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AMRs Data Feeds

. In Situ Field Testing of Processes

* Analysis of Geochemical Data for the UZ

* UZISZ Transport Properties

* Analysis of Hydrologic Properties

AMRs Model Development

. Conceptual and Numerical Models for UZ
Flow and Transport

* Future Climate Analysis

* Analysis of Infiltration Uncertainty
* Development of Numerical Grids for UZ

Flow and Transport Modeling

* UZ Collold Transport Model

AMRs Models and Simulations

* Simulation of Net Infiltration for Modern
and Potential Future Climates

. Calibrated Properties Model

* Drift-Scale Coupled Processes Models

* Seepage CalibraUon Model

* Seepage Model for PA

* UZ Flow Models and Submodels

. Mountain-Scale TH Model

. UZ Radlonuclide Transport Model

AMRs Abstractions

* Abstraction of Drift Seepage
* Abstraction of Flow Fields
. Particle Tracking Model and Abstraction of

Transport

AMRs Evaluations

* Natural Analogs for the UZ

* FEPs In UZ Flow and Transport

. Analysis Comparing Advective-Dispersive
Transport Solution to Particle Tracking

* Analysis of Base-Case Particle Tracking
Results for the Base-Case Flow Fields
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UZ PMR Models Clmote Infiltration
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Figure 1-2. Main Models Included in the UZ PMR, Their Interrelations, and Their Connections to TSPA
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Figure 2.1-2. Schematic Illustration of the Main Surface-Based Deep Boreholes and Underground Drifts
of the ESF, and the Major Faults in the Vicinity of Yucca Mountain
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Figure 2.1-3. Schematic Illustration of Alcove and Niche Locations in the Exploratory Studies Facility at
Yucca Mountain
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Figure 2.1-4. Schematic Illustration of the ECRB Cross Drift, Geological Units and Test Sites.
(a) Generalized geological map at the Cross Drift level. (b) Generalized geological
cross-section along the ECRB Cross Drift, showing the potential repository horizon.
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Geologic Mapping and Geophysical Studies on Surface and in ESF

(a) Drilling of Borehole SD- on the Crest of
YUcca MoUntain

ObIectives()P,,, lae e h, w F,tMpm
Determine lithology and(b) Paemen Clerd f Ghost Dane F appin
structural features of tuff units.

* Evaluate distribution of fractures
and faults.

Approaches:
* Map features on bedrock, in

trenches, and along ESF drifts. _ 
• Conduct geophysical logging

along boreholes.
• Deploy geophysical tomographic

imaging techniques on the
surface and in underground
drifts.

Results:
- Refined geological maps of

bedrock, washes and faults.
* Improved geological framework P

of tuff layers and fault offsets. a I
- Detailed line sunveys and full

peripheral maps along drifts.
* Interpreted fracture density t _1

distributions between surface
and underground drifts.

(o) Fracture Density
Distrbuions by
Detailed Uins Survey cA^. rurr I

and Seismic Tomogaph

Figure 2.2-1. Geological and Geophysical Studies on the Surface and along the ESF
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Unsaturated Zone Flow and Transport Model Process Model Report

Infiltration Study on the

(a) L ctionrn nf W ahe insnjmentod to,
WaterShed Study

Objectives:
. Provide upper boundary

conditions for UZ Flow and
Transport Model.

* Evaluate infiltration processes
and mechanisms for detemining
net infiltration undercurrent dry
and future wet conditions.

Approaches:
* Conduct periodic neutron logging

in network of shallow boreholes.
* Record climate changes and

evaluate evapotranspiration
potentials.

* Instrument washes to evaluate
run-on and run-off processes.

Results:
*Improved infiltration maps for

current, monsoon, and glacial-
transition climates.

* Quantification of relationships
between precipitation and net
infiltration.

Bedrock and In Washes

(b) Etimatd Nrt Infiltation fn,mmyr) for the Moan
Modem Climate Scnnrmo

(o) Neutron Lojging at Pagny Wash

QuantUfiation of downward flux
and lateral run-on and run-off
processes.

Figure 2.2-2. Infiltration Study on the Bedrock and in Washes (USGS 2000, U001 0, Sections 6.3
and 7.1)
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Unsaturated Zone Flow and Transport Model Process Model Renort

Drift Seepage Test at Niche 3650

Objectives:
* Quantify seepage threshold

below which no seepage occurs.
* Evaluate capillary barrier

mechanism and measure drift-
scale parameters.

Approaches:
* Use air injection tests to
characterize the niche site with
resolution of 0.3-m scale (one
tenth of drift dimensions).

* Use pulse releases to represent
episodic percolation events.

* Determine seepage thresholds
by sequences of liquid releases
with reducing rates.

* Derive in situ fracture
characteristic curves with
wetting front arrival analyses.

Results:
* Measured seepage threshold
ranges from 200 mmhyr to
136,000 mmhr at localized
release intervals.

* Six out of sixteen tested intervals
did not seep.

* Observed both flow along high-
angle fractures and flow through
fracture network.

• Derived fracture capillary
parameters and characteristic
curves, with equivalent fracture
porosity as high as 2.4%.

(b) Watr Collction During a Drnt Seepag Test

B!. it
_

3| 

I 
i _

(C) Flow Paths Indicatd by Dye Tracer on Niche CejUlng

Figure 2.2-3. Drift Seepage Test at Niche 3650 (CRWMS M&O 2000, U001 5, Section 6.2.)
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In Situ Wet Feature Observed at Niche 3566

* Characterize the hydrologic
setting of a site with bomb-
pulse 36CI signals, the
Sundance fault and its first
cooling joint.

* Quantify seepage processes.

Mine the niche without
spreading water to the ceiling
during excavation.
Close the bulkhead to prevent

(b) Photograph of a Damp Feature
In the Brocciated Zone at the
eack of Ntcho 356E

Monitor the rock and drift over
long time periods.

One damp feature observed
after dry excavation at end of
the niche. It dried up before
bulkhead installation and did
not rewet after long-term
monitoring over two years.

