

Post Office Box 340 Ramsey, New Jersey 07446 201-825-0300/Cable: Okonite

January 25, 2002

Satish Aggarwal, Ph.D. United States Nuclear Regulatory Commission Washington, D.C. 20555

Re: Supplemental Information – Requalification of Okonite Okolon Cable

Dear Dr. Aggarwal:

In our recent call regarding the qualification testing summarized in our December 20, 2001, letter to the NRC you requested the following supplemental information:

- 1. A copy of the Wyle test report
- 2. Technical justification for the 1.24 eV activation energy
- 3. Extrapolated thermal aging conditions for 60 years.

Enclosed please find the requested test report, Wyle Nuclear Environmental Test Report (NEQ) 46120-1. Report Appendix II Table I (pages II-3 and II-4) summarizes the thermal aging and radiation simulation conditions for the thirty-eight mandrel specimens. The accident simulation profile is depicted on Appendix X Figure 1 (page X-16). As documented in the report, all the specimens except for Specimens 21 through 26 and Specimen 38 successfully completed the test program, including the IEEE-383-74 post-accident high-potential test. Specimens 21 through 26 were the most severely thermally-aged specimens subsequently exposed to 200 Mrad. Specimen 38 (and Specimen 37, which successfully completed the test program) were the most severely thermally-aged specimens with less severe thermal aging, up to <u>225 hours at 150°C and 200</u> <u>Mrad</u> and <u>300 hours at 150°C and 100 Mrad</u>, successfully completed the test program and met the requirements of IEEE 383-74.

The technical basis for the 1.24 eV activation energy is provided in Attachment 1. The activation energy is based on an analysis of elongation-tobreak measurements for Okonite Okolon composite insulation samples subjected to accelerated thermal aging at temperatures of 121°C, 136°C, and 150°C.

As stated in our December 20, 2001 letter, Arrhenius calculations using the qualification test program's successful thermal aging, 225 and 300 hours at 150°C, and 1.24 eV result in extrapolations of 75°C and 77°C at 40 years. Extrapolated conditions at 60 years using the same parameters are 71°C and 74°C. In our December letter to S. J. Collins we reaffirmed our conviction, as stated in Okonite Okolon Qualification Report NQRN-1A, that the Arrhenius method is an inaccurate technique for predicting long term life, giving rise to overly conservative results, and that the most realistic method of gauging the cable's aging rate is by comparison to the accelerated and natural aging of previous generations of insulation material. We continue to maintain this conviction and data supporting it will be included in Appendix 2 of Okonite Okolon Qualification Report NQRN-1A. We plan to reissue this report including the recently completed Wyle Laboratory Qualification as a revision to NQRN-1A.

JF/jj

Very truly yours,

Ref: 01615A Attachments cc: Mr. Samuel J. Collins/NRC Mr. P. Shemanski/NRC

The Okonite Company

in Faranetta By:

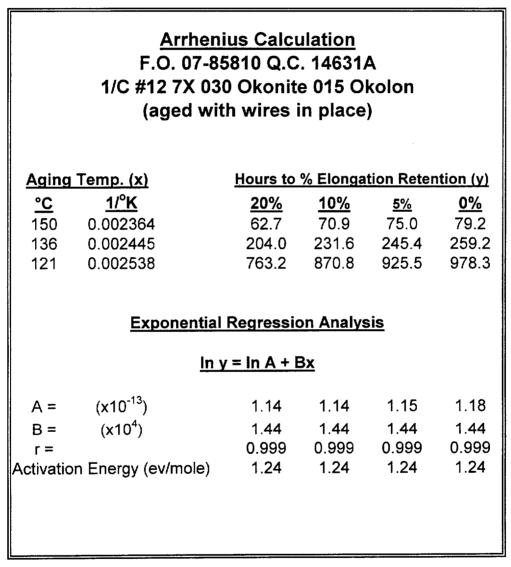
Technical Basis for Okonite Okolon 1.24 eV Activation Energy

Okonite has established an activation energy of 1.24 eV for the Okonite Okolon composite insulation based on an Arrhenius regression analysis of accelerated aging experiments conducted on six inch specimens of Okonite Okolon #12 awg cables. The experiments were conducted in aging ovens at temperatures of 121°C, 136°C, and 150°C with air velocities of 10 - 20 ft/min. Subsequent to the oven exposure the copper conductors were carefully removed from the specimens and elongation-at-break measurements performed using a mechanical tensile tester. The elongation data was mathematically evaluated using an exponential regression analysis. Activation energy values of 1.24 eV were calculated at elongation-to-break values of 20%, 10%, 5%, and 0%. The results of that analysis are presented in Table 1.

At Okonite, we have always used type II ovens with ventilation rates near 200 changes per hour and internal air velocity rates measured as high as 500 ft per minute for accelerated thermal aging evaluations. The experimental design and thermal conditions for these accelerated aging programs are defined in IEEE Standard 98; IEEE Guide for the Preparation of Test Procedures for the Thermal Evaluation and Establishment of Temperature Indexes of Solid Electrical Insulating Materials. In Section 7, Aging Ovens, the guide recommends that forced air circulation ovens be used for the aging program and that the amount of makeup air (rate of ventilation) and the rate of circulation or internal oven air velocity be specified. The guide implies that rates of ventilation and circulation are factors that may affect aging performance along with the oven temperature.

In the course of the thermal aging evaluation, we became concerned about the effect of such high velocities (400 – 500 feet per minute) on the accelerated thermal aging data for Okonite Okolon constructions. Obviously, this high air velocity is not part of the environment in the natural aging of Okonite Okolon cables.

One worker in the field recently reported similar concerns in regard to the accelerated air oven aging of plasticized PVC insulation compounds. K. Anandakumaran has reported that high air velocity will cause rapid depletion of plasticizer in PVC compounds leading to premature failure of these materials. He states, "oven manufacturers generally design their ovens with very high recirculation rates in order to maintain a uniform temperature within the oven. This high velocity airflow is known to cause undue accelerated depletion of the plasticizer and lead to premature failure of the PVC insulation."¹


Since the Okolon compound is plasticized with volatile aromatic mineral oils, we became concerned that high oven air flow rates created another variable factor, plasticizer loss through mass transfer, contributing to the overall aging effect in addition to the thermal effect.

In order to evaluate the effect of oven air velocity on the accelerated air oven performance of Okonite Okolon, evaluations were conducted at air velocity rates of 400 - 500 feet per minute and lower rates of 10 - 20 feet per minute and 0 feet per minute. Analysis of the results indicated that activation energies increased as air velocities decreased. At 400 - 500 feet per minute an activation energy value similar to those measured by Sandia for Hypalon materials was calculated. At 10 - 20 feet per minute a value of 1.24 eV was calculated and at 0 feet per minute the value was 1.25 eV. When performing Arrehnius calculations we recommend using an activation energy of 1.24 eV for 1/C #12 Okonite Okolon 600V since the average air oven air velocity rate of 10 - 20 feet per minute is a conservative representation of real world conditions.

In NQRN-1A Appendix 2 Okonite has stated our conviction that the Arrhenius method is an inaccurate technique for predicting long term life, giving rise to overly conservative results, and that the most realistic method of gauging the cable's aging rate is by comparison to the accelerated and natural aging of previous generations of insulation materials.

¹Anandakumaran etal, Nuclear Qualification of PVC Insulated Cables, IEEE Transactions on Dielectrics and Electrical Insulation Vol 8 No. 5, October 2001.

Table 1	
---------	--

Ref: 01616Sheet10

NUCLEAR ENVIRONMENTAL QUALIFICATION TEST REPORT OF

,e

OKONITE OKOLON CABLES

For

The Okonite Company Paterson, New Jersey

		Nuclear Enviro Te	NEQ onmental Qua est Report	lification
		REPORT NO.	46120-1	
1	! _	WYLE JOB NO.	46120	
	De Constories	CUSTOMER P.O. NO.	9-01-429	
		PAGE 1 OF	223	PAGE REPORT
		DATE	December 26, 2	2001
		SPECIFICATION(S)	See References	L
			in Paragraph 5.	0
CUSTOMER	The Okonite Company		······	
ADDRESS	959 Market Street Paterson	n, NJ 07513		
TEST SPECIMEN	One-conductor, 12 AWG,	<u>Okonite Insulation, Okol</u>	on Jacket, Wire	
MANUFACTURER	The Okonite Company			

4.0 SUMMARY

77

Ĵ

3

ġ

1.0

2.0

3.0

Thirty-eight Cable Specimens and 50 Basket Specimens, as described in Paragraph 6.0 and hereinafter called the specimens, were subjected to a test program as required by The Okonite Company's Purchase Order 9-01-429 and Wyle Laboratories Test Procedure No. 46120, Revision E. This test program was performed on August 10, through December 13, 2001.

The test program requirements are summarized in Paragraph 9.0.

The specimens successfully completed the required test program as specified in Wyle Laboratories Test Procedure 46120, Revision E, except as documented in Notices of Anomaly Nos. 1 through 3, and in Paragraph 11.0 of this report.

Test requirements, procedures, and results are described in Paragraphs 9.0, 10.0, and 11.0 of this report.

STATE OF ALABAMA COUNTY OF MADISON SS-	Wyle shall have no liability for damages of any kind to person or property, including special or consequential damages, resulting from Wyle's providing the services covered by this report.
Don E. Smith	PREPARED BY Robert Hardy, Project Bigineer APPROVED BY Don Smith, Project Manager WYLE Q. A. Manager T. R. Hamilton, Q.A. Manager
Notary Public in and for the State of Alabama at Jarge My Commission expires	Huntsville, Alabama (td)

5.0 **REFERENCES**

- The Okonite Company Purchase Order No. 9-01-429
- Wyle Laboratories' Quotation No. 543/010620-R1/JS
- Wyle Laboratories Test Procedure No. 46120, Revision E
- IEEE Standard 323-1974, "IEEE Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations"
- IEEE Standard 383-1974, "IEEE Standard for Type Test of Class 1E Electric Cables, Field Splices, and Connections for Nuclear Power Generating Stations"
- 10 CFR 21, "Reporting of Defects and Noncompliance"
- 10 CFR 50, Appendix B, "Quality Assurance Criteria for Nuclear Power Plants"
- Wyle Laboratories' (Eastern Operations) Quality Assurance Program Manual, Revision 2

6.0 SPECIMEN DESCRIPTION

The specimens for the test program consisted of two production runs of 1-conductor, 12 AWG, Okonite Okolon-insulated and jacketed wire. Each production run was represented by 19 long specimens (38 specimens total) and 150 short specimens in 50 baskets (300 short specimens total). Each of the baskets contained six, 6-inch samples (3 of each production run). Production Run Numbers were FO-07-85810 and FO-07-7839. Note that the FO-07-7839 Production Run was differentiated by the protruding ridge in the Okolon jacket that ran the length of the cable. See Table I in Appendix II for individual specimen details.

7.0 QUALITY ASSURANCE

All work on this test program was performed in accordance with Wyle Laboratories' Quality Assurance Program, which complies with the applicable requirements of 10 CFR 50, Appendix B, ANSI N45.2, and the Regulatory Guides.

The Wyle Laboratories, Huntsville Facility, Quality Management System is registered in compliance with the ISO-9001 International Quality Standard. Registration has been completed by Quality Management Institute (QMI), a division of the Canadian Standards Association (CSA).

8.0 TEST EQUIPMENT AND INSTRUMENTATION

All instrumentation, measuring, and test equipment used in the performance of this test program were calibrated in accordance with Wyle Laboratories' Quality Assurance Program which complies with the requirements of ANSI/NCSL Z540-1, ISO 10012-1, and Military Specification MIL-STD-45662A. Standards used in performing all calibrations are traceable to the National Institute of Standards and Technology (NIST) by report number and date. When no national standards exist, the standards are traceable to international standards or the basis for calibration is otherwise documented.

Page No. 3 Test Report No. 46120-1

9.0 **REQUIREMENTS**

The specimens shall be subjected to the following:

- Receipt Inspection
- Specimen Mounting
- Baseline Functional Test
- Thermal Aging
- Post-Thermal Aging Functional Test
- Radiation Exposure
- Post-Radiation Exposure Functional Test
- Accident Simulation
- Post-Accident Simulation Functional Test
- Post-Test Inspection

10.0 **PROCEDURES**

10.1 Receipt Inspection

An inspection was performed upon receipt of the specimens at Wyle Laboratories. The specimens were checked to ensure that they were as described in Paragraph 6.0. Additionally, the specimens were visually inspected for any physical damage.

10.2 Specimen Mounting

The 38 long specimens were lightly coiled (to allow for differences in thermal expansion between the rubber layer and the metal mandrel) around stainless steel mandrels. The diameter of each mandrel was approximately 13.5". Each cable was attached to its mandrel by placing stainless steel safety wire through holes drilled on either side of the coiled cable and tying the specimen to the mandrel. High temperature glass cloth electrical tape (ScotchTM 69) was folded several times to make a cushion that was placed between the safety wire, from mandrel hole to mandrel hole, and the specimen cable. Each mandrel was equipped with a support arm for purposes of securely attaching the cable as it exited the mandrel. A similar method was used to attach and cushion the cable to the support arm. Each mandrel was marked with a paint pen to identify the specimens attached. Each mandrel contained two long specimens, one from each production run. Each production run was staggered as to location on the mandrel (top or bottom) so that placement of the production runs encompassed both locations. In all handling and testing, the mandrels were oriented in the same direction (support arm at the bottom).

10.0 **PROCEDURES** (continued)

10.2 Specimen Mounting (continued)

The center point of each long specimen was located and marked. Seven feet from the center mark, in both directions, was located and marked in the same manner. The center 14 feet of each specimen was then coiled around the mandrel (approximately 4 coils). The remaining 22 feet (11 feet on each end) exited the mandrel via the support arm.

Fifty (50) 6" x 6" x 0.5" stainless steel baskets were prepared by Okonite. Each of the baskets contained six (6) short specimens (approximately 6"), three of each production run, for Condition Monitoring purposes. Each basket was identified by Wyle with a unique identifier which indicated the basket number and the point of testing at which the basket was to be removed from the program and returned to Okonite for Condition Monitoring tests.

10.3 Baseline Functional Test

10.3.1 Insulation Resistance

Insulation resistance (IR) of individual long specimens was measured at room ambient conditions with the mandrel submerged in tap water for a minimum of 5 minutes prior to testing using a General Radio Model 1864 megohameter. A 500 VDC potential was applied between each specimen and its mandrel and IR measured and recorded one minute following voltage application. Following each measurement, the specimen conductor was grounded for one minute to remove the space charge.

10.3.2 <u>Dielectric Withstand</u>

High-potential tests were performed by applying voltage between each specimen and the mandrel while the mandrel was submerged in room temperature tap water for a minimum of 5 minutes prior to testing. The voltage was increased to the full value rapidly, but did not exceed 500 volts per mil per second. Full voltage was maintained for 1 minute and then reduced to one-quarter value in not more than 15 seconds. Leakage current was recorded. The high potential test voltage for the baseline tests was 80 VAC/mil of insulation. Per Okonite, each cable had 30 mils of insulation resulting in a test voltage of 2400 VAC.

10.4 Thermal Aging

The specimens that were to be thermally aged were placed in a Wyle Thermal Aging Chamber and aged in air at 302°F (+7/-0°F) for the duration specified in Table I. At the specified time, the specimens were removed from the thermal aging chamber. During the Thermal Aging process, a circular chart recorder which monitored chamber temperature as a function of time was used to record the chamber temperature. Additionally, one thermocouple was mounted on each mandrel, and the indicated temperature was recorded. The specimens were not energized for thermal aging.

For the mandrel specimens identified in Table I, each support arm extending off the mandrel was placed through a penetration in the oven to prevent exposure of the wire exiting the arm to the elevated temperature inside the oven.

Page No. 5 Test Report No. 46120-1

10.0 **PROCEDURES** (continued)

10.5 Post-Thermal Aging Functional Test

The specimens were visually inspected after Thermal Aging. Additionally, the specimens were subjected to an Insulation Resistance Functional Test as detailed in Paragraph 10.3.1. Results of the Visual Inspection and Insulation Resistance Test are contained in Appendix VIII.

10.6 Radiation Exposure

The specimens detailed in Table I (while still mounted to the appropriate fixtures) were carefully packaged and delivered to the Georgia Institute of Technology, Neely Nuclear Research Center in Atlanta, Georgia. There, the specimens were exposed to a Cobalt 60 radiation source. The Radiation Exposure report is contained in Appendix VI. The specimens were not energized for radiation exposure.

10.7 Post-Radiation Exposure Functional Test

The specimens were visually inspected after Radiation Exposure. Additionally, the specimens were subjected to an Insulation Resistance Functional Test as detailed in Paragraph 10.3.1.

10.8 Accident Simulation

10.8.1 Test Setup

å

4

All of the mandrels and the appropriate basket specimens were placed inside a LOCA test chamber. The unaged portion of each cable specimen, exiting the support arm, was routed through a chamber penetration. Each penetration was potted following standard Wyle practices. Nineteen penetrations were used, one for each mandrel. Each mandrel was grounded via a wire attached to the mandrel at one end and the test chamber at the other end.

10.8.2 Monitoring

Each mandrel was individually monitored for applied voltage, circuit current, and leakage current throughout the duration of the LOCA Simulation Test. Figures 1 through 19 detail the electrical circuits used in monitoring the specimens.

Three thermocouples were placed at points around and within two inches of the fixture holding the specimens. The average of these thermocouples was used to control the test chamber temperature. The test chamber pressure was monitored and recorded throughout the duration of the test by means of a pressure transducer connected to the test chamber.

The chemical spray flow rate was monitored and recorded throughout the duration of the test by means of a flowmeter mounted in line with the spray discharge line.

10.8 Accident Simulation (continued)

10.8.3 <u>Powering and Loading</u>

The mandrel specimens were powered and loaded as detailed in Figures 1 through 19. Each mandrel was powered with a separate power source.

The basket specimens required no electrical powering or loading since they were for condition monitoring purposes only.

۰.,

10.8.4 Accident Test

The test chamber average temperature was increased to approximately 120°F and held for approximately 87 minutes prior to the start of the first transient of the accident simulation. The Accident Profile shown in Figure 20 in Appendix III was used for the application of steam and pressure for the first transient. The time to reach an average chamber temperature of 345°F for the initial transient was approximately 3 minutes and 42 seconds. The total duration of the first transient was approximately 3 hours and 10 minutes.

The test chamber temperature was cooled to approximately 180°F following the completion of the first transient. The accident profile shown in Figure 20 in Appendix III was used for the application of steam and pressure for the second transient. The time to reach an average chamber temperature of 345°F for the second transient was approximately 4 minutes and 25 seconds. The resulting environmental profiles are shown in Appendix IX.

Starting at approximately the 6-minute points of the first and second transients (spray was discontinued just prior to application of the second transient), spray was initiated inside the test chamber. The chemical spray consisted of deionized water with 0.28 molar Boric Acid (H_3BO_{3}) (3000 ppm boron), 0.064 molar Sodium Thiosulfate ($Na_2S_2O_{3}$), and Sodium Hydroxide (NaOH) that made a pH of 10.5 at approximately 77°F. The area of the horizontal plane at the centerline of the specimens was measured to be approximately 21 square feet. A flow rate of 3.2 gallons per minute gives approximately 0.15 gpm/sq. ft. (3.2 gpm divided by 21 sq. ft.). The spray was continued throughout the test except where it was stopped at the 10-day point to flood the chamber and perform submerged Dielectric Withstand Tests on the specimens.

At the 10-day point of the accident simulation, the test chamber was allowed to cool to ambient temperature. The following day, the test chamber was flooded with ambient temperature tap water sufficient to submerge all the test specimens contained within. A Dielectric Withstand Test, as detailed in Paragraph 10.3.2 was performed on all the test specimens. Following the Dielectric Withstand test, the chamber was drained and the temperature was gradually increased to 212°F and testing was continued until the 30-day requirement was met.

10.9 Post-Accident Simulation Functional Test

The following steps were taken (in order) following completion of the Accident Test:

- The temperature of the test chamber was allowed to naturally decrease to laboratory ambient conditions overnight
- The door of the chamber was removed allowing access to the specimens following cool down
- The leads were cut from the specimens leaving the aged portion of the specimens on the mandrels
- One at a time, the specimens were removed from their mandrels, while still coiled, marked with an appropriate specimen marker, and submerged in room temperature tap water for storage
- Each specimen, in turn, was removed from the water, straightened, and recoiled on a metal mandrel approximately 40 times the diameter of the cable (approximately 8")
- Each specimen, while still coiled on the 8" mandrel, was submerged in room temperature tap water and subjected to a Dielectric Withstand Test as detailed in Paragraph 10.3.2 with the exception that the full voltage was maintained for 5 minutes
- The specimens were then removed from the mandrel, carefully packed, and returned to Okonite

See Table II in Appendix II for visual observations of the Post-Accident Test Inspection.

11.0 RESULTS

3

The specimens successfully completed the required test program with the following exceptions:

At approximately 08:30 hours on 9/8/01, the facility power went off momentarily causing the thermal aging chamber controller to trip off. The controller was reset and the chamber was allowed to return to the required temperature. The duration the temperature was out of tolerance was approximately 30 minutes. The lowest temperature the chamber dropped to was approximately 250°F. At the time of the power outage, the following mandrels and baskets were in the thermal aging chamber: Mandrels 11, 12, 13, 17, 18, and 19, and Baskets 30 through 38 and 45 through 50. 30 minutes was added to the aging time for the above referenced specimens to account for the time below 302°F (see Notice of Anomaly No 1).

During the performance of the Dielectric Withstand Test at the 10-day point of the accident simulation, the following specimens were found to have leakage current in excess of 10 milliamps (maximum capability of the test machine) at approximately 200 volts AC: Specimens 21 through 26 and Specimen 38. Following notification of the anomaly, Okonite directed that the test be restarted as detailed in the test procedure (see Notice of Anomaly No. 2).

11.0 RESULTS

During the restart of the Accident Test, following completion of the 10-day point Insulation Resistance Test, the leakage current fuse for the circuit powering Mandrel 13 (Specimens 25 and 26) opened. The circuit was left de-energized for the remainder of the Accident Test.

At approximately the 19-day, 1.5-hour point of the Accident Test, the leakage current fuse for the circuit powering Mandrel 11 (Specimens 21 and 22) opened. The circuit was left de-energized for the remainder of the Accident Test.

From the point where the test was restarted following the 10-day point Insulation Resistance Test, the circuits powering Mandrels 11 (Specimens 21 and 22), 12 (Specimens 23 and 24), and 19 (Specimens 37 and 38) had leakage currents in excess of 50 milliamps which was the highest range for the Accident Test electrical monitoring circuits. Since the electrical monitoring circuits had been set up to monitor up to 50 milliamps maximum, the resulting leakage current plots only show up to 50 milliamps. The circuits contained a 500-milliamp fuse which would have opened if leakage current had exceeded 500 milliamps. Note that at the request of Okonite, Specimen 38 was temporarily removed from the circuit on two occasions, leaving only Specimen 37 in the circuit. The resulting leakage current was less than 2 milliamps with only Specimen 37 in the electrical circuit.

Following the completion of the Accident Test, Specimens 21 through 26 and 38 were found to be split open with conductor(s) visible. It should be noted that the inspection revealed that the splits occurred only on the portion of the cable opposite the side in contact with the mandrel. Therefore, the conductor(s) never came in direct contact with the mandrel. The leakage current values for these specimens were a result of the resistance of the moisture in contact with the exposed conductor to ground. A representative of Okonite was on site for the Post-Accident Test Inspection (see Notice of Anomaly No. 3).

Appendix	Contents
I	Notices of Anomaly
II	Tables
III	Figures
IV	Photographs
V	Thermal Aging Charts and Plots
VI	Radiation Facility Component Irradiation Certification
VII	Instrumentation, Equipment Sheets
VIII	Functional Test Data Sheets
IX	Accident Simulation Test Plots
X	Wyle Laboratories Test Procedure 46120, Revision E

The following appendices are included in this report:

Page No. I-1 Test Report No. 46120-1

APPENDIX I

13

÷

ŝ

NOTICES OF ANOMALY

.

This page intentionally left blank.

.

,

Page No. I-3 Test Report No. 46120-1

ORIGIN	IAL NO	OTICE OF AND	OMALY	DATE	September 10, 2001
NOTICE NO.:	1	P.O. NUMBER:	9-01-429	CONTRACT NO.:	N/A
CUSTOMER:		The Okonite Com	ipany	WYLE JOB NO.:	46120
NOTIFICATION M	ADE TO:	John Fara	netta	NOTIFICATION DATE:	9/10/01
NOTIFICATION M	ADE BY:	Robert H	ardy	VIA:	Fax
CATEGORY:				DATE OF MENT ANOMALY:	9/8/01 ·
PART NAME:		Cable Specimen	8	PART NO.	N/A
TEST:		Thermal Aging		I.D. NO.	N/A
SPECIFICATION:		WLTP 46120, Rev	ision B	PARA. NO.	4.3

DESCRIPTION OF ANOMALY:

At approximately 08:30 hours on 9/8/01, the facility power went off momentarily causing the thermal aging chamber controller to trip off.

DISPOSITION - COMMENTS - RECOMMENDATIONS:

The controller was reset and the chamber was allowed to return to the required temperature. The duration the temperature was out of tolerance was approximately 30 minutes. The lowest temperature the chamber dropped to was approximately 250°F. At the time of the power outage, the following mandrels and baskets were in the thermal aging chamber: Mandrels 11, 12, 13, 17, 18, and 19; Baskets 30 through 38 and 45 through 50.

30 minutes will be added to the above referenced specimens to account for the time below 302°F.

RESPONSIBILITY TO AN	ALYZE ANOMALIES AND	COMPLY WITH 10	CFR PART 21:		U WYLE
VERIFICATION:			PROJECT ENGINEER:	Rolet A	ant 9/10/01
TEST WITNESS:	N/A		PROJECT MANAGER:	Dower	1 9/10/01
REPRESENTING:	10.00		INTERDEPARTMENTAL COORDINATION:	Don Smith	
QUALITY ASSURANCE:	#Affrales	9/11/01		Page 1	of 1
Wyle Form WH 1066, Rev. JUL	194			Page	

ORIGIN	AĽ N	IOTICE OF ANON	MALY		DATE:	November 27, 20
	2	P.O. NUMBER:	9-01-429	CONTR	ACT NO.:	N/A
CUSTOMER:		The Okonite Compa	iny	WYLE JOE	3 NO.:	46120
NOTIFICATION MA	DE TO:	John Farane	tta	NOTIFICATION	DATE:	11/21/01
NOTIFICATION MA	DE BY:	Robert Hard	ју	VIA:		Fax
CATEGORY:	SPECIME			MENT ANO	OF	11/21/01
PART NAME:		Cable Specimens		PART NO.		N/A
TEST:		Accident Test		I.D. NO.		N/A
SPECIFICATION:		WLTP 46120, Revisi	on D	PARA. NO.		4.7.4

REQUIREMENTS:

At the 10-day point of the Accident Test, the temperature of the test chamber shall be allowed to naturally decrease to laboratory ambient conditions. When there, the test chamber shall be flooded with tap water to submerge the test specimens. Once the chamber is flooded, a Dielectric Withstand Test as detailed in Paragraph 4.2.2 shall be performed on each specimen. When completed, the water shall be drained and the temperature of the test chamber slowly returned to 212°F for the remainder of the test.

DESCRIPTION OF ANOMALY:

During the performance of the Dielectric Withstand Test, the following specimens were found to have leakage current in excess of 10 milliamps at approximately 200 volts AC:

Specimens 21 through 26 and Specimen 38

DISPOSITION - COMMENTS - RECOMMENDATIONS:

Following notification of the anomaly, Okonite directed that the test be re-started as detailed in the test procedure. The customer will make the decision as to the final disposition of this Notice of Anomaly.

RESPONSIBILITY TO ANALYZE ANOMALIES AND COMPLY WITH 10 CFR PART 21:				D WYLE
VERIFICATION:		PROJECT ENGINEER:	Ralt Charl	- 11/27/01
TEST WITNESS:	N/A	PROJECT MANAGER:	Don Imi	# 11/27/01
REPRESENTING:	/	INTERDEPARTMENTAL COORDINATION:	Don Sn	nith
QUALITY ASSURANCE:	Staphales 11/2	2/01	······································	
Wyle Form WH 1068, Rev.	JUL '94		Page1	of1

Wy	e					
ORIGIN	IAL NO	OTICE OF ANO	MALY		DATE	: December 14, 2001
NOTICE NO.:	3	P.O. NUMBER:	9-01-429	CONTR	RACT NO.:	N/A
CUSTOMER:		The Okonite Compa	iny	WYLE JO	B NO.:	46120
NOTIFICATION M	ADE TO:	John Farane	tta	NOTIFICATIO	N DATE:	11/21/01
NOTIFICATION M	ADE BY:	Robert Hard	iy	VIA:	Phone	and in person
CATEGORY:					E OF MALY:	11/21/01 thru 12/12/01
PART NAME:		Cable Specimens		PART NO.		N/A
TEST:		Accident Test		I.D. NO.		N/A
SPECIFICATION:		WLTP 46120, Revisi	on E	PARA. NO.		4.7.4

REQUIREMENTS:

The cable specimens shall be powered and exposed to the Accident Test as required in the above referenced specification.

DESCRIPTION OF ANOMALY:

- 1. During the re-start of the Accident Test following completion of the 10-day point Insulation Resistance test, the leakage current fuse in the circuit powering Mandrel 13 (Specimens 25 and 26) opened.
- 2. At approximately the 19-day, 1.5-hour point of the Accident Test, the leakage current fuse in the circuit powering Mandrel 11 (Specimens 21 and 22) opened.
- From the point of re-starting following the 10-day point Insulation Resistance test, the circuits powering Mandrels 11, 12, and 19 had leakage currents in excess of 50 milliamps which was the highest range for the Accident Test electrical monitoring circuits.
- 4. Following the completion of the Accident Test, Specimens 21 through 26 and 38 were found to be split open with conductor(s) visible.

DISPOSITION - COMMENTS - RECOMMENDATIONS:

- 1. The circuit was left de-energized for the remainder of the Accident Test.
- 2. The circuit was left de-energized for the remainder of the Accident Test.
- Since the electrical monitoring circuits had been set up to monitor up to 50 milliamps maximum, the resulting leakage current plots will only show up to 50 milliamps. The circuits were fused at 500 milliamps which would have opened if leakage current had exceeded 500 milliamps.
- A representative of Okonite was on site for the Post-Accident Test Inspection. The customer will make the final decision as to the disposition of the anomaly.

RESPONSIBILITY TO A	SPONSIBILITY TO ANALYZE ANOMALIES AND COMPLY WITH 10 CFR PART 21:			D WYLE
VERIFICATION:		PROJECT ENGINEER:	Rolet Ague	<u>+ 12/14/01</u>
TEST WITNESS:	N/A	PROJECT MANAGER:	Don Im	12/17/01
REPRESENTING:	A	INTERDEPARTMENTAL COORDINATION:	Don Smit	th
QUALITY ASSURANCE:	Haffeler 12/17	/01		
Wyle Form WH 1856, Rev. JU	IL '94		Page1	_ of1

This page intentionally left blank.

•...

.

.

.

Page No. II-1 Test Report No. 46120-1

APPENDIX II

· . .

TABLES

Page No. II-2 Test Report No. 46120-1

This page intentionally left blank.

*****...

;

,

Page No. II-3 Test Report No. 46120-1

TABLE I

SPECIMEN DETAILS

Specimen No.	Mandrel No.	Production Run No.	Required Thermal Aging Time (hours)	Required Thermal Aging Temperature (°F)	Actual Thermal Aging Time (hours)
1	1	FO-07-85810	Unaged	N/A	N/A
2	1	FO-07-7839	Unaged	N/A	N/A
3	2	FO-07-85810	50	302	50
4	2	FO-07-7839	50	302	50
5	3	FO-07-85810	70	302	70
6	3	FO-07-7839	70	302	70
7	4	FO-07-85810	90	302	90
8	4	FO-07-7839	90	302	90
9	5	FO-07-85810	110	302	110
10	5	FO-07-7839	110	302	110
10	6	FO-07-85810	130	302	130
12	6	FO-07-7839	130	302	130
12	7	FO-07-85810	150	302	150
15	7	FO-07-7839	150	302	150
15	8	FO-07-85810	175	302	175
15	8	FO-07-7839	175	302	175
10	9	FO-07-85810	200	302	200
17	9	FO-07-7839	200	302	200
18	10	FO-07-85810	225	302	225.6
20	10	FO-07-7839	225	302	225.6
20	10	FO-07-85810	250	302	250.4
21	11	FO-07-7839	250	302	250.4
22	11	FO-07-85810	275	302	275.23
23	12	FO-07-7839	275	302	275.23
24	12	FO-07-85810	300	302	300.23
25	13	FO-07-7839	300	302	300.23
20	13	FO-07-85810	150	302	150
28	14	FO-07-7839	150	302	150
28	15	FO-07-85810	175	302	175
30	15	FO-07-7839	175	302	175
30	15	FO-07-85810	200	302	200
31	16	FO-07-7839	200	302	200
32	10	FO-07-85810	250	302	250.4
33	17	FO-07-7839	250	302	250.4
3435	17	FO-07-85810	300	302	300.23
	18	FO-07-7839	300	302	300.23
36	18	FO-07-85810	350	302	350.31
<u> </u>	19	FO-07-7839	350	302	350.31

WYLE LABORATORIES Huntsville Facility

Page No. II-4 Test Report No. 46120-1

TABLE I

Specimen No.	Mandrel No.	Production Run No.	Required Radiation Dose (rads)	Required Radiation Dose Rate (rads/hour)	Actual Radiation Dose (rads)	Actual Radiation Dose Rate (rads/hour)
1	1	FO-07-85810	2.0E8	<1.0E6	2.049E8	5.054E5
2	1	FO-07-7839	2.0E8	<1.0E6	2.049E8	5.054E5
3	2	FO-07-85810	2.0E8	<1.0E6	2.049E8 ·	5.054E5
4	2	FO-07-7839	2.0E8	<1.0E6	2.049E8	5.054E5
5	3	FO-07-85810	2.0E8	<1.0E6	2.049E8	5.054E5
6	3	FO-07-7839	2.0E8	<1.0E6	2.049E8	5.054E5
7	4	FO-07-85810	2.0E8	<1.0E6	2.049E8	5.054E5
8	4	FO-07-7839	2.0E8	<1.0E6	2.049E8	5.054E5
9	5	FO-07-85810	2.0E8	<1.0E6	2.049E8	5.054E5
10	5	FO-07-7839	2.0E8	<1.0E6	2.049E8	5.054E5
11	6	FO-07-85810	2.0E8	<1.0E6	2.049E8	5.054E5
12	6	FO-07-7839	2.0E8	<1.0E6	2.049E8	5.054E5
13	7	FO-07-85810	2.0E8	<1.0E6	2.049E8	5.054E5
14	7	FO-07-7839	2.0E8	<1.0E6	2.049E8	5.054E5
15	8	FO-07-85810	2.0E8	<1.0E6	2.049E8	5.054E5
16	8	FO-07-7839	2.0E8	<1.0E6	2.049E8	5.054E5
17	9	FO-07-85810	2.0E8	<1.0E6	2.049E8	5.054E5
18	9	FO-07-7839	2.0E8	<1.0E6	2.049E8	5.054E5
19	10	FO-07-85810	2.0E8	<1.0E6	2.049E8	5.054E5
20	10	FO-07-7839	2.0E8	<1.0E6	2.049E8	5.054E5
21	11	FO-07-85810	2.0E8	<1.0E6	2.049E8	5.054E5
22	11	FO-07-7839	2.0E8	<1.0E6	2.049E8	5.054E5
23	12	FO-07-85810	2.0E8	<1.0E6	2.049E8	5.054E5
24	12	FO-07-7839	2.0E8	<1.0E6	2.049E8	5.054E5
25	13	FO-07-85810	2.0E8	<1.0E6	2.049E8	5.054E5
26	13	FO-07-7839	2.0E8	<1.0E6	2.049E8	5.054E5
27	14	FO-07-85810	1.0E8	<1.0E6	1.025E8	4.88E5
28	14	FO-07-7839	1.0E8	<1.0E6	1.025E8	4.88E5
29	15	FO-07-85810	1.0E8	<1.0E6	1.025E8	4.88E5
30	15	FO-07-7839	1.0E8	<1.0E6	1.025E8	4.88E5
31	16	FO-07-85810	1.0E8	<1.0E6	1.025E8	4.88E5
32	16	FO-07-7839	1.0E8	<1.0E6	1.025E8	4.88E5
33	17	FO-07-85810	1.0E8	<1.0E6	1.025E8	4.88E5
34	17	FO-07-7839	1.0E8	<1.0E6	1.025E8	4.88E5
35	18	FO-07-85810	1.0E8	<1.0E6	1.025E8	4.88E5
36	18	FO-07-7839	1.0E8	<1.0E6	1.025E8	4.88E5
37	19	FO-07-85810	1.0E8	<1.0E6	1.025E8	4.88E5
38	19	FO-07-7839	1.0E8	<1.0E6	1.025E8	4.88E5

Page No. II-5 Test Report No. 46120-1

TABLE I (continued)

BASKET SPECIMENS (Thermal Aging)			
Basket No.	Required Thermal Aging Time (hours)	Required Thermal Aging Temperature (°F)	Actual Thermal Aging Time (hours)
1	Unaged	N/A	N/A
2	Unaged	N/A	• N/A
3	50	302	50
4	50	302	50
5	50	302	50
6	70	302	70
7	70	302	70
8	70	302	70
9	90	302	90
10	90	302	90
11	90	302	90
12	110	302	110
13	110	302	110
14	110	302	110
15	130	302	130
16	130	302	130
17	130	302	130
18	150	302	150
19	150	302	150
20	150	302	150
21	175	302	175
22	175	302	175
23	175	302	175
24	200	302	200
25	200	302	200

Page No. II-6 Test Report No. 46120-1

TABLE I (continued)

Basket No.	Required Thermal Aging Time (hours)	Required Thermal Aging Temperature (°F)	Actual Thermal Aging Time (hours)
26	200	302	200
27	225	302	225.6
28	225	302	225.6
29	225	302	225.6
30	250	302	250.4
31	250	302	250.4
32	250	302	250.4
33	275	302	275.23
34	275	302	275.23
35	275	302	275.23
36	300	302	300.23
37	300	302	300.23
38	300	302	300.23
39	150	302	150
40	150	302	150
41	175	302	175
42	175	302	175
43	200	302	200
44	200	302	200
45	250	302	250.4
46	250	302	250.4
47	300	302	300.23
48	300	302	300.23
49	350	302	350.31
50	350	302	350.31

Page No. II-7 Test Report No. 46120-1

TABLE I (continued)

Basket No.	Required Radiation Dose (rads)	Required Radiation Dose Rate (rads/hour)	Actual Radiation Dose (rads)	Actual Radiation Dose Rate (rads/hour)
1	2.0E8	<1.0E6	2.049E8	; 5.054E5
2	2.0E8	<1.0E6	2.049E8	5.054E5
3	N/A	N/A	N/A	·N/A
4	2.0E8	<1.0E6	2.049E8	5.054E5
5	2.0E8	<1.0E6	2.049E8	5.054E5
6	N/A	N/A	N/A	N/A
7	2.0E8	<1.0E6	2.049E8	5.054E5
8	2.0E8	<1.0E6	2.049E8	5.054E5
9	N/A	N/A	N/A	N/A
10	2.0E8	<1.0E6	2.049E8	5.054E5
11	2.0E8	<1.0E6	2.049E8	5.054E5
12	N/A	N/A	N/A	N/A
13	2.0E8	<1.0E6	2.049E8	5.054E5
14	2.0E8	<1.0E6	2.049E8	5.054E5
15	N/A	N/A	N/A	N/A
16	2.0E8	<1.0E6	2.049E8	5.054E5
17	2.0E8	<1.0E6	2.049E8	5.054E5
18	N/A	N/A	N/A	N/A
19	2.0E8	<1.0E6	2.049E8	5.054E5
20	2.0E8	<1.0E6	2.049E8	5.054E5
21	N/A	N/A	N/A	N/A
22	2.0E8	<1.0E6	2.049E8	5.054E5
23	2.0E8	<1.0E6	2.049E8	5.054E5
24	N/A	N/A	N/A	N/A
25	2.0E8	<1.0E6	2.049E8	5.054E5

Page No. II-8 Test Report No. 46120-1

TABLE I (continued)

Basket No.	Required Radiation Dose (rads)	Required Radiation Dose Rate (rads/hour)	Actual Radiation Dose (rads)	Actual Radiation Dose Rate (rads/hour)
26	2.0E8	<1.0E6	2.049E8	5.054E5
27	N/A	N/A	N/A	N/A
28	2.0E8	<1.0E6	2.049E8	5.054E5
29	2.0E8	<1.0E6	2.049E8	5.054E5
30	N/A	N/A	N/A	N/A
31	2.0E8	<1.0E6	2.049E8	5.054E5
32	2.0E8	<1.0E6	2.049E8	5.054E5
33	N/A	N/A	N/A	N/A
34	2.0E8	<1.0E6	2.049E8	5.054E5
35	2.0E8	<1.0E6	2.049E8	5.054E5
36	N/A	N/A	N/A	N/A
37	2.0E8	<1.0E6	2.049E8	5.054E5
38	2.0E8	<1.0E6	2.049E8	5.054E5
39	1.0E8	<1.0E6	1.025E8	4.88E5
40	1.0E8	<1.0E6	1.025E8	4.88E5
41	1.0E8	<1.0E6	1.025E8	4.88E5
42	1.0E8	<1.0E6	1.025E8	4.88E5
43	1.0E8	<1.0E6	1.025E8	4.88E5
44	1.0E8	<1.0E6	1.025E8	4.88E5
45	1.0E8	<1.0E6	1.025E8	4.88E5
46	1.0E8	<1.0E6	1.025E8	4.88E5
47	1.0E8	<1.0E6	1.025E8	4.88E5
48	1.0E8	<1.0E6	1.025E8	4.88E5
49	1.0E8	<1.0E6	1.025E8	4.88E5
50	1.0E8	<1.0E6	1.025E8	4.88E5

Page No. II-9 Test Report No. 46120-1

TABLE II

RESULTS OF POST-ACCIDENT TEST INSPECTION

Specimen No.	Comments		
1	Flexible, no visible damage other than frequent jacket blisters.		
2	Flexible, no visible damage other than frequent jacket blisters.		
3	Flexible, no visible damage other than frequent jacket blisters.		
4	Flexible, no visible damage other than frequent jacket blisters.		
5	Flexible, no visible damage other than minor jacket blisters.		
6	Flexible, no visible damage other than minor jacket blisters.		
7	Flexible, very few minor longitudinal cracks.		
8	Flexible, no visible damage.		
9	Flexible, very few minor longitudinal cracks.		
10	Flexible, no visible damage.		
11	Flexible, very few longitudinal cracks in jacket (slight cracks).		
12	Flexible, no visible damage.		
13	Flexible, very few longitudinal cracks in jacket (slight cracks).		
14	Flexible, no visible damage.		
15	Stiff, multiple longitudinal cracks in jacket.		
16	Stiff, few longitudinal cracks in jacket.		
17	Stiff, multiple longitudinal cracks in jacket.		
18	Stiff, few longitudinal cracks in jacket.		
19	Stiff, multiple longitudinal cracks in jacket. Cracking through jacket but not into insulation.		
20	Stiff, multiple longitudinal cracks in jacket. Cracking through jacket but not into insulation.		
21	Stiff, visible conductor, multiple large cracks		
22	Stiff, visible conductor, multiple large cracks		
23	Stiff, visible conductor, multiple large cracks		
24	Stiff, visible conductor, multiple large cracks		
25	Stiff, visible conductor, multiple large cracks		
26	Stiff, visible conductor, multiple large cracks		
27	Stiff, limited longitudinal cracks in jacket. Cracking is not deep.		
28	Stiff, no cracking observed.		
29	Stiff, limited longitudinal cracks in jacket. Cracking is not deep.		
30	Stiff, no cracking observed.		
31	Stiff, multiple longitudinal cracks in jacket. Cracking through jacket but not into insulation.		
32	Stiff, multiple longitudinal cracks in jacket. Cracking through jacket but not into insulation.		
33	Very stiff, multiple longitudinal cracks in jacket, circumferential cracks following bend test.		
	Cracking through jacket but not into insulation.		
34	Very stiff, multiple longitudinal cracks in jacket, circumferential cracks following bend test.		
	Cracking through jacket but not into insulation.		
35	Very stiff, multiple longitudinal cracks in jacket, circumferential cracks following bend test.		
	Cracking through jacket but not into insulation.		
36	Very stiff, multiple longitudinal cracks in jacket, circumferential cracks following bend test.		
	Cracking through jacket but not into insulation.		
37	Very stiff, multiple longitudinal deep cracks in jacket, circumferential cracks following bend test.		
	Cracking through jacket possibly into insulation.		
38	Very stiff, visible conductor, multiple large cracks		

ł

.

