APPENDIX A

TECHNICAL SPECIFICATIONS FOR THE NAC-UMS® SYSTEM

AMENDMENT NO. 2

Table of Contents

A 1.0 USE	AND API	PLICATION	A1-1	
A 1.1	Definition	ns	A1-1	
A 1.2	Logical C	Connectors	A1-7	
A 1.3	Complet	ion Times	A1-10	
A 1.4	Frequen	cy	A1-15	
A 2.0 [Res	served]		A2-1	
A 3.0 LIMI	TING CO	NDITION FOR OPERATION (LCO) APPLICABILITY	A3-1	
SUF	RVEILLAN	CE REQUIREMENT (SR) APPLICABILITY	A3-2	
A 3.1	NAC-UM	MS® SYSTEM Integrity	A3-4	
	A 3.1.1	CANISTER Maximum Time in Vacuum Drying	A3-4	
	A 3.1.2	CANISTER Vacuum Drying Pressure	A3-6	
	A 3.1.3	CANISTER Helium Backfill Pressure	A3-7	
	A 3.1.4	CANISTER Maximum Time in TRANSFER CASK	A3-8	
	A 3.1.5	CANISTER Helium Leak Rate	A3-10	
	A 3.1.6	CONCRETE CASK Heat Removal System	A3-11	
	A 3.1.7	CANISTER Removal from the CONCRETE CASK	A3-13	
A 3.2	NAC-UM	MS® SYSTEM Radiation Protection	A3-16	
	A 3.2.1	CANISTER Surface Contamination	A3-16	
	A 3.2.2	CONCRETE CASK Average Surface Dose Rate	A3-18	
Figure A3-1	CON	ICRETE CASK Surface Dose Rate Measurement	A3-20	
A 4.0 [Res	served]		A4-1	
A 5.0 ADN	/INISTRA	TIVE CONTROLS AND PROGRAMS	A5-1	
A 5.1	Training	Program	A5-1	
A 5.2	Pre-Operational Testing and Training Exercises			
A 5.3	Special F	Requirements for the First System Placed in Service	A5-2	
A 5.4	Surveilla	nce After an Off-Normal, Accident, or Natural		
	Phanom	ena Event	Δ5-2	

Appendix A Table of Contents (Continued)

A 5.5	Radioactive Effluent Control Program	
A 5.6	NAC-UMS® SYSTEM Transport Evaluation Program	
	Verification of Oxide Layer Thickness on High Burnup Fuel	
Table A5-1	TRANSFER CASK and CONCRETE CASK Lifting Requirements	

A 1.0 USE AND APPLICATION

A 1.1 Definitions

------NOTE-----

The defined terms of this section appear in capitalized type and are applicable throughout this section.

<u>Term</u> <u>Definition</u>

ACTIONS ACTIONS shall be that part of a Specification that

prescribes Required Actions to be taken under designated Conditions within specified Completion

Times.

CANISTER See TRANSPORTABLE STORAGE CANISTER

CANISTER HANDLING FACILITY The CANISTER HANDLING FACILITY includes the

following components and equipment: (1) a canister transfer station that allows the staging of the TRANSFER CASK with the CONCRETE CASK or transport cask to facilitate CANISTER lifts involving spent fuel handling not covered by 10 CFR 50; and (2) either a stationary lift device or mobile lifting device used to lift the TRANSFER CASK and

CANISTER.

CONCRETE CASK See VERTICAL CONCRETE CASK

INDEPENDENT SPENT FUEL

The facility within the perimeter fence licensed for storage of spent fuel within NAC-UMS® SYSTEMs

(ISFSI) (see also 10 CFR 72.3).

INTACT FUEL A fuel assembly or fuel rod with no fuel rod cladding (ASSEMBLY OR ROD) defects, or with known or suspected fuel rod cladding defects not greater than pinhole leaks or

hairline cracks.

LOADING OPERATIONS

LOADING OPERATIONS include all licensed activities on an NAC-UMS® SYSTEM while it is being loaded with fuel assemblies. LOADING OPERATIONS begin when the first fuel assembly is placed in the CANISTER and end when the NAC-UMS® SYSTEM is secured on the transporter. LOADING OPERATIONS do not include post-storage operations, i.e., CANISTER transfer operations between the TRANSFER CASK and the CONCRETE CASK or transport cask after STORAGE OPERATIONS.

INITIAL PEAK PLANAR-AVERAGE ENRICHMENT

THE INITIAL PEAK PLANAR-AVERAGE ENRICHMENT is the maximum planar-average enrichment at any height along the axis of the fuel assembly. The 4.0 wt % ²³⁵U enrichment limit for BWR fuel applies along the full axial extent of the assembly. The INITIAL PEAK PLANAR-AVERAGE ENRICHMENT may be higher than the bundle (assembly) average enrichment.

NAC-UMS® SYSTEM

NAC-UMS® SYSTEM includes the components approved for loading and storage of spent fuel assemblies at the ISFSI. The NAC-UMS® SYSTEM consists of a CONCRETE CASK, a TRANSFER CASK, and a CANISTER.

OPERABLE

The CONCRETE CASK heat removal system is OPERABLE if the difference between the ISFSI ambient temperature and the average outlet air temperature is $\leq 102^{\circ}$ F for the PWR CANISTER or $\leq 92^{\circ}$ F for the BWR CANISTER.

STORAGE OPERATIONS

STORAGE OPERATIONS include all licensed activities that are performed at the ISFSI, while an NAC-UMS® SYSTEM containing spent fuel is located on the storage pad within the ISFSI perimeter.

TRANSFER CASK

TRANSFER CASK is a shielded lifting device that holds the CANISTER during LOADING and UNLOADING OPERATIONS and during closure welding, vacuum drying, leak testing, and non-destructive examination of the CANISTER closure welds. The TRANSFER CASK is also used to transfer the CANISTER into and from the CONCRETE CASK and into the transport cask.

TRANSPORT OPERATIONS

TRANSPORT OPERATIONS include all licensed activities involved in moving a loaded NAC-UMS® CONCRETE CASK and CANISTER to and from the ISFSI. TRANSPORT OPERATIONS begin when the NAC-UMS® SYSTEM is first secured on the transporter and end when the NAC-UMS® SYSTEM is at its destination and no longer secured on the transporter.

TRANSPORTABLE STORAGE CANISTER (CANISTER)

TRANSPORTABLE STORAGE CANISTER is the sealed container that consists of a tube and disk fuel basket in a cylindrical canister shell that is welded to a baseplate, shield lid with welded port covers, and structural lid. The CANISTER provides the confinement boundary for the confined spent fuel.

TRANSFER OPERATIONS

TRANSFER OPERATIONS include all licensed activities involved in transferring a loaded CANISTER from a CONCRETE CASK to another CONCRETE CASK or to a TRANSPORT CASK.

UNLOADING OPERATIONS

UNLOADING OPERATIONS include all licensed activities on a NAC-UMS® SYSTEM to be unloaded of the contained fuel assemblies. UNLOADING OPERATIONS begin when the NAC-UMS® SYSTEM is no longer secured on the transporter and end when the last fuel assembly is removed from the NAC-UMS® SYSTEM.

VERTICAL CONCRETE CASK (CONCRETE CASK)

VERTICAL CONCRETE CASK is the cask that receives and holds the sealed CANISTER. It provides the gamma and neutron shielding and convective cooling of the spent fuel confined in the CANISTER.

STANDARD FUEL

Irradiated fuel assemblies having the same configuration as when originally fabricated consisting generally of the end fittings, fuel rods, guide tubes, and integral hardware. For BWR fuel, the channel is considered to be integral hardware. The design basis fuel characteristics and analysis are based on the STANDARD FUEL configuration.

DAMAGED FUEL

A fuel assembly or fuel rod with known or suspected cladding defects greater than pinhole leaks or hairline cracks.

DAMAGED FUEL must be placed in a MAINE YANKEE FUEL CAN.

HIGH BURNUP FUEL

A fuel assembly having a burnup between 45,000 and 50,000 MWD/MTU, which must be preferentially loaded in periphery positions of the basket.

An intact HIGH BURNUP FUEL assembly in which no more than 1% of the fuel rods in the assembly have a peak cladding oxide thickness greater than 80 microns, and in which no more than 3% of the fuel rods in the assembly have a peak oxide layer thickness greater than 70 microns, as determined by measurement and statistical analysis, may be stored as INTACT FUEL.

HIGH BURNUP FUEL assemblies not meeting the cladding oxide thickness criteria for INTACT FUEL or that have an oxide layer that has become detached or spalled from the cladding are stored as DAMAGED FUEL in a MAINE YANKEE FUEL CAN.

FUEL DEBRIS

An intact or a partial fuel rod or an individual intact or partial fuel pellet not contained in a fuel rod. Fuel debris is inserted into a 9 x 9 array of tubes in a lattice that has approximately the same dimensions as a standard fuel assembly. FUEL DEBRIS is stored in a MAINE YANKEE FUEL CAN.

CONSOLIDATED FUEL

A nonstandard fuel configuration in which the individual fuel rods from one or more fuel assemblies are placed in a single container or a lattice structure that is similar to a fuel assembly. CONSOLIDATED FUEL is stored in a MAINE YANKEE FUEL CAN.

SITE SPECIFIC FUEL

Spent fuel configurations that are unique to a site or reactor due to the addition of other components or reconfiguration of the fuel assembly at the site. It includes fuel assemblies, which hold nonfuel-bearing components, such as control components or instrument and plug thimbles, or which are modified as required by expediency in reactor operations, research and development or testing. Modification may consist of individual fuel rod removal, fuel rod replacement of similar or dissimilar material or enrichment, the installation, removal or replacement of burnable poison rods, or containerizing damaged fuel.

Site specific fuel includes irradiated fuel assemblies designed with variable enrichments and/or axial blankets, fuel that is consolidated and fuel that exceeds design basis fuel parameters.

MAINE YANKEE FUEL CAN

A specially designed stainless steel screened can sized to hold INTACT FUEL, CONSOLIDATED FUEL, DAMAGED FUEL or FUEL DEBRIS. The screens preclude the release of gross particulate from the can into the canister cavity. The MAINE YANKEE FUEL CAN may only be loaded in a Class 1 canister.

A 1.0 USE AND APPLICATION

A 1.2 Logical Connectors

PURPOSE

The purpose of this section is to explain the meaning of logical connectors.

Logical connectors are used in Technical Specifications (TS) to discriminate between, and yet connect, discrete Conditions, Required Actions, Completion Times, Surveillances, and Frequencies. The only logical connectors that appear in Technical Specifications are "AND" and "OR." The physical arrangement of these connectors constitutes logical conventions with specific meanings.

BACKGROUND

Several levels of logic may be used to state Required Actions. These levels are identified by the placement (or nesting) of the logical connectors and by the number assigned to each Required Action. The first level of logic is identified by the first digit of the number assigned to a Required Action and the placement of the logical connector in the first level of nesting (i.e., left justified with the number of the Required Action). The successive levels of logic are identified by additional digits of the Required Action number and by successive indentations of the logical connectors.

When logical connectors are used to state a Condition, Completion Time, Surveillance, or Frequency, only the first level of logic is used; the logical connector is left justified with the statement of the Condition, Completion Time, Surveillance, or Frequency.

EXAMPLES The following examples illustrate the use of logical connectors.

EXAMPLES <u>EXAMPLE 1.2-1</u> ACTIONS

REQUIRED ACTION	COMPLETION TIME
A.1 Verify	
AND	
A.2 Restore	
	A.1 Verify AND

In this example, the logical connector "AND" is used to indicate that when in Condition A, both Required Actions A.1 and A.2 must be completed.

EXAMPLES (continued)

EXAMPLE 1.2-2

ACTIONS

	CONDITION	REQUIF	RED ACTION	COMPLETION TIME
A.	LCO not met	A.1	Stop	
		<u>OR</u>		
		A.2.1	Verify	
		<u>AND</u>		
		A.2.2		
		A.2.2.1	Reduce	
			<u>OR</u>	
		A.2.2.2	Perform	
		<u>OR</u>		
<u> </u>		A.3	Remove	

This example represents a more complicated use of logical connectors. Required Actions A.1, A.2, and A.3 are alternative choices, only one of which must be performed as indicated by the use of the logical connector "OR" and the left justified placement. Any one of these three Actions may be chosen. If A.2 is chosen, then both A.2.1 and A.2.2 must be performed as indicated by the logical connector "AND." Required Action A.2.2 is met by performing A.2.2.1 or A.2.2.2. The indented position of the logical connector "OR" indicated that A.2.2.1 and A.2.2.2 are alternative choices, only one of which must be performed.

A 1.3 Completion Times

PURPOSE

The purpose of this section is to establish the Completion Time convention and to provide guidance for its use.

BACKGROUND

Limiting Conditions for Operations (LCOs) specify the lowest functional capability or performance levels of equipment required for safe operation of the NAC-UMS® SYSTEM. The ACTIONS associated with an LCO state conditions that typically describe the ways in which the requirements of the LCO can fail to be met. Specified with each stated Condition are Required Action(s) and Completion Time(s).

DESCRIPTION

The Completion Time is the amount of time allowed for completing a Required Action. It is referenced to the time of discovery of a situation (e.g., equipment or variable not within limits) that requires entering an ACTIONS Condition, unless otherwise specified, provided that the NAC-UMS® SYSTEM is in a specified Condition stated in the Applicability of the LCO. Prior to the expiration of the specified Completion Time, Required Actions must be completed. An ACTIONS Condition remains in effect and the Required Actions apply until the Condition no longer exists or the NAC-UMS® SYSTEM is not within the LCO Applicability.

Once a Condition has been entered, subsequent subsystems, components, or variables expressed in the Condition, discovered to be not within limits, will <u>not</u> result in separate entry into the Condition, unless specifically stated. The Required Actions of the Condition continue to apply to each additional failure, with Completion Times based on initial entry into the Condition.