(,) Distribuion d 3CI/CI f n the ESF

Figure 2.2-4. Damp Feature Observed during Dry Excavation of Niche 3566 and Bomb-Pulse 36C/Cl
Signals along the ESF (Wang et al. 1999, pp. 331-332; CRWMS M&O 2000, U0085,
Section 6.6)

C'b
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Drift Seepage Test at ECRB Cross Drift Niche 1620

(a) Schemabc of Niche 3107

Objectives:
* Quantify seepage into drift in the

lower lithophysal unit at a cavity-rich
zone.

* Characterize the pneumatic and
liquid flows in the presence of
lithophysal cavities and porous tuff.

* Determine the differences between
lower lithophysal unit and middle
non-lithophysal unit of the potential
repository ock.

* Quantify fracture-matrix interaction
at lower lithophysal unit.

Approaches:
* Observe flow paths during dry
excavation, use air-injection tests to
characterize liquid release intervals,
and conduct drift seepage tests with
liquid releases at different rates.

* Adopt, improve, and extend the
methodologies used in tests
conducted in the middle non-
lithophysal niches and test beds.

Results:
. Pre-excavation air-injection test
results suggest that lower
lithophysal unit has higher
Permeability than middle non-
lithophysal unit.

* Access drift has been excavated
with an Alpine Miner.

*Seepage tests are prepared to be
conducted after niche excavations.

(b)J ,'.I v Alp iII lI e aiLy tho Acc=xUs. .i.

(I) Example of a
Cai Ity n the
Lower ULthophyal
TOf Unit

(d) Scanner Imag along Borerhole AK-1 at NKMh 620

Figure 2.2-5. Lower Lithophysal Seepage Test at ECRB Cross Drift Niche 1620

TDR-NBS-HS-000002 REVOO ICN I June 2000 1Attachment III-12
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Fracture-Matrix Interaction Test at Alcove 6

(c) Schemati of Liquid Reliase Tet

Objectives:
- Quantify fracture-matrix interaction

and the fraction of fracture flow.

Approaches:
* Use a slot below boreholes to

capture fracture flows.
* Estimate the fracture/matrix flow

partitioning by mass balance.

* Use borehole sensors to detect
wedting front arrivals.

Results:
* A maximum of 80% of injected

water was recovered for high-rate
injection tests (i.e. 80% fracture
flow).

J.) oograpn cd AlcVe ls It Led

km

(b) Cloup of Try On the Slot

3IW _ ~ ~ ~ I K . 1 
IW ____

X.

I

$ lr
huj.cdm R4a.(nfm In

(d) Water Collec in the Slot

* Out flows occurred in step increments which could
be related to water stored in fracture flow paths.

Figure 2.2-6. Fracture-Matrix Interaction Test at Alcove 6 (CRWMS M&O 2000, U0015, Section 6.6)

Nao
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Fault Flow Damping Test at Alcove 4

Objectives:
* Evaluate flow mechanism in the

Paintbrush nonwelded tuft unit.
*Quantify the damping and lateral

diversion processes along a fault
and along bedded tuff
interfaces.

Approaches:
*Select a test bed containing

bedded tuft layers (including an
argillic layer), a fault, and a
fracture.

*Release water under constant-
head conditions to determine the
intake rates.

*Monitor wenting front arrivals and
measure potential changes in
boreholes.

(b) .4sOUp O Tray on in. L...-. wd
Side of the Slot

iI

cumn rj o nT, (t,)

(d) Water nItke Rat at I PTn Fauh

Results:
*Water intake rate in the fault decreased as more

water was introduced into the release zone.
*Clay swelling is one mechanism proposed to

interpret the field data.
*Detection of down-gradient increases in saturation

occurred over shorter time intervals with each
liquid release test.

Figure 2.2-7. Paintbrush Fault and Porous Matrix Test at Alcove 4 (CRWMS M&O 2000, U0015,
Section 6.7)

c - U '
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El Nirio Infiltration Test at Alcove I

()Photograhy of ESF Norm, Portal and
Infiflttion Plota (Blue Cvr

Objewtives:
* Quantify large-scale infiltration and

seepage processes in the bedrock.
* Evaluate matrix diffusion

mechanism in long-term flow
and transport tests.

Approaches:
*bWater applied on the surface 30 r)
directly above the alcove.

*Tests conducted in two phases:
March - August 1998 and May
1999s - present, with Phae b
focusing on flow and Phase 2
focusing on tracer transport. (b) Stlmw t of e 1 Ifi lation Test

Results:
aOver 100000 liters infaitrated in 1.t

Phase p with obsehed seepage
rates of up to 300 liter/day. 

*bFirst seepage was observed 58 1.0 n.
days after Phse I test inttiation. ----

Pressure/flow response of the | 4
system was observed to be -2
days once a nearly steady-state -i
system had developed. 0t6

*High concentrations of LiBr were
used in Phse 2 tracer test. 0 -I

. First tracer beakthrough in Phase j _ I
2obsenved in28dayswihanearly 8 _

steady-state flow system using a
conservative tracer. 0 -I '

*Tracer recovery data were used to 1 ' .0' '°' tO' 10' .O 10
compate with model predictions It (Ys)
and to evaluate the importance of (c) Tracer BreakthogqhS Test Results and Model Predictions
matrix diffusion. Wfh Matid Diftsion

Figure 2.2-8. El Nino Infiltration and Seepage Test at Alcove 1

cC2
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Alcove S-Niche 3107 Cross-Drift Test

Objectives:
* Quantify large-scale infiltration

and seepage processes in the
potential repository horizon.

*Evaluate matrix diffusion
mechanism in long-term flow
and transport tests across an
lithophysal-nonlithophysal
interface.

�mst ECRBM,t*flpg CrcCdt

�8r-5)Alww 8 Satoles (6)

(>7 EtJMkigN
-E�Uoho 3107

(a) Schentaic of the Cross Drift Te Bed

Approach":
*Water releases are in Alcove 8

and seepage collections are in
Niche 3107.

*Niche 3107 is instrumented with
seepage collectors and wetting
front sensomS.

*Geophysical tomographs are
conducted in vertically slanted
boreholes.

Status:
* Drill-and-blast phase of Alcove 8

excavation was completed in 1999.
* Tests are prepared to be

conducted after alcove excavation.

Supporting Results:
*Seepage tests at Niche 3107

behind bulkhead demonstmate the
existence of seepage thmeshold
under high humidity conditions.

