

W. R. McCollum, Jr. Vice President **Duke Energy**

Oconee Nuclear Station 7800 Rochester Highway Seneca, SC 29672 (864) 885-3107 OFFICE (864) 885-3564 FAX

January 9, 2002

U.S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555

Subject: Oconee Nuclear Station, Unit 3 Docket Nos. 50-287 Licensee Event Report 287/2001-003, Revision 0 Problem Investigation Process Report No. O-01-04220

Gentlemen:

Pursuant to 10 CFR 50.73 Sections (a)(1) and (d), attached is Licensee Event Report 287/2001-003, Revision 0, addressing the discovery of minor reactor pressure vessel head leakage around several control rod drive nozzle penetrations.

This report is being submitted in accordance with 10 CFR 50.73 (a)(2)(i)(B) and (a)(2)(ii)(A). For this event, the overall safety significance of this event was minimal and there was no actual impact on the health and safety of the public.

Very truly yours,

_____/. W. R. McCollum, Jr.

Attachment

IE22

Document Control Desk Date: January 9, 2002 Page 2

2

cc: Mr. Luis A. Reyes Administrator, Region II U.S. Nuclear Regulatory Commission 61 Forsyth Street, S. W., Suite 23T85 Atlanta, GA 30303

> Mr. L. N. Olshan Project Manager U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Washington, D.C. 20555

Mr. M. C. Shannon NRC Senior Resident Inspector Oconee Nuclear Station

INPO (via E-mail)

NRC FCRM 366 U.S. NUCLEAR REGULATORY COMMISSION A (6-1998) LICENSEE EVENT REPORT (LER) th (See reverse for required number of digits/characters for each block) digits/characters for each block) a				APPROVED BY OMB NO. 3150-0104 EXPIRES 06/30/2001 Estimated burden per response to comply with this mandatory information collection request: 50 hrs. Reported lessons learned are incorporated into the licensing process and fed back to industry. Forward comments regarding burden estimate to the Records Management Branch (T-6 F33), U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001, and to the Paperwork Reduction Project (3150-0104), Office of Management and Budget, Washington, DC 20503. If an information collection does not display a currently valid OMB control number, the NRC may not conduct or sponsor, and a person is not required to respond to, the information collection.												
FACILITY NAME	(1)								DOCKET NUMBER (2)					PAGE (3)		
Oconee N	luci	ear St	ation, Un	it 3					050	000	- 287			1 OF 8		
Minor R Primarv	TITLE (4) Minor Reactor Pressure Vessel Head Leakage From Several Control Rod Drive Nozzle Penetrations Due to Primary Water Stress Corrosion Cracking															
EVENT	DATE	(5)	LEF	NUMBER (6)	REPO	RT DAT	E (7)			0	THER FACILIT	IES INYO	DLVED (8	3)	
		VEAR	YEAR		REVISION	MONTH	DAY	YFAR	FACI	FACILITY NAME DOCKET N		FACILITY NAME DOCH		DOCKET NU	IMBER	
				000	0.0				FACI	LITY N	IAME			DOCKET NL	IMBER	
	12	01	2001 -	003 -	00	01	09	02								
OPERATIN	IG	_	THIS REPO	RT IS SUBN	ITTED PL	JRSUANT	TO THE	REQU	IREN	<u>AENT</u>	'S OF 10	CFR §: (Cheo	ck one o	<u>r more)</u>	(11)	
MODE (9	<u>) [</u>	_5	20.2201	(b)		20.2203	(a)(2)(v)		X 50.73(a)(2)(i)(B)			50.73	8(a)(2)(viii)			
POWER			20.2203	(a)(1)		20.2203	(a)(3)(l)			X	50.73(a)	(2)(ii)		50.73	50.73(a)(2)(x)	
LEVEL (10	0)	0%	20.2203	(a)(2)(i)		20.2203	<u>(a)(3)(ii)</u>				50.73(a)	(2)(iii)		73.71	71	
	. P		20.2203	(a)(2)(ii)		20.2203	(a)(4)				50.73(a)	(2)(iv)			٦	
		经投资	20.2203	(a)(2)(iii)		50.36(c)	(1)				50.73(a)	(2)(v)		Specify in /	Abstract below or	
	98 ×3-57	1999	20.2203	(a)(2)(iv)		50.36(c)	(2)				50.73(a)	(2)(vii)				
NAME					LICEN	SEE CON	TACT FO	OR THIS	S LEF	R (12		INPED /Include Are	a Cada)			
NAME													a coue)			
L.E. Nicho	olsor	n. Rea	ulatorv Co	mpliance	Manad	per				ĺ		(864)	885-3	292		
		<u>, </u>	COMPLETE		FOR EAC		DNENT F	AILURI	E DE	SCR	BED IN	THIS REPORT	(13)			
				T	Ī					Γ			<u> </u>			
CAUSE	SY	STEM	COMPONENT	MANUFACT	JRER RE	PORTABLE		CAU	SE	s	YSTEM	COMPONENT	MANUFA	CTURER	REPORTABLE TO EPIX	
B6a	R	cs	NZL	B&W	,	Y										
	L	<u> </u>		L BEPORT	EXPECTE	D (14)	Gar 12 8 1972 34	l	· · · · ·			L	MONTH		YEAR	
YES (If yes, c	comple	ete EXPI	ECTED SUB	MISSION DA	TE).		X NO)			EXP SUBN DAT	ECTED MISSION TE (15)				

