

Kewaunee Nuclear Power Plant N490 Highway 42 Kewaunee, WI 54216-9511 920.388.2560 Point Beach Nuclear Plant 6610 Nuclear Road Two Rivers, WI 54241 920.755.2321

Kewaunee / Point Beach Nuclear Operated by Nuclear Management Company, LLC

NRC-02-009

January 16, 2002

10 CFR 50, App. E

U. S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555

Ladies/Gentlemen:

DOCKET 50-305 OPERATING LICENSE DPR-43 KEWAUNEE NUCLEAR POWER PLANT RADIOLOGICAL EMERGENCY RESPONSE PLAN IMPLEMENTING PROCEDURES

Pursuant to 10 CFR 50 Appendix E, attached is the latest revisions to the Kewaunee Nuclear Power Plant Radiological Emergency Response Plan Implementing Procedures (EPIPs). These revised procedures supersede the previously submitted procedures.

Pursuant to 10 CFR 50.4, two additional copies of this letter and attachment are hereby submitted to the Regional Administrator, U. S. Nuclear Regulatory Commission, Region III, Lisle, Illinois. As required, one copy of this letter and attachment is also submitted to the Kewaunee Nuclear Power Plant NRC Senior Resident Inspector.

Sincerely,

Thomas J. Webb Site Licensing Director

SLC

Attachment

cc - US NRC Senior Resident Inspector, w/attach.
 US NRC, Region III (2 copies), w/attach.
 Electric Division, PSCW, w/o attach.
 QA Vault, w/attach.

DOCUMENT TRANSMITTAL

KEWAUNEE NUCLEAR POWER PLANT

FROM: DIANE FENCL - KNPP

TRANSMITTAL DATE 01-15-2002

EMERGENCY PLAN IMPLEMENTING PROCEDURES TRANSMITTAL FORM

OUTSIDE AGENCY COPIES (1-20)

T. Webb - NRC Document Control Desk (1)*

T. Webb - NRC Region III (2 & 3)*

Krista Kappelman - PBNP - EP (10)* Craig Weiss - Wisconsin Power & Light (11)*

Jim Holthaus - Nuclear Management Company (12)*

T. Webb - NRC Resident Inspector (4) (receives Appx. A phone numbers)*

T. Webb - State of Wisconsin (5)*

T. Webb - KNPP QA Vault w/NRC Letter (15)*

<u>PERSONAL COPIES</u> (21-40) These copies are for the personal use of the listed individuals for reference or emergency response.

J. Bennett (33)	D. Mielke (35)	H. Kocourek (13)	T. Coutu (28)
D. Masarik (32)	D. Seebart (24)	B. Bartelme (34)	

<u>REFERENCE COPIES - CUSTODIAN</u> (41-100) These copies are for general reference by anyone. They are distributed throughout the plant and corporate offices. The named individual is the responsible custodian for the procedures and shall insure they are properly maintained.

STF (86, 87, 88)	LOREB - STF (62, 66, 67, 68, 70, 72, 73, 74)
L. Welch - Fuel Services (65)	STF Library (43)
NO Library - KNPP (59)	Resource Center - Training (82, 89, 94, 131)
C Sternitzky - $ATF-2$ (44)	D. Schrank - Maintenance Off. (41)
D Braun - $\Delta TF-3$ (45)	D. Krall - CR/SS Office (51, 56)
P Ehlen - I&C Office (42)	P&FS Adm - GB-D2 (Nuclear Library) (84)
M Daron - Security Building (46)	H. Kocourek - TSC (50)
$P_{F} = C_{F} = C_{F$	W. Galarneau - RAF (53)
$H^{2}K_{asoursk} = OSF(57)$	W. Galarneau - SBF/EMT (54)
$C = H_{\text{uttor}} = ATE 1 (64)$	W. Galarneau - RPO (55)
C. Hutter - Alf-1 (04)	

<u>WORKING COPIES</u> (101-199) These copies of procedures are kept in the areas designated for use in response to an emergency. These are not complete sets, but contain only those procedures that are used to implement activities in the location where they are kept. Please dispose of any sections distributed that are not tabbed in the indicated copy.

W. Galarneau - RAF/RPO (106, 107)
W. Galarneau - SBF/ENV (108, 109)
W. Galarneau - SBF/EM Team (110, 111, 111A)
W. Galarneau - Aurora Medical Center (118, 119)
W. Flint - Cold Chem/HR Sample Room (113)
N. Deda - SBF/SEC (114)

D. Krall - CR/Communicator (116)(Partial Distribution) Simulator/Communicator (117) M. Fencl - Security (121) N. Deda - Security Building (120) S. VanderBloomen (125) J. Stoeger (126)

Originals to KNPP QA Vault

Please follow the directions when updating your EPIP Manual. WATCH FOR DELETIONS!!! These are controlled procedures and random checks may be made to ensure the manuals are kept up-to-date.

*THIS IS NOT A CONTROLLED COPY. IT IS A COPY FOR INFORMATION ONLY.

KEWAUNEE NUCLEAR POWER PLANT REVISION OF EMERGENCY PLAN IMPLEMENTING PROCEDURES January 15, 2002

Please follow the directions listed below. If you have any questions regarding changes made to the EPIPs, please contact Dave Seebart at ext. 8719. If you are a controlled copy holder (see cover page), return this page to Diane Fencl by February 15, 2002, SIGNED AND DATED to serve as a record of revision.

EPIP Index, dated 01-15-2002.

REMOVE		
REV.	PROCEDURE	REV.
0	EPIP-RET-03C	Р
M ·	EPIP-RET-03D	N
	REV. O M	INSERT REV. PROCEDURE O EPIP-RET-03C M EPIP-RET-03D

Return a signed and dated copy of this transmittal letter, within 10 days of receipt, to the sender. If you have any questions or comments, please call Dave Seebart.

> I CERTIFY Copy No._____ (WPSC No.) of the Kewaunee Nuclear Power Plant's EPIPs has been updated.

> > SIGNATURE

DATE

Please return this sheet to DIANE FENCL.

Diane

Enclosure

2

DAL TO A

H

EMERGENCY PLAN IMPLEMENTING PROCEDURES

 $\Lambda (c)$

	in the second	in di territori Maria di Santa di Santa Maria di Santa	
PROC. NO.	TITLE	REV.	DATE
	EP-AD		
EPIP-AD-01	Personnel Response to the Plant Emergency Siren	J	01-08-2002
EPIP-AD-02	Emergency Class Determination	AC	11-15-2001
EPIP-AD-03	KNPP Response to an Unusual Event	AD	12-14-2001
EPIP-AD-04	KNPP Response to Alert or Higher	AF	12-14-2001
EP-AD-5	Site Emergency	Deleted	04-27-87
EPIP-AD-05	Emergency Response Organization Shift Relief Guideline	C	06-05-2001
EP-AD-6	General Emergency	Deleted	04-24-87
EPIP-AD-07	Initial Emergency Notifications	AN	11-15-2001.
EP-AD-8	Notification of Alert or Higher	Deleted	02-26-96
EP-AD-9	Notification of Site Emergency	Deleted	04-27-87
EP-AD-10	Notification of General Emergency	Deleted	04-27-87
EPIP-AD-11	Emergency Radiation Controls	Q	09-27-2001
EP-AD-12	Personnel Assembly and Accountability	Deleted	03-26-94
EP-AD-13	Personnel Evacuation	Deleted	04-25-94
EP-AD-13A	Limited Area Evacuation	Deleted	03-01-83
EP-AD-13B	Emergency Assembly/Evacuation	Deleted	03-01-83
EP-AD-13C	Site Evacuation	Deleted	03-01-83
EP-AD-14	Search and Rescue	Deleted	05-25-94
EPIP-AD-15	Recovery Planning and Termination	0	10-30-2001
EP-AD-16	Occupational Injuries or Vehicle Accidents During Emergencies	Deleted	03-14-97
EP-AD-17	Communications	Deleted	03-05-84
EPIP-AD-18	Potassium Iodide Distribution	0	06-05-2001
EPIP-AD-19	Protective Action Guidelines	Q	11-27-2001

PAGE 1 OF 11

INDEX

DATE: 01-15-2002

PROC. NO.	TITLE	REV.	DATE
EPIP-AD-20	KNPP Response to a Security Threat	Α	11-15-2001
	EP-ENV		
EPIP-ENV-01	Environmental Monitoring Group Organization and Responsibilities	v	10-02-2001
EPIP-ENV-02	Environmental Monitoring Team Activation	х	10-02-2001
EP-ENV-3A	Environmental Protection Director Actions and Directives	Deleted	09-26-84
EP-ENV-3B	EM Team Actions	Deleted	09-26-84
EPIP-ENV-03C	Dose Projection Using RASCAL Version 2.2 Software	v	10-09-2001
EP-ENV-3D	Revision and Control of ISODOSE II	Deleted	02-14-95
EP-ENV-3E	Manual Determination of X/Q	Deleted	04-24-87
EP-ENV-3F	Manual Determination of X/Q (Green Bay Meteorological Data)	Deleted	05-30-86
EP-ENV-3G	Manual Dose Projection Calculation	Deleted	06-02-89
EP-ENV-3H	Protective Action Recommendations	Deleted	04-13-90
EPIP-ENV-04A	Portable Survey Instrument Use	S	06-15-2000
EPIP-ENV-04B	Air Sampling and Analysis	W	10-09-2001
EP-ENV-4C	Environmental Monitoring Teams	Deleted	04-13-90
EPIP-ENV-04C	Ground Deposition Sampling and Analysis	W	10-09-2001
EPIP-ENV-04D	Plume Tracking for Environmental Monitoring Teams	N	10-02-2001
EP-ENV-5A	LCS-1 Operation	Deleted	04-14-86
EP-ENV-5B	MS-3 Operation	Deleted	04-14-86
EP-ENV-5C	SAM II Operation	Deleted	04-14-86
EP-ENV-5D	PAC-4G (Alpha Counter) Operation	Deleted	04-14-86
EP-ENV-5E	Reuter-Stokes Operation	Deleted	08-27-85

PAGE 2 OF 11

INDEX

DATE: 01-15-2002

PROC. NO.	TITLE	REV.	DATE
EP-ENV-6	Data Analysis, Dose Projections and Protective Action Recommendations	Deleted	12-21-81
EP-ENV-6	Alternate Sample Analysis and Relocation of EM Team	Deleted	04-14-86
EP-ENV-6A	Relocation of Site Access Facility (Habitability)	Deleted	03-23-84
EP-ENV-6B	SAF Environmental Sample Analysis Relocation	Deleted	03-23-84
EP-ENV-7	Site Access Facility Communications	Deleted	09-26-84
EP-ENV-8	Total Population Dose Estimate Calculations	Deleted	04-14-86
· · · · · · · · · · · · · · · · ·	EP-EOF		
EP-EOF-1	Corporate Emergency Response Organization	Deleted	03-11-94
EPIP-EOF-02	Emergency Operations Facility (EOF) Activation	Z	11-29-2001
EPIP-EOF-03	EOF Staff Action for Unusual Event	AB	12-14-2001
EPIP-EOF-04	EOF Staff Action for Alert or Higher	AH	12-14-2001
EP-EOF-5	Corporate Staff Action for Site Emergency	Deleted	04-24-87
EP-EOF-6	Corporate Staff Action for General Emergency	Deleted	04-24-87
EP-EOF-7	Notification of Unusual Event	Deleted	04-06-94
EP-EOF-8	Relocation of EOF	Deleted	03-01-83
EPIP-EOF-08	Continuing Emergency Notifications	Т	11-27-2001
EP-EOF-9	Interface with Support Organizations	Deleted	03-05-84
EP-EOF-9	Notification of Site Emergency	Deleted	04-24-87
EP-EOF-10	Notification of General Emergency	Deleted	04-24-87
EPIP-EOF-11	Internal Communication and Documentation Flow	U	11-15-2001
EPIP-EOF-12	Media Center/Emergency Operation Facility/Joint Public Information Center Security	Р	07-19-2001

