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UZ PMR Models Clhimate ™ Infiltration
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Figure 1-2. Main Models Included in the UZ PMR, Their Interrelations, and Their Connections to TSPA
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Figure 2.1-2.

Schematic lllustration of the Main Surface-Based Deep Boreholes and Underground Drifts
of the ESF, and the Major Faults in the Vicinity of Yucca Mountain
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Geologic Mapping and Geophysical Studies on Surface and in ESF

(a) Drilling of Borehole SD-6 on the Crest of
Yucca Mountain

Objectives:

« Determine lithology and
structural features of tuff units.

= Evaluate distribution of fractures
and faults.

Approaches:

« Map features on bedrock, in Y
trenches, and along ESF drifts. )

+ Conduct geophysical logging '
along boreholes.

- Deploy geophysical tomographic
imaging techniques on the
surface and in underground
drifts.
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Results:

- Refined geological maps of
bedrock, washes and faults.

+ Improved geological framework
of tuff layers and fault offsets.

» Detailed line surveys and full
peripheral maps along drifts.

+ Interpreted fracture density
distributions between surface
and underground drifts.

Morthing (m)
232302
h
T
2RIRO2

L

Intensaly Fractured Zana
T

2371702

2303

231102
ZANO2

-~
T
2ROKOT

220900 23050
:

20802

TOCss 110864 71254 51884
Easting (m)

(8) el Biacsy s
o s H 4 = L]

Distributions by
Detailed Line Survey FRAGCTURE DENSITY
and Seismic Tomograph

Figure 2.2-1.  Geological and Geophysical Studies on the Surface and along the ESF
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Infiltration Study on the Bedrock and in Washes
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(a) Location of Washes Instrumented for (b) Estimated Net Infiltration (mm/yr) for the Mean
Watershed Study Modern Climate Scenario
Objectives:

* Provide upper boundary
conditions for UZ Flow and
Transport Model.

» Evaluate infiltration processes
and mechanisms for determining
net infiltration under current dry
and future wet conditions.

Approaches:

* Conduct periodic neutron logging
in network of shallow boreholes.

» Record climate changes and
evaluate evapotranspiration
potentials.

* Instrument washes to evaluate
run-on and run-off processes.

(c) Neutron Logging at Pagany Wash

Results:

- Improved infiltration maps for * Quantification of downward flux
current, monsoon, and glacial- and lateral run-on and run-off
transition climates. processes.

= Quantification of relationships
between precipitation and net
infiltration.

Figure 2.2-2.  Infiltration Study on the Bedrock and in Washes (USGS 2000, U0010, Sections 6.3
and 7.1)

Ccl
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Drift Seepage Test at Niche 3650

(a) Schematic of Niche 3650 in the ESF

Objectives:

* Quantify seepage threshold
below which no seepage occurs.

= Evaluate capillary barrier
mechanism and measure drift-
scale parameters.

Approaches:

Use air injection tests to
characterize the niche site with
resolution of 0.3-m scale (one
tenth of drift dimensions).

Use pulse releases to represent
episodic percolation events.
Determine seepage thresholds
by sequences of liquid releases
with reducing rates.

Derive in situ fracture
characteristic curves with
wetting front arrival analyses.

Results:

* Measured seepage threshold
ranges from 200 mm/yr to
136,000 mm/yr at localized
release intervals.

- Six out of sixteen tested intervals
did not seep.

* Observed both flow along high-
angle fractures and flow through
fracture network.

= Derived fracture capillary
parameters and characteristic

curves, with equivalent fracture
porosity as high as 2.4%. (c) Flow Paths Indicated by Dye Tracers on Niche Ceiling

' PFe-éxcavation
¥ Ve

Pyranine \
Post-excavation .. B
-FD&C Red*
“Number 40

Figure 2.2-3.  Drift Seepage Test at Niche 3650 (CRWMS M&O 2000, U0015, Section 6.2.)
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In Situ Wet Feature Observed at Niche 3566

35404 Main Drift 3566  To North Portal= |

(a) Schematic of Sealed Niche 3566 in the ESF
Objectives:
» Characterize the hydrologic
setting of a site with bomb-
pulse 38Cl signals, the
Sundance fault and its first
cooling joint.

- Quantify seepage processes.

Approaches:

« Mine the niche without
spreading water to the ceiling

during excavation.
g (b) Photograph of a Damp Feature
Close the bulkhead to prevent in the Brecciated Zone at the

moisture removal by Back of Niche 3566

ventilation. P
* Monitor the rock and drift over o

long time periods.

f
§
g
§

ﬁi

Results:

» One damp feature observed
after dry excavation at end of
the niche. It dried up before
bulkhead installation and did
not rewet after long-term
monitoring over two years.

Drill Hole Wash Fault

T
Diabolus Ridge Fault
Ghost Dance Fault

Dune Wash Faull

o

Measured 38CI/CI Ratlo (x 10715)

ESF Station (x 100m)

(¢) Distribution of 38CI/C! in the ESF

Figure 2.2-4.  Damp Feature Observed during Dry Excavation of Niche 3566 and Bomb-Pulse 38CI/Cl
Signals along the ESF (Wang et al. 1999, pp. 331-332; CRWMS M&O 2000, U0085,
Section 6.6)

CQ
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Drift Seepage Test at ECRB Cross Drift Niche 1620

ECRB Cross Drift

Access Drift

Objectives:

- Quantify seepage into drift in the
lower lithophysal unit at a cavity-rich
zone.

» Characterize the pneumatic and
liquid flows in the presence of
lithophysal cavities and porous tuff.

= Determine the differences between
lower lithophysal unit and middle
non-lithophysal unit of the potential
repository rock.

* Quantify fracture-matrix interaction
at lower lithophysal unit.

Approaches:

= Observe flow paths during dry
excavation, use air-injection tests to
characterize liquid release intervals,
and conduct drift seepage tests with
liquid releases at different rates.

- Adopt, improve, and extend the
methodologies used in tests
conducted in the middle non-
lithophysal niches and test beds.

(b) Alpine Miner Excavating the Access Drift

Results:

« Pre-excavation air-injection test
results suggest that lower
lithophysal unit has higher

Figure 2.2-5.

TDR-NBS-HS-000002 REVOO ICN 1

permeability than middle non-
lithophysal unit.

= Access drift has been excavated
with an Alpine Miner.

« Seepage tests are prepared to be
conducted after niche excavations.

Afttachment I11-12

(c) Example of a
Cavity in the
Lower Lithophysal
Tuff Unit

el . et -

{d) Scanner Image along Borehole AK-1 at Niche1620

Lower Lithophysal Seepage Test at ECRB Cross Drift Niche 1620

c
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Fracture-Matrix Interaction Test at Alcove 6

{a) Photograph of Alcove 6 Test Bed

B Tray 1-8

Colicion Ty e

(c) Schematic of Liquid Release Test 100

Objectives: E "

= Quantify fracture-matrix interaction E
and the fraction of fracture flow. B

=

Approaches: ; i

« Use a slot below boreholes to _‘g
capture fracture flows. 3 <

« Estimate the fracture/matrix flow #
partitioning by mass balance. T % :

- Use borehole sensors to detect % 2 4 6 & w2
wetting front arrivals. Injection Rate (mi/min)

(d) Water Collected in the Slot

Results:

+ A maximum of 80% of injected * Qut flows occurred in step increments which could
water was recovered for high-rate be related to water stored in fracture flow paths.
injection tests (i.e. 80% fracture
flow).

