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Abstract. Considerable heterogeneity is evident when permeability measurements are 
made on small scales, either in the field or in the laboratory on field samples. Small scale 
permeability measurements have commonly been made by inducing multidimensional gas 
flow through a sample with various configurations of the conventional surface-sealing gas 
minipermeameter. In order to overcome weathering and seal-quality problems, a new 
minipermeameter probe was designed for field application within small diameter holes 
drilled into an outcrop. We briefly describe the small drillhole minipermeameter, while 
developing in detail the associated data analysis methodology for performing in situ 
permeability measurements with this new probe. Analysis of field data, which consists of 
gas injection pressure and mass flow rate, is based on a numerical solution in cylindrical 
coordinates of the ideal gas flow equation, assuming homogeneous and isotropic conditions 
over the averaging volume of the measurements. In the following development, the semi
analytical inverse solution for permeability will be derived for the new small drillhole 
minipermeameter probe, which varies from that of the conventional surface-sealing 
minipermeameter probe only in the choice of the appropriate characteristic length and in the 
magnitude of the associated geometrical factor.  

GAP Index Terms: 1) Physical Properties of Rocks: Permeability and Porosity (5114); 2) Mathematical 
Geophysics: Numerical Solutions (3230); 3) Hydrology: Instruments & Techniques (1894); 4) Hydrology: 
Unsaturated Zone (1875); 5) Exploration Geophysics: Instruments & Techniques (0994) 

1. Introduction 

As one of the primary engineering variables that influences contaminant recovery during remediation 
efforts, as well as fluid migration in general, intrinsic permeability and its three-dimensional distribution in the 
subsurface are candidates for the "Holy Grail" of hydrogeology. Likewise, small-scale permeability 
heterogeneity plays a substantial role in petroleum migration and reservoir performance, because permeability 
may vary over many orders of magnitude (e.g., 0.01 mD to over 10,000 mD [Norris and Lewis, 19911).  
Permeability heterogeneities on the meter-to-micrometer scale, such as beds, laminae, internal sedimentary 
structures and variations in pore morphology, are the source of most retrieval difficulties during enhanced oil 
recovery operations, thus negatively affecting reservoir recovery efficiency [Weber, 1982; Weber, 1986; Hurst 
and Rosvoll, 1991; Ali, 1993; Pickup et al., 1995].  

Considerable heterogeneity is evident when permeability measurements are made on small scales, either in 
the field or on field samples in a laboratory setting. Small scale permeability measurements were traditionally 
made by inducing one-dimensional gas flow through a cylindrical core plug in a Hassler sleeve or cell 
[Hassler, 1944; American Petroleum Institute, 1960, 1998]. Recently, such measurements have also commonly
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been made by inducing multidimensional gas flow through a sample with various configurations of the 
conventional surface-sealing gas minipermeameter (also known in the literature as a probe permeameter).  

In the petroleum industry, cylindrical plugs have traditionally been extracted from continuous core at 0.30
meter intervals for Hassler-sleeve permeability measurement [Clelland, 1984, Dubrule and Haldorsen, 1986; 
Goggin et al., 1988; Robertson and McPhee, 1990; Corbett and Jensen, 1992a, b], which preserves a majority 
of the core while minimizing associated costs. Except for relatively homogeneous formations, this scale of 
permeability measurement is in an ill-defined geologic region, falling within the range of laminae and lamina 
sets [Allen, 1988; Hurst and Rosvoll, 1991; Jensen et al., 1994; Hurst et al., 1995]. Furthermore, core plug 
samples tend to be biased toward the more consolidated, less permeable and less friable sections [Robertson 
and McPhee, 1990; Hurst, 1993; Zheng et al., 2000]. As an example, the effect of this arbitrary sampling 
density on Hassler-sleeve measurements for the case of tight gas sands is that magnitudes of permeability less 
than 100 mD frequently result, even when coarser-grained beds that would operate as preferential flow 
channels or "thief zones" are clearly present. At present, the scale of sedimentary heterogeneity is best 
resolved by use of the minipermeameter, which allows investigation of permeability heterogeneity at much 
greater (and statistically significant) sampling densities and on much smaller scales than is possible with the 
traditional technique [Jensen, 1990; Robertson and McPhee, 1990; Hurst and Rosvoll, 1991; Corbett and 
Jensen, 1992a; Bourke, 1993; Halvorsen, 1993; Kara et al., 1993; Hurst and Goggin, 1995; Tidwell and 
Wilson, 19971.  

The literature documents use of the conventional surface-sealing minipermeameter probe for measurements 
made on outcrop surfaces, core plugs, slabbed cores, or on large cut blocks. One motivation for using cores, 
plugs or blocks of rock is that natural weathering processes may greatly affect permeability values obtained 
from exposed outcrop surfaces. The weathering effect has been shown to extend up to several inches below the 
rock surface [C.B. Forster et al., 3-D fluid flow simulation in a clastic reservoir analog: based on integrated 3
D GPR and outcrop data from the Ferron Sandstone at Coyote Basin, Utah, submitted to The Fluvial-Deltaic 
Ferron Sandstone: Regional to Wellbore Scale Outcrop Analog Studies and Reservoir Modeling, edited by 
T.C. Chidsey, Jr., R.D. Adams, and T.H. Morris, AAPG Memoir, 2001]. The authors' interest in this subject 
matter was spurred by involvement in U.S. Department of Energy oil reservoir architecture research through 
the Office of Fossil Energy [Castle et al., 2000]. Permeability data were sought from outcrop analogues 
(shallow-marine Upper Cretaceous Straight Cliffs Formation near Escalante, Utah), but being cognizant of the 
need to avoid measurements obtained from weathered surfaces, a core drill was selected to retrieve cylindrical 
plugs, from which permeability data could be collected in a laboratory environment from the distal (and less 
weathered) end of the plug. Because the selected sandstone outcrops were weakly cemented and friable, the 
core drill frequently produced pulverized sand or significantly disturbed plugs. It became apparent that 
obtaining sandstone samples for use in the lab was not always feasible, and certainly was not in this case.  

