INDEX

LIMITING CONI	DITIONS FOR OPERATION AND SURVEILLANCE REQUIREN	IENTS
SECTION		PAGE
3/4.0 APPLIC	CABILITY	3/4 0-1
3/4.1 REACT	IVITY CONTROL SYSTEMS	
3/4.1.1	BORATION CONTROL	
3/4.1.1.1	Shutdown Margin - T _{avg} > 200°F	3/4 1-1
3/4.1.1.2	Shutdown Margin - $T_{avg} \leq 200^{\circ}F$	3/4 1-3
3/4.1.1.3	Boron Dilution	3/4 1-4
3/4.1.1.4	Moderator Temperature Coefficient	3/4 1-5
3/4.1.1.5	Minimum Temperature for Criticality	3/4 1-6
3/4.1.2	BORATION SYSTEMS	
3/4.1.2.8	Refueling Water Storage Tank (RWST)	3/4 1-16
3/4.1.2.9	Isolation of Unborated Water Sources - Shutdown	3/4 1-17a
3/4.1.3	MOVABLE CONTROL ASSEMBLIES	
3/4.1.3.1	Group Height	3/4 1-18
3/4.1.3.2	Position Indication Systems - Operating	3/4 1-20

INDEX

LIMITING CONDITION FOR OPERATION AND SURVEILLANCE REQUIREMENTS					
SECTION		PAGE			
3/4.1.3.4	Rod Drop Time	3/4 1-22			
3/4.1.3.5	Shutdown Rod Insertion Limit	3/4 1-23			
3/4.1.3.6	Control Rod Insertion Limits	3/4 1-23a			
3/4.2 POWER	DISTRIBUTION LIMITS				
3/4.2.1	AXIAL FLUX DIFFERENCE	3/4 2-1			
3/4.2.2	HEAT FLUX HOT CHANNEL FACTOR	3/4 2-5			
3/4.2.3	NUCLEAR ENTHALPY HOT CHANNEL FACTOR	3/4 2-8			
3/4.2.4	QUADRANT POWER TILT RATIO	3/4 2-10			
3/4.2.5	DNB PARAMETERS	3/4 2-12			
3/4.3 INSTR	UMENTATION				
3/4.3.1	REACTOR TRIP SYSTEM INSTRUMENTATION	3/4 3-1			
3/4.3.2	ENGINEERED SAFETY FEATURE ACTUATION SYSTEM	3/4 3-14			
3/4.3.3	MONITORING INSTRUMENTATION				
3/4.3.3.1	Radiation Monitoring	3/4 3-33			
3/4.3.3.5	Remote Shutdown Instrumentation	3/4 3-44			
3/4.3.3.8	Accident Monitoring Instrumentation	3/4 3-50			
3/4.3.3.11	Explosive Gas Monitoring Instrumentation	3/4 3-54			

INDEX

LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS

SECTION	PAGE				
3/4.4 REACTOR COOLANT SYSTEM					
3/4.4.1	REACTOR COOLANT LOOPS				
3/4.4.1.1	Normal Operation	3/4 4-1			
3/4.4.1.2	Hot Standby	3/4 4-2b			
3/4.4.1.3	Shutdown	3/4 4-2c			
3/4.4.1.4.1	Loop Isolation Valves - Operating	3/4 4-3	1		
3/4.4.1.5	Isolated Loop Startup	3/4 4-4	1		
3/4.4.3	SAFETY VALVES	3/4 4-6			
3/4.4.4	PRESSURIZER	3/4 4-7			
3/4.4.5	STEAM GENERATORS	3/4 4-8			
3/4.4.6	REACTOR COOLANT SYSTEM LEAKAGE				
3/4.4.6.1	Leakage Detection Instrumentation	3/4 4-11			
3/4.4.6.2	Operational Leakage	3/4 4-13			
3/4.4.6.3	Pressure Isolation Valves	3/4 4-14a	1		
3/4.4.8	SPECIFIC ACTIVITY	3/4 4-18	:		
3/4.4.9	PRESSURE/TEMPERATURE LIMITS				
3/4.4.9.1	Reactor Coolant System	3/4 4-22	I		
3/4.4.9.3	Overpressure Protection Systems	3/4 4-27a	•		
3/4.4.11	RELIEF VALVES	3/4 4-29	1		
			I		

BEAVER VALLEY - UNIT 1

V

INDEX

LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS

SECTION		PAGE
3/4.7 PLANT	SYSTEMS	
3/4.7.1	TURBINE CYCLE	
3/4.7.1.1	Main Steam Safety Valves (MSSVs)	3/4 7-1
3/4.7.1.2	Auxiliary Feedwater System	3/4 7-5
3/4.7.1.3	Primary Plant Demineralized Water (PPDW)	3/4 7-7
3/4.7.1.4	Activity	3/4 7-8
3/4.7.1.5	Main Steam Line Isolation Valves	3/4 7-10
3/4.7.3	COMPONENT COOLING WATER SYSTEM	3/4 7-12
3/4.7.4	REACTOR PLANT RIVER WATER SYSTEM	3/4 7-13
3/4.7.5	ULTIMATE HEAT SINK - OHIO RIVER	3/4 7-14
3/4.7.7	CONTROL ROOM EMERGENCY HABITABILITY SYSTEMS	3/4 7-16
3/4.7.8	SUPPLEMENTAL LEAK COLLECTION AND RELEASE SYSTEM	3/4 719
3/4.8 ELECT	TRICAL POWER SYSTEMS	
3/4.8.1	A.C. SOURCES	
3/4.8.1.1	Operating	3/4 8-1

3/4.8.1.2 Shutdown 3/4 8-5

INDEX

SECTION		PAGE
3/4.8.2	ONSITE POWER DISTRIBUTION SYSTEMS	
3/4.8.2.1	A.C. Distribution - Operating	3/4 8-6
3/4.8.2.2	A.C. Distribution - Shutdown	3/4 8-7
3/4.8.2.3	D.C. Distribution - Operating	3/4 8-8
3/4.8.2.4	D.C. Distribution - Shutdown	3/4 8-10
3/4.9 REFU	ELING OPERATIONS	
3/4.9.1	BORON CONCENTRATION	3/4 9-1
3/4.9.2	INSTRUMENTATION	3/4 9-2
3/4.9.3	DECAY TIME	3/4 9-3
3/4.9.4	CONTAINMENT BUILDING PENETRATIONS	3/4 9-4
3/4.9.8	RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION	
3/4.9.8.1	High Water Level	3/4 9-8
3/4.9.8.2	Low Water Level	3/4 9-8a
3/4.9.9	CONTAINMENT PURGE AND EXHAUST ISOLATION SYSTEM	3/4 9-9
3/4.9.10	WATER LEVEL-REACTOR VESSEL	3/4 9-10
3/4.9.11	STORAGE POOL WATER LEVEL	3/4 9-11
3/4.9.12	FUEL BUILDING VENTILATION SYSTEM - FUEL MOVEMENT	3/4 9-12
3/4.9.14	FUEL STORAGE - SPENT FUEL STORAGE POOL	3/4 9-14