Figure 2.2-6.  Fracture-Matrix Interaction Test at Alcove 6 (CRWMS M&O 2000, U0015, Section 6.6)

c\O
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Fault Flow Damping Test at Alcove 4

North Face Alcave 4 pg”

(b} Close-up of Tray on the Left-Hand
Side of the Slot

(c) Schematic of Boreholes at Alcove4 | | .| & &
= 1 [ Test2 Tejs:a Test4 - |Tests
Objectives: £ T
- Evaluate flow mechanism in the " ' l;
Paintbrush nonwelded tuff unit. & : i P
= Quantify the damping and lateral % N
diversion processes along a fault £ W f o Be B
and along bedded tuff = Yy S N
interfaces. W LT
% 500 1000 1500 2000 2500
Approaches: Cummulative Injection Time (min)
- Select a test bed containing
bedded tuff layers (including an (d) Water Intake Rate at a PTn Fault
argillic layer), a fault, and a Results:
fracture. « Water intake rate in the fault decreased as more
= Release water under constant- water was introduced into the release zone.
head conditions to determine the + Clay swelling is one mechanism proposed to
intake rates. interpret the field data.
« Monitor wetting front arrivals and = Detection of down-gradient increases in saturation
measure potential changes in occurred over shorter time intervals with each
boreholes. liquid release test.

Figure 2.2-7.  Paintbrush Fault and Porous Matrix Test at Alcove 4 (CRWMS M&O 2000, U0015,
Section 6.7)

c il
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El Nifo Infiltration Test at Alcove 1

(a) Photography of ESF North Portal and
Infiltration Plot (Blue Cover)

Objectives:

* Quantify large-scale infiltration and
seepage processes in the bedrock.

+ Evaluate matrix diffusion
mechanism in long-term flow
and transport tests.

Approaches:

« Water applied on the surface 30 m
directly above the alcove.

= Tests conducted in two phases:
March - August 1998 and May

1989 - present, with Phase 1
focusing on flow and Phase 2 T 7
focusing on tracer transport. (b) Schematic of Alcove 1 Infiltration Test
Resuits:
« Over 100,000 liters infiltrated in s
Phase 1, with observed seepage R N A e wa
rates of up to 300 liter/day. o B e SR
= First seepage was observed 58 ’ -""”“”":‘“;::Z‘“m
days after Phase 1 test initiation. 5.; _Hzm:n oe s P
Pressure/flow response of the R T e
system was observed to be ~2 E {
days once a nearly steady-state 8 s :
system had developed. E i
= High concentrations of LiBr were g | IH SE
used in Phase 2 tracer test. i o --
+ First tracer breakthrough in Phase é L : / / .
2 observed in 28 days with a nearly 8 02p : it
steady-state flow system using a - - : 1 ﬁ 4 -/
conservative tracer. 0.0 —eu it . T O I
- Tracer recovery data were used to L W "’;a o wr a
compare with model predictions me (feye)

and Fo e_“'alu'ate the importance of (c) Tracer Breakthoughs Test Results and Model Predictions
matrix diffusion. with Matrix Diffusion

Figure 2.2-8.  El Nifo Infiltration and Seepage Test at Aicove 1

clZ
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Alcove 8-Niche 3107 Cross-Drift Test

Monitoring  Cross Drift
- Boreholes (5)  Alcove 8
Alcove 8 Boreholes (6)

Existing Niche 3107
Seepage Boreholes

ESF Niche 3107

Niche 3
Boreholes (4)

Objectives:

+ Quantify large-scale infiltration
and seepage processes in the
potential repository horizon.

= Evaluate matrix diffusion
mechanism in long-term flow
and transport tests across an
lithophysal-nonlithophysal
interface.

(a) Schematic of the Cross Drift Test Bed

Approaches:

* Water releases are in Alcove 8
and seepage collections are in
Niche 3107.

« Niche 3107 is instrumented with
seepage collectors and wetting
front sensors.

« Geophysical tomographs are
conducted in vertically slanted
boreholes.

{b) Photograph of Partial Excavated Alcove 8 in ECRB Cross Drift

Status:

» Drill-and-blast phase of Alcove 8
excavation was completed in 1999.

- Tests are prepared to be
conducted after alcove excavation.

Supporting Results:

+ Seepage tests at Niche 3107
behind bulkhead demonstrate the
existence of seepage threshold
under high humidity conditions.

» During ECRB Cross Drift
construction, no water was

observed to seep into the ESF
Main Drift 20 m below.

Figure 2.2-9.

B (c) Photograph of Water
Collection Trays on the
Ceiling of the ESF Main Drift

Cross-Drift Test between ECRB Cross Drift Alcove 8 and ESF Main Drift Niche 3107

(CRWMS M&O 2000, U0015, Section 6.9)

TDR-NBS-HS-000002 REV00 ICN 1
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Geochemical Measurements on Borehole and ESF Samples

Cl Concentration [mg/L]

4] 500 1000 1500 2000 2500
ECRB Station [m]

(a) Total Chloride Contents Along the ECRB Cross Drift

Obijectives: =

- Provide data to define {nvarage ron waien 5 >
geochemical evolution of water oo PP~ - A .
in the UZ. ] "

* Provide data to estimate —]
percolation flux at depth. g | T g

Approaches: § il Tow

« Collect gas and perched water * 1100 o et 2
samples by pumping. B ol M

mmiyT infiltration Fate

+ Extract pore water by el === Modl Sosut for 20 myr
compression, ultracentrifuge, | o
or vacuum distillation. 900 |y flraion Rate (mm)

* Determine major ion 1EW 1Es1 1E92 143 1B+ 1E45 1E+8
concentrations by chemical Change of Voluma Fraction (ppmV)
analyses. (b) Calcite Distributions Used for Infiltration and

Percolation Evaluations

Results:

* Total dissolved solid and chloride S e s s T
are used to estimate infiltration = WA L = =
rates and percolation fluxes. [SEScans =

- Pore waters are related to soil- 12004———| ~=-NRGTA | i o
ZOone processes: — = ¥ muan

. . . : 1 L PTn UZM,

evapotranspiration, dissolution — - :EE: v |
and precipation of pedogenic mﬂ o gl == ¥ EER
calcite and amorphous silica. Easati sl

- Deep pore waters are used to soo{—— 502 “ts0r T
evaluate restricted water-rock - e et HH
interactions and significant lateral == & == i
movement within Calico Hills e e stk -
unit. 2001 0.01 P 01 1

(c) Strontium Profiles Used for Zeolite Quantification

Figure 2.2-10. Geochemical Studies of Tuff Samples (CRWMS M&O 2000, U0050, Section 6.5;
Sonnenthal and Bodvarsson 1999, p. 1486)

Cl
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Isotopic Measurements on Fracture Minerals and Perched Waters

Objectives:
- Provide isotopic data to define
age evolution of water in the UZ.
» Provide data to delineate flow 3
paths over geological time ”
scales. %1:_ o
-5 SR
Approaches: £ Of] e
* Leach salts from UZ cores or S e aomr . P
cutting for 36C| and Sr isotopic & Opai neringhes et o aiched
analyses. &5 . i 081 Hnoie neftaphire
- Extract water for tritium, #. ’%\_"' e d/:}“"“" :
hydrogen and oxygen stable i T \_ ]
isotopes, and carbon isotopic & 1 %&:ﬁxﬁ%ﬁ;a%-umm.
analyses. e L SR e U S e e )
« Digest mineral samples for . T OO TR R
- - Age, in ka
analyses of Sr isotope ratios and
of U series nuclides.

(b) Ages of Opal Indicate Long Term Flow in Fractures

Results:

- Bomb-pulse 36CI/Cl signals are
present in the vicinity of some
fault zones in the ESF.

+ Detectable levels of tritium are = Perched water data
present in ~6% of pore waters
sampled.

- Bomb-pulse 36CI/Cl and tritium
signals are not present in
perched waters.

= Age of perched waters, mixing
between fast and slow flows,
climate of recharge are
estimated by carbon and stable
isotope analyses. 0 1 1 1

- 234Y/238YJ activity ratios indicate 0O 200 400 600 800 1000 1200
recharge through fractures and 38CI/Cl ratio (x 10°19)
minimal exchange between pore
water and fracture water. (c) Perched Water Ages Determined by 14C and 36CI/CI Data

8

o Aaconstructed

‘Da22ka atmospheric
activities

8
I
)

3

mUZ-14A

14¢ activity (pmc)
&

1]
(=]
T

Figure 2.2-11.  Isotopic Studies of Tuff Samples (CRWMS M&O 2000, U0085, Section 6.6)

C\5
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o ol e

UZ Transport Test at Busted Butte

Borehole 46-16
(04/01/99 - 09/01/98)

Solitario Canyon

(&) Ground Penetrating Radar Tomograph
of Injected Plume (Phase 2)

Objectives:

+ Quantify UZ transport processes
in Calico Hills nonwelded unit.