EXAMPLES

The following examples illustrate the use of Completion Times with different types of Conditions and changing Conditions.

EXAMPLE 1.3-1

ACTIONS

	CONDITION		EQUIRED ACTION	COMPLETION TIME
В.	Required Action and associated Completion Time not met	B.1 <u>AND</u>	Perform Action B.1	12 hours
	Time net met	B.2	Perform Action B.2	36 hours

Condition B has two Required Actions. Each Required Action has its own Completion Time. Each Completion Time is referenced to the time that Condition B is entered.

The Required Actions of Condition B are to complete action B.1 within 12 hours <u>AND</u> complete action B.2 within 36 hours. A total of 12 hours is allowed for completing action B.1 and a total of 36 hours (not 48 hours) is allowed for completing action B.2 from the time that Condition B was entered. If action B.1 is completed within six hours, the time allowed for completing action B.2 is the next 30 hours because the total time allowed for completing action B.2 is 36 hours.

EXAMPLES (continued)

EXAMPLE 1.3-2

ACTIONS

	CONDITION	RE	QUIRED ACTION	COMPLETION TIME
A.	One System not within limit	A.1	Restore System to within limit	7 days
В.	Required Action and associated Completion Time not met	B.1	Complete action B.1	12 hours
		B.2	Complete action B.2	36 hours

When a System is determined not to meet the LCO, Condition A is entered. If the System is not restored within seven days, Condition B is also entered, and the Completion Time clocks for Required Actions B.1 and B.2 start. If the System is restored after Condition B is entered, Conditions A and B are exited; therefore, the Required Actions of Condition B may be terminated.

EXAMPLES (continued)

EXAMPLE 1.3-3

ACTIONS
NOTE
Separate Condition entry is allowed for each component.

	CONDITION	RE	QUIRED ACTION	COMPLETION TIME
A.	LCO not met	A.1	Restore compliance with LCO	4 hours
B.	Required Action and associated	B.1	Complete action B.1	6 hours
	Completion Time not met	AND		
		B.2	Complete action B.2	12 hours

The Note above the ACTIONS table is a method of modifying how the Completion Time is tracked. If this method of modifying how the Completion Time is tracked was applicable only to a specific Condition, the Note would appear in that Condition rather than at the top of the ACTIONS Table.

The Note allows Condition A to be entered separately for each component, and Completion Times to be tracked on a per component basis. When a component is determined to not meet the LCO, Condition A is entered and its Completion Time starts. If subsequent components are determined to not meet the LCO, Condition A is entered for each component and separate Completion Times are tracked for each component.

EXAMPLES (continued)	EXAMPLE 1.3-3
IMMEDIATE COMPLETION TIME	When "Immediately" is used as a Completion Time, the Required Action should be pursued without delay and in a controlled manner.

A 1.0 USE AND APPLICATION

A 1.4 Frequency

PURPOSE

The purpose of this section is to define the proper use and application of Frequency requirements.

DESCRIPTION

Each Surveillance Requirement (SR) has a specified Frequency in which the Surveillance must be met in order to meet the associated Limiting Condition for Operation (LCO). An understanding of the correct application of the specified Frequency is necessary for compliance with the SR.

Each "specified Frequency" is referred to throughout this section and each of the Specifications of Section 3.0, Surveillance Requirement (SR) Applicability. The "specified Frequency" consists of requirements of the Frequency column of each SR.

Situations where a Surveillance could be required (i.e., its Frequency could expire), but where it is not possible or not desired that it be performed until sometime after the associated LCO is within its Applicability, represent potential SR 3.0.4 conflicts. To avoid these conflicts, the SR (i.e., the Surveillance or the Frequency) is stated such that it is only "required" when it can be and should be performed. With an SR satisfied, SR 3.0.4 imposes no restriction.

The use of "met" or "performed" in these instances conveys specific meanings. A Surveillance is "met" only after the acceptance criteria are satisfied. Known failure of the requirements of a Surveillance, even without a Surveillance specifically being "performed," constitutes a Surveillance not "met."

EXAMPLES The following examples illustrate the various ways that Frequencies are specified.

EXAMPLE 1.4-1

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
Verify pressure within limit	12 hours

Example 1.4-1 contains the type of SR most often encountered in the Technical Specifications (TS). The Frequency specifies an interval (12 hours) during which the associated Surveillance must be performed at least one time. Performance of the Surveillance initiates the subsequent interval. Although the Frequency is stated as 12 hours, SR 3.0.2 allows an extension of the time interval to 1.25 times the interval specified in the Frequency for operational flexibility. The measurement of this interval continues at all times, even when the SR is not required to be met per SR 3.0.1 (such as when the equipment or variables are outside specified limits, or the facility is outside the Applicability of the LCO). If the interval specified by SR 3.0.2 is exceeded while the facility is in a condition specified in the Applicability of the LCO is not met in accordance with SR 3.0.1.

If the interval as specified by SR 3.0.2 is exceeded while the facility is not in a condition specified in the Applicability of the LCO for which performance of the SR is required, the Surveillance must be performed within the Frequency requirements of SR 3.0.2, prior to entry into the specified condition. Failure to do so would result in a violation of SR 3.0.4.

EXAMPLE 1.4-2

SURVEILLANCE REQUIREMENTS

SURVEILLANCE	FREQUENCY
Verify flow is within limits	Once within
	12 hours prior to
	starting activity
	AND
	24 hours
	thereafter

Example 1.4-2 has two Frequencies. The first is a one time performance Frequency, and the second is of the type shown in Example 1.4-1. The logical connector "AND" indicates that both Frequency requirements must be met. Each time the example activity is to be performed, the Surveillance must be performed within 12 hours prior to starting the activity.

The use of "once" indicates a single performance will satisfy the specified Frequency (assuming no other Frequencies are connected by "AND"). This type of Frequency does not qualify for the 25% extension allowed by SR 3.0.2.

"Thereafter" indicates future performances must be established per SR 3.0.2, but only after a specified condition is first met (i.e., the "once" performance in this example). If the specified activity is canceled or not performed, the measurement of both intervals stops. New intervals start upon preparing to restart the specified activity.

A 3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY

LCO 3.0.1	LCOs shall be met during specified conditions in the Applicability, except as provided in LCO 3.0.2.
LCO 3.0.2	Upon failure to meet an LCO, the Required Actions of the associated Conditions shall be met, except as provided in LCO 3.0.5.
	If the LCO is met or is no longer applicable prior to expiration of the specified Completion Time(s), completion of the Required Action(s) is not required, unless otherwise stated.
LCO 3.0.3	Not applicable to a NAC-UMS [®] SYSTEM.
LCO 3.0.4	When an LCO is not met, entry into a specified condition in the Applicability shall not be made except when the associated ACTIONS to be entered permit continued operation in the specified condition in the Applicability for an unlimited period of time. This Specification shall not prevent changes in specified conditions in the Applicability that are required to comply with ACTIONS or that are related to the unloading of an NAC-UMS® SYSTEM.
	Exceptions to this Condition are stated in the individual Specifications. These exceptions allow entry into specified conditions in the Applicability where the associated ACTIONS to be entered allow operation in the specified conditions in the Applicability only for a limited period of time.
LCO 3.0.5	Equipment removed from service or not in service in compliance with ACTIONS may be returned to service under administrative control solely to perform testing required to demonstrate it meets the LCO or that other equipment meets the LCO. This is an exception to LCO 3.0.2 for the System to return to service under administrative control to perform the testing.

SR 3.0.1

SRs shall be met during the specified conditions in the Applicability for individual LCOs, unless otherwise stated in the SR. Failure to meet a Surveillance, whether such failure is experienced during the performance of the Surveillance or between performances of the Surveillance, shall be a failure to meet the LCO. Failure to perform a Surveillance within the specified Frequency shall be a failure to meet the LCO, except as provided in SR 3.0.3. Surveillances do not have to be performed on equipment or variables outside specified limits.

SR 3.0.2

The specified Frequency for each SR is met if the Surveillance is performed within 1.25 times the interval specified in the Frequency, as measured from the previous performance or as measured from the time a specified condition of the Frequency is met.

For Frequencies specified as "once," the above interval extension does not apply. If a Completion Time requires periodic performance on a "once per..." basis, the above Frequency extension applies to each performance after the initial performance.

Exceptions to this Specification are stated in the individual Specifications.

SR 3.0.3

If it is discovered that a Surveillance was not performed within its specified Frequency, then compliance with the requirement to declare the LCO not met may be delayed from the time of discovery up to 24 hours or up to the limit of the specified Frequency, whichever is less. This delay period is permitted to allow performance of the Surveillance.

If the Surveillance is not performed within the delay period, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered.

-	
SR 3.0.3 (continued)	When the Surveillance is performed within the delay period and the Surveillance is not met, the LCO must immediately be declared not met, and the applicable Condition(s) must be entered.
SR 3.0.4	Entry into a specified Condition in the Applicability of an LCO shall not be made, unless the LCO's Surveillances have been met within their specified Frequency. This provision shall not prevent entry into specified conditions in the Applicability that are required to comply with Actions or that are related to the unloading of a NAC-UMS® SYSTEM.

A 3.1 NAC-UMS® SYSTEM Integrity

A 3.1.1 CANISTER Maximum Time in Vacuum Drying

LCO 3.1.1 The following limits for vacuum drying time shall be met, as appropriate:

1. The time duration from completion of draining the CANISTER through completion of vacuum dryness testing and the introduction of helium backfill shall not exceed 10 hours for BWR fuel with the design basis 23 kW heat load or the time shown for PWR fuel with the specified heat load:

Total Heat	Time Limit	Total Heat	Time Limit
Load (L) (kW)	(Hours)	Load (L) (kW)	(Hours)
$20 < L \leq 23$	10	$11 < L \le 14$	23
$17.6 < L \le 20$	15	$8 < L \le 11$	30
14 < L ≤ 17.6	19	L ≤ 8	34

2. The time duration from the end of 24 hours of in-pool cooling or of forced air cooling of the CANISTER through completion of vacuum dryness testing and the introduction of helium backfill shall not exceed 6 hours for either the PWR or BWR configuration or the time shown for a specified PWR heat load:

Total Heat	Time Limit
Load (L) (kW)	(Hours)
$20 < L \leq 23$	6
$14 < L \leq 20$	10
L ≤ 14	14

APPLICABILITY: During LOADING OPERATIONS

Α	C٦	ГΙ	\cap	N	S

-----NOTE-----

Separate Condition entry is allowed for each NAC-UMS® SYSTEM.

	CONDITION	REQUIRED ACTION	COMPLETION TIME
Α.	LCO time limits not met	A.1 Commence filling CANISTER with helium AND	2 hours
		A.2.1 Submerge TRANSFER CASK with helium filled loaded CANISTER in spent fuel pool.	2 hours
		AND	
		A.2.2 Maintain TRANSFER CASK and	Prior to restart of
		CANISTER in spent fuel pool for a	LOADING
		minimum of 24 hours	OPERATIONS
		<u>OR</u>	
		A.3.1 Commence supplying air to the	
		TRANSFER CASK annulus fill/drain	2 hours
		lines at a rate of 375 CFM and a	
		maximum temperature of 75°F	
		AND	
		A.3.2 Maintain airflow for a minimum of 24 hours	Prior to restart of LOADING OPERATIONS

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.1.1.1	Monitor elapsed time from completion of	Once after completion of
	CANISTER draining operations until start of	CANISTER draining
	helium backfill	AND
		As required to meet time limit.
SR 3.1.1.2	Monitor elapsed time from the end of in-	Once at end of in-pool cooling
	pool cooling or of forced-air cooling until	or of forced-air cooling
	restart of helium backfill	AND
		As required to meet time limit.

A 3.1 A 3.1.2	A 3.1.2 NAC-UMS® SYSTEM Integrity CANISTER Vacuum Drying Pressure			
LCO 3.1.2	The CANISTER vacuum drying pressure shall be less than or equal to 3 mm of mercury. Pressure shall be held for not less than 30 minutes			
APPLICABIL	ITY: During	LOADING OPERATIONS		
ACTIONS				
		NOTE		
		wed for each NAC-UMS® SYSTE		
CON	NDITION	REQUIRED ACTION	COMPLETION TIME	
	R vacuum drying limit not met	A.1 Establish CANISTER cavity vacuum drying pressure within limit	25 days	
B. Required Action and associated Completion Time not met		B.1 Remove all fuel assemblies from the NAC-UMS® SYSTEM	5 days	
SURVEILLANCE REQUIREMENTS				
SURVEILLANCE			FREQUENCY	
SR 3.1.2.1 Verify CANISTER cavity vacuum drying pressure is within limit			Prior to TRANSPORT OPERATIONS.	

A 3.1.3

A 3.1 A 3.1.3					
LCO 3.1.3	LCO 3.1.3 The CANISTER helium backfill pressure shall be 0 (+1, -0) psig.				
APPLICABIL	ITY: During	LOADING OPERATIONS			
ACTIONS					
		NOTEwed for each NAC-UMS [®] SYSTE			
COI	NDITION	REQUIRED ACTION	COMPLETION TIME		
CANISTER helium backfill pressure limit not met		A.1 Establish CANISTER helium backfill pressure within limit	25 days		
B. Required Action and associated Completion Time not met		B.1 Remove all fuel assemblies from the NAC-UMS® SYSTEM	5 days		
SURVEILLANCE REQUIREMENTS					
SURVEILLANCE			FREQUENCY		
SR 3.1.3.1 Verify CANISTER helium backfill pressure is within limit			Prior to TRANSPORT OPERATIONS.		