*Durng ECRB Cmss Drift
construction, no water was
obsenved to seep into the ESF
Main Drift 20 m below. (c) Photograph of Wate

Collection Trays on the
Ceilmg of the ESF Main Dift

Figure 2.2-9. Cross-Drift Test between ECRB Cross Drift Alcove 8 and ESF Main Drift Niche 3107
(CRWMS M&O 2000, U001 , Section 6.9)

CA\3
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Geochemical Measurements on Borehole and ESF Samples

I

(a) Totl Chloride Contents Along th. ECRB cross D,ift

Objectives:
* Provide data to define

geochemical evolution of water
in the UZ.

* Provide data to estimate
percolation flux at depth.

Approaches:
* Collect gas and perched water

samples by pumping.
. Extract pore water by

compression, ultracentrifuge,
or vacuum distillation.

* Determine major ion
concentrations by chemical
analyses.

Results:
* Total dissolved solid and chloride

are used to estimate infiltration
rates and percolation fluxes.

* Pore waters are related to soil-
zone processes:
evapotranspiration, dissolution
and precipation of pedogenic
calcite and amorphous silica.

. Deep pore waters are used to
evaluate restricted water-rock
interactions and significant lateral
movement within Calico Hills
unit.

I=1110

iwi4 I C
100-

0.

oQft U
go m.n f l a a s ( I br )

Ififr'la RmmN.

- i Moo HgIo i

IES Is 1 lfi 4 I Es Is, 'Ste
csr. tjntFTd~(WrV)

(b) Calcoit Distributions Used o, Iiltration and
Pero atio n EvaluatF on.

(o) Strontium Profile Used for Zeolt Quantiication

Figure 2.2-10. Geochemical Studies of Tuff Samples (CRWMS M&O 2000, UOOS0, Section 6.5;
Sonnenthal and Bodvarsson 1999, p. 146)
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Isotopic Measurements on Fracture Minerals and Perched Waters

Objectives:
* Provide isotopic data to define

age evolution of water in the UZ
. Provide data to delineate flow

paths over geological time
scales.

Approaches:
. Leach salts from UZ cores or

cudting for 36CI and Sr isotopic
analyses.

* Extract water for tritium,
hydrogen and oxygen stable
isotopes, and carbon isotopic
analyses.

* Digest mineral samples for
analyses of Sr isotope ratios and
of U series nuclides.

(a) Phtograph of A Fracture with Ca,ite nfll

212

2Z4o

I

A
S 

2

U

I

o gr 1N 1EbMU At.M

In .Itu 

dlg..I'o

I 01

r.~~~~nnnU,.~~~ ~ .mg o,

(L) Aces of Opal lndicate Long Term Flow in Fractures

no 20

Results:
* Bomb-pulse 36CI/Cl signals are

present in the vicinity of some
fault zones in the ESF.

* Detectable levels of tritium are
present in -6% of pore waters
sampled.

* Bomb-pulse 36CI/C0 and tritium
signals are not present in
perched waters.

* Age of perched watem, mixing
between fast and slow flows,
climate of recharge are
estimated by carbon and stable
isotope analyses.

. E 4 UM838 u activity rabos indicate
recharge through fractures and
minimal exchange between pore
water and fracture water. (c) Peched Wate Ages Determined by 14C and 3SCI/Cl Data

Figure 2.2-11. Isotopic Studies of Tuff Samples (CRWMS M&O 2000, U00S5, Section 6.6)
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UZ Transport Test at Busted Butte

Objectives:
* Quantify UZ transport processes

in Calico Hills nonwelded unit.
. Measure retardation coefficients in

the field to compare with
laboratory measured values.

Approaches:
* A test bed was excavated 70 m

below the surface in mainly vitric
CHn underlying the vitrphyre.

* A mixture of conservative and
sorbing tracers is used in tracer
injection tests.

* Absorbent pads are used to
sample periodically the tracer
distributions below injections.

* Ground-penetrating radar
tomography, together with
electrical resistivity tomography
and neutron logging, are used to
track plume migrations.

Results:
* Phase 1Awas conducted with

single point injections from April
1998 to mineback in 1999.
Capillary driven flow mechanism
is confirmed.

. Phase 2 tests with areal injections
are on-going with breakthroughs
and plume migrations monitored.

(a) Grund Penetating Rada Tom,ogrph
o Inlected Plume (Phse 2)

(b) Schemabo of Bused Butte Ten Arem

()ner Plume tram irtij,oon ninte Sdoe Wal, ntho
Man Ad, Opposte to the TetAIoe (Phse 1 A)

Figure 2.2-12. UZ Transport Test at Busted Butte (CRWMS M&O 2000, UO100, Section 6.8)
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Single Henater Test at Alcove 5

(a) Schematic of Sinlge HeatU, Test

Objectives:
*Evaluate THMC coupled

processes around a line heater
source in fractured tuff.

. Develop testing methodologies
and modeling approaches for high
temperature conditions.

Approaches:
. Heating with a 5-m long 4-kW

heater lasted 9 months in 1996
and 1997.

*Borehole sensing and cross-hole
testing were used before, durng,
and after heating period.

Results:
*Extent of dry-out of about 1 m

around the heater hole was
measured with geophysical
techniques (ERT, GRP and
neutron).

*Condensate zone below the
heater was measured to be larger
than above the heater horizon.

*Chemical composition of water
collected during heating in packed
borehole intervals was analyzed.

*Characterization data by air-
injection tests and mechanical
displacement measurements
located high-k flow paths.

nj pnotogrpn oT Ing, Heater Test Blomk Insulated

I

I

I

*1

2_41

- a

* -'

I I~~~~~~~~~I

'-3- I N -wzZn

* I
'. r.7L6

j [. , =,
0' -

I i r, a i t i k t AlI

(c) Distributed Liquld Saturetion in coe After Cooing Phase

Figure 2.2-13. Single HeaterTest atAlcoves (Tsang and Birkholzer 1999, pp. 411-415)
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Unsaturated Zone Flow amd Transport Model Process Model Re.o.t

Drift Scale Test at Alcove 5

Objectives:
* Evaluate THCM coupled

processes in emplacement drift
scale with full-scale heaters.

* Evaluate multi-drift heating effects
with wing heaters to simulate
multi-drift test conditions in
fractured tuff.