Page No. II-10 Test Report No. 46120-1

This page intentionally left blank.

.,

Page No. III-1 Test Report No. 46120-1

APPENDIX III

`..

÷

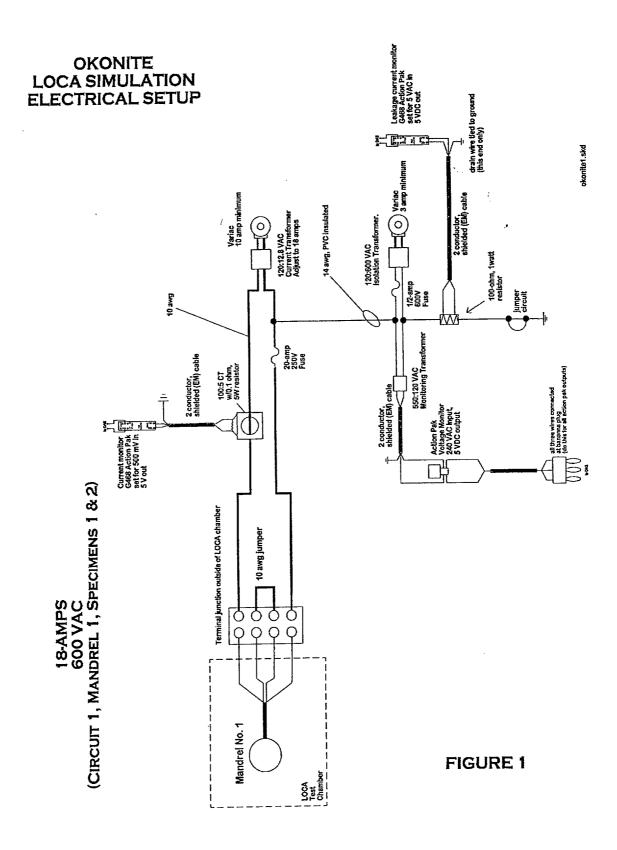
ø

FIGURES

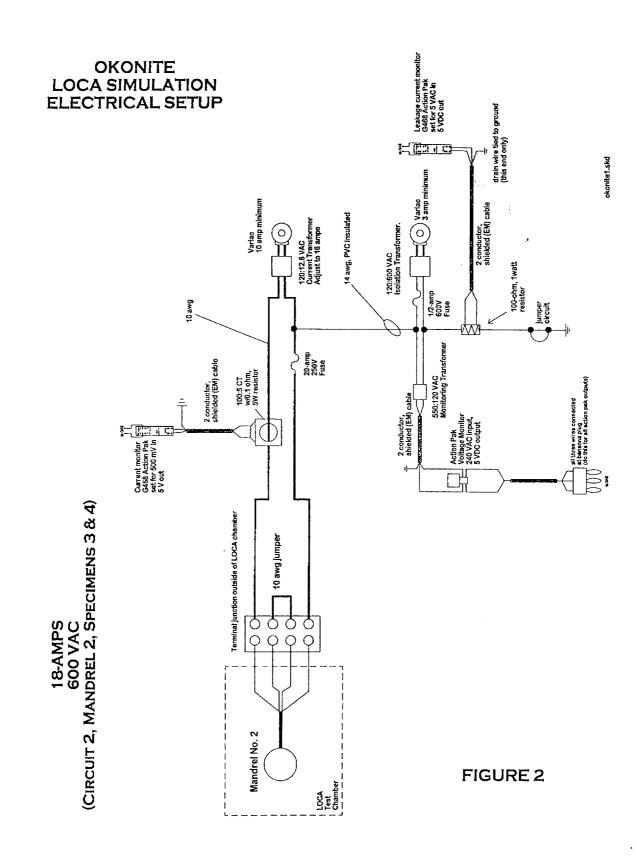
ذ.

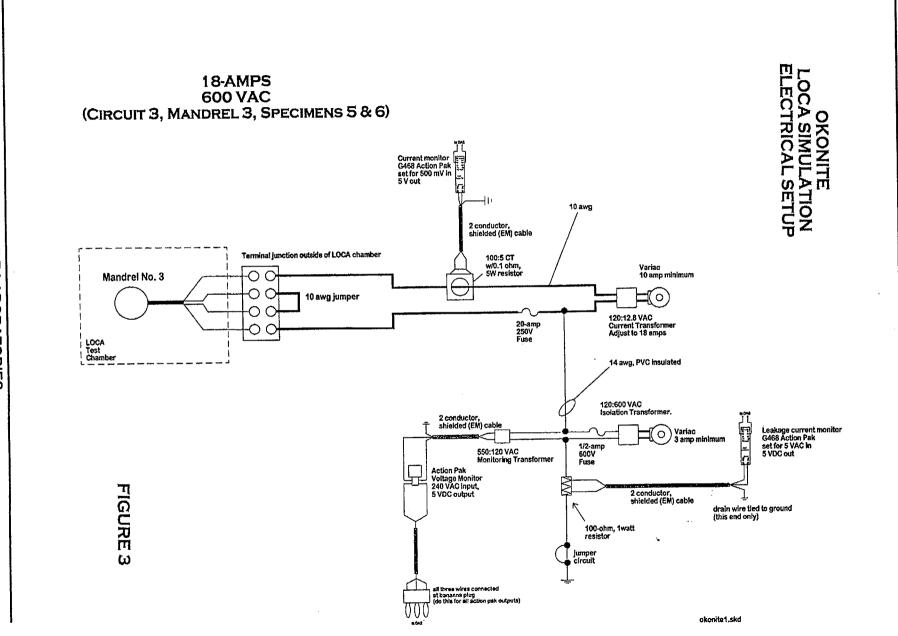
3

- 7


This page intentionally left blank.

· · ·


ŧ.


,

Page No. III-3 Test Report No. 46120-1

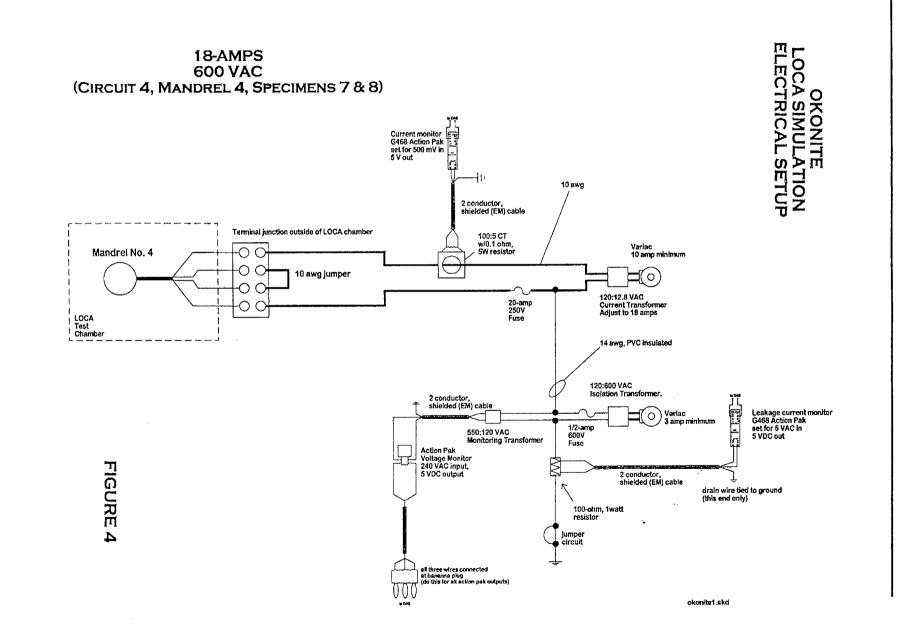
Page No. III-4 Test Report No. 46120-1

.

Sec. 1. . .

Sec. 1

Sec. 94


WYLE LABORATORIES Huntsville Facility

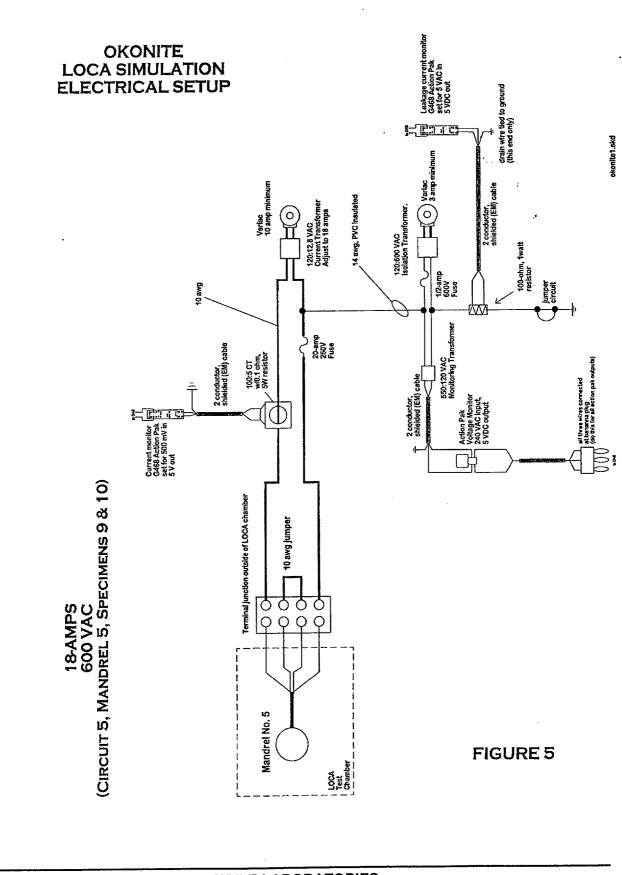
And Andrew

Test Report No. 46120-1 Page No. III-5

.

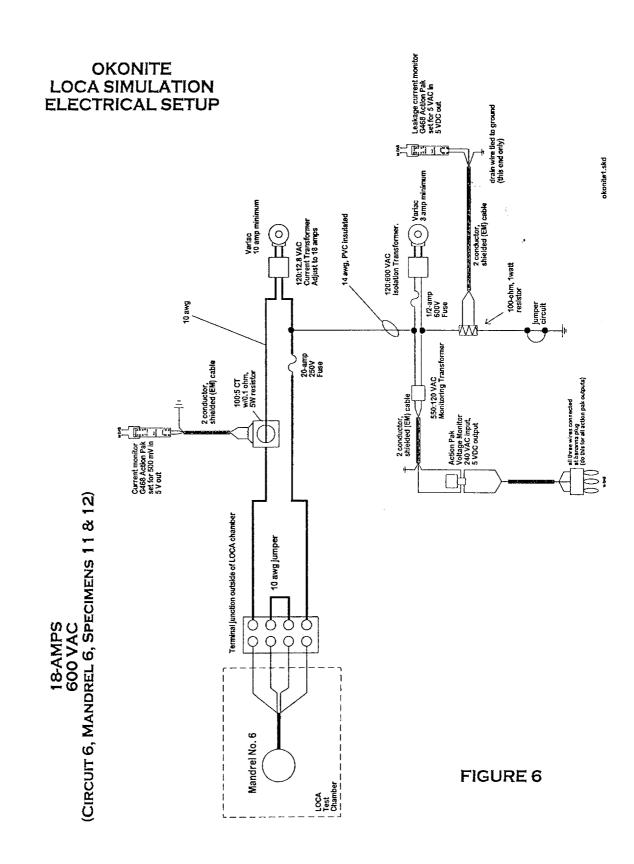
.

WYLE LABORATORIES Huntsville Facility Page No. III-7 Test Report No. 46120-1


• • •

7

، في

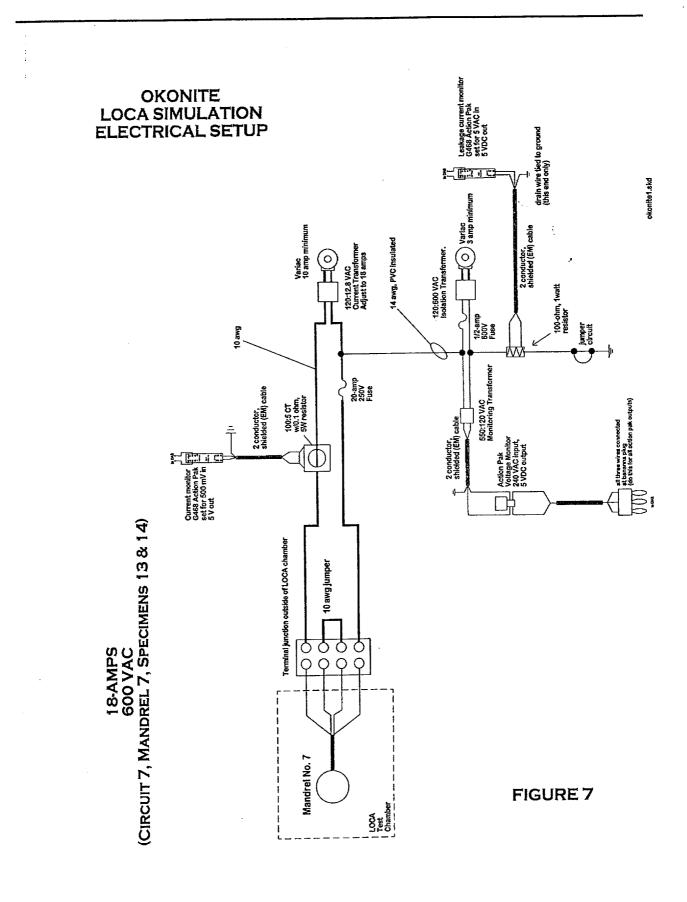

÷,

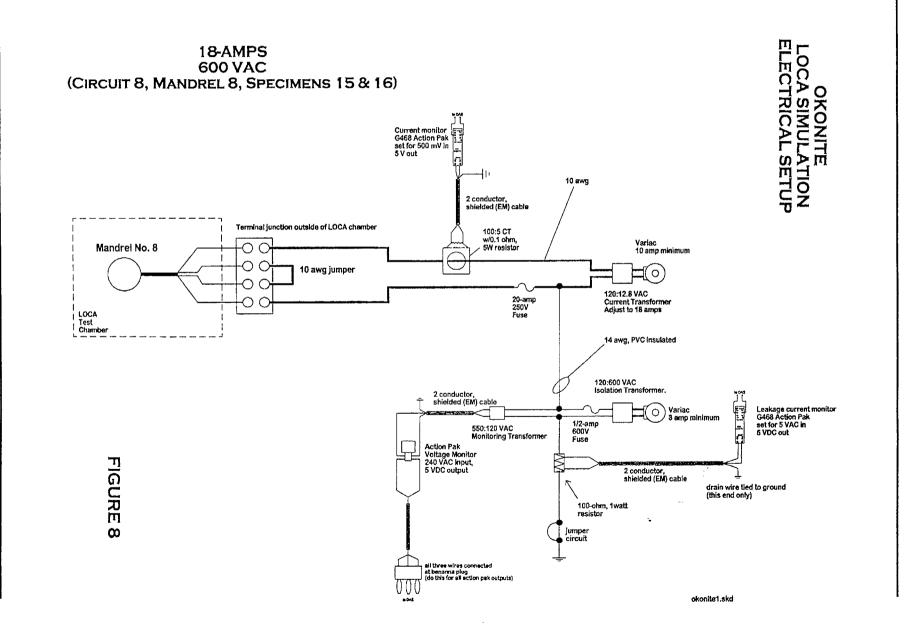
2

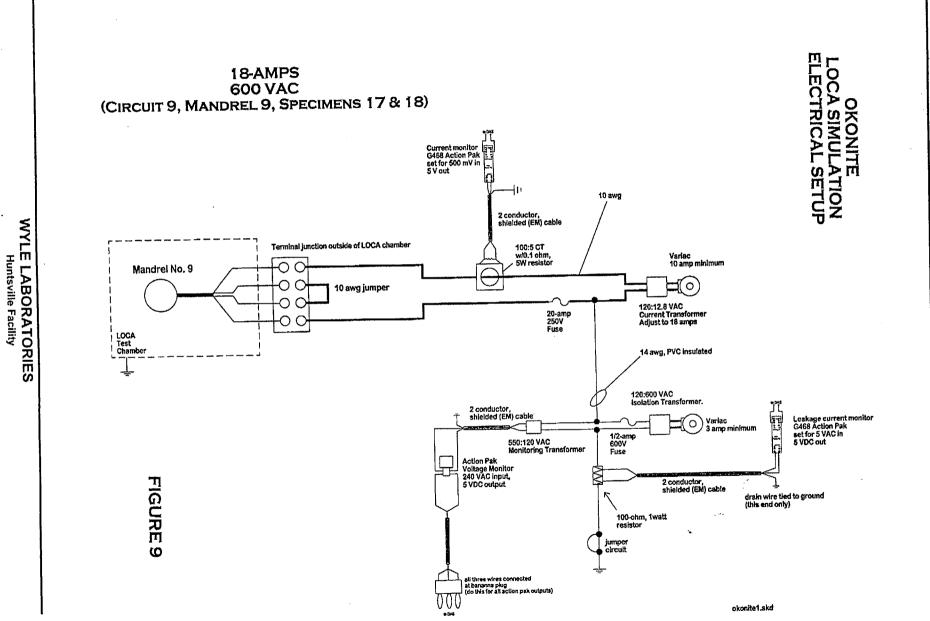
.

Page No. III-8 Test Report No. 46120-1

Page No. III-9 Test Report No. 46120-1


1


••

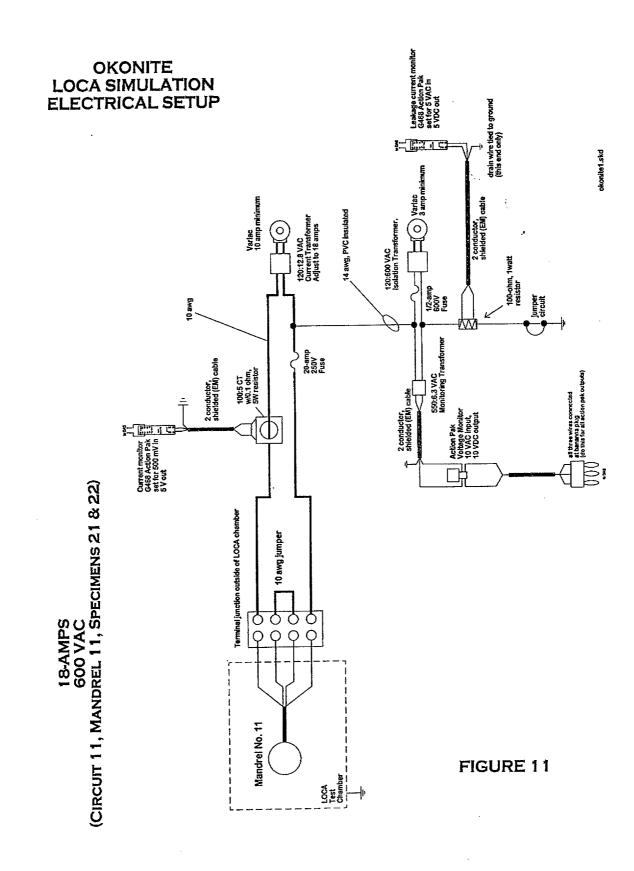

ł

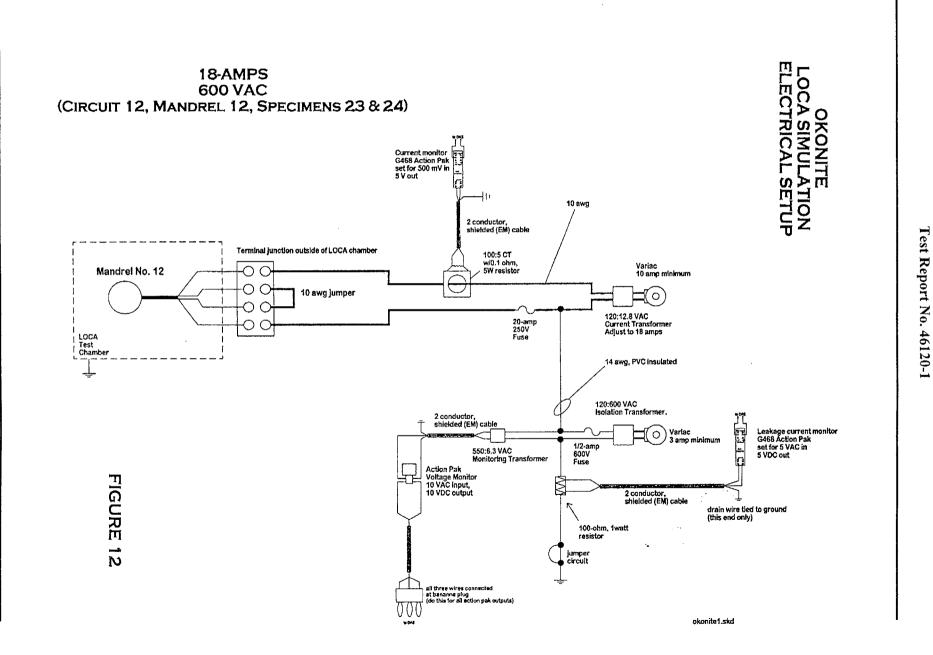
428 - V-28

ŝ

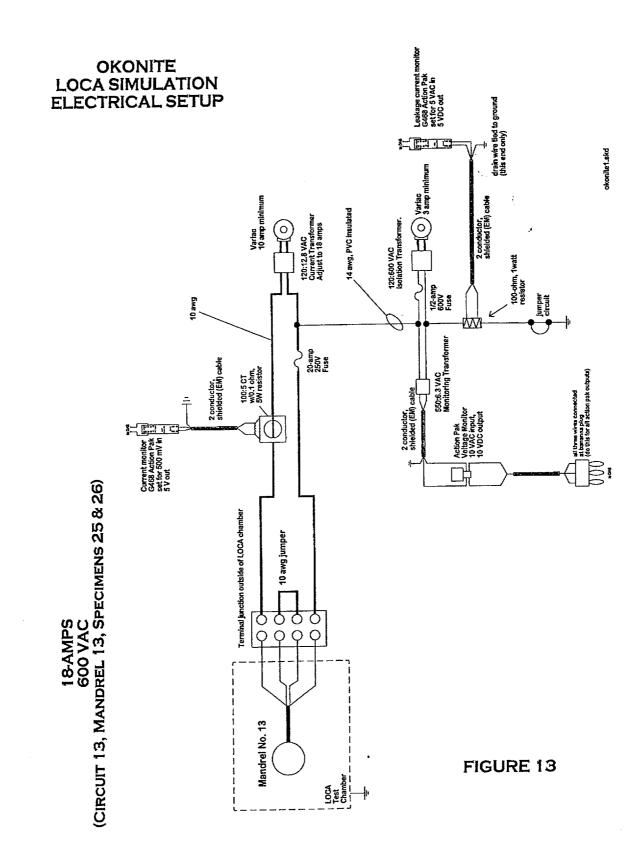
i.,

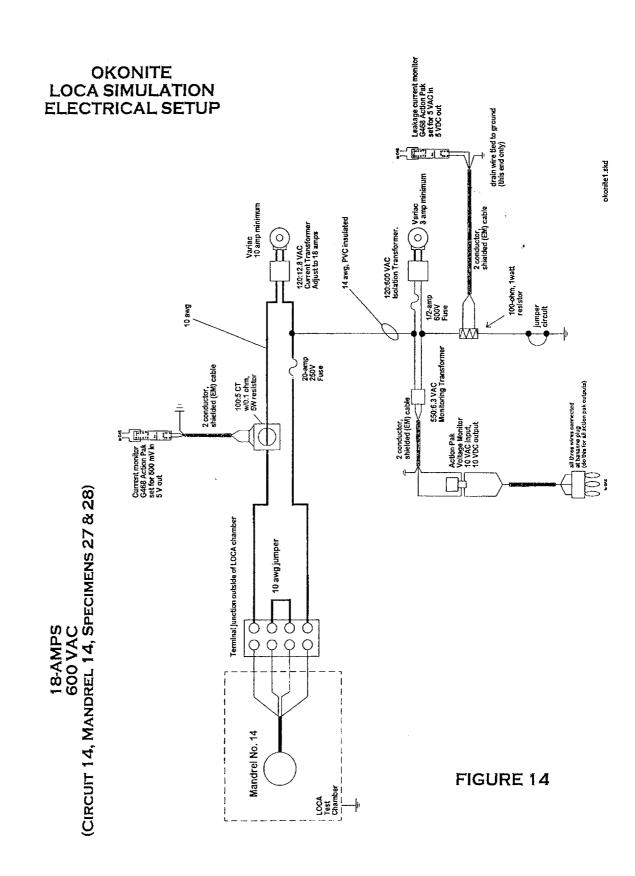
. .

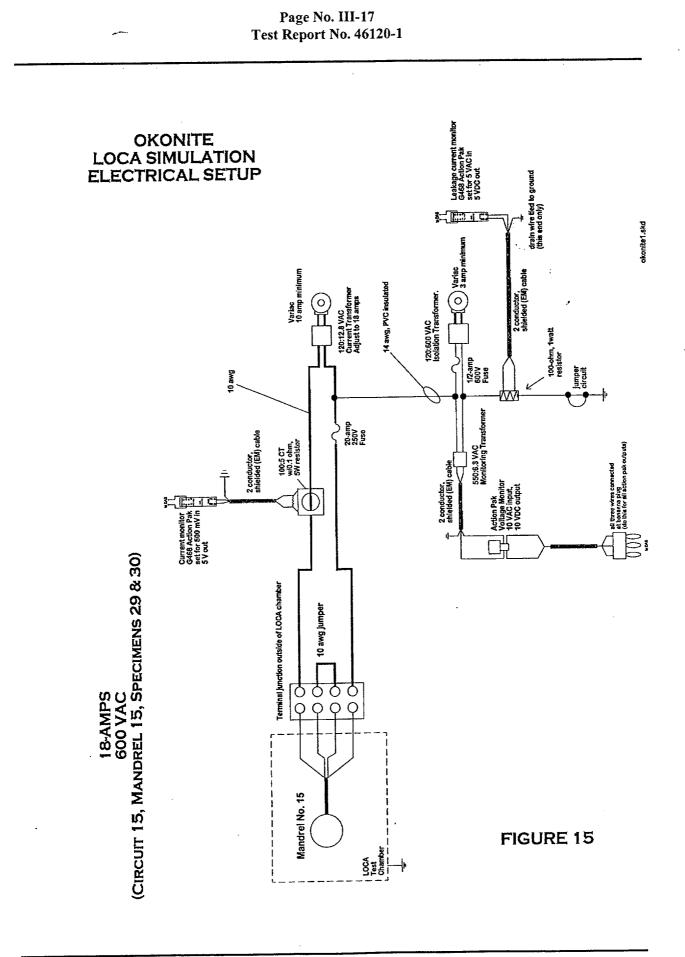

Page No. III-11 Test Report No. 46120-1


51 - 5 <u>2</u> 5 a - 1

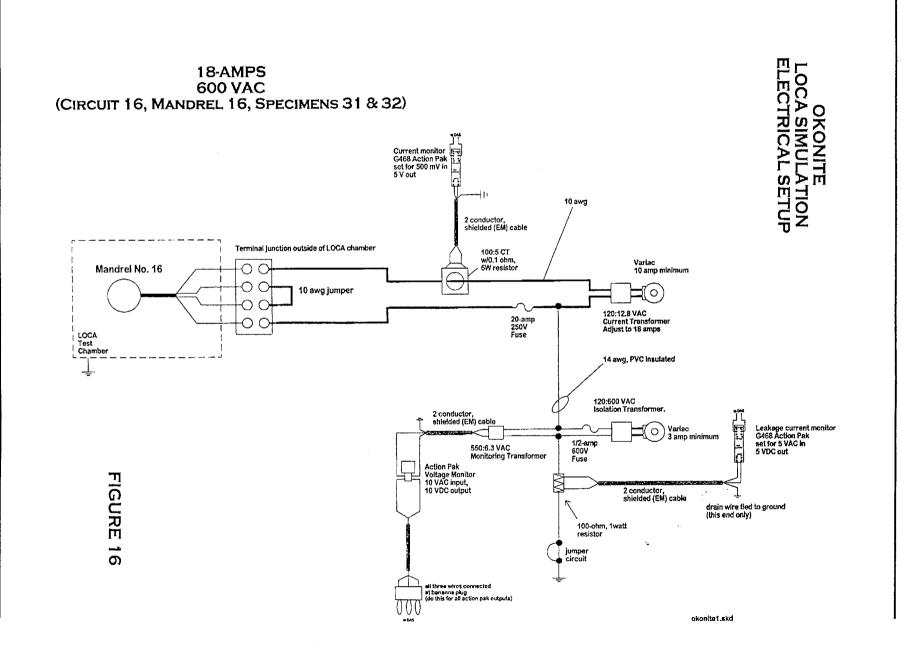
And Andrew States




Page No. 111-12 Test Report No. 46120-1 Page No. III-13 Test Report No. 46120-1



Page No. III-14

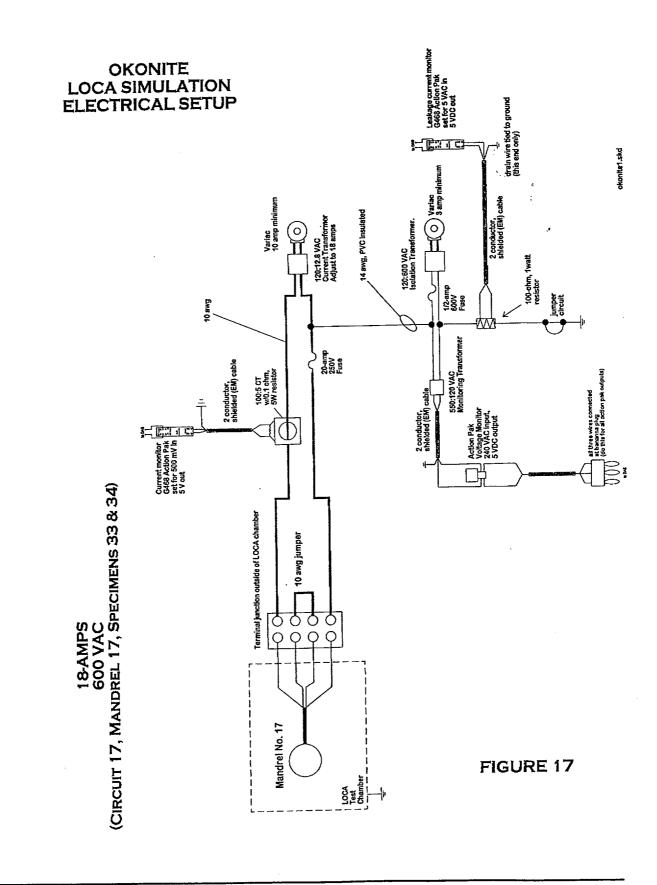

10.00

A Land Star

17111

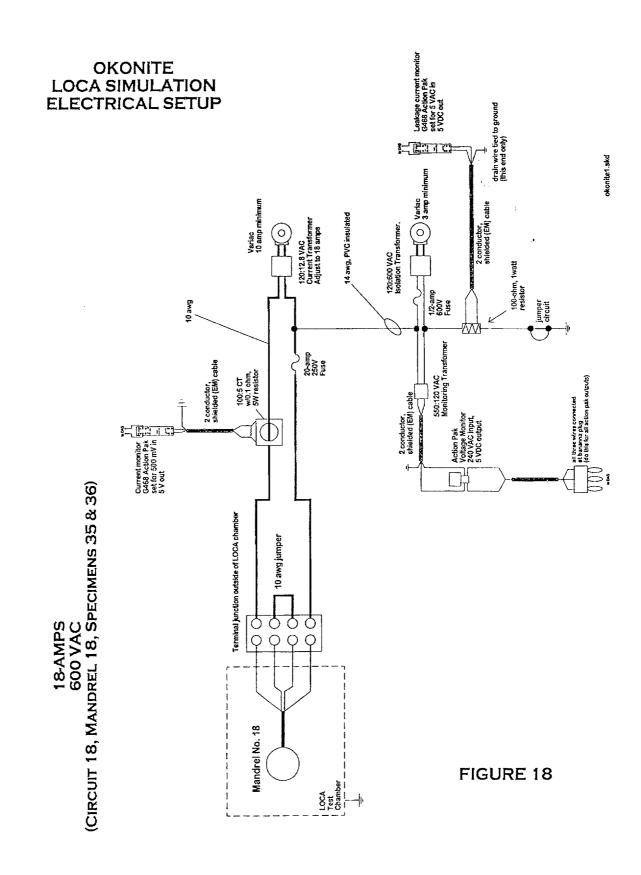
4

ないですというと

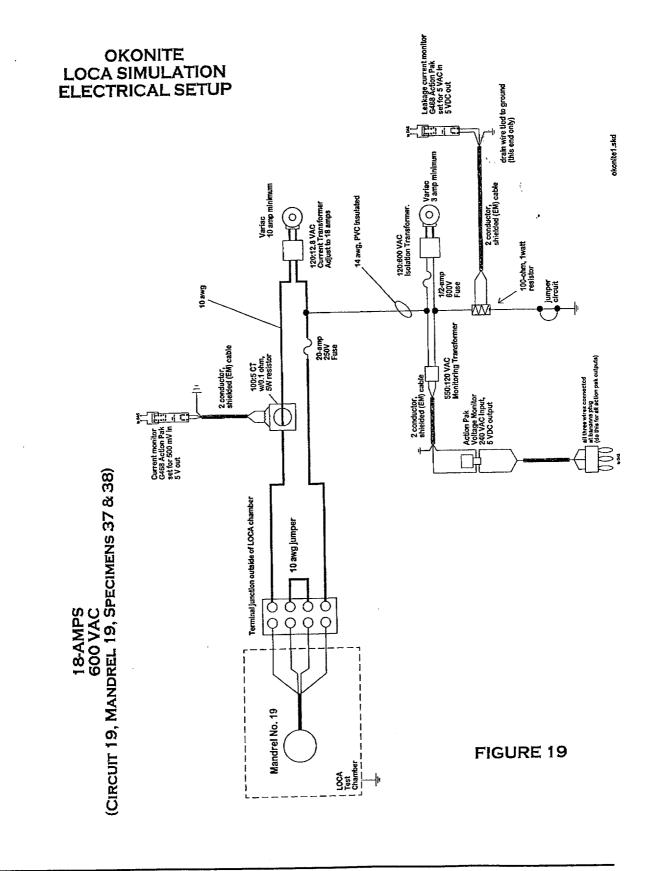

Test Report No. 46120-1

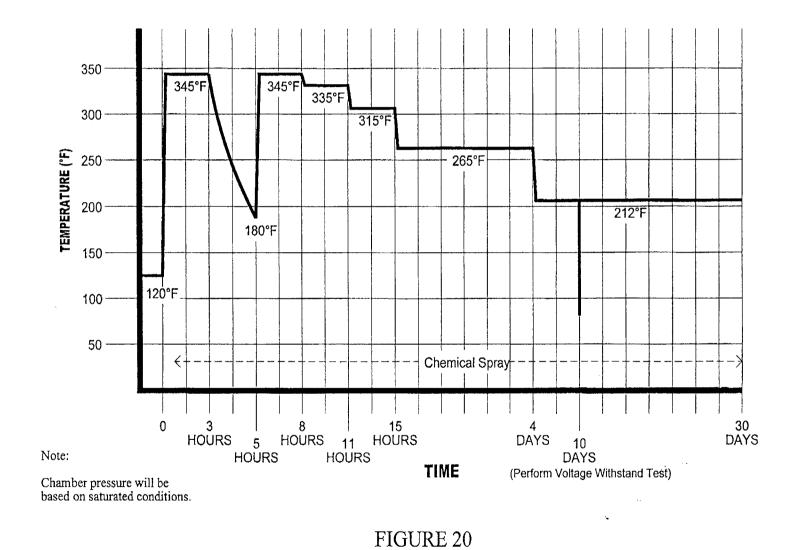
Page No. III-18

WYLE LABORATORIES Huntsville Facility


.

Page No. III-19 Test Report No. 46120-1




ŝ

11.000

Page No. III-21 Test Report No. 46120-1

Test Report No. 46120-1

Page No. III-22

ACCIDENT SIMULATION ENVIRONMENTAL PROFILE

okonite2.skd

Page No. IV-1 Test Report No. 46120-1

41.74

6 mar

ł

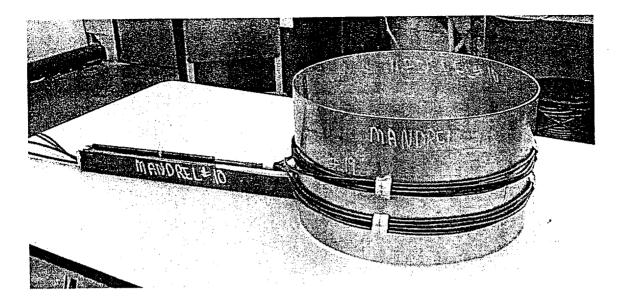
3

.