BEAVER VALLEY - UNIT 1 VIII

INDEX

BASES		
SECTION		PAGE
3/4.2.2 AND 3	8/4.2.3 HEAT FLUX AND NUCLEAR ENTHALPY HOT CHANNEL FACTORS	B 3/4 2-4
3/4.2.4	QUADRANT POWER TILT RATIO	B 3/4 2-5
3/4.2.5	DNB PARAMETERS	B 3/4 2-6
3/4.3 INSTRU	JMENTATION	
3/4.3.1 AND 3	3/4.3.2 REACTOR TRIP SYSTEM AND ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION	B 3/4 3-1
3/4.3.3	MONITORING INSTRUMENTATION	B 3/4 3-2
3/4.3.3.1	Radiation Monitoring Instrumentation	B 3/4 3-2
3/4.3.3.5	Remote Shutdown Instrumentation	B 3/4 3-3
3/4.3.3.8	Accident Monitoring Instrumentation	B 3/4 3-3
3/4.3.3.11	Explosive Gas Monitoring Instrumentation	B 3/4 3-4
3/4.4 REACTO	DR COOLANT SYSTEM	
3/4.4.1	REACTOR COOLANT LOOPS	B 3/4 4-1
3/4.4.3	SAFETY VALVES	B 3/4 4-1g
3/4.4.4	PRESSURIZER	B 3/4 4-2
3/4.4.5	STEAM GENERATORS	B 3/4 4-2
3/4.4.6	REACTOR COOLANT SYSTEM LEAKAGE	B 3/4 4-3
3/4.4.6.1	Leakage Detection Instrumentation	B 3/4 4-3
3/4.4.6.2	Operational Leakage	B 3/4 4-3d
3/4.4.6.3	Pressure Isolation Valve Leakage	B 3/4 4-3j

1

I

Х

INDEX

1

......

BASES		
SECTION		PAGE
3/4.4.8	SPECIFIC ACTIVITY	B 3/4 4-4
3/4.4.9	PRESSURE/TEMPERATURE LIMITS	B 3/4 4-5
3/4.4.11	RELIEF VALVES	B 3/4 4-11
3/4.5 EMERGI	ENCY CORE COOLING SYSTEMS (ECCS)	
3/4.5.1	ACCUMULATORS	B 3/4 5-1
3/4.5.2 AND	3/4.5.3 ECCS SUBSYSTEMS	B 3/4 5-1
3/4.5.4	BORON INJECTION SYSTEM	B 3/4 5-2
3/4.5.5	SEAL INJECTION FLOW	B 3/4 5-3
3/4.6 CONTA 3/4.6.1	INMENT SYSTEMS PRIMARY CONTAINMENT	
3/4.6.1.1	Containment Integrity	B 3/4 6-1
3/4.6.1.2	Containment Leakage	в 3/4 6-1
3/4.6.1.3	Containment Air Locks	B 3/4 6-1
3/4.6.1.4 AN	D 3/4.6.1.5 Internal Pressure and Air Temperature	B 3/4 6-9
3/4.6.1.6	Containment Structural Integrity	B 3/4 6-9
3/4.6.2	DEPRESSURIZATION AND COOLING SYSTEMS	
3/4.6.2.1 AN	ID 3/4.6.2.2 Containment Quench and Recirculation Spray Systems	B 3/4 6-10
3/4.6.2.3	Chemical Addition System	B 3/4 6-11
3/4.6.3	CONTAINMENT ISOLATION VALVES	B 3/4 6-12
3/4.6.4	COMBUSTIBLE GAS CONTROL	B 3/4 6-12

INDEX

BASES			
SECTION		PAGE	
3/4.7 PLANT	SYSTEMS		
3/4.7.1	TURBINE CYCLE		
3/4.7.1.1	Main Steam Safety Valves (MSSVs)	B 3/4 7-1	
3/4.7.1.2	Auxiliary Feedwater System	B 3/4 7-2	
3/4.7.1.3	Primary Plant Demineralized Water	в 3/4 7-2ј	
3/4.7.1.4	Activity	B 3/4 7-3	
3/4.7.1.5	Main Steam Line Isolation Valves	B 3/4 7-3	1
3/4.7.3	COMPONENT COOLING WATER SYSTEM	B 3/4 7-4	1
3/4.7.4	RIVER WATER SYSTEM	B 3/4 7-4	
3/4.7.5	ULTIMATE HEAT SINK	B 3/4 7-4	1
3/4.7.7	CONTROL ROOM EMERGENCY HABITABILITY	B 3/4 7-5	I
3/4.7.8	SUPPLEMENTAL LEAK COLLECTION AND RELEASE SYSTEM	B 3/4 7-5	ī
3/4.8 ELECT	RICAL POWER SYSTEMS		
3/4.8.1 AND	3/4.8.2 A.C. SOURCES, D.C. SOURCES AND ONSITE POWER DISTRIBUTION SYSTEMS	B 3/4 8-1	
3/4.9 REFUE	LING OPERATIONS		
3/4.9.1	BORON CONCENTRATION	B 3/4 9-1	
3/4.9.2	INSTRUMENTATION	B 3/4 9-1	

BEAVER VALLEY - UNIT 1 XII

INDEX

BASES		
SECTION		PAGE
3/4.9.3	DECAY TIME	B 3/4 9-1
3/4.9.4	CONTAINMENT BUILDING PENETRATIONS	B 3/4 9-1
3/4.9.8	RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION	B 3/4 9-3
3/4.9.9	CONTAINMENT PURGE AND EXHAUST ISOLATION SYSTEM	B 3/4 9-3
3/4.9.10 AND	3/4.9.11 WATER LEVEL-REACTOR VESSEL AND STORAGE POOL	B 3/4 9-4
3/4.9.12	FUEL BUILDING VENTILATION SYSTEM	B 3/4 9-4
3/4.9.14	FUEL STORAGE - SPENT FUEL STORAGE POOL	B 3/4 9-5
3/4.10 SPECI	AL TEST EXCEPTIONS	
3/4.10.1	SHUTDOWN MARGIN	B 3/4 10-1
3/4.10.2	GROUP HEIGHT, INSERTION AND POWER DISTRIBUTION LIMITS	B 3/4 10-1
3/4.10.3	PRESSURE/TEMPERATURE LIMITATIONS-REACTOR CRITICALITY	B 3/4 10-1
3/4.10.4	PHYSICS TESTS	B 3/4 10-1
3/4.10.5	NO FLOW TESTS	B 3/4 10-1
3/4.11 RADIO	DACTIVE EFFLUENTS	
3/4.11.1	LIQUID EFFLUENTS	
3/4.11.1.4	Liquid Holdup Tanks	B 3/4 11-1

DPR-66 Table Index (cont.)