ABSTRACT (Limit to 1400 spaces, i.e., approximately 15 single-spaced typewritten lines) (16)

On November 12, 2001, a visual inspection of the top surface of the Oconee Nuclear Station Unit 3 Reactor Vessel (RV) head found evidence of small accumulations of boric acid deposited at the base of several control rod drive mechanism (CRDM) nozzles. This RV head inspection was performed as part of a planned surveillance activity during the end-of-cycle 19 refueling outage.

Following this visual inspection, nondestructive examination of the suspect nozzles revealed that seven (Nos. 2, 10, 26, 31, 39, 49, and 51) of the sixty-nine total nozzles required repair. Five of the seven repaired nozzles were confirmed to have a leakage pathway to the top of the RV head. The amount of boric acid around the five leaking nozzles was estimated to be no more than a few cubic inches. After confirming that the Reactor Coolant System pressure boundary had been degraded during power operations, an 8-hour notification was made at 0335 hours on November 12, 2001 in accordance with 10CFR50.72(b)(3)(ii)(A) reporting requirements.

The apparent root cause of the CRDM Nozzle leaks is primary water stress corrosion cracking. The seven CRDMs were repaired and the remaining 43 nozzles that [historically] had neither been previously examined nor repaired were inspected using an ultrasonic circumferential blade probe prior to exiting the refueling outage. This event is considered to have minimal safety significance with respect to the health and safety of the public.

NRC FC	RM 366A	U.S. NUCLEAR REGULATORY COMMISSION							
(0.000)	LICENSE TE	E EVENT REPORT (LER) XT CONTINUATION							
	······	FACILITY NAME (1)	DOCKET (2)		LER NUMBER	(6)	P	AGE (3)
				YEAR SEQUENTIAL REVISION NUMBER NUMBER					
Ocone	e Nuclear \$	Station, Unit 3	05000-287	2001	003	00	2	OF	8
TEXT (If more space	is required, use additional copies of NRC	Form 366A) (17	')					
	EVALUATI	ON:							
	BACKGRO	UND							
	There are 6 the Reacto are welded nozzles are nozzle exte The Alloy 6 requirement Summer 19 for the Oco Products D	39 Control Rod Drive Mechanism (CRD Vessel (RV) [EIIS:RCT] head. The Cl to the RV head at various radial location constructed from 4-inch outside diame inds about 6-inches below the inside of 00 used in the fabrication of CRDM not its of Specification SB-167, Section II to 267 of the ASME B&PV Code. The pro nee Nuclear Station Unit 3 CRDM nozz ivision.	M) [EIIS:AA] no RDM nozzles a ons from the ce eter (OD) Alloy the RV head. zzles was proce the 1965 Editi duct form is tub zles was the Ba	ozzles (re appr nterline 600 ma ured in ion incl bing an bcock	EIIS:NZL] th roximately 5- e of the RV h aterial. The accordance uding Adden d the materia and Wilcox (nat penetra feet long nead. The lower end with the nda throug al manufa (B&W) Tul	ate and of th cture bula	ne er r	
	Each nozzle was machined to final dimensions to assure a match between the RV head bore and the OD of each nozzle. The nozzles were shrunk fit by cooling to at least minus 140 degrees F, inserted into the closure head penetration and then allowed to warm to room temperature (70 degrees F minimum). The CRDM nozzles were tack welded and then permanently welded to the closure head using 182-weld metal. The manual shielded metal arc welding process was used for both the tack weld and the J-groove weld. During weld buildup, the weld was ground, and dye penetrant test (PT) inspected at each 9/32 inch of the weld. The final weld surface was ground and PT inspected.								
	The weld p buttering th the final ins	rep for installation of each nozzle in the e J-groove with 182-weld metal. The F stallation of the nozzles.	e RV head was RV head was si	accom ubsequ	plished by m ently stress	nachining relieved p	and rior	to	
	EVENT DE	SCRIPTION							