1998년 11일 - 11일 11일 - 11일 - 11일 - 11일 11일 - 11

INDEX

DATE: 01-15-2002

PROC. NO.	TITLE	REV.	DATE		
	EP-OP				
EP-OP-1	Control Room Emergency Organization	Deleted	04-24-87		
EP-OP-2	Emergency Control Room Activation for Emergency Response	Deleted	04-24-87		
EP-OP-3	Control Room Communications	Deleted	04-24-87		
	EP-OSF				
EP-OSF-1	Operation Support Facility Emergency Organization	Deleted	04-24-87		
EPIP-OSF-02	Operational Support Facility Operations	Т	11-29-2001		
EPIP-OSF-03	Work Requests During an Emergency	0	09-27-2001		
EP-OSF-4	Operational Support Facility Communications	Deleted	04-24-87		
EPIP-OSF-04	Search and Rescue	D	09-12-2000		
	EP-RET				
EP-RET-1	Radiation Emergency Team Organization	Deleted	04-16-96		
EPIP-RET-02	In-Plant Radiation Emergency Team	U	11-27-2001		
EPIP-RET-02A	Radiation Protection Office/Radiological Analysis Facility (RPO/RAF) Activation	Т	11-29-2001		
EP-RET-2B	Gaseous Effluent Sample and Analysis	Q	03-03-98		
EP-RET-2C	Containment Air Sampling and Analysis	Deleted	03-01-83		
EPIP-RET-02D	Emergency Radiation Entry Controls and Implementation	M	06-12-2001		
EP-RET-2E	Handling of Injured Personnel	Deleted	04-16-96		
EP-RET-2F	Personnel Decontamination	Deleted	04-13-90		
EPIP-RET-03	Chemistry Emergency Team	0	02-01-2000		
EPIP-RET-03A	Liquid Effluent Release Paths	L	11-29-2001		
EP-RET-3B	Post-Accident Reactor Coolant Alternate Sampling Procedure	Deleted	01-25-88		

PAGE 4 OF 11

INDEX

DATE: 01-15-2002

PROC. NO.	TITLE	REV.	DATE
EPIP-RET-03C	Post Accident Operation of the High Radiation Sample Room	P	01-15-2002
EPIP-RET-03D	Containment Air Sampling Analysis Using CASP	N	01-15-2002
EP-RET-3E	Post Accident Operation of High Rad Sample Room Inline Multiported Count Cave	Deleted	08-27-85
EPIP-RET-04	SBF Activation	R	10-02-2001
EP-RET-4A	EOF Radiological Monitoring	Deleted	03-10-83
EPIP-RET-04A	SBF Operation/Relocation	Deleted	10-02-2001
EP-RET-4B	Radiological Controls at Site Access Facility	Deleted	07-12-94
EP-RET-4C	Site Radiological Monitoring	Deleted	07-12-94
EP-RET-4D	SAM-II Operation	Deleted	07-12-94
EP-RET-5	Plume Projection	Deleted	09-26-84
EPIP-RET-05	Site Boundary Dose Rates During Controlled Plant Cooldown	Н	10-09-2001
EP-RET-5A	Plume Projection	Deleted	04-27-87
EP-RET-6	Dose Projection	Deleted	04-24-87
EP-RET-7	Radiological Analysis Facility/Radiation Protection Office Communications	Deleted	04-24-87
EPIP-RET-08	Contamination Control of the Aurora Medical Center	Р	10-30-2001
EPIP-RET-09	Post-Accident Population Dose	К	08-29-2000
	EP-SEC	· · · · · · · · · · · · · · · · · · ·	
EP-SEC-1	Security Organization	Deleted	04-24-87
EPIP-SEC-02	Security Force Response to Emergencies	w	08-28-2001
EP-SEC-2A	Manual Activation of Emergency Sirens	Deleted	04-16-82
EPIP-SEC-03	Personnel Assembly and Accountability	AC	12-14-2001
EPIP-SEC-04	Security Force Actions for Dosimetry Issue	Р	10-02-2001

PAGE 5 OF 11

INDEX

DATE: 01-15-2002

.

PROC. NO.	TITLE	REV.	DATE	
EP-SEC-5	Security Force Response to the EOF	Deleted	07-28-88	
EPIP-SEC-05	Personnel Evacuation	F	07-05-2001	
	EP-TSC		· •	
EPIP-TSC-01	Technical Support Center Organization and Responsibilities	Р	10-02-2001	
EPIP-TSC-02	Technical Support Center Activation	S	11-29-2001	
EPIP-TSC-03	Plant Status Procedure	v	10-09-2001	
EPIP-TSC-04	Emergency Physical Changes, Major Equipment Repair	М	10-02-2001	
EP-TSC-5	Technical Support Center Communications Equipment	Deleted	04-24-87	
EP-TSC-6	Assessment of Reactor Core Damage	Deleted	09-30-86	
EPIP-TSC-07	RV Head Venting Time Calculation	I	10-19-2001	
EPIP-TSC-08A	Calculations for Steam Release from Steam Generators	N	12-14-2001	
EPIP-TSC-08B*	STMRLS Computer Program	F	10-02-2001	
EP-TSC-8C*	See EP-TSC-8B	Deleted	04-16-92	
* EP-TSC-8B was	totally deleted; therefore, EP-TSC-8C was changed	to EP-TSC-8B		
EP-TSC-9	Core Damage Assessment Using Released Radionuclides	Deleted	09-30-86	
EP-TSC-9A*	Core Damage Assessment	I	02-23-99	
EPIP-TSC-09B*	CORE Computer Program	J	10-02-2001	
EP-TSC-9C*	See EP-TSC-9B	Deleted	04-16-92	
* EP-TSC-9A, Rev. D was totally deleted; therefore, EP-TSC-9B became EP-TSC-9A. EP-TSC-9B was previously EP-TSC-9C.				
EPIP-TSC-10	Technical Support for IPEOPs	I	03-20-2001	

INDEX

DATE: 01-15-2002

FIGURES					
EPIP	FIG #	Figure EPIPFG	DESCRIPTION	REV.	DATE
EP-SEC-5 EPIP-APPX-A-06	EP-FIG-003	APPX-A-06-03	Technical Support Center - KNP Floor Plan	В	06-12-2001
EPIP-APPX-A-06	EP-FIG-005	APPX-A-06-02	Site Boundary Facility - KNP Floor Plan	A	10-31-2000
EPIP-APPX-A-06	EP-FIG-008	APPX-A-06-01	Radiological Analysis Facility - KNP Floor Plan	A	10-31-2000
EPIP-EOF-12 Form EPIPF-EOF-02-01	EP-FIG-009	EOF-12-01	Division Office Building (2nd Floor) Floor Plan	В	10-24-2000
EPIP-APPX-A-06	EP-FIG-012	APPX-A-06-08	State/County Work Area - WPSC D2-1 Floor Plan	С	10-31-2000
EPIP-APPX-A-06	EP-FIG-013	APPX-A-06-09	NRC Work Area - WPSC D2-4 Floor Plan	A	10-31-2000
EPIP-AD-19	EP-FIG-014	AD-19-01	Population Distribution by Geographical Sub- Areas (with sectors)	A	10-31-2000
EPIP-APPX-A-06	EP-FIG-022	APPX-A-06-04	EOF - WPSC D2-3 Floor Plan	С	10-30-2001
EPIP-EOF-12	EP-FIG-024	EOF-12-02	Map - Location of JPIC, MBC, GOB, DOB, etc.	В	09-27-2001
EP-SEC-5	EP-FIG-026	SEC-05-01	Site Map	В	09-27-2001
APPX-A-6	EP-FIG-034		Floor Plan - Media Briefing Center	Deleted	08-04-98
EPIP-EOF-12 EPIP-APPX-A-06	EP-FIG-035	APPX-A-06-06	General Office Building - WPSC (1st Floor) Floor Plan	С	10-24-2000
APPX-A-6	EP-FIG-037		Floor Plan - Corporate Response Center	Deleted	08-04-98
APPX-A-6	EP-FIG-038		Floor Plan - JPIC	Deleted	08-04-98
EPIP-OSF-02	EP-FIG-039	OSF-02-01	High Priority Work	A	10-02-2001
EPIP-OSF-02	EP-FIG-039A	OSF-02-02	Lower Priority Work	A	10-02-2001
EPIP-APPX-A-06	EP-FIG-043	APPX-A-06-10	JPIC - Federal Work Area - WPSC D2-9	В	12-21-2001
EPIP-APPX-A-06	EP-FIG-044	APPX-A-06-07	JPIC - State and County Work Area - WPSC D2-8	С	12-21-2001
EPIP-APPX-A-06	EP-FIG-045	APPX-A-06-05	JPIC - Utility Work Area - WPSC D2-7	С	12-21-2001
RET-08	EP-FIG-046	RET-08-01	Aurora Medical Center Location	Α	06-15-2000
EPIP-APPX-A-02		APPX-A-02-01	ERO Call Tree	Deleted	12-04-2001

PAGE 7 OF 11

INDEX

DATE: 01-15-2002

NUMBER	TITLE	REVISION	DATE
	APPENDIX A		
APPX-A-1	Communication System Description	AF	08-04-98
EPIP-APPX-A-02	Response Personnel Call List	BN	01-08-2002
EPIP-APPX-A-03	Off-Site Telephone Numbers	BO	12-04-2001
EPIP-APPX-A-06	KNPP Emergency Response Facility Telephone Numbers	AA	12-21-2001

PAGE 8 OF 11

....

2

INDEX

DATE: 01-15-2002

FORM EPIPF	TITLE	REV.	DATE	
APPENDIX B				
	EP-AD			
AD-07-01	Event Notice (Wisconsin Nuclear Accident Reporting Form)	R	12-14-2001	
AD-07-02	State Call-Back - Question Guideline	C	11-15-2001	
AD 11.1	Emergency Radiation Work Permit	F	04-16-96	
	EP-ENV	t		
ENV-01-01	Environmental Dispatch Area Activation Checklist	D	10-31-2000	
ENV-01-02	EMT Status	В	10-31-2000	
ENV-01-03	Meteorological and Plant Status Data	C	12-14-2001	
ENV-01-04	EMT Orders/Field Data	B	10-31-2000	
ENV-02-01	EMT Activation Checklist	M	06-15-2000	
	EP-EOF			
EOF-02-01	EOF Activation Checklist	S	10-30-2001	
EOF-02-02	EOF Deactivation Checklist	L	10-30-2001	
EOF-04-01	SRCL Initial Action Checklist	С	12-14-2001	
EOF-04-02	Telephone Communications Log Sheet	Α	12-14-2001	
EOF-08-03	Fax for Emergency Declaration or Status Updates	G	11-27-2001	
EOF-08-05	Plant Emergency Status Report	Α	11-27-2001	
EOF-08-06	Radiological Status Report	D	11-27-2001	
EOF-11-02	Operating Status	F	11-15-2001	
EOF-11-03	Environmental Status Board	F	11-15-2001	
EOF-12-01	I.D. Badge Registration Form	G	10-24-2000	
	EP-OSF	w.1	L	
OSF 2.2	Maintenance Work in Progress	Deleted	07-08-98	
OSF-03-01	Operational Support Facility Team Briefing	C	12-04-2001	