TABLE	TITLE	PAGE
3.3-11	Accident Monitoring Instrumentation	3/4 3-51
4.3-7	Accident Monitoring Instrumentation Surveillance Requirements	3/4 3-52
3.3-13	Explosive Gas Monitoring Instrumentation	3/4 3-55
4.3-13	Explosive Gas Monitoring Instrumentation Surveillance Requirements	3/4 3-57
4.4-1	Minimum Number of Steam Generators to be Inspected During Inservice Inspection	3/4 4-10g
4.4-2	Steam Generator Tube Inspection	3/4 4-10h
4.4-3	Reactor Coolant System Pressure Isolation Valves	3/4 4-14b
4.4-12	Primary Coolant Specific Activity Sample and Analysis Program	3/4 4-20
3.7-1	OPERABLE Main Steam Safety Valves versus Applicable Power in Percent of RATED THERMAL POWER (RTP)	3/4 7-2
3.7-2	Steam Line Safety Valves Per Loop	3/4 7-4
4.7-2	Secondary Coolant System Specific Activity Sample and Analysis Program	3/4 7-9
3.8-1	Battery Surveillance Requirements	3/4 8-9a
3.9-1	Beaver Valley Fuel Assembly Minimum Burnup vs. Initial U235 Enrichment For Storage in Region 2 Spent Fuel Racks	3/4 9-15

XVII

DPR-66 REACTIVITY CONTROL SYSTEMS

3/4.1.2 BORATION SYSTEMS

3/4.1.2.1 - 3/4.1.2.7 (These Specification numbers are not used.)

BEAVER VALLEY - UNIT 1

3/4 1-7 Amendment No. 246 (Next Page is 3/4 1-16)

REACTIVITY CONTROL SYSTEMS

REFUELING WATER STORAGE TANK (RWST)

LIMITING CONDITION FOR OPERATION

3.1.2.8 The RWST shall be OPERABLE.

APPLICABILITY: MODES 1, 2, 3 & 4.

ACTION:

With the refueling water storage tank inoperable, restore the tank to OPERABLE status within one hour or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

- 4.1.2.8 The RWST shall be verified OPERABLE:
 - a. At least once per 7 days by:
 - 1. Verifying the boron concentration is between 2,400 and 2,600 ppm, and
 - 2. Verifying a contained volume between 439,050 gallons and 441,100 gallons of borated water.
 - b. At least once per 24 hours by verifying the RWST solution temperature is \geq 45°F and \leq 55°F when the RWST ambient air temperature is < 45°F or > 55°F.

3/4 1-16 (Next page is 3/4 1-17a) Amendment No.246

SURVEILLANCE REQUIREMENTS (Continued)

4.1.3.2.2 Each of the analog rod position indicators shall be determined to be OPERABLE by:

- Performing a CHANNEL CHECK by intercomparison** between a. each analog rod position indicator and its corresponding group demand counter at least once per 12 hours.
- Verifying that the analog rod position indicators agree with the demand position indicators within 12 steps⁽¹⁾ over b. the full-range of indicated rod travel at least once per 18 months.
- # For Core PHYSICS TESTING in Mode 2, primary detector voltage measurements may be used to determine the position of rods in shutdown banks A and B and control banks A and B for the purpose of satisfying Specification 3.1.3.2. During Mode 2 operation, rod position indicators for shutdown banks A and B and control banks A and B may deviate from the group demand indicators by greater than + 12 steps during reactor startup and shutdown operations, while rods are being withdrawn or inserted. If the rod position indicators for shutdown banks A and B and control banks A and B deviate by greater than \pm 12 steps from the group demand indicator, rod withdrawal or insertion may continue until the desired group height is achieved. When the desired group height is achieved, a one hour soak time is allowed below 50% reactor power to permit stabilization of the rod position analog indicators. To attain thermal equilibrium during the one hour soak time, the absolute value of rod motion shall not exceed 6 steps.
- ** For power levels below 50% one hour thermal "soak time" is permitted. During this soak time, the absolute value of rod motion is limited to six steps.

BEAVER VALLEY - UNIT 1

REACTIVITY CONTROL SYSTEMS

3/4.1.3.3 (This Specification number is not used.)

BEAVER VALLEY - UNIT 1 3/4 1-21 Amendment No. 246

TABLE 3.3-6

RADIATION MONITORING INSTRUMENTATION

INSTRUMENT	MINIMUM CHANNELS OPERABLE	APPLICABLE MODES	E <u>SETPOINT</u> ⁽³⁾	MEASUREMENT RANGE	ACTION
1. AREA MONITORS					
a.Deleted					
b.Containment					
i. Purge & Exhaust Isolation (RMVS 104 A & B)	2	(2)	\leq 1.6 x 10 ³ cpm	10 - 10 ⁶ cpm	22
ii. Area (RM-RM-219 A & B)	2	1,2,3 & 4	\leq 1.5 x 10 ⁴ R/hr	1 - 10 ⁷ R/hr	35
c.Control Room Isolation (RM-RM-218 A & B)	2	1,2,3,4 and (4)	\leq .47 mR/hr	$10^{-2} - 10^{3}$ mR/hr	41
2. PROCESS MONITORS					
a.Containment					
i. Gaseous Activity RCS Leakage Detection (RM 215B)	1	1,2,3 & 4	N/A	10 - 10 ⁶ cpm	20
ii. Particulate Activity RCS Leakage Detection (RM 215A)	1	1,2,3 & 4	N/A	10 - 10 ⁶ cpm	20
b. Deleted					

BEAVER VALLEY - UNIT 1

3/4 3-34 Amendment No. 246

TABLE 3.3-6 (Continued)

TABLE NOTATIONS

- (1) (Not used)
- During movement of recently irradiated fuel assemblies within the containment and during movement of fuel assemblies over recently irradiated fuel assemblies within the containment.
 Above background.
- (4) During movement of irradiated fuel assemblies and during movement of fuel assemblies over irradiated fuel assemblies.

ACTION STATEMENTS

- ACTION 20 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, comply with the ACTION requirements of Specification 3.4.6.1.
- ACTION 21 This Action is not used.
- ACTION 22 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, comply with the ACTION requirements of Specification 3.9.9.
- ACTION 35 With the number of OPERABLE channels less than required by the Minimum Channels OPERABLE requirement, either restore the inoperable Channel(s) to OPERABLE status within 72 hours, or:
 - a) Initiate the preplanned alternate method of monitoring the appropriate parameter(s), and
 - b) Return the channel to OPERABLE status within 30 days, or, explain in the next Annual Radioactive Effluent Release Report why the inoperability was not corrected in a timely manner.
- ACTION 41 a) With the number of Unit 1 OPERABLE channels one less than the Minimum Channels OPERABLE requirement:
 - 1. Verify the respective Unit 2 control room radiation monitor train is OPERABLE within 1 hour and at least once per 31 days.