Beyond the issue of weathering, there are other rationales for discouraging use of the conventional 
minipermeameter probe in a field setting. When applying it to natural rock outcroppings in the field, as 
opposed to cut specimens in an automated laboratory setting, seal-quality problems are often encountered due 
to irregular, rough surfaces, and difficulties associated with manually holding the probe stationary while 
applying a uniform normal force of the optimal magnitude on the tip seal.  

To overcome weathering and seal-quality problems, a new minipermeameter probe has been developed, 
designed in particular for application inside a small drillhole [Dinwiddie, 2001]. In the process of setting up the 
authors' original field site for plug recovery, it was discovered that it is a simple task to drill small, high 
quality holes in the outcrop with a masonry drill. The creation of the hole is followed by probe insertion, seal 
expansion and in situ calculation of permeability via measurement of the injection pressure, flow rate, and 
knowledge of the system's flow geometry, as characterized by geometric factors to be presented herein.  
Advantages of this in situ approach are (1) minimization of the influence of weathering on permeability; (2) 
elimination of the need to correct lab samples for lack of overburden [Dubrule and Haldorsen, 1986; Jones, 
1992; Gibbons et al., 1993; Hurst et al., 1995; American Petroleum Institute, 1998; Zheng et al., 2000]; (3) 
provision of a superior sealing mechanism around the air injection zone (with which it is a simple matter to 
consistently apply the necessary force for a seal, while maintaining a geometrical factor that is independent of 
the operator); and (4) the potential for measurement collection at multiple depths below the outcrop surface. In 
this article we will briefly describe the small drillhole minipermeameter probe (the interested reader is referred 
to a future publication [C.L. Dinwiddie et al., The new small drillhole minipermeameter probe: design,
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operation, and performance characteristics, manuscript in preparation, 20021 for an in-depth description of the 
probe and its design), while developing in detail the associated data analysis methodology for performing in 
situ permeability measurements inside small diameter holes. Analysis of field or laboratory data, which 
consists of gas injection pressure and mass flow rate, is based on the numerical solution in cylindrical 
coordinates of the ideal gas flow equation, assuming homogeneous and isotropic conditions over the averaging 
volume of the measurements. The overall analytical approach follows that developed by Goggin [1988], while 
excluding corrections for gas slippage and high velocity flow effects (the methods of correction for these 
phenomena were developed and fully described in Goggin et al. [1988], and are unchanged for the new probe 
geometry).  

2. Small Drillhole Minipermeameter Probe Dimensions 

The new small drillhole minipermeameter probe is designed for application in cylindrical holes drilled with 
a standard 5/8-in (1.59-cm) masonry drill bit. This drill bit readily cut a 1.8-cm diameter hole in the shallow 
marine sandstone at the Escalante, Utah field site. The diameter of the hole resulting from this particular drill 
bit may vary slightly from one rock type to another. The probe was designed for use in holes with a maximum 
depth of 10 cm; however, 1.59-cm diameter masonry drill bits with a length of at least 30 cm are readily 
available, and modification of the current probe design for application in deeper holes would be an easy task.  
Thus, deeper holes could be drilled, enabling permeability measurement at multiple depths below the outcrop 
surface, and allowing collection of a three-dimensional data set.  

Like the tip-seal of the surface-sealing minipermeameter probe, the rubber seal of the drillhole probe is a 
cylindrical annulus, but in this case axial compression causes the seal to expand like a packer against the sides 
of the drill hole. The seal, which is composed of smooth-finish pure gum rubber tubing with a 3/16-in (4.76
mm) inner diameter, 9/16-in (14.29-mm) outer diameter, and / 16-in (4.76-mm) wall thickness, is used to secure the probe at the distal end of the drill hole, while isolating the injection zone from the ejection zone.  

3. Theoretical Analysis-Semi-Analytical Inverse Solution 

Through the first numerical models of the conventional surface-sealing minipermeameter flow system, 
Goggin et al. [19881 demonstrated that the inverse solution for probe permeability replaces the one
dimensional Hassler-sleeve geometric combination L/A (where L is the length of a cylindrical core plug and A 
is its cross-sectional area) with the dimensionally compatible term 1/(aGo), where the inlet radius, a, was 
selected as the characteristic length, and Go is a dimensionless geometrical factor [Robertson and McPhee, 
1990; Sutherland et al., 1993]. Thus, the semi-analytical inverse solution for permeability, kg (D; 1 D = 

0.986923x10'"2 M2
), when measured by the conventional surface-sealing minipermeameter is: 

kg = 21igqiPF 
a g 2 _ 4 2(1) 

where PLg = gas viscosity (cp; 1 cp = 1X10-3 N s nf 2), qi = volumetric flow rate at injection pressure (cm 3 s-; 1 

cm 3 s'! = 1x10"6 m3 sA), P1 = injection pressure, and Po = atmospheric pressure (atm; I atm = 101 325 N m 2).  