PAGE 9 OF 11

INDEX

DATE: 01-15-2002

FORM EPIPF	TITLE	REV.	DATE			
EP-RET						
RET-02A-02	Emergency Sample Worksheet	Е	06-05-2001			
RET 2B.1	Containment Stack Release (Grab Sample)	C	04-16-96			
RET 2B.2	Auxiliary Building Stack (Grab Sample)	С	04-16-96			
RET 2B.3	Auxiliary Building Stack (Sping Reading)	С	04-16-96			
RET 2B.4	Containment Stack (Sping Reading)	В	04-16-96			
RET 2B.5	Steam Release	С	04-16-96			
RET 2B.6	Field Reading (Grab Sample)	А	04-16-96			
RET-04-01	SAM-2 Counting Equipment Worksheet	Е	06-12-2001			
RET 8.3	Hospital Survey 1	Deleted	06-05-2001			
RET 8.4	Hospital Survey 2	Deleted	07-25-97			
RET 8.5	Hospital Survey 3	Deleted	07-25-97			
RET-08-06	Hospital Survey 4	F	06-15-2000			
RET 9	Environmental TLD Record Sheet	С	02-14-95			
	EP-SEC					
SEC-03.01	Emergency Accountability Log	A	03-28-2000			
SEC 4.1	Emergency Dosimeter Log	F	02-16-2000			
	EP-TSC					
TSC 1.1	Plant Status Summary for SAM Implementation	Α	04-01-99			
TSC 1.2	Severe Accident Management Summary and Strategy Recommendation	A	04-01-99			
TSC 1.3	Severe Accident Management – Status	A	04-01-99			
TSC-02-01	TSC and OSF Activation Checklist	0	09-27-2001			
TSC 2.2	TSC Ventilation Checklist	Н	04-01-99			
TSC-02-03	Emergency Response Data System (ERDS) Link Initiation Checklist	G	05-04-2001			

PAGE 10 OF 11

SAME A SUSTAIN

INDEX

DATE: 01-15-2002

FORM EPIPF	TITLE	REV.	DATE
TSC-02-04	TSC Chart Recorder Operation Checklist	D	01-30-2001
TSC-02-05	TSC and OSF De-activation Checklist	А	10-09-2001
TSC-03-01	Plant System Status	L	06-12-2001
TSC-03-02	Plant Equipment Status	L	06-12-2001
TSC-03-03	Environmental Status Board	J	06-12-2001
TSC-03-04	Radiation Monitors	I	01-08-2002
TSC-04-01	Emergency Physical Change Request	F	08-29-2000
TSC-04-02	Emergency Physical Change Safety Review	F	08-29-2000
TSC-04-03	Emergency Physical Change Index	F	08-29-2000
TSC-07-01	Head Venting Calculation	F	10-31-2000_
TSC-08A-01	Steam Release Data Sheet (Energy Balance)	Н	12-14-2001
TSC-08A-02	Steam Release Calculation Sheet (Energy Balance)	G	12-14-2001
TSC-08A-03	Steam Release Data/Calculation Sheet (Open Valve)	E	12-14-2001
TSC-08A-04	Steam Release Data/Calculation Sheet (STMRLS Program)	D	12-14-2001
TSC 9A.1	Core Damage Based on Reactor Vessel Level & Fuel Rod Temp.	С	02-14-95
TSC 9A.2	Core Damage Based on Radiation Monitors	C	02-14-95
TSC 9A.3	Cs-134 and Cs-137 PCF Determination	D	04-16-96
TSC 9A.4	Core Damage Based on Activity Ratios	C	02-14-95
TSC 9A.5	Core Damage Assessment (Monitoring Data)	D	04-16-96
TSC 9A.6	Core Damage Summary	C	02-14-95

WISCONS	IN PUBLIC SER	/ICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant			Title	Post Accident Oper Radiation Sample I	ration of the High Room
Emergency	Plan Implementi	ng Procedure	Date	JAN 1 5 2002	Page 1 of 34
Reviewed By	O.I.d.	hute	Approv	red By David	R Seebert
Nuclear	🗹 Yes	PORC		Yes SRO Appro	val Of 🗹 Yes
Related	🗖 No	Required		D No Changes R	equired 🛛 No

1.0 Purpose

1.1 This procedure provides instruction for operation of the High Radiation Sample Room (HRSR) to obtain the following primary coolant samples under post accident conditions:

- a. Diluted liquid sample of primary coolant for: (Step 5.1)
 - Boron analysis

• Gamma isotopic analysis

Oxygen

Chlorides

- b. An inline liquid sample for: (Step 5.2)
 - pH
 - Conductivity
- c. An inline undiluted gas sample for hydrogen analysis. (Step 5.3)
- d. A diluted gas sample for gamma isotopic analysis. (Step 5.3)
- e. An undiluted liquid sample for off-site analysis. (Step 5.4)
- f. Operation of 1A and 1B Hydrogen Analyzers for Containment. (Step 5.5)
- g. Flush of liquid sample lines. (Step 5.6)

2.0 General Notes

- 2.1 This procedure is designated CONTINUOUS USE.
- 2.2 The following is a list of acronyms that are used throughout this procedure:
 - CAP Chemical Analysis Panel
 - CASP Containment Air Sampling Panel
 - CMP Chemical Analysis Monitor Panel
 - DDT Deaerated Drain Tank
 - HVAC/CCP HVAC/Containment Air Sample Control Panel
 - HP/RPD Health Physics/Radiation Protection Director
 - HRSR High Radiation Sample Room RCHL
 - LSP Liquid Sample Panel
 - RCHL Reactor Coolant Hot Leg
 - SAP Sample Acquisition Panel

n:\nucdoc\procedures\draft\epip\eret03c.doc-Bill Hollingsworth/Christine Simmons-John Madden

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 2 of 34

3.0 Precautions and Limitations

- 3.1 Process an Emergency Radiation Work Permit per EPIP-AD-11, "Emergency Radiation Controls."
- 3.2 Contact Radiation Protection Group (HP) for:
 - 3.2.1 Proper personnel dosimetry
 - 3.2.2 Proper radiation detection instrumentation
 - 3.2.3 Personnel for continuous HP coverage during sampling
 - 3.2.4 Remote area monitor readings in area of HRSR
- 3.3 Utilize on-site communications with the HP/RPD, as necessary, during sampling.
- 3.4 Containment sump pH should be adjusted to a pH > 7 within 48 hours following the initiation of recirculation during a small break loss of coolant accident.
- 3.5 If the sample flow is lost during the performance of this procedure and the valve line-up is confirmed, a sample high temperature condition may exist.
 - No direct temperature indicator is available.
 - Sample flow is automatically isolated when sample temperatures exceed 120°F and automatically resets when the temperatures are reduced.
 - If sample flow is restored without having to take action, then high temperature isolation is confirmed.
 - Such a high temperature condition may arise if the Component Cooling flow is isolated or Component Cooling temperatures are high. Component Cooling temperatures may be observed using the plant process computer.
 - High Component Cooling temperature may occur if Service Water temperatures are elevated.
- 3.6 <u>IF</u> the loss of sample flow is confirmed to be due to high Component Cooling temperatures, <u>THEN</u> discuss the concern with Operations or the Technical Support Center and discuss opportunities to reduce Service Water heat loads to allow for better performance of Component Cooling.
- 3.7 Transit routes to and from the HRSR per HP/RPD recommendations.
- 3.8 Monitor radiation levels in the HRSR upon entry and during sample manipulations.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	le Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 3 of 34

- 3.9 Radiation level monitoring is required if accessing the maintenance areas behind the panels.
- 3.10 <u>IF</u> sufficient sample flow is not achieved, <u>THEN</u> extend the purge time as required to compensate for the reduced flow rates.

4.0 Initial Conditions

4.1 This procedure shall be implemented upon declaration of an Alert, Site Emergency, General Emergency, or when directed by the Shift Manager or Emergency Director.

5.0 Procedure

5.1 Diluted Liquid Sample for Boron Analysis and Isotopic Analysis

- 5.1.1 In the HRSR check the following equipment available and operational:
 - Drying oven on at 55°C to 60°C
 - All material required to perform RCC-082, "Boron Analysis Curcumin Method."
 - Multi-Channel Analyzer available for counting (Technical Support Center)
 - 2 1 liter poly bottles
 - Shielded aliquoter available
 - New 60 ml diluted sample bottle (large bottle)
 - Hand operated vacuum pump
 - Lights on in diluted sample port of LSP
 - LSP Sample Cask available with diluted sample bottle piston installed
 - Reach Rod for remote valve operation

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Iear Power PlantTitlePost Accident Operation of Radiation Sample Room		ntion of the High oom
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 4 of 34

- 5.1.2 At the CASP perform the following:
 - 5.1.2.1 Verify ventilation is ON and mode control switches are in NORMAL position.
 - 5.1.2.2 Check High Vacuum Lights indicate NORMAL for the following:
 - LSP
 - CAP
 - CASP
- 5.1.3 Perform valve lineup per Attachment A, "High Radiation Sample Valve Lineup Sheet."
- 5.1.4 Connect DI Water flush hose to LSP.
- 5.1.5 Open DI Water supply valve to LSP.
- 5.1.6 Evacuate the diluted sample bottle (60 ml, large bottle) to \geq 15 inches of vacuum. IF possible, THEN \geq 20 inches of vacuum is recommended.
 - 5.1.6.1 Install sample bottle in sample cask.
 - 5.1.6.2 Check cask for proper operation (large holder in cask).
- 5.1.7 At the LSP perform the following:
 - 5.1.7.1 Inspect dilution water reservoir level.
 - 5.1.7.2 IF necessary, <u>THEN</u> fill to full mark.
- 5.1.8 <u>WHEN</u> performing an RCHL sample, <u>THEN</u> request Control Room Operator perform the following:
 - Open RC-422.
 - Open RC-423.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	e Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 5 of 34

- 5.1.9 At the SAP perform the following:
 - 5.1.9.1 <u>WHEN</u> performing an RCHL sample, <u>THEN</u> perform the following:
 - Open CC-314.
 - Open RC-423-1.
 - 5.1.9.2 <u>WHEN</u> performing a Residual Heat Removal (RHR) sample, <u>THEN</u> perform the following:
 - Open CC-316.
 - WHEN sampling A RHR, THEN open RHR-81-A.
 - WHEN sampling B RHR, THEN open RHR-81-B.
 - 5.1.9.3 Position RC-437-1 to DDT.
 - 5.1.9.4 Position RC-437-2 to DDT.
- 5.1.10 At the LSP perform the following:
 - 5.1.10.1 Open RC-V3.
 - 5.1.10.2 <u>WHEN</u> performing a RCHL sample, <u>THEN</u> open RC-V-1.2.
 - 5.1.10.3 <u>WHEN</u> performing a RHR sample, <u>THEN</u> open RC-V-1.1.

Purge time may be varied based on actual purge flow rate obtained.

- 5.1.10.4 Throttle RC-VREL-1 until flow indicator RC-FI-1 indicates 1,900 to 2,000 cc/min.
 - <u>WHEN</u> RCHL sample, <u>THEN</u> purge at least 12 minutes.
 - <u>WHEN</u> RHR sample, <u>THEN</u> purge at least 25 minutes.
- 5.1.10.5 IF unable to attain desired purge flow rate, <u>THEN</u> adjust purge time accordingly.
- 5.1.10.6 <u>WHEN</u> purge is complete, <u>THEN</u> perform the following:
 - a. Close RC-V-3.
 - b. Open RC-V-8.2.
 - c. Open RC-V-8.1.
 - d. Open RC-V-2.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	tle Post Accident Operation of the Hig Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 6 of 34
<u>Note</u> Purge time may be varied ba	sed on pur	ge flow rate obtained.	

- 5.1.10.7 Throttle RC-VREL-2 until flow indicator RC-FI-2 indicates 180 to 220 cc/min.
- 5.1.10.8 Purge at least 3 minutes.
- 5.1.10.9 IF unable to attain desired purge flow rate, <u>THEN</u> adjust purge time accordingly.
- 5.1.10.10 Verify diluted sample bottle (from Step 5.1.6) vacuum \geq 15 inches of vacuum. IF possible, THEN \geq 20 inches of vacuum is recommended.
- 5.1.10.11 Install the sample cart under the diluted sample port.
- 5.1.10.12 Position the sample bottle up on the needles.
- 5.1.10.13 <u>WHEN</u> purge is complete, <u>THEN</u> perform the following:
 - a. Turn RC-DV-1 to SAMPLE position (6 o'clock).
 - b. IF RCHL sample, THEN close RC-V-1.2.
 - c. IF RHR sample, THEN close RC-V-1.1.
- 5.1.10.14 Throttle open RC-V-21.
- 5.1.10.15 Add 24 ml of DI Water to the sample bottle.
- 5.1.10.16 IF less than 24 ml of DI Water is used, THEN note sample volume.
- 5.1.10.17 Close RC-V-21.
- 5.1.10.18 Turn RC-DV-1 to BYPASS position (3 o'clock).
- 5.1.10.19 Open RC-V-4.

