July 7, 1989

Docket No. 50-260

Mr. Oliver D. Kingsley, Jr. Senior Vice President, Nuclear Power Tennessee Valley Authority 6N 38A Lookout Place 1101 Market Street Chattanooga, Tennessee 37402-2801

Dear Mr. Kingsley:

SUBJECT: TECHNICAL SPECIFICATION FOR TOBAR, INC. TRANSMITTERS (TAC 72623) (TS 263) BROWNS FERRY NUCLEAR PLANT, UNIT 2

The Commission has issued the enclosed Amendment No. 167, to Facility Operating License No. DPR-52 for the Browns Ferry Nuclear Plant, Unit 2. This amendment is in response to your application dated February 24, 1989.

This amendment changes calibration frequencies for instrument lines containing transmitters manufactured by Tobar, Inc. to more conservative intervals. It also includes administrative changes to instrument numbers and deletes instrument checks for four instrument channels.

A copy of the Safety Evaluation is also enclosed. Notice of Issuance will be included in the Commission's Bi-Weekly Federal Register Notice.

Sincerely,

Original signed by

Suzanne Black, Assistant Director for Projects TVA Projects Division Office of Nuclear Reactor Regulation

	Lic	dment No.167 ense No. DPR- ty Evaluation losures:	52	DISTRIBUTION Docket File NRC PDR Local PDR Projects Rea ADSP Reading DCrutchfield BDLiaw	ding	RPierson BWilson WSLittle SVarga BGrimes EJordan DHagan	AR BF JR TQ	A/CA M/LFM N Rdg utber uay	J.
	8907130145 PDR ADOCK P		· · ·	SBlack MSimms GGears DMoran NMarkisohn	ł	TMeek(4 WJones EButcher ACRS(10 GPA/PA	, Đị		clear
OFC	:NRR:TVA/LA	:NRR:TVA/PM	:NRR:TVA/PM	:0GC 1/5 00.	:TVA:A	D/BB:	TVA:AD//TP		
NAME	MSimms M9	:NMarkisonn:a	m:GGearge gun	7:	SBlac	:k	RPienson	:	
DATE	5/% /89	.6 / 8 /89	:6/ 8/89	: 6/ 1.8 /89	18/17	/89	7/1/89	:	
	OFFICIAL	RECORD COPY	v		1 (

Mr. Oliver D. Kingsley, Jr.

cc: General Counsel Tennessee Valley Authority 400 West Summit Hill Drive E11 B33 Knoxville, Tennessee 37902

Mr. F. L. Moreadith Vice President, Nuclear Engineering Tennessee Valley Authority 400 West Summit Hill Drive W12 A12 Knoxville, Tennessee 37902

Dr. Mark O. Medford Vice President and Nuclear Technical Director Tennessee Valley Authority 5N 157B Lookout Place Chattanooga, Tennessee 37402-2801

Mr. M. J. Ray, Acting Director Nuclear Safety and Licensing Tennessee Valley Authority 5N 157B Lookout Place Chattanooga, Tennessee 37402-2801

Mr. O. J. Zeringue Site Director Browns Ferry Nuclear Plant Tennessee Valley Authority P. O. Box 2000 Decatur, Alabama 35602

Mr. P. Carier Site Licensing Manager Browns Ferry Nuclear Plant Tennessee Valley Authority P. O. Box 2000 Decatur, Alabama 35602

Mr. G. Campbell Plant Manager Browns Ferry Nuclear Plant Tennessee Valley Authority P. O. Box 2000 Decatur, Alabama 35602 Chairman, Limestone County Commission P. O. Box 188 Athens, Alabama 35611

Claude Earl Fox, M.D. State Health Officer State Department of Public Health State Office Building Montgomery, Alabama 36130

Regional Administrator, Region II U.S. Nuclear Regulatory Commission 101 Marietta Street, N.W. Atlanta, Georgia 30323

Mr. Danny Carpenter Senior Resident Inspector Browns Ferry Nuclear Plant U.S. Nuclear Regulatory Commission Route 12, Box 637 Athens, Alabama 35611