The geometrical factor, when calculated numerically for a given sample and probe geometry, accounts for the 
complex multidimensional flow pattern throughout the porous medium, capturing the edge effects associated 
with the geometry of the sample and probe, and thus boundary conditions that are simply not accounted for by 
an empirical calibration using core plugs. This can be particularly true when using a calibration relationship 
[Robertson and McPhee, 1990; Sutherland et al., 1993] to solve for permeability on a sample with a strongly 
differing geometry or size than that of the core plugs used in the calibration exercise.  

The validity of the minipermeameter inverse solution presented in Equation (1) has been definitively 
established under Darcy flow conditions through many correlative studies with Hassler-sleeve measurements 
[Goggin et al., 1988; Halvorsen and Hurst, 1990; Robertson and McPhee, 1990; Corbett and Jensen, 1992a; 
Jensen and Corbett, 1992; Jones, 1992; Ali, 1993; Goggin, 1993; Sharp et al., 1994; Garrison et al., 1996]. As
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a result of the confidence gained in the solution by Goggin et al. [1988] throughout the last decade, tedious 
equipment-specific empirical calibrations with Hassler-sleeve measurements are no longer required for every 
new tip seal geometry or every new injection pressure prior to conducting an investigation [Young, 1989; 
Garrison et al., 1996].  

In the following development, the semi-analytical inverse solution for permeability will be derived for the 
new small drillhole minipermeameter probe, which varies from Equation (1) only in the choice of the 
appropriate characteristic length and in the magnitude of the associated geometrical factor.  

3.1. Minipermeameter measurements made in a small drill hole 

As first described by Dinwiddie et al. [1999] and illustrated below in Figure 1, an annular rubber tip seal 
undergoes axial compression, causing the seal to expand like a packer against the drill hole. It is used to seal 
the probe in the bottom of the drill hole, while isolating the injection zone from the ejection zone. Pressure 
within the sealed-off region is maintained above that of the atmosphere, so that gas enters the porous medium, 
flows around the tip seal, and exits to the rock surface either in the drill hole or at the cliff face (both are at 
atmospheric pressure). Because the small drillhole minipermeameter probe is intended for use as a field 
instrument, the infinite half-space flow system solution is of particular interest. This will be approximated 
numerically with a finite-difference algorithm for a semi-infinite domain with no flow across distant 
boundaries.  

3.2. The steady-state mass conservation equation for radially symmetric compressible ideal gas flow 

The geometry of the drillhole probe compels the use of a cylindrical coordinate system. In this case, mass 
flux is given by: 

Pg9Ug =PgUrg " + PgUzg J, (2) 

where pg is gas density, iig is the darcy flux, and r and z are radial and vertical coordinate directions, 
respectively. Thus, the steady-state mass conservation equation governing radially symmetric gas flow in a 
porous medium has the following representation: 

1 a 
9r(rpgu g)+-(pguj)=O. (3) 

r ar rg 

Given the following assumptions: 1) darcy flow (no high velocity flow or inertial effect, and no gas slippage or 
Klinkenburg effect); 2) ideal gas compressibility (the average gas compressibility factor, ý, is approximately 
unity for ambient conditions); and 3) homogeneous and isotropic permeability (kg is constant) within the 
measurement's averaging volume, the expression for mass flux is: 

MPg P (4) 

gg RT a p 

where Mwt is the molecular weight of the gas, Pg is the gas pressure, R is a gas constant, T is temperature, and 
(p is a dummy coordinate direction representing either r or z.

4
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To linearize Equation (4), one may define an ideal gas pseudo-potential, (D, in order to take advantage of the 
Kirchoff transform. Following Goggin et al. [1988] in general, and Aronson [1999] in particular: 

-M P 2 

D_ wt g (5) 
jigRT 2 

Whereas gas viscosity is a weak function of pressure, it varies strongly with temperature and water vapor 
content. Thus, for approximately isothermal conditions, the relationship defined in Equation (5) results in a 
satisfactory linearization of the governing equation under ambient conditions. The components of the pseudo
potential gradient are: 

a(D] Mw, Pg aP 
___ MWP 9P (6) 

r(P -iRT a(p 

Therefore, Equation (4) can be written as: 

P9gUcpg9 =rz = k9g aF• . (7) 

Substitution of Equation (7) into the steady-state conservation equation [i.e. Equation (3)] yields: 

a -- r -zkgz=" (8 

-1{rkg aJ+ af(kg a~)= (8) 

Recalling that kg is assumed homogeneous and isotropic over the averaging volume of the measurement (i.e., a 
constant), we obtain the general steady-state gas flow equation in cylindrical coordinates: 

a2 D 1 aJ a 2(D + I - 0. (9) ar 2 r ar a)Zz 

3.3. Boundary Conditions of the Small Drillhole Minipermeameter Probe System 

The boundary conditions governing the pressure distribution, and hence the mass flux field, are defined by a 
semi-infinite domain that makes use of symmetry, has no flow across distant boundaries, no flow across the

5
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seal, a constant injection pressure, and atmospheric pressure at both the outcrop and adjacent drillhole surface.  
Specifically, the boundary conditions for the geometry shown in Figure 2 are as follows: 

Pi~net P1 for 0•r<B at z= BW Dr+ 

for H:z<D atr=B 

Poude, =Po for 0•z<L atr=B 

for B5r<R. atz=0 

= 0 for L:5 z• H at r = B (10) 
r=B 

Pr r=R = 0 for 0O< z:< Z_ at r =R,, 

aPg ==0 for 0<r<R__ atz=Zm, 

-~g =0 for W z<Z,,Z asr-->O0.  
"a- r..• 

Following the procedure developed by Goggin et al. [1988], Equation (9) and the boundary conditions given 
in Equation (10) are expressed in dimensionless units by dividing each dimension by the characteristic length, 
B, such that any given dimension (p can be written in terms of the dimensionless variable (pD: 