Unit 3 entered the scheduled end-of-cycle (EOC) 19 refueling outage on November 10, 2001. A visual inspection of the Unit 3 reactor vessel head was performed November 12, 2001 to identify any indications of leakage from the CRDM nozzle penetrations. A qualified visual inspection was performed through the nine access ports in the service structure support skirt of the reactor vessel head. The general cleanliness condition of the head was such that probable leak locations would be readily identified.

As a result of this inspection, four CRDM nozzle penetrations (Nos. 26, 39, 49 & 51) were identified with a high probability of leakage through the pressure boundary, either through the attachment weld or the nozzle wall. Additionally, three other nozzles (Nos. 2, 10 & 46) had boron crystal accumulation that could have been caused by, or masked, any minor leakage present. All seven nozzles were identified as requiring further inspections as specified by Duke's response to NRC Bulletin 2001-01. After confirming that the Reactor Coolant System (EIIS:AB) pressure boundary

NRC FCRM 366A U.S. NUCLEAR REGULATORY COMMISSION							
LICENSEE EVENT REPORT (LER) TEXT CONTINUATION							
FACILITY NAME (1)	DOCKET (2)		LER NUMBER	(6)	P.	AGE (3	3)
		YEAR	SEQUENTIAL NUMBER	REVISION NUMBER			
Oconee Nuclear Station, Unit 3	05000-287	2001	003	00	3	OF	8
TEXT (If more space is required, use additional copies of NRC	Form 366A) (17	7)			<u></u>	<u> </u>	
had been degraded during power operations, an 8 November 12, 2001 in accordance with 10CFR50	8-hour notificati 9.72(b)(3)(ii)(A)	on was reportir	made at 03 ng requireme	35 hours (ents.	on		
 Ultrasonic test (UT) inspections of the inside damusing the Framatome ANP "Top-Down Tool." Not being identified as having a high probability of lea 46 due to masking; and Nozzles 29 and 31 for exta allow access for repair equipment). Ultrasonic Tetransducers looking in both the axial and circumfe straight beam transducer. Nozzles 29 and 46 had all had indications that extended from below the waddition to various other ID and OD indications. Nozzle above the J-groove weld. Nozzles 10 and below the weld and extending slightly into the well From the underside of the reactor vessel head, a 31 and 46, including the fillet weld cap and partial results for nozzles 10 and 31 showed small nozzle at the weld to nozzle wall interface. No PT indications 	leter (ID) of him zzles 26, 39, 49 kage by the vis tent of condition est (UT) scans verential direction d no UT indicativeld to above the Nozzle 2 had a 31 contained s d but showed n dye-penetrant to penetration J-g e OD flaws that	e CHDI 9, & 51 aual insp n (their were pe ns along ions. N ne weld circumf ceveral bo leak test (PT groove tran up d for N	were UT inspection; Noz CRDMs were orformed using with one zeto ozzles 2, 26 indicating a erential indic OD indication path. inspection weld, was per to the J-gro ozzle 46.	of Nozzle over weld	e to and d to ry of e and 5 in he d es 10, PT regio	u i1 in	
