/cc

(Check which parameter used)

Low Range (red), panel 00C014 Mid Range (blue), panel 00C014 High Range (green), panel 00C014

Flow Rate _____ kcfm (FRS-0470, panel 30C010)

PART 3. Information required for known isotopic projections.

I. Isotopic Breakdown

If known, enter sample results.

	Kr 83m	Xe 131m
	Kr 85m	Xe 133m
	Kr 85	Xe 135m
	Kr 87	Xe 135
	Kr 88	Xe 137
	Kr 89	Xe 138
	Total Noble Gas Concentration	µCi/ccµCi/cc
	I-131 I-133	I-135
	I-132 I-134 _	
	Total Iodine Concentration	μCi/cc
part 4	. Unknown Isotopic Breakdown for	Unmonitored Release
	Field Survey Whole Body Dose F	ate mR/hr
	Field Survey Thyroid Dose Rate	mR/hr
	Distance from the plant to whe obtained miles.	re the field survey readings were
	Angle between the field readir	g location and 0 degrees North
	Angle is positive in the clock from the wind direction alread	wise direction and must be 180 degrees ly inputted.

ATTACHMENT 2 AUTO MODE A (Page 1 of 4)

From Mode A or Auto A Menu Choose; 1. a. F3 -- Auto Mode A - Initiate automatic data collection Choose DBA from Accident Menu 2. Answer the following prompts: 3. a. Enter the time of the release in military format (Current system time = <ENTER> = 07:42) b. Enter the date of the release in standard format (Current system time = <ENTER> = 09/23/93): c. Night or Day? $(N \text{ or } D, \langle ENTER \rangle = D):$ d. Adverse Weather or Normal Weather? $(A \text{ or } N, \langle ENTER \rangle = N)$: e. Enter estimated release duration. $(00:01 \text{ to } 999:00, \langle \text{ENTER} \rangle = 4: 0):$ NOTE:

TO USE AUTO MODE A THE FOLLOWING PROMPT MUST BE ANSWERED "Y", OTHERWISE, YOU WILL BE PROMPTED TO SWITCH TO FAST MODE A. (AUTO DATA COLLECTION CANNOT HAPPEN FOR A RELEASE THAT HAS NOT YET OCCURRED).

f. Has the release been in progress?
 (Y or N, <ENTER> = N): Y

.

- g. Time the release has been in progress. (Format is (HH:MM), <ENTER> = 0: 0):
- h. When did the reactor reach 0% power?
 - 1. Date = <ENTER> = 09/23/93:
 - 2. Time in 24 hour format = <ENTER> = (00:00)
 Time since reactor shutdown will be displayed
- i. Do you wish the model to account for wet disposition? (Y or N, <ENTER> = N):

Select appropriate tower/sensor data from this table.

 $\begin{array}{c} \text{ATTACHMENT } 2 \\ \text{AUTO MODE A} \\ (\text{Page 2 of 4}) \end{array}$

NOTE:

METEOROLOGICAL AND RADIOLOGICAL DATA FOR THE TIME IN QUESTION WILL BE DISPLAYED. ANY OF THIS DATA CAN BE EDITED BY THE USER. ANY DATA MARKED WITH A CHECK MARK TO THE LEFT IS BAD DATA AND WILL NOT BE USED BY THE SYSTEM. THE BAD DATA MARK CAN BE REMOVED BY PRESSING ALT-B WITH THE CURSOR ON THAT DATA. THIS WILL CAUSE THE PROGRAM TO USE THAT DATA AS GOOD DATA. DATA MARKED WITH AN "R" IS DATA THAT IS OUT OF RANGE. THIS DATA CANNOT BE USED BY THE PROGRAM AND MUST BE CORRECTED.

The Auto Mode A Screen is then displayed:

j. View data and press F10 to continue.

- 1. If any of the data points are out of range, a warning will be displayed at the bottom of the screen and the cursor will go to the bad data point. This situation must be corrected before continuing.
- 2. If any meteorological data points are displayed as "bad data", the backup sensor will be used by the program. If radiological data for the release point in question is bad, or if all of a particular met quantity is bad, Auto Mode A will cease and the operator will be forced to use Fast Mode A or Mode A.
- k. Choose release point from release point menu.
 - 1. Met Data that will be used will be displayed.
- 1. Enter whether isotopic breakdown is known or unknown at breakdown menu.
 - 1. If unknown isotopic breakdown.

For PBAPS Main Stack, (For other release points, no SGTS prompt)

Enter the current stand-by-gas-treatment efficiency. Range is [.0000 to 99.99] -[<ENTER> = 95.0]

Use the default value unless instructed otherwise.

ATTACHMENT 2 AUTO MODE A (Page 3 of 4)

NOTE:

DEPENDING ON RELEASE POINT AND ANSWERS TO THESE PROMPTS, SEVERAL PROMPTS WILL APPEAR CONCERNING THE RELEASE PATH. THESE ARE USED TO DETERMINE THE NOBEL GAS TO IODINE RATIO AND ALL HAVE "UNKNOWN" AS AN OPTION. THIS PROMPT IS AN EXAMPLE:

IS THIS RELEASE FROM DRYWELL ATMOSPHERE, SUPPRESSION CHAMBER ATMOSPHERE, OR OTHER? (D, S, O, UNKNOWN = O <ENTER> = 0):

2. If known isotopic breakdown,

a. Then choose from isotope mix menu:

Isotopic Mix in Percentages(%)Isotopic Mix in Concentration(µCi/cc)Isotopic Mix in Release Rate(µCi/sec)

- b. How long after scram was the sample taken? (Enter 00:00 if the sample was taken before the scram) (Make sure a colon ":" separates the hours and minutes) (Format is (HH:MM), <ENTER> = 0: 0):
- c. Enter each noble gas and iodine isotope: (in units chose at menu)
- d. Enter total iodine concentration (µCi/cc).
 Range is (.0000 to 1.0000E+08)
 (<ENTER> = .0000):
- e. Do you wish to enter additional isotopes? (Y or N, <ENTER> = N): Y
- f. If answered "Y", additional isotopes may be entered.

ATTACHMENT 2 AUTO MODE A (Page 4 of 4)

NOTE:

ADDITIONAL NUCLIDES MAY BE ENTERED BY SYMBOL, MASS NUMBER, AND RELEASE RATE IN μ Ci/cc. A MAXIMUM OF UP TO 33 NUCLIDES MAY BE ENTERED. ENTER THE SYMBOL UP TO 2 LETTERS AT THE FIRST PROMPT, THE ATOMIC WEIGHT UP TO 3 DIGITS AT THE SECOND PROMPT ALONG WITH THE CHARACTER "M" IF THE NUCLIDE IS IN THE METASTABLE STATE.

(I.E Xe <-- AT THE FIRST PROMPT 133M <-- AT THE SECOND PROMPT)

. . .

g. Enter the nuclide symbol. (<ENTER> = No other radionuclides):

- h. Enter nuclide mass number, including M for metastable:
- i. Enter the amount of release in μ Ci/cc. Range is (.0000 to 1.0000E+20) (<ENTER> = .0000):
- j. View isotopic breakdown.
- 3. Would you like an automatic dump to the printer? (Y or N, <ENTER> = Y): Output will be produced designated location.
- 4. Will this be a simultaneous release?
 (Y or N, <ENTER> = N):
- 5. Receptor Display Menu will appear.

NOTE:

THESE OPTIONS ARE SELF EXPLANATORY EXCEPT FOR F7 RECEPTOR INFORMATION. THIS OPTION GIVES THE OPPORTUNITY TO DISPLAY ALL INFORMATION FOR A PARTICULAR RECEPTOR.