(p = BPD. (11) 

Recollecting the need to recast pressure in terms of pseudo-potential for the purpose of linearization, we define 
the following dimensionless constants and variables (choosing the characteristic length to be the drillhole 
radius, B, and calling 4D and (o the injection and atmospheric pseudo-potential, respectively): 

z r D_- 0 .  
ZD ='• rD =- D; =D

BB -B0 (12) 
L H D W Zmo Rma_ 

LD=L; HD =-H; DD =-D; WD =-iW; ZD = - x;g 
B B B B "' B '~' B 

Substituting these definitions into Equation (9), yields: 

a24 ) D 1 a0D a2 4) D 0.  
2 + a 0. aZ(13) 

__ rD Dr z 

While it may be possible to solve Equation (13) analytically, subject to the following boundary conditions, 
herein it is solved numerically through finite-difference approximation. As developed by Dinwiddie [2001], the
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dimensionless boundary conditions governing the pseudo-potential distribution, and hence the mass flux field 
for the half-space geometry, are given by:

0<rD <1 
HD5 •ZD •ýDD 
Ho < ZD <! LD 

1:rD <LRD

at 

at 

at 

at

ZD =-(WD - DD)rD + WD 

r 1 1

rD=1 

ZD =0

at ro = 1

at rD =1RD, 

at ZD= ZD_ 

as r, -> O

3.4. Geometrical Factors, the Integral Form of Darcy's Law, and the Small Drillhole Minipermeameter 
Inverse Solution for Permeability 

The mass injection rate, thi, , entering through the cylindrical surface between H and D (Figure 2), is given 

theoretically by the following expression:

2n D 

rho, = f f (PgUgrr=BJBdzdO 

o H

(15)

The mass injection rate, rho,, entering the conical surface at the distal end of the drill hole is given by the 

following line integral along the path z =-( B D •+W

2n B,W 2nf B 271W 

in 02 = f f-Pghi ADrdo = f JPgUgrdrrdO + f JPgugzdzrdO, 

0 r-*O, D 0 r-+O 0 D

"(16)

where pgtdg =PgUgr1 +PgUgzj and dL=dri+dzj. The first integral on the RHS represents the 

horizontal component of the gas mass injection rate through the conical surface inlet, and the second integral

for 

for 

for 

for

(D (0 )=1H

Mr D 

arD ro= I
=0 for LD < zD < HD

a4 ) D = 0 for 0O< ZD< ZD 

arD rD=RD

a4 D = 0 for O<rD<RD_ 

aZD ,,=, ,z

(14)

A 
O)D 

arD rD--0

=0 for WD•<-zDZD<

7
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on the RHS represents the vertical component of the gas mass injection rate through the conical surface inlet.  
Thus, the total rate of mass injection into the system (7ho = rho, + thoz ) is then given by: 

21c D 

ho = f f (PgUgrlr=B• )BdzdO + 

For axi-symmetric flow, and utilizing Equation (7), the total rate of mass injection is simplified to: 

0H 

B 

0 r -.>i 

271 + 

27f f {kg U } ( )Z WB rdz.  

Recall from the definitions in Equations (12) that the dimensionless pseudo-potential is determined in the 

following manner: 

0n -°, (19) 

Ot-0 

so, the derivative of On~ taken with respect to (I is given by: 

D (20) 

Also, from Equation (5), we have the following relationship: 
Ar = (4 1 - )= Mw [gP 1 2 ] LB (21)
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Now, since any dimensionless variable is given by (PD -=r,z = qi/ B, it is also true 

that d(PD = dqI/B, and (pd(p = B2 q(Pd(PD. Then, by the Chain Rule and Equations (20) and (21), we 

have:

a4ID acID ~D ap 

a(DD a(pD a(

[RRL 2B a(PD
B (P D

Thus, the dimensionless form of Equation (18) is as follows: 

2Dar 
rh °= -rtB •t R~m2 - 8r o '2 

H, ItgRT 2 r D= 1 

2n k9 MWI a(,)e~ D r0 

-27riBf k 8  RT 2 "2] --Z zD=_(WODD)rD+Wor~d 

-27t Mn,, [ ap I~rD I W=-rD+ 

DD ( WD-DD) Wo-D o

rD

rodzD.

Utilizing A4D, as defined in Equation (21), Equation (23) for the total rate of mass injection simplifies to:

rho =-27tBkg A4 

-27tBkg A1 

- 22tBkg A'I

D 

f ardzD 
HD r 0 1 

rD--40 ZD=-(WD-DD)rD+WD

w 

DD

rDdrD

8___ rDdZD.  

aD rD )I( W 
WD-DD) WD-DD

(22)

(23)

(24)

9
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The geometrical factor, G,, is a function of all system boundary conditions (i.e. dependent on both probe and 
sample geometry) and is defined as follows: 

D 

Go=27t f =27cI ]D dzD + 

H, ar, =Iro=I 

2nrI (_D• rDdrD + (25) 
r,-->O 3ZD Dz=-(WD-Do)r, +WD 

21r f D rDdZD.  2n rD r°=(W°• W1 

DDWID-DD) WO-DD 

Finally, Equation (24) reduces to the following integral form of Darcy's law as determined from the rate of 

mass injection: 

rho, = -BGokg A4. (26) 

Equation (26) is superficially very similar to Equation (1) of Goggin et al. [1988], which is commonly referred 
to in the literature as a "modified form of Darcy's law". However, whereas the Goggin et al. [1988] equation 
applies to the geometry of a conventional surface-sealing minipermeameter probe, Equation (26) applies 
specifically to the drillhole probe system geometry through the geometrical combination BGo. Using the ideal 
gas law, the total rate of mass injection may be expressed as: 