Approaches:
* Install extensive borehole sensor
arrays for monitoring of heating
mesponses.

* Perform periodic geophysical
imaging, pneumatic testing, and
fluid sampling to measure the
thermally induced coupled effects.

Results:
* Drift wall temperature reached
-1 90OC after 2 years of heating
(since December 1997 at 187 kW).

* Condensate accumulated mainly
below the wing heaters at early
times.

.Wefting and drying zones were
identified by periodic air-
injection tests and geophysical
methods.

- Gas phase C02 concentration
increased strongly in large
region around the heaters.

- Interactions of calcite and
silicate minerals were indicated
by chemical analyses of water
collected.

(a) Schemati of Drift Scalr Test

(b) Photogrph of FuMI Scala Heatrs within Heated Drift

(c) Comparison of Measurld and
MOd.eld Temperatur Distributions

Figure 2.2-14. DriftScaleTestatAlcove 5(CWRMS M&O 2000, U0110/N0120, Section 6.2)
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Infiltration Rate in mm/vr Outline of
Potential Repository

uswt
0)
TJ
I
S

CD

0

0

o 0.2 0.4 0.6 0.8 1.0
Degree of Liquid Saturation

(a) 1 -D Model of ambient saturation
conditions for different percolation
flux values UZ Flow - 1986

0 0.5 1.0 0.75
Distance (,t)n

2.0

(b) 6 1-D Columns in 1 transect wilt
I mm4yr infiltration, oomposite-porosity
and weep models TSPA -1991

,, a

(c) 8 1-D Columns from different area,
0-5 mm yr infiltration during dry
periods and 10 mm4yr dunng wet
periods TSPA - 1993

Figure 2.4-1. One-Dimensional Column Simulations with the UZ-1 986, the TSPA-1 991, and the
TSPA-1993 Models (Rulon et al. 1986, Bamard etal. 1992, and Wilson etal. 1994)
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(a) Finite Element Gnd of the Anter Ridge Cross Secdon

(b) Simulations of Transport of 2 37 Np from the Potental Repository

Figure 2.4-3. Simulations of 2 37 Np Transport by the UZ Transport-1 995 Model (Robinson et al. 1995,
p. 61, p. 125)

Cr\2-
TDR-NBS-HS-000002 REVO0 ICN I Attachment 111-24 June 2000 |

u Concentration 1



Unsaturated Zone Flow and Transport Model Process Model Report
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Figure 2.4-4. The Mesh and the Approximations Used in the UZ-1997 Model for TSPA-VA
(adapted from Wu et al. 1999b, pp. 190-193)
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Figure 3.2-1. Yucca Mountain Site-Scale Geology: (a) in 3-D Perspective and (b) along an East-West
Cross Section (adapted from GFM3.1 data, CRWMS M&O 2000,10035)
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Figure 3.2-2.

TDR-NBS-HS-O(

Lithostratigraphic Transitions at the Upper and Lower Margins of the PTn Hydrogeological
Unit. (a) Photos and schematic at the TCw-PTn interface, where tuffs grade downward
from densely welded to nonwelded, accompanied by an increase in matrix porosity and a
decrease in fracture frequency, (b) Photo and schematic at the PTn-TSw interface, where
tuffs grade downward from nonwelded to densely welded, accompanied by a decrease in
matrix porosity and an increase in fracture frequency.
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(a) PTn Thickness (m)
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(c) CHn Thickness (m)
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Easting (m)

(d) CFu Thickness (m)
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Figure 3.2-3. Thickness Contour Plots of the (a) PTn, (b) TSw, (c) CHn, and (d) CFu Hydrogeological
Units (Adapted from DTN: M09901 MWDGFM31.000). Contours are in meters.
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Figure 3.2-4.
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Lithophysal Transitions within the TSw Unit. (a) Photo and schematic of the contact
between the upper nonlithophysal (Tptpul) and the middle nonhithophysal (Tptpmn) zones
showing a downward decrease in lithophysal volume. (b) Photo and schematic of the
contact between the middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpil) zones
showing a downward increase in lithophysal volume. Fractures in the nonlithophysal unit
are generally smoother, more planar, and more continuous than fractures in the
lithophysal units.
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Figure 3.2-5. Lithostratigraphic Transitions at the TSw-CHn Interface. (a) Schematic with prevalent
alteration at the TSw-CHn contact. (b) Schematic with variable alteration at the TSw-CHn
contact. (c) Schematic with minimal alteration at the TSw-CHn contact. (d) Schematic
representation of a fault zone as a well-connected fracture network that may represent a
fast flow pathway. (e) Schematic representation of a fault zone showing alteration within
the fracture network that creates a flow barrier.
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Figure 3.2-6. Occurrence of Lithostratigraphic Units at the Water Table (730 meters above sea level)
(Adapted from DTN: MO9901MWDGFM31.000)
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Figure 3.2-7. Distribution of Zeolites in Certain Layers below the Potential Repository Horizon.
(CRWMS M&O 2000,10045, Section 6.3.2; DTN: M0991 OMWDISMMM.003). Areas with
less than or equal to 3% zeolite are considered vitric, or unaltered.
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Figure 3.3-1. Schematic Showing Temporal and Spatial Variabilities of Net Infiltration Rates Resulting
From the Nature of the Storm Events and Variation in Soil Cover and Topography. The size
of the arrow indicates the relative magnitude of infiltratiOn rates.
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Figure 3.3-2.
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Schematic Showing Overall Water Flow Behavior in the UZ Including the Relative
Importance of Fracture and Matrix Flow Components in the Different Hydrogeologic Units.
The blue and red colors on the land surface correspond to high and low infiltration rates,
respectively, while the other colors correspond to intermediate infiltration rates
(CRWMS M&O 2000, U0030, Figure 1).
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Fracture Water
Flow in the TCw

Water Flow
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V-An Isolated, Fast Fow Path

Figure 3.3-3. Schematic Showing Water Flow Behavior within the PTn Characterized by Dominant
Matrix Flow and a Few Fast Flow Paths
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Figure 3.3-4. Water Flow in Fractures Characterized by Fingering Flow at Different Scales
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in (a) and (b) indicates the relative magnitude of flow.
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Figure 3.3-6. Schematic Showing Flow Patterns within and near a Perched Water Body Characterized
by Strong Lateral Flow within the Perched Water Body and the Associated
Fault-Dominated Flow
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Figure 3.3-7. Important Radionuclide Transport Processes. (Note that the radionuclides also undergo
radioactive decay, but this is not shown in the schematic.)
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Figure 3.3-8. TH Processes at Mountain and Drift Scales
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Figure 3.4-1. Schematic Demonstrating (a) ECM, (b) Dual-Porosity with One Matrix Gridblock,
(c) Dual-Permeability with One Matrix Gridblock per Fracture Gridblock, and (d) MINC with
Three Matrix Gridbooks per Fracture Gridblock
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Figure 3.4-2.