-

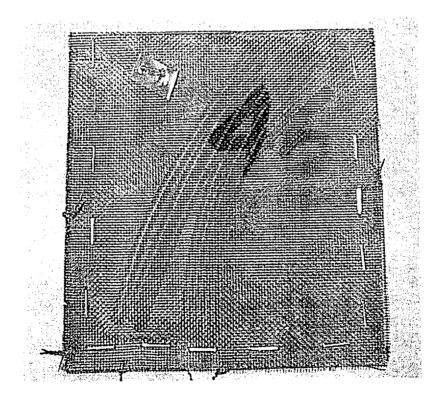
APPENDIX IV

,e


PHOTOGRAPHS

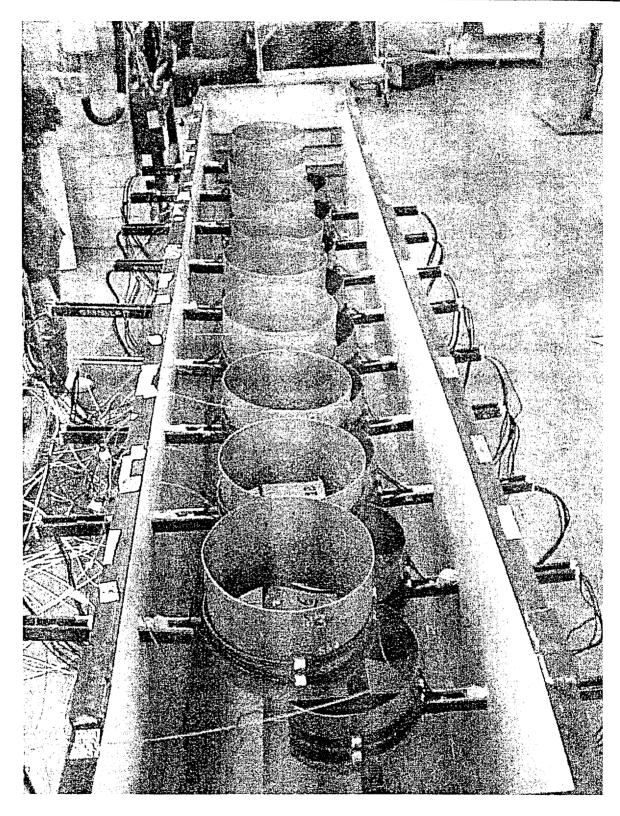
This page intentionally left blank.

•....

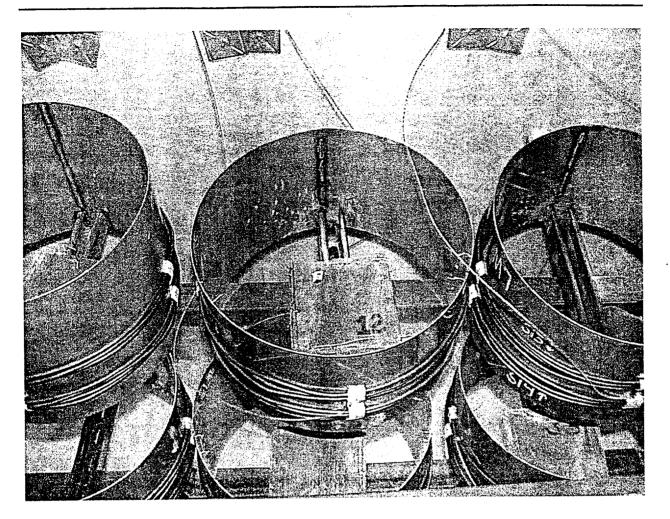

.•

Page No. IV-3 Test Report No. 46120-1

PHOTOGRAPH 1

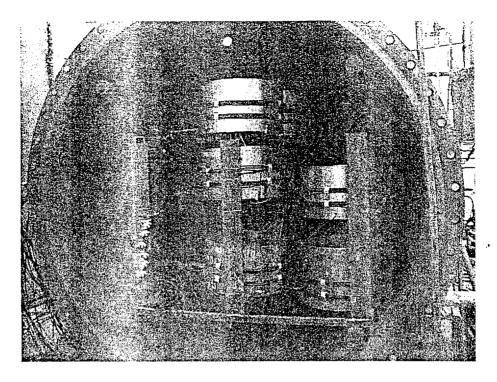

TYPICAL MANDREL SPECIMEN (MANDREL NO. 10, SPECIMENS 19 AND 20 SHOWN)

PHOTOGRAPH 2

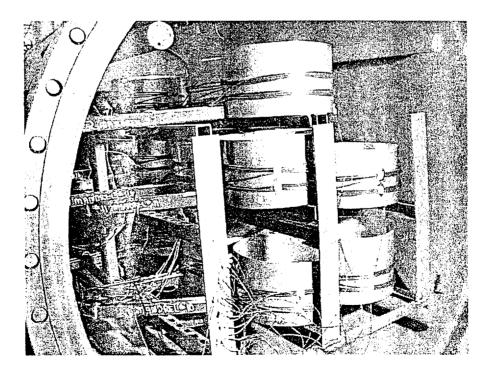

TYPICAL BASKET SPECIMEN (BASKET NO. 46 SHOWN)

> WYLE LABORATORIES Huntsville Facility

SPECIMENS PLACED IN THE THERMAL AGING CHAMBER

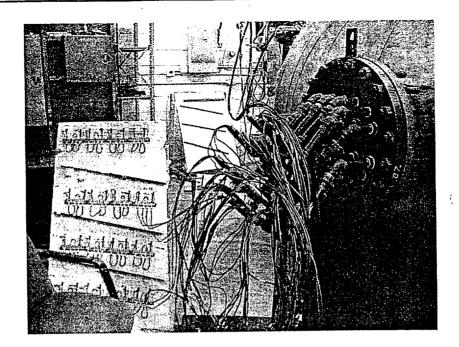

Page No. IV-5 Test Report No. 46120-1

PHOTOGRAPH 4

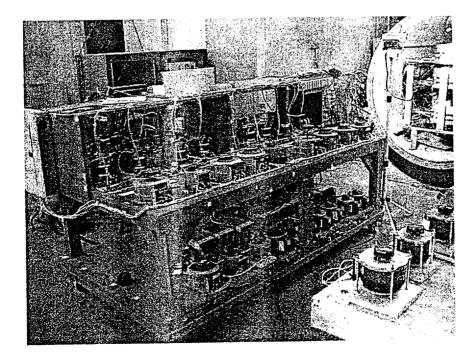

PLACEMENT OF THE BASKET SPECIMENS WITHIN THE MANDRELS DURING THERMAL AGING

Page No. IV-6 Test Report No. 46120-1

PHOTOGRAPH 5

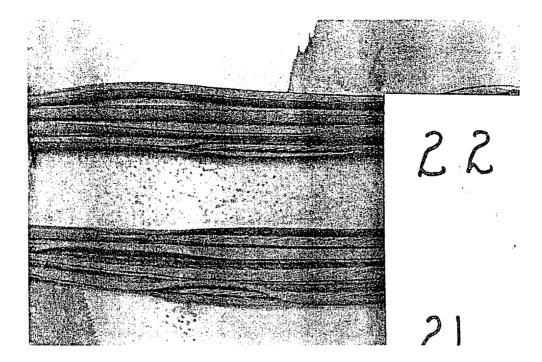

PRE-ACCIDENT TEST VIEW OF SPECIMENS INSTALLED IN TEST CHAMBER

PHOTOGRAPH 6

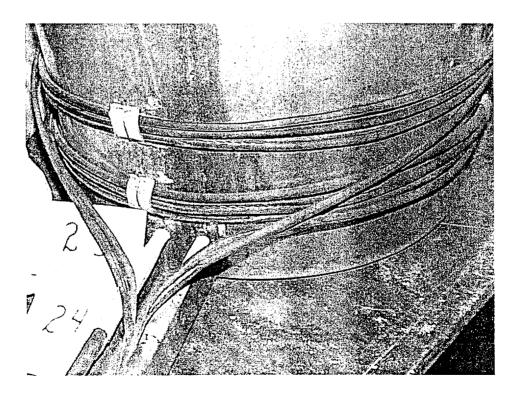

PRE-ACCIDENT TEST VIEW OF SPECIMENS INSTALLED IN TEST CHAMBER

Page No. IV-7 Test Report No. 46120-1

PHOTOGRAPH 7


VIEW OF SPECIMEN WIRES EXITING THE TEST CHAMBER

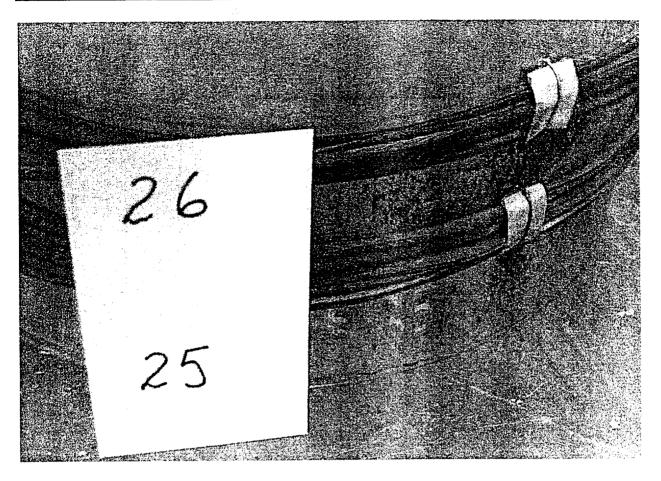
PHOTOGRAPH 8


VIEW OF ONE OF TWO TABLES USED FOR ELECTRICAL POWERING CIRCUITS

Page No. IV-8 Test Report No. 46120-1

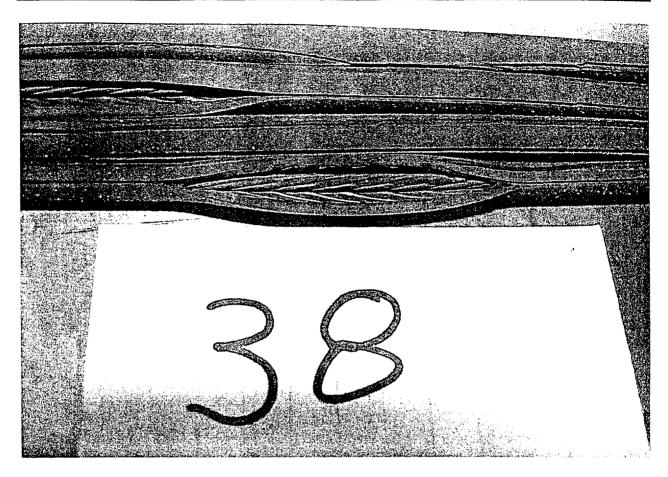
PHOTOGRAPH 9

POST-ACCIDENT TEST VIEW OF SPECIMENS 21 (BOTTOM) AND 22 (TOP)

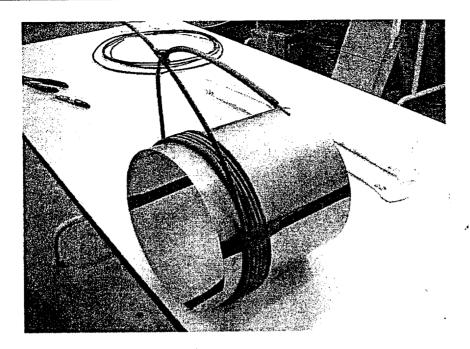


PHOTOGRAPH 10

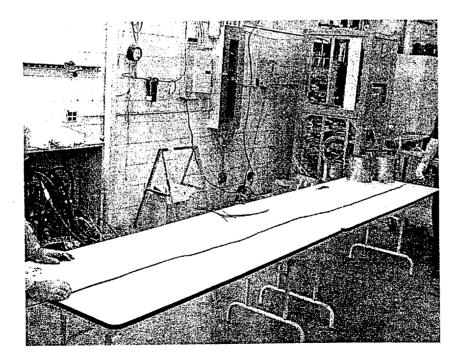
POST-ACCIDENT TEST VIEW OF SPECIMENS 23 (TOP) AND 24 (BOTTOM)


WYLE LABORATORIES Huntsville Facility

Page No. IV-9 Test Report No. 46120-1

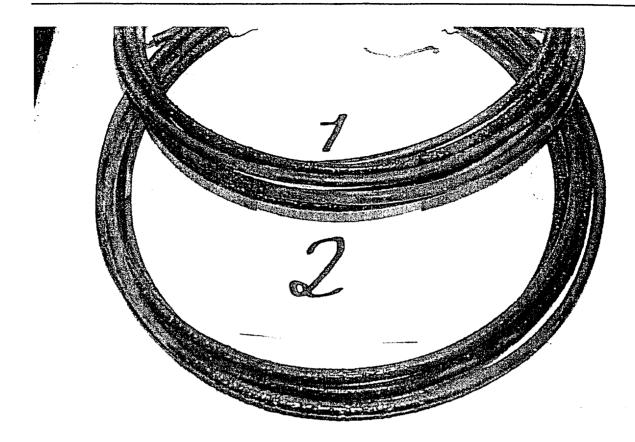

PHOTOGRAPH 11

POST-ACCIDENT TEST VIEW OF SPECIMENS 25 (BOTTOM) AND 26 (TOP)


POST-ACCIDENT TEST VIEW OF SPECIMEN 38

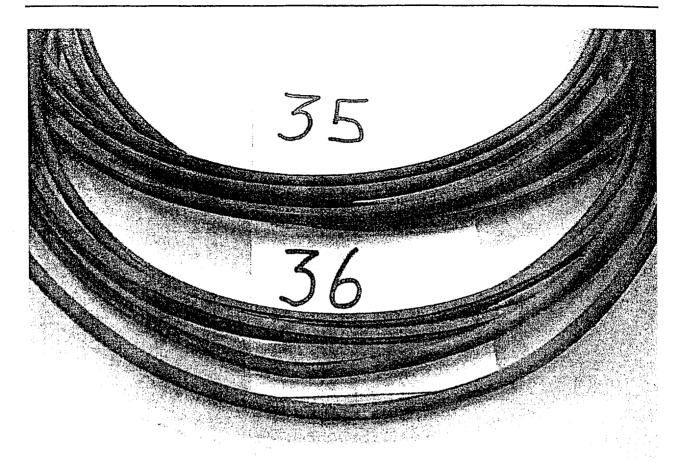
Page No. IV-11 Test Report No. 46120-1

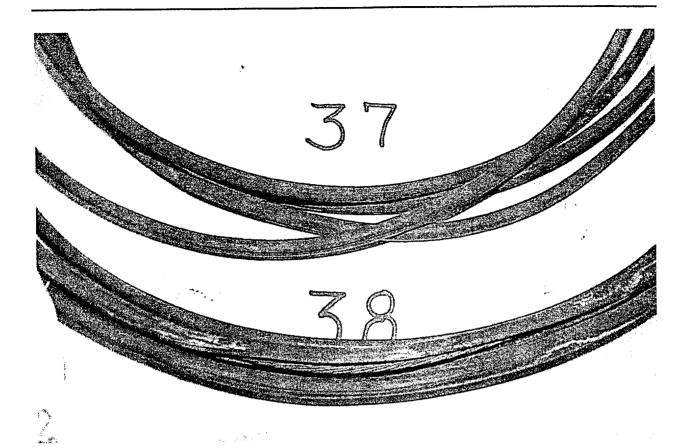
PHOTOGRAPH 13


VIEW OF SPECIMEN WRAPPED ON 8" MANDREL FOR POST-ACCIDENT FUNCTIONAL TEST

PHOTOGRAPH 14

VIEW OF SPECIMEN STRAIGHTENED DURING POST-ACCIDENT FUNCTIONAL TEST


Page No. IV-12 Test Report No. 46120-1


VIEW OF SPECIMENS 1 AND 2 FOLLOWING POST-ACCIDENT FUNCTIONAL TEST

VIEW OF SPECIMENS 19 AND 20 FOLLOWING POST-ACCIDENT FUNCTIONAL TEST

VIEW OF SPECIMENS 35 AND 36 FOLLOWING POST-ACCIDENT FUNCTIONAL TEST

VIEW OF SPECIMENS 37 AND 38 FOLLOWING POST-ACCIDENT FUNCTIONAL TEST

Page No. IV-16 Test Report No. 46120-1

This page intentionally left blank.

•

.

Page No. V-1 Test Report No. 46120-1

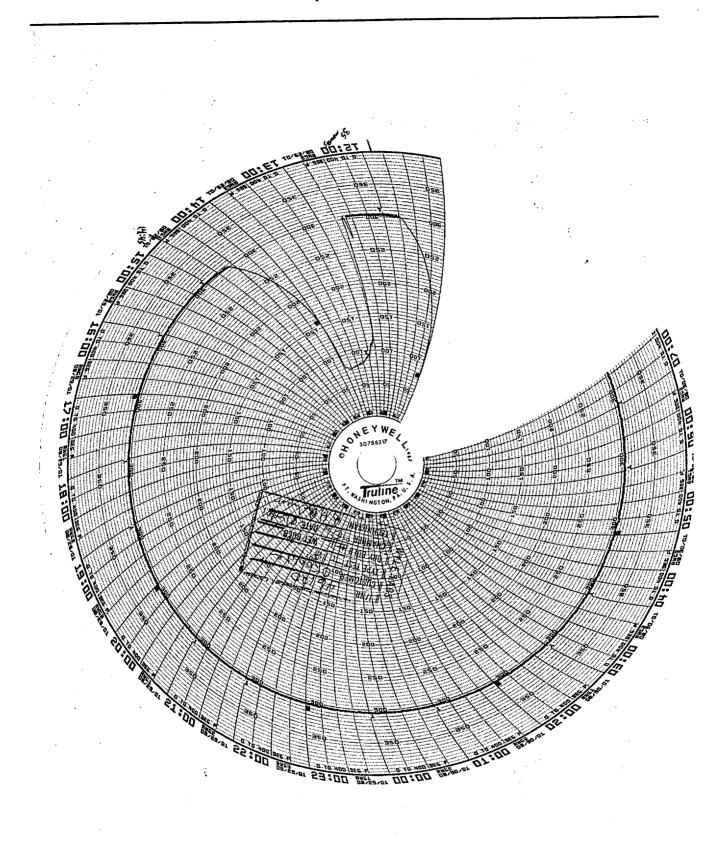
APPENDIX V

.

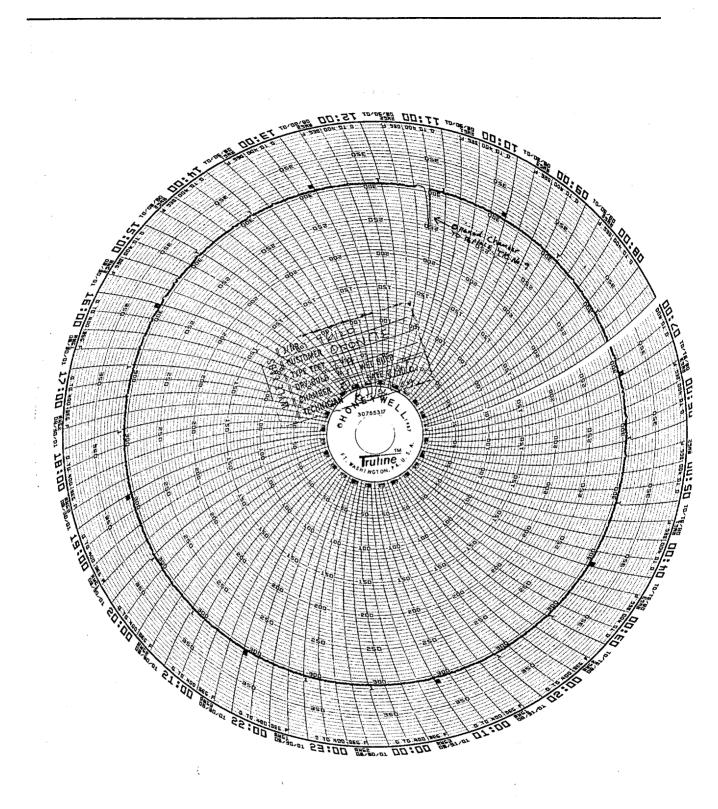
THERMAL AGING CHARTS AND PLOTS

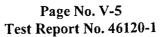
NOTE:

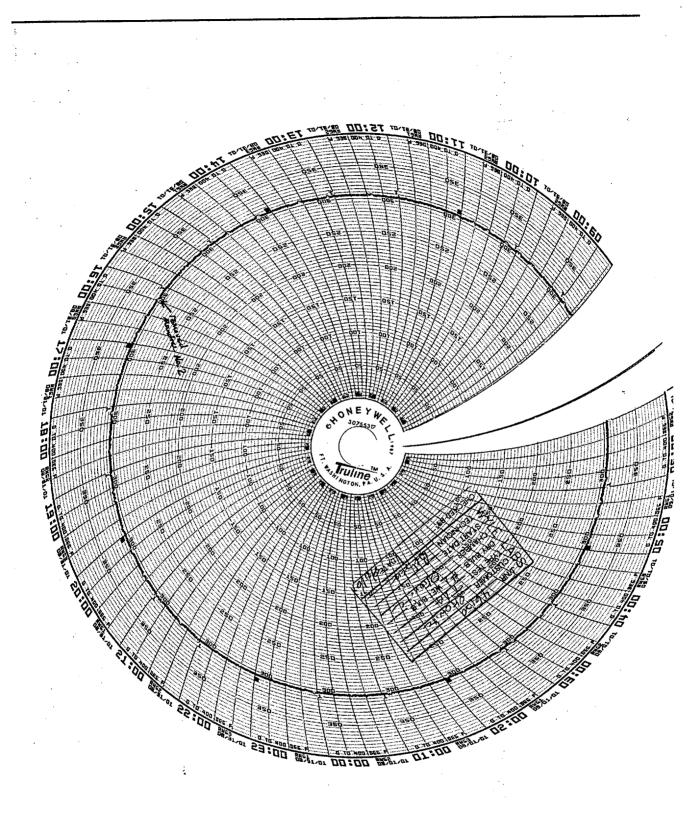
j.

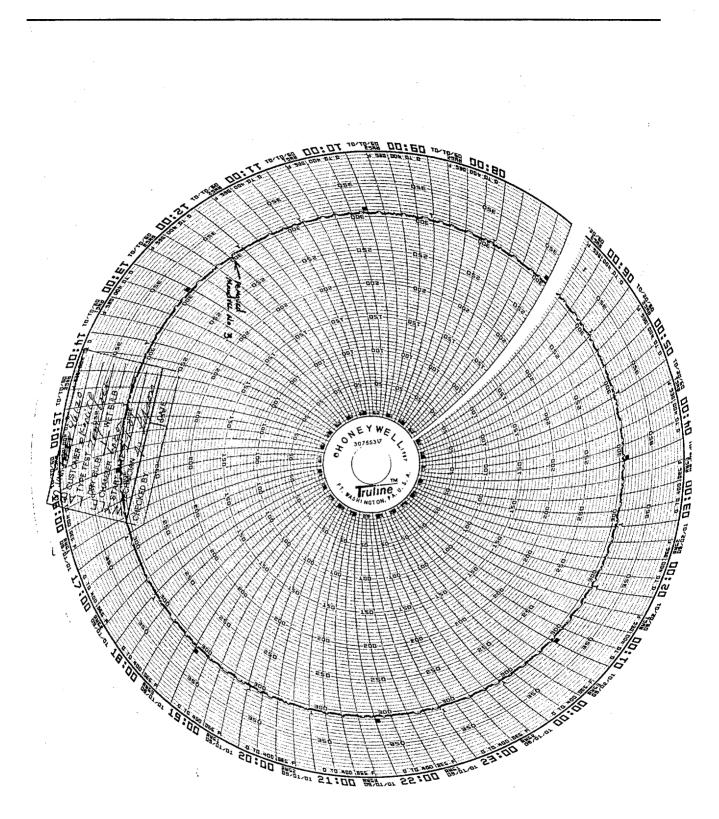

The circular charts are of a single thermocouple mounted in the center of the aging oven. The plots are individual thermocouples mounted in direct contact with individual mandrels.

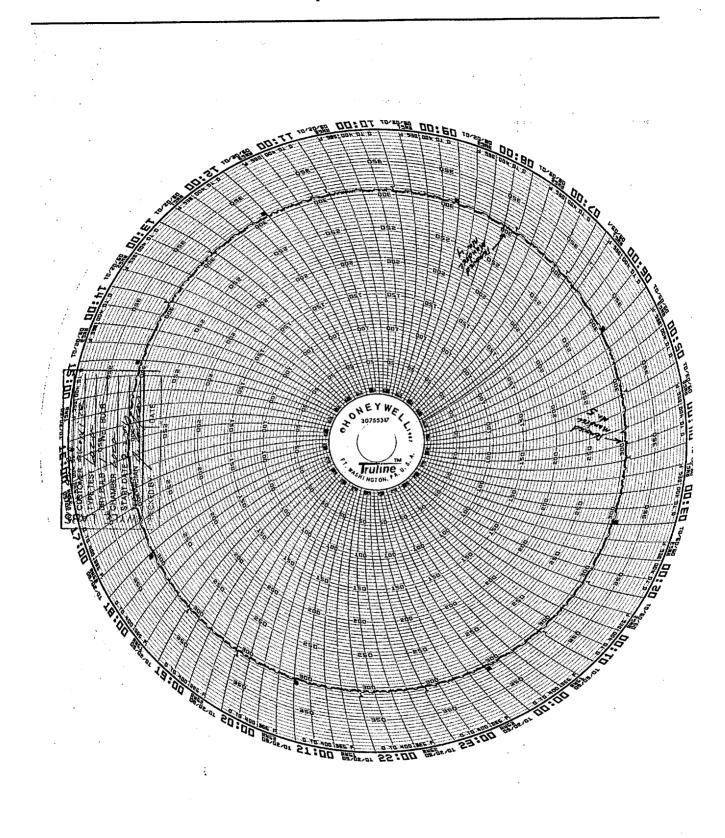
Page No. V-2 Test Report No. 46120-1

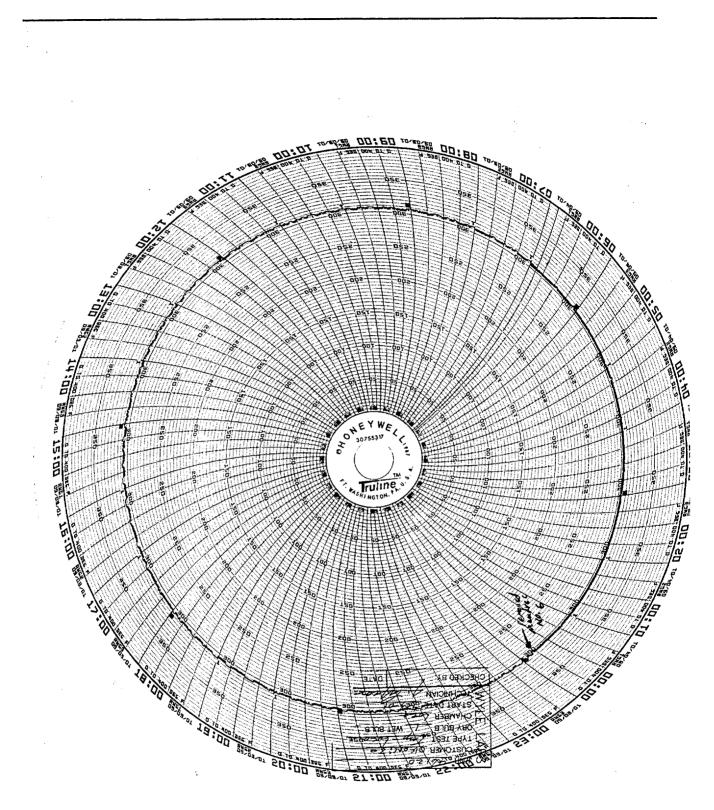

This page intentionally left blank.

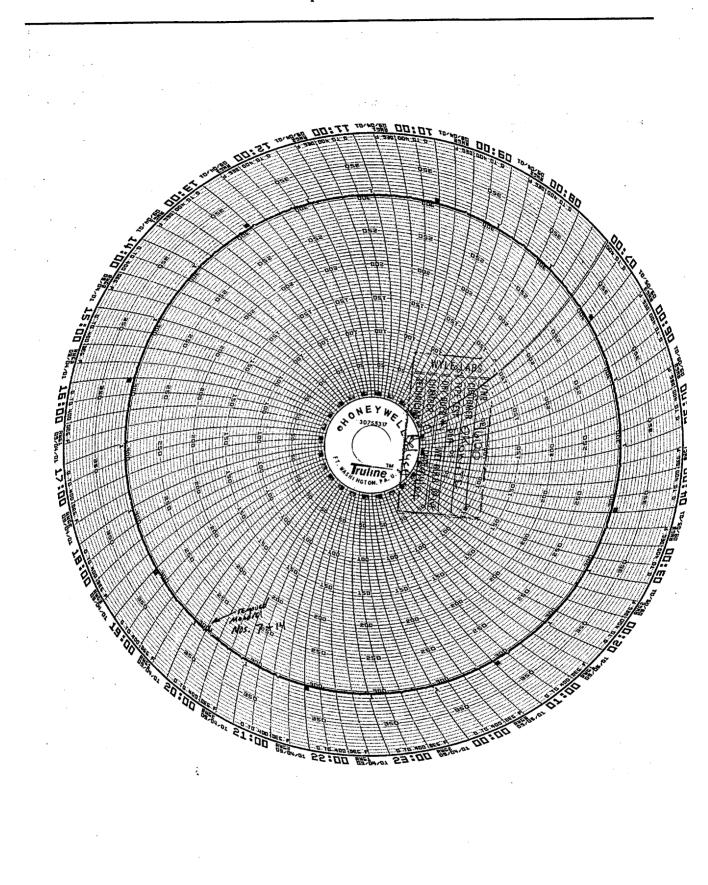

÷

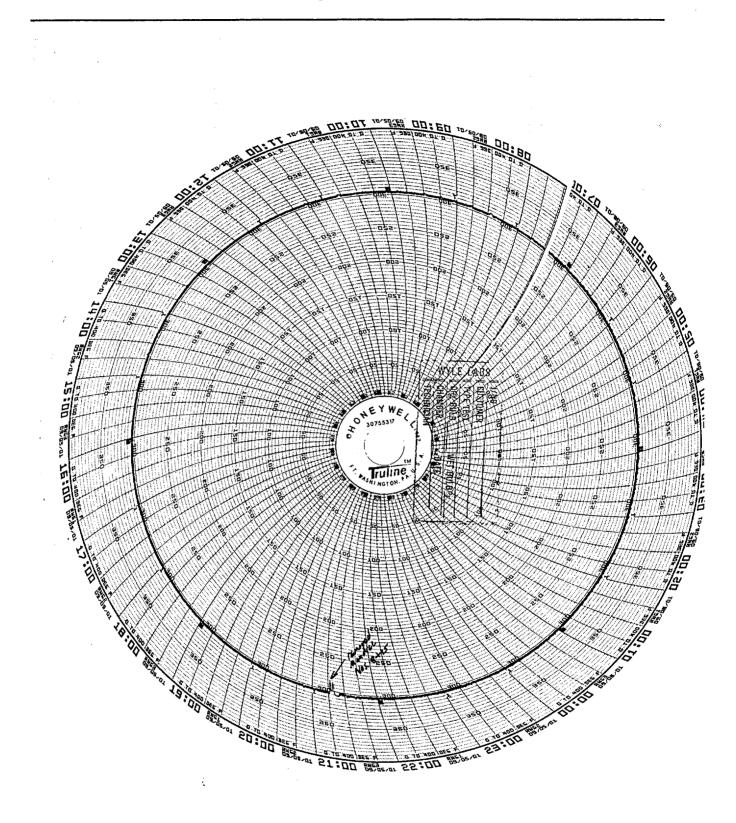

Page No. V-3 Test Report No. 46120-1

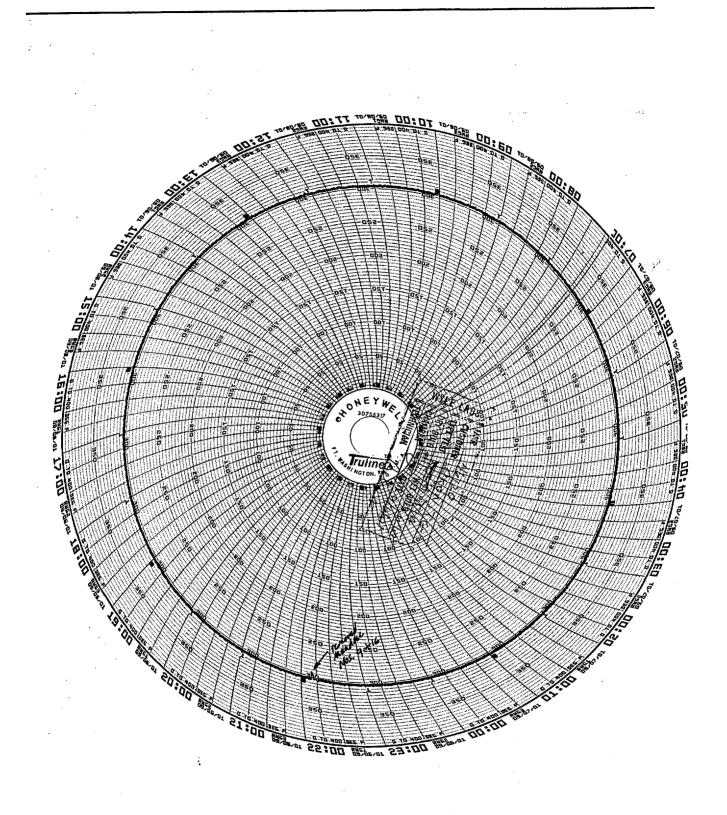


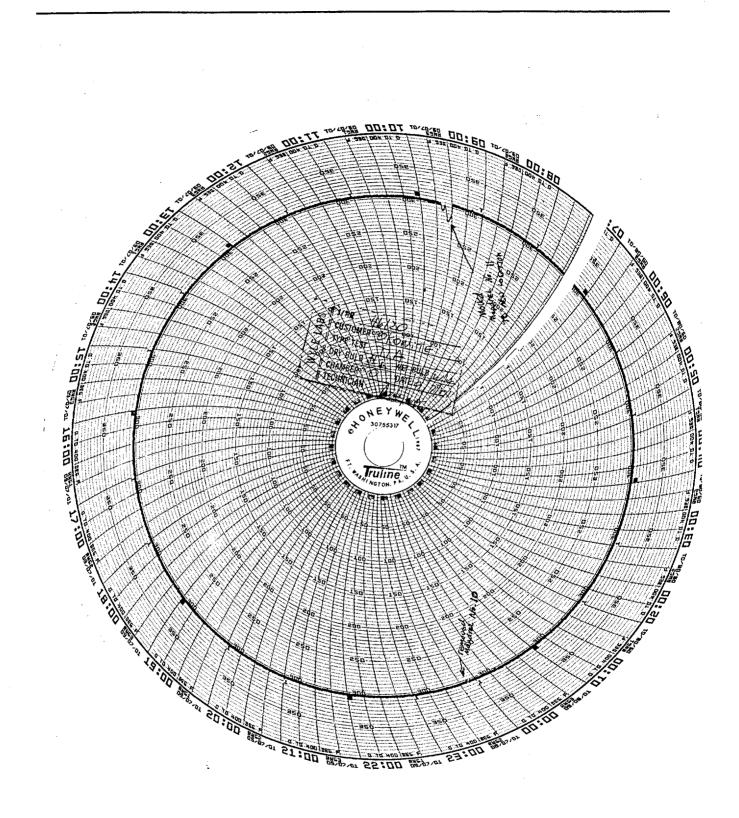

Page No. V-4 Test Report No. 46120-1

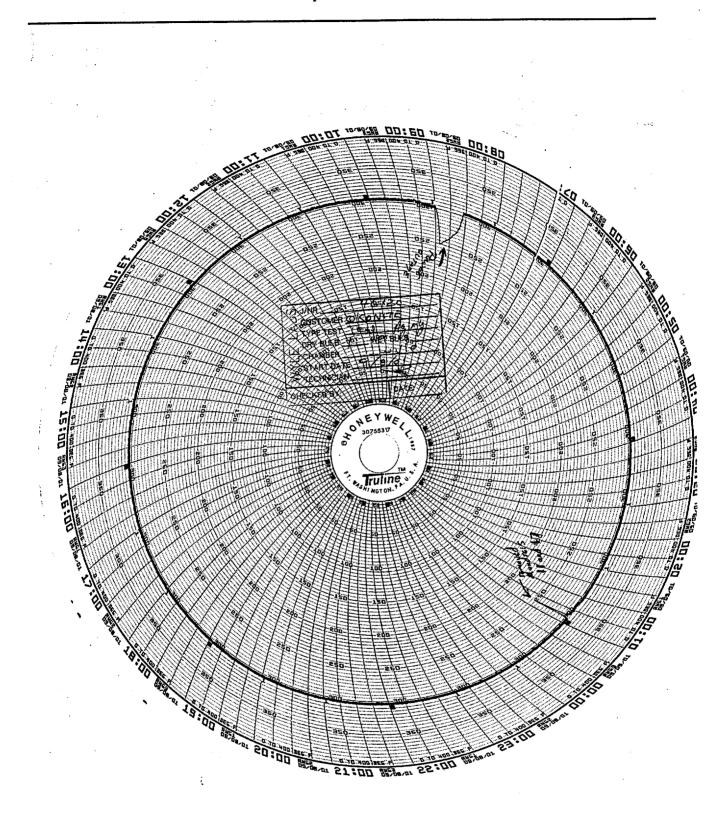




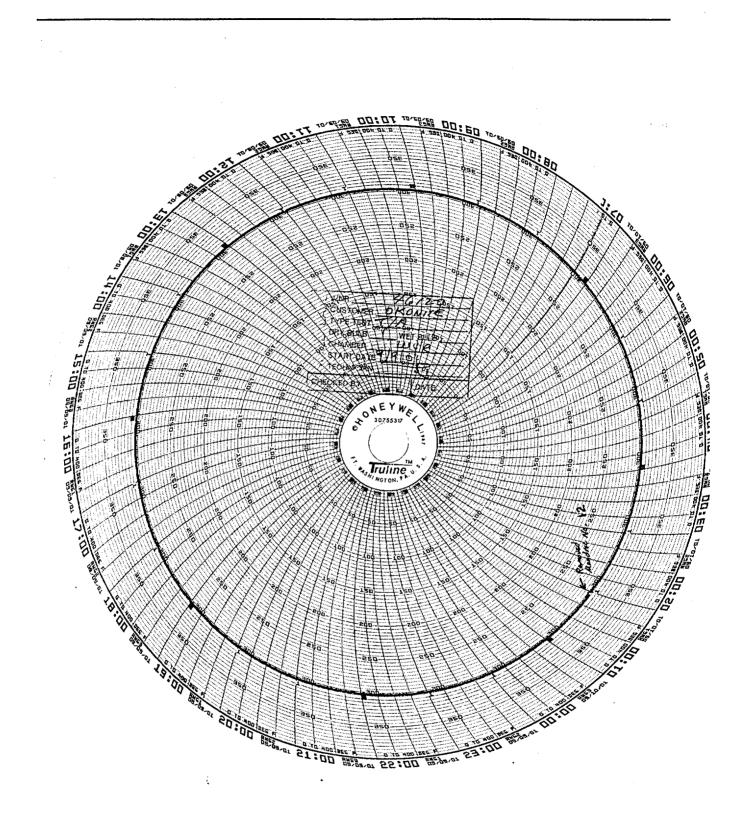

Page No. V-8 Test Report No. 46120-1

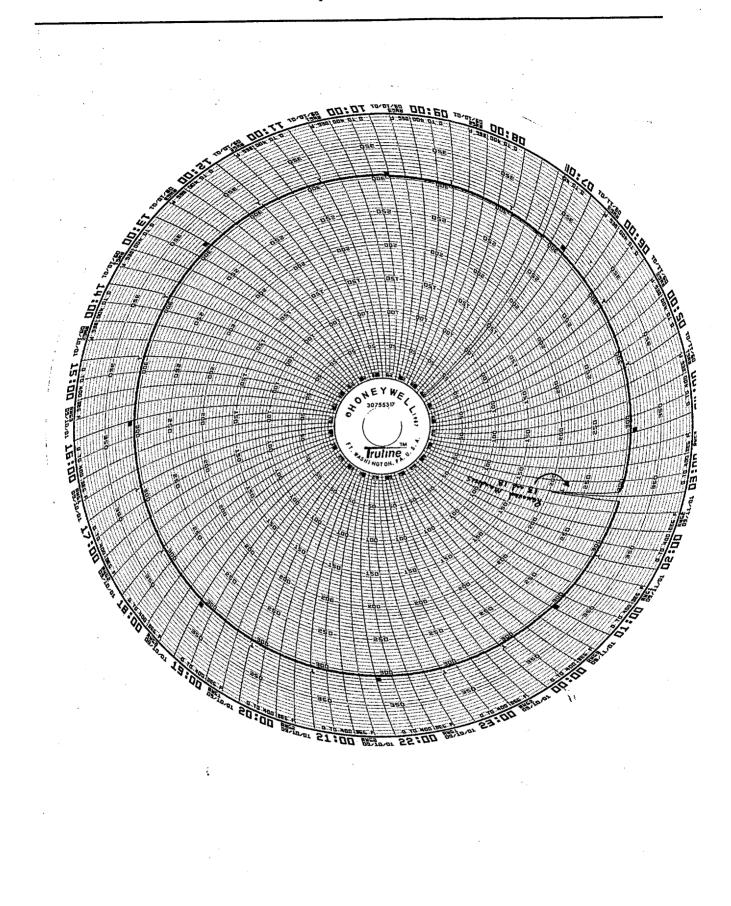


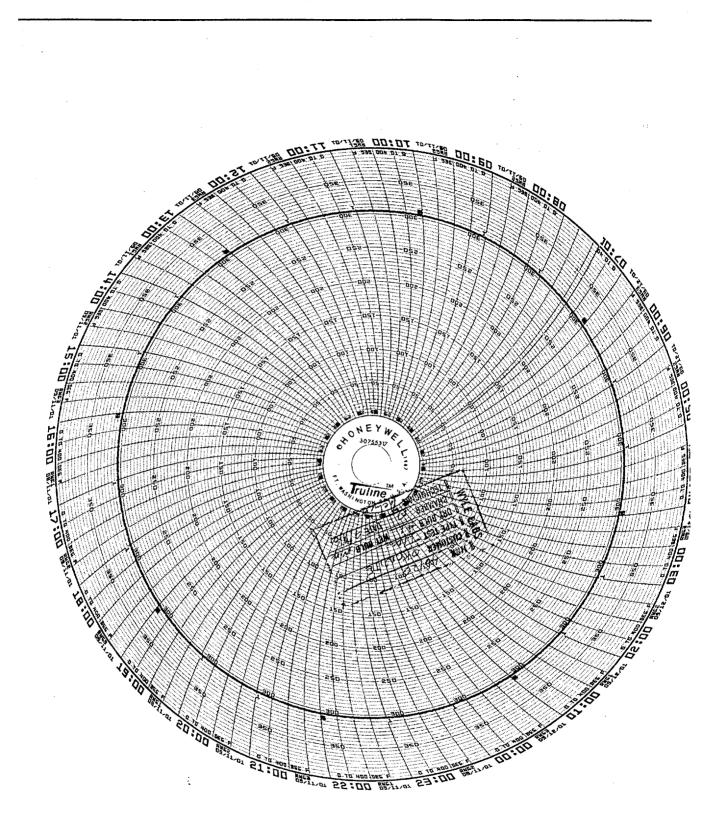

Page No. V-9 Test Report No. 46120-1

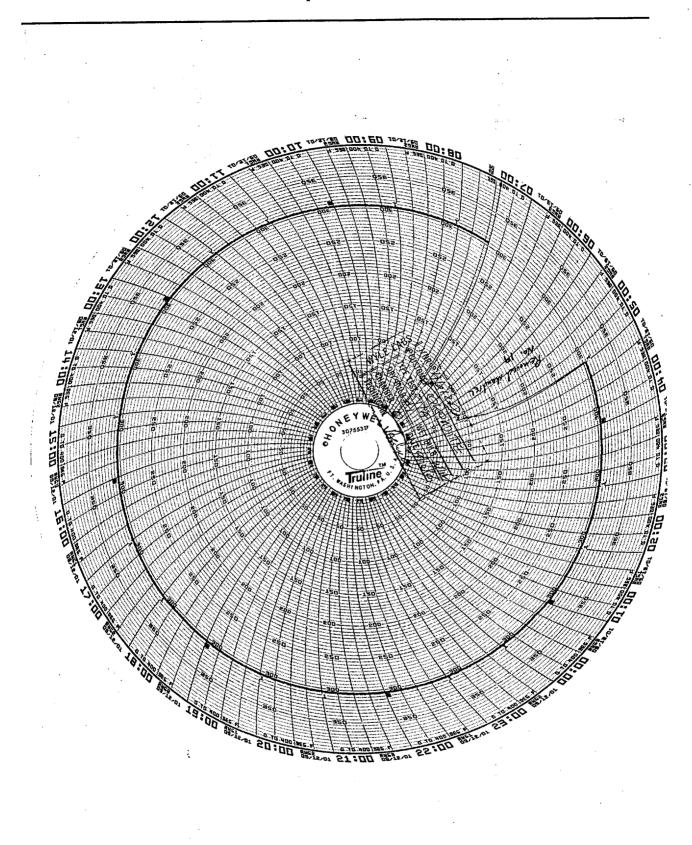


Page No. V-10 Test Report No. 46120-1








Page No. V-14 Test Report No. 46120-1

Page No. V-16 Test Report No. 46120-1

OKONITE COMPANY 46120 THERMAL AGING AUG. 29 - SEPT. 11, 2001 . T/C #2 (MANDREL 2) 600 540. + 4 480. ÷ ŧ ÷ 420. ٠ + ÷ ٠ u. 360. ÷ ŧ ÷ + DEG. 300. + + 240. + ٠ TEMPERATURE ٠ 180. ŧ ÷ ÷ ÷ + + 120. + + 60. ÷ ÷ + + + ÷ ÷ 0. 360. 315. 45. 90. 135. 180. 225. 270. 0. wyłe (HOURS) TIME /log/data/OKOTHERMAL/960828125217.915

WYLE LABORATORIES Huntsville Facility

.