3/4 3-35

TABLE 4.3-3

RADIATION MONITORING INSTRUMENTATION SURVEILLANCE REQUIREMENTS

	INST	RUMEN	<u>r</u>	CHANNEL CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST	MODES IN WHICH SURVEILLANCE REQUIRED	
1.	AREA	MONI	IORS					
	a.	Dele	ted					
	b.	Conta	ainment					
		i.	Purge & Exhaust Isolation (RMVS 104 A & B)	S	R	М	* *	
		ii.	Area (RM-RM-219 A & B)	S	R	М	1,2,3,& 4	
	c.		rol Room Isolation RM-218 A & B)	S	R	M###	1,2,3,4, and ##	
2.	PROCI	ESS MO	DNITORS					
	a.	Conta	ainment					
		i.	Gaseous Activity RCS Leak- age Detection (RM 215B)	S	R#	М	1,2,3 & 4	
		ii.	Particulate Activity RCS Leakage Detection (RM 215A)	S	R#	М	1,2,3 & 4	
	b.	Dele	ted				1	
**	During movement of recently irradiated fuel assemblies within the containment and during movement of fuel assemblies over recently irradiated fuel assemblies within the containment.							
#	Surveillance interval may be extended to the upcoming refueling outage if the interval							
##	between refueling outages is greater than 18 months. During movement of irradiated fuel assemblies and during movement of fuel assemblies over irradiated fuel assemblies.							
###	Control Room intake and exhaust isolation dampers and CREBAPS solenoid valves are not							

BEAVER VALLEY - UNIT 1

actuated.

3/4 3-36

Amendment No.246

3/4.4.2 (This Specification number is not used.)

BEAVER VALLEY - UNIT 1 3/4 4-5 Amendment No.246

3/4.4.3 SAFETY VALVES

LIMITING CONDITION FOR OPERATION

3.4.3 All pressurizer code safety valves shall be OPERABLE with a lift setting* of 2485 PSIG +1% -3%.**

<u>APPLICABILITY</u>: MODES 1, 2 and 3, MODE 4 with all RCS cold leg temperatures > the enable temperature specified in 3.4.9.3.

ACTION:

- a. With one pressurizer code safety valve inoperable, either restore the inoperable valve to OPERABLE status within 15 minutes or be in HOT SHUTDOWN with any RCS cold leg temperature ≤ the enable temperature specified in 3.4.9.3 and apply RCS overpressure protection requirements in accordance with Specification 3.4.9.3 within 12 hours.
- b. With a pressurizer code safety valve having discharged liquid water from a water solid pressurizer to mitigate an overpressure event, be in at least HOT STANDBY within the next 6 hours, and in HOT SHUTDOWN with any RCS cold leg temperature ≤ the enable temperature specified in 3.4.9.3 and apply RCS overpressure protection requirements in accordance with Specification 3.4.9.3 within the following 6 hours.

SURVEILLANCE REQUIREMENTS

4.4.3 No additional requirements other than those required by Specification 4.0.5.

** Within ± 1% following pressurizer code safety valve testing.

^{*} The Lift Setting pressure shall correspond to ambient conditions of the valve at nominal operating temperature and pressure.

3/4.4.7 (This Specification number is not used.)

BEAVER VALLEY - UNIT 1 3/4 4-15 Amendment No. 246 (Next Page is 3/4 4-18)

DPR-66 REACTOR COOLANT SYSTEM

3/4.4.9.2 (This Specification number is not used.)

BEAVER VALLEY - UNIT 1 3/4 4-27 Amendment No.246

3/4.4.10 (This Specification number is not used.)

.

BEAVER VALLEY - UNIT 1 3/4 4-28 Amendment No. 246

•

DPR-66 REACTOR COOLANT SYSTEM

LIMITING CONDITION FOR OPERATION (Continued)

ACTION: (Continued)

SHUTDOWN within the following 6 hours. With one block valve inoperable, restore the block valve to OPERABLE status within 1 hour or close it, power operation may continue until the next refueling outage.

e. With more than one block valve inoperable, within 1 hour either restore the block valves to OPERABLE status or place the associated PORVs in manual control. Restore at least one block valve to OPERABLE status within the next hour if three block valves are inoperable; restore a minimum of two block valves to OPERABLE status within 72 hours; otherwise, be in HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.

SURVEILLANCE REQUIREMENTS

4.4.11.1 Each PORV shall be demonstrated OPERABLE at least once per 18 months by operating the PORV through one complete cycle of full travel using:

- a) The normal air supply system, and
- b) The backup nitrogen supply system.

4.4.11.2 Each block valve shall be demonstrated OPERABLE at least once per 92 days by operating the valve through one complete cycle of full travel unless the block valve is closed to meet required ACTIONS b or c.

BEAVER VALLEY - UNIT 1 3/4 4-29a

Amendment No. 246

CONTAINMENT SYSTEMS

3/4.6.2 DEPRESSURIZATION AND COOLING SYSTEMS

CONTAINMENT QUENCH SPRAY SYSTEM

LIMITING CONDITION FOR OPERATION

3.6.2.1 Two separate and independent containment quench spray subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, 3 and 4.

ACTION:

With one containment quench spray subsystem inoperable, restore the inoperable subsystem to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.6.2.1 Each containment quench spray subsystem shall be demonstrated OPERABLE;

- a. By verifying, at least once per 31 days, that each valve (manual, power-operated, or automatic) in the flow path not locked, sealed, or otherwise secured in position, is in its correct position; and
- b. By verifying, at the frequency specified in the Inservice Testing Program, that each quench spray pump's developed head at the flow test point is greater than or equal to the required developed head as specified in the Inservice Testing Program and the Containment Integrity Safety Analysis.

BEAVER VALLEY - UNIT 1

3/4 6-11

Amendment No. 246

PLANT SYSTEMS

3/4.7.2 (This Specification number is not used.)

BEAVER VALLEY - UNIT 1 3/4 7-11 Amendment No. 246

PLANT SYSTEMS

3/4.7.6 (This Specification number is not used.)

BEAVER VALLEY - UNIT 1 3/4 7-15 Amendment No. 246

REFUELING OPERATIONS

3/4.9.5 - 3/4.9.7 (These Specification numbers are not used.)