A 3.1 NAC-UMS® SYSTEM Integrity

A 3.1.4 CANISTER Maximum Time in TRANSFER CASK

LCO 3.1.4 The following limits for CANISTER time in TRANSFER CASK shall be met, as appropriate:

1. The time duration from completion of backfilling the CANISTER with helium through completion of the CANISTER transfer operation from the TRANSFER CASK to the CONCRETE CASK shall not exceed 24 hours for the design basis BWR heat load of 23 kW or the time shown below for a specific PWR heat load:

Total PWR Heat	Time Limit
Load (L) (kW)	(Hours)
$20 < L \leq 23$	16
$17.6 < L \le 20$	20
$14 < L \le 17.6$	48
L < 14	Not Limited

2. The time duration from completion of in-pool or external forced air cooling of the CANISTER through completion of the CANISTER transfer operation from the TRANSFER CASK to the CONCRETE CASK shall not exceed 15 hours for the BWR configuration or the time shown below for a specific PWR heat load:

Total PWR Heat	Time Limit
Load (L) (kW)	(Hours)
$20 < L \leq 23$	6
$17.6 < L \le 20$	16
14 < L ≤ 17.6	20
L ≤ 14	Not Limited

The LCO time limits are also applicable if SR 3.1.5.1 was not met during vacuum drying operations.

APPLICABILITY: During LOADING OPERATIONS

ACTIONS

Separate Condition entry is allowed for each NAC-UMS® SYSTEM

	CONDITION	REQUIRED ACTION		COMPLETION TIME	
	LCO time limits not met	A.1.1 Place TRANSFER CASK with helium filled loaded CANISTER spent fuel pool	2 hours		
			A.1.2 Maintain TRANSFER CASK and CANISTER in spent fuel pool for a minimum of 24 hours		
		A.2.1 Commence supplying air to the TRANSFER CASK annulus fill/o lines at a rate of 375 CFM and a maximum temperature of 75°F AND		2 hours	
		A.2.2 Maintain airflow for a minimum hours	of 24	Prior to restart of LOADING OPERATIONS	
SURV	/EILLANCE REQU	IIREMENTS			
	,	SURVEILLANCE		FREQUENCY	
SR 3.	heliu of lo CAS	Monitor elapsed time from completion of helium backfill until completion of transfer of loaded CANISTER into CONCRETE CASK		at completion of helium ill irs thereafter	
SR 3.	pool tran	Monitor elapsed time from completion of in- pool or forced-air cooling until completion of transfer of loaded CANISTER into CONCRETE CASK		at completion of cooling ations	

A 3.1 A 3.1.5	NAC-UMS® SYSTEM Integrity CANISTER Helium Leak Rate			
LCO 3.1.5	There shall be no indication of a helium leak at a test sensitivity of 1 x 10 ⁻⁷ cm ³ /sec (helium) through the CANISTER shield lid to CANISTER shell confinement weld to demonstrate a helium leak rate equal to or less than 2 x 10 ⁻⁷ cm ³ /sec (helium).			
APPLICABIL	ITY: During	LOADING OPERATIONS		
ACTIONS				
		NOTE		
		wed for each NAC-UMS® SYSTE		
CON	CONDITION REQUIRED ACTION COMPLETION TIME			
A. CANISTE rate limit	R helium leak not met	A.1 Establish CANISTER helium leak rate within limit	25 days	
B. Required Action and associated Completion Time not met		B.1 Remove all fuel assemblies from the NAC-UMS® SYSTEM	5 days	
SURVEILLANCE REQUIREMENTS				
	SURVEI	LLANCE	FREQUENCY	
SR 3.1.5.1 Verify CANISTER helium leak rate is within limit			Once prior to TRANSPORT OPERATIONS.	

A 3.1 NAC-UMS® SYSTEM

A 3.1.6 CONCRETE CASK Heat Removal System

LCO 3.1.6 The CONCRETE CASK Heat Removal System shall be OPERABLE.

APPLICABILITY: During STORAGE OPERATIONS

ACTIONS

-----NOTE------

Separate Condition entry is allowed for each NAC-UMS® SYSTEM.

.....

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. CONCRETE CASK Heat Removal System inoperable	A.1 Restore CONCRETE CASK Heat Removal System to OPERABLE status	8 hours
B. Required Action A.1 and associated Completion Time not met	B.1 Perform SR 3.1.6.1 AND	Immediately and every 6 hours thereafter
	B.2.1 Restore CONCRETE CASK Heat Removal System to OPERABLE status	12 hours

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.1.6.1	Verify the difference between the average CONCRETE CASK air outlet temperature and ISFSI ambient temperature is ≤ 102°F (for the PWR CANISTER) and ≤ 92°F (for the BWR CANISTER)	24 hours

A 3.1 NAC-UMS® SYSTEM Integrity A 3.1.7 CANISTER Removal from the CONCRETE CASK LCO 3.1.7 The following limits for TRANSFER OPERATIONS shall be met, as appropriate: 1. The time duration for holding the CANISTER in the TRANSFER CASK shall not exceed 4 hours for either the PWR or BWR configurations, without forced air cooling. 2. The time duration for holding the CANISTER in the TRANSFER CASK using external forced air cooling of the CANISTER is not limited. APPLICABILITY: **During TRANSFER OPERATIONS ACTIONS** -----NOTE------Separate Condition entry is allowed for each NAC-UMS® SYSTEM. Separate Condition entry to this LCO is allowed following each 24-hour period of continuous forced air cooling. (continued)

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. Loaded CANISTER held in TRANSFER CASK	A.1.1 Load CANISTER into operable CONCRETE CASK	4 hours
CAGIC	OR A.2.1 Load CANISTER into TRANSPORT CASK	4 hours
	OR A.3.1 Perform A.1.1 or A.2.1 following a minimum of 24-hours of forced air cooling	4 hours
B. Required Actions in A and associated Completion Time not met	B.1.1 Commence supplying air to the TRANSFER CASK annulus fill/drain lines at a rate of 375 CFM and a maximum temperature of 75°F	2 hours
	AND B.2.1 Maintain forced air cooling. Condition A of this LCO may be reentered after 24 hours of forced air cooling	24 hours

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.1.7.1	Monitor elapsed time from closing of the TRANSFER CASK bottom shield doors until unloading of the CANISTER from the TRANSFER CASK	Once at closing of the TRANSFER CASK bottom shield doors AND 2 hours thereafter
SR 3.1.7.2	Monitor continuous forced air cooling operation until unloading of the CANISTER from the TRANSFER CASK	Once at start of cooling operations AND 6 hours thereafter

A 3.2 NAC-UMS® SYSTEM Radiation Protection

A 3.2.1 CANISTER Surface Contamination

LCO 3.2.1

Removable contamination on the accessible exterior surfaces of the CANISTER or accessible interior surfaces of the TRANSFER CASK shall each not exceed:

- a. 1000 dpm/100 cm² from beta and gamma sources; and
- b. 20 dpm/100 cm² from alpha sources.

APPLICABILITY: During LOADING OPERATIONS

Δ	C	ГΙ	\cap	N	9
湐	\mathbf{c}	ı	v	IV	O

-----NOTE-----

Separate Condition entry is allowed for each NAC-UMS® SYSTEM.

.....

CONDITION	REQUIRED ACTION	COMPLETION TIME
A. CANISTER or TRANSFER CASK removable surface contamination limits not met	A.1 Restore CANISTER and TRANSFER CASK removable surface contamination to within limits	7 days

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.2.1.1	Verify that the removable contamination on the accessible exterior surfaces of the CANISTER is within limits	Once, prior to TRANSPORT OPERATIONS
SR 3.2.1.2	Verify that the removable contamination on the accessible interior surfaces of the TRANSFER CASK does not exceed limits	Once, prior to TRANSPORT OPERATIONS

A 3.2 NAC-UMS® SYSTEM Radiation Protection

A 3.2.2 CONCRETE CASK Average Surface Dose Rates

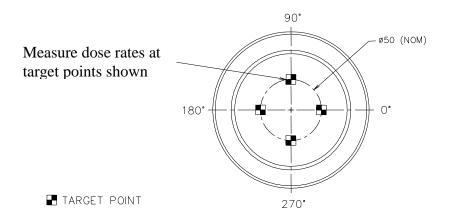
LCO 3.2.2

The average surface dose rates of each CONCRETE CASK shall not exceed the following limits unless required ACTIONS A.1 and A.2 are met.

- a. 50 mrem/hour (neutron + gamma) on the side (on the concrete surfaces);
- b. 50 mrem/hour (neutron + gamma) on the top;
- c. 100 mrem/hour (neutron + gamma) at air inlets and outlets.

APPLICABILITY: During LOADING OPERATIONS

ACTIONS	
NOTE	
Separate Condition entry is allowed for each NAC-UMS® SYSTEM.	


CONDITION	REQUIRED ACTION	COMPLETION TIME
CONCRETE CASK average surface dose rate limits not met	A.1 Administratively verify correct fuel loading	24 hours
	AND	

CONDITION	REQUIRED ACTION	COMPLETION TIME
	A.2 Perform analysis to verify compliance with the ISFSI offsite radiation protection requirements of 10 CFR 20 and 10 CFR 72	7 days
B. Required Action and associated Completion Time not met.	B.1 Remove all fuel assemblies from the NAC-UMS® SYSTEM	30 days

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.2.2.1	Verify average surface dose rates of CONCRETE CASK loaded with a CANISTER containing fuel assemblies are within limits. Dose rates shall be measured at the locations shown in Figure A3-1.	Once after completion of transfer of CANISTER into CONCRETE CASK and prior to beginning STORAGE OPERATIONS.

Figure A3-1 CONCRETE CASK Surface Dose Rate Measurement

Measure dose rates at eight target points (0, 45, 90, 135, 180, 225, 270 and 315 degrees) on each plane, at center of each inlet and outlet and at a point in between each inlet and outlet.

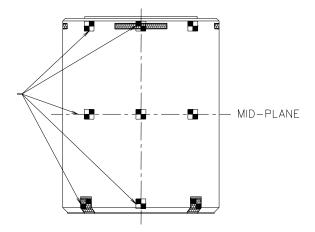


Table A3-1 [deleted]

A 4.0 [Reserved]

A 5.1 <u>Training Program</u>

A training program for the NAC-UMS[®] Universal Storage System shall be developed under the general licensee's systematic approach to training (SAT). Training modules shall include comprehensive instructions for the operation and maintenance of the NAC-UMS[®] Universal Storage System and the independent spent fuel storage installation (ISFSI).

A 5.2 Pre-Operational Testing and Training Exercises

A dry run training exercise on loading, closure, handling, unloading, and transfer of the NAC-UMS[®] Storage System shall be conducted by the licensee prior to the first use of the system to load spent fuel assemblies. The training exercise shall not be conducted with spent fuel in the CANISTER. The dry run may be performed in an alternate step sequence from the actual procedures, but all steps must be performed. The dry run shall include, but is not limited to the following:

- a. Moving the CONCRETE CASK into its designated loading area
- Moving the TRANSFER CASK containing the empty CANISTER into the spent fuel pool
- Loading one or more dummy fuel assemblies into the CANISTER, including independent verification
- d. Selection and verification of fuel assemblies requiring preferential loading
- e. Installing the shield lid
- f. Removal of the TRANSFER CASK from the spent fuel pool
- g. Closing and sealing of the CANISTER to demonstrate pressure testing, vacuum drying, helium backfilling, welding, weld inspection and documentation, and leak testing
- h. TRANSFER CASK movement through the designated load path
- i. TRANSFER CASK installation on the CONCRETE CASK
- j. Transfer of the CANISTER to the CONCRETE CASK

A 5.2 Pre-Operational Testing and Training Exercises (continued)

- CONCRETE CASK shield plug and lid installation k.
- I. Transport of the CONCRETE CASK to the ISFSI
- m. CANISTER unloading, including reflooding and weld removal or cutting
- CANISTER removal from the CONCRETE CASK n.

Appropriate mockup fixtures may be used to demonstrate and/or to qualify procedures, processes or personnel in welding, weld inspection, vacuum drying, helium backfilling, leak testing and weld removal or cutting.

A 5.3 Special Requirements for the First System Placed in Service

The heat transfer characteristics and performance of the NAC-UMS® SYSTEM will be recorded by air inlet and outlet temperature measurements of the first system placed in service with a heat load equal to or greater than 10 kW. A letter report summarizing the results of the measurements will be submitted to the NRC in accordance with 10 CFR 72.4 within 30 days of placing the loaded cask on the ISFSI pad. The report will include a comparison of the calculated temperatures of the NAC-UMS® SYSTEM heat load to the measured temperatures. A report is not required to be submitted for the NAC-UMS® SYSTEMs that are subsequently loaded, provided that the performance of the first system placed in service with a heat load ≥ 10 kW, is demonstrated by the comparison of the calculated and measured temperatures.

A 5.4 Surveillance After an Off-Normal, Accident, or Natural Phenomena Event

A Response Surveillance is required following off-normal, accident or natural phenomena events. The NAC-UMS® SYSTEMs in use at an ISFSI shall be inspected within 4 hours after the occurrence of an off-normal, accident or natural phenomena event in the area of the ISFSI. This inspection must specifically verify that all the CONCRETE CASK inlets and outlets are not blocked or obstructed. At least one-half of the inlets and outlets on each CONCRETE CASK must be cleared of blockage or debris within 24 hours to restore air circulation.

The CONCRETE CASK and CANISTER shall be inspected if they experience a drop or a tipover.

A 5.5 Radioactive Effluent Control Program

The program implements the requirements of 10 CFR 72.44(d).

- a. The NAC-UMS® SYSTEM does not create any radioactive materials or have any radioactive waste treatment systems. Therefore, specific operating procedures for the control of radioactive effluents are not required. LCO 3.1.5, CANISTER Helium Leak Rate, provides assurance that there are no radioactive effluents from the NAC-UMS® SYSTEM.
- b. This program includes an environmental monitoring program. Each general license user may incorporate NAC-UMS® SYSTEM operations into their environmental monitoring program for 10 CFR Part 50 operations.
- c. An annual report shall be submitted pursuant to 10 CFR 72.44(d)(3).