- Measure retardation coefficients in

e L R R
Leywmd
Colaction Berahoks 0=
Barabclas Used bor QPR Ll

the field to compare with i
laboratory measured values. e

e

Approaches:

« Atest bed was excavated 70 m
below the surface in mainly vitric
CHn underlying the vitrophyre.

« A mixture of conservative and
sorbing tracers is used in tracer
injection tests.

= Absorbent pads are used to
sample periodically the tracer
distributions below injections.

= Ground-penetrating radar
tomography, together with
electrical resistivity tomography
and neutron logging, are used to
track plume migrations.

{b) Schematic of Busted Butte Test Area

Results:

« Phase 1A was conducted with
single point injections from April
1998 to mineback in 1999.
Capillary driven flow mechanism
is confirmed.

» Phase 2 tests with areal injections
are on-going with breakthroughs
and plume migrations monitored.

(c) Tracer Plume from Injection in the Side Wall of the
Main Adit, Opposite to the Test Alcove (Phase 1A)

Figure 2.2-12. UZ Transport Test at Busted Butte (CRWMS M&O 2000, U0100, Section 6.8)

c\b
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Single Heater Test at Alcove 5

(a) Schematic of Single Heater Test

Objectives:

» Evaluate THMC coupled
processes around a line heater
source in fractured tuff.

« Develop testing methodologies
and modeling approaches for high
temperature conditions.

Approaches:

« Heating with a 5-m long 4-kW
heater lasted 9 months in 1996
and 1997.

» Borehole sensing and cross-hole
testing were used before, during,
and after heating period.

Results:
- Extent of dry-out of about 1 m

(b) Photograph of Single Heater Test Block Insulated

around the heater hole was ;
measured with geophysical 3 . ‘?‘...,‘:‘3“
techniques (ERT, GRP and sF iz oy
neutron). f AE T il aseer

- Condensate zone below the 2f o S i
heater was measured to be larger E ) \
than above the heater horizon. = ol B, NM, B, @ 159

- Chemical composition of water EaE lezetn SR Ty o
collected during heating in packed “E & o Wi ol =
borehole intervals was analyzed. E N L

» Characterization data by air- 2k S
injection tests and mechanical g ~ . el
displacement measurements st i mipscmni T
located high-k flow paths. i e e i e e

-4 -3 2 ] [¥] 1 2 3 4 5 [} T
x (m)

(c) Distributed Liquid Saturation in Cores After Cooling Phase

Figure 2.2-13. Single Heater Test at Alcove 5 (Tsang and Birkholzer 1999, pp. 411-415)
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TErrT—"® T T

Drift Scale Test at Alcove 5

Connecting !

Observation

Heated Drift

Objectives:

» Evaluate THCM coupled
processes in emplacement drift
scale with full-scale heaters.

« Evaluate multi-drift heating effects
with wing heaters to simulate
multi-drift test conditions in
fractured tuff.

Approaches:

* Install extensive borehole sensor
arrays for monitoring of heating
responses.

« Perform periodic geophysical
imaging, pneumatic testing, and
fluid sampling to measure the
thermally induced coupled effects.

Results:

« Drift wall temperature reached
~190°C after 2 years of heating
(since December 1997 at 187 kW).

» Condensate accumulated mainly
below the wing heaters at early
times.

* Wetting and drying zones were
identified by periodic air-
injection tests and geophysical
methods.

» Gas phase CO; concentration

increased strongly in large

region around the heaters.

Interactions of calcite and

silicate minerals were indicated

by chemical analyses of water

collected. (c) Comparison of Measured and
Modeled Temperature Distributions

sNMERRIREE

Figure 2.2-14.  Drift Scale Test at Alcove 5 (CWRMS M&O 2000, U0110/N0120, Section 6.2)
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Infiltration Rate in mm/yr

Depth Below Ground Surface (m)

= 0 02 04 06 08 10
Degree of Liquid Saturation
(a) 1-D Model of ambient saturation

conditions for different percolation
flux values UZ Flow — 1986

Outline of
Potential Repository

Ghost Dance
Fault

N
I i ————1 ]
0 05 10 075 20
Distance (km)

(b) 6 1-D Columns in 1 transect with
1mm/yr infiltration, composite-porosity
and weep models TSPA — 1991

(c) 8 1-D Columns from di

0-5 mm/yr infiltration during dry
periods and 10 mm/yr during wet
periods TSPA— 1933

Figure 2.4-1.  One-Dimensional Column Simulations with the UZ-1986, the TSPA-1991, and the
TSPA-1993 Models (Rulon et al. 1986, Barnard et al. 1992, and Wilson et al. 1994)

TDR-NBS-HS-000002 REVOO ICN 1

c\9

Attachment II1-22 June 2000 |




1 NOI 00AHY Z00000-SH-SEN-¥d.L

[ 1IRUCIEUBLE 4

| 000 oung
09

(zp-ov dd

‘GBB L ‘[ 19 JaMIIM) [BPOW S661-ZN BU) Ul pasn suoiewixoiddy pue ysepy ey

"2-¥'¢ ainbi4

(@)

- - = - Cross-section
— Faults
. Existing wells
©  Proposed wells

Potentiai
repository

-
L

(b)

Elevation (masl)

1500

|||| A e '
"W E Yucca Mountain

1250

1000

750

P S

B

0 1000 2000
Distance (m)

3000

110day] [9POJA] $82001J [SPOJA 10dSURI] PUE MO[J QUOZ PRJRINIesur]




vy il

Unsaturated Zone Flow and Transport Model Process Model Report

: il

S |

(a) Finite Element Grid of the Antler Ridge Cross Section

5,000 Years
30,000 Years
75,000 Years
250,000 Years

900,000 Years

West 0 Concentration 1 =Rt E

(b) Simulations of Transport of 237Np from the Potential Repository i

Figure 2.4-3.  Simulations of 237Np Transport by the UZ Transport-1995 Model (Robinson et al. 1995, QE
p. 61, p. 125) '
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(b) Vertical Grid
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Figure 2.4-4.  The Mesh and the Approximations Used in the UZ-1997 Model for TSPA-VA
(adapted from Wu et al. 1999b, pp. 190-193)
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Tiva Canyon (TCw)
Paintbrush Tuff (PTn)

Topopah Spring (TSw)

Calico Hills (CHn)

Crater Flat (CFu)

(b)

Yucca Crest
Borehole SD-6
1500 - Ghost
Solitario : Danes
1400 | Borehole fault Dune
Canyon i Wash
fault fault
1300 | ~_ Borehole

¢
)
]
Q
7]
c
0]
Q
£
- 7 Tow
8 1200 . TCw
o
® 1100 i
)
0]
£ 1000 TSw
c )
5 900 R
2 CHn (zeolitic)
3 800 /CHn (vitric or
w 3 devitrified)

— j E—

0 25 50 .75 10

Distance (km)

Figure 3.2-1.  Yucca Mountain Site-Scale Geology: (a) in 3-D Perspective and (b) along an East-West
Cross Section (adapted from GFM3.1 data, CRWMS M&O 2000, 10035)
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Distance (km)
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1]

East-West Cross Section along N232,233 maters.

Vapor-Phase
Corrosion
1400  Solltaro

Fractures
g

=
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d ©
[+1]
w0
o
d m

Figure 3.2-2.  Lithostratigraphic Transitions at the Upper and Lower Margins of the PTn Hydrogeological
Unit. (a) Photos and schematic at the TCw-PTn interface, where tuffs grade downward
from densely welded to nonwelded, accompanied by an increase in matrix porosity and a
decrease in fracture frequency. (b) Photo and schematic at the PTn-TSw interface, where
tuffs grade downward from nonwelded to densely welded, accompanied by a decrease in
matrix porosity and an increase in fracture frequency.