BEAVER VALLEY - UNIT 1

3/4 9-5 Amendment No. **246** (Next page is 3/4 9-8)

INDEX

BASES		
SECTION	· · · · · · · · · · · · · · · · · · ·	PAGE
2.1 SAFETY	LIMITS	
2.1.1	REACTOR CORE	B 2-1
2.1.2	REACTOR COOLANT SYSTEM PRESSURE	в 2-2
LIMITING CON	DITION FOR OPERATION AND SURVEILLANCE REQUIREN	IENTS
SECTION		PAGE
3/4.0 APPLI	CABILITY	3/4 0-1
3/4.1 REACT	IVITY CONTROL SYSTEMS	
3/4.1.1	BORATION CONTROL	
3/4.1.1.1	Shutdown Margin - T _{avg} > 200°F	3/4 1-1
3/4.1.1.2	Shutdown Margin - $T_{avg} \leq 200^{\circ}F$	3/4 1-3
3/4.1.1.3	Boron Dilution	3/4 1-4
3/4.1.1.4	Moderator Temperature Coefficient (MTC)	3/4 1-5
3/4.1.1.5	Minimum Temperature for Criticality	3/4 1-6
3/4.1.2	BORATION SYSTEMS	
3/4.1.2.8	Refueling Water Storage Tank	3/4 1-15

III

INDEX

LIMITING CONDITION FOR OPERATION AND SURVEILLANCE REQUIREMENTS

SECTION		PAGE	<u> </u>
3/4.1.2.9	Isolation of Unborated Water Sources - Shutdown	3/4	1-17
3/4.1.3	MOVABLE CONTROL ASSEMBLIES		
3/4.1.3.1	Group Height	3/4	1-18
3/4.1.3.2	Position Indication Systems - Operating	3/4	1-21
3/4.1.3.4	Rod Drop Time	3/4	1-23
3/4.1.3.5	Shutdown Rod Insertion Limit	3/4	1-24
3/4.1.3.6	Control Rod Insertion Limits	3/4	1-25
3/4.2 POWER	DISTRIBUTION LIMITS		
3/4.2.1	AXIAL FLUX DIFFERENCE (AFD)	3/4	2-1
3/4.2.2	HEAT FLUX HOT CHANNEL FACTOR - $F_Q(Z)$	3/4	2-4
3/4.2.3	NUCLEAR ENTHALPY HOT CHANNEL FACTOR – ${}^{\rm N}_{\Delta {\rm H}}$	3/4	2-7
3/4.2.4	QUADRANT POWER TILT RATIO	3/4	2-9
3/4.2.5	DNB PARAMETERS	3/4	2-11
3/4.3 INSTR	UMENTATION		
3/4.3.1	REACTOR TRIP SYSTEM INSTRUMENTATION	3/4	3-1
3/4.3.2	ENGINEERED SAFETY FEATURE ACTUATION SYSTEM	3/4	3-14
3/4.3.3	MONITORING INSTRUMENTATION		
3/4.3.3.1	Radiation Monitoring	3/4	3-39

INDEX

LIMITING CONDITION FOR OPERATION AND SURVEILLANCE REQUIREMENTS					
SECTION		PAGE			
3/4.3.3.5	Remote Shutdown Instrumentation	3/4 3-52			
3/4.3.3.8	Accident Monitoring Instrumentation	3/4 3-57			
3/4.3.3.11	Explosive Gas Monitoring Instrumentation	3/4 3-61			
3/4.4 REACT	TOR COOLANT SYSTEM				
3/4.4.1	REACTOR COOLANT LOOPS AND COOLANT CIRCULATION				
3/4.4.1.1	Normal Operation	3/4 4-1			
3/4.4.1.2	Hot Standby	3/4 4-2			
3/4.4.1.3	Shutdown	3/4 4-3			
3/4.4.1.4.1	Loop Isolation Valves - Operating	3/4 4-5			
3/4.4.1.5	Isolated Loop Startup	3/4 4-6			
3/4.4.1.6	Reactor Coolant Pump-Startup	3/4 4-7			
3/4.4.3	SAFETY VALVES	3/4 4-9			
3/4.4.4	PRESSURIZER	3/4 4-10			
3/4.4.5	STEAM GENERATORS	3/4 4-11			
3/4.4.6	REACTOR COOLANT SYSTEM LEAKAGE				
3/4.4.6.1	Leakage Detection Instrumentation	3/4 4-17			
3/4.4.6.2	Operational Leakage	3/4 4-19			
3/4.4.6.3	Pressure Isolation Valves	3/4 4-21			
3/4.4.8	SPECIFIC ACTIVITY	3/4 4-27			
3/4.4.9	PRESSURE/TEMPERATURE LIMITS				
3/4.4.9.1	Reactor Coolant System	3/4 4-30			

INDEX

LIMITING CONDITION FOR OPERATION AND SURVEILLANCE REQUIREMENTS

SECTION		PAGE
3/4.4.9.3	Overpressure Protection Systems	3/4 4-35
3/4.4.11	RELIEF VALVES	3/4 4-39

3/4.5 EMERGENCY CORE COOLING SYSTEMS (ECCS)

3/4.5.1	ACCUMULATORS
3/4.5.2	ECCS SUBSYSTEMS - $T_{avg} \ge 350^{\circ}F$
3/4.5.3	ECCS SUBSYSTEMS - $T_{avg} < 350^{\circ}F 3/4 5-6$
3/4.5.4	SEAL INJECTION FLOW

3/4.6 CONTAINMENT SYSTEMS

3/4.6.1	PRIMARY CONTAINMENT		
3/4.6.1.1	Containment Integrity	3/4	6-1
3/4.6.1.2	Containment Leakage	3/4	6-2
3/4.6.1.3	Containment Air Locks	3/4	6-4
3/4.6.1.4	Internal Pressure	3/4	6-6
3/4.6.1.5	Air Temperature	3/4	6-8
3/4.6.1.6	Containment Structural Integrity	3/4	6-9
3/4.6.2	DEPRESSURIZATION AND COOLING SYSTEMS		
3/4.6.2.1	Containment Quench Spray System	3/4	6-10
3/4.6.2.2	Containment Recirculation Spray System	3/4	6-12
3/4.6.2.3	Chemical Addition System	3/4	6-14
3/4.6.3	CONTAINMENT ISOLATION VALVES	3/4	6-15

INDEX

LIMITING COND	ITION FOR OPERATION AND SURVEILLANCE REQUIREME	INTS
SECTION		PAGE
3/4.6.4	COMBUSTIBLE GAS CONTROL	
3/4.6.4.1	Hydrogen Analyzers	3/4 6-31
3/4.6.4.2	Electric Hydrogen Recombiners	3/4 6-32
3/4.7 PLANT	SYSTEMS	
3/4.7.1	TURBINE CYCLE	
3/4.7.1.1	Main Steam Safety Valves (MSSVs)	3/4 7-1
3/4.7.1.2	Auxiliary Feedwater System	3/4 7-4
3/4.7.1.3	Primary Plant Demineralized Water (PPDW)	3/4 7-6
3/4.7.1.4	Activity	3/4 7-7
3/4.7.1.5	Main Steam Line Isolation Valves	3/4 7-9
3/4.7.3	PRIMARY COMPONENT COOLING WATER SYSTEM	3/4 7-11
3/4.7.4	SERVICE WATER SYSTEM (SWS)	3/4 7-12
3/4.7.5	ULTIMATE HEAT SINK - OHIO RIVER	3/4 7-13
3/4.7.7	CONTROL ROOM EMERGENCY AIR CLEANUP AND PRESSURIZATION SYSTEM	3/4 7-15
3/4.7.8	SUPPLEMENTAL LEAK COLLECTION AND RELEASE SYSTEM (SLCRS)	3/4 7-18