TPARD = TOTAL PROTECTIVE ACTION RECOMMENDED DOSE = EXTERNAL DOSE + ADULT CEDE + 4 DAY.

4DAY = SHINE DOSE FROM 4 DAYS' EXPOSURE TO GROUND DEPOSITION FROM RELEASE.

PAT = PLUME ARRIVAL TIME

DOSE RATIO = RATION OF EXTERNAL DOSE + CEDE (TEDE) TO EXTERNAL DOSE. THIS RATION GIVES A METHOD TO ESTIMATE TEDE FROM EXTERNAL DOSE (DRD READING). USED PRIMARY FOR FIELD TEAM DOSE ESTIMATION.

ATTACHMENT 3 FAST MODE A

- 1. Select F1, Fast Mode A, from the Command Menu.
- 2. IF isotopic breakdown unknown THEN select F1, Loss of Coolant Accident; IF isotopic breakdown is known THEN select F10, MCA Data

. | .

- 3. Enter data recorded on attachment titled "Input Parameters" in response to system prompts and menus.
- 4. Ensure appropriate device is selected for printer output.
- 5. Make appropriate printout selection.
- 6. IF a release is in progress from more than one release point THEN enter a "Y" after the prompt, "Will this be a simultaneous release?" AND repeat until data for all release points has been entered.
- 7. IF specific receptor data is desired, THEN select the appropriate receptor from the Receptor Display Menu OR select Q to leave the menu.
- 8. IF another dose projection is desired, THEN respond "Y" to the prompt OR respond "N" to leave the system.

ATTACHMENT 4 MODE A

1. Select F1, update data, from the command menu.

. .

2.	Select files to be updated from File Menu.
3.	Enter data recorded on attachment titled, "Input Parameters", in response to system prompts and menus.
4.	Once all files have been updated, select "Q" to return to the Command Menu.
5.	Select F2, Execute Dispersion Model, from the Command Menu.
6.	Select F2, Mode A, from Mode A Menu.
7.	Make appropriate printout selection.
8.	Respond to prompts to calculate a simultaneous release, view specific receptor data, run another dose projection, or exit the system, as desired.

ATTACHMENT 5 LIQUID RELEASE (Page 1 of 2)

NOTE:

THIS ATTACHMENT APPLIES TO LIQUID RELEASES THRU THE DISCHARGE CANAL TO THE RIVER OR LIQUID RELEASES EXITING THE SITE BY MEANS OTHER THAN THE DISCHARGE CANAL. CM-2

- 1. From Mode A or Auto Mode A Menu, select F4, Liquid Dose Calculations and enter data from this attachment.
- 2. Source of sample:

| .

NOTE:

BEFORE: DILUTION CORRECTION APPLIED AFTER: DILUTION CORRECTION <u>NOT</u> APPLIED

Before (Liquid release is to the discharge canal and the sample was obtained prior to dilution in the discharge canal.)

After (Liquid release is to the discharge canal and the sample has been obtained from the discharge canal after dilution by circulation water pump flow <u>OR</u> liquid release is exiting the site by means other than the discharge canal.)

Cs-137 µCi/ml

- 3. Estimated duration of the liquid release: _____ hours
- 4. Number of circ water pumps in operation = _____
- 5. Estimated volume of the liquid release: _____ gallons
- 6. Isotopic concentrations from analysis of release sample:
 - Zn-65 ____μCi/ml Cs-134 ____μCi/ml

Co-60 ____µCi/ml

I-131 ____µCi/ml

ATTACHMENT 5 LIQUID RELEASE (Page 2 of 2)

7. Make appropriate printout selection.

.

NOTE: LIQUID EFFLUENT RELEASE LIMIT PER THE OFFSITE DOSE CALCULATION MANUAL (ODCM). ODCMS 3.8.B.2 A) DURING ANY CALENDAR QUARTER, < 3.0 MREM TO THE TOTAL BODY AND < 10.0 MREM TO ANY ORGAN. B) DURING ANY CALENDAR YEAR, < 6.0 MREM TO THE TOTAL BODY AND < 20.0 MREM TO ANY ORGAN.

8. **IF** results exceed ODCM limits, **THEN** the Peach Bottom Emergency Director should ensure notification of the Department of Environmental Resources and downstream domestic water users from the Emergency Response Telephone Directory.

ATTACHMENT 6 <u>METEOROLOGICAL PARAMETER RESOURCES</u> (Listed in order of preference)

1. Main Control Room Instrument Panels (Control Room Only)

2. Plant Monitoring System (PMS) (Primary for TSC)

Select appropriate tower/sensor data from this table

Release Point MAIN STACK Wind Speed (mph) Wind Direction (Deg Azm) Delta Temperature (Deg F) Sigma Theta (Deg. Azm) Ambient Temperature (Deg F) Precipitation (in/hr)	Primary Twr 2-320' Twr 2-320' Twr 2-316'-33 Twr 2-75' Twr 2-33' Twr 2	PMS Screen MET MET MET MET MET MET	Backup Twr 2-75' Twr 2-75 Twr 2-150'-33' None None TwrA	PMS Screen MET MET MET MET MET MET
VENT STACK Wind Speed (mph) Wind Direction (Deg Azm) Delta Temperature (Deg F) Sigma Theta (Deg. Azm) Ambient Temperature (Deg F) Precipitation (in/hr)	Twr 2-75' Twr 2-75' Twr 2-316'-33' Twr 2-75' Twr 2-33' Twr 2	MET MET MET MET MET MET	Twr 2-320' Twr 2-320' Twr 2-150'-33' None None Twr A	MET MET MET MET MET MET
UNMONITORED RELEASE Wind Speed (mph) Wind Direction (Deg Azm) Delta Temperature (Deg F) Sigma Theta (Deg. Azm) Ambient Temperature (Deg F) Precipitation (in/hr)	River Twr 33' River Twr 33' Twr 2-316'-33' Twr 2-75' Twr 2-33' Twr 2	MET MET MET MET MET MET	Twr 2-75' Twr 2-75' Twr 2-150'-33' None None Twr A	MET MET MET MET MET MET

3. National Weather Service

A. PENN State NWS: 9-1-814-237-1152 or 9-1-800-697-0010 B. Mount Holly NWS: 9-1-609-261-6604

Obtain the following meteorological parameters:

Wind Direction (WD30)	deg. az	•
Wind Speed (WD30)	knots	
Cloud Cover (CLCVR)	tenths	
Cloud Ceiling (CLCEG)	ft	
Ambient Temperature	deg. F	
Precipitation	in/hr	

Forecast:

NWS Contact:

Effective Date:

ERP-326, Rev. 1 Page 1 of 11 KLM/mes

EXELON NUCLEAR LIMERICK UNITS 1 AND 2 EMERGENCY RESPONSE PROCEDURE

ERP-326 SHIFT DOSE ASSESSMENT PERSONNEL (SDAP)

WARNING

THIS PROCEDURE SHALL BE IMPLEMENTED UPON DECLARATION OF AN EMERGENCY AT PEACH BOTTOM OR LIMERICK AT THE DISCRETION OF THE AFFECTED SITE SHIFT MANAGEMENT.

1.0 RESPONSIBILITIES

- 1.1 Reports to the shift management at the affected site.
- 1.2 Capable of reporting to the Control Room within 15 minutes when requested to perform dose projections.
- 1.3 Provides off-site dose projections and applicable protective action recommendations due to radiological releases or projected radiological releases within 30 minutes of the initiating event (accident, transient).
- 1.4 Responsible for dose assessment functions until Technical Support Center (TSC) Dose Assessment Coordinator (DAC) or the Emergency Operations Facility (EOF) Dose Assessment Team (DAT) is assembled and turn-over is completed. CM-1

NOTE

SDAP ACTIVELY PERFORMING DOSE PROJECTIONS SHALL HAVE NO OTHER RESPONSIBILITIES DURING EMERGENCIES THAT DETRACT FROM DOSE ASSESSMENT CALCULATIONS.