Flush time may be varied based on actual flush flow rate obtained.

- 5.1.10.20 Throttle RC-VEL-2 until flow indicator RC-FI-2 indicates 180 to 200 cc/min.
- 5.1.10.21 Flush for at least 3 minutes.
- 5.1.10.22 IF unable to attain desired flush flow rate, <u>THEN</u> adjust flush time accordingly.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	le Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 7 of 34

The following step may be performed during the flush.

- 5.1.10.23 Lower the diluted sample bottle into the sample cask.
 - Close the cask
 - Place cask near fume hood
 - Install auxiliary shield
- 5.1.10.24 Close RC-V-4.
- 5.1.10.25 Close RC-V-2.
- 5.1.10.26 Close RC-V-8.2.
- 5.1.10.27 Close RC-V-8.1.
- 5.1.11 <u>WHEN RCHL sample, THEN</u> request Control Room Operator perform the following:
 - Close RC-422.
 - Close RC-423.
- 5.1.12 At the SAP perform the following:
 - 5.1.12.1 <u>WHEN</u> RCHL sample, <u>THEN</u> perform the following:
 - Close RC-423-1.
 - Close CC-314.
 - 5.1.12.2 <u>WHEN</u> RHR sample, <u>THEN</u> perform the following:
 - IF opened, THEN close RHR-81A.
 - IF opened, THEN close RHR-81B.
 - Close CC-316.
 - 5.1.12.3 Position RC-437-1 to VCT.
 - 5.1.12.4 Position RC-437-2 to VCT.
 - 5.1.12.5 Close DI Water supply valve.
 - 5.1.12.6 Disconnect DI Water hose.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	le Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 8 of 34

Dilution factor correction is required if sample was not diluted with 24 ml of DI Water Step 5.1.10.16.

5.1.13 Perform the following post sample analyses preparations:

<u>Note</u>

For Boron analysis of < 2,000 ppm, an appropriately larger amount of sample shall be used.

- 5.1.13.1 <u>WHEN</u> analyzing for boron, <u>THEN</u> perform the following:
 - a. Transfer a 1.0 ml sample from the sample cask into a VYCOR evaporating dish using the shielded liquid aliquoter.
 - b. Continue the boron analysis per RCC-082, "Boron Analysis Curcumin Method."
- 5.1.13.2 <u>WHEN</u> performing a Beta/Gamma analysis, <u>THEN</u> perform the following:
 - a. Transfer 1.0 ml of coolant from the cask to a 1 liter poly bottle using the shielded liquid aliquoter.
 - b. Dilute to 1 liter with DI Water.
 - c. Transfer 10 ml of diluted sample to a second 1 liter poly bottle.
 - d. Dilute to 1 liter with DI Water. Dilution factor = 10^8 .
 - e. Transfer sample to the multi-channel analyzer for counting.
- 5.2 Inline Sample for pH, Conductivity, O2 and Chloride

<u>Note</u>

Gas cylinders and their regulators are located outside the HRSR at the gas cylinder rack.

- 5.2.1 Align argon and helium as follows:
 - 5.2.1.1 Verify open argon gas cylinder isolation.
 - 5.2.1.2 Verify argon cylinder pressure ≥ 400 psi.
 - 5.2.1.3 Adjust argon pressure regulator to obtain 150 psi (140 to 160 psi).
 - 5.2.1.4 Verify open helium gas cylinder isolation.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 9 of 34

- 5.2.1.5 Verify helium cylinder pressure ≥ 400 psi.
- 5.2.1.6 Adjust helium pressure regulator to obtain 70 psi (65 to 85 psi).
- 5.2.2 Verify reach rod is available for remote valve operation.
- 5.2.3 Check HRSR Calibration Log for verification of latest performances.
- 5.2.4 At the CASP perform the following:
 - 5.2.4.1 Verify ventilation is ON and mode control switches are in NORMAL position.
 - 5.2.4.2 Check High Vacuum Lights indicate NORMAL for the following:
 - LSP
 - CAP
 - CASP

5.2.5 At the CMP perform the following:

- 5.2.5.1 CMP Main Power switch ON.
- 5.2.5.2 Verify the YSI chart recorder is ON.
- 5.2.5.3 Verify the pH meter is ON.
- 5.2.5.4 Verify the conductivity meter is ON.
- 5.2.5.5 Start Ion Chromatograph (IC) in accordance with RCC-520, "DX-500 Startup and Shutdown Procedure."
- 5.2.6 Perform valve lineup per Attachment A, "High Radiation Sample Valve Lineup Sheet."
- 5.2.7 At the CAP, verify argon, helium, and air regulators set as follows:
 - 5.2.7.1 Adjust argon pressure regulator to obtain 30 psi (30 to 32 psi).
 - 5.2.7.2 Adjust helium pressure regulator to obtain 50 psi (50 to 55 psi).
 - 5.2.7.3 Adjust air pressure regulator to obtain 75 psi (75 to 85 psi).
- 5.2.8 Connect DI Water flush hoses to LSP and CAP.
- 5.2.9 Open DI Water supply valve to LSP.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	itle Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 10 of 34

- 5.2.10 Open DI Water supply valve to CAP.
- 5.2.11 At the CAP perform the following:
 - 5.2.11.1 Position V-6 to LIQUID SAMPLE (9 o'clock).
 - 5.2.11.2 Position V-5 to LIQUID SAMPLE (9 o'clock).
- 5.2.12 WHEN RCHL sample, THEN request Control Room Operator perform the following:
 - Open RC-422.
 - Open RC-423.
- 5.2.13 At the SAP perform the following:
 - 5.2.13.1 <u>WHEN</u> performing an RCHL sample, <u>THEN</u> perform the following:
 - Open CC-314.
 - Open RC-423-1.
 - 5.2.13.2 <u>WHEN</u> performing a RHR sample, <u>THEN</u> perform the following:
 - Open CC-316.
 - <u>WHEN</u> sampling A RHR, <u>THEN</u> open RHR-81-A.
 - WHEN sampling B RHR, THEN open RHR-81-B.
 - 5.2.13.3 Position RC-437-1 to DDT.
 - 5.2.13.4 Position RC-437-2 to DDT.
- 5.2.14 At the LSP perform the following:
 - 5.2.14.1 Open RC-V3.

- 5.2.14.2 <u>WHEN</u> performing a RCHL sample, <u>THEN</u> open RC-V-1.2.
- 5.2.14.3 <u>WHEN</u> performing a RHR sample, <u>THEN</u> open RC-V-1.1.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 11 of 34

Purge time may be varied based on actual purge flow rate obtained.

- 5.2.14.4 Throttle RC-VREL-1 until flow indicator RC-FI-1 indicates 1,900 to 2,000 cc/min.
 - <u>WHEN</u> RCHL sample, <u>THEN</u> purge at least 12 minutes.
 - WHEN RHR sample, <u>THEN</u> purge at least 25 minutes.
- 5.2.14.5 IF unable to attain desired purge flow rate, <u>THEN</u> adjust purge time accordingly.
- 5.2.14.6 <u>WHEN</u> purge is complete, <u>THEN</u> perform the following:
 - Close RC-V-3.
 - Open RC-V-2.
 - Open RC-V-7.
 - Position RC-V-22 to CHEM PANEL.

<u>Note</u>

Purge time may be varied based on actual purge flow rate obtained.

- 5.2.14.7 Throttle RC-VREL-2 until flow indicator RC-FI-2 indicates 180 to 220 cc/min.
- 5.2.14.8 Purge at least 5 minutes.
- 5.2.14.9 IF unable to attain desired purge flow rate, <u>THEN</u> adjust purge time accordingly.
- 5.2.15 At the CAP perform the following:
 - 5.2.15.1 Verify adequate flow to the CAP by observing the red lights ON for both Oxygen and IC.
 - 5.2.15.2 <u>WHEN</u> the YSI O₂ meter chart reading has stabilized, <u>THEN</u> record the following on the Reactor Coolant Analysis Log (routine logsheet):
 - Conductivity reading
 - Temperature
 - O₂ reading

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 12 of 34

- 5.2.15.3 Inject sample on IC unit.
 - <u>WHEN</u> IC run complete, <u>THEN</u> record Chloride value on the Reactor Coolant Analysis Log (routine logsheet) and attach chart recorder printout.
- 5.2.16 At the LSP perform the following:
 - 5.2.16.1 Turn RC-V-22 to WASTE position (6 o'clock).
 - 5.2.16.2 WHEN RCHL sample, <u>THEN</u> close RC-V-1.2.
 - 5.2.16.3 WHEN RHR sample, THEN close RC-V-1.1.
 - 5.2.16.4 Open RC-V-4.
 - 5.2.16.5 Observe DI Water flush to waste as indicated on Flow Indicator RC-FI-2.
 - 5.2.16.6 Flush for 2 minutes.
 - 5.2.16.7 Record pH reading on the Reactor Coolant Analysis Log (routine logsheet).
 - 5.2.16.8 Turn RC-V-22 to CAP position (12 o'clock).
 - 5.2.16.9 Verify flush water flow by observing the lights ON for both O_2 Flow and IC Flow.
 - 5.2.16.10 Flush for at least 2 minutes.
 - 5.2.16.11 Turn RC-V-22 to WASTE position (6 o'clock).
 - 5.2.16.12 Close RC-V-7.
 - 5.2.16.13 Close RC-V-2.
 - 5.2.16.14 Close RC-V-4.
- 5.2.17 At the CAP perform the following:
 - 5.2.17.1 Position V-6 to O_2 CAL (6 o'clock).
 - 5.2.17.2 Close V-5 (6 o'clock).

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 13 of 34

- 5.2.18 <u>WHEN</u> RCHL sample, <u>THEN</u> request Control Room Operator perform the following:
 - Close RC-422.
 - Close RC-423.
- 5.2.19 At the SAP perform the following:
 - 5.2.19.1 <u>WHEN RCHL sample, THEN perform the following:</u>
 - Close RC-423-1.
 - Close CC-314.
 - 5.2.19.2 <u>WHEN</u> RHR sample, <u>THEN</u> perform the following:
 - IF opened, THEN close RHR-81A.
 - IF opened, THEN close RHR-81B.
 - Close CC-316.
 - 5.2.19.3 Position RC-437-1 to VCT.
 - 5.2.19.4 Position RC-437-2 to VCT.
 - 5.2.19.5 Close DI Water supply valve.
 - 5.2.19.6 Disconnect DI Water hose.
- 5.3 Inline Hydrogen and Gaseous Activity Grab Sample
 - 5.3.1 Verify the multi-channel analyzer available for counting.

Gas cylinders and their regulators are located outside the HRSR at the gas cylinder rack.