Page No. V-18 Test Report No. 46120-1

OKONITE COMPANY 46120 THERMAL AGING AUG. 29 - SEPT. 11, 2001 T/C #3 (MANDREL 3) 600 540. 480. 420. LL. 360 DEG. 300. _ 240 TEMPERATURE 180. 120. 60. ÷ 4 + ÷ ÷ 0. 300. 250. 150. 200. 50. 100. 0. wyłe (HOURS) TIME /log/data/OKOTHERMAL/960828125217.915

ومرد رمن

 . 1

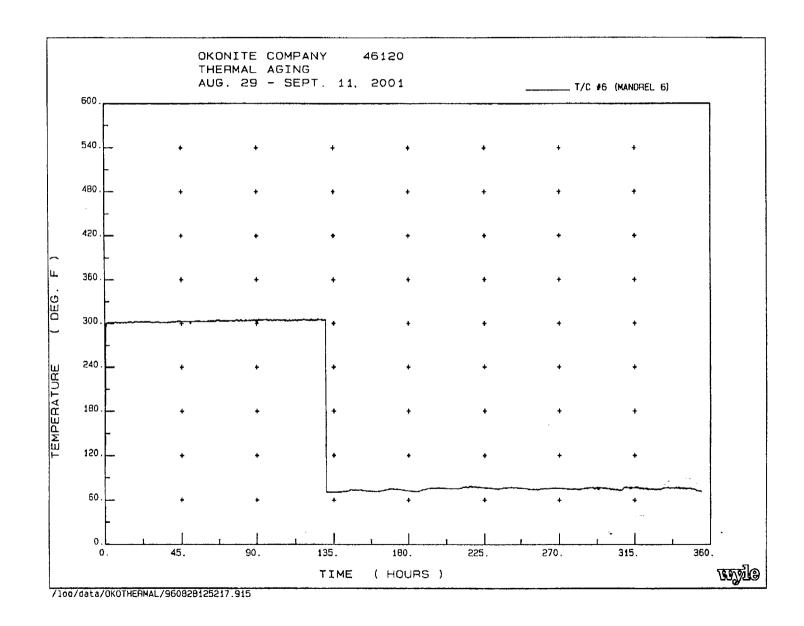
WYLE LABORATORIES Huntsville Facility

Page No. V-19 Test Report No. 46120-1

18 S. 18

.

OKONITE COMPANY 46120 THERMAL AGING AUG. 29 - SEPT. 11. 2001 T/C #4 (MANDREL 4) 600 540 + + ÷ ÷ ÷ + ٠ 480 ŧ + ŧ ÷ + + + 420 ÷ ÷ + ÷ ÷ 4 LL. 350 + + ÷ ŧ + + ٠ DEG. 300 + ÷ ŧ + + + 240. TEMPERATURE + + + + + 180. ÷ + ÷ ÷ 120. ÷ + + ÷ 60 + ÷ + ÷ + ÷ ÷ 0 45. 180. 315. 360. 0. 90. 135. 225. 270. wyło TIME (HOURS) /log/data/OKOTHERMAL/960828125217.915


WYLE LABORATORIES Huntsville Facility

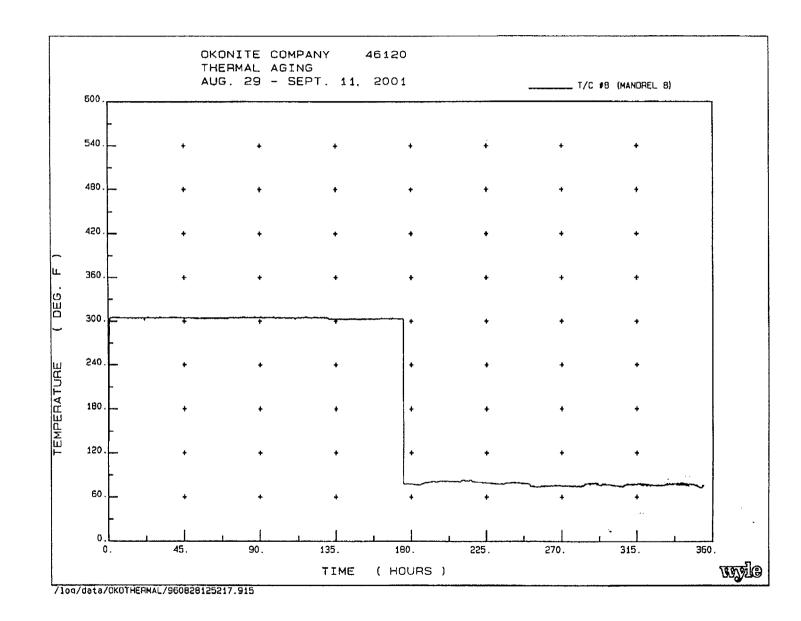
OKONITE COMPANY 46120 THERMAL AGING AUG. 29 - SEPT. 11, 2001 T/C #5 (MANDREL 5) 600 540. 480 420 360 ÷ DEG. 300. 4 240. *IEMPERATURE* 180. + 120. ÷ + 60. ÷ + + + ŧ ٥. 360. 315. 225. 45. 90. 135. 180. 270. 0. wyle TIME (HOURS) /10g/data/OKOTHERMAL/960828125217.915

411.20-24

WYLE LABORATORIES Huntsville Facility Page No. V-21 Test Report No. 46120-1

Second

.


Page No. V-22 Test Report No. 46120-1

46120 OKONITE COMPANY THERMAL AGING AUG. 29 - SEPT. 11, 2001 T/C #7 (MANDREL 7) 600. 540 ٠ 480 ÷ ÷ 420. 360. ÷ DEG. 300. 240. ٠ TEMPERATURE 180. ٠ 120. ÷ ŧ ÷ 60. ÷ ŧ ٥. 270. 315. 360. 135. 225. 45. 90. 180. 0. wyle (HOURS) TIME /log/data/OKOTHERMAL/960828125217.915

WYLE LABORATORIES Huntsville Facility

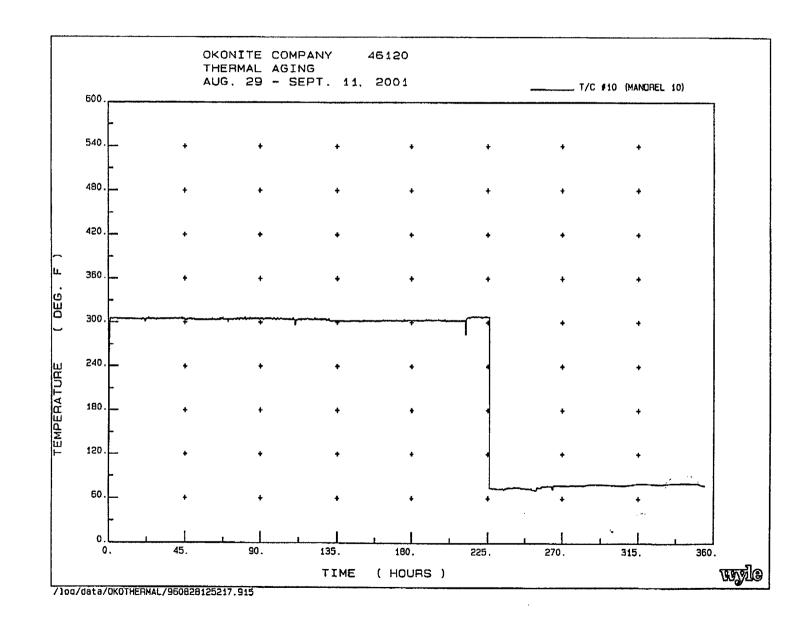
•

Page No. V-23 Test Report No. 46120-1

~

WYLE LABORATORIES Huntsville Facility

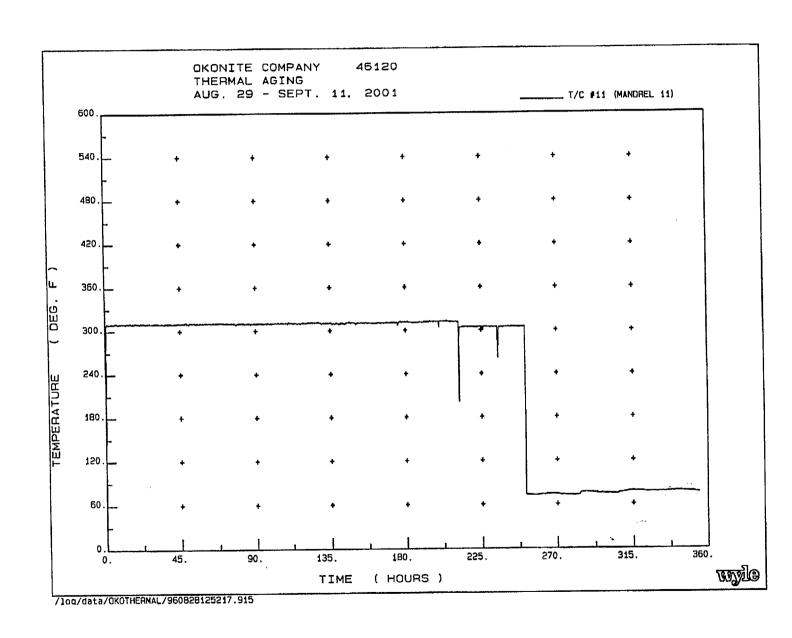
.


Page No. V-24 Test Report No. 46120-1

46120 OKONITE COMPANY THERMAL AGING AUG. 29 - SEPT. 11. 2001 T/C #9 (MANDREL 9) 600 540. 480. 4 420 360 ÷ 4 DEG. 300. 240 + TEMPERATURE 180. ÷ 120. + 60. + ŧ + ŧ 0. 360. 270. 315. 180. 225. 135. 0, 45. 90. wyłe (HOURS) TIME /log/data/OKOTHERMAL/960828125217.915

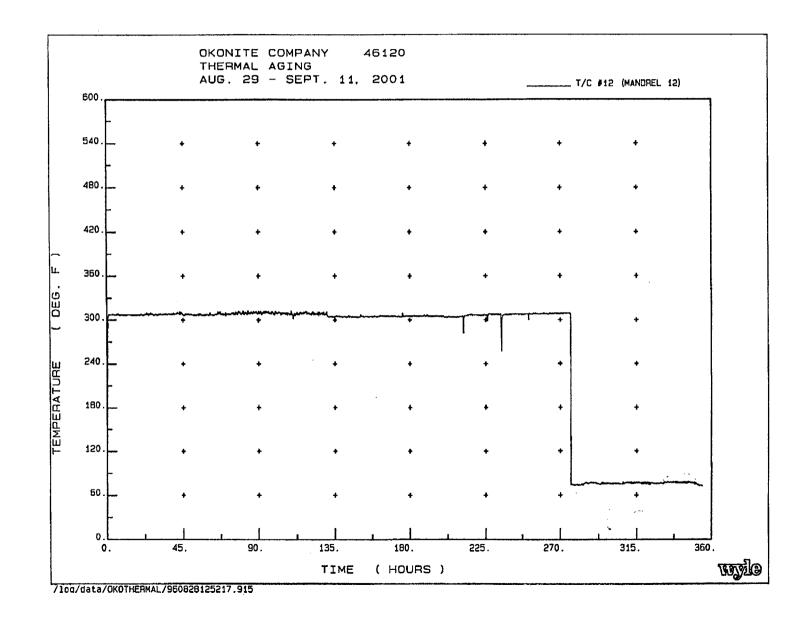
WYLE LABORATORIES Huntsville Facility Page No. V-25 Test Report No. 46120-1

51.54


कर हो

.

Page No. V-26 Test Report No. 46120-1


Burgares

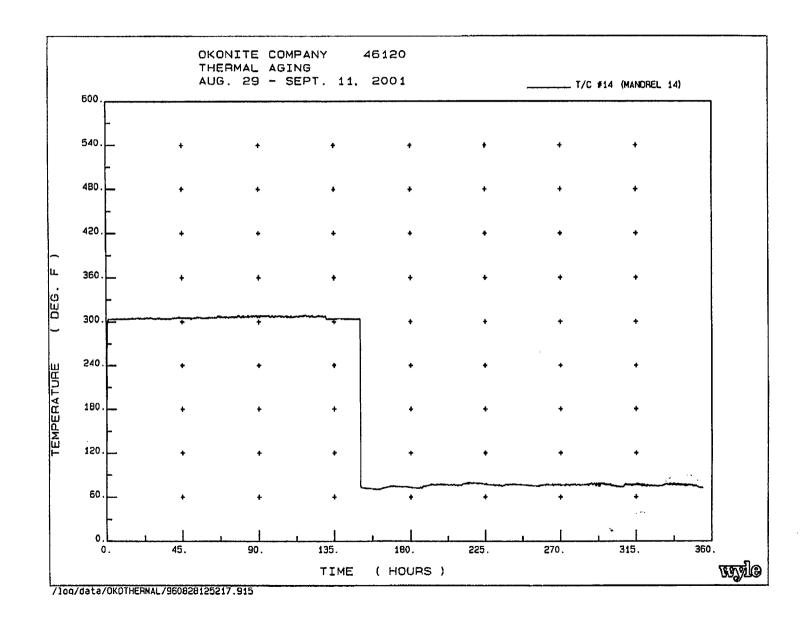
Sec. Sec.

ί.

الجسر ما الم

.

Page No. V-28 Test Report No. 46120-1

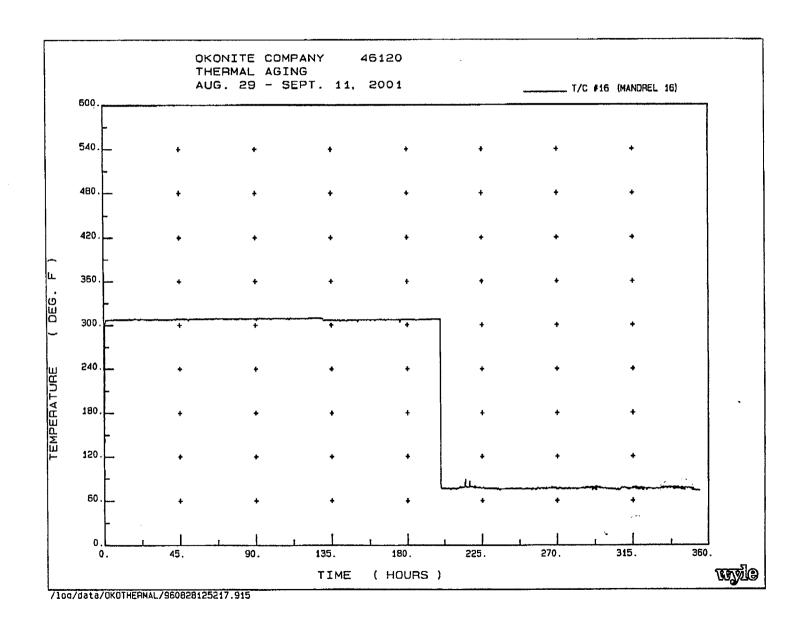

OKONITE COMPANY THERMAL AGING 46120 AUG. 29 - SEPT. 11. 2001 , T/C #13 (MANDREL 13) 600 540. 480. 420 L 360 + DEG. 300. 240 TEMPERATURE 180. 120. 60. ŧ + ÷ + + ÷ Ο. 315. 360. 45. 90. 135. 180. 225. 270. ٥. wyle TIME (HOURS) /log/data/OKOTHERMAL/960828125217.915

The second state

Antes states

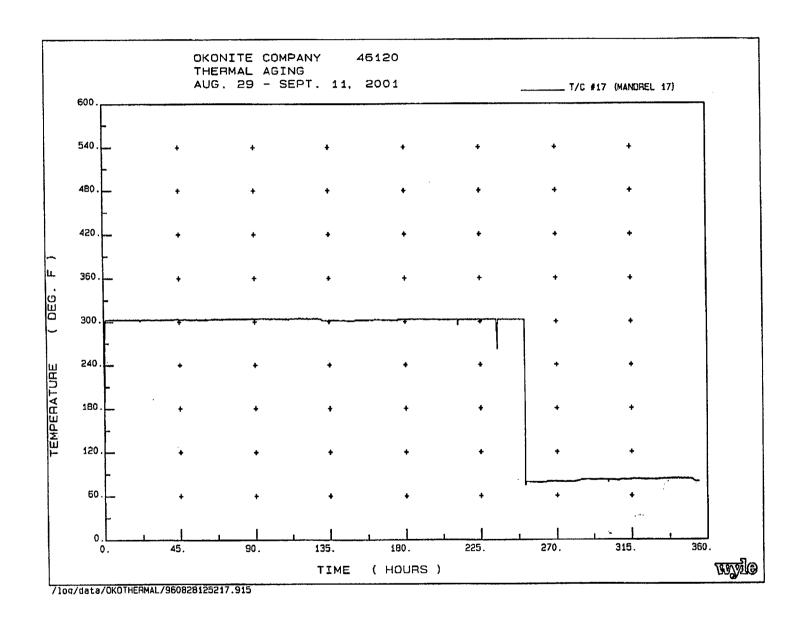
WYLE LABORATORIES Huntsville Facility

Page No. V-29 Test Report No. 46120-1

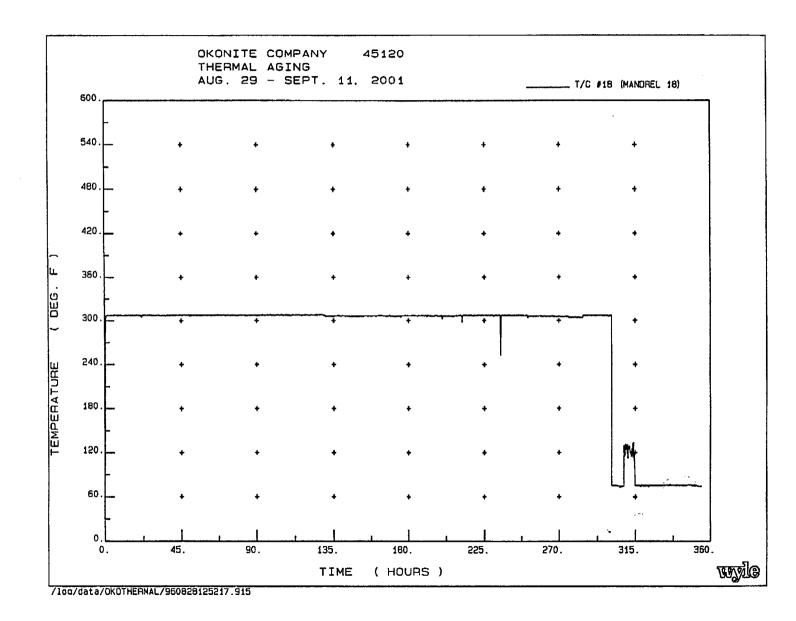

.

Page No. V-30 Test Report No. 46120-1

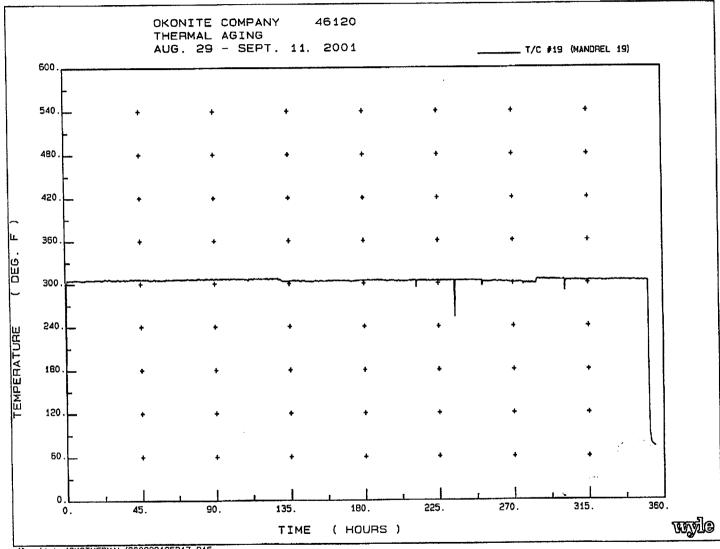
46120 OKONITE COMPANY THERMAL AGING AUG. 29 - SEPT. 11, 2001 T/C #15 (MANDREL 15) 600 540 480. 420 lш 360 ÷ DEG 300 240. TEMPERATURE 180. 120. + 60. + ÷ + ÷ 0. 225. 270. 315. 360. 90. 135. 180. 45. 0. wyłe (HOURS) TIME /log/data/OKOTHERMAL/960828125217.915


. . .

WYLE LABORATORIES Huntsville Facility Page No. V-31 Test Report No. 46120-1



•


Page No. V-32 Test Report No. 46120-1

- 4

Page No. V-34 Test Report No. 46120-1

/log/data/OKOTHERMAL/960828125217.915

WYLE LABORATORIES Huntsville Facility Page No. V-35 Test Report No. 46120-1 This page intentionally left blank.

: : ...

į

.

Page No. VI-1 Test Report No. 46120-1

APPENDIX VI

÷

RADIATION FACILITY COMPONENT IRRADIATION CERTIFICATION

1

2013

ž

This page intentionally left blank.

. . .

;

÷

Neely Nuclear Research Center Hot Cell Operations 900 Atlantic Drive Atlanta, Georgia 30332-0425 (404) 894-3600 FAX: (404) 894-9325 http://www.nnrc.gatech.edu/

October 24, 2001

Wyle Laboratories 7800 Highway 20 West Huntsville, AL 35806

Attention: Bobby Hardy

Client Reference: 1 GT Reference: 2

HSV0022607 2001-29

The items covered by the above numbers have been irradiated in accordance with quality assurance requirements using Cobalt-60 (gamma energies 1.173 MeV, 1.331 MeV) to the total dose requested.

We certify the specifics of the irradiation as follows:

Irradiation Period	Intervals between 14:50 on 09/26/01 and 08:50 on 10/22/01 as shown on the enclosed Gamma Irradiation Log Sheets.
Dose Rate	Less than 1.0E6 Rads/hr average (Air Equivalent); maximum error plus or minus 2.43%.
Total Dose	Minimum of 2.0E8 Rads (Air Equivalent) as shown on the enclosed Gamma Irradiation Log Sheets; maximum error plus or minus 2.43%.
Dose Measurement	Keithley Autoranging Picoammeter Model 485 with LND Ionization Chamber Probe. Calibration completed by Georgia Institute of Technology traceable to NIST Cobalt-60.

The specific calculations for the irradiation are enclosed. Please let me know if any additional information is required.

Sincerely,

Dwayne P. Blaylock Manager, Hot Cell Operations Neely Nuclear Research Center

Enclosures

A Unit of the University System of Georgia

An Equal Education and Employment Opportunity Institution

Georgia Institute of Technology Neely Nuclear Research Center 900 Atlantic Drive, N.W. Atlanta, GA 30332-0425

Gamma Irradiation Log and Dose Rate Measurement Sheet

Client: Reference: Items:	Wyle Laborat HSV0022607 Mandrel 14-1 Baskets 39-50	9		NRC Reference:2001-29aTotal Dose:1.0E8 w/ UncDose Rate:≤1.0E6 Rads/hr			
Start Date	Start Time	End Date	End Time	Lapsed	Dose Rate Rads/hr	Total Dose	Cum Dose

Date	Time	Date	Time	Hours	Rads/hr	Rads	Rads
09/26/01	14:50	10/05/01	8:50	210.00	4.880E+05	1.025E+08	1.025E+08

Dosimetry	Current	Dose Rate
Measurement	(Amps)	(Rads/hr)
1	6.352E-07	4.858E+05
2	6.382E-07	4.892E+05
3	6.391E-07	4.902E+05
4	6.377E-07	4.887E+05
5	6.349E-07	4.855E+05
6	6.384E-07	4.894E+05
7	6.361E-07	4.869E+05

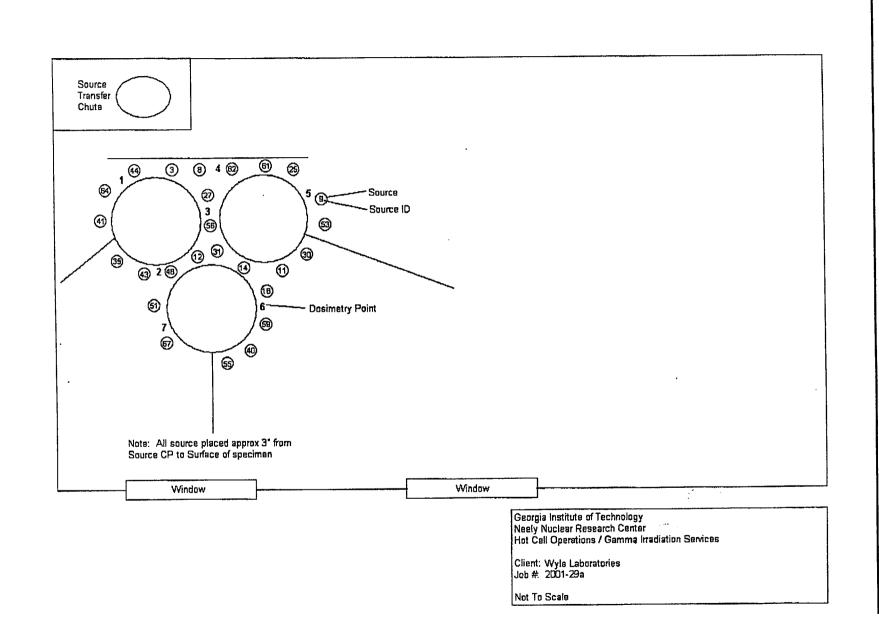
Dose Rate Determination*

Average Dose Rate (Rads/hr): 4.880E+05

*Dose Rate determined from ionization probe current using the following formula: DR(Rads/hr)= 5.609E17 * (Amps)2 + 4.085E11 * (Amps) + 56.191

Completed:

Reviewed: Auchel


Date: 10/23/01

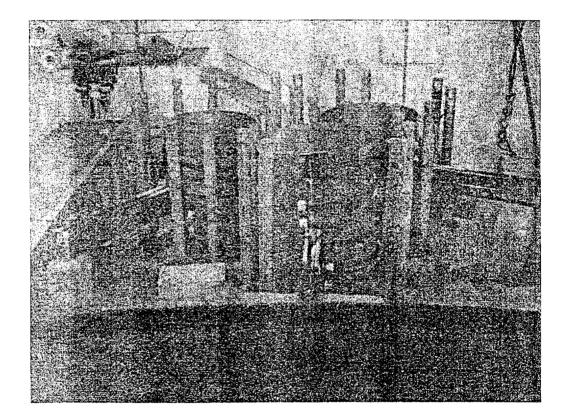
٦

Date: 10.23.01 •

11.14

120 - 100 A

1.1.1.1.1.1.1 8.50


the second

1.2.2.

.

Page No. VI-6 Test Report No. 46120-1

Wyle Laboratories Hot Cell Job# 2001-29a

Page No. VI-7 Test Report No. 46120-1

Georgia Institute of Technology Neely Nuclear Research Center 900 Atlantic Drive, N.W. Atlanta, GA 30332-0425

Gamma Irradiation Log and Dose Rate Measurement Sheet

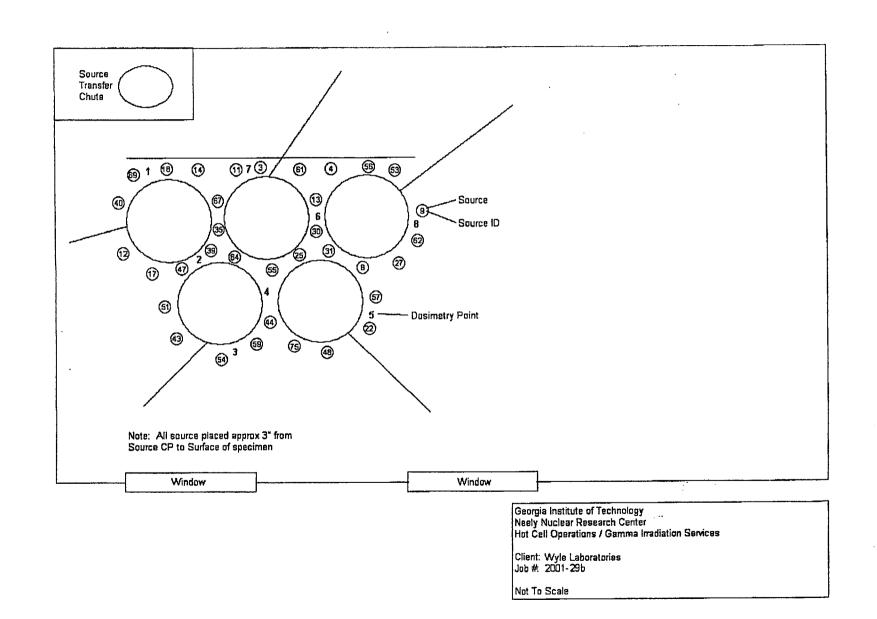
Client:	Wyle Laboratories	NRC Reference:	2001-29Ъ
Reference:	HSV0022607	Total Dose:	2.0E8 w/ Unc
Items:	Mandrels 1-13	Dose Rate:	≤1.0E6 Rads/hr
	Baskets 1,2,4,5 ,7,8,10,11,13,14,16,17,19		
	20,22,23,25,26,28,29,31,32,34,35,37,38		

Start	Start	End	End	Lapsed	Dose Rate	Total Dose	Cum Dose
Date	Time	Date	Time	Hours	Rads/hr	Rads	Rads
10/05/01	11:20	10/22/01	8:50	405.50	5.054E+05	2.049E+08	2.049E+08

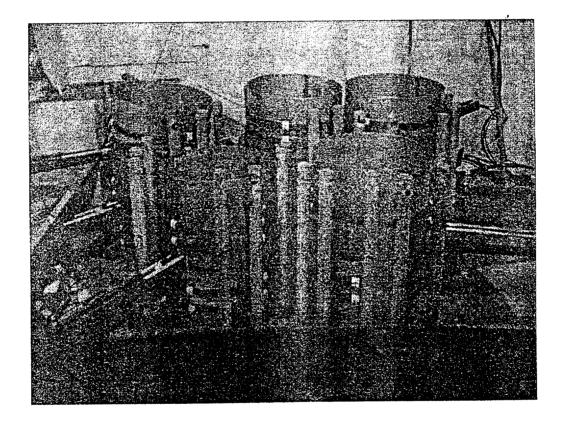
Dose Rate Determination*

Dosimetry	Current	Dose Rate
Measurement	(Amps)	(Rads/hr)
1	6.625E-07	5.169E+05
2	6.475E-07	4.997E+05
3	6.576E-07	5.112E+05
4	6.502E-07	5.028E+05
5	6.530E-07	5.060E+05
6	6.494E-07	5.019E+05
7	6.548E-07	5.080E+05
8	6.450E-07	4.969E+05

Average Dose Rate (Rads/hr): 5.054E+05


*Dose Rate determined from ionization probe current using the following formula: DR(Rads/hr)= 5.609E17 * (Amps)2 + 4.085E11 * (Amps) + 56.191

Completed:


15

wdl. Reviewed:

Date: 0/23/01 Date: 10.23.01

Wyle Laboratories Hot Cell Job# 2001-29b

Neely Nuclear Research Center Hot Cell Operations 900 Atlantic Drive Atlanta, Georgia 30332-0425 (404) 894-3600 FAX: (404) 894-9325 http://www.nnrc.gatech.edu

:

	Certificate of Calibration							
	October 10, 2000							
Manufacturer:	LND PROBE							
Model:	52120							
Description:	Ionization Probe							
Serial No.:	NNRC-110							
Calibrated by:	Georgia Institute of Technology							
	Neely Nuclear Research Center							
	Atlanta, GA 30332-0425							
	Next Calibration Due $7/21/01 \pm 25\%$							
This certificate attests tha National Institute of Stand	t this instrument has been calibrated with standards traceable to the lards and Technology.							
NIST Traceability								
Reference Test:	846/260730-98							
	HD9903							
	NIST DB 960/017							

A Unit of the University System of Georgia

An Equal Education and Employment Opportunity Institution

Neely Nuclear Research Center Hot Cell Operations 900 Atlantic Drive Atlanta, Georgia 30332-0425 (404) 894-3600 FAX: (404) 894-9325 http://www.nnrc.gatech.edu

...

Manufacturer: Model: Description: Serial No.: Calibrated by:

्यु

Keithley 485 Autoranging Picoammeter 472783 Georgia Institute of Technology Neely Nuclear Research Center Atlanta, GA 30332-0425

Next Calibration Due $06/17/02 \pm 25\%$

Certificate of Calibration

September 14, 2000

This certificate attests that this instrument has been calibrated with standards traceable to the National Institute of Standards and Technology.

Standards Used in Calibration

 Keithley Picoampere Source, Model No. 263, SN 0558088

 Calibrated:
 September 28, 2000 Due 10/19/01 ± 25%

 Calibrated by:
 Keithley Instruments, Inc

 28775 Aurora Road
 Cleveland, Ohio 44139

Traceability:

Keithley Certificate of Calibration: 0558088

A Unit of the University System of Georgia

An Equal Education and Employment Opportunity Institution

Page No. VI-12 Test Report No. 46120-1

R	evision 01 (01/98)
M	Georgialnstitute of Technology

RS - 120 Office of Radiological Safety Neely Nuclear Research Center 900 Atlantic Drive, NW Atlanta, Georgia 30332-0425 (404) 894-3605 FAX: (404) 894-9325 http://www.ors.gatech.edu/

Radioactive Contamination Clearance

Client:	Wyle Laboratories							
Client Reference Number:	HSV0022607							
Georgia Tech Reference Number:	2001-29							
ltem(s):	Mandrels and	Mandrels and baskets						
	<u> </u>							
	<u> </u>							
Direct Radiation Survey:	100	_ cpm						
Instrument Used: Luc	dlum (I	Serial Number:	48835	Cal. Due: <u>12/19/01</u>				
Contamination Survey:	ου	dpm Beta _	<u> </u>	dpm Alpha				
Instrument Used:LB	5100	Serial Number: _	13795	Cal. Due: _08/01/02				

Release for Shipment:

This certifies that the above listed items have been surveyed and are free from radioactive contamination. Authorization is hereby given for release of the items from the Neely Nuclear Research Center.

Office of Radiological Safety

10-22-01

Date

n Neely Muclear Research Center Operations

<u> 10 - 22 - 01</u> Date

WYLE LABORATORIES **Huntsville Facility**

LB-5100 Low Background Counting System Smear Analysis

A. Sugar

.

1

. ...

۰.

.....

Data		Alpha Activity Action Level (DPM):	20	Alpha Efficiency Std:	166-012-00
Date:	10/22/01	Beta Activity Action Level (DPM):	100	Alpha Efficiency:	0.29
				Alpha Background CPM:	0.20
Batch ID:	Smears - 200110221023	High Voltage Setting (volts):	1500	Alpha to Beta Crosstalk:	0.36
Group ID:	F			Beta Efficiency Std:	166-011-00
01042	-			Beta Efficiency:	0.42
Description:	Hot Cell Job			Beta Background CPM:	2.10
				Beta to Alpha Crosstalk:	0.01

Sample ID	Time (sec)	Alpha Activity (dpm)	Beta Activity (dpm)	Net Alpha (cpm)	Net Beta (cpm)	Alpha 2 Sigma	Alpha MDA	Beta 2 Sigma	Beta MDA	•
 11	60	-0.7	2.3	-0.21	0.98	4.33	16.32	10.35	22.44	
12	60	-0.8	4.7	-0.22	1.98	4.34	16.32	11.39	22.44	
13	60	-0.9	11.9	-0.26	4.99	4.34	16.32	14.07	22.44	

1

1SSauber Performed by:

Buch

Same and

 $\mathbf{c}_{i} = \{i_{i}, j_{i}, j_{i}\}$

2. 2. 1

 6.