A 5.6 NAC-UMS® SYSTEM Transport Evaluation Program

This program provides a means for evaluating various transport configurations and transport route conditions to ensure that the design basis drop limits are met. For lifting of the loaded TRANSFER CASK or CONCRETE CASK using devices that are integral to a structure governed by 10 CFR Part 50 regulations, 10 CFR 50 requirements apply. This program is not applicable when the TRANSFER CASK or CONCRETE CASK is in the fuel building or is being handled by a device providing support from underneath (i.e., on a rail car, heavy haul trailer, air pads, etc.).

Pursuant to 10 CFR 72.212, this program shall evaluate the site specific transport route conditions.

a. The lift height above the transport surface prescribed in Section B3.4.1(6) of Appendix B to Certificate of Compliance (CoC) No. 1015 shall not exceed the limits in Table A5-1. Also, the program shall ensure that the transport route conditions (i.e., surface hardness and pad thickness) are equivalent to or less limiting than those prescribed for the reference pad surface which forms the basis for the values cited in Section B3.4.1(6) of Appendix B to CoC No. 1015.

A 5.6 NAC-UMS® SYSTEM Transport Evaluation Program (continued)

- b. For site specific transport conditions which are not bounded by the surface characteristics in Section B3.4.6 of Appendix B to CoC No. 1015, the program may evaluate the site specific conditions to ensure that the impact loading due to design basis drop events does not exceed 60g. This alternative analysis shall be commensurate with the drop analyses described in the Safety Analysis Report for the NAC-UMS® SYSTEM. The program shall ensure that these alternative analyses are documented and controlled.
- c. The TRANSFER CASK and CONCRETE CASK may be lifted to those heights necessary to perform cask handling operations, including CANISTER transfer, provided the lifts are made with structures and components designed in accordance with the criteria specified in Section B3.5 of Appendix B to CoC No. 1015, as applicable.

A 5.7 <u>Verification of Oxide Layer Thickness on High Burnup Fuel</u>

A verification program is required to determine the oxide layer thickness on high burnup fuel by measurement or by statistical analysis. A fuel assembly having a burnup between 45,000 MWD/MTU and 50,000 MWD/MTU is classified as high burnup. The verification program shall be capable of classifying high burnup fuel as INTACT FUEL or DAMAGED FUEL based on the following criteria:

- 1. A HIGH BURNUP FUEL assembly may be stored as INTACT FUEL provided that no more than 1% of the fuel rods in the assembly have a peak cladding oxide thickness greater than 80 microns, and that no more than 3% of the fuel rods in the assembly have a peak oxide layer thickness greater than 70 microns, and that the fuel assembly is otherwise INTACT FUEL.
- 2. A HIGH BURNUP FUEL assembly not meeting the cladding oxide thickness criteria for INTACT FUEL or that has an oxide layer that is detached or spalled from the cladding is classified as DAMAGED FUEL.

A fuel assembly, having a burnup between 45,000 and 50,000 MWD/MTU, must be preferentially loaded in periphery positions of the basket.

Table A5-1 TRANSFER CASK and CONCRETE CASK Lifting Requirements

Item	Orientation	Lifting Height Limit
TRANSFER CASK	Horizontal	None Established
TRANSFER CASK	Vertical	None Established ¹
CONCRETE CASK	Horizontal	Not Permitted
CONCRETE CASK	Vertical	< 24 inches

Note:

1. See Technical Specification A5.6(c).

APPENDIX B

APPROVED CONTENTS AND DESIGN FEATURES FOR THE NAC-UMS® SYSTEM

AMENDMENT NO. 2

Appendix B Table of Contents

B 1.0 [Rese	rved]	B1-1
B 2.0 Appro	ved Contents	B2-1
	Fuel Specifications and Loading Conditions	
Figure B2-1	PWR Basket Fuel Loading Positions	B2-6
Figure B2-2	BWR Basket Fuel Loading Positions	
Table B2-1	Fuel Assembly Limits	
Table B2-2	PWR Fuel Assembly Characteristics	B2-10
Table B2-3	BWR Fuel Assembly Characteristics	
Table B2-4	Minimum Cooling Time Versus Burnup/Initial Enrichment for	
	PWR Fuel	B2-12
Table B2-5	Minimum Cooling Time Versus Burnup/Initial Enrichment for	
	BWR Fuel	B2-13
Table B2-6	Maine Yankee Site Specific Fuel Canister Loading Position	
	Summary	B2-14
Table B2-7	Maine Yankee Site Specific Fuel Limits	B2-15
Table B2-8	Loading Table for Maine Yankee CE 14 x 14 Fuel with No	
	Non-Fuel Material – Required Cool Time in Years Before Assembly	
	is Acceptable	B2-18
Table B2-9	Loading Table for Maine Yankee CE 14 x 14 Fuel Containing	
	CEA Cooled to Indicated Time	B2-20
B 3.0 Design	n Features	B3-1
B 3.1	Site	B3-1
B 3.2	Design Features Important for Criticality Control	B3-1
B 3.3	Codes and Standards	B3-1
B 3.4	Site Specific Parameters and Analyses	B3-7
B 3.5	CANISTER HANDLING FACILITY (CHF)	B3-11

Appendix B Table of Contents (continued)

Table B3-1	List of ASME Code Exceptions for the NAC-UMS® SYSTEM B3-3
Table B3-2	Load Combinations and Service Condition Definitions for the
	CANISTER HANDLING FACILITY (CHF) Structure B3-13

B 1.0 [Reserved]

B 2.0 APPROVED CONTENTS

B 2.1 <u>Fuel Specifications and Loading Conditions</u>

The NAC-UMS® System is designed to provide passive dry storage of canistered PWR and BWR spent fuel. The system requires few operating controls. The principal controls and limits for the NAC-UMS® System are satisfied by the selection of fuel for storage that meets the Approved Contents presented in this section and in Tables B2-1 through B2-5 for the standard NAC-UMS® System design basis spent fuels.

This section also permits the loading of fuel assemblies that are unique to specific reactor sites. SITE SPECIFIC FUEL assembly configurations are either shown to be bounded by the analysis of the standard NAC-UMS® System design basis fuel assembly configuration of the same type (PWR or BWR), or are shown to be acceptable contents by specific evaluation of the configuration.

The separate specific evaluation may establish different limits, which are maintained by administrative controls for preferential loading. The preferential loading controls allow the loading of fuel configurations that may have higher burnup, additional hardware material or unique configurations as compared to the standard NAC-UMS® System design basis spent fuels.

Unless specifically excepted, SITE SPECIFIC FUEL must meet all of the controls and limits specified for the NAC-UMS® System.

If any Fuel Specification or Loading Conditions of this section are violated, the following actions shall be completed:

- The affected fuel assemblies shall be placed in a safe condition.
- Within 24 hours, notify the NRC Operations Center.
- Within 30 days, submit a special report that describes the cause of the violation and actions taken to restore or demonstrate compliance and prevent recurrence.

B 2.1.1 Fuel to be Stored in the NAC-UMS® SYSTEM

INTACT FUEL ASSEMBLIES meeting the limits specified in Tables B2-1 through B2-5 may be stored in the NAC-UMS® SYSTEM.

B 2.1.2 Preferential Fuel Loading

The normal temperature distribution in the loaded TRANSPORTABLE STORAGE CANISTER results in the basket having the highest temperature at its center and lowest temperature at the outer edge. Considering this temperature distribution, spent fuel with the shortest cooling time (and, therefore, having a higher allowable cladding temperature) is placed in the center of the basket. Fuel with the longest cooling time (and, therefore, having a lower allowable cladding temperature) is placed in the periphery of the basket.

Using a similar argument, fuel assemblies with cooling times between the highest and lowest cooling times of the designated fuel, are placed in intermediate fuel positions.

Loading of the fuel assemblies designated for a given TRANSPORTABLE STORAGE CANISTER must be administratively controlled to ensure that the dry storage fuel cladding temperature limits are not exceeded for any fuel assembly, unless all of the designated fuel assemblies have a cooling time of 7 years or more.

CANISTERS containing fuel assemblies, all of which have a cooling time of 7 years or more, do not require preferential loading, because analyses have shown that the fuel cladding temperature limits will always be met for those CANISTERS.

CANISTERS containing fuel assemblies with cooling times from 5 to 7 years must be preferentially loaded based on cooling time. By controlling the placement of the fuel assemblies with the shortest cooling time (thermally hottest), preferential loading ensures that the allowable fuel cladding temperature for a given fuel assembly is not exceeded. The preferential loading of fuel into the CANISTER based on cooling time is described as follows.

For the PWR fuel basket configuration, shown in Figure B2-1, fuel positions are numbered using the drain line as the reference point. Fuel positions 9, 10, 15 and 16 are considered to be basket center positions for the purpose of meeting the preferential loading requirement. The fuel with the shortest cooling times from among the fuel designated for loading in the CANISTER will be placed in the center positions. A single fuel assembly having the shortest cooling time may be loaded in any of these four positions. Fuel positions 1, 2, 3, 6, 7, 12, 13, 18, 19, 22, 23 and 24 are periphery positions, where fuel with the longest cooling times will be placed. Fuel with the longest cooling times may be loaded in any of these 12 positions. Similarly, designated fuel assemblies with cooling times in the midrange of the shortest and longest cooling times will be loaded in the intermediate fuel positions – 4, 5, 8, 11, 14, 17, 20 and 21.

For the BWR fuel basket configuration, shown in Figure B2-2, fuel positions are also numbered using the drain line as the reference point. Fuel positions 23, 24, 25, 32, 33 and 34 are considered to be basket center positions for the purpose of meeting the preferential loading requirement. The fuel with the shortest cooling times from among the fuel designated for loading in the CANISTER will be placed in the center positions. However, the single fuel assembly having the shortest cooling time will be loaded in either position 24 or position 33. Fuel positions 1, 2, 3, 4, 5, 6, 12, 13, 19, 20, 28, 29, 37, 38, 44, 45, 51, 52, 53, 54, 55 and 56 are periphery positions, where fuel with the longest cooling times will be placed. Fuel with the longest cooling times may be loaded in any of these 22 positions. Designated fuel assemblies with cooling times in the midrange of the shortest and longest cooling times will be divided into two tiers. The fuel assemblies with the shorter cooling times in the midrange will be loaded in the inner intermediate fuel positions - 15, 16, 17, 22, 26, 31, 35, 40, 41, and 42. Fuel assemblies with the longer cooling times in the midrange will be loaded in the outer intermediate fuel positions - 7, 8, 9, 10, 11, 14, 18, 21, 27, 30, 36, 39, 43, 46, 47, 48, 49 and 50.

These loading patterns result in the placement of fuel such that the shortest-cooled fuel is in the center of the basket and the longest-cooled fuel is on the periphery. Based on engineering evaluations, this loading pattern ensures that fuel assembly allowable cladding temperatures are satisfied.

B 2.1.3 Maine Yankee SITE SPECIFIC FUEL Preferential Loading

The estimated Maine Yankee SITE SPECIFIC FUEL inventory is shown in Table B2-6. As shown in this table, certain of the Maine Yankee fuel configurations must be preferentially loaded in specific basket fuel tube positions.

Corner positions are used for CONSOLIDATED FUEL, certain HIGH BURNUP FUEL and DAMAGED FUEL or FUEL DEBRIS loaded in a MAINE YANKEE FUEL CAN, for fuel assemblies with missing fuel rods, burnable poison rods or fuel assemblies with fuel rods that have been replaced by hollow Zircaloy rods. Designation for placement in corner positions results primarily from shielding or criticality evaluations of these fuel configurations. CONSOLIDATED FUEL is conservatively designated for a corner position, even though analysis shows that these lattices could be loaded in any basket position. Corner positions are positions 3, 6, 19, and 22 in Figure B2-1.

Preferential loading is also used for HIGH BURNUP fuel not loaded in the MAINE YANKEE FUEL CAN. This fuel is assigned to peripheral locations, positions 1, 2, 3, 6, 7, 12, 13, 18, 19, 22, 23, and 24 in Figure B2-1. The interior locations must be loaded with fuel that has lower burnup and/or longer cool times to maintain the design basis heat load and component temperature limits for the basket and canister, and the spent fuel short-term temperature limits, as described in Section B 2.1.2.

One of the three loading patterns (Standard, 1.05 kW (periphery), or 0.958 kW (periphery)) shown in Table B2-8 must be used to load each canister. Once selected, all of the spent fuel in that canister must be loaded in accordance with that pattern. Within a pattern, mixing of enrichment and cool time is allowed, but no mixing of loading patterns is permitted. For example, choosing a Perf (1.05) pattern restricts the interior fuel to the cool times shown in the Perf (1.05p) column.

Fuel assemblies with a control element assembly (CEA) inserted will be loaded in a Class 2 canister and basket due to the increased length of the assembly with the CEA installed. However, these assemblies are not restricted as to loading position within the basket. Fuel assemblies with non-fuel items installed in corner guide tubes of the fuel assembly must also have a CEA plug installed and must be loaded in a basket corner fuel position in a Class 2 canister.

The Transportable Storage Canister loading procedures indicate that loading of a fuel configuration with removed fuel or poison rods, CONSOLIDATED FUEL, or a MAINE YANKEE FUEL CAN with DAMAGED FUEL, FUEL DEBRIS or HIGH BURNUP FUEL, is administratively controlled in accordance with Section B 2.1.