- 5.3.2 Align argon and helium as follows:
 - 5.3.2.1 Verify open argon gas cylinder isolation.
 - 5.3.2.2 Verify argon cylinder pressure ≥ 400 psi.
 - 5.3.2.3 Adjust argon pressure regulator to obtain 150 psi (140 to 160 psi).
 - 5.3.2.4 Verify open helium gas cylinder isolation.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 14 of 34

- 5.3.2.5 Verify helium cylinder pressure ≥ 400 psi.
- 5.3.2.6 Adjust helium pressure regulator to obtain 70 psi (65 to 85 psi).
- 5.3.3 At the CASP perform the following:
 - 5.3.3.1 Verify ventilation is ON and mode control switches are in NORMAL position.
 - 5.3.3.2 Check High Vacuum Lights indicate NORMAL for the following:
 - LSP
 - CAP
 - CASP
- 5.3.4 Verify the following equipment available and operational:
 - Reach Rod for remote valve operation
 - 10 cc gas sample bottle, with septum, properly installed in face of LSP using the special handling tool
- 5.3.5 At the CMP perform the following:
 - 5.3.5.1 CMP Main Power switch ON.
 - 5.3.5.2 Verify the program in Gas Chromatograph (GC) mini-computer.
 - 5.3.5.3 Check HRSR Calibration Log for verification of latest performances.
- 5.3.6 Perform valve lineup per Attachment A, "High Radiation Sample Valve Lineup Sheet."
- 5.3.7 At the CAP, verify Argon, Helium, and Air regulators set as follows:
 - 5.3.7.1 Adjust Argon pressure regulator to obtain 30 psi (30 to 32 psi).
 - 5.3.7.2 Adjust Helium pressure regulator to obtain 50 psi (50 to 55 psi).
 - 5.3.7.3 Adjust Air pressure regulator to obtain 75 psi (75 to 85 psi).
- 5.3.8 Connect DI Water flush hoses to LSP and CAP.
- 5.3.9 Open DI Water supply valves.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 15 of 34

- 5.3.10 At the LSP, dry the expansion vessel as follows:
 - 5.3.10.1 Turn RC-V-11 to ARGON position (3 o'clock).
 - 5.3.10.2 Open RC-V-9.
 - 5.3.10.3 Open RC-V-8.2.
 - 5.3.10.4 Open RC-V-10.
 - 5.3.10.5 Regulate RC-VREL-2 to obtain 20 psi on RC-G-3.
 - 5.3.10.6 Observe flow indication on RC-FI-2.
 - 5.3.10.7 Wait at least 1 minute.
 - 5.3.10.8 Turn RC-V-11 counterclockwise to VACUUM/SAMPLE position (9 o'clock).
 - 5.3.10.9 Close RC-V-9.
 - 5.3.10.10 Close RC-V-8.2.
- 5.3.11 WHEN RCHL sample, THEN request Control Room Operator perform the following:
 - Open RC-422.
 - Open RC-423.
- 5.3.12 At the SAP perform the following:
 - 5.3.12.1 <u>WHEN</u> performing an RCHL sample, <u>THEN</u> perform the following:
 - Open CC-314.
 - Open RC-423-1.
 - 5.3.12.2 <u>WHEN</u> performing a RHR sample, <u>THEN</u> perform the following:
 - Open CC-316.
 - WHEN sampling A RHR, THEN open RHR-81-A.
 - <u>WHEN</u> sampling B RHR, <u>THEN</u> open RHR-81-B.
 - 5.3.12.3 Position RC-437-1 to DDT.
 - 5.3.12.4 Position RC-437-2 to DDT.

2

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 16 of 34

- 5.3.13 At the LSP perform the following:
 - 5.3.13.1 Open RC-V3.
 - 5.3.13.2 <u>WHEN</u> performing a RCHL sample, <u>THEN</u> open RC-V-1.2.
 - 5.3.13.3 <u>WHEN</u> performing a RHR sample, <u>THEN</u> open RC-V-1.1.

Purge time may be varied based on actual purge flow rate obtained.

- 5.3.13.4 Throttle RC-VREL-1 until flow indicator RC-FI-1 indicates 1,900 to 2,000 cc/min.
 - <u>WHEN</u> RCHL sample, <u>THEN</u> purge at least 12 minutes.
 - WHEN RHR sample, <u>THEN</u> purge at least 25 minutes.
- 5.3.13.5 IF unable to attain desired purge flow rate, <u>THEN</u> adjust purge time accordingly.

<u>Note</u>

The following, Steps 5.3.13.6 to 5.3.13.11, may be completed while waiting for the sample purge to be completed.

- 5.3.13.6 Evacuate the Gas Expansion Vessel, sample bottle, and tubing as follows:
 - a. Open RC-V-13.
 - b. Open RC-V-15.
 - c. Turn RC-DV-2 to GAS SAMPLE position (12 o'clock).
 - d. Open RC-V-12.
- 5.3.13.7 <u>WHEN</u> vacuum on RC-G-2.2 \geq 22 inches vacuum, <u>THEN</u> turn RC-DV-2 to TO GC position (3 o'clock).
- 5.3.13.8 <u>WHEN</u> vacuum on RC-G-2.1 \geq 22 inches of vacuum, <u>THEN</u> perform the following:
 - a. Close RC-V-15.
 - b. Close RC-V-13.
 - c. Close RC-V-10.
 - d. Turn RC-V-11 clockwise to CLOSE position (12 o'clock).
 - e. Close RC-V-12.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 17 of 34

5.3.13.9 Observe vacuum is holding steady on both gauges by performing the following:

- a. Turn RC-DV-2 to 12 o'clock.
- b. Observe vacuum on RC-G-2.2 is holding steady.
- c. Turn RC-DV-2 to 3 o'clock.
- 5.3.13.10 Open RC-V-14.
- 5.3.13.11 Observe RC-G-2.2 about 1.0 psi.

<u>Note</u>

Sample purge must be completed before proceeding.

- 5.3.13.12 Close RC-V-3.
- 5.3.13.13 Open RC-V-8.2.
- 5.3.13.14 Open RC-V-8.1.
- 5.3.13.15 Open RC-V-2.

<u>Note</u>

Purge time may be varied based on actual purge flow rate obtained.

- 5.3.13.16 Throttle RC-VREL-2 until flow indicator RC-FI-2 indicates 180 to 220 cc/min.
- 5.3.13.17 Purge at least 3 minutes.
- 5.3.13.18 IF unable to attain desired purge flow rate, <u>THEN</u> adjust purge time accordingly.
- 5.3.13.19 Close RC-V-8.2.
- 5.3.13.20 Close RC-V-8.1.
- 5.3.13.21 WHEN RCHL sample, THEN close RC-V-1.2.
- 5.3.13.22 WHEN RHR sample, THEN close RC-V-1.1.
- 5.3.13.23 Open RC-V-9.
- 5.3.13.24 Open RC-V-16.
- 5.3.13.25 Wait 1 minute.
- 5.3.13.26 Close RC-V-16.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 18 of 34

5.3.13.27 Close RC-V-9.

- 5.3.13.28 WHEN gas stripping complete, THEN flush the LSP as follows:
 - a. Open RC-V-8.2.
 - b. Open RC-V-8.1.
 - c. Open RC-V-4.
 - d. Turn RC-V-11 <u>counterclockwise</u> to VACUUM/SAMPLE position (9 o'clock).
- 5.3.13.29 Turn RC-DV-2 to GAS SAMPLE position (12 o'clock). To obtain the diluted gas sample.
- 5.3.13.30 Observe pressure gauge RC-G-2.2 stabilized at about 1 psi.
- 5.3.13.31 Turn RC-DV-2 to TO GC position (3 o'clock).
- 5.3.13.32 Close RC-V-14.
- 5.3.13.33 Remove the diluted gas sample bottle from the LSP.
- 5.3.14 Place entire assembly in fume hood for later transport to multi-channel analyzer.
- 5.3.15 At the CMP, operate the GC mini-computer to draw a vacuum on all 4 sample loops.
- 5.3.16 At the LSP, open RC-V-15 and allow the gas sample to transfer to the GC.
- 5.3.17 Operate the GC unit to obtain 4 samples for hydrogen determination. By selective attenuation, starting with a high value, determine the hydrogen concentration.
 - Cycle through the four loops.
 - Stop at each loop at least 1 minute.

<u>Note</u>

- Start attenuation selection with high values.
- Determine hydrogen concentration using selective attenuation.
- Record information on the Reactor Coolant Analysis Log (routine logsheet).

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 19 of 34

- 5.3.18 <u>WHEN RCHL sample, THEN</u> request Control Room Operator perform the following:
 - Close RC-422.
 - Close RC-423.
- 5.3.19 At the LSP perform the following:
 - 5.3.19.1 Close RC-V-4.
 - 5.3.19.2 Close RC-V-2.
 - 5.3.19.3 Close RC-V-8.1.
 - 5.3.19.4 Close RC-V-8.2.
- 5.3.20 At the SAP perform the following:
 - 5.3.20.1 <u>WHEN</u> RCHL sample, <u>THEN</u> perform the following:
 - Close RC-423-1.
 - Close CC-314.
 - 5.3.20.2 <u>WHEN RHR sample, THEN perform the following:</u>
 - IF opened, THEN Close RHR-81A.
 - IF opened, THEN close RHR-81B.
 - Close CC-316.
 - 5.3.20.3 Position RC-437-1 to VCT.
 - 5.3.20.4 Position RC-437-2 to VCT.
- 5.3.21 At the LSP to flush the expansion vessel perform the following:
 - 5.3.21.1 Open RC-V-8.2.
 - 5.3.21.2 Open RC-V-9.
 - 5.3.21.3 Turn RC-V-11 to DI WATER position (6 o'clock).
 - 5.3.21.4 Flush for at least 2 minutes.
 - 5.3.21.5 Turn RC-V-11 to ARGON position (3 o'clock).

5.3.21.6 Wait 2 minutes.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P	
Kewaunee Nuclear Power Plant	Title	 Post Accident Operation of the High Radiation Sample Room 		
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 20 of 34	

5.3.21.7 Turn RC-V-11 counterclockwise to CLOSE position (12 o'clock).

- 5.3.21.8 Close RC-V-9.
- 5.3.21.9 Close RC-V-8.2.
- 5.3.22 To remove radioactive gases from the system perform the following:
 - 5.3.22.1 Open RC-V-10.
 - 5.3.22.2 Open RC-V-13.
 - 5.3.22.3 Open RC-V-15.
 - 5.3.22.4 Turn RC-V-11 to VACUUM/SAMPLE position (9 o'clock).
 - 5.3.22.5 Open RC-V-12.
 - 5.3.22.6 Evacuate system for at least 1 minute.
 - 5.3.22.7 Close RC-V-12.
 - 5.3.22.8 Turn RC-V-11 clockwise to CLOSE position (12 o'clock).
 - 5.3.22.9 Close RC-V-15.
 - 5.3.22.10 Close RC-V-13.
 - 5.3.22.11 Close RC-V-10.
- 5.3.23 Transport diluted gas bottle to multi-channel analyzer for analysis in accordance with RCC-063, RCS Gaseous Activity."

5.4 Undiluted Liquid Grab Sample

- 5.4.1 In the HRSR check the following equipment available and operational:
 - Sample cask available with undiluted piston installed
 - Two 15 ml undiluted sample bottle
 - New undiluted liquid flush bottle
 - Undiluted liquid sample flush bottle handling tool
 - Lights ON in undiluted sample port of LSP
 - Reach Rod for remote valve operation

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P	
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room		
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 21 of 34	

- 5.4.2 At the CASP perform the following:
 - 5.4.2.1 Verify ventilation is ON and mode control switches are in NORMAL position.
 - 5.4.2.2 Check High Vacuum Lights indicate NORMAL for the following:
 - LSP
 - CAP
 - CASP
- 5.4.3 Perform valve lineup per Attachment A, "High Radiation Sample Valve Lineup Sheet."
- 5.4.4 Connect DI Water flush hoses to LSP.
- 5.4.5 Open DI Water supply valve to LSP.
- 5.4.6 Install undiluted sample bottle in sample cask.
- 5.4.7 Check cask for proper operation.
- 5.4.8 Install the sample cask under the undiluted sample port.
- 5.4.9 Position the undiluted sample bottle up on the needles.
- 5.4.10 <u>WHEN</u> performing an RCHL sample, <u>THEN</u> request Control Room Operator:
 - Open RC-422.
 - Open RC-423.
- 5.4.11 At the SAP perform the following:
 - 5.4.11.1 <u>WHEN</u> performing an RCHL sample, <u>THEN</u> perform the following:
 - Open CC-314.
 - Open RC-423-1.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 22 of 34

- 5.4.11.2 <u>WHEN</u> performing a RHR sample, <u>THEN</u> perform the following:
 - Open CC-316.
 - WHEN sampling A RHR, THEN open RHR-81-A.
 - <u>WHEN</u> sampling B RHR, <u>THEN</u> open RHR-81-B.
- 5.4.11.3 Position RC-437-1 to DDT.
- 5.4.11.4 Position RC-437-2 to DDT.
- 5.4.12 At the LSP perform the following:
 - 5.4.12.1 Open RC-V-3.
 - 5.4.12.2 <u>WHEN</u> performing a RCHL sample, <u>THEN</u> open RC-V-1.2.
 - 5.4.12.3 <u>WHEN</u> performing a RHR sample, <u>THEN</u> open RC-V-1.1.