TDR-NBS-HS-0(

Flow Diagram Showing Key Input Data Used in Numerical Grid Development, the Types of
Grids Generated, and their End Users
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Figure 3.4-3.

TDR-NBS-HS-0(

Distribution of Percent Zeolite Mineral Abundance in the Calico Hills Formation
(lithostratigraphic unit Tac): (a) MM2.0, (b) MM3.0. (DTNs: M09901 MWDISMMM.000,
MO991OMWDISMMM.003, respectively). Areas with less than or equal to 3% zeolite by
weight are considered vitric, or unaltered.
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Model PMR, saturated hydraulic conductivity (K,,t, m/s) from the RPM was converted to
permeability (m2) by multiplying Ksat values by 10-7.
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Figure 3.4-5. Extent of Vitric Region (Indicated by Pattern of Diagonal Lines) in Model Layers (a) chl,
(b) ch2, (c) chi3, (d) ch4, and (e) oh5. White areas indicate prevalent zeolitization
(from CRWMS M&O 2000, UOOOO, Figure 5).
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Figure 3.4-6. Plan-View (a) Schematic Showing the UZ Model Boundary, the Repository Outline, Major
Fault Locations Adapted from GFM3.1, Select Boreholes, the ESF, and the ECRB, (b)
Numerical Grid Design for the Mountain-Scale Model Used for UZ Calibration (adapted
from Figure V-i of CRWMS M&O 2000, UOOOO), and (o) Numerical Grid Design for the
Mountain-Scale Model Used for PA Calculations (Adapted from CRWMS M&O 2000,
UOOOO, Figure VI-1).

TDR-NBS-HS-000002 REVOO ICN I

Ma VIw,052oeI,. SSonots 2 r "Map Mo l 50IŽ,J 47455 c.,rao I$4 .ohirz0

2300

Ž300

mm00

x
H

234000
C
2

.3_

I'm

174000

C i'3
Attachment 111-46 June 2000 1



Unsaturated Zone Flow and Transpor Model Process Model Repon

SE

09
9i

0

0s

2I I

d
o a

(laI .as u Sw . A.q. S vjw) uogn,3r

ti

2s 

fl

II

o o 0 0 0! 0 
(IA a O ° ° V - -) U AOIE
(PS a s. e_..q ww o A

Figure 3.4-7. East-West Cross-Section through Borehole UZ-14: (a) Adapted from Data Contained in
CRWMS M&Q (2000,10035) (b) from the 3-Dl UZ Model Numerical Grid for PA
(Adapted from CRWMS M&O 1999a, Figure VI-2). The 3-D UZ Model Grid in plan view
(c) shows the location of the cross section. Bottom elevation along cross sections is 730 m
above mean sea level.
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Figure 3.4-8. East-West Cross-Section through Boreholes SD-6, SD-12, UZ#16: (a) Adapted from Data
Contained in CRWMS M&O (2000,10035) (b) from the 3-D UZ Model Numerical Grid for
PA (Adapted from CRWMS M&O 1999a, Figure VI-3). The 3-D UZ Model Grid in plan view
(o) shows the location of the cross section. Bottom elevation along cross sections is 730 m
above mean sea level.
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Figure 3.4-9. North-South Cross-Section through Boreholes UZ-14, H-5, and SD-6: (a) Adapted from
Data Contained in CRWMS M&O (2000,10035) (b) from the 3-D UZ Model Calibration
Grid (Adapted from CRWMS M&O 1 999a, Figure V-4). The 3-D UZ Model Calibration Grid
in plan view (c) shows the location of the cross sections. Bottom elevation along cross
sections is 730 m above mean sea level.
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Figure 3.5-1. Summary of Issues, Modeling Methodology, Data, and Results for both the Climate and
Infiltration Models
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Figure 3.5-2. (a) Generalized View of Present-Day Atmospheric Circulation (USGS 2000, U0005,
Figure 2) and (b) Daily Precipitation Record Between 1980 and 1995 at Yucca Mountain
(USGS 2000, UOOIO, Figure 6-18) with (c) an Aerial View of the Arid Conditions at the
Yucca Mountain Site
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Figure 3.5-3. (a) Field-Scale Water Balance and Processes Controlling Net Infiltration
(USGS 2000, U001 0, Figure 5-1) and (b) Major Components of the Net Infiltration
Modeling Process (USGS 2000, U001 0, Figure 6-1)
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Figure 3.5-4. (a) Precipitation (USGS 2000, U0010, Figure 7-1), (b) Surface Run-On
(USGS 2000, U001 0, Figure 7-3) and (c) Net-infiltration Rates
(USGS 2000, UO010, Figure 7-4) for the Mean Modern Climate Scenario

CLW?
June 2000TDR-NBS-HS-000002 REVOO ICN I Attachment 111-53



Unsaturated Zone Flow and Transport Model Process Model Repon

A a

IL U - E u E

.0

S jE RoSS§ vE-I t m I

Figure 3.5-5. Net-Infiltration Rates for (a) Mean Monsoon (USGS 2000, U0010, Figure 7-7) and
(b) Mean Glacial-Transition (USGS 2000, U0010, Figure 7-14) Climates
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Figure 3.5-6. Histogram of Log of Potential Repository-Average Infiltration for Glacial-Transition Climate
(adapted from CRWMS M&O 2000, U0095, Figure 6-2)
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Figure 3.6-1. Relationship of the Analysis of Hydrologic Properties Data and the Calibrated Properties
Model to Input Data and Models and to Analyses and Models that use the Developed UZ
Properties
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Figure 3.6-4. Calibrated 1-D Simulation Match to Saturation, Water Potential, and Pneumatic Data.
Data from Borehole USW SD-12 for the Base Case Infiltration Scenario (adapted trom
CRWMS M&O 2000, U0035, Figures 2, 3, and 4)
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Figure 3.6-8. Comparison of Predictions from the 3-D Model with In Situ Water Potential Data from the
ECRB Cross Drift and Pneumatic Pressure Data from Borehole USW SD-12 (adapted
from CRWMS M&O 2000, U0050, Figures 6-69 and 6-70)
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TSPA Mesh