WYLE LABORATORIES Huntsville Facility Page No. VI-13 Test Report No. 46120-1

Page No. VI-14 Test Report No. 46120-1

This page intentionally left blank.

. . .

ţ

,

F - 1 + 4

ţ

.

Page No. VII-1 Test Report No. 46120-1

APPENDIX VII

Service of the

1

.

٠. .

;

INSTRUMENTATION EQUIPMENT SHEETS

Page No. VII-2 Test Report No. 46120-1

This page intentionally left blank.

. : ``..

ŧ,

ŝ

Page No. VII-3 Test Report No. 46120-1

INSTRUMENTATION EQUIPMENT SHEET

DATE: 8/14/01 TECHNICIAN: C.DAVIS		8/14/01 C.DAVIS	••	JOB NUMBER: 46120 CUSTOMER: OKONITE				.OCA BASE	CA SELINE FUNCTIONAL		
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL	#	WYLE #	RANGE	AÇCURA	CY	CAL DATE	CAL DUE
1 2 3 4	METER TEMP/HUM IN STOP WATCH HIPOT TSTR		1864 445703 603EBL 760-2HVT	1864-97 na N/A M93121	•	106840 114448 116465 112086	50K - 50TOHM 10-90% 10HR 30KVAC	MFG 5% .01SEC/H 2%	R	2/28/01 8/24/00 6/29/01 + 8/ 6/01	8/27/01 8/24/01 9/27/01 2/ 1/02

This is to certify that the above instruments were celibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

R. Hand 8/14/01 C. Daries 8/14/01 CHECKED & RECEIVED BY INSTRUMENTATION 8/14/01 Mora Q.A. Bonda

WH-1029A, REV, APR '99

DATI TECI		29/01 BELYEA	JOB NU CUSTO		46120 OKONI	TE		AREA: LOCA	A P AGING	1
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIA	L#	WYLE #	RANGE	ACCURACY	CAL DATE	CAL DUE
i	TEMP RECORDE	R HONEYWELL	DR45AT	99454	9439851	115943	-200°-600°F	±,4°	7/13/01	10/11/01
2	TEMP CONTROL	LE RESEARCH	61011	82506	51	000723	-175-375°F	±0.5%	8/ 1/01	1/28/02
3	TEMP ALARM	RESEARCH	61034	31524	-01-14	000742	-175-375°F	±0.5%	4/30/01	10/26/01
4	TEMP CONTROL	LE RESEARCH	61011	06048	825-061	000731	-175-375°F	±0.5%	4/30/01	10/26/01
5	DATA SYSTEM	DAYTRONIC	10K6	N/A		101936	MULTI	MFG	7/13/01	7/12/02
6	TEMP IND	BARNANT	600-1010	N/A		115286	-250-400°C	.2%RD+1°C	8/10/01	8/ 9/02

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

8/29/01 Davies 8/29/01 CHECKED & RECEIVED BY INSTRUMENTATION all 01 Q.A.

WH-1029A, REV, APR '99

DATI TECH	TE: 9/ 4/01 CHNICIAN: C.DAVIS			JOB NUMBER: 46120 CUSTOMER: OKONITE		TEST A	1		
NO.	INSTRUMENT	r MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCURACY	CAL DATE	CAL DUE
1 2 3 4	HIPOT TSTR TEMP/HUM R METER STOP WATCH	GEN RAD	760-2HVT 445703 1864 603EBL	M9312176 N/A 1864-9700-00 N/A	1 12086 1 16283 1 06840 1 16465	30KVAC T:14-140°F H:1 50K - 50TOHM 10HR	2% T:±1.8°F H±5% 2% .01SEC/HR	8/ 6/01 11/16/00 8/27/01 6/29/01	2/ 1/02 11/16/01 2/22/02 9/27/01

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

C. Davies 914/81 9/4/01 CHECKED & RECEIVED BY INSTRUMENTATION Q.A.

WH-1029A, REV, APR '99

DATI TECI	E: HNICIAN:	10/22/01 C.DAVIS	JOB N CUSTO	JMBER: 4612 MER: OKO) MITE	TEST A Type		OCA OST RAD FUNC	1 T
NO.	INSTRUMENT	MANUFACTU	RER MODEL #	SERIAL #	WYLE #	RANGE	ACCURAC	Y CAL DATE	CAL DUE
1	TEMP/HUM IN	D EXTECH	445703	na	114448	10-90%	5%	9/19/01	9/19/02
2	STOP WATCH	CRONUS	603	NA	115836	10HR	0.5 SEC	9/27/01	12/26/01
3	METER	GEN RAD	1864	1864-9700-00	106840	50K - 50TOHM	2%	8/27/01	2/22/02

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

- Acut 10/23/01 C. Danis 10/22/01 _CHECKED & RECEIVED BY INSTRUMENTATION Q.A.

WH-1029A, REV, APR 99

DAT TECI		0/31/01 .DAVIS	JOB NUI CUSTON		ITE	test / Type	200	A -LOCA FUNC	i TIONAL
NO.	INSTRUMENT	MANUFACTURÉR	MODEL #	SERIAL #	WYLE #	RANGE	ACCURACY	CAL DATE	CAL DUE
1 2 3	TEMP/HUM IND STOP WATCH METER	EXTECH CRONUS GEN RAD	445703 603 1864	na NA 1864-9700-00	114448 115836 106840	10-90% 10hr 50K - 50tohm	5% 0.5 SEC 2%	9/19/01 9/27/01 • 8/27/01	9/19/02 12/26/01 2/22/02

10/31/01 Danis 10/31/01 0 CHECKED & RECEIVED BY INSTRUMENTATION 11/01/01 Q.A WH-1029A. REV, APR '99

DAT TECI		/ 8/01 DAVIS	JOB NUI CUSTON				T AREA: PE TEST:	LOCA ACCII	DENT SIMUI	1 _ATION
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCUR	ACY	CAL DATE	CAL DUE
1	AC ISOLATOR	ACTION INSTR	G468-000	ABDVZ	112907	MULTI	.5%	;	10/ 1/01	10/ 1/02
2	AC ISOLATOR	ACTION INSTR	G486	ABDWF	112928	MULTI	.5%	i.	8/21/01	8/21/02
3	AC ISOLATOR	ACTION INSTR	G468-000	ABDSX	112895	MULTI	.5%		10/ 1/01	10/ 1/02
4	AC ISOLATOR	ACTION INSTR	G468-000	ABDSY	112921	MULTI	.5%	,	2/ 2/01	2/ 1/02
5	AC ISOLATOR	ACTION INSTR	G468-000	B5CER	115197	MULTI	.5%		2/13/01	2/13/02
6	AC ISOLATOR	ACTION INSTR	G468-000	ABDVN	112916	MULTI	.5%		8/21/01	8/21/02
7	AC ISOLATOR	ACTION INSTR	G468-000	ABDVP	112904	MULTI	.5%		10/ 1/01	10/ 1/02
8	ACTION PAK	ACTION INSTR	6010	7923	100917	240VAC	.5%FS		8/13/01	2/ 8/02
9	ACTION PAK	ACTION INSTR	6010	N/A	101890	240VAC	.5%FS		8/13/01	2/ 8/02
10	ACTION PAK	ACTION INSTR	6010	N/A	101892	240VAC	.5%FS		8/13/01	2/ 8/02
11	ACTION PAK	ACTION INSTR	60101	N/A	100918	240VAC	.5%FS		8/14/01	2/ 8/02
12	AC ISOLATOR	ACTION INSTR	G468-000	BSCEL	115191	MULTI	.5%		2/ 2/01	2/ 1/02
13	AC ISOLATOR	ACTION INSTR	G468-000	BSCDP	115190	MULTI	.5%		2/ 2/01	2/ 1/02
14	AC ISOLATOR	ACTION INSTR	G468-000	B5CE8	115192	MULTI	.5%		10/ 1/01	10/ 1/02
15	AC ISOLATOR	ACTION INSTR	G468-000	B5CEN	115196	MULTI	-5%		2/13/01	2/13/02
16	CURRENT XFORM	METERMASTER	7SFT101	N/A	103445	100:5	2%		8/17/01	2/13/02
17	CURRENT XFORM	METERMASTER	7SFT101	N/A	103443	100:5	2%		8/17/01	2/13/02
18	CURRENT XFORM	METERMASTER	7SFT101	N/A	103449	100:5	2%		8/17/01	2/13/02
19	CURRENT XFORM	METERMASTER	7SFT101	N/A	103438	100:5	2%		8/17/01	2/13/02
20	CURRENT XFORM	METERMASTER	7SFT101	N/A	103444	100:5	2%		8/17/01	2/13/02
21	CURRENT XFORM	METERMASTER	7SFT101	N/A	103447	100:5	2%		8/17/01	2/13/02
22	CURRENT XFORM	METERMASTER	7SFT-101	N/A	103446	100:5	2%		8/17/01	2/13/02
23	CURRENT XFORM	METERMASTER	7SFT101	N/A	103441	100:5	2%		8/17/01	2/13/02
24	CURRENT XFORM	METERMASTER	7SFT101	N/A	103451	100:5	2%		8/17/01	2/13/02
25	CURRENT XFORM	METERMASTER	7SFT101	103437	103437	100:5	2%		8/17/01	2/13/02
26	CURRENT XFORM	METERMASTER	7SFT101	N/A	103450	100:5	2%		8/17/01	2/13/02
27	CURRENT XFORM	METERMASTER	7SFT101	N/A	103439	100:5	2%		8/17/01	2/13/02
28	CURRENT XFORM	METERMASTER	SFT-101	N/A	102396	100:5	2%		8/17/01	2/13/02
29	CURRENT XFORM	4 BROWNELL	5SFT-101	N/A	100664	100:5	2%		6/ 8/01	12/ 5/01
30	CURRENT XFORM	METERMASTER	5SFT-101	N/A	108052	100:5	2%		8/17/01	2/13/02
31	CURRENT XFORM	BROWNELL	5SFT-101	N/A	100665	100:5	2%		8/17/01	2/13/02
32	CURRENT XFORM	BROWNELL	5SFT-101	N/A	100657	100:5	2%		8/17/01	2/13/02
33	CURRENT XFORM	BROWNELL	5SFT-101	N/A	100674	100:5	2%		8/17/01	2/13/02
34	CURRENT XFORM	METERMASTER	7SFT101	N/A	108707	100:5	2%		8/17/01	2/13/02
35	POWER SUPPLY	POWERTRON	3300D	670988	112889	40V/25A	.1%		8/15/01	2/11/02
36	CURRENT CLAME	P FLUKE	801-600	102190	102190	600A	3%		8/14/01	2/ 8/02
37	DMM	FLUKE	87	68880231	113962	MULTI	MFG		1/ 9/01	1/ 9/02
38	DMM	FLUKE	87	59490233	109959	MULTI	MFG		1/20/01	1/18/02
39	PH XMITTER	OMEGA	PHTX-8710	69908067399	115881	0 to 14 PH	1%		7/12/01	1/ 8/02

C. Danis 11/8/01 R. Hand 11/09/01 CHECKED & RECEIVED BY INSTRUMENTATION 11/07/01 Q.A. WH-1029A, REV. APR '99

	DATE: 11/8/01 ECHNICIAN: C.DAVIS		JOB NUI CUSTON		ITE	TEST AREA: LOCA TYPE TEST: ACCIDENT SIMULATIO			
10.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCURACY	CAL DATE	CAL DU
10	PRESSURE GAGE	USG ⁻	4.5 IN	NA	108918	160 PSI	1% FS	10/ 2/01	12/31/0
11	PRESSURE XDUCE	SENSOTEC	TJE	600142	113857	200PSIG	.25%FS	9/14/01	12/13/0
12	METER	GEN RAD	1864	1864-9700-00	106840	50K - 50TOHM	2%	8/27/01	2/22/02
13	STOP WATCH	CRONUS	603	NA	115836	10HR	0.5 SEC	9/27/01	12/26/0
4	AMP TEMP MV	AGM ELEC	EA4002	56-411	116524	1000°F	±1%	10/26/01	4/24/02
5	AMP TEMP MV	AGM ELEC	EA4002	55-643	116525	1000°F	±1%	10/26/01	4/24/0
6	AMP TEMP MV	AGM ELEC	EA4002	55-647	116526	1000°F	±1%	10/26/01	4/24/0
17	AMP TEMP MV	AGM ELEC	EA4002	645	092914	1000°F	±1%	10/26/01	4/24/0
18	AMP TEMP MV	AGM ELEC	EA4002	648	092917	1000*F	±1% :	10/26/01	4/24/0
19	ACTION PAK	ACTION INSTR	6010	N/A	101898	240VAC	.5%FS	8/14/01	2/ 8/02
50	ACTION PAK	ACTION INSTR	6010	N/A	101895	240VAC	05%FS	8/14/01	2/ 8/02
1	ACTION PAK	ACTION INSTR	60101	N/A	101908	240VAC	.5%FS	8/14/01	2/ 8/02
2	ACTION PAK	ACTION INSTR	6010	N/A	101904	240VAC	.5%FS	8/14/01	2/ 8/02
3	ACTION PAK	ACTION INSTR	6010	4726	100919	240VAC	.5%FS	8/14/01	2/ 8/02
4	ACTION PAK	ACTION INSTR	6010	N/A	101905	240VAC	.5%FS	8/14/01	2/ 8/02
		ACTION INSTR	6010	N/A	101909	240VAC	.5%FS	8/14/01	2/ 8/02
5	ACTION PAK	ACTION INSTR	6010	N/A	101914	240VAC	.5%FS	8/14/01	2/ 8/0
6	ACTION PAK	ACTION INSTR	6010	N/A	101915	240VAC	.5%FS	8/14/01	2/ 8/0
7	ACTION PAK		G468-000	AAATI	112915	MULTI	.5%	2/ 2/01	2/ 1/0
8	AC ISOLATOR	ACTION INSTR	G468-000	ABDSW	112899	MULTI	.5%	10/ 1/01	10/ 1/
9	AC ISOLATOR	ACTION INSTR		ABDW6	112924	MULTI	.5%	2/ 2/01	2/ 1/0
0	AC ISOLATOR	ACTION INSTR	G468-000	ABDTI	112911	MULTI	.5%	10/ 1/01	10/1/
1	AC ISOLATOR	ACTION INSTR	G468-000	ABDWC	112935	MULTI	.5%	2/ 2/01	2/ 1/0
2	AC ISOLATOR	ACTION INSTR	G468-000	ABDWC	112933	MULTI	.5%	10/ 1/01	10/1/
3	AC ISOLATOR	ACTION INSTR	G468-000	ABDVE	112900	MULTI	.5%	8/21/01	8/21/(
4	AC ISOLATOR	ACTION INSTR	G468	ABDTZ	112900	MULTI	.5%	2/13/01	2/13/0
5	AC ISOLATOR	ACTION INSTR	G468-000	ABDIT	112909	MULTI	.5%	8/21/01	8/21/0
6	AC ISOLATOR	ACTION INSTR	G468-000		112934	MULTI	.5%	2/13/01	2/13/0
7	AC ISOLATOR	ACTION INSTR	G468-000	AAAAG		MULTI	.5%	2/ 2/01	2/ 1/0
8	AC ISOLATOR	ACTION INSTR	G468-000	ABDWE	112932			2/13/01	2/13/0
9	AC ISOLATOR	ACTION INSTR	G468-000	ABDVG	112903	MULTI	.5%		2/13/0
0	AC ISOLATOR	ACTION INSTR	G468-000	ABDWO	114570	MULTI	.5%	2/13/01	10/ 1/
1	AC ISOLATOR	ACTION INSTR	G468-000	ABDSZ	112920	MULTI	.5%	10/ 1/01	2/13/0
2	AC ISOLATOR	ACTION INSTR	G468-000	ABDVT	112919	MULTI	.5%	2/13/01	2/13/
3	AC ISOLATOR	ACTION INSTR	G468-000	ABDVF	112926	MULTI	.5%	2/13/01	2/13/0
4	AC ISOLATOR	ACTION INSTR	G468-000	ABDVX	112918	MULTI	.5%	2/13/01	
5	AC ISOLATOR	ACTION INSTR	G468-000	ABDVU	112902	MULTI	.5%	10/ 1/01	10/1/
6	AC ISOLATOR	ACTION INSTR	G468-000	ABDVR	112893	MULTI	.5%	8/24/01	8/23/
7	AC ISOLATOR	ACTION INSTR	G468-000	AAAAL	112894	MULTI	.5%	8/21/01	8/21/
8	AC ISOLATOR	ACTION INSTR	G468-000	BSCE7	115193	MULTI	.5%	10/ 1/01	10/1/
9	AC ISOLATOR	ACTION INSTR	G468-000	AABE2	112901	MULTI	.5%	8/24/01	8/23/0
0	AC ISOLATOR	ACTION INSTR	G468-000	ABDVS	112891	MULTI	.5%	8/21/01	8/21/
1	AC ISOLATOR	ACTION INSTR	G468-000	BSCEM	115194	MULTI	.5%	10/ 1/01	10/ 1/
2	AC ISOLATOR	ACTION INSTR	G468-000	ABDTO	114571	MULTI	.5%	8/24/01	8/23/
3	AC ISOLATOR	ACTION INSTR	G468-000	ABDVH	112923	MULTI	.5%	8/21/01	8/21/
34	AC ISOLATOR	ACTION INSTR	G468-000	B5CE9	115195	MULTI	.5%	10/ 1/01	10/ 1/
5	AC ISOLATOR	ACTION INSTR	G468-000	ABDW2	112913	MULTI	.5%	8/24/01	8/23/
36	AC ISOLATOR	ACTION INSTR	G468-000	ABDVQ	112890	MULTI	.5%	8/21/01	8/21/0
37	AC ISOLATOR	ACTION INSTR	G468-000	ABDTF	112910	MULTI	.5%	10/ 1/01	10/ 1/

CHECKED & RECEIVED BY R. Aard 11/09/01 INSTRUMENTATION C. Damis 11/08/01 WH 1029A, REV. APR '99

Page No. VII-10 Test Report No. 46120-1

DATI TECI		/01 AVIS	JOB NUME CUSTOME		ITE	TEST A TYPE		a Ident simui	3 LATION
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCURACY	CAL DATE	CAL DUE
88	AC ISOLATOR	ACTION INSTR	G468-000	A42B9	112994	MULTI	.5%	8/24/01	8/23/02
89	AC ISOLATOR	ACTION INSTR	G468-000	ABDWB	112898	MULTI	.5%	8/21/01	8/21/02
90	AC ISOLATOR	ACTION INSTR	G468-000	ABDWI	112892	MULTI	.5%	10/ 1/01	10/ 1/02
91	AC ISOLATOR	ACTION INSTR	G468-000	ABDSU	112897	MULTI	.5%	8/24/01	8/23/02
92	AC ISOLATOR	ACTION INSTR	G468-000	ABDWD	112908	MULTI	.5%	8/21/01	8/21/02
93	AC ISOLATOR	ACTION INSTR	G468-000	ABDVD	112905	MULTI	.5%	10/ 1/01	10/ 1/02
94	AC ISOLATOR	ACTION INSTR	G468-000	ABDT3	112906	MULTI	.5%	8/24/01	8/23/02
95	AC ISOLATOR	ACTION INSTR	G468-000	ABTF3	112995	MULTI	.5%	2/ 2/01	2/ 1/02
96	COND STRAIN	VISHAY	2120	34403	000415	GAIN	±2%	8/15/01	2/11/02
97	COND STRAIN	VISHAY	2120	31124	096694	GAIN	±2%	8/15/01	2/11/02
98	COND STRAIN	VISHAY	2120	15707	096204	GAIN	2%	8/15/01	2/11/02
99	COND STRAIN	VISHAY	2120	073259	104114	GAIN	2%	* 8/15/01	2/11/02
100	COND STRAIN	VISHAY	2120	21317	011605	GAIN	2%	8/15/01	2/11/02
101	STRAIN PWR	VISHAY	2110	15888	096226	15VDC	I%REG	8/15/01	2/11/02
102	DATA SYSTEM	DAYTRONIC	10K6	N/A	101936	MULTI	MFG	7/13/01	7/12/02
103	TEMP CONTROLLE		61011	32-033	100163	1500°F	±0.5%	6/20/01	12/17/01
104	TEMP CONTROLLE		61011	25-061	000735	1500°F	±0.5%	6/20/01	12/17/01
105	TEMP CONTROLLE		61011	825061	000721	1500°F	±0.5%	6/20/01	12/17/01
106	TEMP CONTROLLE		61011	06013446-120	001356	0-1500°C	MFG	6/20/01	12/17/01
107	TEMP ALARM	RESEARCH	61034	401-81	100158	1000°F	±0.5%	6/20/01	12/17/01
108	TEMP ALARM	RESEARCH	61034	401-90	100160	2000°F	±0.5%	6/20/01	12/17/01
109	TEMP ALARM	RESEARCH	61034	401-78	100161	2000°F	±0.5%	6/20/01	12/17/01
110	TEMP ALARM	RESEARCH	61034	31524	094515	2000°F	±0.5%	6/20/01	12/17/01
m	TEMP ALARM	RESEARCH	639LLP	312910	011796	1000°F	±0.5%	6/20/01	12/17/01
112	TEMP ALARM	RESEARCH	639LLP	31291-01-24	011807	-125-375°F	±0.5%		
113	TEMP ALARM	RESEARCH	61031	101-55	000704	2000°F	±0.5%	6/20/01	12/17/01
114	TEMP ALARM	RESEARCH	61031	1-0154	000707	2000°F	±0.5%	6/20/01	12/17/01
115	TEMP ALARM	RESEARCH	61031	101-56	000708	2000 F	±0.5%	6/20/01	12/17/01
116	TEMP CONTROLLE		61011	32-032	100162	1500°F	±0.5%	6/20/01	12/17/01
117	TEMP IND	BARNANT	600-1010	N/A	115286	-250-400°C	.2%RD+1°C	6/20/01	12/17/01
118	RES DECADE	IET	RS-201	N/A	103258	10MOHM	.1%	8/10/01	8/ 9/02
119	TEMP RECORDER	HONEYWELL	DR45AT	9753Y7343125	114314	-200-600°F	.176 .4°F	9/10/01	9/10/02
120	TEMP ALARM	RESEARCH	61034	102515	100310	-175-375°F	.4 r ±0.5%	11/8/01	2/6/02
121	TEMP CONTROLLE		61011	060155	094530			11/ 8/01	5/ 7/02
122						-175-375°F	±0.5%	11/8/01	5/ 7/02
	TEMP ALARM	RESEARCH	61034	31524-01-14	000742	-175-375°F	±0.5%	11/8/01	5/ 7/02
123	TEMP CONTROLLE		61011	06048825-061	000731	-175-375°F	±0.5%	11/ 8/01	5/ 7/02
124	TEMP CONTROLLE		61011	060155	094531	-175-375°F	±0.5%	11/ 8/01	5/ 7/02
125	FLOW METER	RAMAPO	MARK V	0001107	116134	1-10GPM WFE	1% RATE ACC		11/ 6/02
126	SCALE	SETRA	SUPER COUNT	15864	113735	27/500	±.0005LBS	4/25/01	4/25/02
127	SCALE	INDIANA SCALES	1616-MB	7634	112556	500LB	.01LB	4/25/01	4/25/02
128	STOP WATCH	ACCUSPLIT	603EBL	N/A	116465	IOHR	.01SEC/HR	9/26/01	12/25/01
129	STOP WATCH	ACCUSPLIT	603EBL	N/A	116467	10HR	.01SEC/HR	9/26/01	12/25/01
130	POWER SUPPLY	TENMA	72-2015	9902271	116071	60V/IA	MFG	7/20/01	7/19/02

i

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

11/09/01 C. Danies 11/08/01 CHECKED & RECEIVED BY INSTRUMENTATION 111 '9 ·0/ Q.A.

WH-1029A, REV, APR 99

DATE: TECHNICIAN:	11/16/01 C.DAVIS	JOB NUI CUSTON				T AREA: E TEST:	LOCA LOCA	ACCIDEN	I F SIM
NO. INSTRUME	NT MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	ACCU	RACY	CAL DATE	CAL DUE
1 HIPOT TSTI	HIPOTRONICS	760-2HVT	M9312176	112086	30KVAC	2%	ţ	8/ 6/01	2/ 1/02

Hank . 11/16/01 C. Danis 11/16/01 CHECKED & RECEIVED BY INSTRUMENTATION all Q.A. WH-1029A, REV, APR '99

DAT TEC		12/11/01 C.DAVIS	JOB NUI CUSTON		20 DNITE		ST AREA: LOC PE TEST: POS	CA T-ACCIDENT	I FUNC
NO.	INSTRUMENT	MANUFACTURER	MODEL #	SERIAL #	WYLE #	RANGE	UNCERTAINT	Y CAL DATE	CAL DUE
1 2 3	TEMP/HUM INI HIPOT TSTR STOP WATCH	D EXTECH HIPOTRONICS CRONUS	445703 760-2HVT 603	ла M9312176 NA	114448 112086 115836	10-90% 30KVAC 10HR	5% 2% 0.5 SEC	9/19/01 8/ 6/01 9/27/01	9/19/02 2/ 1/02 12/26/01

This is to certify that the above instruments were calibrated using state-of-the-art techniques with standards whose calibration is traceable to the National Institute of Standards and Technology.

C. Danies 12/11/01 12/11/01 R. Haut CHECKED & RECEIVED BY INSTRUMENTATION 10/11/01 MOLDO Q.A. Buenda

WH-1029A, REV, APR 99

Page No. VIII-1 Test Report No. 46120-1

-

APPENDIX VIII

...

FUNCTIONAL TEST DATA SHEETS

Page No. VIII-2 Test Report No. 46120-1

This page intentionally left blank.

. . .

i,

.

Page No. VIII-3 Test Report No. 46120-1

DATA SHEET

WYLE LABORATORIES

 Customer
 Okonite Company

 Specimen
 Okolon Cables

 Part No.
 FO-07-85810 & FO-07-7839

 Spec.
 WLTP 46120

 Para.
 4.2

 S/N
 N/A

 GSI
 N/A

 Amb. Temp.
 TO.2°F

 Photo_____ves

 Test Med.
 Tap water

 Specimen Temp.
 amb.

Job No.	46120
Report No.	46120-1
Start Date	8/14/01

Test Title_

1222

Baseline Functional Testing

Specimen No.	Insulation Resistance (ohms)	Applied Voltage (VDC)	Specimen No.	Insulation Resistance (ohms)	Applied Voltage (VDC)
1	4.0 EU	500	20	7.4 EII	506
• 2	4.0 EII	500	21	6.8 E11	500
3	5.8 EII	500	22	4.5 EI	500
. 4	4.5 EU	500	23	4.0 EII	500
5	4.0 E11	500	24	H.D EII	500
6	5.8 EII	500	25	4.0 EII	500
7	4.5 EI	500	26	1.5 EII	500
8	4.0 E11	500	27	4.5 EIL	500
9	T.O EII	500	28	3.0 Ell	500
10	7.2 E11	500	29 .	2.4 EII	500
11	TOEII	500	30	2.4 EII	500
12	7.2 EII	500	31	4.0 EII	500
13	4.0 EII	500	32	6.6 E11	500
14	3.0 EII	500	- 33	4.0 E11	500
15	5.6 Ell	500	34	4.5 EII	500
16	4.0 EII	500	35	6.0 El1	500
17	4.5 EII	500	36	6.4 EII	500
18	4.0 EII	500	37	6.4 Ell	500
19	4.5 E11	500	38	6.8 EII	50D

Notice of Anomaly

Witness <u>N/A</u> Date: _____ Sheet No. _____ of _____ Approved <u>R. charle B/16/01</u>

2

Wyle Form WH 614A, Rev. APR '84

None

Page No. VIII-4 Test Report No. 46120-1

DATA SHEET

Customer_ Okonite Company WYLE LABORATORIES Specimen_ **Okolon Cables** Part No. FO-07-85810 & FO-07-7839 70:2°F Amb. Temp. Job No. _____46120 Spec._____ WLTP 46120 Photo_ Report No. 46120-1 ves Para. ___ 4.2 Test Med. Tap water Start Date 8/14/01 N/A Specimen Temp. __amb.

S/N_ GSI N/A

Test Title_ **Baseline Functional Testing**

4.2.2 Dielec	tric Withstand				•
Specimen No.	Leakage Current ((microamps)	Applied Voltage (VAC)	Specimen No.	Leakage Current (microamps)	Applied Voltage (VAC)
1	1300	2400	20	1300	2400
. 2	· 12.00	2400	21	1400	2400
3	- 1400	2400	22	1300	2400
4	1200	2400	.23	1300	2400
5	1300	24 OD	24	12.00	2400
6	12.00	2400	25	1300	2400
7	1300	2400	26	1200	2400
8	1200	2400	27	1300	2400
9	1400	2400	28	1200	2408
10	1200	2400	29	1400	2405
11	1400	2400	30	1200	2400
12	1300	24 CD	31	1400	2400
13	1300	2400	32	1200	2400
14	1200	2400	- 33	1300	2465
15	1300	2406	34	1300	2400
16	1200	2400	35	1300	2400
17	1400	2400	36	1200	2460
18	12.00	2400	37	1300	2405
19	140D	2400	38	1200	2400

Notice of

Anomaly

Wyle Farm WH 614A, Rev. APR '84

None

Tested By	C. Damo	Date:	2/16/01
Witness	NA	Date:	•
Sheet No.	2	of	2
Approved	R. Aant	8/16/01	

WYLE LABORATORIES Huntsville Facility

Page No. VIII-5 Test Report No. 46120-1

DATA SHEET

WYLE LABORATORIES

Customer Okonite Company Specimen____Okolon Cables____ Spec._____ WLTP 46120 Para. _____ 4.4 S/N_____N/A_____ GSI_____N/A____

Amb. Temp.	<u>≈ 73° F</u>
	yes
	Tap water
Specimen Te	mp. <u>amb.</u>

46120
46120-1
9/4/01

÷

٠. .

Test Title_____ Post-Thermal Aging Functional Test

4.2.1 Insulation Resistance					
Specimen No.	Insulation Resistance (ohms)	Applied Voltage (VDC)	Specimen No.	Insulation Resistance (ohms)	Applied Voltage (VDC)
1	N/A	N/A	20	4.5E11	500
2	N/A	N/A	21	3.2E11	500
3	3.5E11	500	22	<u>4.5E II</u>	500
4	4.0E1	500	23	3.0E11	500
5	2.5E11	500	24	3.5E11	500
6	4.0E11	500	25	5.5E11	500
7	9.4610	500	26	6.8E11	500
8	4.5E11	500	27	H.5E11	500
9	2.6E11	500	28	5.6E11	500
10	3.5E11	500	29	4.0E11	500
11	2.8E11	500	30	5.0E11	500
12	4.0E11	500	31	5.4Ell	500
13	3.5Ell	500	32	6.7E11	500
14	H.OEII	500	33	4.0E11	500
15	4.0EII	500	34	5.4EII	500
16	5.0E	500	35	4.5E11	500
17	4,5E11	500	36	6.6E11	500
18	6.8E11	500	37	5.6E11	500
19	3.5 Ell	500	38	7.4E II	500
			Witness	N/A D	ate: <u>9/13/01</u> ate:
Notice of Anomaly	None		Sheet No Approved		1

Wyle Form WH 614A, Rev. APR *84

DATA SHEET

CustomerOkonite Compa		WYLE LABORATORIES
SpecimenOkolon Cables		D _
	<u>-7839</u> Amb. Temp. 🗢 7	26°F Job No. <u>46120</u>
Spec. WLTP 46120		Report No. <u>46120-1</u>
Para4.4		nir Start Date9/14/01
S/NN/A	······································	amb.
GSIN/A		
Test Title	Post-Thermal Aging Inspectic	<u>n</u>
General observations pertai	ning to all aged specimens:	
All the specimens are slightly s	stiff, the more aged the specime	en, the stiffer it feels. No radical
bending was employed to dete	ermine the stiffness. The speci	mens were lightly touched to
determine that they were stiff.	Additionally, the specimens an	e slightly stuck to the stainless
steel mandrel and to themselv	es where they touch. Slight pre	essure causes them to become
un-stuck.		
· · · · · · · · · · · · · · · · · · ·		
Specific observations pertal	ning to aged specimens:	
Specimen 24 – there are a few s	mall round spots (approximately C	0.2" diameter) along sections of the
jacket. The spots will rub off with) light finger pressure.	
Specimen 34 - there is one area	a approximately 2' long with blotch	es on the jacket. Additionally, there
is what appears to be a longitudir	nal crack in the jacket about ½" lor	ng. This may have been a
manufacturing blemish. The crac	ck does not appear to go all the wa	ay through the jacket.
Specimen 38 – there is one area	a approximately 1' long with blotch	es on the jacket.
	,,,,,,, _	
	Tested By	Hant Date: 9/14/01
	Witness	
Notice of	Sheet No.	Date
Anomaly Nont	Approved	01
Wyle Form WH 614A, Rev. APR '84		

Page No. VIII-7 Test Report No. 46120-1

DATA SHEET

WYLE LABORATORIES

 Customer
 Okonite Company

 Specimen
 Okolon Cables

 Part No.
 FO-07-85810 & FO-07-7839

 Spec.
 WLTP 46120

 Para.
 4.6

 S/N
 N/A

 GSI
 N/A

Amb. Temp.	73.6°F
Photo	<u>no</u>
	Tap water
Specimen Te	mp. <u>amb.</u>

Job No	46120
Report No.	46120-1
Start Date	10/23/01

:

۰.,

Test Title_____

Post-Radiation Exposure Functional Test

Specimen No.	Insulation Resistance (ohms)	Applied Voltage (VDC)	Specimen No.	Insulation Resistance (ohms)	Applied Voltage (VDC)
1	6.9E11	500	20	3,5E11	500
2	8.4Ell	500	21	2.0Ell	500
3	6.6Ell	500 ·	22	3.0Ell	500
4	9.0E11	500	23	1.9 <i>El</i> l	500
5	.5.4E11	500	24	2.8E11	500
6	6.7E11	500	25	I,SEll	500
7	4.5E11	500	26	2.8Ell	500
8	6.0Ell	500	27	3,0E11	500
9	4,0Ell	500	28	4.5Ell	500
10	6.2E11	500	29	3.0Ell	500
11	3.5Ell	500	30	Ч,SEII	500
12	5.0Ell	500	31	4,5E11	500
13	3.0Ell	500	32	3,SEll	500
14	4.5E11	500	33	2.0E11	500
15	2.8 <i>El</i> l	500	34	3. <i>5Ell</i>	500
16	4.0611	500	35	1.6E11	500
17	3.0E11	500	36	2.9E11	500
18	5.2E11	500	37	1.4E11	500
19	2.2E11	500	38	2.7E1	500

 Vitness
 N/A
 Date:
 Image: Mail

 Sheet No.
 1
 of
 1

 Approved
 Dom Smith
 16 (23/0/
 0

Notice of

Anomaly _____

Wyle Form WH 614A, Rev. APR '84

None

Page No. VIII-8 Test Report No. 46120-1

DATA SHEET

-

i,

Customer	Okonite Company		WYLE LABORATORIES
Specimen	Okolon Cables		
Part No. <u>FC</u>	0-07-85810 & FO-07-7839	Amb. Temp. <u>٦५. ٩ ०</u> F	Job No46120
Spec	WLTP 46120	Photoyes	Report No. 46120-1
Para.	4.7.1	Test MedAir*	Start Date
S/N	N/A	Specimen Tempamb,	· ·
GSI	N/A		

Test Title____

LOCA Installation Check (prior to LOCA Test)

Specimen No.	Insulation Resistance (ohms)	Applied Voltage (VDC)	Specimen No.	Insulation Resistance (ohms)	Applied Voltage (VDC)
1	1.6 E11	500	20	T.B EID	500
2	1.7 EII	500	21	T.8 EID	500
3	1.7 EII	500	22	1.0 EII	500
4	I.BEII	500	23	7.6 EIO	500
5	1.9 EII	500	24	1.1 EII	500
6	1.6 EI	500	25	6.0 E10	500
7	9.2 E10	500	26	5.8 ED	500
8	T.D EID	500	27	7.2 EID	500
9	1.1 EII	500	28	9.4 ED	500
10	1.2 E12	500	29	8.4 EID	500
11	1.1 EII	500	30	9.0 ED	500
12	1.2 EU	500	31	7.2 E10	500
13	1.1 EII	500	32	9.6 EIO	500
14	1.3 E II	500	33	8.6 ED	500
15	1.1 EII	500	34	I.DEI	500
16	1.3 E11	500	35	6.8 EID	500
17	6.8E1D	500	36	8.8 ED	500
18	I.O EII	500	37	5.8 ED	500
19	8.2 EIO	500	38	B.D EID	500
*Specimens we	t by spraying with tap water	from a hose.	Tested By	~	e: 11/01
		,	Witness	N/A Dat	e:

Notice of Anomaly <u>None</u>

Witness _	N/A	_ Date:	
Sheet No.	1	of	1
Approved	R. dauf	Moilo	
1.1			

Page No. VIII-9 Test Report No. 46120-1

DATA SHEET

Customer	Okonite Company		WYLE LABORATORIES
Specimen_	Okolon Cables		
Part NoF	O-07-85810 & FO-07-7839	Amb. Temp. <u>67.8° F</u>	Job No. <u>46120</u>
Spec	WLTP 46120	Photoves	Report No. <u>46120-1</u>
Para.	4.7.4	Test Med. <u>Tap water</u>	Start Date
S/N	N/A	Specimen Temp. <u>amb.</u>	`
GSI	N/A		:
S/N	N/A		Start Date <u>11/21/01</u>

Test Title_

...

. 4

ž

Functional Testing at 10-Day Point

Specimen No.	Leakage Current (microamps)	Applied Voltage (VAC)	Specimen No.	Leakage Current (microamps)	Applied Voltage (VAC)
1	2400	2400	20	2500	2400
2	2200	2400	21	>10,000	< 200
3	2600	2400	22	>10,000	< 200
4	2200	2400	23	>10,000	2200
5	2700	2400	24	>10,000	2200
6	2400	2400	25	>10,000	< 200
7	2600	2400	26	710,000	< 200
8	2300	2400	27	3000	2400
9	2800	2400	28	2600	2400
10	2500	2400	29	2800	2400
11	2700	2400	30	2500	2400
12	2300	2400	31	2900	2400
13	2900	2400	32	2600	2400
14	2500	2400	33	3200	2400
15	3100	2400	34	2800	2400
16	2700	2400	35	3200	2400
17	2800	2400	36	2600	2400
18	2400	2400	37	3400	2400
19	3000	2400	38	>10,000	< 200
			Tested By Witness	• / •	Date: <u> 2_ 0 </u> Date:
Notice of			Sheet No.	c	f1

2 Anomaly _____No.__

Wyte Form WH 614A, Rev. APR '84

Hant

R.

Approved ____

ntzilot

Page No. VIII-10 Test Report No. 46120-1

DATA SHEET

Customer	Okonite Company		WYLE LABORATORIES
Specimen_	Okolon Cables		
Part No. F	O-07-85810 & FO-07-7839	Amb. Temp. <u>72.7°F</u>	Job No. <u>46120</u>
Spec	WLTP 46120	Photo yes	Report No46120-1
Para	4,8	Test Med. <u>Tap water</u>	Start Date <u>12/12/01</u>
S/N	N/A	Specimen Temp. <u>amb.</u>	
GSI	N/A		` · .

Test Title_ Post-Accident Functional Test 4.2.2 Dielectric Withstand ŝ Applied Voltage Specimen Leakage Current Applied Voltage Specimen Leakage Current No. (microamps) (VAC) No. (microamps) (VAC) N/A NA N/A N/A MA NIA NA N/A NA NA NIA 2,000 N/A NA

Notice of

Anomaly

 Tested By
 C. Dawn
 Date: 12[13]01

 Witness
 John Formation of of pathering Date: 12[15]01

 Sheet No.
 1
 of 1

 Approved
 R. Date: 12[14]01

Wyle Form WH 614A, Rev. APR '64

No. 3

Page No. IX-1 Test Report No. 46120-1

1

.

APPENDIX IX

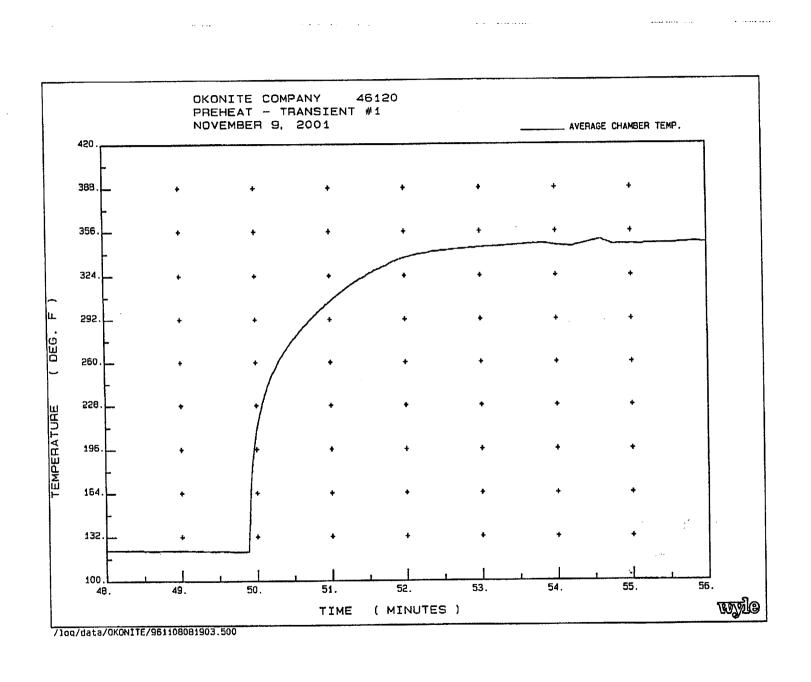
٠. .