Purge time may be varied based on actual purge flow rate obtained.

- 5.4.12.4 Throttle RC-VREL-1 until flow indicator RC-FI-1 indicates 1,900 to 2,000 cc/min.
 - <u>WHEN</u> RCHL sample, <u>THEN</u> purge at least 12 minutes.
 - WHEN RHR sample, THEN purge at least 25 minutes
- 5.4.12.5 IF unable to attain desired purge flow rate, <u>THEN</u> adjust purge time accordingly.
- 5.4.12.6 <u>WHEN</u> purge is complete, <u>THEN</u> perform the following:
 - a. Close RC-V-3.
 - b. Open RC-V-2.
 - c. Open RC-V-7.

<u>Note</u>

Purge time may be varied based on actual purge flow rate obtained.

- 5.4.12.7 Throttle RC-VREL-2 until flow indicator RC-FI-2 indicates 180 to 220 cc/min.
- 5.4.12.8 Purge for at least 3 minutes.
- 5.4.12.9 IF unable to attain desired purge flow rate, <u>THEN</u> adjust purge time accordingly.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 23 of 34

5.4.12.10 Turn RC-V-19 to SAMPLE position (3 o'clock).

- 5.4.12.11 Observe flow into undiluted sample bottle.
- 5.4.12.12 <u>WHEN</u> undiluted sample bottle is full, <u>THEN</u> position RC-V-19 to BYPASS position (12 o'clock).
- 5.4.13 Remove undiluted sample bottle from the needles.
- 5.4.14 Store the undiluted sample.
 - Return undiluted sample to cask.
 - Close lead top.
 - Install auxiliary shield.
 - Remove cask from HRSR.
- 5.4.15 IF RCHL sample, THEN close RC-V-1.2.
- 5.4.16 IF RHR sample, <u>THEN</u> close RC-V-1.1.
- 5.4.17 Open RC-V-4.
- 5.4.18 Place new undiluted sample bottle in special handling tool.
- 5.4.19 Position tool and bottle up on undiluted sample needles in LSP.
- 5.4.20 Turn RC-V-19 to SAMPLE position (3 o'clock).
- 5.4.21 Flush for at least 3 minutes.
- 5.4.22 Turn RC-V-19 to BYPASS position (12 o'clock).
- 5.4.23 Close RC-V-7.
- 5.4.24 Close RC-V-2.
- 5.4.25 Close RC-V-4.
- 5.4.26 Remove undiluted flush bottle and handling tool.
- 5.4.27 <u>WHEN</u> RCHL sample, <u>THEN</u> request Control Room Operator perform the following:
 - Close RC-422.
 - Close RC-423.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 24 of 34

5.4.28 At the SAP perform the following:

- 5.4.28.1 <u>WHEN RCHL sample, THEN perform the following:</u>
 - Close RC-423-1.
 - Close CC-314.
- 5.4.28.2 <u>WHEN</u> RHR sample, <u>THEN</u> perform the following:
 - IF opened, THEN Close RHR-81A.
 - IF opened, THEN close RHR-81B.
 - Close CC-316.
- 5.4.28.3 Position RC-437-1 to VCT.
- 5.4.28.4 Position RC-437-2 to VCT.
- 5.4.29 <u>WHEN</u> off-site shipment of an undiluted sample is required, <u>THEN</u> contact a Chemistry Supervisor.
- 5.5 Containment Hydrogen (H2) Monitor IA & IB Operation Procedure
 - 5.5.1 <u>WHEN</u> sampling the Containment for hydrogen, <u>THEN</u> perform the following:
 - 5.5.1.1 At the CASP perform the following:
 - 5.5.1.1.1 Verify ventilation is ON and mode control switches are in NORMAL position.
 - 5.5.1.1.2 Check High Vacuum Lights indicate NORMAL for the following:
 - LSP
 - CAP
 - CASP
 - 5.5.1.2 Verify remote panels are in standby and have had 6 hours warm-up time.
 - 5.5.1.3 Verify heat tracing is energized and operational.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 25 of 34

Due to ALARA considerations, both containment air sample trains will be lined up to preclude additional valve lineups.

- 5.5.1.4 Contact the Control Room and perform the following:
 - 5.5.1.4.1 Verify that Containment Dome Fans 1A and 1B are operating.
 - 5.5.1.4.2 Inform the Control Room that both containment air sample trains will be lined up for sampling.
 - 5.5.1.4.3 Request the Control Room perform the following valve lineup:
 - Close SA 7010A.
 - Open LOCA 2A.
 - Open LOCA 10A.
 - Open SA 7003A.
 - Close SA 7010B.
 - Position LOCA 2B LOCAL/REMOTE to LOCAL.
 - Open LOCA 2B.
 - Open LOCA 10B.
 - Position SA 7003B LOCAL/REMOTE to LOCAL.
 - Open SA 7003B.

<u>Note</u>

Damage to the Hydrogen Analyzer will result if CASP is monitoring the same Train.

- 5.5.1.5 <u>WHEN H₂ Monitor 1A is to be used, THEN open AS-110A.</u>
- 5.5.1.6 <u>WHEN H₂</u> Monitor 1B is to be used, <u>THEN</u> open AS-110B.
- 5.5.1.7 Inform the Control Room that the H_2 Monitors are going to be started so that they can monitor their indication.
- 5.5.1.8 Switch selected analyzer to ANALYZE.
- 5.5.1.9 Switch selected analyzer to SAMPLE MODE.
- 5.5.1.10 Push the remote selector pushbutton to gain control at the remote panel. CONTINUOUS USE

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 26 of 34

5.5.1.11 Allow at least 10 minutes for sample purge time.

<u>Note</u>

The Containment Hydrogen Monitors read out remotely in the Control Room.

- 5.5.1.12 IF desired, <u>THEN</u> record Hydrogen Monitor indication on the Reactor Coolant Analysis Log (routine logsheet).
- 5.5.2 <u>WHEN</u> all Containment hydrogen sampling is complete, <u>THEN</u> perform the following:
 - 5.5.2.1 Switch selected H_2 Monitor to STANDBY.
 - 5.5.2.2 <u>WHEN H₂ Monitor 1A was used, THEN close AS-110A.</u>
 - 5.5.2.3 <u>WHEN H₂ Monitor 1B was used, THEN close AS-110B.</u>
 - 5.5.2.4 Request the Control Room perform the following valve lineup:
 - Close LOCA 2A.
 - Close LOCA 10A.
 - Close SA 7003A.
 - Open SA 7010A.
 - Close LOCA 2B.
 - Position LOCA 2B LOCAL/REMOTE to REMOTE.
 - Close LOCA 10B.
 - Close SA 7003B.
 - Open SA 7010B.
 - Position SA 7010B LOCAL/REMOTE to REMOTE.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Opera Radiation Sample R	ation of the High .oom
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 27 of 34

5.6 Flush of Liquid Sample Lines

<u>Note</u>

The purpose of this section is to reduce radiation levels behind the liquid sample panel during post accident conditions.

- 5.6.1 At the SAP perform the following:
 - 5.6.1.1 Position RC-437-1 to DDT.
 - 5.6.1.2 Position RC-437-2 to DDT.
 - 5.6.1.3 Open FPC-51.
 - 5.6.1.4 <u>WHEN</u> performing an RCHL flush, <u>THEN</u> perform the following:
 - Open FPC-51-14.
 - Open CC-314.
 - Open RC-423-1.
 - 5.6.1.5 <u>WHEN</u> performing a RHR flush, <u>THEN</u> perform the following:
 - Open FPC-51-41.
 - Open CC-316.
- 5.6.2 At the LSP perform the following:
 - 5.6.2.1 <u>WHEN</u> performing a RCHL flush, <u>THEN</u> open RC-V-1.2.
 - 5.6.2.2 <u>WHEN</u> performing a RHR flush, <u>THEN</u> open RC-V-1.1.
 - 5.6.2.3 Open RC-V-2.
 - 5.6.2.4 Open RC-V-7.

<u>Note</u>

÷.

Flush time may be varied based on actual flush flow rate obtained.

- 5.6.2.5 Throttle RC-VREL-2 until flow indicator RC-FI-2 indicates 180 to 220 cc/min.
- 5.6.2.6 Flush at least 45 minutes.
- 5.6.2.7 IF unable to attain desired flush flow rate, <u>THEN</u> adjust flush time accordingly.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 28 of 34

- 5.6.3 At the SAP perform the following:
 - 5.6.3.1 Close FPC-51.
 - 5.6.3.2 <u>WHEN RCHL line flush, THEN perform the following:</u>
 - a. Close FPC-51-14.
 - b. Close RC-423-1.
 - c. Close CC-314.
 - 5.6.3.3 <u>WHEN</u> RHR line flush, <u>THEN</u> perform the following:
 - a. Close FCP-51-41.
 - b. Close CC-316.
 - c. Close RC-V-1.1.
- 5.6.4 At the LSP perform the following:
 - 5.6.4.1 <u>WHEN RCHL line flush, THEN close RC-V-1.2.</u>
 - 5.6.4.2 WHEN RHR line flush, THEN close RC-V-1.1.
 - 5.6.4.3 Close RC-V-2.
 - 5.6.4.4 Close RC-V-7.
 - 5.6.4.5 Close RC-VREL-2, then open RC-VREL-2 approximately ¹/₂ turn.
 - 5.6.4.6 Continue flush by opening RC-V-4.
 - 5.6.4.7 Open RC-V-3.
 - 5.6.4.8 Throttle RC-VREL-1 until positive indication of flow on RC-FI-1.

Additional time may be required if radiation levels behind LSP have <u>NOT</u> stabilized.

- 5.6.4.9 Flush at least 15 minutes.
- 5.6.4.10 Close RC-V-3.
- 5.6.4.11 Close RC-V-4.
- 5.6.4.12 Close RC-VREL-1, then open RC-VREL-1 approximately ½ turn.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03C	Rev. P
Kewaunee Nuclear Power Plant	Title	Post Accident Operation of the High Radiation Sample Room	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 29 of 34

6.0 Final Conditions

6.1 Plant Emergency has been Terminated or Recovery actions have begun and the Emergency Response Manager has suspended the use of EPIPs.

7.0 References

- 7.1 Sentry HRSS Operating and Maintenance Manual
- 7.2 RCC-063, RCS Gaseous Activity
- 7.3 RCC-082, Boron Analysis Curcumin Method
- 7.4 RCC-201, HRSR Conductivity, YSI Dissolved Oxygen, and pH Analysis
- 7.5 RCC-202, Hydrogen Gas Chromatography (G.C.) Analysis
- 7.6 RCC-203, HRSR Post Accident Chloride-Ion Chromatography (IC) Analysis
- 7.7 RCC-520, DX-500 Startup and Shutdown Procedure
- 7.8 Commitment PLS-84-022 RQMT 2 Step 5.3.14 (NOTE)
- 7.9 Commitment TEC-84-005, Step 5.1.13 and 5.1.14
- 7.10 EPIP-AD-11, Emergency Radiation Controls
- 7.11 OEA 93-160
- 7.12 KAP 1136, Corrective Action 2

8.0 Records

- 8.1 The following QA records and non-QA records are identified in this directive/procedure and are listed on the KNPP Records Retention Schedule. These records shall be maintained according to the KNPP Records Management Program.
 - 8.1.1 <u>QA Records</u>

None

8.1.2 Non-OA Records

None

Page 1 of 5

<u>Note</u>

Valves are listed as they appear on the panel, beginning in the top left hand corner working left to right and top to bottom.