239000

238000

237000
5

z
o

sz00
4a
4

z
S
I.-

0z

236000

235000

234000

233000

232000

231000

230000

168000 170000 172000 174000
EAST NEVADA COORDINATES (m)

Figure 3.7-3. Plan View of the 3-D UZ TSPA Model Grid, Showing the Model Domain at Yucca
Mountain, Faults Incorporated and Borehole Locations (Adapted from
CRWMS M&O, 2000, UOOOO, Figure VI-1)
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Figure 3.7-5. Schematic of the Major Input Data to, and Output Models from, the UZ Flow Model
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Vertical Percolation Fluxes at the PTn-TSw Interface with the Present-Day,

Simulated Vertical Percolation Fluxes at the PTn-TSw interface with the Present-Day,
Mean Infiltration Map (Data from CRWMS M&O, 2000, UOOSO, Section 6.6.3)
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1400

I

Figure 3.7-9. Simulated 3-D View of Perched Water Bodies along the Base of the TSw, Using the
Simulation Results of Conceptual Model #1 with Present-Day, Mean Infiltration Rate
(the blue contours denote the domain with 100% water saturation and the green for the
areas with less than 100% water saturation) (CRWMS M&O, 2000, U0050, Figure 6.9)
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Repository Horizon Under Three Mean Infiltration Rates: (a) Present Day; (b) Monsoon;
and (c) Glacial Transition (Data from CRWMS M&O, 2000, U0050, Section 6.6.3)
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Figure 3.7-14. Comparison to the Simulated and Observed Matrix Liquid Saturations and Perched Water
Elevations for Borehole UZ-14, Using the Simulation Results for the Mean Infiltration
Rates of the Three Climates Scenarios (Data from CRWMS M&O, 2000, U0050,
Section 6.6.3, Figure 6-41)
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Figure 3.7-15. Comparison of 3-D Pneumatic Prediction to Data from Borehole UZ-7a
(CRWMS M&O 2000, U0050, Figure 6-70)
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Glacial-Transition Climate Using Two Perched Water Models
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Figure 3.7-17. Comparison of Cumulative Normalized Breakthrough Curves at the Water Table Using
Perched Water Model #1 and #2 with a Non-Sorbing Tracer (Tc) for Mean-infiltration,
Glacial-Transition Climate (CRWMS M&O 2000, U0160, Figure 8. The data shown in this
figure are based on a model that is appropriately conservative for TSPA analysis and
consequently should not be used to evaluate expected breakthrough curves of
radionuclides at the water table.)
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The data shown in this figure are based on a model that is appropriately conservative for
TSPA analysis and consequently should not be used to evaluate expected breakthrough
curves of radionuclides at the water table.)
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IzI�

Geochemical Data

Uj

Figure 3.8-2. Model Diagram Showing Inputs and Outputs for Ambient Geochemistry Model.
Icons are described in the text.
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3-D Calibration Grid; Modified Percolation Fl
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Figure 3.8-4. Percolation Flux Map for 3-D Calibration Grid (Adapted from CRWMS M&O 2000,
UOO05, Figure 6-24)
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Figure 3.8-5. Analytical Results of 36CI/CI Along ESF (Using Calibrated Infiltration) for Transient
Changes in Initial Ratios, Compared to Measured Ratios (CRWMS M&O 2000,
U0050, Figure 6-31)
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Figure 3.8-6. Simulated Calcite Abundance (Lines) with Infiltration Rate After 10 Million
Years in the WT-24 Column Together with Measured Calcite Mass Abundances
(Diamond Symbols) (Data from CRWMS M&O 2000, U0085, Section 6.10, Figure 53;
CRWMS M&O 2000, U0050, Figure 6-36)
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Figure 3.8-7.

TDR-NBS-HS-O(

Prediction of Cl Concentrations in Pore Waters Made Prior to Excavation of the ECRB
Compared to Data Collected Subsequently (Adapted from Sonnenthal and Bodvarsson
(1999, Figure 14) and CRWMS M&O 2000, U0050, Figure 6-23)
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Figure 3.9-1. Schematic of Phenomena and Processes Affecting Drift Seepage. Numerals refer to list
items in text.
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Figure 3.9-2. Schematic Showing Data Flow and Series of Models Supporting Evaluation of Drift
Seepage
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Geostatistical Analysis of Post-Excavaion
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Figure 3.9-4. Schematic Showing General Approach for the Development of the Seepage Calibration
Model (Adapted from CRWMS M&O 2000, U0080, Section 6)
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Figure 3.9-5. Schematic Showing Location and Layout of Niche 3650 as well as Log-Permeability Field
of the Three-Dimensional Seepage Calibration Model (Adapted from CRWMS M&O 2000,
U0080, Figures 12, 13, and 18)
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TDR-NBS-HS-0(

Comparison between the Measured Seepage Mass (Circles) and That Calculated with
Two- and Three-Dimensional, Homogeneous and Heterogeneous Models (Squares).
The four models are visualized on the left. The uncertainty of the model predictions is
shown as error bars on the 95% confidence level. The three-dimensional heterogeneous
Seepage Calibration Model matches the data best (Adapted from CRWMS M&O 2000,
U0060, Figure 19).
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)0002 REVOO ICN I Attachment III-98 June 2000 |