CM-2

2.0 INITIAL ACTIONS:

- 2.1 <u>WHEN</u> an alert or higher level emergency is declared <u>OR WHEN</u> requested by shift management at either site, <u>THEN</u> report to the Control Room.
- 2.2 <u>IF</u> performing a dose projection for PBAPS <u>THEN</u> upon reporting to LGS Control Room, obtain a copy of PBAPS ERP-200-6 that was Faxed to 802:2092.

- 2.3 <u>IF</u> no FAX arrived, <u>THEN</u> contact PBAPS Shift Management (807:4687 or 81-231) <u>AND</u> request ERP-200-6 be Faxed.
- 2.4 <u>IF</u> performing a dose projection for LGS, <u>THEN</u> request a completed copy of LGS ERP-200-2 from LGS Shift Management.
- 2.5 <u>IF</u> immediate dose projections are not necessary <u>THEN</u> become familiar with plant radiological conditions, effluent radiation monitors and release rates.
- 2.6 <u>IF</u> a probable offsite radiological release exists <u>OR</u> <u>IF</u> there is an unexpected or unexplained increase in the effluent radiation monitors, <u>THEN</u> perform a dose projection.
- 2.7 Activate computers used for dose assessment.
 - 2.7.1 Turn on computer power.
 - 2.7.2 IF computer and printer do not activate, THEN ensure individual switches are turned on.
 - 2.7.3 Verify paper is loaded in adequate supply.
 - 2.7.4 At desk top, choose icon for appropriate site that a dose projection will be performed for.
 - 2.7.5 Log onto the Computer Dose Assessment System. Use tab key to relocate cursor to next field.

2.7.5.1 Control Room a. Password = MCR b. User ID = 111111

- 2.7.6 **IF** equipment failure occurs THEN using key C-24 (D1512), relocate to the TSC Dose Assessment Room.
 - 2.7.6.1 TSC a. Password = TSC b. User ID = 222222
- 2.7.7 After log on, choose F1 or F2 for the appropriate site that a dose projection will be performed for (same site as specified in step 2.7.4).

NOTE

THE PASSWORD AND USER ID FOR THE CONTROL ROOM DOSE ASSESSMENT COMPUTER WILL ALLOW ACCESS TO FAST MODE A, AUTO MODE A, OR LIQUID DOSE CALCULATIONS.

THE PASSWORD AND USER ID FOR THE TSC DOSE ASSESSMENT COMPUTER WILL ALLOW ACCESS TO FAST MODE A, MODE A, AUTO MODE A, LIQUID DOSE CALCULATIONS, OR BACK CALCULATION SOURCE TERM.

- 2.8 IF performing dose projections in the Control Room, THEN select F3. Use Auto Mode A (Initiate Automatic Data Collection) and input parameters given by affected site shift Management.
 - 2.8.1 Verify all data inputs on printout match data sheet.
 - 2.8.2 Advise Shift Management and/or DAC/DAT of results of dose projection.
 - 2.8.3 Repeat dose projections as new information becomes available until relieved by the Dose Assessment Coordinator or EOF Dose Assessment Team.
- 2.9 **IF** performing dose projections in the Limerick TSC, <u>THEN</u> select F2, Execute Dispersion Model, from the command menu, then select F3, Auto Mode A, and input data from Attachment 1.
 - 2.9.1 **IF** Auto Mode fails, <u>THEN</u> request additional information from affected site's Shift Management <u>AND</u> use F1, Fast Mode A. Initiate model from sequential screens.
- 2.10 For unmonitored releases, contact affected site's Shift Management to dispatch Radiation Protection Technician to perform site boundary survey.
- 2.11 **IF** the dose projection indicates that an emergency action level has been reached, **THEN** immediately advise shift management.
- 2.12 Submit any dose projections and protective action recommendations to affected site's shift management for evaluation. For PBAPS, fax to 807:4793.

3.0 CONTINUING ACTIONS

3.1 Monitor plant radiological parameters and possible radiological release pathways.

- 3.2 Inform affected site Shift Management if any radiological parameters change significantly.
- 3.3 <u>WHEN</u> the affected site Dose Assessment Coordinator (DAC) arrives at the TSC, THEN:
 - 3.3.1 Provide the DAC with current information, including any protective action recommendations, and any previous dose projections.
 - 3.3.2 Discuss whether to remain in the Control Room or terminate the SDAP position.
- 3.4 **WHEN** the EOF dose assessment team is activated, **THEN** perform turnover using attachment 4 titled, "Dose Assessment Turnover Sheet".

4.0 FINAL CONDITIONS

- 4.1 Exit this procedure when either:
 - 4.1.1 Turnover to the Dose Assessment team is completed and no other assistance is requested by Shift Management at the affected site or
 - 4.1.2 The Emergency Plan has been exited and no other assistance has been requested by Shift Management at the affected site.

5.0 ATTACHMENTS AND APPENDICES

- 5.1 Attachment 1, "Auto Mode A"
- 5.2 Attachment 2, "Fast Mode A"
- 5.3 Attachment 3, "Meteorological Parameter Resources"
- 5.4 Attachment 4, "Dose Assessment Turnover Sheet"

6.0 <u>SUPPORTING INFORMATION</u>

6.1 PURPOSE

To provide guidance and direction for Shift Dose Assessment Personnel performing dose assessment.

6.2 CRITERIA FOR USE

This procedure is to be implemented upon declaration of an emergency at PBAPS, LGS, or at the discretion of Shift Management at the affected site.

- 6.3 SPECIAL EQUIPMENT
 - 6.3.1 None
- 6.4 REFERENCES
 - 6.4.1 ERP-200, "Emergency Director" (PBAPS)
 - 6.4.2 ERP-200, "Emergency Director" (LGS)
 - 6.4.3 ERP-301, "Dose Assessment Coordinator" (PBAPS)
 - 6.4.4 ERP-300, "Dose Assessment Coordinator" (LGS)
 - 6.4.5 ERP-315, "Operation of the Dose Assessment Computer" (PBAPS)
 - 6.4.6 ERP-316, "Operation of the Dose Assessment Computer" (LGS)
 - 6.4.7 ERP-325, "Shift Dose Assessment Personnel" (PBAPS)
 - 6.4.8 ERP-C-1300, "Dose Assessment Team"
- 6.5 COMMITMENT ANNOTATIONS
 - 6.5.1 CM-1, Letter to NRC, 02/11/86, T01935 (section 1.4)
 - 6.5.2 CM-2, Letter to NRC dated 8/8/86, in response to NRC PB Insp. Rpt. 86-06106, T03210 (section 1.0)

$\begin{array}{c} \text{ATTACHMENT 1} \\ \text{AUTO MODE A} \\ (\text{Page 1 of 3}) \end{array}$