C24

TDR-NBS-HS-000002 REVO0O ICN 1 Attachment III-27 June 2000 I




Unsaturated Zone Flow and Transport Model Process Model Report
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Thickness Contour Plots of the (a) PTn, (b) TSw, (c) CHn, and (d) CFu Hydrogeological

Units (Adapted from DTN: MO9901MWDGFM31.000). Contours are in meters.
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Figure 3.2-4.  Lithophysal Transitions within the TSw Unit. (a) Photo and schematic of the contact
between the upper nonlithophysal (Tptpul) and the middle nonlithophysal (Tptpmn) zones
showing a downward decrease in lithophysal volume. (b) Photo and schematic of the
contact between the middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) zones
showing a downward increase in lithophysal volume. Fractures in the nonlithophysal unit
are generally smoother, more planar, and more continuous than fractures in the
lithophysal units.
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Figure 3.2-5.  Lithostratigraphic Transitions at the TSw-CHn Interface. (a) Schematic with prevalent
alteration at the TSw-CHn contact. (b) Schematic with variable alteration at the TSw-CHn
contact. (c) Schematic with minimal alteration at the TSw-CHn contact. (d) Schematic
representation of a fault zone as a well-connected fracture network that may represent a
fast flow pathway. (e) Schematic representation of a fault zone showing alteration within
the fracture network that creates a flow barrier.
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Figure 3.2-6.  Occurrence of Lithostratigraphic Units at the Water Table (730 meters above sea level)
(Adapted from DTN: MO9901MWDGFM31.000)
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% by weight
of zeolite

Tac1 (lower 1/4 Tac) Tacbt Tepuv

Figure 3.2-7.  Distribution of Zeolites in Certain Layers below the Potential Repository Horizon.
(CRWMS M&O 2000, 10045, Section 6.3.2; DTN: MO9910MWDISMMM.003). Areas with
less than or equal to 3% zeolite are considered vitric, or unaltered.
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Infiltration rate

Figure 3.3-1.  Schematic Showing Temporal and Spatial Variabilities of Net Infiltration Rates Resulting
From the Nature of the Storm Events and Variation in Soil Cover and Topography. The size
of the arrow indicates the relative magnitude of infiltration rates.

C%0

TDR-NBS-HS-000002 REV00 ICN 1 Attachment I1I-33 June 2000 |




Unsaturated Zone Flow and Transport Model Process Model Report

Evaporation
Transpiration

Figure 3.3-2.  Schematic Showing Overall Water Flow Behavior in the UZ Including the Relative
Importance of Fracture and Matrix Flow Components in the Different Hydrogeologic Units.
The blue and red colors on the land surface correspond to high and low infiltration rates,
respectively, while the other colors correspond to intermediate infiltration rates
(CRWMS M&O 2000, U0030, Figure 1).
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East-West Traverse through GFM

Fracture Water
Flow in the TCw

Water Flow

Matrix Flow
inthe PTn

"L‘é T

An Isolated, Fast Flow Path

Figure 3.3-3.  Schematic Showing Water Flow Behavior within the PTn Characterized by Dominant
Matrix Flow and a Few Fast Flow Paths
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Fracture
Network
Scale

Single
Fracture
Scale

Figure 3.3-4. Water Flow in Fractures Characterized by Fingering Flow at Different Scales
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Figure 3.3-5.  Major Faults Can Act as Fast-Flow Conduits or Capillary Barriers. The size of the arrows
in (a) and (b) indicates the relative magnitude of flow.
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East-West Traverse through GFM
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L
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Figure 3.3-6.  Schematic Showing Flow Patterns within and near a Perched Water Body Characterized
by Strong Lateral Flow within the Perched Water Body and the Associated
Fault-Dominated Flow
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Matrix Matrix
Fluid Flow Fluid Flow
Advection, dispersion,
Flow between ) and diffusion
Fracture and
the Matrix Mass transfer between
. fractures and matrix
f Filtration
Immobile
i, Colloid
Reversible and/or
] . irreversible
Reversible sorption attachment to colloid
onto the fracture surface
Reversible sorption
. onto matrix solid surface
Immobile
Radionuclide
Matrix Fracture Matrix

Figure 8.3-7.  Important Radionuclide Transport Processes. (Note that the radionuclides also undergo
radioactive decay, but this is not shown in the schematic.)
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Fracture-Matrix
System

Fi = mi]  [F1 mi] [F1 'y

- oole 13
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Fa F4 Ma| [Fa Ma| |Fa

e ears M4
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° — o M2

(a) (b) () (d)

Figure 3.4-1.  Schematic Demonstrating (a) ECM, (b) Dual-Porosity with One Matrix Gridblock,
(c) Dual-Permeability with One Matrix Gridblock per Fracture Gridblock, and (d) MINC with
Three Matrix Gridblocks per Fracture Gridblock

2R

TDR-NBS-HS-000002 REV00 ICN 1 Attachment I11-41 June 2000 |




Unsaturated Zone Flow and Transport Model Process Model Report

Int ted Site Model, I Developed
INPUT ntegrated Site Model, ISM FracturepData

Data Integration and
Grid Generation

oUuTPUT

3-D Grids

Figure 3.4-2.  Flow Diagram Showing Key Input Data Used in Numerical Grid Development, the Types of
Grids Generated, and their End Users
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Tac1 (lower 1/4 of Tac)
Tact (lower 1/4 of Tac)

(a) ISM3.0 Mineralogy Model Plots of % Zeolite
(b) ISM3.1 Mineralogy Model Plots of % Zeolite

Tac4 (upper 1/4 of Tac)
Tac4 (upper 1/4 of Tac)

% by weight
of zeolite

Figure 3.4-3.  Distribution of Percent Zeolite Mineral Abundance in the Calico Hills Formation
(lithostratigraphic unit Tac): (a) MM2.0, (b) MM3.0. (DTNs: MO9901MWDISMMM.000,
MO9910MWDISMMM.003, respectively). Areas with less than or equal to 3% zeolite by
weight are considered vitric, or unaltered.
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Figure 3.4-4.  Distribution of Matrix Permeability (m?) in Select Layers of the CHn Hydrogeologic Unit:
(a) RPM3.0, (b) RPM3.1. (DTNs: MO9901MWDISMRP.000, MO9910MWDISMRP.002,
respectively). In order to maintain consistent parameters within the UZ Flow and Transport
Model PMR, saturated hydraulic conductivity (Kg5t, m/s) from the RPM was converted to

permeability (m2) by multiplying Kg,; values by 10-7.
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Figure 3.4-5.  Extent of Vitric Region (Indicated by Pattern of Diagonal Lines) in Model Layers (a) ch1,
(b) eh2, (c) ch3, (d) ch4, and (e) ch5. White areas indicate prevalent zeolitization
(from CRWMS M&O 2000, U0000, Figure 5).
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Figure 3.4-6.  Plan-View (a) Schematic Showing the UZ Model Boundary, the Repository Qutline, Major
Fault Locations Adapted from GFM3.1, Select Boreholes, the ESF, and the ECRB, (b)
Numerical Grid Design for the Mountain-Scale Model Used for UZ Calibration (adapted
from Figure V-1 of CRWMS M&O 2000, U0000), and (c) Numerical Grid Design for the
Mountain-Scale Model Used for PA Calculations (Adapted from CRWMS M&Q 2000,
U0000, Figure VI-1).
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Figure 3.4-7.
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CRWMS M&O (2000, 10035) (b) from the 3-D UZ Model Numerical Grid for PA
(Adapted from CRWMS M&O 1999a, Figure VI-2). The 3-D UZ Model Grid in plan view
(c) shows the location of the cross section. Bottom elevation along cross sections is 730 m

above mean sea level.
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East-West Cross-Section through Borehole UZ-14: (a) Adapted from Data Contained in
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Figure 3.4-8.  East-West Cross-Section through Boreholes SD-6, SD-12, UZ#16: (a) Adapted from Data
Contained in CRWMS M&O (2000, 10035) (b) from the 3-D UZ Model Numerical Grid for
PA (Adapted from CRWMS M&O 1999a, Figure VI-3). The 3-D UZ Model Grid in plan view
(c) shows the location of the cross section. Bottom elevation along cross sections is 730 m
above mean sea level. '
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Figure 3.4-9.  North-South Cross-Section through Boreholes UZ-14, H-5, and SD-6: (a) Adapted from
Data Contained in CRWMS M&O (2000, 10035) (b) from the 3-D UZ Model Calibration
Grid (Adapted from CRWMS M&O 1999a, Figure V-4). The 3-D UZ Model Calibration Grid
in plan view (c) shows the location of the cross sections. Bottom elevation along cross
sections is 730 m above mean sea level.
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Figure 3.5-2.  (a) Generalized View of Present-Day Atmospheric Circulation (USGS 2000, U0005,
Figure 2) and (b) Daily Precipitation Record Between 1980 and 1995 at Yucca Mountain