Dr. Henry Myers, Science Advisor Committee on Interior and Insular Affairs U.S. House of Representatives Washington, D.C. 20515

Tennessee Valley Authority Rockville Office 11921 Rockville Pike Suite 402 Rockville, Maryland 20852

- 2 -

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

TENNESSEE VALLEY AUTHORITY

DOCKET NO. 50-260

BROWNS FERRY NUCLEAR PLANT, UNIT 2

AMENDMENT TO FACILITY OPERATING LICENSE

Amendment No. 167 License No. DPR-52

- 1. The Nuclear Regulatory Commission (the Commission) has found that:
 - A. The application for amendment by Tennessee Valley Authority (the licensee) dated February 24, 1989, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's rules and regulations set forth in 10 CFR Chapter I;
 - B. The facility will operate in conformity with the application, the provisions of the Act, and the rules and regulations of the Commission;
 - C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
 - D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
 - E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

- Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment and paragraph 2.C.(2) of Facility Operating License No. DPR-52 is hereby amended to read as follows:
 - (2) Technical Specifications

The Technical Specifications contained in Appendices A and B, as revised through Amendment No. 167, are hereby incorporated in the license. The licensee shall operate the facility in accordance with the Technical Specifications.

3. This license amendment is effective as of its date of issuance and shall be implemented within 60 days from the date of issuance.

FOR THE NUCLEAR REGULATORY COMMISSION

Black nzanne

Suzanne Black, Assistant Director for Projects TVA Projects Division Office of Nuclear Reactor Regulation

Attachment: Changes to the Technical Specifications

Date of Issuance: July 7, 1989

ATTACHMENT TO LICENSE AMENDMENT NO. 167

FACILITY OPERATING LICENSE NO. DPR-52

DOCKET NO. 50-260

Revise the Appendix A Technical Specifications by removing the pages identified below and inserting the enclosed pages. The revised pages are identified by the captioned amendment number and contain marginal lines indicating the area of change. Overleaf pages* are provided to maintain document completeness.

REMOVE INSERT 3.1/4.1-11 3.1/4.1-11 3.1/4.1-11a 3.2/4.2-14 3.2/4.2-14 3.2/4.2-15 3.2/4.2-15 3.2/4.2-18 3.2/4.2-18 3.2/4.2-19 3.2/4.2-19 3.2/4.2-44 3.2/4.2-44 3.2/4.2-45 3.2/4.2-45* 3.2/4.2-46 3.2/4.2-46 3.2/4.2-47 3.2/4.2-47 3.2/4.2-54 3.2/4.2-54 3.2/4.2-55 3.2/4.2-55*

BFN Unit

Ν

TABLE 4.1.B REACTOR PROTECTION SYSTEM (SCRAM) INSTRUMENT CALIBRATION MINIMUM CALIBRATION FREQUENCIES FOR REACTOR PROTECTION INSTRUMENT CHANNELS

÷

4	Instrument Channel	Group (1)	Calibration	<u>Minimum Frequency(2)</u>
	IRM High Flux	C	Comparison to APRM on Controlled Startups (6)	Note (4)
	APRM High Flux Output Signal	В	Heat Balance	Once/7 Days
	Flow Bias Signal	8	Calibrate Flow Bias Signal (7)	Once/Operating Cycle
	LPRM Signal .	B	TIP System Traverse (8)	Every 1000 Effective Full Power Hours
	High Reactor Pressure (PIS-3-22 AA, BB, C, D)	B	Standard Pressure Source	Once/6 Months (9)
	High Drywell Pressure (PIS-64-56 A-D)	B	Standard Pressure Source	Once/18 Months (9)
•	Reactor Low Water Level · (LIS-3-203 A-D)	B	' Pressure Standard	Once/18 Months (9)
	High Water Level in Scram Discharge Volume Float Switches			
•	(LS-85-45-C-F) Electronic Level Switches	A	Calibrated Water Column	Once/18 Months
	(LS-85-45 A, B, G, H)	в.	Calibrated Water Column	Once/18 Months (9)
	Main Steam Line Isolation Valve Closure	Α	Note (5)	Note (5)
2	Main Steam Line High Radiation	В	Standard Current Source (3)	Every 3 Months
-	Turbine First Stage Pressure Permissive (PIS-1-81 A&B, PIS-1-91 A&B)	ß	Standard Pressure Source	Once/18 Months (9)
•	Turbine Stop Valve Closure	A	Note (5)	Note (5)
	Turbine Control Valve Fast Closure			
•	on Turbine Trip	Α	Standard Pressure Source	Once/Operating Cycle
1	Low Scram Pilot Air Header Pressure (PS 85-35 Al, A2, Bl, & B2)	A	Standard Pressure Source	Once/18 Months