INDEX

LIMITING CONDITION FOR OPERATION AND SURVEILLANCE REQUIREMENTS

SECTION		PAG	E
3/4.8 ELECT	RICAL POWER SYSTEMS		
3/4.8.1	A.C. SOURCES		
3/4.8.1.1	Operating	3/4	8-1
3/4.8.1.2	Shutdown	3/4	8-6
3/4.8.2	ONSITE POWER DISTRIBUTION SYSTEM		
3/4.8.2.1	A.C. Distribution - Operating	3/4	8-7
3/4.8.2.2	A.C. Distribution - Shutdown	3/4	8-8
3/4.8.2.3	D.C. Distribution - Operating	3/4	8-9
3/4.8.2.4	D.C. Distribution - Shutdown	3/4	8-12
3/4.9 REFUE	ELING OPERATIONS		
3/4.9.1	BORON CONCENTRATION	3/4	9-1
3/4.9.2	INSTRUMENTATION	3/4	9-2
3/4.9.3	DECAY TIME	3/4	9-3
3/4.9.4	CONTAINMENT BUILDING PENETRATIONS	3/4	9-4
3/4.9.8	RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION		
3/4.9.8.1	High Water Level	3/4	9-8
3/4.9.8.2	Low Water Level	3/4	9-9
3/4.9.9	CONTAINMENT PURGE AND EXHAUST ISOLATION	3/4	9-10
3/4.9.10	WATER LEVEL-REACTOR VESSEL	3/4	9-11
3/4.9.11	STORAGE POOL WATER LEVEL	3/4	9-12

I

•

INDEX LIMITING CONDITION FOR OPERATION AND SURVEILLANCE REQUIREMENTS PAGE SECTION 3/4.9.12 FUEL BUILDING VENTILATION SYSTEM -FUEL STORAGE - SPENT FUEL STORAGE POOL..... 3/4 9-15 3/4.9.14 3/4.10 SPECIAL TEST EXCEPTIONS 3/4.10.1 GROUP HEIGHT, INSERTION AND POWER 3/4.10.2 3/4.10.3 3/4.10.4 3/4.11 RADIOACTIVE EFFLUENTS 3/4.11.1 LIQUID EFFLUENTS Liquid Holdup Tanks..... 3/4 11-2 3/4.11.1.4 3/4.11.2 GASEOUS EFFLUENTS 3/4.11.2.5 Gaseous Waste Storage Tanks..... 3/4 11-4 BASES SECTION PAGE

<u>SECTION</u>		<u></u>	
3/4.0 APPLIC	ABILITY	B 3/4	0-1
3/4.1 REACTI	VITY CONTROL SYSTEMS		
3/4.1.1	BORATION CONTROL	B 3/4	1-1
3/4.1.2	BORATION SYSTEMS	B 3/4	1-2
3/4.1.3	MOVABLE CONTROL ASSEMBLIES	B 3/4	1-4

INDEX

BASES		
SECTION		PAGE
3/4.2 POWE	R DISTRIBUTION LIMITS	
3/4.2.1	AXIAL FLUX DIFFERENCE (AFD)	. B 3/4 2-1
3/4.2.2 AND	3/4.2.3 HEAT FLUX AND NUCLEAR ENTHALPY HOT CHANNEL FACTORS $F_Q(Z)$ and $F_{\Delta H}^N$. B 3/4 2-2
3/4.2.4	QUADRANT POWER TILT RATIO	. B 3/4 2-5
3/4.2.5	DNB PARAMETERS	. B 3/4 2-5
3/4.3 INST	RUMENTATION	
3/4.3.1	REACTOR TRIP SYSTEM INSTRUMENTATION	. B 3/4 3-1
3/4.3.2	ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION	. B 3/4 3-1
3/4.3.3	MONITORING INSTRUMENTATION	
3/4.3.3.1	Radiation Monitoring Instrumentation	. B 3/4 3-10
3/4.3.3.5	Remote Shutdown Instrumentation	. B 3/4 3-11
3/4.3.3.8	Accident Monitoring Instrumentation	. B 3/4 3-11
3/4.3.3.11	Explosive Gas Monitoring Instrumentation	. B 3/4 3-11
3/4.4 REAC	TOR COOLANT SYSTEM	
3/4.4.1	REACTOR COOLANT LOOPS AND COOLANT CIRCULATION	. B 3/4 4-1
3/4.4.3	SAFETY VALVES	. B 3/4 4-2

Х

3/4.4.4 PRESSURIZER B 3/4 4-2

INDEX

BASES			·····
SECTION		PAGE	
3/4.4.5	STEAM GENERATORS	B 3/4	4-2
3/4.4.6	REACTOR COOLANT SYSTEM LEAKAGE	B 3/4	4-4
3/4.4.8	SPECIFIC ACTIVITY	B 3/4	4-5
3/4.4.9	PRESSURE/TEMPERATURE LIMITS	B 3/4	4-6
3/4.4.11	REACTOR COOLANT SYSTEM RELIEF VALVES	B 3/4	4-16
3/4.5 EMERGEN	NCY CORE COOLING SYSTEMS (ECCS)		
3/4.5.1	ACCUMULATORS	B 3/4	5-1
3/4.5.2 AND 3,	/4.5.3 ECCS SUBSYSTEMS	B 3/4	5-1
3/4.5.4	SEAL INJECTION FLOW	B 3/4	5-2
3/4.6 CONTAIN	NMENT SYSTEMS		
3/4.6.1	PRIMARY CONTAINMENT	B 3/4	6-1
3/4.6.2	DEPRESSURIZATION AND COOLING SYSTEMS	B 3/4	6-10
3/4.6.3	CONTAINMENT ISOLATION VALVES	B 3/4	6-12
3/4.6.4	COMBUSTIBLE GAS CONTROL	B 3/4	6-12
3/4.7 PLANT :	SYSTEMS		
3/4.7.1	TURBINE CYCLE	B 3/4	7-1

3/4.7.3	PRIMARY	COMPONENT	COOLING	WATER	SYSTEM	3 3/	4′	7-3
9, 1 , , 1 9		00112 0112110						

NPF-73

INDEX

BASES		
SECTION		PAGE
3/4.7.4	SERVICE WATER SYSTEM	B 3/4 7-3
3/4.7.5	ULTIMATE HEAT SINK	B 3/4 7-3
3/4.7.7	CONTROL ROOM EMERGENCY AIR CLEANUP AND PRESSURIZATION SYSTEM	в 3/4 7-4
3/4.7.8	SUPPLEMENTAL LEAK COLLECTION AND RELEASE SYSTEM (SLCRS)	B 3/4 7-5
3/4.8 ELECTI	RICAL POWER SYSTEMS	
3/4.8.1	A.C. SOURCES	B 3/4 8-1
3/4.8.2	ONSITE POWER DISTRIBUTION SYSTEMS	B 3/4 8-1
3/4.9 REFUE	LING OPERATIONS	
3/4.9.1	BORON CONCENTRATION	B 3/4 9-1
3/4.9.2	INSTRUMENTATION	B 3/4 9-1
3/4.9.3	DECAY TIME	B 3/4 9-1
3/4.9.4	CONTAINMENT BUILDING PENETRATIONS	B 3/4 9-2
3/4.9.8	RESIDUAL HEAT REMOVAL AND COOLANT CIRCULATION	B 3/4 9-6
3/4.9.9	CONTAINMENT PURGE AND EXHAUST ISOLATION SYSTEM	B 3/4 9-7
3/4.9.10 AND	3/4.9.11 WATER LEVEL-REACTOR VESSEL AND STORAGE POOL	в 3/4 9-7