(USGS 2000, U0010, Figure 6-18) with (c) an Aerial View of the Arid Conditions at the
Yucca Mountain Site
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Figure 3.5-3.  (a) Field-Scale Water Balance and Processes Controlling Net Infiltration

(USGS 2000, U0010, Figure 5-1) and (b) Major Components of the Net Infiltration
Modeling Process (USGS 2000, U0010, Figure 6-1)
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Figure 3.5-4.  (a) Precipitation (USGS 2000, U0010, Figure 7-1), (b) Surface Run-On
(USGS 2000, U0010, Figure 7-3) and (c) Net-Infiltration Rates
(USGS 2000, U0010, Figure 7-4) for the Mean Modern Climate Scenario
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Figure 3.5-56.  Net-Infiltration Rates for (a) Mean Monsoon (USGS 2000, U0010, Figure 7-7) and
(b) Mean Glacial-Transition (USGS 2000, U0010, Figure 7-14) Climates
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Figure 3.5-6.  Histogram of Log of Potential Repository-Average Infiltration for Glacial-Transition Climate
(adapted from CRWMS M&O 2000, U0095, Figure 6-2)
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Relationship of the Analysis of Hydrologic Properties Data and the Calibrated Properties

Figure 3.6-1.

Model to Input Data and Models and to Analyses and Models that use the Developed UZ

Properties
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Figure 3.6-2.  Issues for Development of UZ Properties
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Figure 3.6-4.  Calibrated 1-D Simulation Match to Saturation, Water Potential, and Pneumatic Data.
Data from Borehole USW SD-12 for the Base Case Infiltration Scenario (adapted from
CRWMS M&O 2000, U0035, Figures 2, 3, and 4)
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Figure 3.6-5.  Calibrated 2-D Simulation Match to Saturation, Water Potential, and Pneumatic Data from
Borehole USW UZ-7a Base Case Infiltration Scenario (adapted from CRWMS M&O 2000,
U0035, Figures 9, 10, and 11)
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Fracture Permeability (m?2)

Figure 3.6-6.  Initial Estimate of and Calibrated Fracture and Matrix Permeability for the Base Case,
Present-Day Infiltration Scenario (adapted from data in CRWMS M&O 2000, U0035,
Table 13). The calibrated values for the vitric ch1 through ch5 layers are shown in a lighter
color than the zeolitic. The prior information (initial estimate) is shown as a red line

(green for the vitric ch1 through ch5).
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Figure 3.6-7.  Initial Estimate of and Calibrated Fracture and Matrix van Genuchten o Parameter for the |
Base Case, Present-Day Infiltration Scenario (adapted from data in CRWMS M&O 2000,
U0035, Table 13). The calibrated values for the vitric ch1 through ch5 layers are shown in
a lighter color than the zeolitic. The prior information (initial estimate) is shown as a red
line (green for the vitric ch1 through ch5).
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Figure 3.6-8.  Comparison of Predictions from the 3-D Model with In Situ Water Potential Data from the
ECRB Cross Drift and Pneumatic Pressure Data from Borehole USW SD-12 (adapted
from CRWMS M&O 2000, U0050, Figures 6-69 and 6-70)
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—_—
©
—

Tiva Canyon (TCw) -
Paintbrush Tuff (PTn) -—_
Calico Hills {CHn)
Crater Flat (CFu) — —"

Topopah Spring (TSw)

Figure 3.7-2.  Perspective View of the UZ Model Domain of Yucca Mountain, Showing the

Hydrogeological Units and Layers and Major Faults: (a) Geological Model and
(b) Numerical Grid ﬁ\mw@
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Figure 3.7-3.  Plan View of the 3-D UZ TSPA Model Grid, Showing the Model Domain at Yucca
Mountain, Faults Incorporated and Borehole Locations (Adapted from
CRWMS M&O, 2000, U0000, Figure VI-1)
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Figure 3.7-4.  Three Base-Case Maps of Mean Surface Infiltration over the Flow Model Domain for
(a) Present-Day Climate, (b) Monsoon Climate, (c) Glacial-Transition Climate
(Adapted from CRWMS M&O, 2000, U0050, Figures 6-3, 6-4 and 6-5)
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Figure 3.7-5.  Schematic of the Major Input Data to, and Output Models from, the UZ Flow Model
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Figure 3.7-7.  Simulated Vertical Percolation Fluxes at the PTn-TSw Interface with the Present-Day,
Mean Infiltration Map (Data from CRWMS M&O, 2000, U0050, Section 6.6.3)
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Figure 3.7-8.  Effects of Faults on UZ Flow for the Present-Day, Mean Infiltration Rate;
(a) Simulated Vertical Percolation Fluxes at the Water Table, (b) Simulated Groundwater
Flow paths along the West-East Cross Section within Fracture-Fracture Flow Fields
(Data from CRWMS M&O, 2000, U0050, Section 6.6.3) '
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Figure 3.7-8.  Effects of Faults on UZ Flow for the Present-Day, Mean Infiltration Rate;
(a) Simulated Vertical Percolation Fluxes at the Water Table, (b) Simulated Groundwater
Flow paths along the West-East Cross Section within Fracture-Fracture Flow Fields
(Data from CRWMS M&O, 2000, U0050, Section 6.6.3) '
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Figure 3.7-9.  Simulated 3-D View of Perched Water Bodies along the Base of the TSw, Using the
Simulation Results of Conceptual Model #1 with Present-Day, Mean Infiltration Rate
(the blue contours denote the domain with 100% water saturation and the green for the
areas with less than 100% water saturation) (CRWMS M&O, 2000, U0050, Figure 6.9)
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Figure 3.7-12. Areal Frequency and Distribution of Simulated Percolation Fluxes within the Potential
Repository Horizon Under Three Mean Infiltration Rates: {a) Present Day; (b) Monsoon;
and (c) Glacial Transition (Data from CRWMS M&O, 2000, U0050, Section 6.6.3)
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Figure 3.7-13. (a) Matrix Flow (mm/yr) and (b) Fracture Flow at Potential Repository Horizon, Simulated
Using the Present-Day, Mean Infiltration Rate. Data from CRWMS M&O, 2000, U0050,
Section 6.6.3.
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Figure 3.7-14. Comparison to the Simulated and Observed Matrix Liquid Saturations and Perched Water
Elevations for Borehole UZ-14, Using the Simulation Results for the Mean Infiltration
Rates of the Three Climates Scenarios (Data from CRWMS M&QO, 2000, U0050,
Section 6.6.3, Figure 6-41)
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---- 2-D calibrated simulation
—— 3-D prediction
observation
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Figure 3.7-15. Comparison of 3-D Pneumatic Prediction to Data from Borehole UZ-7a
(CRWMS M&O 2000, U0050, Figure 6-70)
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Figure 3.7-16. Locations of Particle Breakthrough at the Water Table for the Mean Infiltration,
Glacial-Transition Climate Using Two Perched Water Models
(CRWMS M&O 2000, U0160, Figure 3)
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Mean, Glacial-Transition, Tc

- 1 T III!IIIi T IIIHIli T T T ' TTTTTE
o B ' ; 7
8 i : : 7 7
£ i : /N i
£ 0.87 SERA SRR Sl P oo T
© B : /4 7
9 B ' : .
o B Z .
SR 023 cERITRE UTRRRS SN A S S S -+
N 5 ]
® . : i
g oy} I S Al ]
Z I / |
EI /. -
w 0217/ /T i--| == Perched Model #1 |+
S i : : ]
o - / ; — — Perched Model #2 |-
S - : . : . .
&) TV S W R 1T A MR ATTH B SR TTY:| N ETIT AR