÷

ACCIDENT SIMULATION TEST PLOTS

Page No. IX-2 Test Report No. 46120-1

This page intentionally left blank.


.

÷

.,

ţ

WYLE LABORATORIES Huntsville Facility

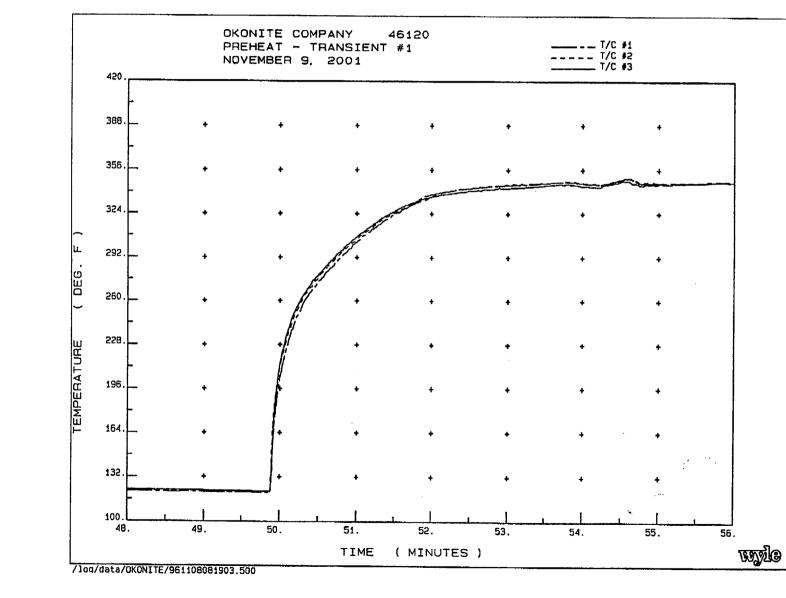
tare to de

Sec. Sec. 1

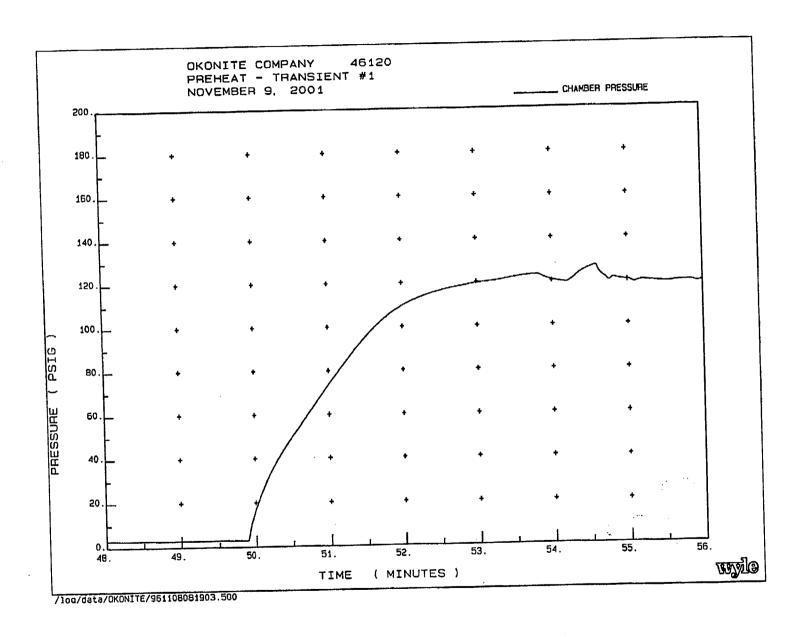
Sugar Sec.

Sec. Card

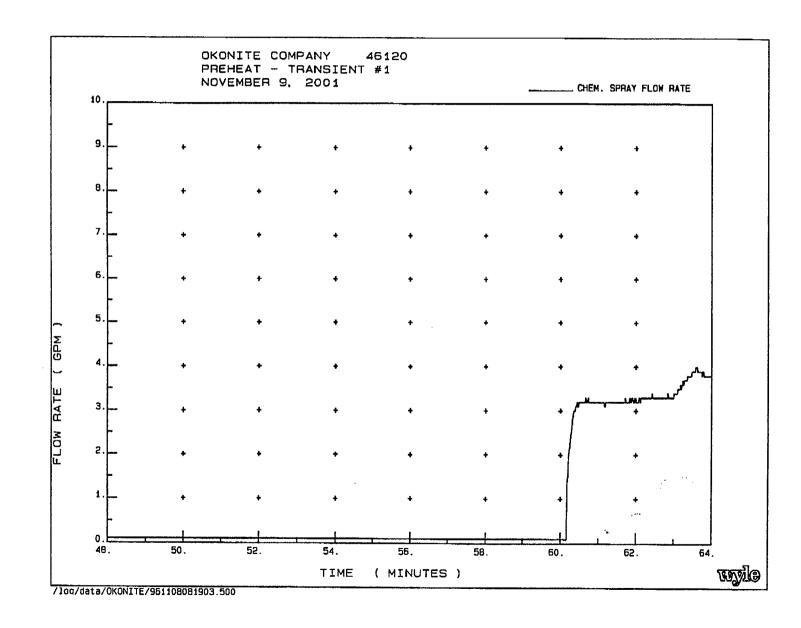
6.

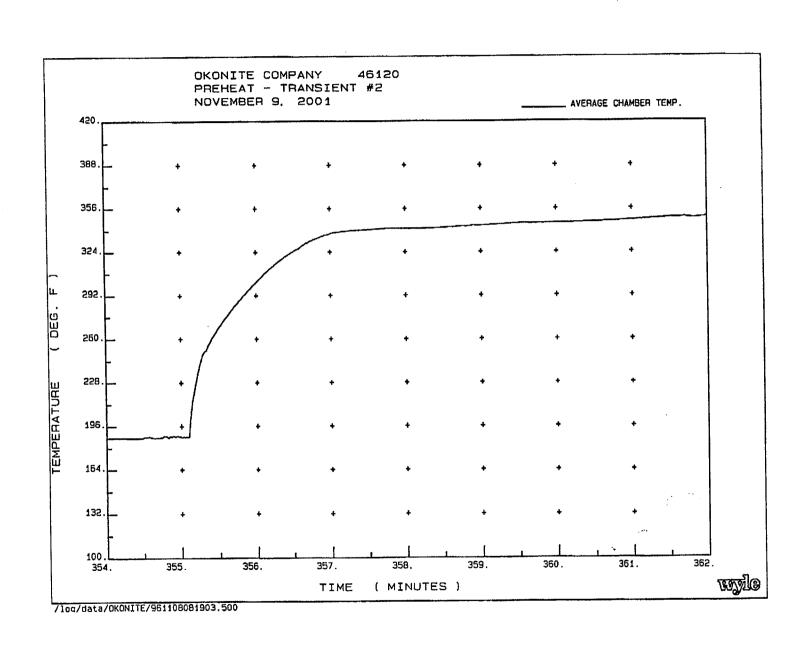

12.00

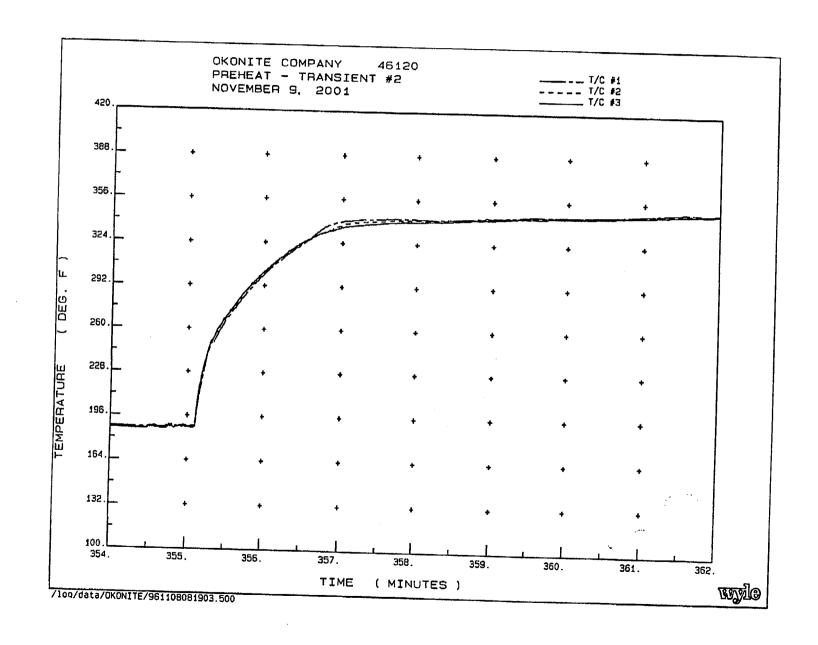

فأسترج ومرجعا

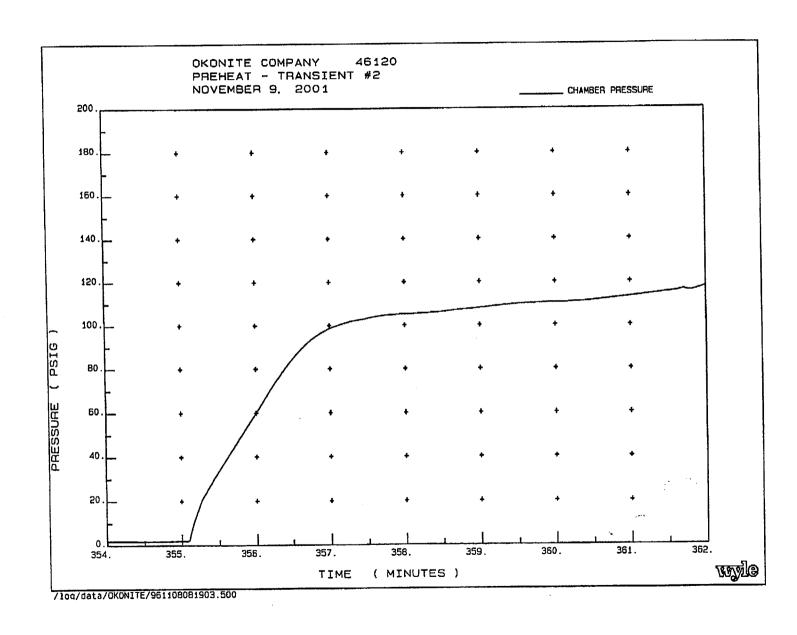

1.....

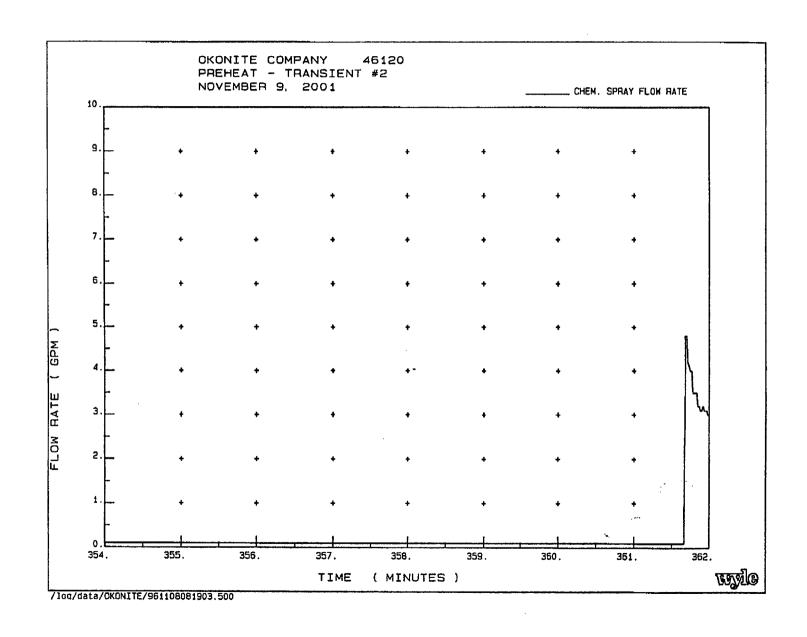
1 .a. 2

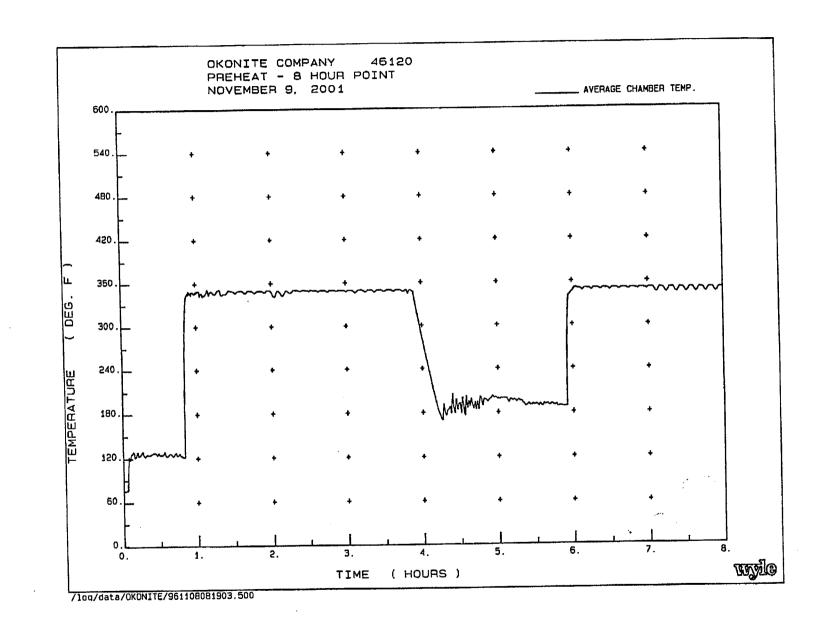

Page No. IX-3 Test Report No. 46120-1




Page No. IX-5 Test Report No. 46120-1

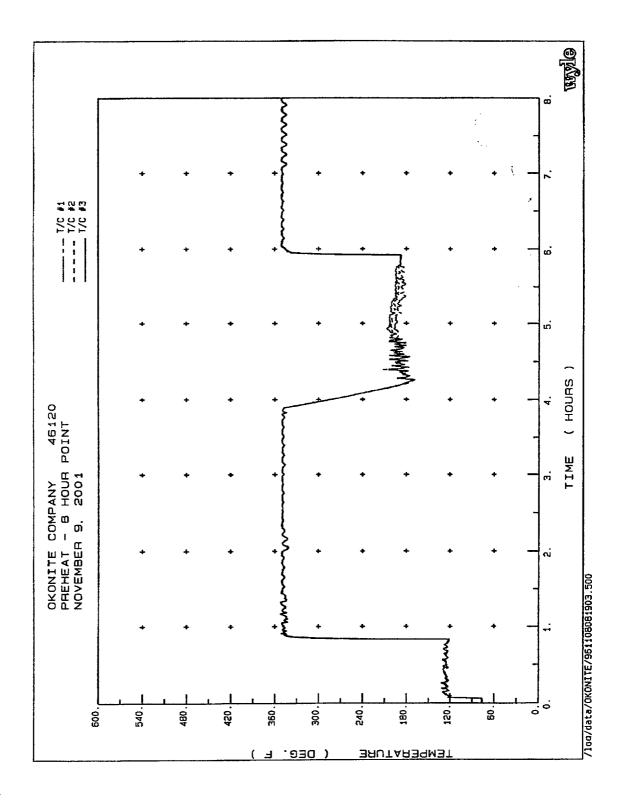

Page No. IX-6 Test Report No. 46120-1



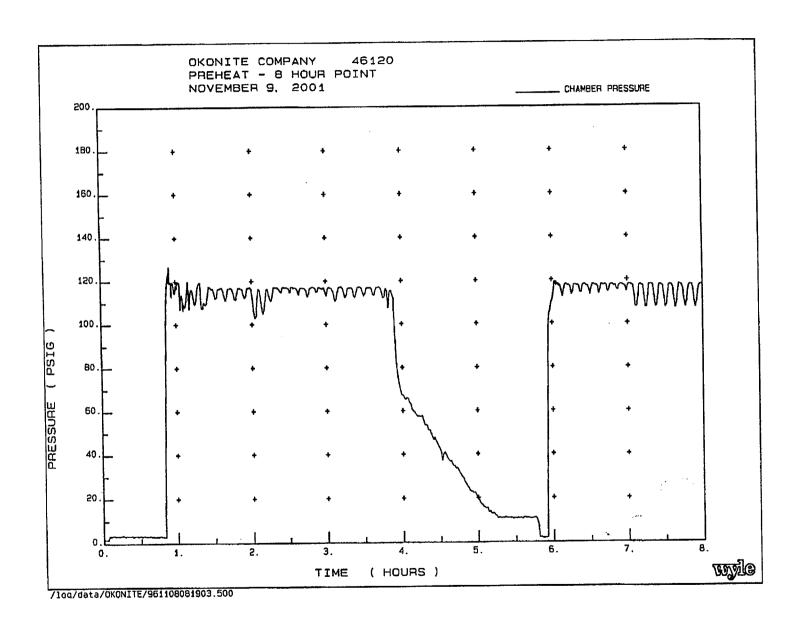

Page No. IX-8 Test Report No. 46120-1

Page No. IX-9 Test Report No. 46120-1

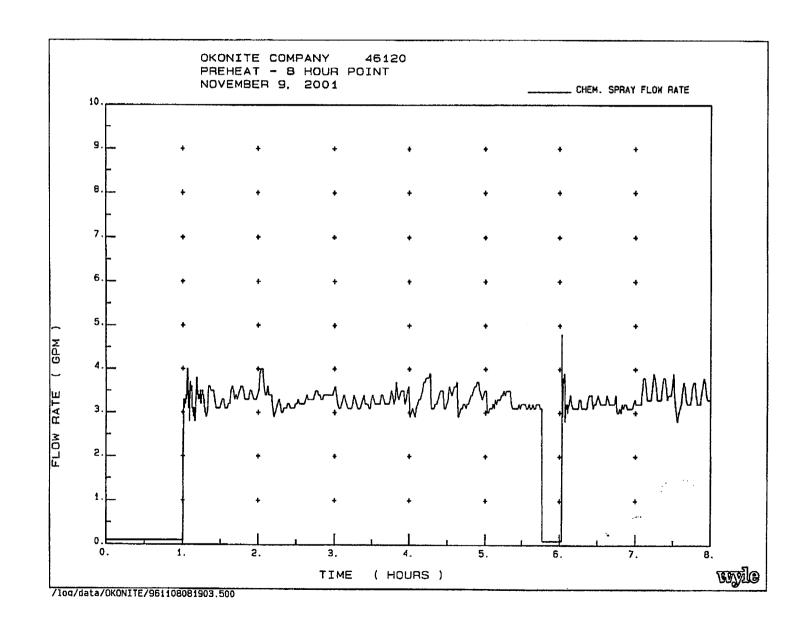
the second states the second states to be addressed as a second state of the second states and the second state

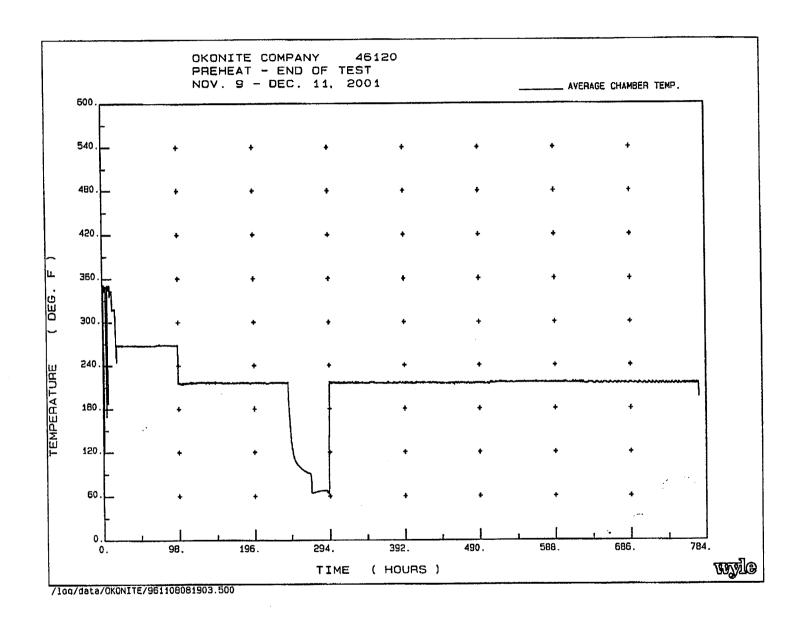

Sugar Sec.

1.10


6.00 2.020

Page No. IX-11 Test Report No. 46120-1


Page No. IX-12 Test Report No. 46120-1



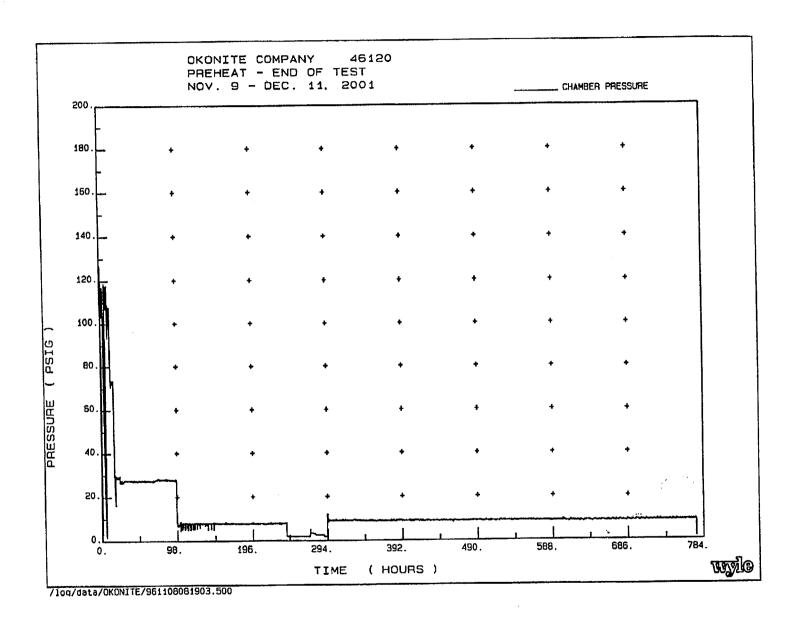
5 . . A

Page No. IX-15 Test Report No. 46120-1

A. 18

OKONITE COMPANY 46120 T/C #1 T/C #2 T/C #3 PREHEAT - END OF TEST NOV. 9 - DEC. 11, 2001 -600. 540. ŧ ŧ ÷ ÷ ÷ + 480. ÷ ٠ ÷ + 420. + ÷ + ٠ + L 350. 4 ŧ ÷ ÷ ÷ ÷ DEG. 300. ÷ ÷ ٠ ٠ ٠ 240. TEMPERATURE + ÷ ٠ ٠ + 180. ÷ + 120. ÷ 60. ٠ + + 0. 98. 196. 294. 392. 784. 0. 490. 588. 686. wyłe (HOURS) TIME /log/data/OKONITE/961108081903.500

WYLE LABORATORIES Huntsville Facility Page No. IX-16 Test Report No. 46120-1


Sec. 1. Sugar

E.C.

وسانيا سانك

Read and a second

والمعادية والمراجع

611.1.1.1

-17

OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11, 2001 CHEM. SPRAY FLOW RATE 10. 9. ÷ ÷ + ÷ ÷ ٠ 8. ŧ + + ÷ ٠ + 7. ٠ ٠ б. ÷ ÷ ٠ ÷ 5 ÷ + GPM 4 ٠ + FLOW RATE З. ÷ ÷ 2. ٠ 1 ÷ 0. 98. 196. 294. 392. 686. 0. 490. 588. 784. wyło TIME (HOURS) /log/data/OKONITE/961108081903.500

Page No. IX-18 Test Report No. 46120-1

OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC 11. 2001 SPEC. 1 & 2 VOLTAGE 800 720 4 ŧ 640. ÷ ÷ ÷ ÷ ÷ + 560 480. 4 400. VAC 320. 240. VOLTAGE ÷ 160. 80. ÷ 4 0. 686. 784. 588. 294. 490. 196. 392. 0. 98. wyłe TIME (HOURS)

الترجيح والمراجع

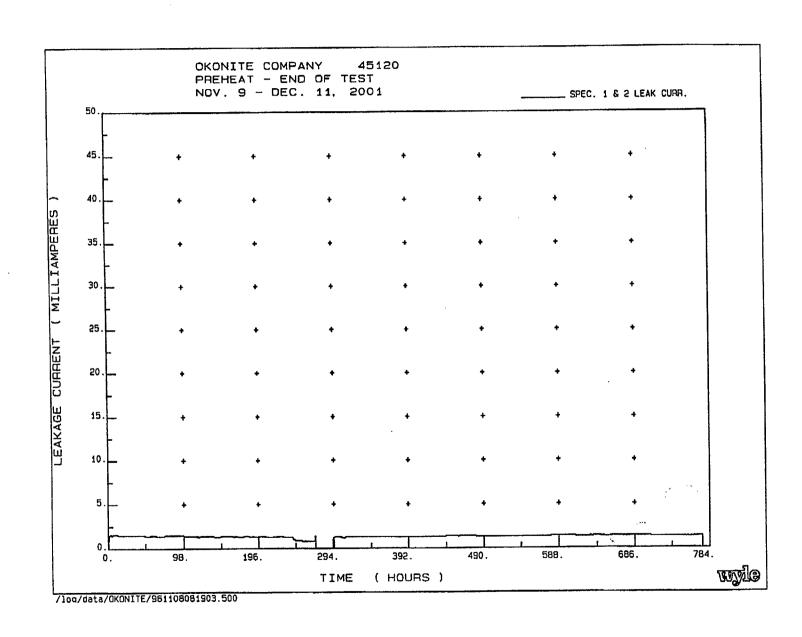
Sec. and

1. 2. 2

- 1

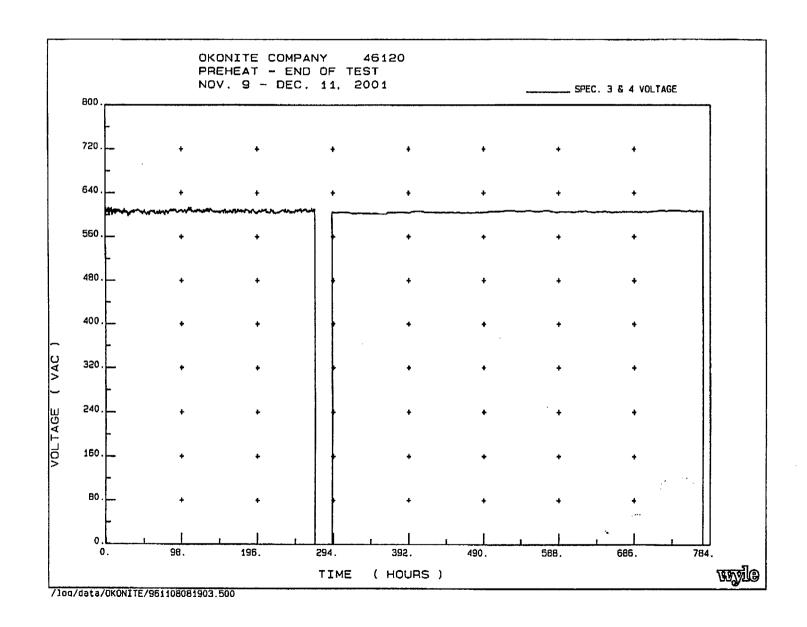
/log/data/OKONITE/951108081903.500

WYLE LABORATORIES Huntsville Facility Research 1


ALLER ALL

Page No. IX-19 Test Report No. 46120-1

OKONITE COMPANY 46120 PREHEAT - END OF TEST NDV. 9 - DEC. 11, 2001 SPEC. 1 & 2 CURRENT 40 36. + + 32. . ÷ + 28. + ٠ 24. + (AMPERES 20. 16. 12. CURRENT + 8. + 4. 4 ÷ Ο. 98. 196. 294. 0. 392. 490. 588. 686. 784. wyło TIME (HOURS) /log/data/OKONITE/961108081903.500


WYLE LABORATORIES Huntsville Facility

Page No. IX-20 Test Report No. 46120-1

Page No. IX-21 Test Report No. 46120-1

the second second to the second second and the second second second second second second second second second s

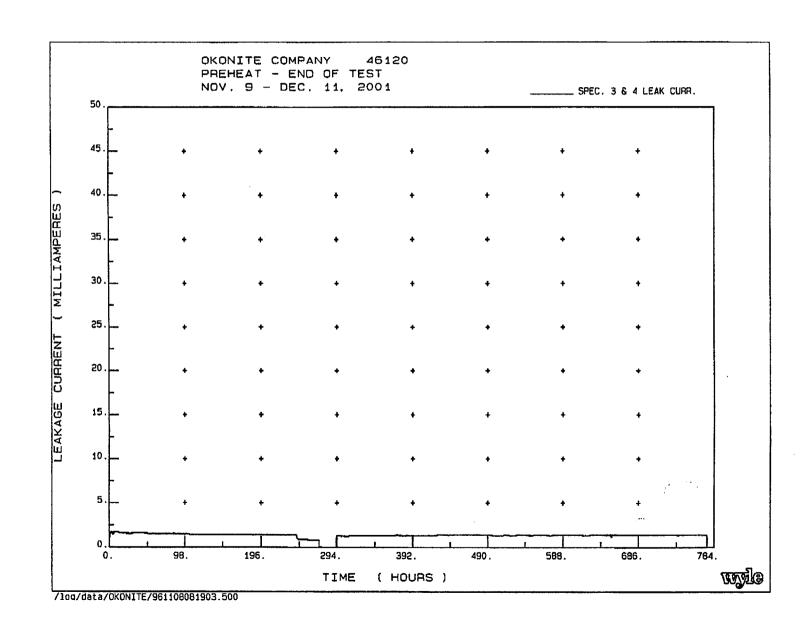
Page No. IX-22 Test Report No. 46120-1

OKONITE COMPANY 45120 PREHEAT - END OF TEST NOV. 9 - DEC. 11. 2001 SPEC. 3 & 4 CURRENT 40 36 ÷ ÷ ÷ 32. ÷ + 28. ٠ 24. ÷ ÷ ÷ + 20. ŧ + AMPERES + + ÷ ÷ 16. CURRENT (12 8 ٠ ⊿ ÷ 0 784. 588. 686. 196. 294. 392. 490. 98. 0. wyłe (HOURS) TIME

WYLE LABORATORIES Huntsville Facility

Page No. IX-23 Test Report No. 46120-1

/log/data/OKONITE/961108081903.500


Barrier and Barrier

Lassa

. Breaker Arrest

Sec. Sec.

ا هم می شود است. این ا

Page No. IX-24 Test Report No. 46120-1

.

OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11. 2001 SPEC. 5 & 5 VOLTAGE B00 720 640. ŧ ÷ + ÷ ŧ + 560. 4 ÷ 480. 400. + VAC 320. ÷ 240. VOLTAGE 150. B0. + 0. 686. 784. 490. 294. 588. 392. 0. 98. 196. wyłe (HOURS) TIME /100/data/0KONITE/951108081903.500

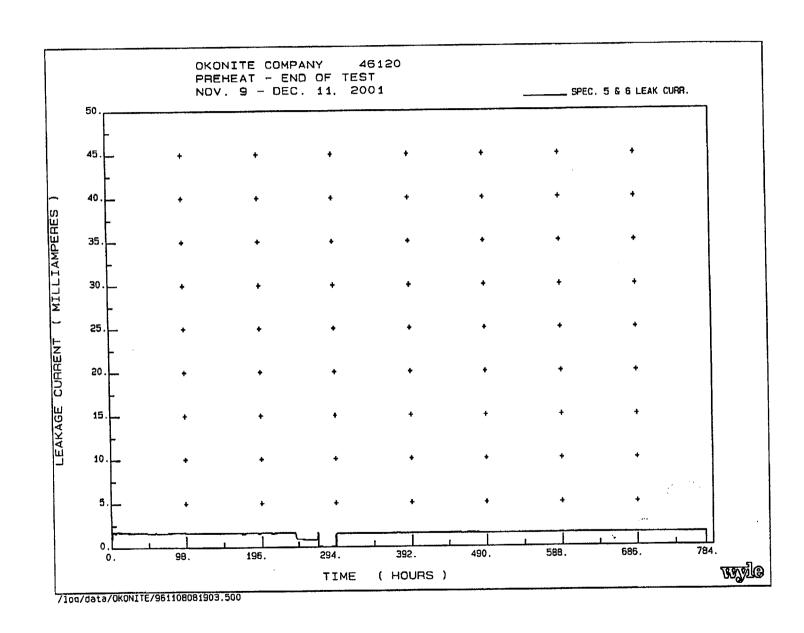
An anna a su chái

بد مرياستية زيرشينية

المتحد معرود

.....

WYLE LABORATORIES Huntsville Facility

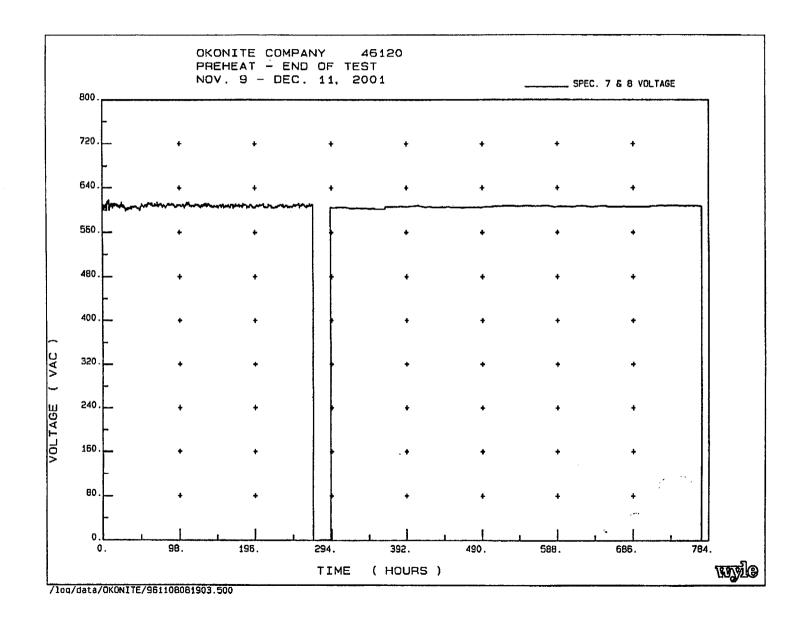

Area Sec.

Page No. IX-25 Test Report No. 46120-1

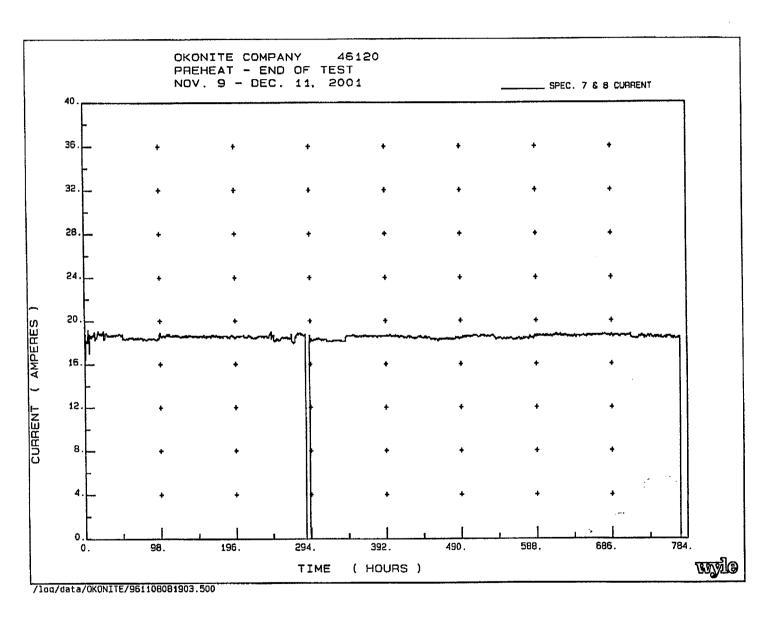
OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11, 2001 SPEC. 5 & 6 CURRENT 40. 36. + + ŧ ÷ + 32. ÷ ÷ ÷ ÷ ÷ 28. ÷ + 24. ŧ ÷ + + . (AMPERES) 20. ŧ + + ÷ 16. 12. CURRENT + 4 8. ٠ 4 0. 784. 294. 392. 98. 196. 490. 588. 686. 0. wyle TIME (HOURS) /log/data/OKONITE/961108081903.500

WYLE LABORATORIES Huntsville Facility Page No. IX-26 Test Report No. 46120-1

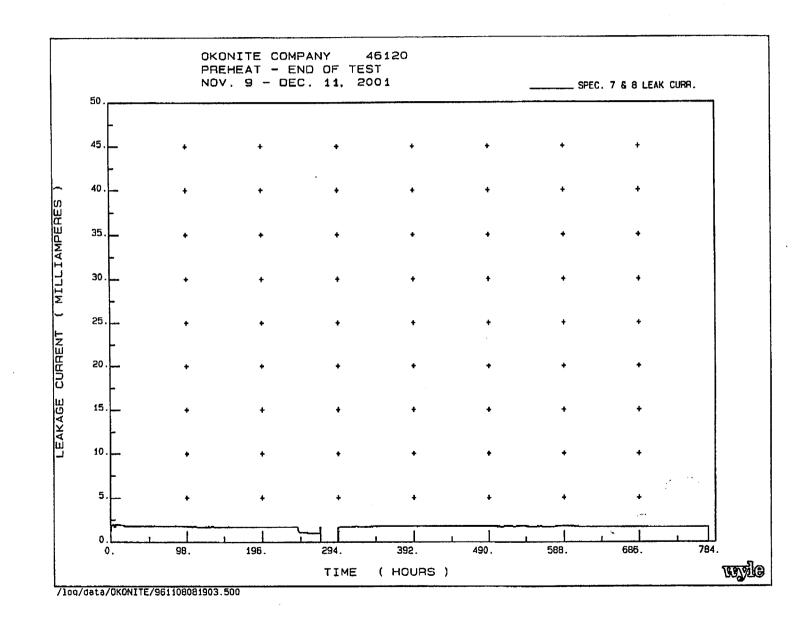
. . . .



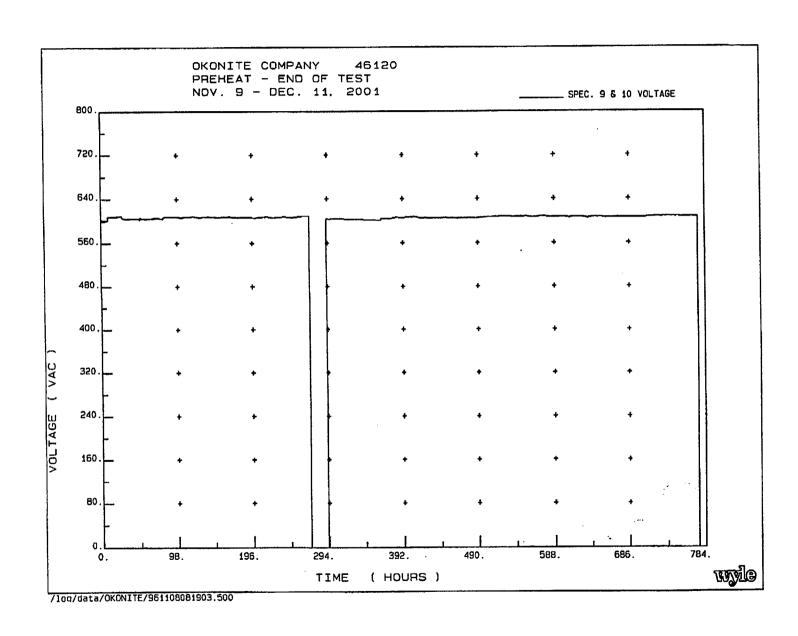
E-sections.