't° =-BG~kg P' [ "2 ' (27) 

and solving for permeability yields: 

kg = rho P, 29tqP1F (28) 
BGo[I, ' 2 ] BGoF 2[P_ 2 

4. Finite-Difference Numerical Models for Determination of Geometrical Factor Curves 

4.1. Node System, Difference Equation, and the Computational Molecule 

Two-dimensional axi-symmetric compressible gas flow from the injection zone to the atmospherically
exposed rock surface was numerically simulated by a mesh-centered finite-difference Fortran algorithm. The 
flow domain mesh features variable discretization in both coordinate directions, which becomes increasingly 
fine as the critical tip seal region is approached such that the rapidly increasing pseudo-potential gradient is 
accurately represented in this vicinity. The mesh system in cylindrical coordinates (rD, ZD) for the geometry of 
the probe used in laboratory and field testing is illustrated in Figure 3. The conical boundary nodes, which 
simulate the tapered end of the drill hole, have equal spacings in both the rD and ZD directions, and fall 
precisely on the ZD = -(WD - DD )rD + WD line.

10
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Truncated Taylor series expansions (i.e., standard second-order formulations with truncation error of order 

O(A(PD2)) were used to algebraically approximate the derivatives of Equation (13) in order to solve the 

differential equation for OD(rD, ZD) throughout the system domain. Given the boundary conditions of 
Equation (14) and initialization of the unknown pseudo-potentials in the interior of the flow domain to some 
reasonable value, the algebraic difference equation is rearranged into a 5-point computational molecule that 

sweeps iteratively through the node system, continuously updating Oij in terms of its nearest neighbors 

(cDiD, 2 D,÷,.( , Dj.._, •, ID , ), while overcorrecting at each iteration with a successive-over-relaxation 

factor, (O, equal to 1.4 to speed convergence. No flow boundaries are handled in the usual way with fictitious 
image nodes.  

The far-field boundaries (RDma. and ZDmax) of the numerical models were selected through an iterative 
procedure. For example, the geometrical factor for the geometry of the laboratory and field-tested probe 
(Figure 2) was repeatedly determined numerically for increasingly distant far-field boundaries (see Chen 
[1992]). As the distance to these boundaries increased, the geometrical factor increased at a decreasing rate 
until edge effects were no longer significant (Figure 4).  

4.2. Calculation of Mass Balance Error 

The pseudo-potential gradients were computed at each boundary node with a rearrangement of the Taylor 
series expansion for the second derivative in order to calculate the mass balance error. The rate of mass 
entering or exiting each boundary per unit width is obtained through numerical integration of the 
dimensionless boundary node pseudo-potential gradients in a manner similar to that of Simpson's Rule, where 
a second-degree polynomial is fit through the dimensionless pseudo-potential gradient at each of three 
neighboring nodes, such that a running sum may be computed. However, this method is somewhat more 
complicated than that of Simpson's Rule due to the variable node spacing. In cases where the number of nodes 
along a given boundary is not even, the Trapezoidal Rule is utilized to sum the mass passing between the last 
two nodes. Whenever use of the Trapezoidal Rule is required, it is employed where the flux is at a minimum 
such that the numerical accuracy is maximized.  

The total rate of mass entering the system per unit length was calculated by summing up the individual 
contributions at the two injection surfaces (the vertical surface between HD and DD at rD = 1, and the conical 
surface created by the shape of the drill bit), plus the virtually negligible positive contributions along the left

most boundary as rD - 0 between WD and ZDma=, and the uppermost boundary at ZD = ZDmax between 
rD - 0 and RDm.x. The total rate of mass exiting the system per unit length was calculated by summing up the 
individual contributions at the two ejection surfaces (the vertical surface between ZD = 0 and LD at rD = 1, 
and the boundary at the outcrop surface between rD = 1 and RDma, at ZD = 0), plus the virtually negligible 

contribution along the right-most boundary at rD = RDax between ZD = 0 and ZDma,. The mass balance error 
was then calculated by subtracting from unity the ratio of the total rate of mass entering the system per unit 
length to the total rate of mass exiting the system per unit length. Mass balance errors associated with the 
following simulations ranged from 2.2% to 4.2%.  

4.3. Numerical Solutions to the Small Drillhole Minipermeameter Probe System with Geometry 

Variation 

The baseline numerical solution (Figure 5) is for the small drillhole minipermeameter probe/sample 
geometry that was tested both in the laboratory and field, i.e., the system dimensions of Figure 2 and the 
numerical mesh of Figure 3. Numerical solutions were then determined for a variety of small drillhole 
minipermeameter probe and sample geometries, including drill holes of varying depth, varying seal lengths, 
and situations where the probe is inserted only part-way into the drill hole, producing an increased head-space 
and injection area. Rather than illustrating the numerical solution to each of these situations, one representative 
solution will be shown for each, and the effect of these variations on the geometrical factors will be illustrated 
through geometrical factor curves in a manner similar to that of Goggin et al. [1988].
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4.3.1. The Geometrical Factor as a Function of Drillhole Depth. Numerical solutions were determined 
for the small drillhole minipermeameter probe inside holes of varying depth. Given that the dimensionless 
expanded seal length and headspace remain equivalent to those of the baseline scenario, we illustrate the 
numerical solution (Figure 6) for the innermost data point on this particular geometric factor curve: i.e. the 
solution for the probe in a drill hole of the shallowest possible depth. With increasing dimensionless drillhole 
depth, WD, the geometrical factor decreases and slowly approaches an asymptotic value (Figure 7). This is to 
be expected as one considers the inverse solution given by Equation (28). For a homogeneous averaging 
volume (constant kg), a constant drillhole radius, B, constant ambient conditions (Jig and Po), and a constant 
injection pressure, P1 , the only variables with changing geometry are the flow rate, q1, and the geometrical 
factor, G,. For the smallest drillhole depths, the porous medium provides little resistance to flow because the 
seal is in close proximity to the outcrop surface and a relatively large flow rate would be expected. Thus, the 
geometrical factor is also relatively large in order to balance this geometrical effect. As the drillhole depth 
increases, the average distance through which gas must flow also increases, lengthening streamlines, 
increasing the measurement averaging volume, and contributing to a greater overall resistance to flow for the 
same injection pressure. A corresponding decrease in the flowrate is the result, along with a proportional 
decrease in the geometrical factor [see also Goggin et al., 1988].  