0
10° 10" 10° 10° 10* 10° 10°
Time (years)

Figure 3.7-17. Comparison of Cumulative Normalized Breakthrough Curves at the Water Table Using
Perched Water Model #1 and #2 with a Non-Sorbing Tracer (Tc) for Mean-Infiltration,
Glacial-Transition Climate (CRWMS M&O 2000, U0160, Figure 8. The data shown in this
figure are based on a model that is appropriately conservative for TSPA analysis and
consequently should not be used to evaluate expected breakthrough curves of
radionuclides at the water table.)
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Present-Day Climate, Tc
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Figure 8.7-18.  Effect of Infiltration (lower, mean, and upper) on Cumulative Normalized Breakthrough
Curves at the Water Table for a NonSorbing Tracer (Tc) Using FEHM V2.0
(STN: 10031-2.00-00) with Present-Day Climate (CRWMS M&O 2000, U0160, Figure 12.
The data shown in this figure are based on a model that is appropriately conservative for
TSPA analysis and consequently should not be used to evaluate expected breakthrough
curves of radionuclides at the water table.)
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Geochemical Data

Figure 3.8-2.  Model Diagram Showing Inputs and Outputs for Ambient Geochemistry Model.

Flow and Transport

¥

Ambient Geochemistry

|cons are described in the text.
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Figure 3.8-3.  Infiltration Rates (USGS 2000, U0010) Plotted on UZ 3-D Calibration Grid. Simulated
(using base-case infiltration rates), calibrated, and measured Cl concentrations in the ESF
and the ECRB (Adapted from CRWMS M&O 2000, U0050, Figure 6-18).
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3-D Calibration Grid; Modified Percolation Flux Map
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Figure 3.8-4.  Percolation Flux Map for 3-D Calibration Grid (Adapted from CRWMS M&O 2000,
UQ050, Figure 6-24)
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Figure 3.8-5.  Analytical Results of 35CI/C| Along ESF (Using Calibrated Infiltration) for Transient

Changes in Initial Ratios, Compared to Measured Ratios (CRWMS M&O 2000,
U0050, Figure 6-31)

Cl%

TDR-NBS-HS-000002 REVOO ICN 1 Attachment ITI-88 June 2000 |




Unsaturated Zone Flow and Transport Model Process Model Report

Elevation (m)
5
o
{

1100 —
1000 —
1 2 592 20
Infiltration Rate (mmyyr)
900 ——I—rrrnnl—rrrnm] T lnm'I] T |||1m| T |u||||| T llllml
1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6
Calcite Abundance (ppm)

Figure 3.8-6.  Simulated Calcite Abundance (Lines) with Infiltration Rate After 10 Million
Years in the WT-24 Column Together with Measured Calcite Mass Abundances

(Diamond Symboils) (Data from CRWMS M&O 2000, U0085, Section 6.10, Figure 53;
CRWMS M&O 2000, U0050, Figure 6-36)
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Figure 3.8-7.  Prediction of Cl Concentrations in Pore Waters Made Prior to Excavation of the ECRB
Compared to Data Collected Subsequently (Adapted from Sonnenthal and Bodvarsson
(1999, Figure 14) and CRWMS M&O 2000, U0050, Figure 6-23)
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(6) Excavation-Disturbed Zone/Dry-out Zone

(2) Percolation Flux Distribution
(5) Evaporation/Condensation Effects

(3) Fracture Network

(@) Drift Geometry

Figure 3.9-1.  Schematic of Phenomena and Processes Affecting Drift Seepage. Numerals refer to list
items in text.
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Figure 3.9-2.  Schematic Showing Data Flow and Series of Models Supporting Evaluation of Drift
Seepage
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Figure 3.9-4.  Schematic Showing General Approach for the Development of the Seepage Calibration

Model (Adapted from CRWMS M&O 2000, U0080, Section 6)
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Figure 3.9-56.  Schematic Showing Location and Layout of Niche 3650 as well as Log-Permeability Field
of the Three-Dimensional Seepage Calibration Model (Adapted from CRWMS M&O 2000,

U0080, Figures 12, 13, and 18)
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Figure 3.9-6.  Comparison between the Measured Seepage Mass (Circles) and That Calculated with
Two- and Three-Dimensional, Homogeneous and Heterogeneous Models (Squares).
The four models are visualized on the left. The uncertainty of the model predictions is
shown as error bars on the 95% confidence level. The three-dimensional heterogeneous
Seepage Calibration Model matches the data best (Adapted from CRWMS M&QO 2000,
U0080, Figure 19).
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Number of Flow Channels
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Figure 3.9-7.
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Schematic Showing Relationships between Seepage-Relevant Factors. The red solid
lines schematically indicate the expected behavior; uncertainty is schematically shown as
blue dashed lines; the green dotted line shows the conservative assumption that no

capillary-barrier effect exists.
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Percolation Flux

Seepage Threshold

Probability

Percolation Flux or Seepage Threshold

Schematic Showing Percolation-Flux and Seepage-Threshold Distributions, Which

Figure 3.9-8.
Determine the Seepage-Fraction Probability
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Figure 3.9-9.  Schematic lllustrating Monte Carlo Sampling Approach for Seepage TSPA Calculations
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Figure 3.9-10. Effect of Flow Focusing on Seepage Fraction (CRWMS M&O 2000, U0120, Figure 5)
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Figure 3.9-11.  Effect of Flow Focusing on Mean Seep Flow Rate (CRWMS M&O 2000, U0120, Figure 6)
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Mineral Precipitation in Changes in Hydrological Properties
Fractures and Matrix Modification to UZ Flow and Transport

Chemistry of Water and Gas
Potentially Seeping into Drifts

- Air Mass Fraction
Other Issues: - CO2 Concentration

= Climate Changes
* Mineral Assemblage

- Water and Gas Initial
Compositions

Figure 3.10-1. Schematic Diagram of THC Processes Around a Heated Drift
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Figure 3.10-3. Model Diagram Relating Inputs and Outputs for the THC Seepage Model and Drift Scale
Test THC Model
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Figure 3.10-4. Simulated CO, Volume Fractions in Fractures and Matrix After 6 (a&b) and 20 (c&d)

Months of Heating During the Drift Scale Test (adapted from CRWMS M&O 2000,
NO120/U0110, Figures 5 and 6). Temperature contours are superimposed. "OD" refers to
the Observation Drift.
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Figure 3.10-5. Simulated CO, Volume Fractions at Grid Nodes near Borehole (BH) Intervals Where
Gas-Phase CO, Measurements were Made (CRWMS M&O 2000, N0120/U0110,
Figure 10). Filled circles are measured CO, concentrations in the gas phase. Modeled
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Topopah Spring Tuff Upper Lithophysal (tsw33), Middle Nonlithophysal (tsw34), and
Lower Lithophysal (tsw35) Units, and Blowup Showing Discretization of In-Drift Design
Components (adapted from CRWMS M&O 2000, NO120/U0110, Figures 18 and 19)

COT

TDR-NBS-HS-000002 REV00 ICN 1 Attachment III-109 June 2000 |




Unsaturated Zone Flow and Transport Model Process Model Report

DRIFT DISCRETIZATION
3 s [
2 EEESEYTAS .
B :: - z 2. _oo 2 o &
1—;:’“:’» A \- )
o I S AR YA T 4  Wallrock
_— 7 KL P'AN o
E E QWA E 0 OQuter Zone
Nower? 0 ¢
N . e\ o] ] o Backfill
1wp Bt Aol \of2 /. v Inner Zone
R nry Sosedd i OV o Invert
] SR T WP Waste Package
-2 L E e ‘
-3 - . R
[lll'lllllllll"l
0 1 2 3 THC SEEPAGE MODEL MESH
x ( m) (top at +221m, bottom at -335m)
Lol s |-
50
= ] e e |- I3 -
S~ \ 749 -
~— \ T ShF [ > | tsw33
\\\ \\ E 7393 >
T~ N J33332233 93
T~ 25| e
T~ SRR T
\\\ i = L1 [-
~ - = | |-
~ - dxa=ddl
\\\ — SEECE |- "
- ] - -
S~ ﬁo— T ] tswas
~~ - ,E_('. ’ :
= ST
4 2
1= . .,‘I,.,.
25~ (-
1 DV
] . \ . - [tsw35
-so [.[.]- ]T\[