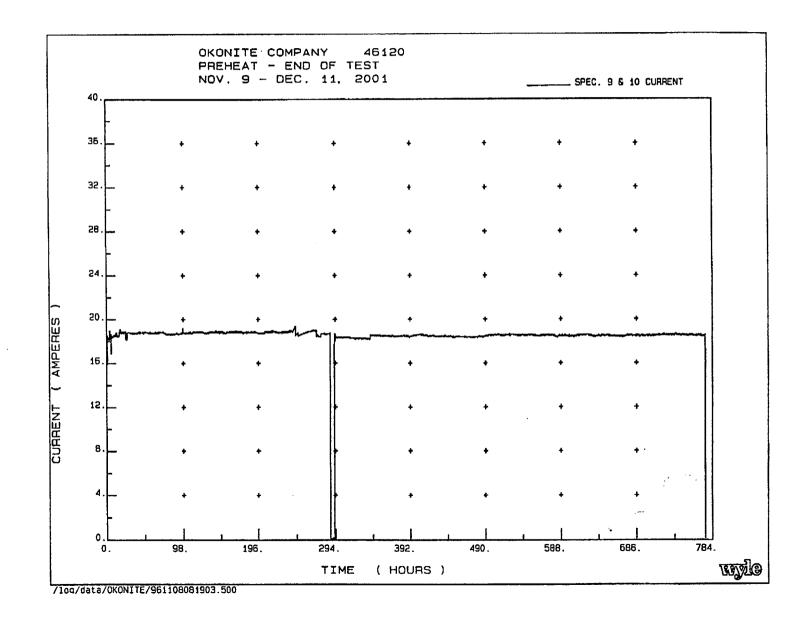

4-10-20

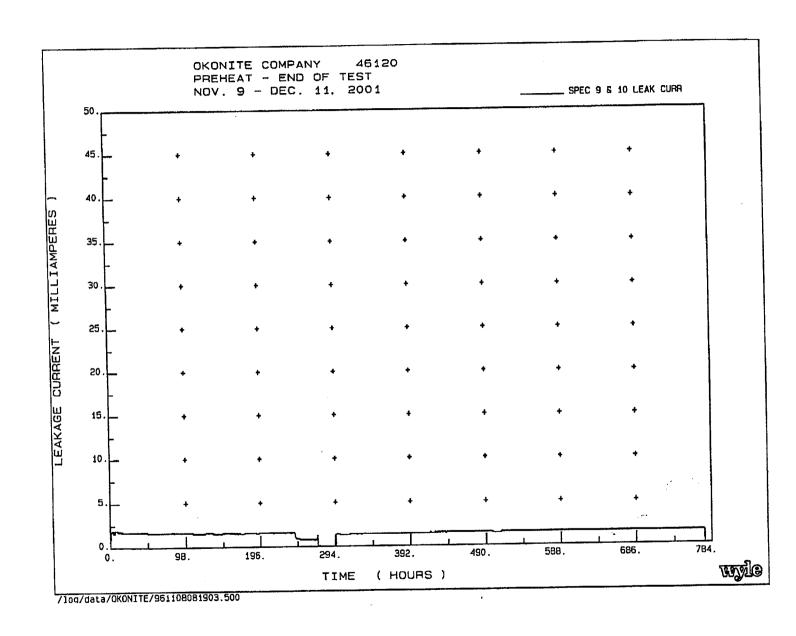
1.1.1.1.1.1.1

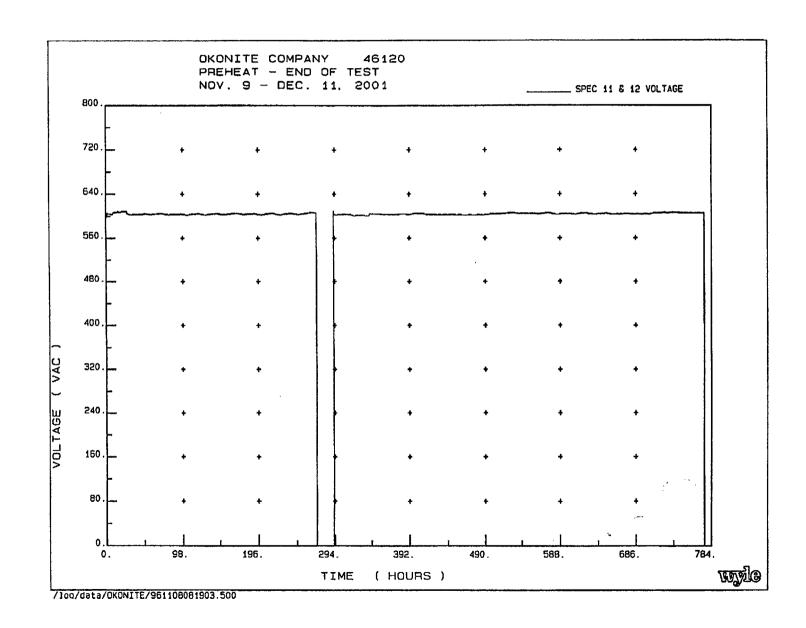

Page No. IX-27 Test Report No. 46120-1

Page No. IX-28 Test Report No. 46120-1 WYLE LABORATORIES




Page No. IX-29 Test Report No. 46120-1


Page No. IX-30 Test Report No. 46120-1



WYLE LABORATORIES Huntsville Facility Page No. IX-32 Test Report No. 46120-1

Page No. IX-33 Test Report No. 46120-1

المريد الالا

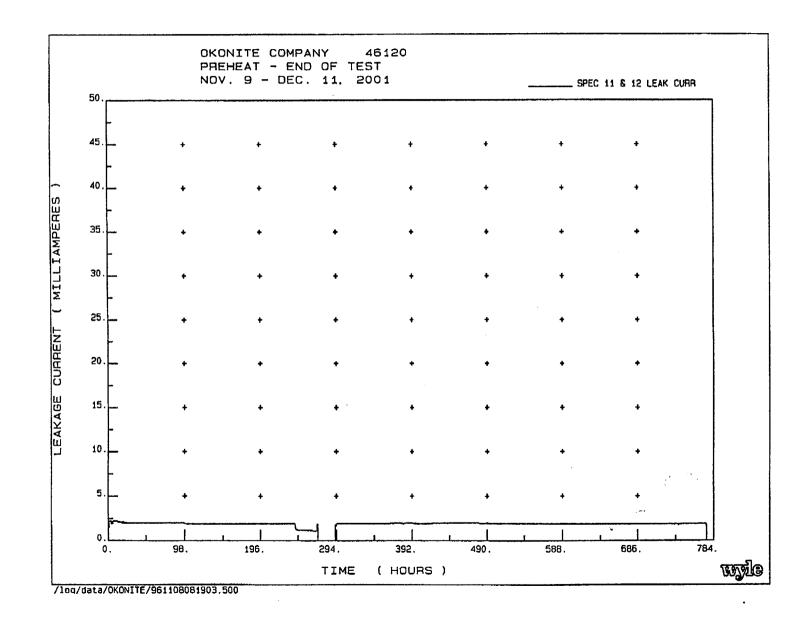
.

Page No. IX-34 Test Report No. 46120-1

OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11, 2001 SPEC 11 & 12 CURRENT 40. 36. 32 + 28. 24 20. + ÷ + CURRENT (AMPERES + 16. 12. 8. 4. 0. 784. 98. 294. 392. 490. 588. 686. 196. 0. wyłe (HOURS) TIME /log/data/OKONITE/961108081903.500

corner it

1.


er e in carran a

the second s

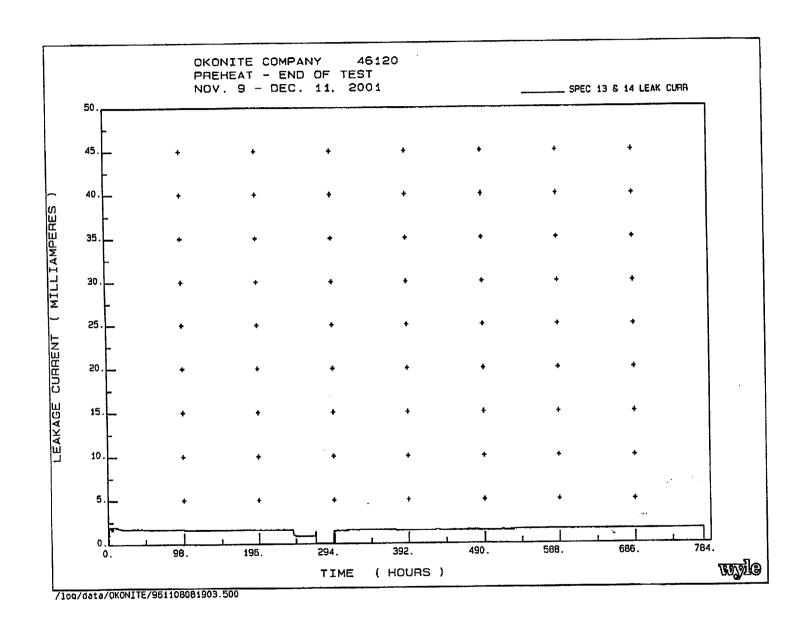
WYLE LABORATORIES Huntsville Facility

Test Report No. 46120-1

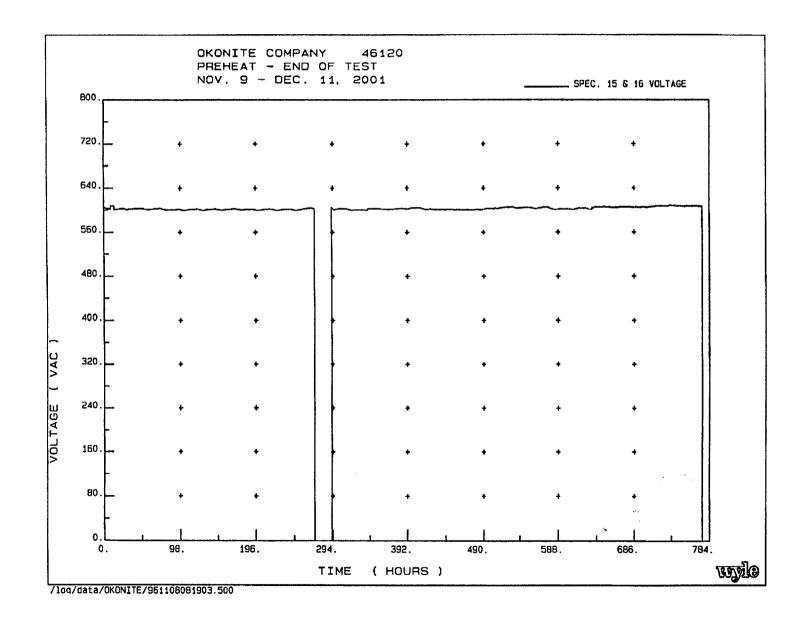
Page No. IX-35

.

Page No. IX-36 Test Report No. 46120-1

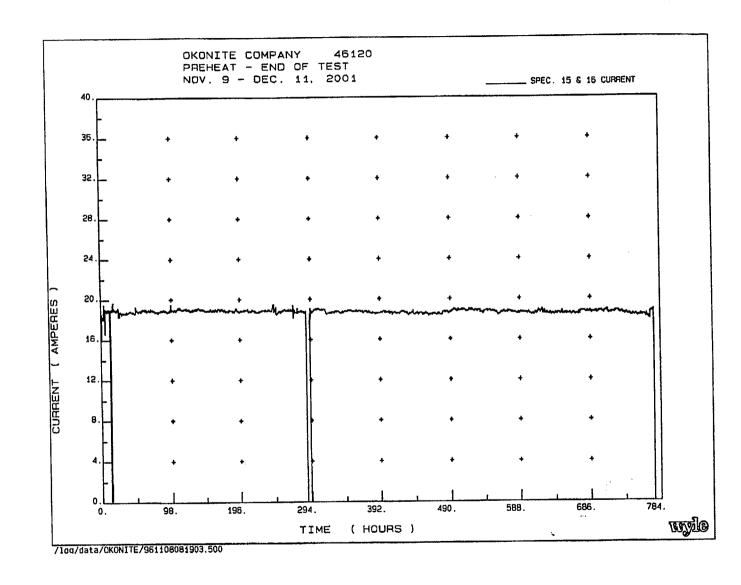

OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11, 2001 SPEC 13 & 14 VOLTAGE 800 720 640. ÷ ŧ ÷ + ÷ ÷ ÷ 560. 480. 400. VAC 320. 240. VOL TAGE 160. B0. ٥. 294. 686. 784. 392. 588. 0. 98. 196. 490. wyłe (HOURS) TIME /log/data/OKONITE/961108081903.500

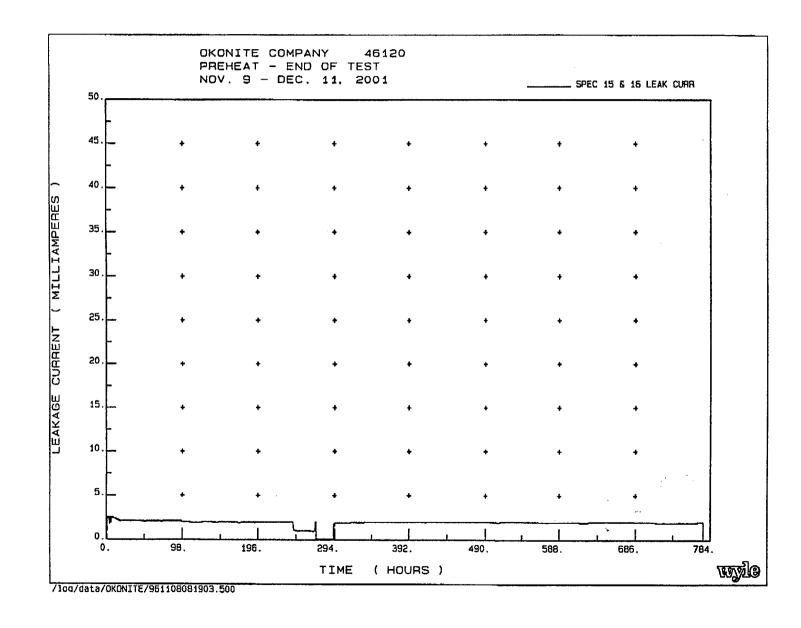
.


WYLE LABORATORIES Huntsville Facility Page No. IX-37 Test Report No. 46120-1

OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11, 2001 SPEC 13 & 14 CURRENT 40. 36. ŧ ŧ 32. ÷ + ŧ + 4 28. ٠ + 24 ÷ ÷ ÷ 20 (AMPERES ÷ ÷ 16. 12. CURRENT ÷ 8 0 98. 196. 294. 588. 686. 784. 0. 392. 490. wyle TIME (HOURS) /log/data/OKONITE/961108081903.500

WYLE LABORATORIES Huntsville Facility Page No. IX-38 Test Report No. 46120-1



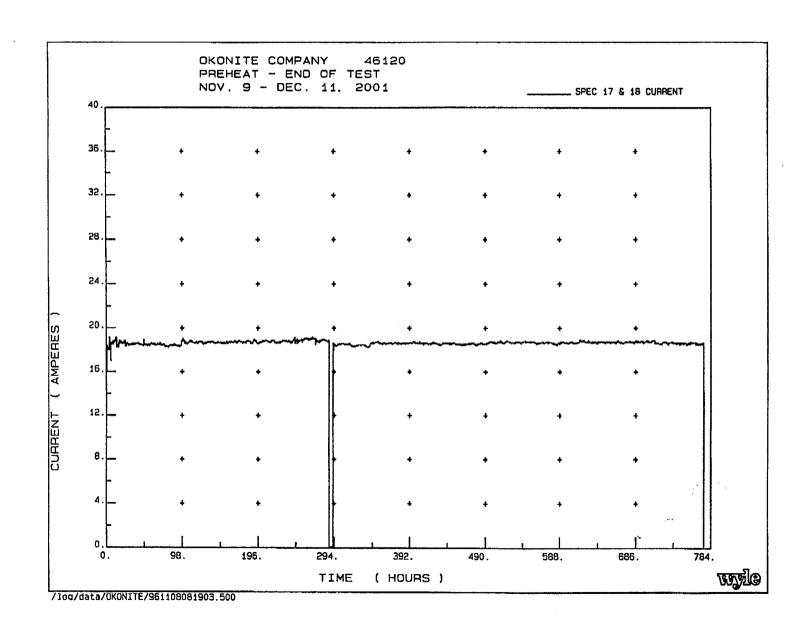

Page No. IX-39 Test Report No. 46120-1

WYLE LABORATORIES Huntsville Facility

Page No. IX-40 Test Report No. 46120-1

. In a memory second control with the second region of the second region of the second region of the second region

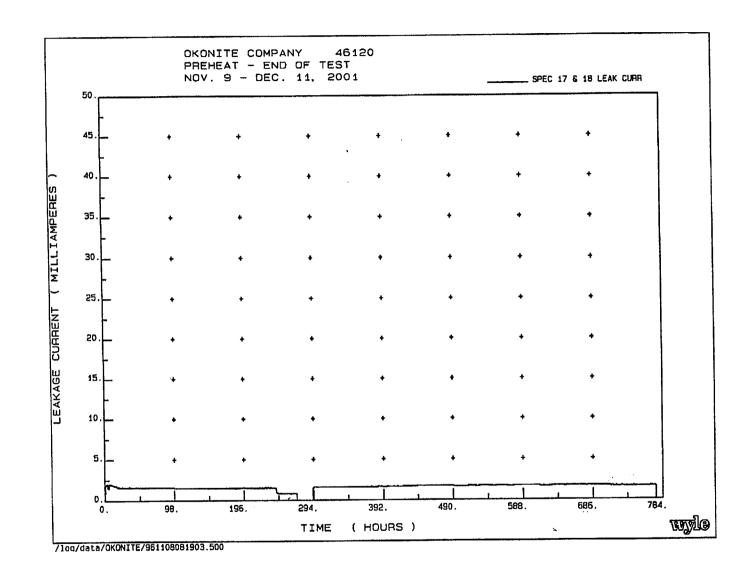
OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11, 2001 SPEC 17 & 18 VOLTAGE 800. 720 + + 640. ŧ ŧ ÷ ÷ + . 560. 4 480 400. VAC 320. 240. VOL TAGE ÷ 160 80 4 0. 784. 686. 588. 294. 490. 196. 392. 98. 0. wyłe (HOURS) TIME /10g/data/OKONITE/961108081903.500


Sectional-

WYLE LABORATORIES Huntsville Facility

A Montal

Sec. Sugar

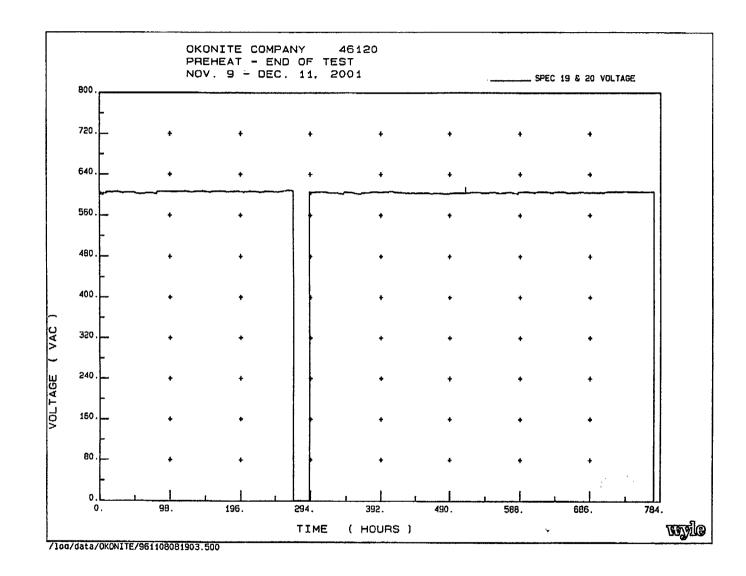

Test Report No. 46120-1 Page No. IX-43

-.

· · · • · • · -

\$ 1.43-024

4......

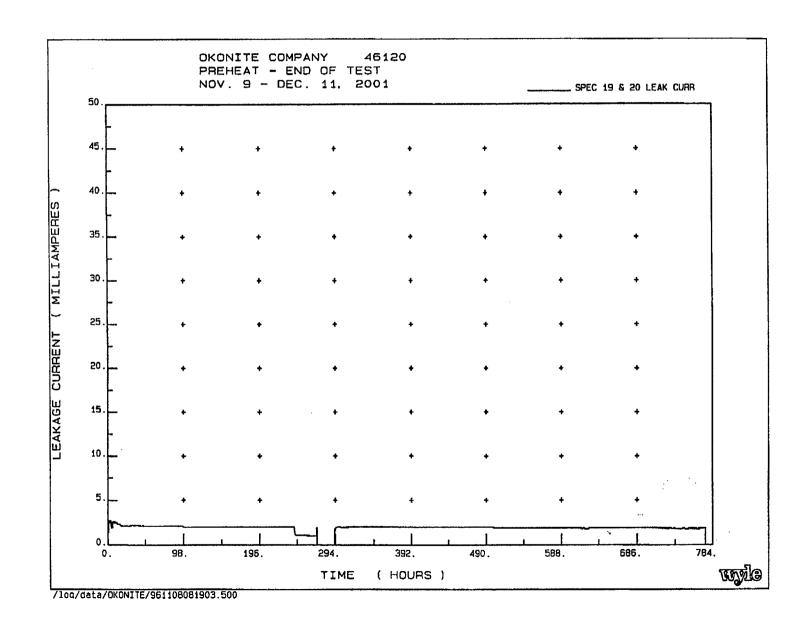

Sec. 11. 12. 12.

w. 5. 1. 1

ALL SALE

و در ۱۰۰۰

Test Report No. 46120-1 Page No. IX-45


···-

Page No. IX-46 Test Report No. 46120-1

OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11, 2001 SPEC 19 & 20 CURRENT 40 36 ÷ 32. ÷ 4 28 4 24. (AMPERES 20. ŧ + ÷ ÷ + ٠ 16. 12. CURRENT 8 4 0. 784. 588. 196. 294. 392. 490. 686. 98. ٥. wyłe (HOURS) TIME /log/data/OKONITE/961108081903.500

WYLE LABORATORIES Huntsville Facility Page No. IX-47 Test Report No. 46120-1

Page No. IX-48 Test Report No. 46120-1

OKONITE COMPANY 46: PREHEAT - END OF TEST 46120 NOV. 9 - DEC. 11. 2001 SPEC 21 & 22 VOLTAGE 800 720 4 640 ŧ + ÷ + ÷ ŧ 550 ٠ + ÷ 480 ŧ + + ÷ 400 ÷ + + 4 ÷ VAC 320. + + 240. ÷ + VOLTAGE ÷ 4 + 160. ÷ 80. + ÷ 0, 784. 686. 588. 196. 294. 392. 490. 98. **o**. wyle (HOURS) TIME /log/data/OKONITE/961108081903.500

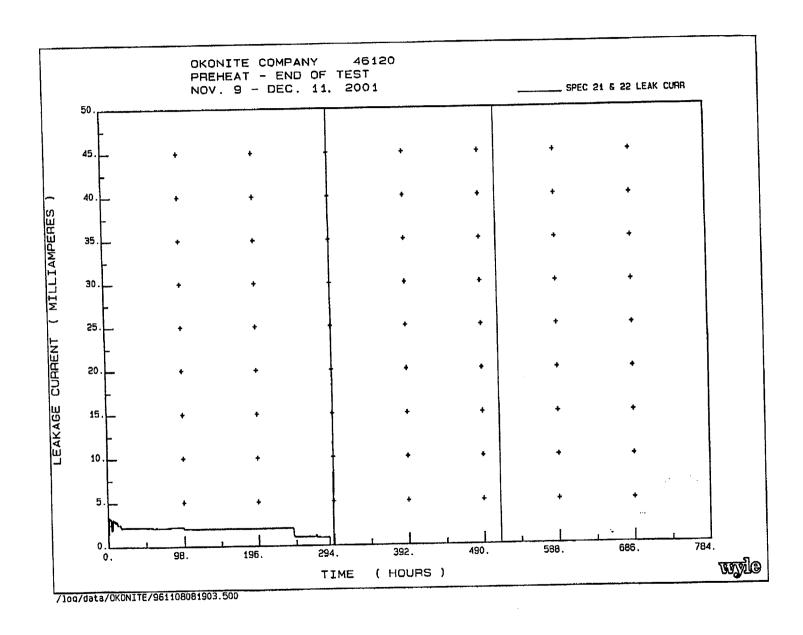
WYLE LABORATORIES Huntsville Facility Are see

A

Page No. IX-49 Test Report No. 46120-1

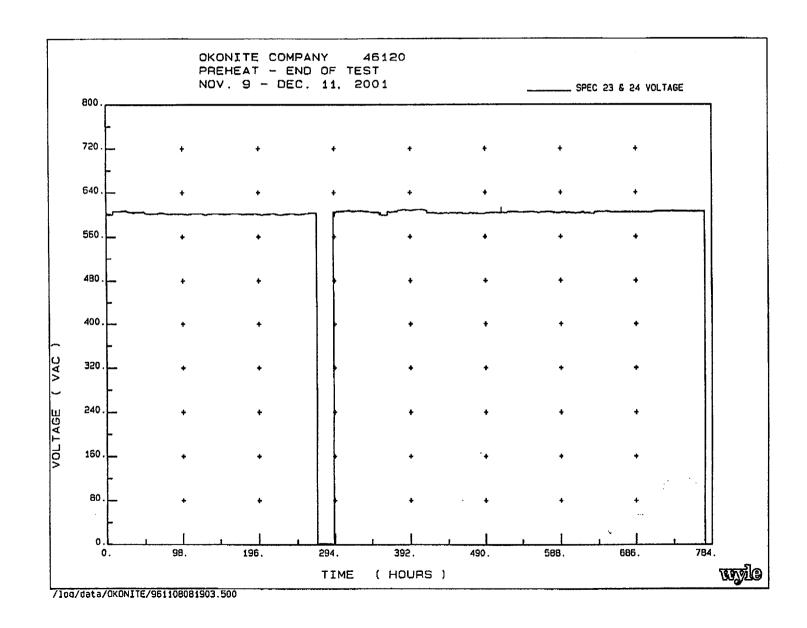
. .

ر _

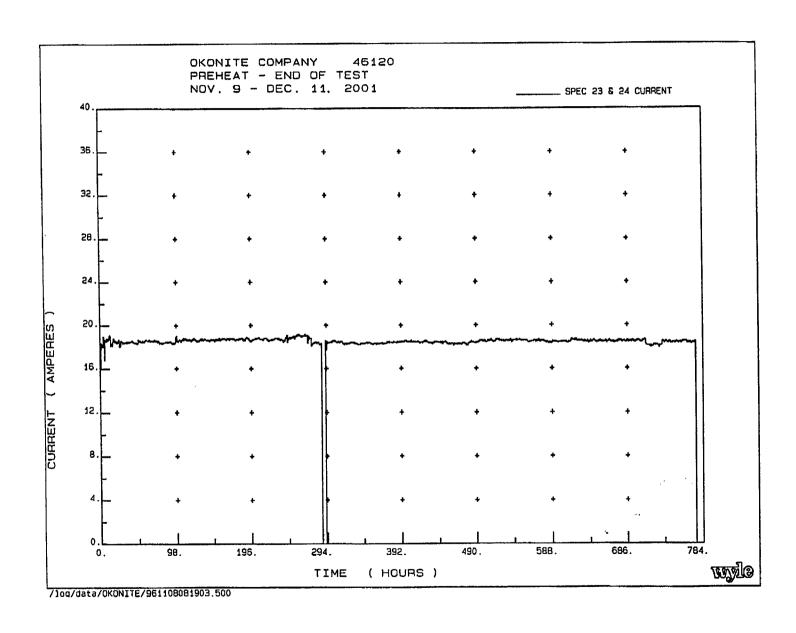

OKONITE COMPANY 45 PREHEAT - END OF TEST 46120 NOV. 9 - DEC. 11. 2001 SPEC 21 & 22 CURRENT 40. 36. 32. + ÷ 28. 24. ÷ ŧ ŧ (AMPERES 20. 16. ٠ 12. **CURRENT** + 8. ÷ 4. ÷ 0. 98. 196. 294. 392. 784. 0. 490. 588. 686. wyłe TIME (HOURS) /log/data/OKONITE/961108081903.500

. ...

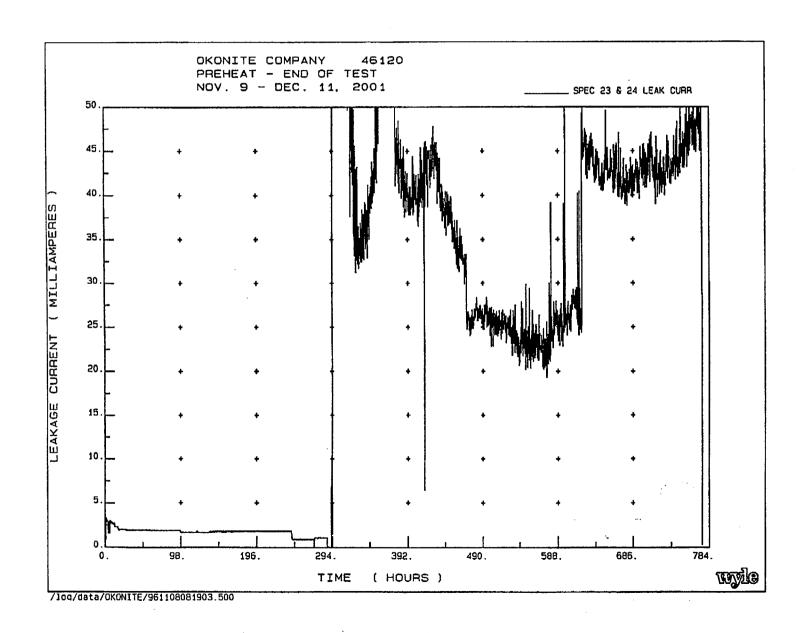
1.1.1


Page No. IX-50 Test Report No. 46120-1

WYLE LABORATORIES Huntsville Facility



60.00 /


٠.

Page No. IX-52 Test Report No. 46120-1

Page No. IX-53 Test Report No. 46120-1

Page No. IX-54 Test Report No. 46120-1

46120 OKONITE COMPANY PREHEAT - END OF TEST NOV. 9 - DEC. 11. 2001 SPEC 25 & 26 VOLTAGE 800. 720 + + + ÷ + 640 + + ٠ + + 560 480. ÷ ÷ ÷ 4 + 400 ٠ ÷ + VAC 320. + 240. + VOLTAGE + 160. 80. 4 4 ٠ 0. 686. 784. 392. 588. 196. 294. 490. 98. 0. wyłe (HOURS) TIME /log/data/OKONITE/961108081903.500

5

WYLE LABORATORIES Huntsville Facility والمحاجبة المكا

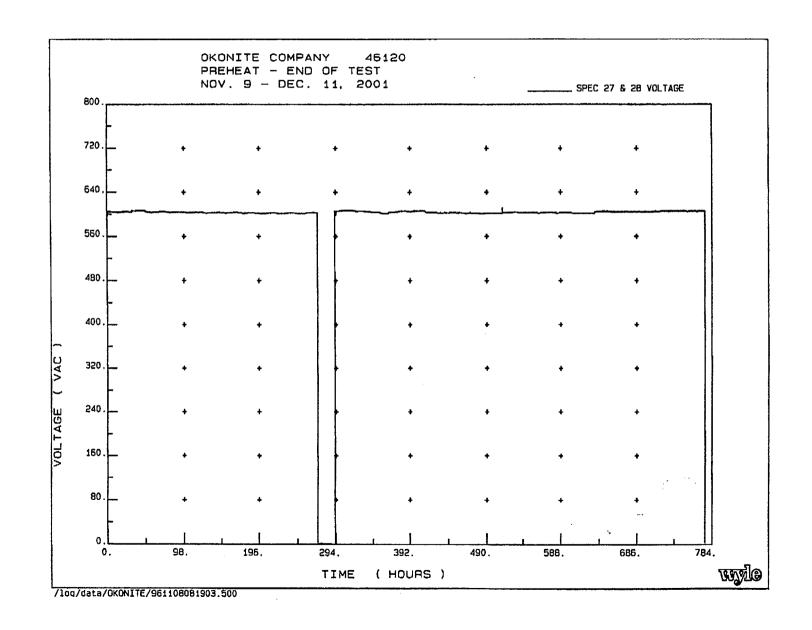
Page No. IX-55 Test Report No. 46120-1

Sec. 13

الأرد الدرابية

OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11. 2001 SPEC 25 & 26 CURRENT 40. 36 + + + ŧ + + 32. ÷ + ŧ ŧ + + 28. ÷ + + + ٠ 24. ÷ ٠ + + + 20. (AMPERES ÷ 16. + 12. **CURRENT** 8. 4. 0. 195. 294. 392. 686. 784. 0. 98. 490. 588. wyło TIME (HOURS) /log/data/OKONITE/961108081903.500

WYLE LABORATORIES Huntsville Facility

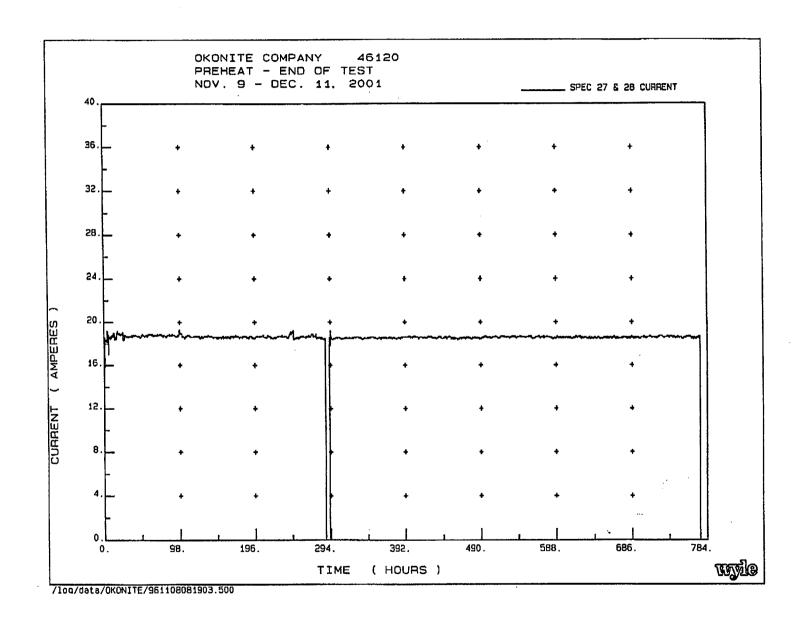

Page No. IX-56 Test Report No. 46120-1

OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11. 2001 SPEC 25 & 26 LEAK CURR 50 45. ÷ 40. (MILLIAMPERES 35. 30. 4 25. LEAKAGE CURRENT 20. 15. 4 10. 5 ÷ 0. 686. 784. 588. 294. 392. 490. 98. 196. 0. wyłe (HOURS) TIME /log/data/OKONITE/961108081903.500

WYLE LABORATORIES Huntsville Facility 20. . .

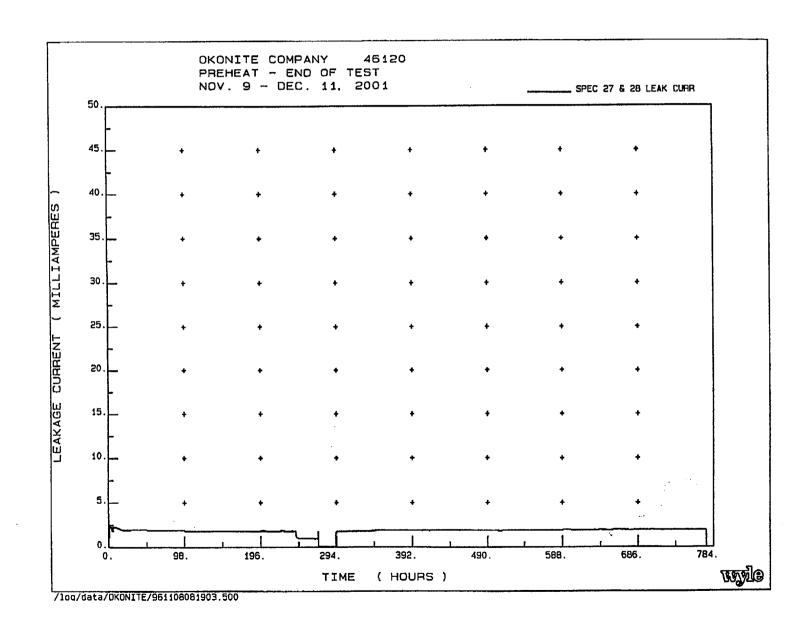
Argenese.

Page No. IX-57 Test Report No. 46120-1



Page No. IX-58 Test Report No. 46120-1

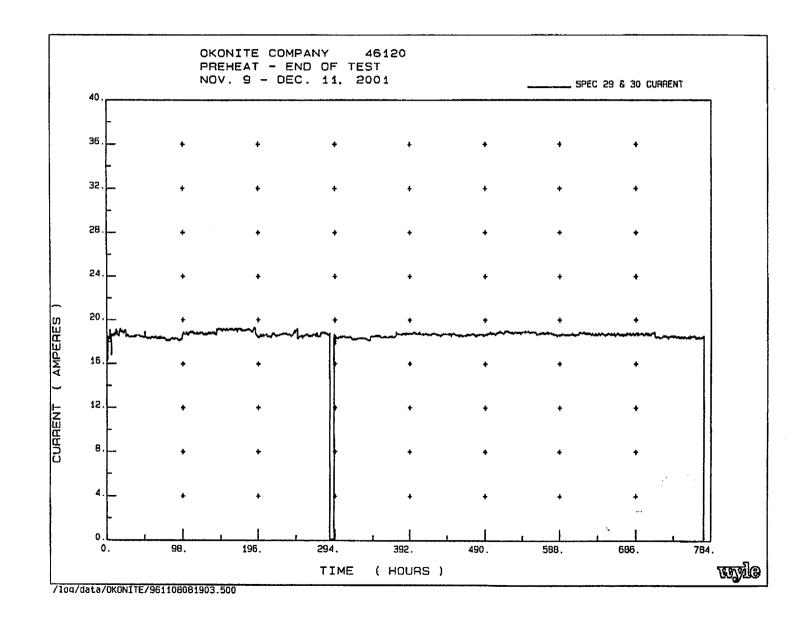
× . * .


.

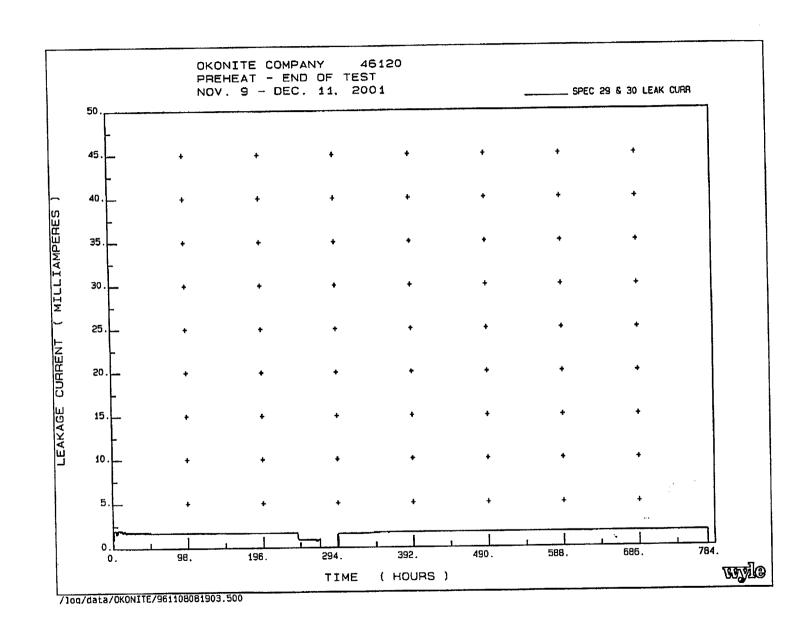
.

.....

1.3


Page No. IX-60 Test Report No. 46120-1

OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11, 2001 SPEC 29 & 30 VOLTAGE 800 720 640. + ÷ ŧ + ÷ 560. + ٠ 480. 400. VAC 320, 240. VOLTAGE + 4 160. 80 + 0. 764. 490. 392. 588. 686. 196. 294. 0. 98. wyłe (HOURS) TIME /log/data/OKONITE/961108081903.500

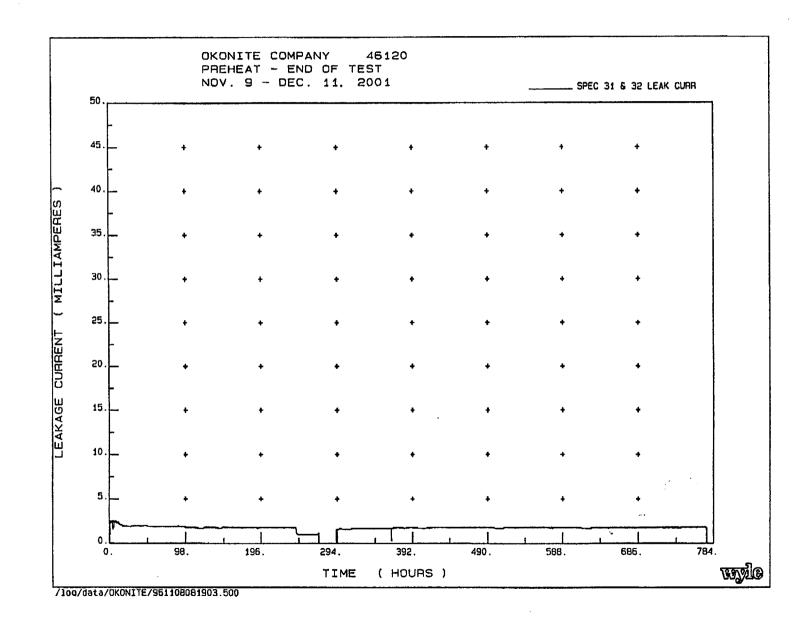

فيرابين والمراج

WYLE LABORATORIES Huntsville Facility Sec. Sec.