A conservative decision was made to repair Nozz of leakage from visual or UT inspections. This de indications on the OD nozzle surface and the com inspections that showed that these types of active leakage pathway. Nozzle 29 was not repaired sin and there were no indications recorded using the since visual, UT and PT inspections showed no re UT inspection techniques in identifying and chara volume, Eddy Current Test (ECT) inspections wer suspected leaking nozzles. This decision was als determined that ECT would have significantly incr Consequently, repairs made to nozzles were base	les 10 and 31 a cision was prim parison of this PWSCC flaws top-down UT to ejectable indica cterizing leakag re not performe to based on AL reased the radia	although harily ba data to could of could of cof	a there were ased on the previous OI eventually re ation of leaka zzle 46 was Due to impro- s along the r by of the leal onsiderations bese to inspection	no indica small axia NS nozzle esult in a age on the not repain ovements nozzle OE king or s since it w to person n results.	tions I e hea red in the was onnel	id Ə	
Nozzles 2, 10, 26, 31, 39, 49 and 51 were repaire CRDM nozzle repairs performed in May 2001 (ref the nozzles and a length about 5 inches into the F new pressure boundary weld was installed within a water jet peening process.	d utilizing a sin LER 270/200 V Head bore v the bore, inspe	nilar pro 1-002). vere rer octed ar	ocess used fo The protruc noved by ma nd surface co	or the ON ling portio achining. onditioned	S-2 ons of A I with	:	
As a result of the circumferential flaw found on No performed that utilized Framatome-ANP's ARAMI head" system designed to deliver an UT blade pro remaining nozzles that [historically] had neither be inspected. Circumferential blade probes were use the top of the J-groove weld to one inch below the nozzles were inspected with 100 percent of the co	ozzle 2, an exte S equipment. A obe. The scope een previously ed to inspect th e bottom of the overage area be	ended so ARAMIS of the repaired e nozzl J-groov eing exa	cope inspect S is a remote inspection in d or volumet e area from re weld. Thi amined. The	tion was e "under th nvolved th rically one inch rty-six of t ere were s	he ne 43 abov the sever	e	

NRC FORM 366A (6-1998)	U.S. NUCLEAR REGULATORY COMMISSION							
	E EVENT REPORT (LER)							
16,	XT CONTINUATION							
	FACILITY NAME (1)	DOCKET (2)		LER NUMBER	(6)	PAGE (3		3)
			YEAR	SEQUENTIAL NUMBER	REVISION NUMBER			
Oconee Nuclear S	Station, Unit 3	05000-287	2001	003	00	4	OF	8
TEXT (If more space	is required, use additional copies of NRC	Form 366A) (17	7)					•

nozzles where 100 percent inspection of the coverage area could not be achieved due to limited access inside the nozzle annulus (between the CRDM nozzle ID and the leadscrew support tube of the CRD mechanism itself). Approximate percentages of the coverage area inspected for these nozzles were:

Nozzle 62	82%
Nozzle 45	94%
Nozzle 69	75%
Nozzle 60	76%
Nozzle 42	94%
Nozzle 66	89%
Nozzle 48	99%

Overall results revealed no indication within the nozzle material for the 43 nozzles inspected. This nondestructive examination (NDE) was performed as added assurance that there were no existing circumferential flaws that could potentially pose a safety risk during the upcoming operating cycle.

Technical Specification Limiting Condition for Operation 3.4.13(a) limits RCS operational leakage to "No pressure boundary leakage" while in MODES 1 through 4. This event also represents a degradation of one of the plant's principal safety barriers (Reactor Coolant System). Consequently, this event is being reported pursuant to 10CFR50.73(a)(2)(i)(B) and 10CFR50.73(a)(2)(ii)(A) reporting requirements.

No operator intervention was required as a result of this event. Prior to the discovery of this event, Unit 3 was in cold shutdown (Mode 5) at 0 percent power and Units 1 and 2 were in Mode 1 operating at approximately 100 percent power.