LAREN LAREY LEREE LRREY AN

0 10 20 30 40
X (m)

Figure 3.10-6. THC Seepage Model Mesh Showing Hydrogeologic Units in Proximity of the Drift:
Topopah Spring Tuff Upper Lithophysal (tsw33), Middle Nonlithophysal (tsw34), and
Lower Lithophysal (tsw35) Units, and Blowup Showing Discretization of In-Drift Design
Components (adapted from CRWMS M&O 2000, N0120/U0110, Figures 18 and 19)

TDR-NBS-HS-000002 REV00 ICN 1 Attachment ITI-109 June 2000



Unsaturated Zone Flow and Transport Model Process Model Report

[meters] [meters]

00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Liquid Saturation Liquid Saturation Liquid Saturation

Figure 3.10-7.  Contour Plot of Modeled Liquid Saturations and Temperatures (Labeled Contour Lines) in
the Matrix at 600 Years (Near Maximum Dryout) for Three Climate Change Scenarios:

(a) Lower Bound, (b) Mean, and (c) Upper Bound (Calcite-Silica-Gypsum System)
(CRWMS M&O 2000, N0120/U0110, Figure 26)
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Figure 3.10-7. Contour Plot of Modeled Liquid Saturations and Temperatures (Labeled Contour Lines) in
the Matrix at 600 Years (Near Maximum Dryout) for Three Climate Change Scenarios:
(a) Lower Bound, (b) Mean, and (c) Upper Bound (Calcite-Si
(CRWMS M&O 2000, NO120/U0110, Figure 26)
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Figure 3.10-8. Time Profiles of Modeled CO, Concentrations in the Gas Phase in Fractures at Three Drift

Wall Locations for Different Climate Change Scenarios (Calcite-Silica-Gypsum System)
(CRWMS M&O 2000, N0120/U0110, Figure 29)
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Figure 3.10-9. Time Profiles of Modeled Total Aqueous Chloride Concentrations in Fracture Water at
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period is left blank. Numbers by each curve indicate the last output liquid saturation before
dryout and the first output liquid saturation during rewetting (CRWMS M&O 2000,
N0120/U0110, Figure 38).
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Figure 3.10-10. Time Profiles of the Modeled pH of Fracture Water at Drift Wall Locations for Different
Climate Change Scenarios (Case 2 Calcite-Silica-Gypsum System). The dryout period is
left blank. The last output liquid saturation before dryout and the first output liquid
saturation during rewetting are noted on each curve (CRWMS M&O 2000, N0120/U0110,

Figure 31).
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left blank. The last output liquid saturation before dryout and the first output liquid
saturation during rewetting are noted on each curve (CRWMS M&O 2000, N0120/U0110,

Figure 31).
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Figure 3.10-11. Time Profiles of Modeled Total Aqueous Carbonate Concentrations (as HCOg) in Fracture

Water at Drift Wall Locations for Different Climate Scenarios (Calcite-Silica-Gypsum
System) (CRWMS M&O 2000, N0120/U0110, Figure 33)
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Figure 3.10-12. Contour Plot of Calculated Total Fracture Porosity Change at 10,000 Years for Three
Climate Change Scenarios (Calcite-Silica-Gypsum System): (a) Lower Bound,
(b) Mean, and (c) Upper Bound. Red areas indicate the maximum decrease in porosity as
a result of mineral precipitation (CRWMS M&O 2000, N0120/U0110, Figure 42).
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more mineral deposition and
smaller thermal effect
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(e.g., shifts in pH), but not
overall conclusions
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Shield

' Drift Wall Temperature:
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Air Mass Fraction decreases to

-nearly zero during thermal period
CO2 concentration increases up to

. a maximum of approximately 10%
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Figure 3.11-2. Relationships of Other Models and Data Feeds to the Transport Model
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Figure 3.11-3. Schematic lllustration of Flow and Transport in the UZ Model Layers below the Potential
Repository (Boreholes SD-6 and UZ-14)
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Figure 3.11-4. Concentration Profiles of 237Np in 2-D Cross Sections of SD-6 and UZ-14 (Adapted from
CRWMS M&O 2000, U0060, Figures V.2 and V.8)
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Figure 3.11-5. Concentration Profiles of 99Tc, 237Np, 239Py and its Daughters at the Water Table for
Varying Present-day Climatic Scenarios (Adapted from CRWMS M&O 2000, U0060,
Figures 6.12.1, 6.13.1, 6.14.1, and 6.14.2. The data shown in this figure are based on a
model that is appropriately conservative for TSPA analysis and consequently should not
be used to evaluate expected breakthrough curves of radionuclides at the water table.)
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Figure 3.11-6. Normalized Mass Fraction Distribution of 99Tc in the Fractures at the Bottom of the TSw
and the Water Table (Adapted from CRWMS M&O 2000, U0060,
Figures 6.12.2, 6.12.4, 6.12.12, and 6.12.14)
- <99
e

TDR-NBS-HS-000002 REVO00 ICN 1 Attachment IT1-122 June 2000 l




Unsaturated Zone Flow and Transport Model Process Model Report

AR ERN T RN WA F R |1||]||||I|_|||!|||r ‘°=
-
- W
B £
] =
2 -
= o =
3 ] -
] "
1 S
= ’c
= | = -
3 2
3 = —_
] flo £
7 =| £ o
m— -—— L]
- D EEE o=
3 = D cook Tw
E - O mgc‘: - E
7 =S = Ol = w0 of =
=1 o, o
i <o TTTOT i
1|8z ERI &
o -
1 |E|8 3
3 - ) o £
p g &= L
-= £ g FG
;2 g FEF
o e 9 =
4 = F
IlllllliIlllllllillllll(l IIIIIIIIIlIII(III'il LELIR B ) E
< © @ < o 2
- = = <= =] (=
J[(elialem IY] Je 3JEl ASEI[A] PIZI|RWION
“IIII]IIII'!III'II!IIIIII lllllllll]lfl‘lllll llll‘-\nc
3 £ £t
c = 4
- 2 EEEE o L'
E o coo E o g =
3 o == © &
3 -= T o = C
3 2 oW = 2
H (RN ST )
e = TS DT T s F
L1 e
=

=
—n ;
= B
3 |2 = o
3 B E "o
1 |2l o FE
1 £l L S
1 o o~
— = = 2
E o 2 E —
1 |= S F
4 |5 L
n o -
4 | =)
ERN P ¢ S
3 c| L £
118 C
= =
IIIIIIiIIII‘II'IlIIIIII‘ IIIIIIIlIlIIIIlIlII TIrrr S
= @ @ < o = .
i = o =] < =