,

1		
1.	Fro	om Mode A or Auto A Menu Choose;
	a.	F3 Auto Mode A - Initiate automatic data collection
2.	Cho	pose DBA from Accident Menu
3.	Ans	swer the following prompts:
	a.	Enter the time of the release in military format (Current system time = <enter> = 07:42)</enter>
	b.	Enter the date of the release in standard format (Current system time = <enter> = 09/23/93):</enter>
	c.	Night or Day? (N or D, <enter> = D):</enter>
	d.	Adverse Weather or Normal Weather?
		$(A \text{ or } N, \langle ENTER \rangle = N)$:
	e.	<pre>Enter estimated release duration. If unknown released duration, use default value (default is 4 hours). (00:01 to 999:00, <enter> = 4: 0):</enter></pre>
		NOTE:
		TO LEE ALTO MODE A THE FOLLOWING PROMPT MUST BE ANSWERED "Y".
		OTHERWISE, YOU WILL BE PROMPTED TO SWITCH TO FAST MODE A. (AUTO DATA COLLECTION CANNOT HAPPEN FOR A RELEASE THAT HAS NOT YET OCCURRED).
	f.	<pre>Has the release been in progress? (Y or N, <enter> = N): Y</enter></pre>
	f. g.	<pre>To use Auto Mode A The Following TRomin Hold be TROMAND F, OTHERWISE, YOU WILL BE PROMPTED TO SWITCH TO FAST MODE A. (AUTO DATA COLLECTION CANNOT HAPPEN FOR A RELEASE THAT HAS NOT YET OCCURRED). Has the release been in progress? (Y or N, <enter> = N): Y Time the release has been in progress. (Format is (HH:MM), <enter> = 0: 0):</enter></enter></pre>
	f. g. h.	<pre>10 USE AUTO MODE A THE FOLLOWING TROMT HOLT DE TROMERD 1 / AUTO OTHERWISE, YOU WILL BE PROMPTED TO SWITCH TO FAST MODE A. (AUTO DATA COLLECTION CANNOT HAPPEN FOR A RELEASE THAT HAS NOT YET OCCURRED). Has the release been in progress? (Y or N, <enter> = N): Y Time the release has been in progress. (Format is (HH:MM), <enter> = 0: 0): Has the reactor been scrammed? (Y or N, <enter> = N): Y</enter></enter></enter></pre>
	f. g. h.	<pre>TO USE ADIO MODE A THE FORDOWING TROMITION FIRST MODE A. (AUTO OTHERWISE, YOU WILL BE PROMPTED TO SWITCH TO FAST MODE A. (AUTO DATA COLLECTION CANNOT HAPPEN FOR A RELEASE THAT HAS NOT YET OCCURRED). Has the release been in progress? (Y or N, <enter> = N): Y Time the release has been in progress. (Format is (HH:MM), <enter> = 0: 0): Has the reactor been scrammed? (Y or N, <enter> = N): Y When did the reactor reach 0% power?</enter></enter></enter></pre>
	f. g. h. i.	<pre>10 USE AUTO MODE A THE FORMOWING TRANTIENT OF ANDALAD TO OTHERWISE, YOU WILL BE PROMPTED TO SWITCH TO FAST MODE A. (AUTO DATA COLLECTION CANNOT HAPPEN FOR A RELEASE THAT HAS NOT YET OCCURRED). Has the release been in progress? (Y or N, <enter> = N): Y Time the release has been in progress. (Format is (HH:MM), <enter> = 0: 0): Has the reactor been scrammed? (Y or N, <enter> = N): Y When did the reactor reach 0% power? 1. Date = <enter> = 09/23/93: 2. Time in 24 hour format = <enter> = (00:00) Time since reactor shutdown will be displayed</enter></enter></enter></enter></enter></pre>
	f. g. h. i.	<pre>10 USE ADIO MODE A THE FOLLOWING FROM FIGHT HOUSE ADIO MALE FOR A RELEASE THAT HAS NOT YET OCTURED). Has the release been in progress? (Y or N, <enter> = N): Y Time the release has been in progress. (Format is (HH:MM), <enter> = 0: 0): Has the reactor been scrammed? (Y or N, <enter> = N): Y When did the reactor reach 0% power? 1. Date = <enter> = 09/23/93: 2. Time in 24 hour format = <enter> = (00:00) Time since reactor shutdown will be displayed Do you wish the model to account for wet disposition? (Y or N, <enter> = N):</enter></enter></enter></enter></enter></enter></pre>

ATTACHMENT 1 AUTO MODE A (Page 2 of 3)

NOTE:

METEOROLOGICAL AND RADIOLOGICAL DATA FOR THE TIME IN QUESTION WILL BE DISPLAYED. ANY OF THIS DATA CAN BE EDITED BY THE USER. ANY DATA MARKED WITH A CHECK MARK TO THE LEFT IS BAD DATA AND WILL NOT BE USED BY THE SYSTEM. THE BAD DATA MARK CAN BE REMOVED BY PRESSING ALT-B WITH THE CURSOR ON THAT DATA. THIS WILL CAUSE THE PROGRAM TO USE THAT DATA AS GOOD DATA. DATA MARKED WITH AN "R" IS DATA THAT IS OUT OF RANGE. THIS DATA CANNOT BE USED BY THE PROGRAM AND MUST BE CORRECTED.

The Auto Mode A Screen is then displayed:

- j. View data and press F10 to continue.
 - 1. If any of the data points are out of range, a warning will be displayed at the bottom of the screen and the cursor will go to the bad data point. This situation must be corrected before continuing.
 - 2. If any meteorological data points are displayed as "bad data", the backup sensor will be used by the program. If radiological data for the release point in question is bad, or if all of a particular met quantity is bad, Auto Mode A will cease and the operator will be forced to use Fast Mode A or Mode A.
- k. Choose release point from release point menu.
 - 1. Met Data that will be used will be displayed.
- 1. At breakdown menu, select F1 "Isotopic Breakdown Unknown".
- m. When projecting dose assessment for LGS, you will be prompted for Iodine Concentration calculations from iodine/noble gas ratio. Enter 'Y' (default value).
- n. When projecting dose assessment for LGS, you will be prompted if release is processed through SGTS.
 IF yes,
 THEN provide efficiency and supply information for RERS filters.
- 0. IF no for SGTS, THEN you will be prompted to answer "Is this release from drywell atmosphere, suppression chamber atmosphere, or other?". (D, S, O, UNKNOWN = O <ENTER> = O):

ATTACHMENT 1 AUTO MODE A (Page 3 of 3)

NOTE:

DEPENDING ON RELEASE POINT AND ANSWERS TO THESE PROMPTS, SEVERAL PROMPTS WILL APPEAR CONCERNING THE RELEASE PATH. THESE ARE USED TO DETERMINE THE NOBEL GAS TO IODINE RATIO AND ALL HAVE "UNKNOWN" AS AN OPTION. THIS PROMPT IS AN EXAMPLE:

IS THIS RELEASE FROM DRYWELL ATMOSPHERE, SUPPRESSION CHAMBER ATMOSPHERE, OR OTHER? (D, S, O, UNKNOWN = O <ENTER> = O):

1. Would you like an automatic dump to the printer? (Y or N, <ENTER> = Y): Output will be produced designated location.

2. Will this be a simultaneous release?
 (Y or N, <ENTER> = N):

ATTACHMENT 2 FAST MODE A

- 1. Select F1, Fast Mode A, from the Command Menu.
- 2. Ensure appropriate device is selected for printer output.
- 3. Make appropriate printout selection.
- 4. IF a release is in progress from more than one release point, THEN enter a "Y" after the prompt, "Will this be a simultaneous release?" AND repeat until data for all release points has been entered.
- 5. IF specific receptor data is desired, THEN select the appropriate receptor from the Receptor Display Menu OR select Q to leave the menu.
- 6. IF another dose projection is desired, THEN respond "Y" to the prompt OR respond "N" to leave the system.