Figure B2-1 PWR Basket Fuel Loading Positions

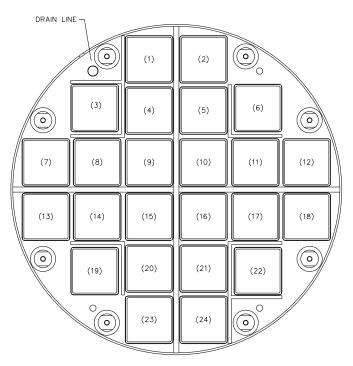
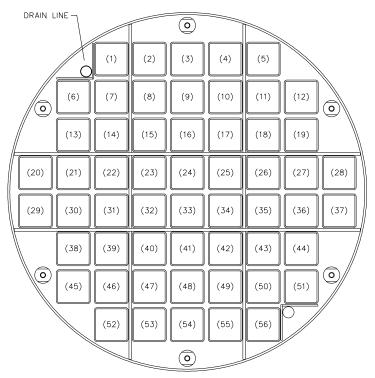



Figure B2-2 BWR Basket Fuel Loading Positions

Table B2-1 Fuel Assembly Limits

I. NAC-UMS® CANISTER: PWR FUEL

A. Allowable Contents

1. Uranium oxide PWR INTACT FUEL ASSEMBLIES listed in Table B2-2 and meeting the following specifications:

a. Cladding Type: Zircaloy with thickness as specified in Table

B2-2 for the applicable fuel assembly class

b. Enrichment: Maximum and minimum enrichments are 4.2

and 1.9 wt % ²³⁵U, respectively. Fuel enrichment, burnup and cool time are related

as shown in Table B2-4.

c. Decay Heat Per Assembly: < 958.3 watts

d. Post-irradiation Cooling As specified in Table B2-4

Time and Average Burnup Per Assembly:

e. Nominal Fresh Fuel Assembly ≤ 178.3 Length (in.):

f. Nominal Fresh Fuel Assembly ≤ 8.54 Width (in.):

g. Fuel Assembly Weight (lbs.): < 1,515

- B. Quantity per CANISTER: Up to 24 PWR INTACT FUEL ASSEMBLIES.
- C. PWR INTACT FUEL ASSEMBLIES may contain thimble plugs and burnable poison inserts (Class 1 and Class 2 contents).
- D. PWR INTACT FUEL ASSEMBLIES shall not contain control components.
- E. Stainless steel spacers may be used in CANISTERS to axially position PWR INTACT FUEL ASSEMBLIES that are shorter than the available cavity length to facilitate handling.
- F. Unenriched fuel assemblies are not authorized for loading.
- G. The minimum length of the PWR INTACT FUEL ASSEMBLY internal structure and bottom end fitting and/or spacers shall ensure that the minimum distance to the fuel region from the base of the CANISTER is 3.2 inches.
- H. PWR INTACT FUEL ASSEMBLIES with one or more grid spacers missing or damaged such that the unsupported length of the fuel rods does not exceed 60 inches. End fitting damage including damaged or missing hold-down springs is allowed, as long as the assembly can be handled safely by normal means.

Table B2-1 Fuel Assembly Limits (continued)

- II. NAC-UMS® CANISTER: BWR FUEL
 - A. Allowable Contents
 - 1. Uranium oxide BWR INTACT FUEL ASSEMBLIES listed in Table B2-3 and meeting the following specifications:

a. Cladding Type: Zircaloy with thickness as specified in Table

B2-3 for the applicable fuel assembly class.

b. Enrichment: Maximum and minimum INITIAL PEAK

PLANAR-AVERAGE ENRICHMENTS are 4.0 and 1.9 wt % 235 U, respectively. Fuel enrichment, burnup and cooling time are

related as shown in Table B2-5.

c. Decay Heat per Assembly: ≤ 410.7 watts

d. Post-irradiation Cooling Time

and Average Burnup Per Assembly:

As specified in Table B2-5 and for the

applicable fuel assembly class.

e. Nominal Fresh Fuel Design ≤ 176.1

Assembly Length (in.):

f. Nominal Fresh Fuel Design

Assembly Width (in.):

< 5.51

g. Fuel Assembly Weight (lbs): ≤ 683, including channels

Table B2-1 Fuel Assembly Limits (continued)

- B. Quantity per CANISTER: Up to 56 BWR INTACT FUEL ASSEMBLIES
- C. BWR INTACT FUEL ASSEMBLIES can be unchanneled or channeled with Zircaloy channels.
- D. BWR INTACT FUEL ASSEMBLIES with stainless steel channels shall not be loaded.
- E. Stainless steel fuel spacers may be used in CANISTERS to axially position BWR INTACT FUEL ASSEMBLIES that are shorter than the available cavity length to facilitate handling.
- F. Unenriched fuel assemblies are not authorized for loading.
- G. The minimum length of the BWR INTACT FUEL ASSEMBLY internal structure and bottom end fitting and/or spacers shall ensure that the minimum distance to the fuel region from the base of the CANISTER is 6.2 inches.

Table B2-2 PWR Fuel Assembly Characteristics

Min. Max. Min. Clad Active Guide No of Max. Max. Tube Thick Length Fuel Fuel Pitch Min. Rod Pellet Max. Thick (in) Vendor² Rods (in) Dia.(in) (in) Class Array MTU (in) Dia. (in) 176⁴ 1 CE 14x14 0.404 0.590 0.438 0.024 0.380 137.0 0.034 Ex/ANF 1 14x14 0.369 0.424 0.351 142.0 0.034 179 0.556 0.030 WE 1 14x14 0.362 179 0.556 0.400 0.024 0.345 144.0 0.034 1 WE 179 0.556 0.422 0.022 0.368 145.2 0.034 14x14 0.415 WE. 1 15x15 0.465 204 0.563 0.422 0.024 0.366 144.0 0.015 Ex/ANF 1 Ex/ANF 17x17 0.413 264 0.496 0.360 0.025 0.303 144.0 0.016 1 WE 17x17 0.468 264 0.496 0.374 0.022 0.323 144.0 0.016 WE 1 17x17 0.429 264 0.496 0.360 0.022 0.309 144.0 0.016 2 B&W 15x15 0.481 208 0.568 0.430 0.026 0.369 144.0 0.016 0.502 2 B&W 0.379 143.0 17x17 0.466 264 0.024 0.324 0.017 CE 0.442 236⁴ 0.506 0.382 0.023 0.3255 150.0 0.035 3 16x16 Ex/ANF³ 144.0 1 14x14 0.375 179 0.556 0.417 0.030 0.351 0.036 CE³ 1 15x15 0.432 216 0.550 0.418 0.026 0.358 132.0 ----1 Ex/ANF³ 0.431 0.417 0.030 0.358 15x15 216 0.550 131.8 CE³ 0.403 236⁴ 0.506 0.382 0.023 0.3255 136.7 1 16x16 0.035

- 1. Maximum Initial Enrichment: 4.2 wt % ²³⁵U. All fuel rods are Zircaloy clad.
- Vendor ID indicates the source of assembly base parameters, which are nominal, preirradiation values. Loading of assemblies meeting above limits is not restricted to the vendor(s) listed.
- 3. 14x14, 15x15 and 16x16 fuel manufactured for Prairie Island, Palisades and St. Lucie 2 cores, respectively. These are not generic fuel assemblies provided to multiple reactors.
- 4. Some fuel rod positions may be occupied by burnable poison rods or solid filler rods.

BWR Fuel Assembly Characteristics Table B2-3

							Min		
				.		N 4"	Min.		
				No of	Max.	Min.	Clad	Max.	
Fuel			Max.	Fuel	Pitch	Rod	Thick	Pellet	Max. Active
Class ^{1,5}	Vendor ⁴	Array	MTU	Rods	(in)	Dia. (in)	(in)	Dia.(in)	Length (in) ²
4 ⁵	Ex/ANF	7 X 7	0.196	48	0.738	0.570	0.036	0.490	144.0
4	Ex/ANF	8 X 8	0.177	63	0.641	0.484	0.036	0.405	145.2
4	Ex/ANF	9 X 9	0.173	79	0.572	0.424	0.030	0.357	145.2
4	GE	7 X 7	0.199	49	0.738	0.570	0.036	0.488	144.0
4	GE	7 X 7	0.198	49	0.738	0.563	0.032	0.487	144.0
4	GE	8 X 8	0.173	60	0.640	0.484	0.032	0.410	145.2
4	GE	8 X 8	0.179	62	0.640	0.483	0.032	0.410	145.2
4	GE	8 X 8	0.186	63	0.640	0.493	0.034	0.416	144.0
5	Ex/ANF	8 X 8	0.180	62	0.641	0.484	0.036	0.405	150.0
5	Ex/ANF	9 X 9	0.167	74 ³	0.572	0.424	0.030	0.357	150.0
5 ⁶	Ex/ANF	9 X 9	0.178	79 ³	0.572	0.424	0.030	0.357	150.0
5	GE	7 X 7	0.198	49	0.738	0.563	0.032	0.487	144.0
5	GE	8 X 8	0.179	60	0.640	0.484	0.032	0.410	150.0
5	GE	8 X 8	0.185	62	0.640	0.483	0.032	0.410	150.0
5	GE	8 X 8	0.188	63	0.640	0.493	0.034	0.416	146.0
5	GE	9 X 9	0.186	74 ³	0.566	0.441	0.028	0.376	150.0
5	GE	9 X 9	0.198	79 ³	0.566	0.441	0.028	0.376	150.0

- Maximum Initial Peak Planar Average Enrichment 4.0 wt % ²³⁵U. All fuel rods are Zircaloy clad.
 150 inch active fuel length assemblies contain 6" natural uranium blankets on top and bottom.
- 3. Shortened active fuel length in some rods.
- 4. Vendor ID indicates the source of assembly base parameters, which are nominal, pre-irradiation values. Loading of assemblies meeting above limits is not restricted to the vendor(s) listed.
- 5. UMS Class 4 and 5 for BWR 2/3 fuel.
- 6. Assembly width including channel. Unchanneled or channeled assemblies may be loaded based on a maximum channel thickness of 120 mil.

Table B2-4

Minimum Cooling Time Versus Burnup/Initial Enrichment for PWR Fuel

Minimum Initial Enrichment		•	GWD/MT		30< Burnup ≤35 GWD/MTU Minimum Cooling Time [years]							
wt % ²³⁵ U (E)	14x14	15x15	16x16	17x17	14x14	15x15	16x16	17x17				
1.9 ≤ E < 2.1	5	5	5	5	7	7	5	7				
2.1 ≤ E < 2.3	5	5	5	5	7	6	5	6				
$2.3 \le E < 2.5$	5	5	5	5	6	6	5	6				
$2.5 \le E < 2.7$	5	5	5	5	6	6	5	6				
2.7 ≤ E < 2.9	5	5	5	5	6	5	5	5				
2.9 ≤ E < 3.1	5	5	5	5	5	5	5	5				
3.1 ≤ E < 3.3	5	5	5	5	5	5	5	5				
$3.3 \le E < 3.5$	5	5	5	5	5	5	5	5				
$3.5 \le E < 3.7$	5	5	5	5	5	5	5	5				
$3.7 \le E \le 4.2$	5	5	5	5	5	5	5	5				
Minimum		•	40 GWD/I		40< Burnup ≤45 GWD/MTU							
Initial	Minim	ium Cooli	ng Time [years]	Minimum Cooling Time [years]							
Enrichment			T									
1 x 4 0/ 233 / E \	11111	15,45	167/16	47,47	1 4 2 4 4	1 E v 1 E	16716	17,47				
wt % ²³⁵ U (E)	14x14	15x15	16x16	17x17	14x14	15x15	16x16	17x17				
1.9 ≤ E < 2.1	10	10	7	10	15	15	11	15				
1.9 ≤ E < 2.1 2.1 ≤ E < 2.3	10 9	10 9	7	10 9	15 14	15 13	11 10	15 13				
$1.9 \le E < 2.1$ $2.1 \le E < 2.3$ $2.3 \le E < 2.5$	10 9 8	10 9 8	7 7 6	10 9 8	15 14 12	15 13 13	11 10 10	15 13 12				
$1.9 \le E < 2.1$ $2.1 \le E < 2.3$ $2.3 \le E < 2.5$ $2.5 \le E < 2.7$	10 9 8 8	10 9 8 8	7 7 6 6	10 9 8 8	15 14 12 11	15 13 13 13	11 10 10 10	15 13 12 12				
$1.9 \le E < 2.1$ $2.1 \le E < 2.3$ $2.3 \le E < 2.5$ $2.5 \le E < 2.7$ $2.7 \le E < 2.9$	10 9 8 8 7	10 9 8 8 8	7 7 6 6 6	10 9 8 8 8	15 14 12 11 10	15 13 13 13 12	11 10 10 10 9	15 13 12 12 12				
$1.9 \le E < 2.1$ $2.1 \le E < 2.3$ $2.3 \le E < 2.5$ $2.5 \le E < 2.7$ $2.7 \le E < 2.9$ $2.9 \le E < 3.1$	10 9 8 8 7 7	10 9 8 8 8	7 7 6 6 6 6	10 9 8 8 8	15 14 12 11 10 9	15 13 13 13 12 12	11 10 10 10 9 9	15 13 12 12 12 12				
$1.9 \le E < 2.1$ $2.1 \le E < 2.3$ $2.3 \le E < 2.5$ $2.5 \le E < 2.7$ $2.7 \le E < 2.9$ $2.9 \le E < 3.1$ $3.1 \le E < 3.3$	10 9 8 8 7 7 6	10 9 8 8 8 8	7 7 6 6 6 6 6	10 9 8 8 8 8 7	15 14 12 11 10 9 8	15 13 13 13 12 12 12	11 10 10 10 9 9	15 13 12 12 12 12 11 10				
$1.9 \le E < 2.1$ $2.1 \le E < 2.3$ $2.3 \le E < 2.5$ $2.5 \le E < 2.7$ $2.7 \le E < 2.9$ $2.9 \le E < 3.1$	10 9 8 8 7 7	10 9 8 8 8	7 7 6 6 6 6	10 9 8 8 8	15 14 12 11 10 9	15 13 13 13 12 12	11 10 10 10 9 9	15 13 12 12 12 12				
$1.9 \le E < 2.1$ $2.1 \le E < 2.3$ $2.3 \le E < 2.5$ $2.5 \le E < 2.7$ $2.7 \le E < 2.9$ $2.9 \le E < 3.1$ $3.1 \le E < 3.3$	10 9 8 8 7 7 6	10 9 8 8 8 8	7 7 6 6 6 6 6	10 9 8 8 8 8 7	15 14 12 11 10 9 8	15 13 13 13 12 12 12	11 10 10 10 9 9	15 13 12 12 12 12 11 10				