4.3.2. The Geometrical Factor as a Function of Seal Length. Numerical solutions were determined for 
the small drillhole minipermeameter probe with seals of varying length. Given that the dimensionless drillhole 
depth and vertical headspace remain equivalent to those of the baseline scenario, we illustrate the numerical 
solution (Figure 8) for the outermost data point on this particular geometrical factor curve: i.e. the solution for 
a probe equipped with the longest possible seal. With increasing dimensionless seal length, aD = HD - LD, the 
geometrical factor decreases and slowly approaches an asymptotic value (Figure 9). The dimensionless seal 
length and the dimensionless distance to the seal, LD, are directly related to each other when the dimensionless 
drillhole depth and vertical headspace are held constant. Again, for a homogeneous averaging volume, constant 
drillhole radius, constant ambient conditions, and constant injection pressure, the flow rate and the geometrical 
factor are the only variables that change as a function of probe/sample geometry. Short seals provide much less 
resistance to flow than longer seals, so with the same reasoning as before, a short seal infers a high flow rate, 
which must be balanced by a large geometrical factor. Long seals increase the distance through which gas must 
flow in the porous material before exiting to the atmosphere, providing increased flow resistance, lower flow 
rates, and smaller geometrical factors.  

4.3.3. The Geometrical Factor as a Function of Headspace. Numerical solutions were determined for 
the small drillhole minipermeameter probe with varying vertical head-space, or available injection area. Given 
that the dimensionless drillhole depth, drillhole radius, and seal length remain equivalent to those of the 
baseline scenario, we illustrate the numerical solution (Figure 10) for the probe in a drill hole with maximum 
vertical headspace (proximal edge of seal located at outcrop surface). The geometrical factor exhibits linear 
dependence on the dimensionless vertical headspace or injection area, given here as the position of the distal 
end of the seal, HD, when the dimensionless drillhole depth, WD, and seal length, aD = 1D - LD, are held 
constant (Figure 11). Likewise, it has been shown (Figure 12) that for a flattened drillhole (no conical drill bit 
impression at the distal end of the hole), the geometrical factor is again a linear function of the drill hole 
radius. In each case, the greater the headspace, whether in vertical or radial extent, the greater the geometrical 
factor, because the larger the injection surface, the greater the volumetric flow rate (all other parameters being 
equal).  

5. Discussion and Future Work 

Knowledge gained from the geometrical factor curves may be used to design, build and test future versions 
of the small drillhole minipermeameter probe. In a manner following Suboor and Heller [1995], system 
dimensions (e.g., seal length) may be selected based on the regions of geometrical factor curves that exhibit 
greater stability. For example, the dimensionless geometrical factor applicable to the probe and system 
geometry used during laboratory and field-testing was 9.49, and as a function of seal length this geometrical 
factor falls in a rapidly increasing region of the geometrical factor curve (Figure 9). On the other hand, the 
design of the field probe yields a geometrical factor that is in a very stable region of the curve that is a function

12
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of drillhole depth (Figure 7). Thus, the end-user's confidence in the magnitude of the geometrical factor to be 
used in the calculation of permeability [Equation (28)] is augmented when the seal is relatively long and the 
drillhole depth is relatively deep, despite possible slight deviations from the assumed system geometry. As a 
counterbalance to this confidence, a decrease in resolution will result when employing longer seals, so careful 
analysis of both the field objective and the expected scale of heterogeneity must be undertaken prior to settling 
on a probe design.  

The geometrical factor is a function of the geometry and boundary conditions of both the probe and the 
sample volume, resulting in an obvious trend: smaller sample averaging volumes result in larger geometrical 
factors. Again, this can be understood within the context of the weak resistance to flow that a small sample 
presents. With little resistance, the flow rate will be large for a given injection pressure, as will the geometrical 
factor if the computed permeability is to remain unchanged. Finally, it should be apparent that the only 
condition under which the geometrical factor is purely a function of the probe's dimensions is when the 
interrogated sample volume is large in comparison to the size of the probe. The interested reader is referred to 
a future publication [F.J. Molz et al., A physical basis for calculating spatial weighting functions of 
instruments in homogeneous systems, submitted to Water Resources Research, 2000] for an in-depth study of 
the averaging volume of minipermeameter measurements.  

An investigation of the extent of weathering phenomena could commence as a result of exploiting the 
unique geometry of the small drillhole minipermeameter probe. Geometrical factors are known (Figure 7) for 
the current design of the field probe for the minimum penetration depth (Figure 6) up to a depth of about 10 cm 
(Figure 5). Potentially, a very interesting study could be conducted focusing on the distributions of 
permeability values collected at incrementally increasing depths into various rock outcrops.  

