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THE SOLUBILITY OF URANOPHANE

James D. Prikryl? and William M. Murphy?
1Center for Nuclear Waste Regulatory Analyses, San Antonio, TX
?Department of Geosciences, California State University, Chico, CA

Introduction

IN CaCl,, AND SiO,(aq) TEST SOLUTIONS

Studies of uranium (V) deposits that are natural analogs to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada (e.g., deposits in the
Pefia Blanca Uranium District of Chihuahua, Mexico) indicate that the calcium uranyl silicate, uranophane [Ca(UO,).Si,0- - 6H,0] is the end product of U
mineralization hosted by siliceous volcanic rocks [1]. Similarly, long-term leaching studies of synthetic UO, and spent UO,, fuel designed to mimic conditions in a

Yucca Mountain repository indicate that uranophane is an end product of the alteration of
spent fuel {2,3]. Natural uranophane has been noted to incorporate Th [4]. Therefore,
uranophane that is secondary after spent fuel could incorporate part of the nuclear waste
inventory and control its release from the engineered barrier system. Predictive modeling

of uranophane formation and dissolution requires reliable thermodynamic data for uranyl
minerals. In this study, the solubility of uranophane under oxidizing conditions was studied
by reacting uranophane with Ca- and Si-rich solutions calculated to bracket uranophane
solubility. Natural uranophane samples are typically of insufficient quantity and purity for use
in solubility experiments. Thus, experiments were performed using synthesized uranophane.
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Uranophane Synthesis and Characterization

Uranophane was synthesized based on the method of Cesbron et al. [5] using reagent grade uranyi acetate, sodium metasilicate, and calcium acetate. About 105 g of the reagents in the stoichiometric ratio Ca:U:8i =
1:2:2 were reacted with 1,350 g of deionized, degassed water (with pH lowered to about 1.0 by addition of HCI) in a teflon-lined stainless steel reaction vessel. The reaction was allowed to proceed for 10 days at
150 °C. Using measured analytical contents obtained by ICP-MS, stoichiometric coefficents for Ca:U:Si in the synthesized uranophane were calculated to be 0.99(+0.01):2.01(:0.01):2.01(+0.01).

Solubility Experiments

Solubility experiments were designed to approach uranophane equilibrium in both undersaturated and supersaturated solutions. Experimental solutions had initial U
concentrations of 105 to 10-7 mol - L-* in matrices of 10-2 mol - L-* CaCl,, and 10~ mol - L7 Si0,(aq). Before addition of uranophane, the pH of solutions were
adjusted to about 6.0 by addition of CaCO,, and aliowed to equilibrate with atmospheric CO,(g). The U concentration and pH of experimental solutions before
reaction with uranophane are shown in Table 1. The experiments were carried out by reacting known volumes of the test solutions (100 ml) with known amounts of
synthetic uranophane (0.5 g) in polycarbonate bottles. Experiments were conducted at room temperature (20.5 x 2.0 °C) under atmospheric PCO,, conditions.
Aliquots (5 ml) of the experimental solutions were taken at 1 week intervals for 7 weeks. The aligouts were passed through 0.45 pm membrane filters during the
sampling process. Experimental solution weights were measured before and after each sampling to track loss of solution due to sampling and evaporation.
Concentrations of major cations in the sample aliquots were determined by ICP; U concentrations were measured by ICP-MS.

Table 1
U content and pH of starting solutions
TestLabel U(mol-L-1)  pH
A 1.0x10°S 6.10
B 3.2x10° 6.05
C 1.1x10€ 6.07
D 32x107 6.14
E 1.0x10°7 6.18




Results

Experimental Data
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The pH and concentrations of Ca, Si, and U in test solutions
plotted as function of time. The starting U concentration for
Test A (1.06-5 mol . L-T} is not shown.

Thermodynamics
The uranophane dissolution reaction can be written as
CafU0,).Si,0, ' 6H,0 + 6H* =
Ca2+ + 2U0,2+ + 2Si0,(aq) + 8H,0
The reaction quotient for this reaction is
= [Ca#] [UO,27 ]2 [SIO,(aq))? [H']°
Logarithms of the reaction quotients for uranophane
dissolution (log Q) for the last 3 sampling periods are listed

in Table 2. Differences in the log Qs between tests Aand B
and C, D, and E are due primarily ta differences in pH.