Table B2-5 Minimum Cooling Time Versus Burnup/Initial Enrichment for BWR Fuel

Minimum Initial Enrichment	Burnup ≤30 GWD/MTU Minimum Cooling Time [years]			rnup ≤35 GW Cooling Tim		
wt % ²³⁵ U (E)	7x7	8x8	9x9	7x7	8x8	9x9
1.9 ≤ E < 2.1	5	5	5	8	7	7
2.1 ≤ E < 2.3	5	5	5	6	6	6
2.3 ≤ E < 2.5	5	5	5	5	5	5
$2.5 \le E < 2.7$	5	5	5	5	5	5
$2.7 \le E < 2.9$	5	5	5	5	5	5
2.9 ≤ E < 3.1	5	5	5	5	5	5
$3.1 \le E < 3.3$	5	5	5	5	5	5
$3.3 \le E < 3.5$	5	5	5	5	5	5
$3.5 \le E < 3.7$	5	5	5	5	5	5
$3.7 \le E \le 4.0$	5	5	5	5	5	5
Minimum Initial Enrichment		rnup ≤40 GW Cooling Tim		40< Burnup ≤45 GWD/MTU Minimum Cooling Time [years]		
wt % ²³⁵ U (E)	7x7	8x8	9x9	7x7	8x8	9x9
1.9 ≤ E < 2.1	16	14	15	26	24	25
2.1 ≤ E < 2.3	4.0					
Z. 1 _ L \ Z.U	13	12	12	23	21	22
$2.1 \le E < 2.5$ $2.3 \le E < 2.5$	13 9	12 8	12 8	23 18	21 16	22 17
2.3 ≤ E < 2.5	9	8	8	18	16	17
$2.3 \le E < 2.5$ $2.5 \le E < 2.7$	9	8 7	8 7	18 15	16 14	17 14
$2.3 \le E < 2.5$ $2.5 \le E < 2.7$ $2.7 \le E < 2.9$	9 8 7	8 7 6	8 7 6	18 15 13	16 14 11	17 14 12
$2.3 \le E < 2.5$ $2.5 \le E < 2.7$ $2.7 \le E < 2.9$ $2.9 \le E < 3.1$	9 8 7 6	8 7 6 6	8 7 6 6	18 15 13 11	16 14 11 10	17 14 12 10
$2.3 \le E < 2.5$ $2.5 \le E < 2.7$ $2.7 \le E < 2.9$ $2.9 \le E < 3.1$ $3.1 \le E < 3.3$	9 8 7 6 6	8 7 6 6 5	8 7 6 6 6	18 15 13 11 9	16 14 11 10 8	17 14 12 10 9

Maine Yankee Site Specific Fuel Canister Loading Position Summary

Site Specific Spent Fuel Configurations ¹	Est. Number of Assemblies ²	Canister Loading Position
Total Number of Fuel Assemblies ³	1,434	_
Inserted Control Element Assembly (CEA)	168	Any
Inserted In-Core Instrument (ICI) Thimble	138	Any
Consolidated Fuel	2	Corner ⁴
Fuel Rod Replaced by Rod Enriched to 1.95 wt %	3	Any
Fuel Rod Replaced by Stainless Steel Rod or Zircaloy Rod	18	Any
Fuel Rods Removed	10	Corner ⁴
Variable Enrichment ⁶	72	Any
Variable Enrichment and Axial Blanket ⁶	68	Any
Burnable Poison Rod Replaced by Hollow Zircaloy Rod	80	Corner ⁴
Damaged Fuel in MAINE YANKEE FUEL CAN	12	Corner ⁴
Burnup between 45,000 and 50,000 MWD/MTU	90	Periphery ⁵
MAINE YANKEE FUEL CAN	As Required	Corner ⁴
Inserted Startup Source	4	Corner ⁴
Inserted CEA Finger Tip or ICI String Segment	1	Corner ⁴

- 1. All spent fuel, including that held in a Maine Yankee fuel can, must conform to the loading limits presented in Tables B2-8 and B2-9 for cool time.
- 2. The number of fuel assemblies in some categories may vary depending on future fuel inspections.
- 3. Includes these site specific spent fuel configurations and standard fuel assemblies. Standard fuel assemblies may be loaded in any canister position.
- 4. Basket corner positions are positions 3, 6, 19, and 22 in Figure B2-1. Corner positions are also periphery positions.
- 5. Basket periphery positions are positions 1, 2, 3, 6, 7, 12, 13, 18, 19, 22, 23, and 24 in Figure B2-1. Periphery positions include the corner positions.
- 6. Variably enriched fuel assemblies have a maximum burnup of less than 30,000 MWD/MTU and enrichments greater than 1.9 wt %. The minimum required cool time for these assemblies is 5 years.

Table B2-7 Maine Yankee Site Specific Fuel Limits

A. Allowable Contents

- 1. Combustion Engineering 14 x 14 PWR INTACT FUEL ASSEMBLIES meeting the specifications presented in Tables B2-1, B2-2 and B2-4.
- 2. PWR INTACT FUEL ASSEMBLIES may contain inserted Control Element Assemblies (CEA), In-Core Instrument (ICI) Thimbles or CEA Plugs. CEAs or CEA Plugs may not be inserted in damaged fuel assemblies, consolidated fuel assemblies or assemblies with irradiated stainless steel replacement rods. Fuel assemblies with a CEA or CEA Plug inserted must be loaded in a Class 2 CANISTER and cannot be loaded in a Class 1 CANISTER. Fuel assemblies without an inserted CEA or CEA Plug, including those with inserted ICI Thimbles, must be loaded in a Class 1 CANISTER.
- 3. PWR INTACT FUEL ASSEMBLIES with fuel rods replaced with stainless steel or Zircaloy rods or with Uranium oxide rods nominally enriched up to 1.95 wt %.
- 4. PWR INTACT FUEL ASSEMBLIES with fuel rods having variable enrichments with a maximum fuel rod enrichment up to 4.21 wt % ²³⁵U and that also have a maximum planar average enrichment up to 3.99 wt % ²³⁵U.
- 5. PWR INTACT FUEL ASSEMBLIES with annular axial end blankets. The axial end blanket enrichment may be up to 2.6 wt % ²³⁵U.
- 6. PWR INTACT FUEL ASSEMBLIES with solid filler rods or burnable poison rods occupying up to 16 of 176 fuel rod positions.
- 7. PWR INTACT FUEL ASSEMBLIES with one or more grid spacers missing or damaged such that the unsupported length of the fuel rods does not exceed 60 inches or with end fitting damage, including damaged or missing hold-down springs, as long as the assembly can be handled safely by normal means.
- B. Allowable Contents requiring preferential loading based on shielding, criticality or thermal constraints. The preferential loading requirement for these fuel configurations is as described in Table B2-6.
 - 1. PWR INTACT FUEL ASSEMBLIES with up to 176 fuel rods missing from the fuel assembly lattice.
 - 2. PWR INTACT FUEL ASSEMBLIES with a burnup between 45,000 and 50,000 MWD/MTU meeting the requirements of Section A 5.7(1).
 - 3. PWR INTACT FUEL ASSEMBLIES with a burnable poison rod replaced by a hollow Zircaloy rod.

Table B2-7 Maine Yankee Site Specific Fuel Limits (continued)

4. INTACT FUEL ASSEMBLIES with a start-up source in a center guide tube. The assembly must be loaded in a basket corner position and must be loaded in a Class 1 CANISTER. Only one (1) start-up source may be loaded in any fuel assembly or any

CANISTER.

5. PWR INTACT FUEL ASSEMBLIES with CEA ends (fingertips) and/or ICI segment inserted in corner guide tube positions. The assembly must also have a CEA plug installed. The assembly must be loaded in a basket corner position and must be loaded in a Class 2 CANISTER.

- 6. INTACT FUEL ASSEMBLIES may be loaded in a MAINE YANKEE FUEL CAN.
- 7. FUEL enclosed in a MAINE YANKEE FUEL CAN. The MAINE YANKEE FUEL CAN can only be loaded in a Class 1 CANISTER. The contents that must be loaded in the MAINE YANKEE FUEL CAN are:
 - a) PWR fuel assemblies with up to two INTACT or DAMAGED FUEL rods inserted in each fuel assembly guide tube or with up to two burnable poison rods inserted in each guide tube. The rods inserted in the guide tubes cannot be from a different fuel assembly. The maximum number of rods in the fuel assembly (fuel rods plus inserted rods, including burnable poison rods) is 176.
 - b) A DAMAGED FUEL ASSEMBLY with up to 100% of the fuel rods classified as damaged and/or damaged or missing assembly hardware components. A DAMAGED FUEL ASSEMBLY cannot have an inserted CEA or other non-fuel component.
 - c) Individual INTACT or DAMAGED FUEL rods in a rod type structure, which may be a guide tube, to maintain configuration control.
 - d) FUEL DEBRIS consisting of fuel rods with exposed fuel pellets or individual intact or partial fuel pellets not contained in fuel rods.

Table B2-7 Maine Yankee Site Specific Fuel Limits (continued)

- e) CONSOLIDATED FUEL lattice structure with a 17 x 17 array formed by grids and top and bottom end fittings connected by four solid stainless steel rods. Maximum contents are 289 fuel rods having a total lattice weight ≤ 2,100 pounds. A CONSOLIDATED FUEL lattice cannot have an inserted CEA or other non-fuel component. Only one CONSOLIDATED FUEL lattice may be stored in any CANISTER.
- f) HIGH BURNUP FUEL assemblies not meeting the criteria of Section A 5.7(1).
- C. Unenriched fuel assemblies are not authorized for loading.
- D. A canister preferentially loaded in accordance with Table B2-8 may only contain fuel assemblies selected from the same loading pattern.

Table B2-8 Loading Table for Maine Yankee CE 14 x 14 Fuel with No Non-Fuel Material – Required Cool Time in Years Before Assembly is Acceptable

	Burn	up ≤ 30 GWD/M	TU - Minimum C	ool Time [years	s] for ¹
Enrichment	Standard ²	Pref (0.958i)	Pref (0.958p)	Pref (1.05i)	Pref (1.05p)
1.9 ≤ E < 2.1	5	5	5	5	5
2.1 ≤ E < 2.3	5	5	5	5	5
2.3 ≤ E < 2.5	5	5	5	5	5
2.5 ≤ E < 2.7	5	5	5	5	5
2.7 ≤ E < 2.9	5	5	5	5	5
2.9 ≤ E < 3.1	5	5	5	5	5
$3.1 \le E < 3.3$	5	5	5	5	5
$3.3 \le E < 3.5$	5	5	5	5	5
$3.5 \le E < 3.7$	5	5	5	5	5
$3.7 \le E \le 4.2$	5	5	5	5	5
	30 < Bu	ırnup ≤ 35 GWD	/MTU - Minimun	n Cool Time [ye	ars] for
Enrichment	Standard ²	Pref (0.958i)	Pref (0.958p)	Pref (1.05i)	Pref (1.05p)
1.9 ≤ E < 2.1	5	5	5	5	5
2.1 ≤ E < 2.3	5	5	5	5	5
2.3 ≤ E < 2.5	5	5	5	5	5
2.5 ≤ E < 2.7	5	5	5	5	5
2.7 ≤ E < 2.9	5	5	5	5	5
2.9 ≤ E < 3.1	5	5	5	5	5
3.1 ≤ E < 3.3	5	5	5	5	5
$3.3 \le E < 3.5$	5	5	5	5	5
$3.5 \le E < 3.7$	5	5	5	5	5
$3.7 \le E \le 4.2$	5	5	5	5	5
		ırnup ≤ 40 GWD	/MTU - Minimun	n Cool Time [ye	ars] for
Enrichment	Standard ²	Pref (0.958i)	Pref (0.958p)	Pref (1.05i)	Pref (1.05p)
1.9 ≤ E < 2.1	7	7	6	15	5
2.1 ≤ E < 2.3	6	6	6	15	5
2.3 ≤ E < 2.5	6	6	5	14	5
2.5 ≤ E < 2.7	5	5	5	14	5
2.7 ≤ E < 2.9	5	5	5	14	5
2.9 ≤ E < 3.1	5	5	5	6	5
3.1 ≤ E < 3.3	5	5	5	6	5
$3.3 \le E < 3.5$	5	5	5	6	5
$3.5 \le E < 3.7$	5	5	5	6	5
$3.7 \le E \le 4.2$	5	5	5	6	5

^{1.} Cool times for preferential loading of fuel assemblies with a decay heat of either 0.958 or 1.05 kW per assembly, loaded in either interior (i) or periphery (p) basket positions. All of the fuel assemblies in a canister must be selected using the same preferential loading pattern (Standard, 0.958 kW or 1.05 kW).

^{2.} Fuel assemblies with cool times from 5 to 7 years must be preferentially loaded based on cool time, with fuel with the shortest cool time in the basket interior, in accordance with Section B2.1.2.