CAUSAL FACTORS

The apparent root cause of the indications found in seven Alloy 600 CRDM nozzles is Primary Water Stress Corrosion Cracking (PWSCC).

General cause of event discussion:

Alloy 600 is used extensively in nozzle applications in Reactor Vessel, Pressurizer [EIIS:PZR], hot and cold leg piping, and Steam Generator (EIIS:SG) tubing. It is recognized that small-bore nozzles have succumbed to numerous cracking incidents and the industry has evaluated and documented the results of many failure analyses. The conclusion resulting from this work is that the failure mechanism is a form of stress corrosion cracking referred to as PWSCC.

PWSCC can initiate on Alloy 600 surfaces exposed to primary water at high temperatures that have high residual stresses due to welding. Cold working of the surface by machining, grinding or reaming operations prior to welding may result in higher residual stress.

NRC FCRM 366A U.S. NUCLEAR REGULATORY COMMISSION						
LICENSEE EVENT REPORT (LER) TEXT CONTINUATION						
FACILITY NAME (1)	DOCKET (2)		LER NUMBER ((6)	<u> </u>	AGE (3)
		YEAR	SEQUENTIAL NUMBER	REVISION NUMBER		
Oconee Nuclear Station, Unit 3	05000-287	2001	003	00	5	OF 8
TEXT (If more space is required, use additional copies of NRC	Form 366A) (17	7)				
It is well established that PWSCC can occur in ma	aterials provided	d that th	ree conditio	ns are pr	esent	•
1) susceptible material,						
2) high tensile stress, and						
3) an aggressive environment.						
penetration weld possesses these characteristics 600 nozzles and Pressurizer heater sleeves have Generally, these components are exposed to 600 water, as were these CRDM nozzles.	experienced le degree F or hig	cations, aks attr gher ten	numerous s ibuted to PV nperatures a	small-bore VSCC. and prima	∍ Allo <u>y</u> .ry	у
Specific discussion regarding the apparent cause	of event report	ed in th	is LER:			
For this event, the apparent root cause of PWSC	C is substantiate	ed base	d on,			
 Comparison of the current NDE data with ON ONS-1, -2, and –3 root cause evaluations. 	S CRDM inspec	tions a	s documente	ed in prev	ious	
 Correlation of the current crack location and c (FEA) documented in the events referenced a 	rientation with p bove, and	previous	s Finite Elem	nent Anal <u>y</u>	yses	
 The recent history of CRDM cracking found in and other Pressurized Water Reactors. 	Alloy 600 weld	metal a	attributed to	PWSCC	at ON	IS
The investigation into the ONS-3 RV head leakag conclusions documented during the ONS-3 and C supporting points from this most recent ONS-3 or	e revealed infor DNS-2 RV Head Itage include:	rmation I repairs	that continu in early 200	ed to sup 01. Six	port	
1. Although both ID and OD cracks were observ	ed, most of the	cracks	appeared or	the nozz	zle O[Э.
2. Minor circumferential cracking above the structure	stural J-groove	weld wa	is found (No	zzle 2).		
3. The single circumferential flaw above the wel	nozzle had ad	jacent a	axial cracking	g.		
4. Axial cracking was present without adjacent c	ircumferential fl	aws.				
5. The current nozzles had fewer, smaller and sl	nallower flaws th	han ear	lier ONS-3 r	nozzles.		
The volume of nozzle leakage is small for the is still the best means to determine leakage.	se leaks and a v	visual in	spection of	a clean R	V hea	ad
NDE (primarily UT) revealed that the leak paths w (including the effects of welding residual stresses stresses. The crack geometry is consistent with t cracks in the axial orientation) is higher than the a high stress locations. Crack growth into the nozz that high hoop stresses extend through the weld r oriented cracks are consistent with FEA results, a The single circumferential CRDM nozzle flaw was	vere within the n and operating of he analysis that exial stress (that le wall is also con naterial and into nd with a root co OD initiated.	nozzle w conditio t shows t drives onsister o the no cause de	vall region w ns) predict h the hoop st cracks circu nt with analy ozzle wall. T etermination	here FEA high hoop ress (that imferentia sis predic he mostly of PWSC	drive ally) a stions y axia CC.	es t illy