3.1/4.1-11

THIS PAGE INTENTIONALLY LEFT BLANK

ł

٨

TABLE 3.2.B INSTRUMENTATION THAT INITIATES OR CONTROLS THE CORE AND CONTAINMENT COOLING SYSTEMS

1

Minimum No. Operable Per Irip Sys(1)		Trip Level Setting	Action	Remarks
2	Instrument Channel – Reactor Low Water Level (LIS-3-58A-D)	<u>></u> 470" above vessel zero.	A	 Below trip setting inițiated HPCI.
2	Instrument Channel – Reactor Low Water Level (LIS-3-58A-D)	<u>></u> 470" above vessel zero.	A	 Multiplier relays initiate RCIC.
* 2	Instrument Channel – Reactor Low Water Level (LS-3-58A-D)	≥ 378" above vessel zero.	A	 Below trip setting initiates CSS.
				Multiplier relays initiate LPCI.
				 Multiplier relay from CSS initiates accident signal (15).
2(16)	Instrument Channel - Reactor Low Water Level (LS-3-58A-D)	<u>></u> 378" above vessel zero.	A	 Below trip settings, in conjunction with drywell high pressure, low water level permissive, 105 sec. delay timer and CSS or RHR pump running, initiates ADS.
		·		 Below trip settings, in conjunction with low reactor water level permissive, 105 sec. delay timer, 12 1/2 min. delay timer, CSS or RHR pump running, initiates ADS.
1(16)	Instrument Channel – Reactor Low Water Level Permissive (LIS-3-184, 185)	<u>≥</u> 544" above vessel zero.	A	 Below trip setting permissive for initiating signals on ADS.
	Instrument Channel – Reactor Low Water Level (LIS-3-52 and LIS-3-62A)	\geq 312 5/16" above vessel zero (2/3 core height)	. A	 Below trip setting prevents inadvertent operation of containment spray during accident condition.
2	Reactor Low Water Level Permissive (LIS-3-184, 185) Instrument Channel - Reactor Low Water Level	≥ 312 5/16" above vessel zero		for initiating sign 1. Below trip setting inadvertent operati containment spray d

* The automatic initiation capability of this instrument channel is not required to be OPERABLE while the Reactor Vessel water level monitoring modification is being performed. Manual initiation capability of the associated system will be available during that time the automatic initiation logic is out-of-service.

TABLE 3.2.B (Continued)

BFN Unit 2	Minimum No. Operable Per <u>Trip Sys(1)</u>	Function	Trip Level Setting	Action	Remarks
	2 _	Instrument Channel – Drywell High Pressure (PIS-64-58 E-H)	1 <u><</u> ρ <u><</u> 2.5 psig	A	 Below trip setting prevents inadvertent operation of containment spray during accident conditions.
	2 ,	Instrument Channel – Drywell High Pressure (PIS-64-58 A-D)	<u>≼</u> 2.5 psig	A	 Above trip setting in con- junction with low reactor pressure initiates CSS. Multiplier relays initiate HPCI. Multiplier relay from CSS initiates accident signal. (15)
3.2/4.2-15	2	Instrument Channel - Drywell High Pressure (PIS-64-58A-D)	<u><</u> 2.5 psig	A	 Above trip setting in conjunction with low reactor pressure initiates LPCI.
	2(16)	Instrument Channel - Drywell High Pressure (PIS-64-57A-D)	<u><</u> 2.5 psig	Α ΄	 Above trip setting, in conjunction with low reactor water level, low reactor water level permissive, 105 sec. delay timer and
Amendment			•		CSS or RHR pump running, initiates ADS.