Table B2-8 Loading Table for Maine Yankee CE 14 x 14 Fuel with No Non-Fuel Material – Required Cool Time in Years Before Assembly is Acceptable (continued)

	40 < Burnup ≤ 45 GWD/MTU - Minimum Cool Time [years] for ¹					
Enrichment	Standard ²	Pref(0.958i)	Pref(0.958p)	Pref(1.05i)	Pref(1.05p)	
1.9 ≤ E < 2.1	11	20	7	Not Allowed	6	
2.1 ≤ E < 2.3	9	15	7	Not Allowed	6	
2.3 ≤ E < 2.5	8	15	6	Not Allowed	6	
2.5 ≤ E < 2.7	8	15	6	Not Allowed	6	
2.7 ≤ E < 2.9	8	14	6	Not Allowed	6	
2.9 ≤ E < 3.1	8	14	6	Not Allowed	6	
3.1 ≤ E < 3.3	7	14	6	Not Allowed	5	
$3.3 \le E < 3.5$	6	14	6	Not Allowed	5	
$3.5 \le E < 3.7$	6	13	6	Not Allowed	5	
$3.7 \le E \le 4.2$	6	13	6	Not Allowed	5	
	45 < Bu	rnup ≤ 50 GWD	D/MTU - Minimuı	m Cool Time [ye	ears] for	
Enrichment	Standard	Pref(0.958i)	Pref(0.958p)	Pref(1.05i)	Pref(1.05p)	
1.9 ≤ E < 2.1	Not Allowed	Not Allowed	8	Not Allowed	7	
2.1 ≤ E < 2.3	Not Allowed	Not Allowed	8	Not Allowed	7	
2.3 ≤ E < 2.5	Not Allowed	Not Allowed	8	Not Allowed	7	
2.5 ≤ E < 2.7	Not Allowed	Not Allowed	8	Not Allowed	7	
2.7 ≤ E < 2.9	Not Allowed	Not Allowed	8	Not Allowed	7	
2.9 ≤ E < 3.1	Not Allowed	Not Allowed	8	Not Allowed	7	
3.1 ≤ E < 3.3	Not Allowed	Not Allowed	7	Not Allowed	7	
3.3 ≤ E < 3.5	Not Allowed	Not Allowed	7	Not Allowed	6	
$3.5 \le E < 3.7$	Not Allowed	Not Allowed	7	Not Allowed	6	
$3.7 \le E \le 4.2$	Not Allowed	Not Allowed	7	Not Allowed	6	

- 1. Cool times for preferential loading of fuel assemblies with a decay heat of either 0.958 or 1.05 kw per assembly, loaded in either interior (i) or periphery (p) basket positions. All of the fuel assemblies in a canister must be selected using the same preferential loading pattern (Standard, 0.958 kW or 1.05 kW).
- 2. Fuel assemblies with cool times from 5 to 7 years must be preferentially loaded based on cool time, with fuel with the shortest cool time in the basket interior, in accordance with Section B2.1.2.

Table B2-9 Loading Table for Maine Yankee CE 14 x 14 Fuel Containing CEA Cooled to Indicated Time

	≤ 30 GW	D/MTU Burnup	- Minimum Co	ol Time in Year	rs for	
Enrichment	No CEA (Class 1)	5 Year CEA	10 Year CEA	15 Year CEA	20 Year CEA	
1.9 ≤ E < 2.1	5	5	5	5	5	
2.1 ≤ E < 2.3	5	5	5	5	5	
2.3 ≤ E < 2.5	5	5	5	5	5	
2.5 ≤ E < 2.7	5	5	5	5	5	
2.7 ≤ E < 2.9	5	5	5	5	5	
2.9 ≤ E < 3.1	5	5	5	5	5	
3.1 ≤ E < 3.3	5	5	5	5	5	
3.3 ≤ E < 3.5	5	5	5	5	5	
3.5 ≤ E < 3.7	5	5	5	5	5	
3.7 ≤ E ≤ 4.2	5	5	5	5	5	
	30 < Burnu	p ≤ 35 GWD/M	ΓU - Minimum (Cool Time in Ye	ears for	
Enrichment	No CEA	5 Year	10 Year	15 Year	20 Year	
	(Class 1)	CEA	CEA	CEA	CEA	
1.9 ≤ E < 2.1	5	5	5	5	5	
2.1 ≤ E < 2.3	5	5	5	5	5	
2.3 ≤ E < 2.5	5	5	5	5	5	
2.5 ≤ E < 2.7	5	5	5	5	5	
2.7 ≤ E < 2.9	5	5	5	5	5	
2.9 ≤ E < 3.1	5	5	5	5	5	
3.1 ≤ E < 3.3	5	5	5	5	5	
3.3 ≤ E < 3.5	5	5	5	5	5	
3.5 ≤ E < 3.7	5	5	5	5	5	
3.7 ≤ E ≤ 4.2	5	5	5	5	5	
	35 < Burnup ≤ 40 GWD/MTU - Minimum Cool Time in Years for					
Enrichment	No CEA	5 Year	10 Year	15 Year	20 Year	
	(Class 1)	CEA	CEA	CEA	CEA	
1.9 ≤ E < 2.1	7	7	7	7	7	
2.1 ≤ E < 2.3	6	6	6	6	6	
2.3 ≤ E < 2.5	6	6	6	6	6	
2.5 ≤ E < 2.7	5	5	5	5	5	
2.7 ≤ E < 2.9	5	5	5	5	5	
2.9 ≤ E < 3.1	_				_	
	5	5	5	5	5	
3.1 ≤ E < 3.3	5	5	5	5	5 5	
$3.1 \le E < 3.3$ $3.3 \le E < 3.5$	5 5	5 5	5 5	5 5	5 5 5	
$3.1 \le E < 3.3$ $3.3 \le E < 3.5$ $3.5 \le E < 3.7$	5 5 5	5 5 5	5 5 5	5 5 5	5 5 5 5	
$3.1 \le E < 3.3$ $3.3 \le E < 3.5$	5 5	5 5	5 5	5 5	5 5 5	
$3.1 \le E < 3.3$ $3.3 \le E < 3.5$ $3.5 \le E < 3.7$	5 5 5 5	5 5 5	5 5 5 5	5 5 5 5	5 5 5 5 5	
$3.1 \le E < 3.3$ $3.3 \le E < 3.5$ $3.5 \le E < 3.7$	5 5 5 5 40 < Burnu No CEA	5 5 5 5 p ≤ 45 GWD/MT	5 5 5 5 FU - Minimum (10 Year	5 5 5 5 Cool Time in Ye	5 5 5 5 5 5 ears for 20 Year	
3.1 ≤ E < 3.3 3.3 ≤ E < 3.5 3.5 ≤ E < 3.7 3.7 ≤ E ≤ 4.2 Enrichment	5 5 5 5 40 < Burnu	5 5 5 5 p ≤ 45 GWD/M T	5 5 5 5 TU - Minimum (5 5 5 5 Cool Time in Ye	5 5 5 5 5 ears for	
$3.1 \le E < 3.3$ $3.3 \le E < 3.5$ $3.5 \le E < 3.7$ $3.7 \le E \le 4.2$ Enrichment $1.9 \le E < 2.1$	5 5 5 5 40 < Burnu No CEA (Class 1)	5 5 5 5 p ≤ 45 GWD/M T 5 Year CEA 11	5 5 5 5 FU - Minimum (10 Year CEA	5 5 5 5 Cool Time in Ye 15 Year CEA	5 5 5 5 5 ears for 20 Year CEA	
$3.1 \le E < 3.3$ $3.3 \le E < 3.5$ $3.5 \le E < 3.7$ $3.7 \le E \le 4.2$ Enrichment $1.9 \le E < 2.1$ $2.1 \le E < 2.3$	5 5 5 5 40 < Burnu No CEA (Class 1) 11 9	5 5 5 5 p ≤ 45 GWD/M T 5 Year CEA 11 9	5 5 5 5 TU - Minimum (10 Year CEA 11	5 5 5 5 Cool Time in Ye 15 Year CEA 11	5 5 5 5 5 ears for 20 Year CEA 11	
$3.1 \le E < 3.3$ $3.3 \le E < 3.5$ $3.5 \le E < 3.7$ $3.7 \le E \le 4.2$ Enrichment $1.9 \le E < 2.1$ $2.1 \le E < 2.3$ $2.3 \le E < 2.5$	5 5 5 40 < Burnu No CEA (Class 1)	5 5 5 5 p ≤ 45 GWD/M 7 5 Year CEA 11 9	5 5 5 5 TU - Minimum (10 Year CEA 11	5 5 5 5 Cool Time in Ye 15 Year CEA 11 9	5 5 5 5 5 ears for 20 Year CEA	
$3.1 \le E < 3.3$ $3.3 \le E < 3.5$ $3.5 \le E < 3.7$ $3.7 \le E \le 4.2$ Enrichment $1.9 \le E < 2.1$ $2.1 \le E < 2.3$ $2.3 \le E < 2.5$ $2.5 \le E < 2.7$	5 5 5 5 40 < Burnu No CEA (Class 1) 11 9 8	5 5 5 5 p ≤ 45 GWD/M 7 5 Year CEA 11 9 8	5 5 5 5 TU - Minimum 10 Year CEA 11 9	5 5 5 5 Cool Time in Ye 15 Year CEA 11 9 8	5 5 5 5 5 ears for 20 Year CEA 11 9 8	
$3.1 \le E < 3.3$ $3.3 \le E < 3.5$ $3.5 \le E < 3.7$ $3.7 \le E \le 4.2$ Enrichment $1.9 \le E < 2.1$ $2.1 \le E < 2.3$ $2.3 \le E < 2.5$ $2.5 \le E < 2.7$ $2.7 \le E < 2.9$	5 5 5 5 40 < Burnu No CEA (Class 1) 11 9 8 8	5 5 5 5 p ≤ 45 GWD/M 7 5 Year CEA 11 9 8	5 5 5 5 TU - Minimum 10 Year CEA 11 9 8	5 5 5 5 Cool Time in Ye 15 Year CEA 11 9 8	5 5 5 5 5 ears for 20 Year CEA 11 9	
$3.1 \le E < 3.3$ $3.3 \le E < 3.5$ $3.5 \le E < 3.7$ $3.7 \le E \le 4.2$ Enrichment $1.9 \le E < 2.1$ $2.1 \le E < 2.3$ $2.3 \le E < 2.5$ $2.5 \le E < 2.7$ $2.7 \le E < 2.9$ $2.9 \le E < 3.1$	5 5 5 5 40 < Burnu No CEA (Class 1) 11 9 8 8	5 5 5 5 5 p ≤ 45 GWD/M 7 5 Year CEA 11 9 8 8	5 5 5 5 7U - Minimum 0 10 Year CEA 11 9 8 8 8	5 5 5 5 Cool Time in Ye 15 Year CEA 11 9 8 8	5 5 5 5 5 20 Year CEA 11 9 8	
$3.1 \le E < 3.3$ $3.3 \le E < 3.5$ $3.5 \le E < 3.7$ $3.7 \le E \le 4.2$ Enrichment $1.9 \le E < 2.1$ $2.1 \le E < 2.3$ $2.3 \le E < 2.5$ $2.5 \le E < 2.7$ $2.7 \le E < 2.9$ $2.9 \le E < 3.1$ $3.1 \le E < 3.3$	5 5 5 5 40 < Burnu No CEA (Class 1) 11 9 8 8 8	5 5 5 5 5 p ≤ 45 GWD/M 7 5 Year CEA 11 9 8 8 8	5 5 5 5 7U - Minimum (10 Year CEA 11 9 8 8 8	5 5 5 5 Cool Time in Ye 15 Year CEA 11 9 8 8	5 5 5 5 5 20 Year CEA 11 9 8	
$3.1 \le E < 3.3$ $3.3 \le E < 3.5$ $3.5 \le E < 3.7$ $3.7 \le E \le 4.2$ Enrichment $1.9 \le E < 2.1$ $2.1 \le E < 2.3$ $2.3 \le E < 2.5$ $2.5 \le E < 2.7$ $2.7 \le E < 2.9$ $2.9 \le E < 3.1$	5 5 5 5 40 < Burnu No CEA (Class 1) 11 9 8 8	5 5 5 5 5 p ≤ 45 GWD/M 7 5 Year CEA 11 9 8 8	5 5 5 5 7U - Minimum 0 10 Year CEA 11 9 8 8 8	5 5 5 5 Cool Time in Ye 15 Year CEA 11 9 8 8	5 5 5 5 5 20 Year CEA 11 9 8 8	

B 3.0 DESIGN FEATURES

B 3.1 Site

B 3.1.1 Site Location

The NAC-UMS® SYSTEM is authorized for general use by 10 CFR 50 license holders at various site locations under the provisions of 10 CFR 72, Subpart K.

B 3.2 <u>Design Features Important for Criticality Control</u>

B 3.2.1 CANISTER-INTACT FUEL ASSEMBLIES

- a) Minimum ¹⁰B loading in the Boral neutron absorbers:
 - 1. $PWR 0.025q/cm^2$
 - 2. $BWR 0.011g/cm^2$
- b) Minimum length of INTACT FUEL ASSEMBLY internal structure and bottom end fitting and/or spacers shall ensure the minimum distance to the fuel region from the base of the CANISTER is:
 - 1. PWR 3.2 inches
 - 2. BWR 6.2 inches

B 3.3 Codes and Standards

The American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME Code), 1995 Edition with Addenda through 1995, is the governing Code for the NAC-UMS® CANISTER.

The American Concrete Institute Specifications ACI-349 (1985) and ACI-318 (1995) govern the NAC-UMS® CONCRETE CASK design and construction, respectively.

The American National Standards Institute ANSI N14.6 (1993) and NUREG-0612 govern the NAC-UMS® TRANSFER CASK design, operation, fabrication, testing, inspection and maintenance.