NRC FCRM	366A U.S. NUCLEAR REGULATORY COMMISSION	<u></u>			<u>. </u>				
l	LICENSEE EVENT REPORT (LER) TEXT CONTINUATION								
	FACILITY NAME (1)	DOCKET (2)		LER NUMBER ((6)	Р	AGE (3)	
			YEAR	SEQUENTIAL NUMBER	REVISION NUMBER				
Oconee	Nuclear Station, Unit 3	05000-287	2001	003	00	6	OF	8	
TEXT (If r	nore space is required, use additional copies of NRC	Form 366A) (17	")						
TI LI in ac te	he current ONS-3 failure modes are consistent w ER 287/2001-001) and the 2001 ONS-2 cracking spections identified other indications in the weld cceptable pre-existing indications in the J-groove chnological advances in UT NDE.	vith the previous (ref. LER 270/ material. Thes weld that were	s 2001 (2001-0) se indica e first id	ONS-3 CRD 02). The init ations were of entified due	M crackir tial UT determine to recent	ng (re	əf. be		
С	ORRECTIVE ACTIONS								
<u>In</u>	nmediate:								
A ne	n assessment team was assembled to investigat ecessary corrective actions, and past/future unit	e the event inc operational imp	luding a bacts.	ipparent cau	ıse(s),				
<u>S</u>	ubsequent:								
1.	Seven CRDM nozzles were repaired (5 nozzle revealed suspect indications).	s had leaked a	nd 2 ha	d not leaked	l but NDE				
2.	The remaining CRDMs that were [historically] UT inspected prior to unit restart.	neither repaired	d nor vo	lumetrically	inspected	l wei	e		
3.	An operability assessment was performed white initiate and propagate during the upcoming por safety issue.	ch concluded tl wer production	nat CRE cycle d	0M nozzle ci id not pose a	racks that a significa	cou Int	ld		
<u>P</u>	lanned:								
TI sp re ou ur re	The PWSCC of Alloy 600 and Alloy 182 weld materials does not easily lend itself to identifying specific corrective actions to prevent recurrence. In the short term and as committed in Duke's response to NRC Bulletin 2001-01, CRDM inspections will be performed during future refueling outages. This management action plan will be in-effect until the RV heads are replaced on all three units. The current long-term solution for the elimination of the CRDM nozzle PWSCC issue is to replace the RV Heads presently scheduled to begin in 2003.								
TI th ot C	These short and long-term corrective action commitments have previously been furnished to the NRC and there are no new commitments being made in this report. These as well as other pertinent corrective actions are addressed and being managed via the Oconee Corrective Action Program.								
S	AFETY ANALYSIS								
A	ctual Safety Consequences								

There were no actual safety consequences as a result of this event. The leakage of primary reactor coolant through the CRDM nozzles was so minimal that it was detectable only by the extremely

NRC FCRM 366A	U.S. NUCLEAR REGULATORY COMMISSION							
	EE EVENT REPORT (LER) EXT CONTINUATION							
	FACILITY NAME (1)	DOCKET (2)	1	LER NUMBER	(6)	P	AGE (3)
			YEAR	SEQUENTIAL NUMBER	REVISION NUMBER			
Oconee Nuclear	Station, Unit 3	05000-287	2001	003	00	7	OF	8
TEXT //f more spa	ce is required, use additional copies of NBC	Eorm 3664) (1	7)		· · · · ·			

(If more space is required, use additional copies of NHC Form 366A) (17)

small accumulation of boric acid crystals observed on the RV head. The total leakage from the CRDM nozzles did not exceed Technical Specification limits for unidentified RCS inventory loss. At no time during cycle operation did the reactor building or area radiation alarms actuate as a result of this event. The small amounts of boric acid crystal deposits observed around the CRDM Nozzles had caused no detectable corrosion to the vessel head.