		(concluded)		
Minimum No. Operable Per <u>Trip Sys(l)</u>	Function	Trip Level Setting	Action	Remarks
1	HPCI Trip System bus power monitor	N/A	C	 Monitors availability of power to logic systems.
1	RCIC Trip System bus power monitor	N/A	C	 Monitors availability of power to logic systems.
1(2)	Instrument Channel - Condensate Header Low Level (LS-73-55A & B)	<u>></u> Elev. 551'	A	 Below trip setting will open HPCI suction valves to the suppression chamber.
1(2)	Instrument Channel - Suppression Chamber High Level	<u>≺</u> 7" above instrument zero	A	 Above trip setting will open HPCI suction valves to the suppression chamber.
2(2)	Instrument Channel – Reactor High Water Level (LIS-3-208A and LIS-3-208C)	≤ 583" above vessel zero	A	 Above trip setting trips RCIC turbine.
. 1	Instrument Channel – RCIC Turbine Steam Line High Flow (PDIS-71-1A and 1B)	<u>≤</u> 450" H ₂ 0 (7)	A	 Above trip setting isolates RCIC system and trips RCIC turbine.
4(4)	Instrument Channel – RCIC Steam Line Space High Temperature	<u>≤</u> 200°F.	A	 Above trip setting isolates RCIC system and trips RCIC turbine.
3(2)	Instrument Channel – RCIC Steam Supply Pressure – Low (PS 71–1A–D)	<u>≥</u> 50 psig	A	 Below trip setting isolates RCIC system and trips RCIC turbine.
3(2)	Instrument Channel – RCIC Turbine Exhaust Diaphragm Pressure – High (PS 71–11A–D)	<u>≺</u> 20 psig	A	 Above trip setting isolates RCIC system and trips RCIC turbine.

TABLE 3.2.B (Continued)

			TABLE 3.2.B (Continued)		
BFN Unit	Minimum No. Operable Per <u>Trip Sys(1)</u>	Function	Trip Level Setting	Action	Remarks	
н 1	2(2)	Instrument Channel – Reactor High Water Level (LIS-3-208B and LIS-3-208D)	<u> √</u> 583" above vessel zero.	A	 Above trip setting t turbine. 	rips HPCI
	١	Instrument Channel – HPCI Turbine Steam Line High Flow (PDIS-73-1A and 1B)	<u>≺</u> 90 psi (7)	A	 Above trip setting i HPCI system and trip turbine. 	solates s HPCI
	3(2)	Instrument Channel – HPCI Steam Supply Pressure – Low (PS 73-1A-D)	≥100 psig	A	 Below trip setting i HPCI system and trip turbine. 	solates s HPCI
	3(2)	Instrument Channel – HPCI Turbine Exhaust Diaphragm (PS 73-20A-D)	<u>≤</u> 20 psig	A	 Above trip setting i HPCI system and trip turbine. 	solates s HPCI
	4(4)	Instrument Channel - HPCI Steam Line Space High Temperature	<u> </u>	A	 Above trip setting i HPCI system and trip turbine. 	solates s HPCI
3.2/4.2-19	1	Core Spray System Logic	N/A	8	 Includes testing auto initiation inhibit to Core Spray Systems in other units. 	0
-19	1	RCIC System (Initiating) Logic	N/A .	B	 Includes Group 7 valv Refer to Table 3.7.A list of valves. 	ves. for
	1	RCIC System (Isolation) Logic	N/A	B	 Includes Group 5 valv Refer to Table 3.7.A list of valves. 	/es. for
	1 (16)	ADS Logic	N/A	A		
	1	RHR (LPCI) System (Initiation)	N/A	B		
7						

