Presentation Material

Duke/USNRC Meeting

February 5, 2002

White Flint N.

BADGER and RACKLIFE

K. Lindquist Northeast Technology Corp.

1

USNRC Meeting 2/5/02

RACKLIFE/BADGER

- Designed and developed to be used hand in hand.
- RACKLIFE is used to select Boraflex panels for BADGER testing.
 - Assures panels with highest service history (gamma dose and time of dose) are tested.
 - Allows testing over a spectrum of service histories to determine if a threshold exists.
 - Reduces the number of panels to be tested to a manageable population without compromising confidence level of the BADGER measurements.
- Comparison of BADGER test results with RACKLIFE projections provides a rationale for "tuning" the RACKLIFE escape coefficient(s).
 - Assures accuracy of RACKLIFE projections to the next BADGER test.

BADGER

Boron-10 Areal Density Gage for Evaluating Racks

- In most racks Boraflex is encapsulated within rack structures. Direct inspection requires destructive techniques.
- Rack modules rest on the bottom of a water filled pool forty feet deep.
- Inspection/testing of Boraflex was recognized as a challenging task.
- BADGER concept devised based on neutron transmission measurements.

BADGER Chronology

- Proof-of-principle testing (1993) conducted in the beam hole laboratory of the Penn State Reactor with mock-up sections of fuel racks:
 - Single sheets of Boraflex with stainless cladding.
 - Double sheets of Boraflex with water filled (2000 ppm soluble boron) flux trap.
- Proof-of-principle test results were positive and a proto-type BWR BADGER designed and fabricated (1994).
- Clean testing in the Co-60 pool at Penn State May through August of 1995.
- Plant demo at Peach Bottom 2 April 1996.
- PWR BADGER designed and fabricated 1996.
- Clean testing fall of 1996.
- PWR demo at McGuire 2 January 1997.
- To date 7 campaigns at BWRs and 4 campaigns at PWRs.
- Crew departs today for second campaign at Peach Bottom 2.

NETCO

RACKLIFE

- RACKLIFE model objectives
- RACKLIFE chronology
- Radiation transformation of Boraflex matrix
- Composition of Boraflex (pre and post irradiation)
- Mechanisms of silica dissolution and polymerization
- Silica mass balance in spent fuel pool
- Examples of RACKLIFE results
- Comparison of BADGER measurement and RACKLIFE predictions

RACKLIFE MODEL OBJECTIVES

- Provide a management tool to extend the useful service life of Boraflex spent fuel storage racks.
- Predict Boraflex degradation in spent fuel pools for user-specified fuel discharge and pool cleanup scenarios:
 - Compute gamma dose to Boraflex panels.
 - Compute total (reactive and polymerized) silica in the bulk pool and in Boraflex panel cavities.
 - Compute boron carbide loss from Boraflex.

RACKLIFE Chronology

- Need for a model to assess rack use strategies on Boraflex performance identified in early 1990s.
- Spreadsheet solutions to silica mass balance in spent fuel pools developed:
 - Demonstrated feasibility of modeling each of the several thousand Boraflex panels in a spent fuel rack.
 - Files became large and unmanageable.
- Fortran version of RACKLIFE initiated 1994.
- Beta version released in 1995.
- Version 1.0 released in 1996.
- V/V of Version 1.0 3/99.
- Version 1.10 released 2001.
- Windows Version under development 2002 2003.

Composition of Boraflex					
Unirradiated:	Early Boraflex	Later Boraflex			
Boron Carbide SiO ₂ Filler Polymer Matrix	40 W/O 30 W/O 30 W/O	50 W/O 25 W/O 25 W/O			
After Irradiation:					
Boron Carbide SiO ₂ Filler Amorphous Silica Residual Polymer	40 W/O 30 W/O 23 W/O 7 W/O	50 W/O 25 W/O 21 W/O 4 W/O			