Potential Safety Consequences

Worst case scenario for this event was a rod ejection accident. However, for this accident to occur, extensive circumferential cracking above the CRDM nozzle weld would be necessary. As evidenced from NDT results from the 7 repaired and 43 inspected nozzles, only one nozzle (No. 2) exhibited circumferential cracking, but this crack had not progressed to a point where it would pose a safety concern.

Framatome-ANP previously performed an analysis assuming an above the weld circumferential flaws was through wall and extended 180° around. This analysis showed there was sufficient margin (with a safety factor of 3) to preclude gross net-section failure. The fact that visual inspection of the top of the RV head identified a nozzle containing a circumferential flaw supports the latest revision of Framatome-ANP's Safety Evaluation, which asserts that nozzles will be identified by leakage before circumferential flaws become a safety issue. The basis for this conclusion is the fact that an axial through-wall or through-weld flaw is required before the circumferential flaw can initiate and begin to grow.

Inspection of the leaking nozzles revealed that the PWSCC cracks responsible for the leaks were predominately axial in orientation. The cracking into the housing material was consistent with the results of elastic-plastic finite-element stress analysis of the CRDM housings that include modeling of both welding residual and operating stresses. Previous evaluation results from ONS 1, 2 and 3 CRDM nozzle and ONS 1 thermocouple nozzle leak events demonstrated that leak rates from cracks within the weld/housing regions of nozzles are low and that axial cracks extending beyond the weld and housing regions will leak (be detected by visual examination and leak-before-break) before there is a risk of failure. Leakage from cracked weld/housing material is predicted to result in boric acid corrosion rates sufficiently low that the leakage could continue for a period of time without affecting the structural integrity of the RPV head.

The degraded condition of RCS pressure boundary did not represent a challenge to the nuclear safety of the plant or jeopardize the health and safety of the public. As predicted by stress analysis and the fact that PWSCC does not occur or propagate into carbon steel material, the cracks did not extend into the reactor vessel head's low alloy steel but rather grew in the Alloy 600 or Alloy 182 material until they resulted in observable leaks that were detected during a planned refueling surveillance walkdown.

For this event, the majority of the nozzle cracks were located in the base metal and were axially oriented. Prior to restart of the unit, all nozzles that showed evidence of leakage were repaired and all non-repaired nozzles were inspected and no above the weld circumferential cracks were found. Based on this information, there were reasonable assurances that there were no nozzle circumferential cracks at unit startup. For the upcoming cycle, if a CRDM axial crack were to

NRC FGRM 366A (6-1998)	U.S. NUCLEAR REGULATORY COMMISSION							
	EE EVENT REPORT (LER) EXT CONTINUATION							
	FACILITY NAME (1)	DOCKET (2)		LER NUMBER	(6)	P	PAGE (
			YEAR	SEQUENTIAL NUMBER	REVISION NUMBER			
Oconee Nuclear	Station, Unit 3	05000-287	2001	003	00	8	OF	8
TEXT (If more space	ce is required, use additional copies of NRC	Form 366A) (1	7)					

develop into a circumferential crack, there are also reasonable assurances that these cracks would not grow at a rate that could pose a safety concern prior to replacing the RV head at the next scheduled refueling outage.

ADDITIONAL INFORMATION

This event did not include a Safety System Functional Failure nor involve a personnel error. There were no releases of radioactive materials, radiation exposures in excess of limits or personnel injuries associated with this event.

This event is considered reportable under the Equipment Performance and Information Exchange (EPIX) program.

SIMILAR EVENTS

Within the last year, LER 269/2001-006-01 reported RCS pressure boundary leakage due to PWSCC failure of several thermocouple and one CRDM (No. 21) RV head penetrations. In addition, LERs 287/2001-001-00 and 270/2001-002 reported similar CRDM nozzle leakage events at ONS Units 3 and 2 respectively. Prior to these reports, there were no other LERs over the last three years that reported past PWSCC of Alloy 600 components or leaks that involved RV head penetrations. PWSCC is not new either to the domestic or worldwide nuclear industry. However, findings from ONS CRDM examinations have revealed OD initiated flaws in addition to the ID initiated flaws reported by most of the industry.

Energy Industry Identification System (EIIS) codes are identified in the text as [EIIS:XX].