6. Conclusions 

The new small drillhole minipermeameter probe is especially suited for use in a field setting. Field-testing in 
consolidated sandstone has indicated that this probe configuration works better in the field than the 
conventional surface-sealing minipermeameter probe, because drilling produces a smooth and non-weathered 
surface, and the normal force applied by the seal to the walls of the drill hole is more easily controlled by a 
mechanical torque wheel than by hand-held methods.  

In this article the small drillhole minipermeameter probe was briefly described, while the associated data 
analysis methodology for performing in situ permeability measurements was developed in detail. The semi
analytical inverse solution for permeability was derived for the drillhole probe, which varies from that of the 
conventional surface-sealing minipermeameter probe only in the choice of the appropriate characteristic length 
and in the magnitude of the associated geometrical factor. Analysis of field data, which consists of gas 
injection pressure and mass flow rate, is based on the numerical solution in cylindrical coordinates of the ideal 
gas flow equation, assuming homogeneous and isotropic conditions over the averaging volume of the 
measurements. Numerical modeling results are presented in an effort to examine the effects of probe and 
sample geometry on the magnitude of the geometrical factor. Two-dimensional axi-symmetric compressible 
gas flow from the injection zone of a drillhole probe to the atmospherically-exposed rock surface was 
numerically simulated by a mesh-centered finite-difference Fortran algorithm, resulting in geometrical factor 
curves with trends that can be explained in terms of the boundary conditions of the probe and sampling 
volume. An examination of the geometrical factor curves provides additional insight that may be used to 
design, build and test future versions of the small drillhole minipermeameter probe.  
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Notation
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a

A 

B 

BD 

D 

DD 

G.  

H 

HD 

kg 

L 

LD 

M.t 

P9 

q, 

r 

R 

RD.  

T

internal tip seal radius and characteristic length of the conventional minipermeameter or the seal 
length (D - L) of the drillhole minipermeameter, L 

core plug cross-sectional area, L2 

drillhole radius and characteristic length of the drillhole minipermeameter, L 

drillhole radius, dimensionless 

distance from rock face (z = 0) to proximal edge of angled injection boundary surface, L 

distance from rock face (ZD = 0) to proximal edge of angled injection boundary surface, 
dimensionless (DIB) 

geometrical factor, dimensionless 

distance from rock face (z = 0) to distal edge of seal, L 

distance from rock face (zD = 0) to distal edge of seal, dimensionless (H/B) 

radial node index, matrix notation 

vertical node index, matrix notation 

apparent gas permeability, L
2 

core plug length, or distance from rock face (z = 0) to proximal edge of seal, L 

distance from rock face (ZD = 0) to proximal edge of seal, dimensionless (LIB) 

rate of gas mass injection, m/t 

molar mass or molecular weight, m/mole 

gas pressure, mLt-2 L2 

injection pressure, mLt 2/L 2 

atmospheric pressure, mLt-2/L 2 

volumetric flow rate, L3/t 

radial coordinate direction, L 

gas constant 

distance to radial boundary, large enough to approximate infinity, L 

distance to radial boundary, large enough to approximate infinity, dimensionless (RmJB) 

absolute temperature, T
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Ug Darcy "velocity" or Darcy flux, L3/L2/t 

W depth of drillhole measured from rock face (z = 0), L 

WD depth of drillhole measured from rock face (zD = 0), dimensionless (WIB) 

z vertical coordinate direction, L 

average gas compressibility (or deviation) factor, dimensionless 

Z,m_ distance to vertical boundary, large enough to approximate infinity, L 

ZD,,a distance to vertical boundary, large enough to approximate infinity, dimensionless (Z,,,JB) 

A(D 01 - (Do 

(D gas pseudo-potential (a function of pressure-squared) 

0)D(01) dimensionless injection pseudo-potential 

FD(O0) dimensionless atmospheric pseudo-potential 

9Xg gas viscosity, m/L-t 

7E pi, radians 

Pg gas density, mIL 3 

(0 dummy coordinate variable, L 

0 angular coordinate direction, radians 

0 successive-over-relaxation convergence amplification factor, dimensionless 

V gradient operator 

VcI0 pseudo-potential gradient at injection surface 
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Figure Captions 

Figure 1. The new small drillhole minipermeameter probe. Rotating the torque wheel 
clockwise moves the sliding sleeve toward the distal end of the probe, causing the 
seal to compress and radially expand.  

Figure 2. Model geometry for the small drillhole minipermeameter probe. The drill hole is 
cylindrical with a tapered end reflecting the shape of the drill bit; the rubber seal 
is shown in black.  

Figure 3. a) Mesh system for the entire flow domain of the field probe model; b) expanded 
portion of mesh near end of drilled hole.  

Figure 4. Methodology for determination of minimum far-field boundaries. Examination of 
geometrical factor sensitivity to edge effects indicates that RDm,, and ZDmax should 
be set to roughly 100 dimensionless length units in order to approximate an 
infinite half-space for the geometry of the laboratory and field-tested drillhole 
probe system.  

Figure 5. Numerical solution for the dimensionless pseudo-potential field in the vicinity of 
the small drillhole minipermeameter field probe. Contours are lines of constant 
dimensionless pseudo-potential, and arrows indicate the orthogonal streamtraces 
expected in an isotropic and homogeneous medium.  

Figure 6. Numerical solution for the dimensionless pseudo-potential field of the small 
drillhole minipermeameter probe when in a drill hole of the shallowest possible 
depth (where the dimensionless seal length, radius, and vertical headspace are 
equivalent to those used during fieldwork). Contours are lines of constant 
dimensionless pseudo-potential, and arrows indicate the orthogonal streamtraces 
expected in an isotropic and homogeneous medium.  