0

TABLE 4.2.B SURVEILLANCE REQUIREMENTS FOR INSTRUMENTATION THAT INITIATE OR CONTROL THE CSCS

Function Functional Test Calibration Instrument Check Instrument Channel (1) (27) Once/18 Months (28) Once/day Reactor Low Water Level (LIS-3-58A-D) Instrument Channel (1) (27) Once/18 Months (28) Once/day Reactor Low Water Level (LIS-3-184 & 185) Instrument Channel (1) (27) Once/18 Months (28) Once/day Reactor Low Water Level (LIS-3-52 & 62A) Instrument Channel (1) (27) Once/18 Months (28) 3.2/4.2-44 none Drywell High Pressure (PIS-64-58E-H) Instrument Channel (1) (27) Once/18 Months (28) none Drywell High Pressure (PIS-64-58A-D) Instrument Channel (1) (27) Once/18 Months (28) none Drywell High Pressure (PIS-64-57A-D) Instrument Channel (1) (27) Once/6 Months (28) none **Reactor Low Pressure** (PIS-3-74A&B, PS-3-74A&B) (PIS-68-95, PS-68-95) (PIS-68-96, PS-68-96)

BFN Unit Ν

TABLE 4.2.B (Continued) SURVEILLANCE REQUIREMENTS FOR INSTRUMENTATION THAT INITIATE OR CONTROL THE CSCS

Function	<u>Functional Test</u>	Calibration	Instrument Check
Instrument Channel Reactor Low Pressure (PS-68-93 & 94)	(1)	Once/3 months	none
Core Spray Auto Sequencing Timers (Normal Power)	(4)	Once/operating cycle	none
Core Spray Auto Sequencing Timers (Diesel Power)	·(4)	Once/operating cycle	none
LPCI Auto Sequencing Timers (Normal Power)	(4)	Once/operating cycle	none
LPCI Auto Sequencing Timers (Diesel Power)	(4)	Once/operating cycle	none
RHRSW A1, B3, C1, D3 Timers (Normal Power)	(4)	Once/operating cycle	none
RHRSW A1, B3, C1, D3 Timers (Diesel Power)	(4)	Once/operating cycle	none
ADS Timer (105 sec.)	(4)	Once/operating cycle	none
ADS Timer (12 1/2 min.) (High Drywell Pressure Bypass Timer)	(4)	Once/operating cycle	none

BFN Unit

•

TABLE 4.2.B (Continued) SURVEILLANCE REQUIREMENTS FOR INSTRUMENTATION THAT INITIATE OR CONTROL THE CSCS

Function	Functional Test	Calibration	
Instrument Channel - RHR Pump Discharge Pressure	(1)	once/3 months	none
Instrument Channel - Core Spray Pump Discharge Pressure	· (1)	once/3 months	none
Core Spray Sparger to RPV d/p	(1)	once/3 months	once/day
Trip System Bus Power Monitor	once/operating Cycle	N/A	none
Instrument Channel - Condensate Header Low Level (LS-73-56A, B)	(1)	once/3 months	none
Instrument Channel - Suppression Chamber High Level	(1)	once/3 months	none
Instrument Channel - Reactor High Water Level	(1)	once/3 months	once/day
Instrument Channel – RCIC Turbine Steam Line High Flow	(1)	once/3 months	none
Instrument Channe] – RCIC Steam Line Space High Temperature	(1)	once/3 months	none
Instrument Channel - RCIC Steam Supply Low Pressure	once/31 days	once/18 months	none
Instrument Channel – RCIC Turbine Exhaust Diaphragm High Pressure	once/31 days	once/18 months	none

BFN , Unit 2

TABLE 4.2.B (Continued) SURVEILLANCE REQUIREMENTS FOR INSTRUMENTATION THAT INITIATE OR CONTROL THE CSCS

Function	Functional Test	Calibration	Instrument Check
Instrument Channel – HPCI Turbine Steam Line High Flow	(1)	Once/3 months	none
Instrument Channel - HPCI Steam Line Space High Temperature	(1)	Once/3 months	none
Instrument Channel - HPCI Steam Supply Low Pressure	once/31 days	once/18 months	none
Instrument Channel - HPCI Turbine Exhaust Diaphragm High Pressure	once/31 days	once/18 months	none
Core Spray System Logic	once/18 months	(6)	N/A
RCIC System (Initiating) Logic	once/18 months	N/A	N/A
RCIC System (Isolation) Logic	once/18 months	(6)	N/A
HPCI System (Initiating) Logic	once/18 months	(6)	N/A
IPCI System (Isolation) Logic	once/18 months	(6)	N/A
ADS Logic	once/18 months	(6)	N/A
PCI (Initiating) Logic	once/18 months	(6)	N/A
.PCI (Containment Spray) Logic	once/18 months	(6)	N/A
ore Spray System Auto Initiation nhibit (Core Spray Auto nitiation)	once/18 months (7)	N/A	N/A
PCI Auto Initiation Inhibit LPCI Auto Initiation)	once/18 months (7)	N/A	N/A