Page No. IX-61 Test Report No. 46120-1

Page No. IX-62 Test Report No. 46120-1

وتميروني فيردرك


OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11, 2001 SPEC 31 & 32 VOLTAGE 800. 720. + ÷ ÷ ÷ 640. ŧ ÷ ÷ ŧ ÷ ÷ ÷ 560. + + ٠ 460. + + ÷ + 400. ÷ ÷ + ÷ VAC 320. ÷ + + 240. VOLTAGE ÷ + ÷ 4 160. + + 80 ÷ 4 Ο. 196. 392. 784. 98. 568. 686. 0. 294. 490. wyile (HOURS) TIME /log/data/OKONITE/961108081903.500

WYLE LABORATORIES Huntsville Facility

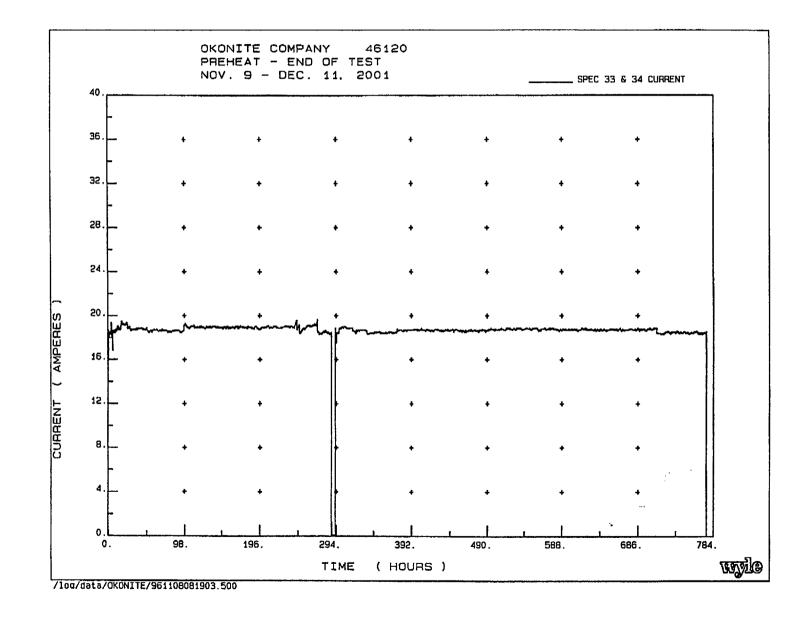
Page No. IX-64 Test Report No. 46120-1

OKONITE COMPNAY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11. 2001 SPEC 31 & 32 CURRENT 40 36 32, 28. 24. ÷ ÷ (AMPERES 20. + + + 16. + 12. CURRENT 8. 4. ÷ 4 Ο. 784. 588. 490. 686. 392. 294. ٥. 98. 196. wyłe (HOURS) TIME /log/data/OKONITE/961108081903.500

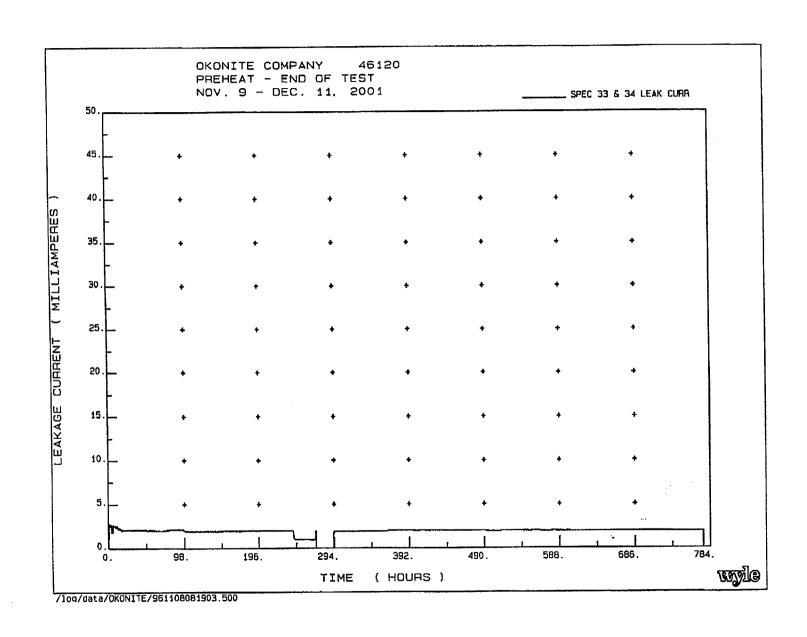
WYLE LABORATORIES Huntsville Facility Page No. IX-65 Test Report No. 46120-1

Page No. IX-66 Test Report No. 46120-1

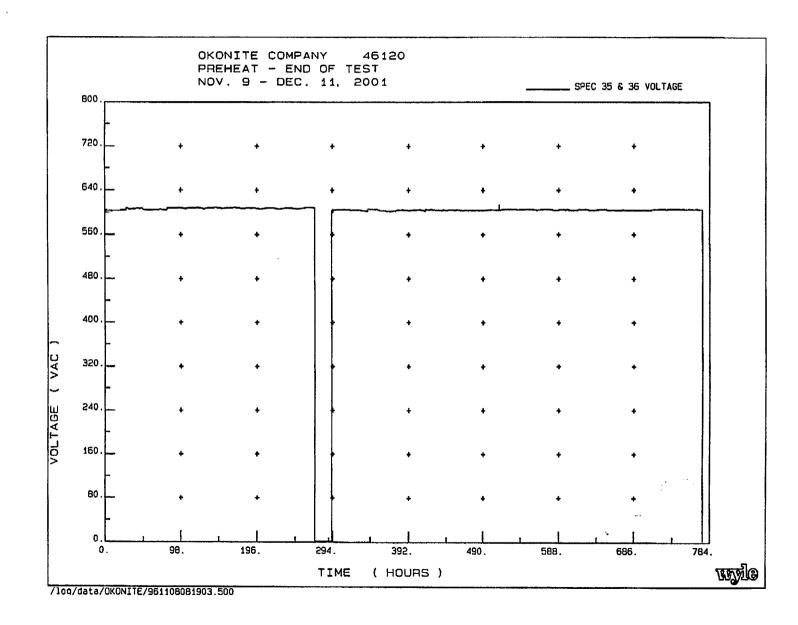
46120 OKONITE COMPANY PREHEAT - END OF TEST NDV. 9 - DEC. 11, 2001 SPEC 33 & 34 VOLTAGE 800 720 ٠ 640. + ŧ ŧ ÷ + ÷ ÷ 560. + 480. + 400. ÷ VAC 320. 240 + 4 VOLTAGE 160 80 4 4 0. 686. 784. 588. 294. 98. 196. 392. 490. 0. wyile TIME (HOURS) /log/data/OKONITE/961108081903.500


.....

. ..


WYLE LABORATORIES Huntsville Facility ь á

P. 12 . 1999


Page No. IX-67 Test Report No. 46120-1

Page No. IX-68 Test Report No. 46120-1

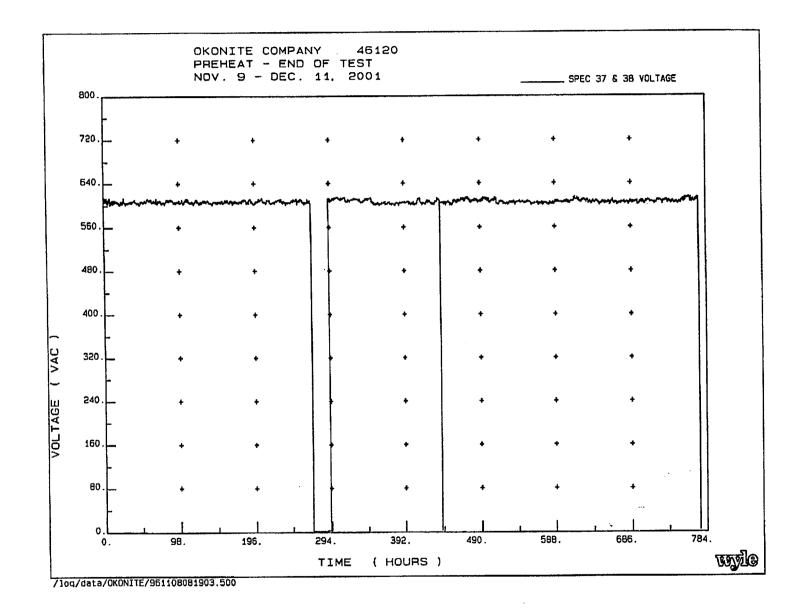
Page No. IX-69 Test Report No. 46120-1

Page No. IX-70 Test Report No. 46120-1

OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11, 2001 SPEC 35 & 36 CURRENT 40. 36. 32. ÷ ÷ ٠ 28 ŧ 24. ŧ ٠ ŧ ٠ 20. (AMPERES ÷ ÷ + + ŧ 16. 12. + CURRENT 8. 4. ÷ 0. 784. 686. 294. 392. 490. 588. 98. 196. 0. wyle (HOURS) TIME /log/data/OKONITE/961108081903.500

WYLE LABORATORIES Huntsville Facility

1. 20. 288


e a cara a

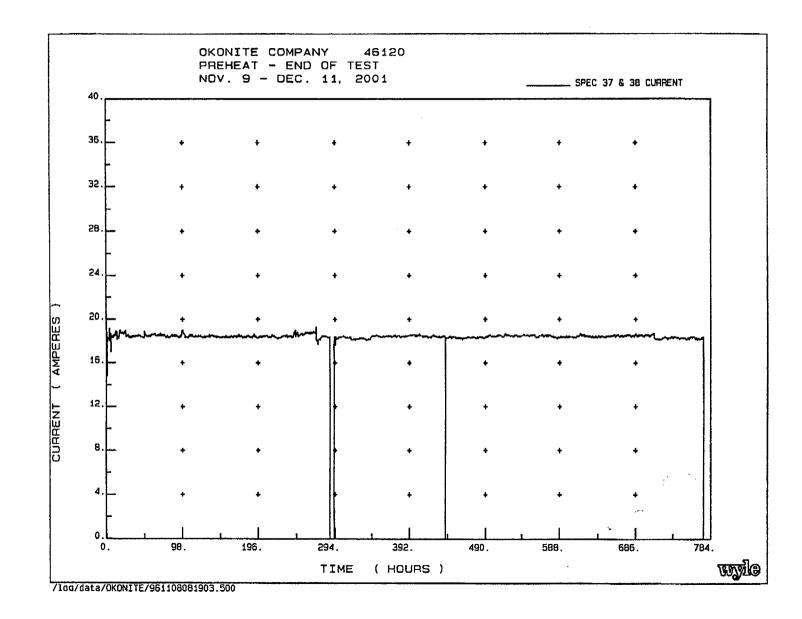
Page No. IX-71 Test Report No. 46120-1

OKONITE COMPANY 46120 PREHEAT - END OF TEST NOV. 9 - DEC. 11, 2001 SPEC 35 & 36 LEAK CURR 50, 45. + + + ÷ 4 . 40. ~ ÷ + ÷ + + ÷ (MILLIAMPERES 35. ÷ + + ٠ 30. ÷ + + ŧ + 25. + ٠ LEAKAGE CURRENT 20. + ٠ ÷ 15. + ÷ ÷ ÷ 10. + 5. + 0. 98. 294. 392. 588. 686. 784. 490. 0. 195. wyle TIME (HOURS) /log/data/OKONITE/961108081903.500

WYLE LABORATORIES Huntsville Facility

Page No. IX-72 Test Report No. 46120-1

WYLE LABORATORIES Huntsville Facility Page No. IX-73 Test Report No. 46120-1

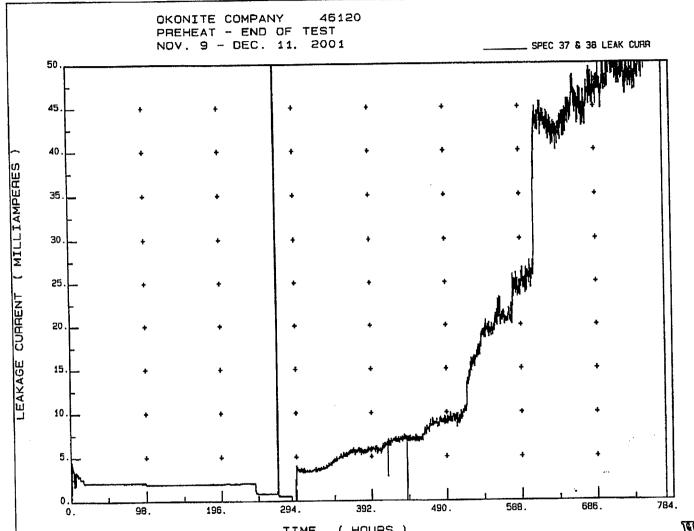

4

. .

Section .

Section with

10.1.114



Page No. IX-74 Test Report No. 46120-1

46120 OKONITE COMPANY PREHEAT - END OF TEST NOV. 9 - DEC. 11. 2001 SPEC 37 & 38 LEAK CURR 50 45. ÷ 4 ÷ 40. ÷ (MILLIAMPERES 35. ٠ + 30. + ÷ ÷ ÷ 25 4 LEAKAGE CURRENT 20. 15. ÷ 10. 5 0. 784. 686. 588. 294. 490. 196. 392. 98. 0. wyło TIME (HOURS) /log/data/OKONITE/961108081903.500

WYLE LABORATORIES Huntsville Facility

11

 $(g_{i})_{i\in I} \to (i,j)$

Page No. IX-75 Test Report No. 46120-1

Page No. IX-76 Test Report No. 46120-1

This page intentionally left blank.

·..

i

.•

Page No. X-1 Test Report No. 46120-1

.

;

...

APPENDIX X

WYLE LABORATORIES TEST PROCEDURE 46120, REVISION E

ł

Page No. X-2 Test Report No. 46120-1

This page intentionally left blank.

•...

i

.

Page No. X-3 Test Report No. 46120-1

TEST PROCEDURE

Huntsville, Alabama 35806 FAX (256) 830-2109, Phone (256) 837-4411 TEST PROCEDURE NO. 46120

DATE _____August 1, 2001___

Revision A - August 8, 2001 Revision B - August 9, 2001 Revision C -- September 27, 2001 Revision D -- October 26, 2001 Revision E -- December 7, 2001

.

A

NUCLEAR ENVIRONMENTAL QUALIFICATION TEST PROCEDURE

FOR

OKONITE OKOLON CABLES

For The Okonite Company Paterson, NJ

APPROVED BY: . FOR: .	 APPROVED BY PROJECT MANAGER:	Don Smith
APPROVED BY: 5	 APPROVED BY QUALITY ENGINEER:	TRAnnet 8/2/2051
APPROVED BY: FOR:	 PREPARED BY PROJECT ENGINEER:	Rolif Hardy 8/1/01 Bobby Hardy

REVISIONS

REV. NO.	DATE	PAGES AFFECTED	BY	APP'L.	DESCRIPTION OF CHANGES
A	8/8/01	3 through 6	RDH abjei	200 8/8/01 VR18/8/01	Revised per customer comments
В	8/11/01	2 through 14	RDH	DH 8/14/01 TDH 8/14/01	Revised per customer comments
				Di al-al-	
C	9/27/01	7, 14, and 15	RDH	1219/28/01	Revised per customer comments and adjusted pages to accommodate
D	10/26/01	6, 7, and 14	RDH	BM 10126/01	Revised per customer comments
Е	12/07/01	Page No. 8	RDH		Revised per customer comments

COPYRIGHT BY WYLE LABORATORIES. THE RIGHT TO REPRODUCE, COPY, EXHIBIT, OR OTHERWISE UTILIZE ANY OF THE MATERIAL CONTAINED HEREIN WITHOUT THE EXPRESS PRIOR PERMISSION OF WYLE LABORATORIES IS PROHIBITED. THE ACCEPTANCE OF A PURCHASE ORDER IN CONNECTION WITH THE MATERIAL CONTAINED HEREIN SHALL BE EQUIVALENT TO EXPRESS PRIOR PERMISSION.

(rdh)

Page No. X-4 Test Report No. 46120-1

Page No. 2 Test Procedure No. 46120

Revision B

TABLE OF CONTENTS

1.0	SCOPE	••••••	
	1.1		en Description
	1.2	Qualific	ation Standards, Specifications, and Documents
2.0	QUALI	TY ASS	URANCE
3.0	TEST E	QUIPMI	BNT AND INSTRUMENTATION
4.0	TEST R	EQUIRE	MENTS
	4.1	Specimo	en Mounting4
	4.2	Baseline	e Functional Testing
		4.2.1	Insulation Resistance
		4.2.2	Dielectric Withstand
	4.3	Therma	l Aging5
	4.4		ermal Aging Functional Test6
	4.5	Radiatio	on Exposure
	4.6	Post-Ra	diation Exposure Functional Test
	4.7	Accider	tt (LOCA) Test
		4.7.1	Test Setup
		4.7.2	Electrical Powering and Loading
		4.7.3	Monitoring
		4.7.4	Accident Test
	4.8	Post-Ac	cident Test Functional Test
5.0	TEST R	EPORT.	
			8 I

Page No. X-5 Test Report No. 46120-1

Page No. 3 Test Procedure No. 46120

SCOPE 1.0

This document has been prepared by Wyle Laboratories for the Okonite Company to present the procedures for subjecting the cables described in Paragraph 1.1, hereinafter referred to as the specimens, to a Nuclear Environmental Qualification Test Program in accordance with the standards, specifications, and other documents listed in Paragraph 1.2.

1.1 **Specimen Description**

The specimens for the test program consist of two production runs of 1-conductor, 12 AWG, Okonite Okolon-insulated and jacketed wire. Each production run will be represented by 19 long specimens (38 specimens total) and 150 short specimens in 50 baskets (300 short specimens total). Each of the baskets will contain six, 6-inch samples (3 of each production run). Production Run Numbers are FO-07-85810 and FO-07-7839. Note that the FO-07-7839 Production Run can be differentiated by the protruding ridge in the Okolon jacket that runs the length of the cable.

Qualification Standards, Specifications, and Documents 1.2

- Okonite Purchase Order No. 9-01-429
- Okonite "Description of Nuclear Environmental Qualification Testing of Okonite Okolon Cables"
- IEEE Standard 323-1974, "IEEE Standard for Qualifying Class 1E Equipment for Nuclear Power . Generating Stations"
- IEEE Standard 383-1987, "IEEE Standard for Type Test of Class 1E Electric Cables, Field Splices, and Connections for Nuclear Power Generating Stations"
- Wyle Laboratories Quote No. 543/010620-R1/JS
- 10CFR21, "Reporting of Defects and Non-compliance" .
- 10CFR50, Appendix B, "Quality Assurance Criteria for Nuclear Power Plants"
- Wyle Laboratories' (Eastern Operations) Quality Assurance Program Manual

QUALITY ASSURANCE 2.0

All work on this test program shall be performed in accordance with Wyle Laboratories' Quality Assurance Program, which complies with the applicable requirements of 10 CFR 50 Appendix B, ANSI N45.2, and Regulatory Guides.

TEST EQUIPMENT AND INSTRUMENTATION 3.0

All instrumentation, measuring and test equipment used in the performance of this test program were calibrated in accordance with Wyle Laboratories' Quality Assurance Program which complies with the requirements of ANSI/NCSL Z540-1, ISO 10012-1, and Military Specification MIL-STD-45662A. Standards used in performing all calibrations are traceable to the National Institute of Standards and Technology (NIST) by report number and date. When no national standards exist, the standards are traceable to international standards or the basis for calibration is otherwise documented.

> WYLE LABORATORIES **Huntsville Facility**

A

Revision A

Page No. X-6 Test Report No. 46120-1

Page No. 4 Test Procedure No. 46120

4.0 TEST REQUIREMENTS

The test program shall be performed in the sequence shown below. The tests are described in Paragraphs 4.1 through 4.8.

Revision A

- 1. Specimen Mounting
- 2. Baseline Functional
- 3. Thermal Aging and Functional Tests
- 4. Radiation Exposure and Functional Tests
- 5. Accident (LOCA) Test and Functional Tests
- 6. Post-Test Functional

4.1 Specimen Mounting

The 38 long specimens shall be lightly coiled (to allow for differences in thermal expansion between the rubber layer and the metal mandrel) around stainless steel mandrels. The diameter of each mandrel shall be 13.5". Each cable will be attached to its mandrel by placing stainless steel safety wire through holes drilled on either side of the coiled cable and tying the specimen to the mandrel. High temperature glass cloth electrical tape (Scotch[™] 69) shall be folded several times to make a cushion to be placed between the safety wire, from mandrel hole to mandrel hole, and the specimen cable. Each mandrel shall be equipped with a support arm for purposes of securely attaching the cable as it exits the mandrel. A similar method will be used to attach and cushion the cable to the support arm. The first support on the arm will be located to provide a smooth transition from the mandrel to the arm. Each specimen shall be identified with the appropriate specimen number (as shown in Table I) by attaching a stainless steel identification tag. The tag will be positioned so that it does not contact the specimen cable. Additionally, each mandrel shall be marked with a paint pen to identify the specimens attached. Each mandrel shall contain two long specimens, one from each production run. Each production run shall be staggered as to location on the mandrel (top or bottom) so that placement of the production runs will encompass both locations. In all handling and testing, the mandrels shall be oriented in the same direction (support arm at the bottom).

The center point of each long specimen shall located and marked with chalk. Seven feet from the center mark, in both directions, shall be located and marked in the same manner. This center 14 feet of each specimen shall then be coiled around the mandrel (approximately 4 coils). The remaining 22 feet (11 feet on each end) shall then exit the mandrel via the support arm. Digital photographs of each specimen secured to its appropriate fixture shall be taken. A copy of the photos, via computer disk, shall be provided to Okonite.

Fifty (50) 6" x 6" x 0.5" stainless steel baskets will be prepared by Okonite. Each of the baskets will contain six (6) short specimens (approximately 6"), three of each production run, for Condition Monitoring purposes. Each basket shall be identified by Wyle with a unique identifier which indicates the basket number and the point of testing at which the basket will be removed from the program and returned to Okonite for Condition Monitoring tests. Digital photographs of each basket shall be taken. A copy of the photos, via computer disk, shall be provided to Okonite.

Page No. X-7 Test Report No. 46120-1

> Page No. 5 Test Procedure No. 46120

> > **Revision B**

4.0 TEST REQUIREMENTS (continued)

4.2 Baseline Functional Testing

4.2.1 Insulation Resistance

Insulation resistance (IR) of individual long specimens shall be measured at room ambient conditions (ambient temperature to be recorded) with the mandrel submerged in tap water for a minimum of 5 minutes prior to testing using a General Radio Model 1864 megohmmeter or equivalent instrument. A 500 VDC potential shall be applied between each specimen and its mandrel and IR measured and recorded one minute following voltage application. In the event the IR reading is below scale at 500 VDC, lower voltages may be used. IR readings will be obtained using the highest voltage possible to obtain an on-scale reading. Following each measurement, the specimen conductor shall be grounded for one minute to remove the space charge.

4.2.2 Dielectric Withstand

High-potential tests shall be performed by applying voltage between each specimen and the mandrel while the mandrel is submerged in room-temperature tap water for a minimum of 5 minutes prior to testing. The voltage shall be increased to the full value rapidly, but not to exceed 500 volts per mil per second. Full voltage shall be maintained for 1 minute and then reduced to one-quarter value in not more than 15 seconds. The circuit breaker of the dielectric tester shall interrupt the test if leakage current exceeds 10 milliamps. Leakage current shall be recorded. The high potential test voltage for the baseline tests shall be 80 VAC/mil of insulation. Per Okonite, each cable has 30 mils of insulation resulting in a test voltage of 2400 VAC.

4.3 Thermal Aging

The specimens that are to be thermally-aged shall be placed in a Wyle Thermal Aging Chamber and aged in air at $302^{\circ}F(+7/-0^{\circ}F)$ and for the duration specified in Table I for each specimen. The specified thermal aging duration shall be kept within +2, -0% of the specified value, not to exceed one hour. At the specified time, the specimens shall be removed from the thermal aging chamber. During the Thermal Aging process, a circular chart recorder which monitors chamber temperature as a function of time shall be used to record the chamber temperature. Each circular chart shall be capable of recording 24 hours minimum and will be used to document temperature exposure of the specimens. Additionally, one thermocouple shall be mounted on each mandrel, and the indicated temperature shall be recorded. The aging chamber shall have a redundant controller that is capable of terminating the chamber heat should the primary controller malfunction. The redundant controller shall be set no higher than $10^{\circ}F$ above the required aging temperature. Valid calibration certificates shall be available for the aging chamber instrumentation. The specimens shall not be energized for thermal aging.

For the mandrel specimens identified in Table I, each support arm extending off the mandrel will be placed through a penetration in the oven to prevent exposure of the wires exiting the arm to the elevated temperature inside the oven.

Special care will be used during handling of the specimens (during installation or removal from chamber) to prevent any damage. The cables shall not be handled directly. When it is necessary to transport any specimen, it will be handled by the support arm, mandrel, or basket, depending on the configuration. No items are to be laid upon or placed directly adjacent to any specimen that might come in contact with the specimen and cause damage.

	Page No. 6 Test Procedure No. 46120
4.0	
4.4	Post-Thermal Aging Functional Test
	The Insulation Resistance testing, as described in Paragraph 4.2.1, shall be repeated on the specimens following the completion of Thermal Aging.
4.5	Radiation Exposure
	The specimens which are to be exposed to radiation aging will be shipped by a dedicated shipper or Wyle personnel to and from the irradiation vendor for radiation aging.
	The specimens detailed in Table I (while still mounted to the appropriate fixtures) shall be carefully packaged and delivered to the Georgia Institute of Technology, Neely Nuclear Research Center in Atlanta, Georgia. There, the specimens will be exposed to a Cobalt 60 radiation source. The specified radiation dose shall be controlled to the specified value within +5/-0%.
	For the mandrel specimens, each segment of cable end extending off the mandrel via the support arm will be shielded from the radiation to the extent possible to mitigate embrittlement. The specimens shall not be energized for radiation exposure.
4.6	Post-Radiation Exposure Functional Test
	The Insulation Resistance testing, as described in Paragraph 4.2.1, shall be repeated on the specimens following the completion of Radiation Exposure.
4.7	Accident (LOCA) Test
1.7.1	Test Setup
	The mandrel and appropriate basket specimens shall be placed inside a LOCA test chamber. The unaged portion of each specimen, exiting the support arm, shall be routed through a chamber penetration. Each penetration shall then be potted following standard Wyle practices. Nineteen penetrations shall be used, one for each mandrel. The specimens shall be placed to prevent direct steam impingement. Following installation in the test chamber, an Insulation Resistance Test shall be performed to ensure no damage was caused during installation.
.7.2	Electrical Powering and Loading
	The mandrel specimens shall be powered and loaded as detailed in Figure 2. Each mandrel shall be powered with a separate power source.
	The basket specimens require no electrical powering or loading since they are for condition monitoring purposes only.
7.3	Monitoring
	Each of the mandrels shall be individually monitored for applied voltage, circuit current, and leakage

i

1.000

÷

•

173 1678

. . . .

current throughout the duration of the LOCA simulation test. Figure 2 details the electrical circuits to be Used in electrically monitoring the specimens.

Page No. 7 Test Procedure No. 46120

Revision D

4.7 Accident (LOCA) Test (continued)

4.7.3 Monitoring (continued)

Three thermocouples shall be placed at points around and within two inches of the specimen fixture. The average of these thermocouples shall be used to control the test chamber temperature. The test chamber temperature shall be recorded throughout the duration of the test.

The test chamber pressure shall be monitored and recorded throughout the duration of the test by means of a pressure transducer connected to the test chamber.

The chemical spray flow rate shall be monitored and recorded throughout the duration of the test by B means of a flowmeter mounted inline with the spray discharge line.

Temperature versus time plots shall be provided for all thermocouples. Additionally, average chamber temperature versus time, chamber pressure versus time, and chemical spray flow rate plots shall be provided. The data sample rate for all monitored channels shall be no less than 1 sample per second during the environmental ramps, and then no less than 1 sample per 15 minutes during the remainder of the Accident Simulation.

4.7.4 Accident Test

The test chamber temperature shall be increased to approximately 120°F (or as directed by Okonite) using saturated steam and held for a minimum of 30 minutes prior to the application of steam to simulate the accident profile shown in Figure 1. The specimens shall be energized during the pre-heat period. The transient shall be performed on a best-effort basis holding as close to the required temperature as possible to achieve the conditions described in Table A2 of IEEE 323-1974. The transient shall be continued until the peak conditions are achieved. The temperature shall then envelop the Accident Test Profile.

Starting approximately six minutes after reaching stability of the first plateau (due to test equipment limitations), chemical spray shall be initiated inside the test chamber. The chemical spray shall be continued for the duration of the Accident Test. The chemical spray shall consist of deionized water with 0.28 molar H_3BO_3 (3000 ppm boron), 0.064 molar $Na_2S_2O_3$, and NaOH to make a pH of between 9 and 11 at 77°F. The chemical spray shall be captured and recirculated throughout the test. The pH of the chemical spray shall be gradually lowered due to steam condensate. The chemical spray flow rate shall be 0.15 gpm/sq. ft.

The chamber shall be heated using steam throughout the duration of the test. The required test profile shall be controlled via temperature controllers and the internal chamber pressure shall be a result of the saturated steam temperature. The depressurization rate from transients shall not exceed 1 psig/minute.

At the 10-day point of the Accident Test, the temperature of the test chamber shall be allowed to naturally decrease to laboratory ambient conditions. When there, the test chamber shall be flooded with tap water to submerge the test specimens. Once the chamber is flooded, a Dielectric Withstand Test as detailed in Paragraph 4.2.2 shall be performed on each specimen. When completed, the water shall be drained and the temperature of the test chamber slowly returned to 212°F for the remainder of the test.

Page No. 8 Test Procedure No. 46120

Revision E

4.8 Post-Accident Test Functional Test

The following steps shall be taken (in order) following completion of the Accident Test

- The temperature of the test chamber shall be allowed to naturally decrease to laboratory ambient conditions over night
- The door of the chamber shall be removed allowing access to the specimens
- The leads shall be cut from the specimens leaving the aged portion of the specimens on the mandrels
- One at a time, the specimens shall be removed from their mandrels, while still coiled, marked with an appropriate specimen marker, and submerged in room-temperature tap water for storage
- Each specimen, in turn, shall be removed from the water, straightened, and recoiled on a metal mandrel approximately 40 times the diameter of the cable (approximately 8")
- Each specimen, while still coiled on the 8" mandrel, shall be submerged in room-temperature tap water and subjected to the Dielectric Withstand Test as detailed in Paragraph 4.2.2 with the exception that the full voltage shall be maintained for 5 minutes
- The specimens will then be removed from the mandrel, carefully packed, and returned to Okonite

5.0 TEST REPORT

Two bound copies, and one unbound reproducible copy, of a test report describing the test requirements, procedures, and results shall be issued. The test report shall contain Notices of Anomaly, if any anomalies occur during the test program; tables, data sheets, sketches, etc. to document test setups, tests performed, and results; photographs of test setups including instrumentation locations, the test specimen at various stages of the test program, and any structural failures or degradation. Raw test data such as tapes of accelerometer data, chart recorder records, and computer printouts shall be provided to Okonite.

Page No. X-11 Test Report No. 46120-1

> Page No. 9 Test Procedure No. 46120

Revision B

ţ

,

APPENDIX I

TABLE

;

÷

1

i,

7

WYLE LABORATORIES Huntsville Facility

.

Page No. X-12 Test Report No. 46120-1

Page No. 10 Test Procedure No. 46120

Revision B

TABLE I

SPECIMEN DETAILS

Specimen	Mandrel	Production	Thermal Aging	Thermal Aging	Radiation	Radiation
No.	No.	Run No.	Time (hours)	Temperature (°F)	Dose (rads)	Dose Rate (rads/hour)
1	1	FO-07-85810	Unaged	N/A	2.0E8	<1.0E6
2	1	FO-07-7839	Unaged	N/A	2.0E8	<1.0E6
3	2	FO-07-85810	50	302	2.0E8	<1.0E6
4	2	FO-07-7839	50	302	2.0E8	<1.0E6
5	3	FO-07-85810	70	302	2.0E8	-<1.0E6
6	3	FO-07-7839	70	302	2.0E8	<1.0E6
7	4	FO-07-85810	90	302	2.0E8	<1.0E6
8	4	FO-07-7839	90	302	2.0E8	<1.0E6
9	5	FO-07-85810	110	302	2.0E8	<1.0E6
10	5	FO-07-7839	110	302	2.0E8	<1.0E6
11	6	FO-07-85810	130	302	2.0E8	<1.0E6
12	6	FO-07-7839	130	302	2.0E8	<1.0E6
13	7	FO-07-85810	150	302	2.0E8	<1.0E6
14	7	FO-07-7839	150	302	2.0E8	<1.0E0 <1.0E6
15	8	FO-07-85810	175	302	2.0E8	<1.0E0
16	8	FO-07-7839	175	302	2.0E8	<1.0E6
17	9	FO-07-85810	200	302	2.0E8	<1.0E6
18	9	FO-07-7839	200	302	2.0E8	<1.0E6
19	10	FO-07-85810	225	302	2.0E8	<1.0E0 <1.0E6
20	10	FO-07-7839	225	302	2.0E8	<1.0E6
21	11	FO-07-85810	250	302	2.0E8	<1.0E6
22	11	FO-07-7839	250	302	2.0E8	<1.0E6
23	12	FO-07-85810	275	302	2.0E8	<1.0E6
24	12	FO-07-7839	275	302	2.0E8	<1.0E6
25	13	FO-07-85810	300	302	2.0E8	<1.0E6
26	13	FO-07-7839	300	302	2.0E8	<1.0E6 <1.0E6
27	14	FO-07-85810	150	302	1.0E8	<1.0E6
28	14	FO-07-7839	150	302	1.0E8	<1.0E6
29	15	FO-07-85810	175	302	1.0E8	
30	15	FO-07-7839	175	302	1.0E8	<1.0E6
31	16	FO-07-85810	200	302	1.0E8	<1.0E6
32	16	FO-07-7839	200	302	1.0E8	<1.0E6
33	17	FO-07-85810	250	302	1.0E8	<1.0E6
34	17	FO-07-7839	250	302	1.0E8	<1.0E6
35	18	FO-07-85810	300	302		<1.0E6
36	18	FO-07-7839	300	302	1.0E8	<1.0E6
37	19	FO-07-85810	350	302	1.0E8	<1.0E6
38	19	FO-07-7839	350	302	1.0E8 1.0E8	<1.0E6 <1.0E6

Page No. X-13 Test Report No. 46120-1

Page No. 11 Test Procedure No. 46120

Revision B

TABLE I (continued)

SPECIMEN DETAILS

BASKET S	PECIMENS				
Basket No.	Thermal Aging Time (hours)	Thermal Aging Temperature (°F)	Radiation Dose (rads)	Radiation Dose Rate (rads/hour)	Return Basket to Okonite following:
1	Unaged	N/A	2.0E8	<1.0E6	radiation
2	Unaged	N/A	2.0E8	<1.0E6	LOCA
3	50	302	N/A	N/A	thermal aging
4	50	302	2.0E8	<1.0E6	radiation
5	50	302	2.0E8	<1.0E6	LOCA
6	70	302	N/A	N/A	thermal aging
7	70	302	2.0E8	<1.0E6	radiation
8	70	302	2.0E8	<1.0E6	LOCA
9	90	302	N/A	N/A	thermal aging
10	90	302	2.0E8	<1.0E6	radiation
11	90	302	2.0E8	<1.0E6	LOCA
12	110	302	N/A	N/A	thermal aging
13	110	302	2.0E8	<1.0E6	radiation
14	110	302	2.0E8	<1.0E6	LOCA
15	130	302	N/A	N/A	thermal aging
16	130	302	2.0E8	<1.0E6	radiation
17	130	302	2.0E8	<1.0E6	LOCA
18	150	302	N/A	N/A	thermal aging
19	150	302	2.0E8	<1.0E6	radiation
20	150	302	2.0E8	<1.0E6	LOCA
21	175	302	N/A	N/A	thermal aging
22	175	302	2.0E8	<1.0E6	radiation
23	175	302	2.0E8	<1.0E6	LOCA
24	200	302	N/A	N/A	thermal aging
25	200	302	2.0E8	<1.0E6	radiation

Page No. X-14 Test Report No. 46120-1

Page No. 12 Test Procedure No. 46120

Revision B

TABLE I (continued)

SPECIMEN DETAILS

BASKET S	SPECIMENS				
Basket No.	Thermal Aging Time (hours)	Thermal Aging Temperature (°F)	Radiation Dose (rads)	Radiation Dose Rate (rads/hour)	Return Basket to Okonite following:
26	200	302	2.0E8	<1.0E6	LOCA
27	225	302	N/A	N/A	thermal aging
28	225	302	2.0E8	<1.0E6	' radiation
29	225	302	2.0E8	<1.0E6	LOCA
30	250	302	N/A	N/A	thermal aging
31	250	302	2.0E8	<1.0E6	radiation
32	250	302	2.0E8	<1.0E6	LOCA
33	275	302	N/A	N/A	thermal aging
34	275	302	2.0E8	<1.0E6	radiation
35	275	302	2.0E8	<1.0E6	LOCA
36	300	302	N/A	N/A	thermal aging
37	300	302	2.0E8	<1.0E6	radiation
38	300	302	2.0E8	<1.0E6	LOCA
39	150	302	1.0E8	<1.0E6	radiation
40	150	302	1.0E8	<1.0E6	LOCA
41	175	302	1.0E8	<1.0E6	radiation
42	175	302	1.0E8	<1.0E6	LOCA
43	200	302	1.0E8	<1.0E6	radiation
44	200	302	1.0E8	<1.0E6	LOCA
45	250	302	1.0E8	<1.0E6	radiation
46	250	302	1.0E8	<1.0E6	LOCA
47	300	302	1.0E8	<1.0E6	radiation
48	300	302	1.0E8	<1.0E6	LOCA
49	350	302	1.0E8	<1.0E6	radiation
50	350	302	1.0E8	<1.0E6	LOCA

Page No. X-15 Test Report No. 46120-1

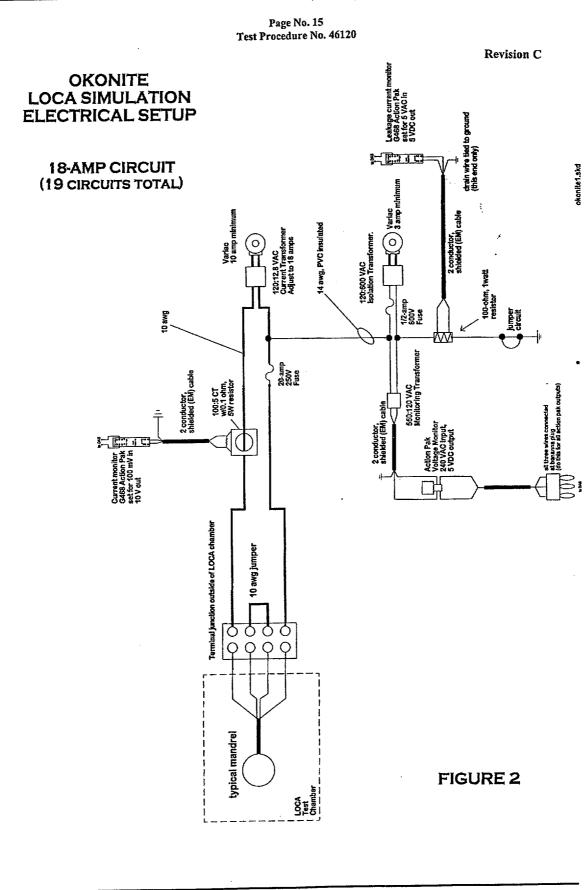
Page No. 13 Test Procedure No. 46120


Revision B

:

APPENDIX II

FIGURES


WYLE LABORATORIES Huntsville Facility

Page No. 14 Test Procedure No. 46120 Page No. X-16 Test Report No. 46120-1

Revision D

Page No. X-17 Test Report No. 46120-1

÷

Page No. X-18 Test Report No. 46120-1

This page intentionally left blank.

.

`..

÷

×