B 3.3.1 Exceptions to Codes, Standards, and Criteria

Table B3-1 lists exceptions to the ASME Code for the design of the NAC-UMS® SYSTEM.

B 3.3.2 Construction/Fabrication Exceptions to Codes, Standards, and Criteria

Proposed alternatives to ASME Code, Section III, 1995 Edition with Addenda, through 1995, including exceptions listed in Specification B3.3.1, may be used when authorized by the Director of the Office of Nuclear Material Safety and Safeguards or designee. The request for such alternatives should demonstrate that:

- 1. The proposed alternatives would provide an acceptable level of quality and safety, or
- 2. Compliance with the specified requirements of ASME Code, Section III, 1995 Edition with Addenda through 1995, would result in hardship or unusual difficulty without a compensating increase in the level of quality and safety.

Requests for exceptions shall be submitted in accordance with 10 CFR 72.4.

List of ASME Code Exceptions for the NAC-UMS® SYSTEM

Component	Reference ASME Code Section/Article	Code Requirement	Exception, Justification and Compensatory Measures
CANISTER	NB-1100	Statement of requirements for Code stamping of components.	CANISTER is designed and will be fabricated in accordance with ASME Code, Section III, Subsection NB to the maximum practical extent, but Code stamping is not required.
CANISTER	NB-2000	Requirements to be supplied by ASME-approved material supplier.	Materials will be supplied by NAC- approved suppliers with Certified Material Test Reports (CMTRs) in accordance to NB-2000 requirements.
CANISTER Shield Lid and Structural Lid Welds	NB-4243	Full penetration welds required for Category C joints (flat head to main shell per NB-3352.3).	Shield lid and structural lid to CANISTER shell welds are not full penetration welds. These field welds are performed independently to provide a redundant closure. Leaktightness of the CANISTER is verified by testing.
CANISTER Structural Lid Weld	NB-4421	Requires removal of backing ring.	Structural lid to CANISTER shell weld uses a backing ring that is not removed. The backing ring permits completion of the groove weld; it is not considered in any analyses; and it has no detrimental effect on the CANISTER's function.
CANISTER Vent Port Cover and Drain Port Cover to Shield Lid Welds; Shield Lid to Canister Shell Weld	NB-5230	Radiographic (RT) or ultrasonic (UT) examination required.	Root and final surface liquid penetrant examination to be performed per ASME Code Section V, Article 6, with acceptance in accordance with ASME Code, Section III, NB-5350.

Table B3-1 List of ASME Code Exceptions for the NAC-UMS® SYSTEM (continued)

Component	Reference ASME Code Section/Article	Code Requirement	Exception, Justification and Compensatory Measures
CANISTER Structural Lid to Shell Weld	NB-5230	Radiographic (RT) or ultrasonic (UT) examination required.	The CANISTER structural lid to CANISTER shell closure weld is performed in the field following fuel assembly loading. The structural lid-to-shell weld will be verified by either ultrasonic (UT) or progressive liquid penetrant (PT) examination. If progressive PT examination is used, at a minimum, it must include the root and final layers and each approximately 3/8 inch of weld depth. If UT examination is used, it will be followed by a final surface PT examination. For either UT or PT examination, the maximum, undetectable flaw size is demonstrated to be smaller than the critical flaw size. The critical flaw size is determined in accordance with ASME Code, Section XI methods. The examination of the weld will be performed by qualified personnel per ASME Code Section V, Articles 5 (UT) and 6 (PT) with acceptance per ASME Code Section III, NB-5332 (UT) per 1997 Addenda, and NB-5350 for (PT).

Table B3-1 List of ASME Code Exceptions for the NAC-UMS® SYSTEM (continued)

Component	Reference ASME Code Section/Article	Code Requirement	Exception, Justification and Compensatory Measures
CANISTER Vessel and Shield Lid	NB-6111	All completed pressure retaining systems shall be pressure tested.	The CANISTER shield lid to shell weld is performed in the field following fuel assembly loading. The CANISTER is then pneumatically (air-over-water) pressure tested as defined in Chapter 9 and described in Chapter 8. Accessibility for leakage inspections precludes a Code compliant hydrostatic test. The shield lid-to-shell weld is also leak tested to the leaktight criteria of ANSI N14.5. The vent port and drain port cover welds are examined by root and final PT examination. The structural lid enclosure weld is examined by progressive PT or UT and final surface PT.
CANISTER Vessel	NB-7000	Vessels are required to have overpressure protection.	No overpressure protection is provided. The function of the CANISTER is to confine radioactive contents under normal, off-normal, and accident conditions of storage. The CANISTER vessel is designed to withstand a maximum internal pressure considering 100% fuel rod failure and maximum accident temperatures.

Table B3-1 List of ASME Code Exceptions for the NAC-UMS® SYSTEM (continued)

Component	Reference ASME Code Section/Article	Code Requirement	Exception, Justification and Compensatory Measures
CANISTER Vessel	NB-8000	States requirements for nameplates, stamping and reports per NCA-8000.	The NAC-UMS® SYSTEM is marked and identified in accordance with 10 CFR 72 requirements. Code stamping is not required. The QA data package will be in accordance with NAC's approved QA program.
CANISTER Basket Assembly	NG-2000	Requires materials to be supplied by ASME approved material supplier.	Materials to be supplied by NAC- approved suppliers with CMTRs in accordance with NG-2000 requirements.
CANISTER Basket Assembly	NG-8000	States requirements for nameplates, stamping and reports per NCA-8000.	The NAC-UMS® SYSTEM will be marked and identified in accordance with 10 CFR 72 requirements. No Code stamping is required. The CANISTER basket data package will be in accordance with NAC's approved QA program.
CANISTER Vessel and Basket Assembly Material	NB-2130/ NG-2130	States requirements for certification of material organizations and materials to NCA-3861 and NCA-3862, respectively.	The NAC-UMS® CANISTER and Basket Assembly component materials are procured in accordance with the specifications for materials in ASME Code Section II with Certified Material Test Reports. The component materials will be obtained from NAC approved Suppliers in accordance with NAC's approved QA program.

B 3.4 <u>Site Specific Parameters and Analyses</u>

This section presents site-specific parameters and analytical bases that must be verified by the NAC-UMS® SYSTEM user. The parameters and bases presented in Section B.3.4.1 are those applied in the design basis analysis. The parameters and bases used in the evaluation of SITE SPECIFIC FUEL are presented in the appropriate sections below.

B 3.4.1 Design Basis Site Specific Parameters and Analyses

The design basis site-specific parameters and analyses that require verification by the NAC-UMS® SYSTEM user are:

- 1. The temperature of 76°F is the maximum average yearly temperature. The 3-day average ambient temperature shall be 106°F or less.
- 2. The allowed temperature extremes, averaged over a 3-day period, shall be greater than -40°F and less than 133°F.
- 3. The design basis earthquake horizontal and vertical seismic acceleration levels at the top surface of the ISFSI pad are bounded by the values shown:

Horizontal g-level in each of	Corresponding Vertical	
Two Orthogonal Directions	g-level (upward)	
0.26g	0.26 x 0.667 = 0.173g	

- 4. The analyzed flood condition of 15 fps water velocity and a height of 50 feet of water (full submergence of the loaded cask) are not exceeded.
- 5. The potential for fire and explosion shall be addressed, based on site-specific considerations. This includes the condition that the fuel tank of the cask handling equipment used to move the loaded CONCRETE CASK onto or from the ISFSI site contains no more than 50 gallons of fuel.

B 3.4.1 Design Basis Site Specific Parameters and Analyses (continued)

- 6. In addition to the requirements of 10 CFR 72.212(b)(2)(ii), the ISFSI pad(s) and foundation shall meet the design basis earthquake horizontal and vertical seismic acceleration levels at the top surface of the ISFSI pad as specified in B3.4.1 (3).
- 7. In cases where engineered features (i.e., berms, shield walls) are used to ensure that requirements of 10 CFR 72.104(a) are met, such features are to be considered important to safety and must be evaluated to determine the applicable Quality Assurance Category on a site specific basis.
- 8. TRANSFER CASK OPERATIONS shall only be conducted with surrounding air temperatures ≥ 0°F.
- 9. The VERTICAL CONCRETE CASK shall only be lifted by the lifting lugs with surrounding air temperatures ≥ 0°F.

B 3.4.2 <u>Maine Yankee Site Specific Parameters and Analyses</u>

The design basis site-specific parameters and analyses that require verification by Maine Yankee are:

- 1. The temperature of 76°F is the maximum average yearly temperature. The 3-day average ambient temperature shall be 106°F or less.
- 2. The allowed temperature extremes, averaged over a 3-day period, shall be greater than -40°F and less than 133°F.
- 3. The design basis earthquake horizontal and vertical seismic acceleration levels at the top surface of the ISFSI pad are bounded by the values shown:

Horizontal g-level in each of Two Orthogonal Directions	Corresponding Vertical g-level (upward)
0.38g	$0.38 \times 0.667 = 0.253g$

- 4. The analyzed flood condition of 15 fps water velocity and a height of 50 feet of water (full submergence of the loaded cask) are not exceeded.
- 5. The potential for fire and explosion shall be addressed, based on site-specific considerations. This includes the condition that the fuel tank of the cask handling equipment used to move the loaded CONCRETE CASK onto or from the ISFSI site contains no more than 50 gallons of fuel.
- 6. Physical testing shall be conducted to demonstrate that the coefficient of friction between the CONCRETE CASK and ISFSI pad surface is at least 0.5.

B 3.4.2 Maine Yankee Site Specific Parameters and Analyses (continued)

7. In addition to the requirements of 10 CFR 72.212(b)(2)(ii), the ISFSI pad(s) and foundation shall meet the design basis earthquake horizontal and vertical seismic acceleration levels at the top surface of the ISFSI pad as specified in B 3.4.2 (3).

The surface of the ISFSI pad shall have a broom finish or brushed surface as defined in ACI 116R-90 and described in Sections 7.12 and 7.13.4 of ACI 302.1R.

- 8. In cases where engineered features (i.e., berms, shield walls) are used to ensure that requirements of 10 CFR 72.104(a) are met, such features are to be considered important to safety and must be evaluated to determine the applicable Quality Assurance Category on a site specific basis.
- 9. TRANSFER CASK OPERATIONS shall only be conducted with surrounding air temperatures ≥ 0°F.

B 3.5 CANISTER HANDLING FACILITY (CHF)

B 3.5.1 TRANSFER CASK and CANISTER Lifting Devices

Movements of the TRANSFER CASK and CANISTER outside of the 10 CFR 50 licensed facilities, when loaded with spent fuel are not permitted unless the movements are made with a CANISTER HANDLING FACILITY designed, operated, fabricated, tested, inspected and maintained in accordance with the guidelines of NUREG-0612, "Control of Heavy Loads at Nuclear Power Plants" and the below clarifications. This Technical Specification does not apply to handling heavy loads under a 10 CFR 50 license.

B 3.5.2 CANISTER HANDLING FACILITY Structure Requirements

B 3.5.2.1 CANISTER Station and Stationary Lifting Devices

- The weldment structure of the CANISTER HANDLING FACILITY shall be designed to comply with the stress limits of ASME Code, Section III, Subsection NF, Class 3 for linear structures. The applicable loads, load combinations, and associated service condition definitions are provided in Table B3-2. All compression loaded members shall satisfy the buckling criteria of ASME Code, Section III, Subsection NF.
- 2. If a portion of the CANISTER HANDLING FACILITY structure is constructed of reinforced concrete, then the factored load combinations set forth in ACI-318 (1995) for the loads defined in Table B3-2 shall apply.
- The TRANSFER CASK and CANISTER lifting device used with the CANISTER HANDLING FACILITY shall be designed, fabricated, operated, tested, inspected and maintained in accordance with NUREG-0612, Section 5.1.

B 3.5.2.1 <u>CANISTER HANDLING Station and Stationary Lifting Devices</u> (continued)

4. The CHF design shall incorporate an impact limiter for CANISTER lifting and movement if a qualified single failure proof crane is not used. The impact limiter must be designed and fabricated to ensure that, if a CANISTER is dropped, the confinement boundary of the CANISTER would not be breached.

B 3.5.2.2 <u>Mobile Lifting Devices</u>

If a mobile lifting device is used as the lifting device, in lieu of a stationary lifting device, it shall meet the guidelines of NUREG-0612, Section 5.1, with the following clarifications:

- Mobile lifting devices shall have a minimum safety factor of two over the allowable load table for the lifting device in accordance with the guidance of NUREG-0612, Section 5.1.6(1)(a) and shall be capable of stopping and holding the load during a Design Basis Earthquake (DBE) event.
- 2. Mobile lifting devices shall conform to the requirements of ANSI B30.5, "Mobile and Locomotive Cranes," in lieu of the requirements of ANSI B30.2, "Overhead and Gantry Cranes."
- 3. Mobile cranes are not required to meet the requirements of NUREG-0612, Section 5.1.6(2) for new cranes.

Table B3-2 Load Combinations and Service Condition Definitions for the CANISTER HANDLING FACILITY (CHF) Structure

Load Combination	ASME Section III Service Condition for Definition of Allowable Stress	Comment
D*		All primary load bearing
	Level A	members must satisfy Level A
D + S		stress limits
D + M + W ¹		Factor of safety against
		overturning shall be ≥ 1.1
D + F		
	Level D	
D + E		
D + Y		

D = Crane hook dead load

D* = Apparent crane hook dead load

S = Snow and ice load for the CHF site

M = Tornado missile load of the CHF site¹

W' = Tornado wind load for the CHF site¹

F = Flood load for the CHF site

E = Seismic load for the CHF site

Y = Tsunami load for the CHF site

Note:

1. Tornado missile load may be reduced or eliminated based on a PRA for the CHF site.