BFN Unit 2

		TABLE 4.2.F	
	MINIMUM TEST AND CALIBRATIC	ON FREQUENCY FOR SURVEILLANCE IN	STRUMENTATION
	Instrument Channel	Calibration Frequency	Instrument Check
1)	Reactor Water Level (LI-3-58A&B)	Once/6 months	Each Shift
2)	Reactor Pressure (PI-3-74A&B)	Once/6 months	Each Shift
3)	Drywell Pressure (PI-64-67B) and XR-64-50	Once/6 months	Each Shift
4)	Drywell Temperature (TI-64-52AB) and XR-64-50	Once/6 months	Each Shift
- 5)	Suppression Chamber Air Temperature (XR-64-52)	Once/6 months	Each Shift
8)	Control Rod Position	N/A	Each Shift
9)	Neutron Monitoring	(2)	Each Shift
10)	Drywell Pressure (PS-64-67B)	Once/6 months	N/A
11)	Drywell Pressure (PIS-64-58A)	Once/6 months	N/A
12)	Drywell Temperature (TS-64-52A)	Once/6 months	N/A
13)	Timer (IS-64-67A)	Once/6 months	N/A
14)	CAD Tank Level	Once/6 months	Once/day
15)	Containment Atmosphere Monitors	Once/6 months	Once/day

BFN Unit 2

.

HININUM TEST AND CALIB	HINIMUM TEST AND CALIBRATION FREQUENCY FOR SURVEILLANCE INSTRUMENTATION					
Instrument Channel	Calibration Frequency	Instrument Check				
16) Drywell to Suppression Chamber Differential Pressure	Once/6 months	Each Shift				
17) Relief Valve Tailpipe Thermocouple Temperature	N/A	Once/month (24)				
18) Acoustic Monitor on Relief Valve Tailpipe	Once/cycle (25)	Once/month (26)				
19) High Range Primary Containment Radiation Monitors (RR-90-272CD) (RR-90-273CD)	Once/18 Months (30)	Once/month				
20) Suppression Chamber Water Level-Wide Range (LI-64-159A) (XR-64-159)	Once/18 Months	Once/shift				
- 21) Drywell Pressure - Wide Range (PI-64-160A) (XR-64-159)	Once/18 Months	Once/shift				
22) Suppression Pool Bulk Temperature (TI-64-161) (TR-64-161) (TI-64-162) (TR-64-162)	Once/18 Months	Once/shift				
23) High Range Gaseous Effluent Radiation Monitor (RR-90-322A)	Once/18 Months	Once/shift				

TABLE 4.2.F (Continued) MINIMUM TEST AND CALIBRATION FREQUENCY FOR SURVEILLANCE INSTRUMENTATION

BFN Unit 2

3.2/4.2-55

· · · · ·

.

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

ENCLOSURE 2

SAFETY EVALUATION BY THE OFFICE OF NUCLEAR REACTOR REGULATION SUPPORTING AMENDMENT NO. 167 TO FACILITY OPERATING LICENSE NO. DPR-52

TENNESSEE VALLEY AUTHORITY

BROWNS FERRY NUCLEAR PLANT, UNIT 2

DOCKET NO. 50-260

1.0 INTRODUCTION

By letter dated February 24, 1989, TVA requested an amendment to the Technical Specifications (TS) for Browns Ferry Nuclear Plant Unit 2 (BFN 2). The amendment would revise calibration frequencies for instrument lines containing transmitters manufactured by Tobar, Inc. from the currently required 12 or 18 months to a more conservative interval of six months. The amendment also includes administrative changes to ten instrument numbers, and deletes daily instrument checks for four high pressure coolant injection (HPCI) and reactor core isolation cooling (RCIC) instrument channels.