ATTACHMENT 3 <u>METEOROLOGICAL PARAMETER RESOURCES</u> (Listed in order of preference)

1. Main Control Room Instrument Panels (Control Room Only)

2. National Weather Service

A. PENN State NWS: 9-1-814-237-1152 or 9-1-800-697-0010 B. Mount Holly NWS: 9-1-609-261-6604

Obtain the following meteorological parameters:

Wind Direction (WD30)deg. az.Wind Speed (WD30)knotsCloud Cover (CLCVR)tenthsCloud Ceiling (CLCEG)ftAmbient Temperaturedeg. FPrecipitationin/hr

Forecast:

ATTACHMENT 4

DOSE ASSESSMENT TURNOVER SHEET

Turnover of dose assessment responsibility from one Dose Assessment team/location to another Dose Assessment team/location should include the transmittal of any available information listed below:

1. Affected Station	Unit
2. Contact person:	
a) Dose Assessment Coordinator (DAC)	PBAPS Phone: <u>(81:280),807:4644,4645</u> LGS Phone:
Name	
b) Dose Assessment Team Leader (DATL)	
	(<u>257), 803:3843</u>
Name	Phone
3. Time of reactor trip/scram	
4. Plant Status	
5.Release Point	
6.Start time of release	
7. Estimated duration of release	
8. Method(s) used to calculate doses 🗌 Auto-A	🗌 Fast-A 🗌 Mode A
9. Design Basis Accident	
10.Site evacuation assembly area	
11.Results of dose calculations, based on dos Action Recommendation.	e projection, Protective

Completed By

Date/Time

Effective Date:

2/15/02

ERP-360, Rev. 4 Page 1 of 12 KLM/mes

EXELON NUCLEAR LIMERICK GENERATING STATION EMERGENCY RESPONSE PROCEDURE

ERP-360 ADJUSTMENT OF WIDE RANGE GAS MONITOR CONVERSION FACTORS

1.0 **RESPONSIBILITIES**

- 1.1 The TSC Dose Assessment Coordinator (DAC) shall coordinate the changing, if necessary, of the Wide Range Gas Monitor (WRGM) conversion factors.
- 1.2 The EOF Dose Assessment Team Leader (DATL) shall direct the TSC Dose Assessment Team to change if necessary, the WRGM conversion factors.
- 1.3 The Emergency Director (ED) shall be apprised of any changes to the WRGM conversion factor and any impact the changes may have on Emergency Action Levels (EALs) or Protective Action Recommendations.
- 1.4 The Emergency Response Manager (ERM) shall be apprised of any changes to the WRGM conversion factor and any impact the changes may have on EALs or Protective Action Recommendations.

2.0 INITIAL ACTIONS

- 2.1 The TSC DAC while activated, shall:
 - 2.1.1 Determine a new WRGM conversion factor approximately 3 hours, 7 hours, 12 hours, 24 hours, 2 days, and 4 days following reactor shutdown or until termination of the release.
 - 2.1.1.1 IF the suspected source term is a LOCA, (Major Fuel Damage-D/W Rad monitor ≥100 R/mr) THEN refer to ERP-360-1 to calculate AND document the new WRGM conversion factors.

- 2.1.1.2 <u>IF</u> the suspected source term is not a LOCA, (Minor Fuel Damage-D/W Rad monitor <100 R/mr) <u>THEN</u> obtain an isotopic analysis <u>AND</u> refer to ERP-360-2 to calculate and document the new WRGM conversion factors.
- 2.1.2 Inform the ED of the need to change the WRGM conversion factors and any impact the changes may have on EALs or Protective Action Recommendations.
- 2.1.3 Upon concurrence from the ED, request that a Communicator notify the Shift Supervisor in the Control Room of the planned action.
- 2.1.4 Direct I&C to apply the new calibration factors to the mid and high-range channels as follows:

NOTE

· · · ·

The Supervisory Key Switch for the WRGM RM-23 Indicating Controller RIX-026-076 is located to the right of the RM-23.

- 2.1.4.1 Obtain the key for the supervisory key switch for RIX-026-076, located on panel 00-C691.
- 2.1.4.2 Select the Supervisory Position of the key switch for the WRGM, RY-026-076.
- 2.1.4.3 At RIX-026-076, press CH2.
- 2.1.4.4 At RIX-026-076, press 011, <u>THEN</u> press ITEM.
- 2.1.4.5 At RIX-026-076, enter the new mid-range value of the conversion factor.
- 2.1.4.6 At RIX-026-076, press ENTER.
- 2.1.4.7 At RIX-026-076, press CH2.
- 2.1.4.8 At RIX-026-076, press CH3.
- 2.1.4.9 At RIX-026-076, enter 011, <u>THEN</u> press ITEM.
- 2.1.4.10 At RIX-026-076, enter the new high-range value of the conversion factor.

- 2.1.4.11 At RIX-026-076, press ENTER.
- 2.1.4.12 At RIX-026-076, press CH3.
- 2.1.4.13 Place key switch on Panel 00-C691 to the NORMAL position and remove key.
- 2.1.4.14 Return the key.
- 2.2 The EOF DATL shall upon turnover from the TSC:
 - 2.2.1 Determine a new WRGM conversion factor approximately 3 hours, 7 hours, 12 hours, 24 hours, 2 days, and 4 days following reactor shutdown or until termination of the release.
 - 2.2.1.1 IF the suspected source term is a LOCA, (Major Fuel Damage-D/W Rad monitor ≥100 R/mr) THEN refer to Appendix 1 to calculate and document the new WRGM conversion factors.
 - 2.2.1.2 **IF** the suspected source term is not a LOCA, (Minor Fuel Damage-D/W Rad monitor <100 R/mr) **THEN** obtain an isotopic analysis and refer to ERP-360-2 to calculate and document the new WRGM conversion factors.
 - 2.2.2 Inform the ERM of the need to change the WRGM calibration factors and any impact the changes may have on EALs or PAG Recommendations.
 - 2.2.3 Upon concurrence from ERM, request the a Communicator notify the Shift Supervisor in the Control Room of the planned action.

3.0 CONTINUING ACTIONS

-

3.1 The EOF DATL shall:

3.1.1 Upon termination of the release, evaluate the applicability of the current conversion factors.

4.0 FINAL CONDITIONS

4.1 Upon termination of the emergency, I&C shall return WRGM conversion factors to normal setting.

5.0 ATTACHMENTS AND APPENDICES

- 5.1 ERP-360-1, Mid and High-Range Conversion Factor Adjustment Worksheet for a Suspected LOCA
- 5.2 ERP-360-2, Mid and High-Range Conversion Factor Adjustment Worksheet for Non-LOCA Source Terms

6.0 SUPPORTING INFORMATION

6.1 <u>Purpose</u>

1

- 6.1.1 The purpose of this procedure is to provide instructions in the determination and the application of WRGM conversion factors during an emergency as a function of time after reactor shutdown.
- 6.2 Criteria For Use
 - 6.2.1 A release of significant magnitude has occurred resulting in the activation of the mid or high-range channel of the WRGM.
- 6.3 <u>Special Equipment</u>

None

- 6.4 <u>References</u>
 - 6.4.1 G. A. Technologies, INC, Calibration Report RD-72 Wide Range Gas Monitor High and Mid-Range Detectors, E-255-961 (Rev. 2)
 - 6.4.2 LGS RD-72 Transfer Calibration Procedure (0366-9010)
 - 6.4.3 Memo, L. G. Pyrih to R. H. Logue, Limerick Generating Station Units 1 and 2, Subject: Wide Range Accident Monitor Calibration Factors, dated Aug. 27, 1984.
- 6.5 <u>Commitment Annotation</u>

None

MID AND HIGH-RANGE CONVERSION FOR A SUSPE	FACTOR ADJUSTMENT WORKSHEET
Date:	
Time: Time a	after reactor shutdown (hrs)
Mid-range calibration fact (Determine from Figure 1):	or cpm_ µCi/cc
Mid-range conversion facto	er = <u>1</u> Mid-range calibration factor
A.	
New Mid-range conversion factor for channel RE26076-1	= <u>µCi/cc</u>
High-range calibration factor: (Determine from Figure 2)	<u>cpm</u> μCi/cc
High-range conversion factor =	1
	High-range calibration factor
B.	
<pre>New Mid-range conversion = for channel RE26076-3</pre>	μ <u>Cl/cc</u> cpm

Apply Value A to channel item 11 of RE26076-1 Apply Value B to channel item 11 of RE26076-3

Appendix ERP-360-1 FIGURE 1 Mid-Range Detector Response Vs. Time

.000

ERP-360, Rev. 4 Page 7 of 12

1.000

APPENDIX ERP-360-2

Mid and High-Range Conversion Factor Adjustment Worksheet for Non-LOCA Source Terms

INSTRUCTIONS

1.

