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Abstract 
We conducted Monte Carlo simulations of flow in unsaturated fractured rocks using a two-phase, non
isothermal, flow simulator. In this simulator the fractured rock is idealized as a dual-continuum porous 
media, in which the matrix and fracture constitute two distinct continua represented by two overlapping, 
interacting numerical grids. Darcy's law and the area of the matrix-fracture interface open to flow govern 
the exchange of fluids between the two continua. To investigate the applicability of the dual-continuum 
approach for modeling unsaturated flow in a thick vadose zone of fractured rocks, we applied the model 
to site data collected from Yucca Mountain. We used grid blocks with dimensions of 1 m that is 
commensurate with the support volume of fracture permeabilities estimated from single-hole pneumatic 
injection tests. We investigated the consequences of simplifying fracture permeability on unsaturated 
flow by comparing the model results using uniform formation properties to a stochastic model that 
represents spatial variability of the fracture permeability within the layers as a multivariate lognormal 
random field. In both models, the water flux boundary condition was varied to simulate the effects of 
variable recharge rates.  

We found that the variability in fracture permeability causes the development of preferential flow paths 
in the fracture continuum for the welded tuff units and in the matrix continuum for the nonwelded unit.  
The magnitude of variance in fracture permeability correlates well with the degree of flow focusing.  
Water flow rates in preferential flow pathways have been found to be locally very high (more than ten 
times the input flow rate). Flow focusing due to the development of preferential pathways increases 
saturation locally. This local increase in saturation causes an increase in relative permeability to water 
along the pathway and may reduce the wetted surface area for fracture-matrix interaction.  

Comparison of results obtained from the homogeneous and heterogeneous models of unsaturated flow 
through thick vadose zones shows that deep percolation can take place rapidly through persistent, 
prefe4=nfial flow patThese pAt a s are har o detect and may carr large volumes of water.  
Simpl ationN sitei geoloqjltto IroneojicluThns e spatial and temporal
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Study Objectives 
"* To compare deterministic and stochastic continuum analyses of 

water flow in thick vadose zones of fractured rocks.  

"* To investigate the effect of flow focusing on deep percolation in 

layered, heterogeneous media.  

"* To investigate the effects of varying o2 on flow focusing.  

"* To investigate the effects of varying water flow rate (q) on flow 

focusing.  

"* To investigate the consequences of simplifying model structure 

and parameters on deep percolation.
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Current DOE conceptualization 
of Yucca Mountain 
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Complexity of Unsaturated Flow in Thick 
Vadose Zones of Fractured Rocks 

"* Episodic nature of precipitation events 

"* Localization of infiltration 

"* Poorly understood transport of water, air, and heat in the shallow 

subsurface 

"* Poorly understood constitutive relationships for unsaturated 

fractured rock.  

"* Spatial and temporal variability of water and air flow resulting from 

heterogeneity in rock properties at multiple scales 

"* Difficulty in measuring ambient percolation rates in situ
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Simulation of permeability fields
0 Permeability fields - direct Fourier 

Transform Method developed by A.  
Gutjahr and his coworkers (Robin 
et al., 1996).  

• 10 unconditional simulations were 
conducted to generate 
permeability fields with isotropic 
correlation scales for the TCw, 
PTn, and TSw units.  

0 Lack of information at Yucca 
Mountain precludes rigorous 
geostatistical analysis of data.

Exponential model 

y(h)=U'2 i-exp(-hj 

h = separation vector 
magnitude 

?= correlation length (2 m) 

o2= variance (0.5 - 2.0)
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Mass and Energy TRAnsport (METRA) 
Lichtner et al., (2000) 

"* Two-phases (fluid and vapor), non-isothermal flow 
"* Computations in 1-, 2-, or 3-D 
"* Block-centered structured / unstructured grids: Integrated Finite Volume 

(IFV) 
"• Single, dual, or equivalent continuum 
"• Flexibility in incorporating various empirical relations to describe two-phase 

flow properties (van Genuchten, Brooks-Corey, linear, or user-defined) 
"* Three primary equations solved: 

- Total mass balance 
- Air mass balance 
- Energy balance 

"* Primary field variables for two-phase problems: 
- Total gas pressure (Pg) 
- Partial pressure (Pa) 
- Gas saturation (sg).  

"* Solution based on a fully implicit formulation using a variable substitution 
approach 

o* pat I he,.ceneit rok flow~ad thermal paramLes
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Model Assumptions 
9 2D, isothermal simulation 

e Dual continuum model with fractures 
treated as stochastic continuum; matrix 
treated as homogeneous continuum.  

0 1 m3 grid blocks 

* 2 phase flow (air and water) 

• Mixed BC at the top; no-flow BC at the 
sides and constant head BC at bottom.
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Numerical Simulation Parameters 

* DCM parameters from TSPA-VA 
* Fracture permeability statistical 

parameters: 
Mean values from single-hole pneumatic 
injection tests at Yucca Mountain.  

- Variance and correlation lengths chosen 
arbitrarily.  
Variance also derived from geostatistical 
analysis of air injection tests at the Apache 
Leap Research Site (ALRS).
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Case 1 
o2= 0.5; q= 42.5 mm/yr 
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Case 2
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Case 3 
o2= 2.0; q = 42.5 mm/yr 

Fracture continuum, Water Flux in Fracture 
Continuum 
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Case 1 
= 1.0; q = 42.5 mm/yr

a) Saturation in fracture continuum 
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Observations 

"* High variability in saturation of 

fracture continuum in welded 

units (TCw, TSw).  

"* Variability in saturation of matrix 

continuum in the nonwelded unit 

(PTn).  

"• Flow focusing in fracture 

continuum of TCw and TSw 

"* Flow focusing in matrix 

continuum of PTn.
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Variation in flow rate at top boundary
o2= 0.5; q = 12.5mm/yr 02= 0.5; q = 22.5mm/yr
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Conclusions 
"• Preferential flow paths develop in the fracture and matrix 

despite the uniform application of water at the top boundary 
and without explicitly building in high permeability pathways or 
discrete features that represent fractures.  

"• The development of preferential pathways in the fracture 
continuum increases the relative permeability to water along 
these pathways and reduces the wetted surface area for 
fracture-matrix interaction.  

"• Water flow rates in preferential flow pathways can be locally 
very high (more than ten times the input flow rate).
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Conclusions (cont.) 
The presence of the nonwelded PTn in the UZ led to the past 
conceptualization that deep percolation at Yucca Mountain 
becomes attenuated and laterally diverted once it reaches the 
PTn unit. Our model shows that: 

- (a) rapid flow takes place through persistent, preferential 
flow paths in the TCw and TSw units; 

- (b) the focusing of flow at the TCw/PTn contact causes 
localized increases in matrix saturation that can extend 
from the TCw/PTn contact to the PTn/TSw contact; 

- (c) increase in saturation causes the development of 
preferential pathways in the PTn matrix continuum; and 

- (d) the preferential pathways allow for the rapid, 
predominantly downward movement of water through the 
unit.
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Conclusions (cont.) 
"* Comparison of results obtained from the homogeneous and 

heterogeneous models of unsaturated flow through thick 
vadose zones shows that deep percolation can take place 
rapidly through persistent, preferential flow paths.  

"* These pathways are hard to detect and may carry large 
volumes of water. Simplification of site hydrogeology may 

lead to erroneous conclusions on the spatial and temporal 
distribution of unsaturated flow through thick, fractured 
vadose zones.  

"* The effect of episodic infiltration on unsaturated flow through 
thick, Il d vadose zone is currently under investigation.
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