3[qE1IBIEM YY) 1B B)RJ ISRI|DI PIZIjRULION

Figure 3.11-7. Influence of Colloid Size and Kinetic Model Parameters on Colloidal Transport
(Adapted from CRWMS M&O 2000, U0080, Figures 6.16.1 and 6.16.2. The data shown in
this figure are based on a model that is appropriately conservative for TSPA analysis and
consequently should not be used to evaluate expected breakthrough curves of
radionuclides at the water table.)
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Figure 3.11-8. Correlations of Average Infiltration Rates and Tracer Transport Times at 50% Mass
Breakthrough for 36 Simulation Scenarios (Data from CRWMS M&O, 2000, U0050,
Section 6.7.3. The data shown in this figure are based on a model that is appropriately
conservative for TSPA analysis and consequently should not be used to evaluate
expected breakthrough curves of radionuclides at the water table.)
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Figure 3.11-9.  Simulated Breakthrough Curves of Cumulative Tracer (36Cl) Mass Arriving at the
Repository Level, Since Release from the Ground Surface, Using the Present-Day,
Mean Infiltration and Four Simulation Scenarios (Data from CRWMS M&O, 2000, U0050,
Section 6.7.3. The data shown in this figure are based on a model that is appropriately
conservative for TSPA analysis and consequently should not be used to evaluate
expected breakthrough curves of radionuclides at the water table.)
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Figure 3.11-10. Effects of No Matrix Diffusion: Concentration of Radionuclides and Colloids at the Water
Table for the No-diffusion Alternative Model (Adapted from CRWMS M&O 2000, U0060,
Figures 6.17.1 and 6.17.2. The data shown in this figure are based on a model that is
appropriately conservative for TSPA analysis and consequently should not be used to
evaluate expected breakthrough curves of radionuclides at the water table.)
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Figure 3.11-11. Schematic of the RTTF Technique for Determining Particle Residence Time in a Cell
(CRWMS M&O 2000, U0065, Figure 2)
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Figure 3.11-12. Comparison of the Particle-Tracking Solution and a Direct Finite-element Solution to the
Transport (FEHM V2.10) for a 1-D, Dual-permeability Model (CRWMS M&O 2000,
U00BS, Figure 9. The data shown in this figure are based on a model that is appropriately
conservative for TSPA analysis and consequently should not be used to evaluate
expected breakthrough curves of radionuclides at the water table.)
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Figure 3.11-13. Comparison of the Particle-Tracking Solution and a Direct Finite-element Solution to the
Transport for a 1-D, Dual-permeability Model. Red curves: finite element solution, black
curves: particle tracking (solid - no diffusion, dashed - diffusion) (CRWMS M&O 2000,
U0085, Figure 10. The data shown in this figure are based on a model that is appropriately
conservative for TSPA analysis and consequently should not be used to evaluate
expected breakthrough curves of radionuclides at the water table.) G \Ol’L
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Figure 3.11-14. Comparison of Cumulative Normalized Breakthrough Curves at the Water Table Using
FEHM V2.10 and DCPT V1.0 software with the Nonsorbing Tc for Mean-infiltration,
Glacial-Transition Climate (CRWMS M&O 2000, U0160, Figure 11. The data shown in this
figure are based on a model that is appropriately conservative for TSPA analysis and
consequently should not be used to evaluate expected breakthrough curves of
radionuclides at the water table.)
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Figure 3.11-15. Comparison of Cumulative Normalized Breakthrough Curves at the Water Table Using
FEHM V2.10 and DCPT V1.0 software with the Sorbing Np for Mean-Infiltration,
Glacial-Transition Climate (CRWMS M&O 2000, U0160, Figure 11. The data shown in this
figure are based on a model that is appropriately conservative for TSPA analysis and
consequently should not be used to evaluate expected breakthrough curves of
radionuclides at the water table.)
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Figure 3.12-3. Plan View of the UZ TSPA Grid, Showing the Location of the Potential Repository
Submodel Domain (in Red) and the Cross Sections, NS#1 and NS#2. Locations #1
and #2 are Used for Detail Plots. Large solid circles refer to boreholes: small circles refer

to centers of grid columns (adapted from CRWMS M&O 2000, U0105, Figure 1).
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Figure 3.12-5. Temperature Distribution along NS#2 Cross-Section Grid at 1,000 Years (a) No
Ventilation, (b) with Ventilation (Adapted from CRWMS M&O 2000, U0105,
Figures 45 and 59).
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Figure 3.12-6. Temperature at Location #1, NS#2 Cross-Section Grid (a) No Ventilation (b) with
Ventilation (Adapted from CRWMS M&O 2000, U0105, Figures 46 and 60).
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Figure 3.12-7. Temperature along a Section of the Potential Repository Horizon of the NS#2
Cross-Section Grid (a) No Ventilation, (b) with Ventilation (Adapted from
CRWMS M&O 2000, U0105, Figures 48 and 62).
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(a) No Ventilation
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Figure 3.12-8. Matrix Liquid Saturation (SI) along NS#2 Cross-Section Grid at 1,000 Years (a) No

Ventilation, (b) with Ventilation (Adapted from CRWMS M&O 2000, U0105,
Figures 50 and 64).
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Figure 3.12-9. Matrix Liquid Saturation at Location#1, NS#2 Cross-Section Grid (a) No Ventilation,
(b) with Ventilation (Adapted from CRWMS M&O 2000, U0105, Figures 51 and 65).
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Figure 3.12-10. Matrix Liquid Saturation along a Section of the Potential Repository Horizon,
NS#2 Cross-Section Grid (a) No Ventilation, (b) with Ventilation (Adapted from
CRWMS M&O 2000, U0105, Figures 52 and 66).
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Figure 3.12-11. Fracture Liquid Flux at Location #1,NS#2 Cross-Section Grid (a) No Ventilation,
(b) With Ventilation (Adapted from CRWMS M&O 2000, U0105, Figures 53 and 67).
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Figure 3.12-12. Fracture Liquid Flux along a Section of the Potential Repository Horizon,
NS#2 Cross-Section Grid (a) No Ventilation, (b) with Ventilation (Adapted from
CRWMS M&O 2000, U0105, Figures 55 and 69). QL
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Figure 3.12-13. Matrix Liquid Flux along a Section of the Potential Repository Horizon,
NS#2 Cross-Section Grid (a) No Ventilation, (b) with Ventilation (Adapted from
CRWMS M&O 2000, U0105, Figures 56 and 70).
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Figure 3.12-14. Summary of TH Model Results
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Figure 5.1-1.  Conceptual Sketch of the UZ with Icons Representing Major Model Components
clfb
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» Past Climate Data

+ Interpretation of Climate Cycles
and Analogs

« Infiltration AMR U0010

+ Parameters for Precipitation,
Bedrock Permeabllity, Soll Depth,
Evapo-transpiration, etc.

- Calibrated Propertles (AMR U0035)

= Conceptual and Numerical Models
(AMR U0030)

« 3-D UZ Site-scale Grid (AMR U0000)

+ Callbrated Properties (AMR U0035)

« Conceptual and Numerical Models
(AMR U0030)

+ Deslign Information (Head Load,
etc.)

» 3-D UZ Site-scale Grid (AMR U0000)

Figure 5.1-2.
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UZ Flow
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Mountain-Scale TH
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Attachment ITI-148

+ Bounds on Temperature and
Preciplitation

« Duration of Present-day, Monsoon,
and Glaclal-transition Climates

< Nine Infiltration Maps (low, "mean,"
and high for three climate states)

* Welghtings for Low, Mean, and
Upper Inflitration Cases

+ Spatial and Temporal Distribution
of Flow Flelds In UZ

 Alteration to Flow Flelds Used In
Transport Simulations
(Screen out?)

Schematic of Major Inputs and Outputs for UZ Flow Model and its Submodels
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+ Drift-seepage Tests (AMR U0015)
+ Conceptual and Numerical
Models (AMR U0030)

Drift Seepage
(AMR U0075, AMR U00BO0,
AMR U0120)

* Variability and Uncertainty in

Seepage Distributions (Seepage
Fraction, Mean Seep Flow Rate,
Standard Deviation of Seep Flow
Rate, Flow Focusing Factor)

Figure 5.1-3.  Schematic of Major Inputs and Outputs of the Drift Seepage Models
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* UZ Flow Model (AMR U0050)

- Calibrated Properties (AMR U0035)
+ Geochemistry Data (AMR U0085)

» Design Parameters

Drift-Scale THC
(AMR N0O120/U0110, AMR N0125)

* Temporal and Spatial Distribution

+ Influence of THC on Rock

of Water and Gas Composition
Around Drift

Properties Around Drift

Figure 5.14.  Schematic of Major Inputs and Qutputs of the Drift-Scale THC Models
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+ UZ Flow Fields (AMR U0050,
AMR U0125)

+ Conceptual Models (AMR U0060,
AMR U0155, AMR U0160,
AMR U0170)

« Transport Parameters (AMR U0100)

- Spatial and Temporal Radicnuclide
Mass Fiux at Water Table

L e s &t
UZ Transport Mode
(AMR U0045)

Figure 5.1-5.  Schematic of Major Inputs and Outputs of the UZ Transport Models
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