Table 2
Sampling
Test Time
Label (wks)  pH .
B 5 Ghn i
6 546 1128
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& 555  10.89
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Mass Transfer Relations
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Logarithmic activity diagrams of UO_2+/(H*)* versus 5i0_(aqg)
illustrating position of test solution chemistries in the last 4
sampling intervals with respect to the solubility limit of (A)
soddyite and schoepite and (B) uranophane.

{A) Solubility Nimits for soddyite are based on expenimental
data (Nguyen et al. [6]) and theoretical prediction {Chen et al.
ﬁ’B A single sonm’on chemistry taken from a soddyite

fution conducted by Nguyen et al, [6] is also
plotted. The sofubmty limit for schoepite is based on data from
Grenthe et al. [a].

(B) Solubility limits for uranophane were derived from the
average of fog Q calculations presented in Table 2 for tests C,
D, and E and from theoretical prediction (Chen et al. [7]).
Solubility limits for uranophane wers calculated by fixing
logf(Ca2*)/{H*)2] at 11.08, which was averaged from test C,
D, and £ sofution chemistries. Mass fransfer results indicate
that fests C, D, and E came closer to uranophane solubility
because of increased uranophane dissolution and increase in
pH. However. evidence for continued uranophane dissolution
at the end of these experiments indicate that values of log Q
are smaller than the equﬂn‘bnum constant for uranophane
dissolution.




Table 3
A-type E-type Comments
. Test A (initial U 1.0 x 105 mot - L") D (initial U 3.2 x 10-7 mol » L") Test C (initial U 1.1 x 10" mol - L), initially had characteristics
Interpretat’on B (initial U 3.2 x 10® mol . L") E (initial U 1.0 x10°7 mol + L°7) of A-type then transitioned to E-type
Mass transfer. and thermodynamic analyses indicate that distinct pH Initial pH drop Initiat pH drop Initial pH drop was independent of initial U, suggesting a surface -
type; of reaction paths (A-type and E-type) were followed by Relatively constant at about 5.5 Increased to values > 6.5 phenomenon such as OH” sorption
solutions with higher and lower initial U concentrations. The
characteristics of the reaction paths are summarized in Table 3. Ca Net precipitation Net release Precipitation of a secondary Si-bearing phase(s) led to excess Ca
Initial rapid precipitation in solution in both A- and E-type experiments from week 1 to 4
Si Small initial precipitation Net release Only source of Si is uranophane, so solutions generally remained
Net release undersaturated with uranophane
U Initial precipitation Small net release in A-type reaction, Si precipitation was comparable to that of U
Erratic release (perhaps U colloids) suggesting precipitation of a uranyl silicate
log Q 10.89t0 11.83 13.76 to 14.62 (includes Test C) Calculated from solution chemistries in last 3 sampling intervals;
greater in E-type due to increased pH

Conclusions

Distinct types of reaction paths were followed by solutions with higher and
lower initial U concentrations

* A-type experiments were characterized by initial precipitation of Ca, Si, and U,
net precipitation of Ca, and relatively constant pH after an initial pH drop

* E-type experiments were characterized by net release of Ca, Si, and U and
pH increase after an initial pH drop

After the initial effects (pH drop and strong Ca precipitation in A-type
experiments), reaction paths were dominated by uranophane dissolution
coupled to uranyl mineral precipitation

* Reaction progress was greater in the E-type experiments; higher initial U and strong
initial Ca precipitation in the A-type experiments appear to have inhibited uranophane
dissolution

* Uranyl mineral precipitation was balanced by uranophane dissolution which generally
conserved U such that net U release and U concentrations in solution were steady

Based on mass transfer analyses, uranophane continued to dissolve at the
ends of all the experiments indicating that all values of log Q are smaller than
the equilibrium constant for uranophane dissolution

* Log Q values for uranophane dissolution were greater in the E-type experiments due to
increased pH

* E-type experiments (with lower initial U concentrations) came closer to uranophane
solubility because of increased uranophane dissolution and increased pH
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