Figure 7. Geometrical factor sensitivity to increasing dimensionless drillhole depth, WD, 

when the dimensionless expanded seal length, aD, headspace, HD, and drillhole 
radius remain constant.  

Figure 8. Numerical solution for the dimensionless pseudo-potential field of the small 
drillhole minipermeameter probe when subject to a very long seal or packer 
(while the dimensionless vertical headspace, drillhole depth, and radius are 
equivalent to those used during fieldwork). Contours are lines of constant 
dimensionless pseudo-potential, and arrows indicate the orthogonal streamtraces 
expected in an isotropic and homogeneous medium.  

Figure 9. Geometrical factor sensitivity to both increasing dimensionless seal length, aD = 

HD - LD, and decreasing dimensionless distance to the seal, LD, when the vertical 
headspace, HD, is held constant.
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Figure Captions (continued) 

Figure 10. Numerical solution for the dimensionless pseudo-potential field of the small 
drillhole minipermeameter probe flow system with an increased head-space or 
injection area (i.e., the probe isn't fully inserted into the drill hole), while keeping 
the dimensionless seal length, radius, and drillhole depth equivalent to those used 
during fieldwork. Contours are lines of constant dimensionless pseudo-potential, 
and arrows indicate the orthogonal streamtraces expected in an isotropic and 
homogeneous medium.  

Figure 11. The geometrical factor exhibits a linear dependence on the dimensionless 
headspace, given here as HD, when the dimensionless drillhole depth, WD, and 
seal length, aD = HD - LD, are held constant.  

Figure 12. Geometrical factor sensitivity again exhibits a linear dependence on the area 
available for injection. In this case the geometrical factor is a linear function of 
the drillhole radius of a flattened drillhole (no conical drill bit shape at the distal 
end; the seal length, a = H - L, was defined to be the characteristic length for this 
case, not the drillhole radius, B).
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seal

Torque Wheel

Gas Delivery Line Static Pressure Line

Figure 1. The new small drillhole minipermeameter probe.  
Rotating the torque wheel clockwise moves the 
sliding sleeve toward the distal end of the probe, 
causing the seal to compress and radially expand.
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(Far-field Boundaries Not To Scale)
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' Outcrop Surface__ _ _89_cm 4Rmax = 89 cm " 

Figure 2. Model geometry for the small drillhole minipermeameter probe. The drill 
hole is cylindrical with a tapered end reflecting the shape of the drill bit; 
the rubber seal is shown in black.
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Figure 3. a) Mesh system for the entire flow domain of the 

field probe model; b) expanded portion of mesh 
near end of drilled hole.
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Figure 4. Methodology for determination of minimum far-field boundaries.  
Examination of geometrical factor sensitivity to edge effects indicates 
that RD,. and ZD,. should be set to roughly 100 dimensionless length 
units in order to approximate an infinite half-space for the geometry of 
the laboratory and field-tested drillhole probe system.
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Figure 5. Numerical solution for the dimensionless pseudo-potential field in the 
vicinity of the small drillhole minipermeameter field probe. Contours are 
lines of constant dimensionless pseudo-potential, and arrows indicate the 
orthogonal streamtraces expected in an isotropic and homogeneous medium.
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Figure 6. Numerical solution for the dimensionless pseudo-potential field of the small 
drillhole minipermeameter probe when in a drill hole of the shallowest 
possible depth (where the dimensionless seal length, radius, and vertical 
headspace are equivalent to those used during fieldwork). Contours are lines 
of constant dimensionless pseudo-potential, and arrows indicate the: 
orthogonal streamtraces expected in an isotropic and homogeneous medium.
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Figure 7. Geometrical factor sensitivity to increasing dimensionless drillhole depth, WD, 

when the dimensionless expanded seal length, aD, headspace, HD, and drillhole 
radius remain constant.
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Figure 8. Numerical solution for the dimensionless pseudo-potential field of the small 
drillhole minipermeameter probe when subject to a very long seal or packer 
(while the dimensionless vertical headspace, drillhole depth, and radius are 
equivalent to those used during fieldwork). Contours are lines of constant 
dimensionless pseudo-potential, and arrows indicate the orthogonal 
streamtraces expected in an isotropic and homogeneous medium.
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Figure 9. Geometrical factor sensitivity to both increasing dimensionless seal length, 
aD = HD - LD, and decreasing dimensionless distance to the seal, LD, when 
the vertical headspace, HD, is held constant.
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Numerical solution for the dimensionless pseudo-potential field of the small 
drillhole minipermeameter probe flow system with an increased head-space 
or injection area (i.e., the probe isn't fully inserted into the drill hole), while 
keeping the dimensionless seal length, radius, and drillhole depth equivalent 
to those used during fieldwork. Contours are lines of constant dimensionless 
pseudo-potential, and arrows indicate the orthogonal streamtraces expected 
in an isotropic and homogeneous medium.
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Figure 11. The geometrical factor exhibits a linear dependence on the dimensionless 
headspace, given here as HD, when the dimensionless drillhole depth, WD, 

and seal length, aD = HD - LD, are held constant.
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Figure 12. Geometrical factor sensitivity again exhibits a linear dependence on the area 
available for injection. In this case the geometrical factor is a linear function 
of the drillhole radius of a flattened drillhole (no conical drill bit shape at the 
distal end; the seal length, a = H - L, was defined to be the characteristic 
length for this case, not the drillhole radius, B).
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