SAMPLE ACQUISITION PANEL

FPC-51Closed
RHR 81-BClosed
FPC-51-41Closed
RHR 81-A RHR SMPL Iso A Aux CoolClosed
RC-423-1Closed
CC-316 RHR HRS Hx CC FlowClosed
FPC 51-14Closed
MGR-545-1Closed
MGR-545Closed
LD-75
FPC-51-31
LD-71
LD-85
RC-437-1VCT
FPC-51-21 M/B Demin Outlet FlushClosed
LD-81
RC-437-2VCT
RC-403-1 Przr Stm Sp SmplClosed
FPC-51-12Pzr Stm Sp Smpl FlushClosed
RC-413-1Pzr Liq Sp SmplClosed
FPC-51-13 Pzr Liq Sp Smpl FlushClosed
CC-314 Rx Cool HRS Hx CC FlowClosed

Page 2 of 5

<u>Note</u>

 \overline{Valves} are listed as they appear on the panel, beginning in the top left hand corner working left to right and top to bottom.

LIQUID SAMPLE PANEL

RC-V-12	Argon to Eductor	Closed	
RC-V-15	Gas Smpl to GC	Closed	
RC-V-14	Argon Purge to Dil Gas Smpl	Closed	
RC-V-13	Dil Gas Smpl Vac	Closed	
RC-V-10	Expansion Vessel Vacuum	Closed	
RC-DV-2	Diluted Gas Smp1	TO GC	(3 o'clock)
RC-V-11	Expansion Vessel Outlet	CLOSED	(12 o'clock)
RC-V-REL-1	RC Purge Throttle	Throttled	
RC-V-REL-2	RC Purge to Waste Tk	Throttled	
RC-V-3	RC Purge Stop	Closed	
RC-V-7	Smpl Bomb Bypass	Closed	
RC-V-8.2	Press Smpl Bomb Outlet	Closed	
RC-V-9	Expansion Vessel Inlet	Closed	
RC-V-17	Glove Box Grab Sample	Closed	
RC-V-2	RC Purge to Waste Stop	Closed	
RC-V-18	RC Purge/Backflush	PURGE	(6 o'clock)
RC-V-22	RC Purge Waste/CAP	WASTE	(6 o'clock)
RC-V-6.2	Rem Smpl Bomb Outlet	Closed	
RC-V-5.2	Rem Smpl Bomb Outlet Iso	Closed	
RC-V-19	Undiluted Liq Smpl	BYPASS	(12 o'clock)
RC-DV-1	Diluted Liquid Sample	BYPASS	(3 o'clock)
RC-V-1.1	RHR Smpl Iso	Closed	

Date: JAN 1 5 2002 CONTINUOUS USE

Page 3 of 5

<u>Note</u>

 \overline{Valves} are listed as they appear on the panel, beginning in the top left hand corner working left to right and top to bottom.

LIQUID SAMPLE PANEL (contin	nued)	
RC-V-1.2	RCHL/Pzr Smpl Iso	Closed
RC-V-1.3	(Spare)	Closed
RC-V-1.4	(Spare)	Closed
RC-V-1.5	VCT Gas Sp Smpl Iso	Closed
RC-V-21	Dilution H_2O to Diluted Sample	Closed
RC-V-8.1	Press Smpl Bomb Inlet	Closed
RC-V-16	Argon Gas Strip Purge	Closed
RC-V-4	DI Water Flush Iso	Closed
RC-V-6.1	Rem Smpl Bomb Inlet	Closed
RC-V-5.1	Rem Smpl Bomb Inlet Iso	Closed

LIQUID SAMPLE PANEL (Demin Section)

DM-V-1.1	CVCS M/B Inlet	Closed
DM-V-1.2	CVCS M/B Outlet	Closed
DM-V-1.3	(Spare)	Closed
DM-V-3	DI Water Flush	Closed
RW-V-6	Radwaste	Closed
DM-V-2.1	CVCS Demin Inlet Smpl	Closed
DM-V-2.2	CVCS Demin Outlet Smpl	Closed
DM-V-2.3	(Spare)	Closed

Page 4 of 5

<u>Note</u>

Valves are listed as they appear on the panel, beginning in the top left hand corner working left to right and top to bottom.

CHEMICAL ANALYTICAL PANEL

V-10	Inst Air Supply	. Open	
V-12	Nitrogen Supply	. Open	
V-14	Argon Supply to GC	Open	
V-13	IC Inject Port	Closed	(3 o'clock)
V-7	O ₂ Analyzer Select	YSI	(6 o'clock)
V-8	O ₂ Loop Outlet	Open	
V-6	O ₂ Loop Select	O ₂ - Cal	(6 o'clock)
V-5	IC Loop Select	Closed	(6 o'clock)
V-2	IC Smpl Outlet	Open	
V-1	GC Smpl Inlet	Open	
V-27	pH Cal Tk 1 N ₂ Supply	VENT	(6 o'clock)
V-28	pH Cal Tk 2 N_2 Supply	VENT	(6 o'clock)
V-29	Cal-3 N ₂ Supply	VENT	(6 o'clock)
V-11	DI Water Supply	Closed	
V-24	O ₂ Cal Tk Fill	Closed	-
V-17	O ₂ Cal Tk Recirc	Closed	-
V-9	O2 Anal Cal Supply	Closed	
V-26	pH Cal Tk 1 Supply	Closed	
V-16	pH Cal Tk 2 Supply	Closed	
V-15	Cal-3 Supply	Closed	
V-30	pH Cal Tk Select	CAL-1	
V-25	pH Cal Tk 1 Drain	Closed	
V-20	pH Cal Tk 2 Drain	Closed	
V-19	Cal-3 Drain	Closed	
V-18	O2 Cal Tk Drain	Closed	

VALVE LINEUP SHEET

Page 5 of 5

CASP CONTROL PANEL

AV-1/SV-1.2	Smpl Pos #1 Inlet/Outlet	Closed
SV-2.1/SV-2.2	Smpl Pos #2 Inlet/Outlet	Closed
SV-3.1/SV-3.2	Smpl Pos #3 Inlet/Outlet	Closed
SV-4.1/SV-4.2	Smpl Pos #4 Inlet/Outlet	Closed
SV-5	Smpl Bypass	Closed
SV-10	Air to Eductor	Closed
AV-2	Return to Containment	Closed
SV-6	Eductor Suction Iso	Closed
	(At Sample Acquisition Panel)	
AS110A	Cont Air Smpl A Iso	Closed
AS110B	Cont Air Smpl B Iso	Closed
I.M.C.C. CONTROL	PANEL	-
HS-3	Dilution Water Bite Valve	Off
HS-4	Air/Water Flush Valve	Off
HS-5	Pressurized Reactor Cool. To I.M.C.C.	Off
HS-6	Reactor Cool. Bite Valve	Off
HS-7	Mixing Chamber Flush/Vent Valve	Off
HS-8	Undil. RX. Cool. Smpl Outlet Valve	Off .
HS-9	Undil. RX. Cool. Smpl/Divert Valve	Off
I.M.C.C. CONTROL	PANEL	
HS-10	Mixing Chamber Outlet Valve	Off
HS-11	Dil. RX. Cool. Smpl Outlet Valve	Off
HS-12	Depressurized RX. Cool. to I.M.C.C.	Off
HS-13	Degasifier Outlet/Flush Valve	Off
HS-14	Dil. Wtr. Outlet Valve	Off
HS-15	Air Flush to Mixing Chamber	Off
HS-16	Gas Marinelli Bypass Valve	Off
Main Power Switch		On

Attachment A EPIP-RET-03C Rev. P

Date: JAN 1 5 2002 CONTINUOUS USE

WISCONS		/ICE CORP.	No.	EPIP-RET-03D	Rev. N
Kewaunee Nuclear Power Plant		Title	Containment Air Sampling Analysis Usin CASP		
Emergency	, Plan Implementi	ng Procedure	Date	JAN 1 5 2002	Page 1 of 10
Reviewed By	O. J. fri Chis	rk.	Approv	ved By David	R Scebat
Nuclear	✓ Yes	PORC		Yes SRO Approv	val Of
Safety Related	🗖 No	Required		□ No Changes Re	quired 🗆 No

1.0 Purpose

1.1 This procedure provides instruction for drawing and analyzing containment samples when directed by the Radiological Protection Director (RPD).

2.0 General Notes

- 2.1 This procedure is designated CONTINUOUS USE.
- 2.2 This procedure is to detail the requirements, considerations, and operations of the Containment Air Sample Panel (CASP) during a Post LOCA condition, to obtain a grab sample of Containment air for Gross Gas, Iodine, Hydrogen, and Oxygen analyses.

3.0 Precautions and Limitations

- 3.1 Process an Emergency Radiation Work Permit as needed per EPIP-AD-11, "Emergency Radiation Controls."
- 3.2 Contact the Radiation Protection (HP) Group and obtain the following:
 - Proper personnel dosimetry
 - Proper radiation detection instrumentation
 - Personnel for continuous HP coverage during sampling
 - Remote area monitor readings in area of High Radiation Sample Room (HRSR)
- 3.3 Utilize on-site communications with the RPD as necessary during sampling.
- 3.4 Any sample drawn from the post accident containment atmosphere should be assumed to contain specific activity of the following magnitude:
 - Gas 5.0 Millicuries/cc
 - Iodine 0.2 Millicuries/cc

4.0 Initial Conditions

4.1 The site has declared an Alert, Site Emergency, General Emergency, or the Shift Manager or Emergency Director has implemented the use of this procedure.

n:\nucdoc\procedures\draft\epip\eret03d.doc--Bill Hollingsworth/Christine Simmons-Darryl Holschbach

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03D	Rev. N
	mpling Analysis Using		
Kewaunee Nuclear Power Plant		CASP	
Emanant on Dian Implementing Procedure	Date	JAN 1 5 2002	Page 2 of 10
Kewaunee Nuclear Power Plant	Title Date	CASP JAN 1 5 2002	Page 2 of 10

5.0 Procedure

- 5.1 Obtain all necessary equipment prior to beginning to sample the Containment atmosphere. This equipment includes:
 - Operable CASP System with Inline Sample Chamber (ISC) Cart in Sample Station #1
 - 5.0 microliter gas syringe (2)
 - 1.0 cc gas syringe or equivalent (2)
 - 2.0 cc gas syringe or equivalent (1)
 - An iodine cartridge holder (1)
 - Silver Zeolite Cartridge (1)
 - Several small rubber stoppers (3 to 5)
 - Portable shields for transporting syringes
 - Marinelli beaker (give to HP to be counted prior to sample injection)
 - Specially adapted 1 liter poly-bottle (for Gross Gas analysis)
- 5.2 <u>WHEN</u> preparing for CASP operation, <u>THEN</u> perform the following:
 - 5.2.1 Proceed to HRSR per HP/RPD recommendations.
 - 5.2.2 Determine radiation levels in HRSR and in maintenance area behind panels, if access is required.
 - 5.2.3 Verify that heat tracing is ON.
 - 5.2.4 Verify ventilation is ON and in NORMAL position and high vacuum lights indicate NORMAL for the Liquid Sample Panel (LSP), Chemical Analysis Panel (CAP), and CASP.
 - 5.2.5 Verify that instrument air supply is available at \geq 70 psi.
 - 5.2.6 Verify that CASP and CASP control panels are energized and operational.
 - 5.2.7 Verify valve lineup per Attachment A, "Containment Air Sample Valve Lineup Sheet."