Unsaturated Zone Flow and Transport Model Process Model Report

Figure 3.9-8. Schematic Showing Percolation-Flux and Seepage-Threshold Distributions, Which
Determine the Seepage-Fraction Probability
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Figure 3.9-10. Effect of Flow Focusing on Seepage Fraction (CRWMS M&0 2000, U0120, Figure5)
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Figure 3.9-11. Effect of Flow Focusing on Mean Seep Flow Rate (CRWMS M&O 2000, U0120, Figure 6)
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Figure 3.10-1. Schematic Diagram of THC Processes Around a Heated Drift
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Figure 3.10-3. Model Diagram Relating Inputs and Outputs for the THC Seepage Model and Drift Scale
Test THC Model
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Figure 3.10-6. THC Seepage Model Mesh Showing Hydrogeologio Units in Proximity of the Drift:
Topopah Spring Tuff Upper Lithophysal (tsw33), Middle Nonlithophysal (tsw34), and
Lower Lithophysal (tsw35) Units, and Blowup Showing Discretization of In-Drift Design
Components (adapted from CRWMS M&O 2000, N0120/U0110, Figures 18 and 19)
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Figure 3.10-6. THC Seepage Model Mesh Showing Hydrogeologic Units in Proximity of the Drift:
Topopah Spring Tuff Upper Lithophysal (tsw33), Middle Nonlithophysal (tsw34), and
Lower Lithophysal (tsw35) Units, and Blowup Showing Discretization of In-Drift Design
Components (adapted from CRWMS M&O 2000, N0120/UO110, Figures 18 and 19)
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Figure 3.10-7.

TDR-NBS-HS-O(

Contour Plot of Modeled Liquid Saturations and Temperatures (Labeled Contour Lines) in
the Matrix at 600 Years (Near Maximum Dryout) for Three Climate Change Scenarios:
(a) Lower Bound, (b) Mean, and (c) Upper Bound (Calcite-Silica-Gypsum System)
(CRWMS M&O 2000, NO120/UO110, Figure 26)
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the Matrix at 600 Years (Near Maximum Dryout) for Three Climate Change Scenarios:
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period is left blank. Numbers by each curve indicate the last output liquid saturation before
dryout and the first output iiquid saturation during rewetting (CRWMS M&O 2000,
N0120fUO110, Figure 38).
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a result of mineral precipitation (CRWMS M&O 2000, N0120/UO110, Figure 42).

CTr3
June 2000 |TDR-NBS-HS-000002 REVOO ICN I

(c)
40

35

30

2a

20

15

10

"7 S

-10

-15

-20

-25

-30

-35

-40
40

... ... ..... ........... _

Attnhment 111-1 15



0) ~~~~~~MInwr Calcite, Amorphous
allie and Zollt Precipittlon Ne=lgileChang..In Hydrological
In Frnetum mnd M&trix PropIrtiesndUZFlow andTnspor|

Co
m0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C

in (-1< X 5 Cheml try ofWater and Gas: o

a0

X I | * 11|n 7- - - - -

o InfiltratioDrn andl Inmortial

o wate Composition was

3 B |k_l ellu con)_2 

>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

c o cmolleir terIt rhighervothanonaleraoe

> X 0
o asIlnity Dri~~~~~~~~~~~~~~~~Dit al bp raOuuu

Maximum (ba") .180-Ca
Cr)-,~ ~ ~ ~ ~~~~~~~~~~~~~~~Mxmm(mw).2-3

Air Mass ractim dereases l

0)



Fracture vs. Matrix Flow
* Vitric CHn
* ZnoltIo CHn

/
/1��/

* Infiltration Rdato
* Climate Regimes

\

(3

0,

z * Matrix Diffusion and
Sorption

. Properties (e.g., Kd,
Permebility, Porosity)

* Dispersion

Cs

CD

Co

CoC

0)

0

0

0'
a

0
I0
QI

0n

N

0

0

C

0i

NI

*I

-3

~1

CV

I
a-

C
'0
I
I-

* Fast Pathways of
Tannsport

* Praoturg-Matrix
Int raotiona

* PropertIos (c.g., Aperture,
Frequency)

* Sorption In Frocture
* Dispnrsion

I/

I

= Ci

8 V<

* Past Pathways of
Tr nsport

* Limit Lateral Transport

2�



Unsaturated Zone Flow and Transport Model Process Model Reoort

Ambient Geochemistry

,( - -i n , zz�

I Model

U0085 U0060

<-zz

Figure 3.11-2. Relationships of Other Models and Data Feeds to the Transport Model