Do one worksheet each for the mid-range and high-range channels. Complete the worksheets as follows:

- 1. Fill in the appropriate information at the top of the worksheet.
- 2. List the suspected or actual isotopic makeup of the release in the first column.
- 3. Provide the concentration or curie amount in the second column.
- 4. Determine the fractional abundance of each isotope in the source term. The sum of all isotopic abundances should approximately equal 1.
- 5. Obtain the values for B, C, and D from the Table of Isotopes, Radiological Health Handbook or any acceptable reference document.
- 6. Obtain the value for E from Figure 3 and Figure 4 for the midrange and high-range channel respectively. Use the gamma curve for each gamma emitted and the beta curve for each beta emitted.
- 7. Determine the isotopic conversion factor for each emission (F) by multiplying column D times E.
- 8. Calculate the expected yield for each emission (G) by multiplying columns A times F times Cf.

NOTE

CF VALUES ARE DETECTOR CORRECTION FACTIONS OBTAINED FROM TRANSFER CALIBRATION PROCEDURE (0366-9010). THE VALUE IS 1.29 FOR BETA AND 1.07 FOR GAMMA.

- Calculate the Total Expected Yield for the Source Term (CPM/uCi/cc) by adding all expected yields for each emission in column G.
- 10. Calculate the new conversion factor for each channel by taking the reciprocal of the Total Expected Yield.
- 11. Apply the new conversion factor determined in step 9 to channel item 11 for the channel of interest.

ERP-360, Rev. 4 Page 9 of 12

APPENDIX ERP-360-2

DATE: Mid and High-Range Calibration Factor Adjustment Worksheet TIME: tor Non-LOCA Source Terms Time after reactor (See notes on following page) Shutdown: MID-RANGE

Source Term		Intensity	Radiations Produced		<u>cpm</u> uCi/cc from Graph	cpm uCi/cc D x E	Expected Yield A x F x CF	cf-beta = 1.29 cf-gamma = 1.07	
Isotope	Concentration or Activity		E (MeV)	B or	No. per Dis				
		A	В	С	D	Е	F	G	and a second
									ENTER THE RECIPROCAL OF THE TOTAL EXPECTED YIELD IN CHANNEL ITEM 11: 1 TOTAL EXP. YIELD = <u>uCi/cc</u> CPM

·······

HIGH-RANGE

APPENDIX ERP-360-2

NOTES

- A = Fractional abundance of each isotope in source term. The sum of all isotopes should approximately equal 1.
- B,C,D = Obtain these values from the Table of the Isotopes or the Radiological Health Handbook.
- E = Obtain these values as a function of beta or gamma energy from Figure 1 (Mid-range detector) and Figure 2 (High-range detector) of this Appendix.
- F = D times E

G = A times F times Cf

Cf = These values are actual values obtained from the transfer calibration procedure (0366-9010) and are 1.29 for betas and 1.07 for gammas.

APPENDIX ERP-360-2

1

FIGURE 3

Fig. 3. Mid-range detector energy response curve

ERP-360, Rev. 4 Page 12 of 12

APPENDIX ERP-360-2

Fig. 4. High-range detector energy response curve

ATTACHMENT 2

LIMERICK GENERATING STATION, UNITS 1 & 2

Docket Nos. 50-352 50-353

License Nos. NPF-39 NPF-85

EMERGENCY RESPONSE PROCEDURES

REPORT INDEX

1

£

1

PROCEDURE INDEX REPORT:

FAC	DOC TYPE	PROC TYPE	PROCEDURE NUMBER	CURR REV NBR	TITLE	EFFECTIVE DATE	RESP GROUP	SYSTEM NBR
L G	PROC	FRP	FRP-C-1000	0006	EMERGENCY OPERATIONS FACILITY (FOF) ACTIVATION/DEACTIVATION	06/25/01		
LG	PPOC	FRD	ERP-C-1000-1	0004	EDE ACTIVATION CHECKLIST	06/25/01		
	PDOC		ERD-C-1000-2	0004		04/21/00		
LG	PROC		ERP-C-1000-2	0000		04/21/99		
	PROC		ERP=C=1000=3	0000	EOF BUSINESS HOURS FIRST RESPONDER CHECKLIST	04/21/99		
LG	PROC	EKP	ERP-C-1000-4	0000	EUF AFTER DUURS FIRST RESPUNDER CHECKLIST	04/21/99		
LG	PROC	ERP	ERP-C-1000-5	0000	MIMIMUM STAFFING POSITIONS RECESSARY TO ACTIVATE THE EOF	06/25/01		
LG	PROC	ERP	ERP-C-1100	0003	INCORPORATED INTO ERP-C-1250	09/14/94		
LG	PROC	ERP	ERP-C-1200	0011	EMERGENCY REPSONSE MANAGER	06/25/01	LWE	
LG	PROC	ERP	ERP-C-1200-1	0000	EMERGENCY RESPONSE MANAGER TURNOVER/BRIEFING FORM	09/14/94		
LG	PROC	ERP	ERP-C-1200-2	0000	PROTECTIVE ACTION RECOMMENDATION WORKSHEET CANCELLED	10/24/95		
LG	PROC	ERP	ERP-C-1200-3	0000	ERM PAR DELIVERY CHECKLIST	04/03/00		
LG	PROC	ERP	ERP-C-1200-4	0000	MINIMUM STAFFING POSITIONS NECESSARY TO ACTIVATE THE EQF	03/30/01		
ĹĞ	PROC	ERP	ERP-C-1210	0002	ASSISTANT EMERGENCY RESPONSE MANAGER (AERM)	10/24/95		
					CANCELLED			
LG	PROC	ERP	ERP-C-1250	0004	EMERGENCY PREPAREDNESS COORDINATOR/EOF	06/25/01		
LG	PROC	ERP	ERP-C-1250-1	0000	EMERGENCY POWER INSTRUCTIONS	09/14/94		
LG	PROC	ERP	ERP-C-1250-2	0002	EMERGENCY PREPAREDNESS COORDINATOR INSTRUCTIONS FOR ASPEN BACKUP NOTIFICATION SYSTEM	05/11/01		
LG	PROC	ERP	ERP-C-1250-3	0000	EMERGENCY PREPAREDNESS COORDINATOR INSTRUCTIONS TO STOP	09/14/94		
LG	PROC	ERP	ERP-C-1250-4	0000	ENERGENCY PREPAREDNESS COORDINATOR INSTRUCTIONS FOR SYSTEM	09/14/94		
IG	PROC	FRP	ERP-C-1300	0010	EMERGENCY OPERATIONS FACILITY (FOF) DOSE ASSESSMENT TEAM LEADER	08/29/00		
iG	PROC	FRP	ERP-C-1300-1	0004	DOSE ASSESSMENT TEAM LEADER (DATL) INITIAL ACTIONS	06/25/01		
LG LG	PROC	EDD	ERP-C-1300-2	0000	DOSE ASSESSMENT TURNOVER LIST	09/23/94		
iG	PROC	FRP	ERP-C-1300-3	0004	PROTECTIVE ACTION RECOMMENDATION WORKSHEET	03/30/01		
ic	DDOC	FPD	ERP-C-1300-4	0000		00/00/01		
	PPOC	EDD	ERP-C-1300-5	0001		11/02/98		
Ľď	PROC	LKF	ERF 1011300 5	0001	RECOMMENDATIONS (PARS)	11/02/90		
LG	PROC	FRP	FRP-C-1300-6	0002	DOSE ASSESSMENT GROUP MEMBER (DAGM) INITIAL ACTIONS	06/25/01		
ĩũ	PROC	ERP	EBP-C-1300-7	0000	OBTAINING EPDS MET/RAD DATA	03/26/97		
iG	PROC	ERD	ERP-C-1300-8	0000	USE OF MODE A/MODE B CDM	03/26/97		
iG	PROC	FRD	ERP-C-1300-9	0001	OBTAINING MET DATA FROM NATIONAL WEATHER SERVICE	00/12/97		
LG	PROC	ERP	ERP-C-1310	0003	EMERGENCY OPERATIONS FACILITY (EOF) DOSE ASSESSMENT GROUP	03/26/97		
LG	PROC	ERP	ERP-C-1310-1	0000	DOSE ASSESSMENT GROUP LEADER INITIAL ACTIONS	03/26/97		
LG	PROC	ERP	ERP-C-1310-2	0000	OBTAINING MET DATA FROM NATIONAL WEATHER SERVICE	03/26/97		
LG	PROC	ERP	ERP-C-1310-3	0000	OBTAINING EPDS MET/RAD DATA	03/26/97		
LG	PROC	ERP	ERP-C-1310-4	0000	USE OF MODE A / MODE B OF CDM	03/26/97		
IG	PROC	FRP	ERP-C-1320	0007	CANCELLED EMERGENCY OPERATIONS FACTLITY (FOF) FIFLD SURVEY GROUP LEADER	08/29/00		
10	DDOC	FDD	ERP-C-1320-1	0007	ETEL SURVEY GROUP LEADER INITIAL ACTIONS	04/10/00		
			EDD_C_1320_2	0002	ETEL SUBVEY COULD LEADER THITTHE ACTIONS	02/26/07		
	PROC			0001	ETEL SUBVEV COULD LEADED DATA CHEET	00/20/9/		
			EPD-C-1400	0002	ENCINEEDING SUBODI TEAM	08/29/00		
ւս	PRUC	CKP	ERP-0-1400	0005	ENGINEERING SUPPORT TEAM	06/25/01		