2.0 EVALUATION

In general, surveillance frequencies are based on industry accepted practice and engineering judgement considering the conditions required to perform a given test, the ease of performing the test, and the likelihood of a change in the system/component status. Instrumentation calibration frequencies consist of an optimum selection of time versus drift. Setpoint scaling calculations are performed to provide assurance that there is adequate margin to account for all inaccuracies in the instrument loop between the required trip setpoint and the limiting safety system settings.

Tobar, Inc. has recommended a calibration frequency of once every six months for transmitters they have manufactured. Three instrument lines at BFN 2 contain Tobar, Inc. transmitters and have calibration intervals less frequent than once every six months. Two of the instrument lines have calibration intervals of once every 18 months. The third line has a calibration frequency of once every 12 months. NRC staff agrees with the proposed change to the more conservative calibration interval for all instrument lines containing Tobar transmitters.

The TS for one of the affected instrument lines, Reactor Low Pressure in Table 4.2.B, originally had a calibration interval of once every three months. This was subsequently changed to once every 18 months when the licensee adopted the analog transmitter trip system (ATTS) design. The ATTS was developed by GE to offset operating disadvantages of the digital sensor switches of the original

8907130148 890707 PDR ADOCK 05000260 P PDC safety system instrumentation. The principal objective of the ATTS was to improve sensor intelligence and reliability while enhancing testing procedures. The ATTS design was adapted to BFN 2 to replace the then existing mechanical switches which sensed drywell and reactor pressures with analog loops, and to modify the reactor water level indication loops to improve the reliability, accuracy, and response time of the instrumentation. The NRC reviewed and accepted this change in calibration frequency from three to eighteen months in August 1986. As stated earlier, the NRC staff supports the manufacturer's recommendation of the more conservative calibration interval of once every six months for the instrument line containing Tobar transmitters. The other two instrument lines discussed earlier were not affected by the adoption of the ATTS design.

The changes to the ten instrument numbers are administrative in nature and do not change the function, setting or calibration interval of any of the instruments. The instrument numbers are included in the technical specifications for completeness.

An instrument check is a qualitative determination of acceptable behavior by observation of the instrument during operation. The four HPCI/RCIC instrument channels for which daily instrument checks are presently required are pressure switches which have no indication function. The functional test of this instrumentation which verifies operability, including the alarm and trip functions, is performed once every 31 days.

Based on the above, the staff concluded that the proposed changes to the TS regarding the changes to the instrument numbers and instrument checks for the HPCI/RCIC instrument checks do not affect safety and are therefore acceptable.

3.0 ENVIRONMENTAL CONSIDERATION

This amendment involves a change to a requirement with respect to the installation or use of a facility component located within the restricted area as defined in 10 CFR Part 20 and changes to the surveillance requirements. The staff has determined that the amendment involves no significant increase in the amounts, and no significant change in the types, of any effluents that may be released offsite, and that there is no significant increase in individual or cumulative occupational radiation exposure. The Commission has previously issued a proposed finding that this amendment involves no significant hazards consideration and there has been no public comment on such finding. Accordingly, the amendment meets the eligibility criteria for categorical exclusion set forth in 10 CFR 51.22(c)(9). Pursuant to 10 CFR 51.22(b), no environmental impact statement nor environmental assessment need be prepared in connection with the issuance of the amendment.

4.0 CONCLUSION

The Commission made a proposed determination that the amendment involves no significant hazards consideration which was published in the <u>Federal</u> <u>Register</u> (54 FR 15838) on April 19, 1989 and consulted with the <u>State</u> of Alabama. No public comments were received and the State of Alabama did not have any comments. The staff has concluded, based on the considerations discussed above, that: (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, and (2) such activities will be conducted in compliance with the Commission's regulations, and the issuance of the amendments will not be inimical to the common defense and security nor to the health and safety of the public.

Principal Contributor: N. Markisohn

Dated: July 7, 1989