BEAVER VALLEY - UNIT 2

1

NPF-73

INDEX

BASES		
SECTION		PAGE
3/4.9.12	FUEL BUILDING VENTILATION SYSTEM	B 3/4 9-8
3/4.9.14	FUEL STORAGE - SPENT FUEL STORAGE POOL	B 3/4 9-9
3/4.10 SPEC	CIAL TEST EXCEPTIONS	
3/4.10.1	SHUTDOWN MARGIN	B 3/4 10-1
3/4.10.2	GROUP HEIGHT, INSERTION AND POWER DISTRIBUTION LIMITS	B 3/4 10-1
3/4.10.3	PHYSICS TESTS	B 3/4 10-1
3/4.10.4	REACTOR COOLANT LOOPS	B 3/4 10-1
3/4.11 RADI	OACTIVE EFFLUENTS	
3/4.11.1	LIQUID EFFLUENTS	B 3/4 11-1
3/4.11.2	GASEOUS EFFLUENTS	B 3/4 11-1
DESIGN FEATU	JRES	
SECTION		PAGE
5.1 SITE LC	DCATION	5-1
5.2 REACTOR	<u>CORE</u>	5-1
5.3 FUEL ST	ORAGE	5-1
ADMINISTRATI	VE CONTROLS	
SECTION		PAGE
6.1 RESPONS	SIBILITY	6-1
6.2 ORGANIZ	ATION	
6.2.1	ONSITE AND OFFSITE ORGANIZATIONS	6-1

REACTIVITY CONTROL SYSTEMS

3/4.1.2 BORATION SYSTEMS

3/4.1.2.1 - 3/4.1.2.7 (These Specification numbers are not used.)

BEAVER VALLEY - UNIT 2

3/4 1-7 Amendment No. 124 (Next Page is 3/4 1-15)

NPF-73 REACTIVITY CONTROL SYSTEMS

Refueling Water Storage Tank (RWST)

LIMITING CONDITION FOR OPERATION

3.1.2.8 The RWST shall be OPERABLE.

APPLICABILITY: MODES 1, 2, 3 & 4.

ACTION:

With the refueling water storage tank inoperable, restore the tank to OPERABLE status within one hour or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

- 4.1.2.8 The RWST shall be verified OPERABLE:
 - a. At least once per 7 days by:
 - 1. Verifying the boron concentration is between 2,000 and 2100 ppm, and
 - 2. Verifying a minimum usable volume of 859,248 gallons.
 - b. At least once per 24 hours by verifying the RWST solution temperature is \geq 45°F and \leq 50°F when the RWST ambient air temperature is > 50°F or < 45°F.

3/4 1-15 (Next page is 3/4 1-17)

NPF - 73REACTIVITY CONTROL SYSTEMS

POSITION INDICATION SYSTEMS - OPERATING

LIMITING CONDITION FOR OPERATION

The Digital Rod Position Indication System and the Demand 3.1.3.2 Position Indication System shall be OPERABLE and capable of determining the control rod positions within \pm 12 steps.

APPLICABILITY: MODES 1 and 2.

ACTION:

- With a maximum of one digital rod position indicator per a. bank inoperable either:
 - Determine the position of the nonindicating rod(s) 1. indirectly by the movable incore detectors at least once per 8 hours and immediately after any motion of the nonindicating rod which exceeds 24 steps in one direction since the last determination of the rod's position, or
 - Reduce THERMAL POWER to less than 50% of RATED 2. THERMAL POWER within 8 hours.
- b. With a maximum of one demand position indicator per bank inoperable either:
 - Verify that all digital rod position indicators for 1. the affected bank are OPERABLE and that the most withdrawn rod and the least withdrawn rod of the bank are within a maximum 12 steps of each other at least once per 8 hours, or
 - Reduce THERMAL POWER to less than 50% of RATED 2. THERMAL POWER within 8 hours.

SURVEILLANCE REOUIREMENTS

Each digital rod position indicator shall be determined 4.1.3.2.1 to be OPERABLE by verifying that the Demand Position Indication System and the Digital Rod Position Indication System agree within 12 steps at least once per 12 hours.

Each digital rod position indicator shall be determined 4.1.3.2.2 to be OPERABLE by verifying that the digital rod position indicators agree with the demand position indicators within 12 steps over the full-range of indicated rod travel at least once per 18 months.

BEAVER VALLEY - UNIT 2 3/4 1-21

REACTIVITY CONTROL SYSTEMS

3/4.1.3.3 (This Specification number is not used.)

BEAVER VALLEY - UNIT 2 3/4 1-22 Amendment No. 124

TABLE 3.3-6

RADIATION MONITORING INSTRUMENTATION

	INSTRUMENT		MINIMUM CHANNELS OPERABLE	APPLICABLE MODES	SETPOINT ⁽³⁾	MEASUREMENT RANGE	ACTION
1.	ARE	CA MONITORS					
	a.	Deleted					
	b.	Containment Area (2RMR-RQ206 & 207)	2	1,2,3 & 4	\leq 2.0 x 10 ⁴ R/hr	1 to 10 ⁷ R/hr	35
	c.	Control Room Area (2RMC-RQ201 & 202)	2	1,2,3,4, and (4)	≤ 0.476 mR/hr	10^{-2} to 10^3 mR/hr	46,47
2.	PRC	CESS MONITORS					
	a.	Containment					
		i. Gaseous Activity (Xe-133) RCS Leakage Detection (2RMR-RQ303B)	1	1,2,3 & 4	N/A	10 ⁻⁶ to 10 ⁻¹ μCi/cc	20
		ii. Particulate Activity (I-131) RCS Leakage Detection (2RMR-RQ303A)	1	1,2,3 & 4	N/A	10 ⁻¹⁰ to 10 ⁻⁵ μCi/cc	20
	b.	Deleted					

BEAVER VALLEY - UNIT 2

TABLE 3.3-6 (Continued)

RADIATION MONITORING INSTRUMENTATION

INSTRUMENT	MINIMUM CHANNELS OPERABLE	APPLICAB MODES	LE <u>SETPOINT</u> ⁽³⁾	MEASUREMENT RANGE	ACTION
2. PROCESS MONITORS (Continued)					
c.Noble Gas and Effluent Monitors					
i. Deleted					
ii. Containment Purge Exhaust (Xe-133) (2HVR-RQ104A & 1		(5)	≤1.01x10 ⁻³ µCi/cc	10^{-6} to 10^{-1} µCi/co	c 22
iii. Main Steam Discharge (Kr-88) (2MSS-RQ101A,B &		1,2,3&4	≤3.9x10 ⁻² µCi/cc	10^{-2} to $10^3 \ \mu \text{Ci/cc}$	35

BEAVER VALLEY - UNIT 2

3/4 3-41

NPF-73

TABLE 3.3-6 (Continued)

TABLE NOTATIONS

- (1) Not used.
- (2) Not used.
- (3) Above background.
- (4) During movement of recently irradiated fuel assemblies and during movement of fuel assemblies over recently irradiated fuel assemblies.
- (5) During movement of recently irradiated fuel assemblies within the containment and during movement of fuel assemblies over recently irradiated fuel assemblies within the containment.