PROCEDURE INDEX REPORT:

•

				CURR				
	DOC	DDOC		DEV		FEFECTIVE	DECD	SVSTEM
EAC	TVDE	TVDE			TTTI F		GROUP	NBD
FAC	TYPE	TYPE	PROCEDORE NUMBER	NDR		DATE	GROOP	NDK
	DDOC	500	EBD_C_1400_1	0002	ENGINEEDING SUDDORT TEAM CHECKLIST	11/02/08		
	PROC		ERP-C-1400-1	0002	CODE DAMAGE ASSESSMENT			
LG	PROC		ERP-C-1410	0002		09/09/98		
LG	PROC	ERP	ERP-C-1410-1	0000		09/14/94		
LG	PROC	ERP	ERP-C-1410-2	0001	Hydrogen concentration data	09/09/98		
LG	PROC	ERP	ERP-C-1410-3	0001	CONTAINMENT RADIATION MONITOR DATA	09/09/98		
LG	PROC	ERP	ERP-C-1410-4	0000	METAL WATER REACTION	09/09/98		
					CANCELLED			
LG	PROC	ERP	ERP-C-1410-5	0002	PERCENT OF FUEL INVENTORY AIRBORNE IN THE CONTAINMENT VS.	06/01/01		
					APPROXIMATE SOURCE AND DAMAGE ESTIMATE			
LG	PROC	ERP	ERP-C-1410-6	0002	PROCEDURES FOR ESTIMATING FUEL DAMAGE BASED ON MEASURED	06/25/01		
					I-131 AND XE-133 CONCENTRATIONS			
I G	PROC	FRP	EBB-C-1500	0006	LOGISTIC SUPPORT TEAM	04/14/00		
ĨĜ	PROC	FRP	EBP-C-1500-1	0001	MESSAGE AND INFORMATION INSTRUCTIONS	10/24/95		
I G	PROC	FRP	EBP-C-1500-2	0001	HELICOPTER LANDING INFORMATION	10/24/95		
iG	PROC	FRP	ERP-C-1900	0004	RECOVERY PHASE IMPLEMENTATION	11/02/98		
	PPOC	FDD	ERP-C-1900-1	0000	RECOVERY PHASE IMPLEMENTATION FLOW CHART	06/28/93		
LG	DDDC	EDD	ERP-C-1900-2	0002	DEACH BOTTOM ATOMIC DOWED STATION DECOVERY ACCEPTANCE CHECKLIST	00/20/00		
			ERP=C=1900=3	0002	LIMEDICK GENEDATING STATION RECOVERY ACCEDIANCE CHECKLIST	04/02/08		
	DDDC		ERP-C-1000-4	0002	DECOVERY DIAN OUT THE	04/02/98		
	PROC		ERP-C-1900-4	0002		12/28/00		
	PRUC		ERF-C-1900-5	0002		12/20/99	1.105	
	PRUC			0012	Les sification of emergencies	02/08/02		
LG	PRUC	ERP	ERP-IUI BASES	0003	LOS EAL LECTINICAL DASIS MANUAL	02/08/02		
1.0	PROC	ERP	ERP-106	0003	WRITTEN SUMMARY NUTIFICATION	11/22/95		
LG	PROC	ERP	ERP-110	0033		06/12/01		
LG	PROC	ERP	ERP-120	0007		12/07/01	LWE	
LG	PROC	ERP	ERP-140	0010		12/07/01	LWE	
LG	PROC	ERP	ERP-200	0015	EMERGENCY DIRECTOR (ED) RESPONSE	12/07/01		
LG	PROC	ERP	ERP-200-1 APP	0012	EMERGENCY DIRECTOR FORMS	12/0//01	LWE	
LG	PROC	ERP	ERP-200-2 APP	0000	DOSE ASSESSMENT DATA SHEET	06/20/00		
LG	PROC	ERP	ERP-230	0014	OPERATIONS SUPPORT CENTER (OSC) DIRECTOR	04/14/00	LWE	
LG	PROC	ERP	ERP-230 APPENDIX 1	0000	OSC - EMERGENCY COMMUNICATIONS EQUIPMENT CHECK LIST	04/14/00		
LG	PROC	ERP	ERP-230 APPENDIX 2	0000	OSC DIRECTOR ACTIVATION CHECK-OFF LIST	04/14/00		
LG	PROC	ERP	ERP-230 APPENDIX 3	0000	OPERATIONS SUPPORT CENTER FACILITY ACCOUNTABILITY LOG	04/14/00		
LG	PROC	ERP	ERP-230 APPENDIX 4	0000	OSC DIRECTOR ACTIVATION	04/14/00		
LG	PROC	ERP	ERP-300	0023	DOSE ASSESSMENT COORDINATOR	01/31/02	LWE	
LG	PROC	ERP	ERP-300 APPENDIX 1	0000	DOSE ASSESSMENT TEAM ACTIVATION	04/03/00		
LG	PROC	ERP	ERP-300 APPENDIX 2	0000	DOSE ASSESSMENT TEAM CHECK-OFF LIST	04/03/00		
LG	PROC	ERP	ERP-300 APPENDIX 3	0001	TURNOVER OF DOSE ASSESSMENT RESPONSIBILITIES	06/19/00		
LG	PROC	ERP	ERP-300 APPENDIX 4	0000	DOSE ASSESSMEMT DATA SHEET	04/03/00		
LG	PROC	ERP	ERP-300 APPENDIX 5	0000	USE OF MESOREM, JR, AUTO MODE A	04/03/00		
LG	PROC	ERP	ERP-300 APPENDIX 6	0000	OBTAINING RADIOLOGICAL DATA	04/03/00		
LG	PROC	ERP	ERP-300 APPENDIX 7	0000	OBTAINING MET DATA FROM PLANT MONITORING SYSTEM (PMS)	04/03/00		
LG	PROC	ERP	ERP-300 APPENDIX 8	0000	OBTAINING METEROLOGICAL DATA FROM NATIONAL WEATHER SERVICE	04/03/00		
LG	PROC	ERP	ERP-300 APPENDIX 9	0001	PROTECTIVE ACTION WORKSHEET	06/19/00		
LG	PROC	ERP	ERP-300 APPENDIX 10	0000	USE OF NORTH STACK DOSE RATE TO ESTIMATE RELEASE SOURCE TERM	04/03/00		
1 G	PROC	ERP	ERP-300 APPENDIX 11	0000	OPERATION OF IBM PS/2 MODEL L40SX	04/03/00		
L G	PROC	FRP	ERP-300 APPENDIX 12	0000	LIMERICK LIQUID RELEASE DOSE CALCULATIONS	04/03/00		
16	PROC	FPP	ERP-300 APPENDIX 13	0000	DOSE ASSESSMENT SELE-CHECK	04/03/00		
L G	PROC	FRP	ERP-300 APPENDIX 14	0000	STABLITY CLASS DETERMINATION	04/03/00		
ĩõ	PROC	FRP	ERP-316	0001	OPERATION OF THE DOSE ASSESSMENT COMPUTER (CM-3)	02/15/02		
				0001	of Entries of the book hobecoment compared (on by			