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03D	Rev. N
Kewaunee Nuclear Power Plant	Title	Containment Air Sam CASP	pling Analysis Using
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 3 of 10

The sample cart may be checked to verify it is properly locked in place by carefully pulling.

5.2.8 Verify the ISC in the #1 position is locked in place.

<u>Note</u>

Only Sample Station 1 shall be used for Iodine Analysis.

Due to ALARA considerations, if available, both containment air sample trains should be aligned.

- 5.2.9 Contact the Control Room and verify Dome Fans 1A and 1B are operational.
- 5.2.10 Request Operations perform the following valve lineup at the Post-LOCA Hydrogen Control Panel:
 - Open LOCA 2A.
 - Open LOCA 10A.
 - Open SA 7003A.
 - Position LOCA 2B (Local/Remote) to LOCAL.
 - Position SA 7003B (Local/Remote) to LOCAL.
 - Open LOCA 2B.
 - Open LOCA 10B.
 - Open SA 7003B.
- 5.2.11 Verify that one of the following conditions are in effect <u>AND</u> select a Sample Loop (A or B):
 - a. The hydrogen monitor is <u>NOT</u> in operation, <u>OR</u>
 - b. The sample loop selected is opposite that being used by H_2 monitor.
- 5.2.12 WHEN using Containment Air Sample Train 1A, THEN open AS110A.
- 5.2.13 WHEN using Containment Air Sample Train 1B, THEN open AS110B.
- 5.2.14 Open SV-10.
- 5.2.15 Open SV-6.
- 5.2.16 Open SV-5.

5.2.17 Verify flow monitor on CASP is indicating flow.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03D	Rev. N	
Kewaunee Nuclear Power Plant	Title	Containment Air Sampling Analysis Using CASP		
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 4 of 10	

- 5.2.18 Wait at least 2 minutes.
- 5.2.19 Open AV-1/SV 1.2.
- 5.2.20 Close SV-5.
- 5.2.21 Open AV-2.
- 5.2.22 Wait at least 3 minutes.
- 5.2.23 Align the ISC Cart as follows:
 - 5.2.23.1 Open V-4, Cart Inlet Valve.
 - 5.2.23.2 Open V-6, Outlet Valve.
 - 5.2.23.3 Close V-5, Bypass Valve.
 - 5.2.23.4 Verify CASP flow monitor is indicating flow.
- 5.3 <u>WHEN</u> collecting a Containment Air sample, <u>THEN</u> perform the following:
 - 5.3.1 Close SV-6.
 - 5.3.2 Verify flow monitor on CASP indicates NO flow.

An appropriate period for flow monitor pressure equalization is one minute.

- 5.3.3 Allow the flow monitor to equalize pressure for at least 1 minute.
- 5.3.4 <u>WHEN</u> pressure equalization period is complete, <u>THEN</u> obtain Containment atmosphere samples as follows:
 - 5.3.4.1 Draw the following samples from the ISC.
 - a. Two 5 microliter samples
 - b. <u>IF</u> using the Baseline 1010A Gas Chromatograph, <u>THEN</u> obtain 2 1.0 cc syringe samples.
 - c. <u>IF</u> using the SRI 8610 Gas Chromatograph, <u>THEN</u> obtain 1 2.0 cc syringe sample.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03D	Rev. N
Kewaunee Nuclear Power Plant	Title	Title Containment Air Sampling Analysis U CASP	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 5 of 10

- 5.3.4.2 <u>IF</u> the radiological condition of the syringes are <u>NOT</u> satisfactory, <u>THEN</u> perform the following:
 - 5.3.4.2.1 Lock the tips.
 - 5.3.4.2.2 Insert the needle of each syringe in a rubber stopper to prevent damage.
 - 5.3.4.2.3 Place the syringes in a portable shield for transport.
- 5.3.5 Use the predetermined route to minimize personnel exposure while transporting the shielded syringes or samples for analysis.
- 5.4 WHEN shutting down and cleaning out the system, <u>THEN</u> perform the following:
 - 5.4.1 Close AS110A <u>OR</u> AS110B, as appropriate.
 - 5.4.2 Open SV-6 and evacuate the ISC cart.
 - 5.4.3 Wait at least 2 minutes.
 - 5.4.4 Close V-4, Cart Inlet Valve.
 - 5.4.5 Close V-6, Outlet Valve.
 - 5.4.6 Open V-5, Bypass Valve.
 - 5.4.7 Open AS110A <u>OR</u> AS110B, as appropriate.
 - 5.4.8 Close AV-2.
 - 5.4.9 Verify flow monitor has flow.
 - 5.4.10 Wait at least 2 minutes.
 - 5.4.11 Open SV-5.
 - 5.4.12 Close AV-1/SV1.2.
 - 5.4.13 Verify flow monitor has flow.
 - 5.4.14 Wait at least 1 minute.
 - 5.4.15 Close SV-10.
 - 5.4.16 Close SV-6.
 - 5.4.17 Close SV-5.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03D	Rev. N
Kewaunee Nuclear Power Plant	Title	Containment Air Sampling Analysis Usin CASP	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 6 of 10

- 5.4.18 Close AS110A OR AS110B, as appropriate.
- 5.4.19 Reset "Active/Inactive" indicator lights to INACTIVE.
- 5.5 <u>WHEN</u> analyzing a sample for Iodine, <u>THEN</u> perform the following:
 - 5.5.1 Place a Silver Zeolite sample cartridge in a holder.
 - 5.5.2 Attach a hose from the holder to a vacuum source in the HRSR Fume Hood.
 - 5.5.3 Establish air flow through the filter cartridge.
 - 5.5.4 Inject a 5.0 microliter gas sample upstream of the filter cartridge allowing the gas to flow through the Silver Zeolite cartridge.
 - 5.5.5 Remove the Silver Zeolite cartridge from its holder and monitor it for radiation.
 - 5.5.6 Transfer the Silver Zeolite cartridge to the Radiation Protection Group for counting.

Point Beach Nuclear Plant uses an identical geometry as Kewaunee for counting iodine samples.

5.5.7 IF the Count Room is <u>NOT</u> accessible <u>OR</u> the Multi-Channel Analyzer (MCA) is <u>NOT</u> operable, <u>THEN</u> the cartridge may be sent to Point Beach Nuclear Plant for analysis.

<u>Note</u>

Further dilution may be necessary for counting.

- 5.6 <u>WHEN</u> analyzing a sample for Gross Gas activity, <u>THEN</u> perform the following:
 - 5.6.1 <u>WHEN</u> the Count Room is habitable <u>AND</u> the MCA is operable, <u>THEN</u> perform the following:
 - 5.6.1.1 Inject a 5 microliter gas sample into a marinelli beaker that has been cleared for use by the Radiation Protection Group.
 - 5.6.1.2 Return the sample to the Radiation Protection Group for counting.
 - 5.6.2 IF the Count Room is <u>NOT</u> habitable <u>OR</u> the MCA is <u>NOT</u> operable, <u>THEN</u> perform the following:
 - 5.6.2.1 Inject a 5 microliter gas sample into the specially adapted 1.0 liter poly bottle.
 - 5.6.2.2 Request Radiation Protection Group transfer the sample container to Point Beach Nuclear Plant for Gross Gas activity determination.

MISCONSIN PUPUC SERVICE CORP	No	EPIP-RET-03D	Rev. N
Kewaunee Nuclear Power Plant	Title	Containment Air Sampling Analysis Usi CASP	
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 7 of 10

- 5.7 <u>WHEN</u> analyzing a sample for Hydrogen and Oxygen, <u>THEN</u> perform the following:
 - 5.7.1 Based on the gas chromatograph to be used, refer to the appropriate chemistry procedure for operating instructions as follows:

•	Poseline 10104 Gas	RCC-080, "Gas Chromatograph, Baseline 1010A Operation Using a Chart Recorder"		
	Chromatograph	RCC-080D, "Operation of the Baseline 1010A Gas Chromatograph Using Computer Software"		
•	SRI 8610 Gas Chromatograph	RCC-080C, "Operation of the SRI 8610 Gas Chromatograph"		

- 5.7.2 Verify that the gas chromatograph is:
 - Turned on
 - Operating properly
 - Correctly calibrated
- 5.7.3 <u>WHEN</u> the gas chromatograph is verified operable, <u>THEN</u> perform the following:
 - 5.7.3.1 <u>WHEN</u> injecting the sample into the Baseline 1010A gas chromatograph, <u>THEN</u> inject the 1.0 cc gas sample into the gas partitioner and await results.
 - 5.7.3.2 <u>WHEN</u> injecting the sample into the SRI 8610 gas chromatograph, <u>THEN</u> inject the 2 cc gas sample into the gas partitioner and await results.
- 5.7.4 Report all results obtained to the RPD.

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03D	Rev. N
Kewaunee Nuclear Power Plant	Title	Containment Air San CASP	npling Analysis Using
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 8 of 10

- 5.8 <u>WHEN</u> the Containment Air sampling lineup is to be secured, <u>THEN</u> request Operations perform the following at the Post-LOCA Hydrogen Control Panel:
 - Close LOCA 2A.
 - Close LOCA 10A.
 - Close SA 7003A.
 - Close LOCA 2B.
 - Close LOCA 10B.
 - Close SA 7003B.
 - Position LOCA 2B (Local/Remote) to REMOTE.
 - Position SA 7003B (Local/Remote) to REMOTE.

6.0 Final Conditions

6.1 This procedure is closed out when the Plant Emergency has been Terminated or Recovery actions have begun and the Emergency Response Manager has suspended the use of EPIPs.

7.0 References

- 7.1 Sentry HRSS Operating and Maintenance Manual
- 7.2 EPIP-AD-11, Emergency Radiation Controls
- 7.3 RCC-080, Gas Chromatograph, Baseline 1010A Operation Using a Chart Recorder
- 7.4 RCC-080C, Operation of the SRI 8610 Gas Chromatograph
- 7.5 RCC-080D, Operation of the Baseline 1010A Gas Chromatograph Using Computer Software
- 7.6 TS 6.11.b.2

1.12

WISCONSIN PUBLIC SERVICE CORP.	No.	EPIP-RET-03D	Rev. N
Kewaunee Nuclear Power Plant	Title	Containment Air Sam CASP	pling Analysis Using
Emergency Plan Implementing Procedure	Date	JAN 1 5 2002	Page 9 of 10

8.0 Records

AND NOT

- 8.1 The following QA records and non-QA records are identified in this directive/procedure and are listed on the KNPP Records Retention Schedule. These records shall be maintained according to the KNPP Records Management Program.
 - 8.1.1 <u>OA Records</u>

None

8.1.2 Non-QA Records

None

CONTAINMENT AIR SAMPLE VALVE LINEUP SHEET

CASP CONTROL PANEL

AV-1 / SV-1.2 Smpl Pos #1 Inlet / Outlet	Close
SV-2.1 / SV-2.2 Smpl Pos #2 Inlet / Outlet	Close
SV-3.1 / SV-3.2 Smpl Pos #3 Inlet / Outlet	Close
SV-4.1 / SV-4.2 Smpl Pos #4 Inlet / Outlet	Close
SV-5 Smpl Bypass	Close
SV-10 Instr. Air to Eductor	Close
AV-2 Return to Containment	Close
SV-6 Eductor Suction Isol	Close

SAMPLE ACQUISITION PANEL

AS110A	Cont Air Smpl A Isol	Close	-
			••
AS110F	3 Cont Air Smpl B Isol	Close	

INLINE SAMPLE CHAMBER (SF1)

V-4	Sample Inlet Valve	Close
V-5	Sample Bypass Valve	Open
V-6	Sample Outlet Valve	Close

Attachment A EPIP-RET-03D Rev. N

AND AND AD

Date: JAN 1 5 2002 CONTINUOUS USE