ACTION STATEMENTS

- ACTION 20 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, comply with the ACTION requirements of Specification 3.4.6.1.
- ACTION 21 This Action is not used.
- ACTION 22 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, comply with the ACTION requirements of Specification 3.9.9.
- ACTION 35 With the number of OPERABLE channels less than required by the Minimum Channels OPERABLE requirement, either restore the inoperable channel(s) to OPERABLE status within 72 hours, or:
 - 1) Initiate the preplanned alternate method of monitoring the appropriate parameter(s), and
 - 2) Return the channel to OPERABLE status within 30 days, or, explain in the next Annual Radioactive Effluent Release Report why the inoperability was not corrected in a timely manner.

TABLE 4.3-3

RADIATION MONITORING INSTRUMENTATION SURVEILLANCE H	E REQUIREMENTS
---	----------------

	INST	RUMEN	<u>T</u>	CHANNEL <u>CHECK</u>	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL <u>TEST</u>	MODES IN WHICH SURVEILLANCE <u>REQUIRED</u>
1.	AREA	. MONI	TORS				
	a.	Dele	ted				
	b.		ainment Area R-RQ206 & 207)	S	R	М	1, 2, 3, 4
	c.		rol Room Area C-RQ201 & 202)	S	R	Μ	1, 2, 3, 4, and ##
2.	PROC	ESS M	ONITORS				
	a.	Cont	ainment				
		i.	Gaseous Activity RCS Leakage Detection (2RMR-RQ303B)	S	R#	Μ	1, 2, 3 & 4
		ii.	Particulate Activity RCS Leakage Detection (2RMR-RQ303A)	S	R#	Μ	1, 2, 3 & 4

b. Deleted

Surveillance interval may be extended to the upcoming refueling outage if the interval between refueling outages is greater than 18 months.

BEAVER VALLEY - UNIT 2

^{##} During movement of recently irradiated fuel assemblies and during movement of fuel assemblies over recently irradiated fuel assemblies.

TABLE 4.3-3 (Continued)

	INST	RUMEN	<u>r</u>	CHANNEL <u>CHECK</u>	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL <u>TEST</u>	MODES IN WHICH SURVEILLANCE <u>REQUIRED</u>
2.	PROC	ESS M	ONITORS (Continued)				
	c.	Nobl	e Gas Effluent Monitors				
		i.	Deleted				
		ii.	Containment Purge Exhaust (2HVR-RQ104A & B)	S	R	М	###
		iii.	Main Steam Discharge (2MSS-RQ101A, B & C)	S	R	Μ	1, 2, 3 & 4

BEAVER VALLEY - UNIT 2

^{###} During movement of recently irradiated fuel assemblies within the containment and during movement of fuel assemblies over recently irradiated fuel assemblies within the containment.

3/4.4.2 (This Specification number is not used.)

BEAVER VALLEY - UNIT 2 3/4 4-8 Amendment No.124

3/4.4.3 SAFETY VALVES

LIMITING CONDITION FOR OPERATION

All pressurizer code safety valves shall be OPERABLE with 3.4.3 a lift setting* of 2485 psig + 1% - 3%.**

MODES 1, 2, and 3, APPLICABILITY: With all RCS cold leg temperatures > the enable temperature specified in 3.4.9.3.

ACTION:

- With one pressurizer code safety valve inoperable, either a. restore the inoperable valve to OPERABLE status within 15 minutes or be in HOT SHUTDOWN with any RCS cold leg temperature \leq the enable temperature specified in 3.4.9.3 and apply RCS overpressure protection requirements in accordance with Specification 3.4.9.3 within 12 hours.
- After any pressurizer code safety valve lift, as indicated b. by the safety valve position indicator, involving loop seal or water discharge; be in at least HOT STANDBY within the next 6 hours, and in HOT SHUTDOWN with any RCS cold leg temperature ≤ the enable temperature specified in 3.4.9.3 and apply RCS overpressure protection requirements in accordance with Specification 3.4.9.3 within the following 6 hours.

SURVEILLANCE REQUIREMENTS

No additional requirements other than those required by 4.4.3 Specification 4.0.5.

BEAVER VALLEY - UNIT 2 3/4 4-9

^{*} The lift setting shall correspond to ambient conditions of the valve at nominal operating temperature and pressure.

^{**} Within \pm 1% following pressurizer code safety value testing.

3/4.4.7 (This Specification number is not used.)

.

BEAVER VALLEY - UNIT 2 3/4 4-24(Next page is 3/4 4-27) 3/4 4-24 Amendment No. 124

NPF-73 REACTOR COOLANT SYSTEM

3/4.4.9.2 (This Specification number is not used.)

BEAVER VALLEY - UNIT 2 3/4 4-34 Amendment No. 124

3/4.4.10 (This Specification number is not used.)

BEAVER VALLEY - UNIT 2 3/4 4-38 Amendment No. 124

NPF-73 CONTAINMENT SYSTEMS

3/4.6.2 DEPRESSURIZATION AND COOLING SYSTEMS

CONTAINMENT QUENCH SPRAY SYSTEM

LIMITING CONDITION FOR OPERATION

3.6.2.1 Two separate and independent containment quench spray subsystems shall be OPERABLE.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION:

With one containment quench spray subsystem inoperable, restore the inoperable subsystem to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.6.2.1 Each containment quench spray subsystem shall be demonstrated OPERABLE:

- a. By verifying, at least once per 31 days, that each valve (manual, power operated or automatic) in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position.
- b. By verifying, at the frequency specified in the Inservice Testing Program, that each quench spray pump's developed head at the flow test point is greater than or equal to the required developed head as specified in the Inservice Testing Program and the Containment Integrity Safety Analysis.
- c. At least once per 18 months by:
 - 1. Cycling each power operated (excluding automatic) valve in the flow path through at least one complete cycle of full travel.

PLANT SYSTEMS

3/4.7.2 (This Specification number is not used.)

BEAVER VALLEY - UNIT 2 3/4 7-10 Amendment No. 124

PLANT SYSTEMS

3/4.7.6 (This Specification number is not used.)

BEAVER VALLEY - UNIT 2 3/4 7-14 Amendment No. 124

REFUELING OPERATIONS

3/4.9.5 - 3/4.9.7 (These Specification numbers are not used.)

BEAVER VALLEY - UNIT 2 3/4 9-5 Amendment No.124 (Next Page is 3/4 9-8)