2

ť

3

ć

PROCEDURE INDEX REPORT:

					CL	JRR				
	DOC	PROC			RI	ΞV		EFFECTIVE	RESP	SYSTEM
FAC	TYPE	TYPE	PROCEDUR	E NUMBER	R NE	3R	TITLE	DATE	GROUP	NBR
					-					
LG	PROC	ERP	ERP-326		0(001	SHIFT DOSE ASSESSMENT PERSONNEL (SDAP)	02/15/02		
LG	PROC	ERP	ERP-330		01	000	USE OF NORTH STACK-DOSE RATE TO ESTIMATE RELEASE SOURCE TERM	11/14/94	LWE	
							CANCELLED INCORPORATED INTOERP-300 APP.10			
LG	PROC	ERP	ERP-340		0	009	FIELD SURVEY GROUP	01/31/02	LWE	
LG	PROC	ERP	ERP-350		0	003	RADIOACTIVE LIQUID RELEASE	11/10/94	LWE	
							CANCELLED			
LG	PROC	ERP	ERP-360		0	004	ADJUSTMENT OF WIDE RANGE GAS MONITOR CONVERSION FACTORS	02/15/02	LWE	
LG	PROC	ERP	ERP-370		0	201	USE OF RMMS FOR DOSE ASSESSMENT	11/10/94	LWE	
							CANCELLED			
LG	PROC	ERP	ERP-400		0	013	CHEMISTRY SAMPLING AND ANALYSIS TEAM	07/24/01	LWE	
LG	PROC	ERP	ERP~410		0	002	SAMPLE PREPARATION AND HANDLING OF HIGHLY RADIOACTIVE LIQUID	09/28/98	LWE	
							SAMPLES			
LG	PROC	ERP	ERP-420		0	202	SAMPLE PREPARATION AND HANDLING OF HIGHLY RADIOACTIVE	09/28/98	LWE	
							PARTICULATE FILTERS AND IODINE CARTRIDGES			
LG	PROC	ERP	ERP-430		0	202	SAMPLE PREPARATION AND HANDLING OF HIGHLY RADIOACTIVE GAS	09/28/98	LWE	
							SAMPLES			
LG	PROC	ERP	ERP-440		0	002	OFF-SITE ANALYSIS OF HIGH ACTIVITY SAMPLES	03/29/95	LWE	
LG	PROC	ERP	ERP-500		0	516	SECURITY TEAM	04/14/00	LWE	
LG	PROC	ERP	ERP-500 AP	PENDIX	1 0	000	SECURITY TEAM ACTIVATION	04/14/00		
LG	PROC	ERP	ERP-500 AP	PENDIX 2	2 0	000	SECURITY TEAM STAFFING GUIDELINES	04/14/00		
LG	PROC	ERP	ERP-500 AP	PENDIX (30	200	STAFFING FOR SITE EVACUATION	04/14/00		
LG	PROC	ERP	ERP-500 AP	PENDIX 4	4 0	200	SECURITY EVACUATION GUIDANCE	04/14/00		
LG	PROC	ERP	ERP-500 AP	PENDIX 5	50	000	SECURITY TEAM LEADER CHECK-OFF LIST	04/14/00		
LG	PROC	ERP	ERP-500 AP	PENDIX (60	200	EMERGENCY ASSEMBLY AREAS	04/14/00		
LG	PROC	ERP	ERP-500 AP	PENDIX 7	7 0	000	FACILITY ACCOUNTABILITY LOG TECHNICAL SUPPORT CENTER	04/14/00		
LG	PROC	ERP	ERP-600		U	013	HEALTH PHYSICS TEAM	01/31/02	LWE	
LG	PROC	ERP	ERP-620		0	002	PLANI SURVEY GROUP	05/02/95	LWE	
					~	~ ~ 4	CANCELLED - NU REPLACEMENT			
LG	PROC	ERP	ERP-630		0	004	VEHICLE AND EVACUEE CONTROL GROUP	01/31/02	LWE	
LG	PROC	ERP	ERP-640		0	008	EMERGENCY RESPONSE FACILITY HABITABILITY	04/17/99	LWE	
LG	PROC	ERP	ERP~650		0		ENTRY FOR EMERGENCY REPAIR AND OPERATIONS	01/31/02	LWE	
LG	PROC	ERP	ERP-660		0		DISTRIBUTION OF THYROID BLOCKING TABLETS	01/31/02	LWE	
LG	PROC	EKP	EKP-/00		0	016	IECHNICAL SUPPORT IEAM	02/15/01	LWE	
LG	PROC	ERP	EKP-800		, 0	020	MAINIENANGE LEAM	12/15/00	LWE.	
LG	PROC	ERP	ERP-800 AP	PENDIX	1 0	000	IASK BRIEFING/DEBRIEFING SHEEL	04/14/00		
ւս	PRUC	CKP	ERP-800 AP	PENDIX 1	∠ U		MAINTENANCE LEAM ACTIVATION	0//24/01		
LG	PROC	ERP	ERP-800 AP	PENUIX .	3 U		ACCENTER SUPPORT CENTER ACTIVATION	12/15/00		
LG	PRUC	ERP	ERP-800 AP	PENDIX 4	4 U	001	UFFSITE STRENS ACTIVATION (REF. 6.5.1)	12/15/00		

** END OF REPORT **