Mechanism of Dissolution of Silica in Water

(a) Ambient hydroxyl ion near silica surface

(c) Silicon atom goes into solution as a silicate ion

(b) Ion adsorbed, coordinatedto silicons, weakeningoxygen bonds

$$Si(OH)_5 \implies Si(OH)_4 + OH$$

(d) Silicate ion hydrolizes to soluble silica and a free hydroxyl ion

Source Term for Reactive Silica in Panel Chambers

 $S_i = \lambda \left(1 - R_i / R_{eqi} \right)$

 $\lambda = \lambda$ (Temperature, Irradiation)

R_{eqi} = R_{eqi} (Temperature, pH)

USNRC Meeting 2/5/02

RACKLIFE Input

- Pool design data
 - Pool water volume and layout
- Rack design data
 - Module / cell design data
 - Module layout data
- Boraflex as-built properties
- Fuel design and operating history data
 - Initial U-235 enrichment and loading (MTU)
 - Discharge burnup
 - Reactor shutdown time and date
 - Date, time and location to which fuel assembly moved to rack
 - Date, time and location of subsequent fuel moves for each assembly in the pool
 - End of cycle assembly average power
- Pool water condition
 - pH
 - Temperature
 - Soluble silica versus time
- Pool cleanup system design data
- Escape coefficient

RACKLIFE Output

- Predicted and measured soluble silica versus time
- Pool wide distribution of exposure
- Pool wide distribution of boron carbide loss
- Module and panel by panel exposure
- Module and panel by panel boron carbide loss

CO

Module Distribution of Exposure

NETCO

33

USNRC Meeting 2/5/02

14 15 16 20 22 21. 23 24 POOL ID 1 REGION ID Н H E ROW ID D E Β COLUMN ID Ť 16 B4C loss from East panel: 29.31 B4C loss from South panel: 27.85 B4C loss from West panel: 33.95 B4C loss from North panel: 30.81

Module Distribution of Boron Carbide Loss

NETCO

. . .

34

USNRC Meeting 2/5/02

C04

35

PWR A Region 1 Measured and Predicted Boron Carbide Loss

		Boron Carb	oide Loss, %
Panel	Dose	BADGER Measured	RACKLIFE
A23S	0.0E+00	0±9	-2
D13E	1.1E+10	-27±15	-16
C13E	1.2E+10	-17±10	-18
C13N	1.2E+10	-27±11	-18
E2W	1.2E+10	-10±9	-11
F2E	1.2E+10	-15±9	-13
H13W	1.9E+10	-23±10	-18
G12E	2.0E+10	-25±10	-21
F12W	2.0E+10	-20±10	-22
E13E	2.4E+10	-22±11	-23
E13N	2.6E+10	-33±13	-23
F13N	3.0E+10	-29±11	-24
E13W	3.3E+10	-31±13	-24
F14E	3.4E+10	-26±-12	-24
F13E	3.4E+10	-26±11	-24

Conclusions

- RACKLIFE models when used in tandem with BADGER testing provide a reliable means to project future Boraflex performance.
- The approach utilizes a predictive model coupled with measurement technique to monitor the slow deterioration of a plant component.
- The approach is analogous to that used in many PWRs to monitor steam generation tube wastage.

NRC Boraflex Information Meeting

February 5, 2002 Washington D.C

Ray W. Lambert EPRI

EPCI

02/05/02 Washington.1

Early History of Boraflex

- **Commercial History**
 - Introduced in late 1970's
 - Dominated market through 1980's
 - Cost and ease of fabrication were main advantages
 - About 75 pools world wide installed Boraflex

		2
--	--	---

Early History of Boraflex

- Commercial History (cont'd)
 - After a few years in service performance problems
 - began to emerge
 - Coupons gave first indications
 - Embrittlement at relatively low doses was noted
 - Blackness testing indicated shrinkage and some cracking of the Boraflex

Early History of Boraflex

Commercial History (cont'd)

- Technical support for product was minimal
- Manufacturer was unwilling and unable to assist
- Vendors claimed no responsibility
- Background material qualification information was minimal and inconsistent
- Technical data was insufficient for utilities to perform root-cause analyses

Utilities requested EPRI's help in 1986

- High priority project started using base budget dollars
- NETCO selected as primary contractor based on experience with:
 - Pool criticality analyses
 - Fuel designs and performance
 - Materials expertise
- As scope of work expanded, a Boraflex Working Group (BWG) was organized with responsibility to:

- Oversee EPRI's R&D work
- Fund activities
- The BWG is now approaching its end of life

EPRI R&D Objectives

- Develop fundamental understanding of Boraflex degradation mechanisms
- Develop techniques to measure and manage degradation
 - There was early recognition that there would be no silver bullet

Utilities were highly motivated to support Boraflex R&D

- Ensure pools maintain adequate safety margins
- Pools were filling fast and loss of storage could lead to reactor shutdown
- Dry storage option required long lead time and high cost
 - Pools already had been reracked and a second round was difficult and often exceeded \$10M

Early priorities for EPRI's R&D

- Understand the fundamental composition of Boraflex
- Understand the shrinkage mechanism and determine the limits
- Analyze the impact of gap formation and pull back effects
- Perform laboratory tests to determine the impact of variables
 - Radiation dose
 - Pool chemistry and pH
 - Temperature
 - Variety of Boraflex compositions

Crash effort resulted in the following conclusions and activities:

- Chemical makeup of Boraflex was defined
- Radiation effects on the polymer cross linking creates hardening and shrinkage
- Theoretical model developed that suggested a maximum shrinkage of about 3% at doses of about 1 x 10¹⁰R
- Tests were started ASAP
 - Material stability tests at Penn State
 - Irradiation tests at AFRRI
 - Full scale panel tests at Beaver Valley 2
 - Assembly of data base from blackness testing

The NRC/EPRI Interface

NRC also became aware of the Boraflex issue in the mid 1980's

NRC issued its first Information Notice in September 1987

Status in 1987

- Boraflex manufacturer was beginning to exit the business
- Fabricators were not offering technical help
- NRC did not have any Boraflex R&D underway
- EPRI program was up and running

The NRC/EPRI Interface

BWG made a conscience decision to voluntarily share R&D data with the NRC

- NRC representative attended portions of EPRI workshops
- EPRI information was made available to the NRC

The NRC/EPRI Interface

Open interchange continued on topics such as:

- EPRI test data, current results and future R&D plans
- NRC's areas of concern or data needs
- Information Notices and Generic Letters

Status of Technology by 1994

EPRI shrinkage model had been confirmed by data

Recognition that shrinkage and gaps were only one part of the degradation mechanism

Long-term environmental effects determined to play a major role in the degradation process

- Gradual dissolution process was modeled for irradiated Boraflex
- Key variables were identified that included:
 - Gamma dose
 - Rack design
 - Access to pool water (called water escape coefficient)
 - Temperature of pool

• Reactor and/or pool water treatment designs eper

Status of Technology by 1994

Understanding increased to the point that it was practical to model the Boraflex performance

- BWG authorized a project to build a DOS code for modeling performance (start of RACKLIFE)
- Concept was that code would be a tool to help manage the Boraflex issue
- As code developed, its capability exceeded expectations

	- 10	
--	-------------	--

Status of Technology by 1994

It was concluded that to take full advantage of RACKLIFE that there would need to be a way to take measurements to confirm its efficacy

- Blackness testing was inadequate
- Development of BADGER was begun to directly measure B-10 areal density

Summary of EPRI Boraflex Activities

Over \$3M has been spent on R&D

Utilities have committed major resources to the running of RACKLIFE and doing BADGER measurements

An in-depth understanding of Boraflex has been developed that:

- Permits degradation to be managed
- Maintains adequate safety margins in pools
- Has kept reactors operating
- Allows time for utilities to seek and select long term solutions

Summary of EPRI Boraflex Activities

Other specific EPRI Boraflex products have included:

- 17 utility workshops
- Full documentation of Boraflex performance data base
- Completion of a 12 year full scale panel test at Beaver Valley 2
- Participation with W in the original Boron credit project
- Special coupon testing at Millstone
- Destructive inspection and testing of the Ft. Calhoun Boraflex racks
- Special coupon tests at Palisades
- Testing of zinc as a method to reduce Boraflex solubility
- Partner in the RACKSAVER demonstration
- Evaluated the performance of Boraflex during seismic events
- Devising technologies for managing silicon levels in pools
- Supported the METAMIC qualification program