TDR-NBS-HS-000002 REVOO ICN 1

Colloid
Transport

U0070

PA
Abstraction

U0065

I 

June 2000 1Attachment III- 1 18



Unsaturated Zone Flow and Transpotn Model Process Model Report

o a

_ _ _ _ _ _ ~ a a a Ia

0.~
0

I
0
0-

m 'N w NN 7 I~~C rt CrQ -; a-aa aa a a 0I
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Varying Present-day Climatic Scenarios (Adapted from CRWMS M&O 2000, U0060,
Figures 6.12.1, 6.13.1, 6.14.1, and 6.14.2. The data shown in this figure are based on a
model that is appropriately conservative for TSPA analysis and consequently should not
be used to evaluate exDected breakthrough curves of radionuclides at the water table.)
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Figure 3.11-7. Influence of Colloid Size and Kinetic Model Parameters on Colloidal Transport
(Adapted from CRWMS M&O 2000, U0060, Figures 6.16.1 and 6.16.2. The data shown in
this figure are based on a model that is appropriately conservative for TSPA analysis and
consequently should not be used to evaluate exDected breakthrough curves of
radionuclides at the water table.)
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Figure 3.11-8. Correlations of Average Infiltration Rates and Tracer Transport Times at 50% Mass
Breakthrough for 36 Simulation Scenarios (Data from CRWMS M&O, 2000, U0050,
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Figure 3.11-9. Simulated Breakthrough Curves of Cumulative Tracer (36CI) Mass Arriving at the
Repository Level, Since Release from the Ground Surface, Using the Present-Day,
Mean Infiltration and Four Simulation Scenarios (Data from CRWMS M&O, 2000, U0050,
Section 6.7.3. The data shown in this figure are based on a model that is appropriately
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Figure 3.11-10.
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Effects of No Matrix Diffusion: Concentration of Radionuclides and Colloids at the Water
Table for the No-diffusion Alternative Model (Adapted from CRWMS M&O 2000, U0060,
Figures 6.17.1 and 6.17.2. The data shown in this figure are based on a model that is
appropriately conservative for TSPA analysis and consequently should not be used to
evaluate exDected breakthrough curves of radionuclides at the water table.)
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Figure 3.11-11. Schematic of the RTTF Technique for Determining Particle Residence Time in a Cell
(CRWMS M&O 2000, U0065, Figure 2)
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Figure 3.11-12. Comparison of the Particle-Tracking Solution and a Direct Finite-element Solution tothe
Transport (FEHM V2.1 0) for a l-D, Dual-permeability Model (CRWMS M&O 2000,
U0065, Figure 9. The data shown in this figure are based on a model that is appropriately
conservative for TSPA analysis and consequently should not be used to evaluate
expected breakthrough curves of radionuclides at the water table.)
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Figure 3.11-14. Comparison of Cumulative Normalized Breakthrough Curves at the Water Table Using
FEHM V2.1 0 and DCPT V1.0 software with the Nonsorbing Tc for Mean-infiltration,
Glacial-Transition Climate (CRWMS M&O 2000, U0160, Figure 11. The data shown in this
figure are based on a model that is appropriately conservative for TSPA analysis and
consequently should not be used to evaluate expected breakthrough curves of
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Figure 3.11-15. Comparison of Cumulative Normalized Breakthrough Curves at the Water Table Using
FEHM V2.10 and DCPT V1.0 software with the Sorbing Np for Mean-Infiltration,
Glacial-Transition Climate (CRWMS M&O 2000, U01 60, Figure 11. The data shown in this
figure are based on a model that is appropriately conservative for TSPA analysis and
consequently should not be used to evaluate expected breakthrough curves of
radionuclides at the water table.)
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Figure 3.12-1. Schematic of the TH Modeling Issues
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Figure 3.12-2. Schematic Showing Input Data and the UZ Models that Support the Development of the
TH Model
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Figure 3.12-3. Plan View of the UZ TSPA Grid, Showing the Location of the Potential Repository
Submodel Domain (in Red) and the Cross Sections, NS#1 and NS#2. Locations #1
and #2 are Used for Detail Plots. Large solid circles refer to boreholes; small circles refer
to centers of grid columns (adapted from CRWMS M&O 2000, U0105, Figure 1).
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Figure 3.12-4. Lateral and Vertical Discretization at the NS#2 Cross-Section Based on the Refined
Numerical Grid. Plot shows ocation of the potential repository and the hydrogeologic units
layering (adapted from CRWMS M&O 2000, U01 05, Figure 3).
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Figure 3.12-5. Temperature Distribution along NS#2 Cross-Section Grid at 1,000 Years (a) No
Ventilation, (b) with Ventilation (Adapted from CRWMS M&O 2000, U01 05,
Figures 45 and 59).
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Figure 3.12-6. Temperature at Location #1, NS#2 Cross-Section Grid (a) No Ventilation (b) with
Ventilation (Adapted from CRWMS M&O 2000, U0105, Figures 46 and 60).
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Figure 3.12-7. Temperature along a Section of the Potential Repository Horizon of the NS#2
Cross-Section Grid (a) No Ventilation, (b) with Ventilation (Adapted from
CRWMS M&O 2000, U0105, Figures 48 and 62).
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Figure 3.12-8. Matrix Liquid Saturation (Sl) along NS#2 Cross-Section Grid at 1,000 Years (a) No
Ventilation, (b) with Ventilation (Adapted from CRWMS M&O 2000, U0105,
Figures 50 and 64).
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Figure 3.12-9. Matrix Liquid Saturation at Location#l, NS#2 Cross-Section Grid (a) No Ventilation,
(b) with Ventilation (Adapted from CRWMS M&O 2000, U0105, Figures 51 and 65).
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Figure 3.12-10. Matrix Liquid Saturation along a Section of the Potential Repository Horizon,
NS#2 Cross-Section Grid (a) No Ventilation, (b) with Ventilation (Adapted from
CRWMS M&C 2000, U01 05, Figures 52 and 66).
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Figure 3.12-11. Fracture Liquid Flux at Location #1,NS#2 Cross-Section Grid (a) No Ventilation,
(b) With Ventilation (Adapted from CRWMS M&O 2000, U0105, Figures 53 and 67).
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Figure 3.12-12. Fracture Liquid Flux along a Section of the Potential Repository Horizon,
NS#2 Cross-Section Grid (a) No Ventilation, (b) with Ventilation (Adapted from
CRWMS M&O 2000, U0105, Figures 55 and 69).
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Figure 3.12-13. Matrix Liquid Flux along a Section of the Potential Repository Horizon,
NS#2 Cross-Section Grid (a) No Ventilation, (b) with Ventilation (Adapted from
CRWMS M&O 2000, U0105, Figures 56 and 70).
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Figure 3.12-14. Summary of TH Model Results
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Figure 5.1-1. Conceptual Sketch of the UZ with Icons Representing Major Model Components
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* Past Climate Data
* Interpretation of Climate Cycles

and Analogs

* Bounds on Temperature and
Precipitation
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Uncerlointy
(AMR UOOIO, U0095)

* Nine Infiltration Maps (low, 'mean,"
and high for three climate states)

* Weightings for Low, Mean, and
Upper Infiltration Cases

* 3-D UZ Site-scale Grid (AMR UOOOO)
* Calibrated Propertles (AMR U0035)
* Conceptual and Numerical Models

(AMR U0030)
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Figure 5.1-2. Schematic of Major Inputs and Outputs for UZ Flow Model and its Submodels
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* Drift-seepage Tests (AMR UOO1S)
* Conceptual and Numerical
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* Variability and Uncertainty In
Seepage Distributlons (Seepage
Fraction, Mean Seep Flow Rate,
Standard Deviation of Seep Flow
Rate, Flow Focusing Factor)

Figure 5.1-3. Schematic of Major Inputs and Outputs of the Drift Seepage Models
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* UZ Flow Model (AMR U0050)
* Calibrated Properties (AMR U0035)
* Geochemistry Data (AMR UOOB5)
* Design Parameters
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* Temporal and Spatial Dlstribution
of Water and Gas Composition
Around Drift

* Influence of THC on Rock
Properties Around Drift

Figure 5.14. Schematic of Major Inputs and Outputs of the Drift-Scale THC Models
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UZ Transport Model
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Figure 5.1-5. Schematic of Major Inputs and Outputs of the UZ Transport Models
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