
June 9, 1982

Docket Nos. 50-259 50-260 50-296

Mr. Hugh G. Parris Manager of Power Tennessee Valley Authority 500A Chestnut Street, Tower II Chattanooga, Tennessee 37401

Dear Mr. Parris:

On May 19, 1982 we issued Amendment Nos. 83, 80 and 54 to Facility License Nos. DPR-33, DPR-52 and DPR-68 for the Browns Ferry Nuclear Plant, Units 1, 2 and 3. These amendments added additional surveillance requirements for the scram discharge volume system. Enclosed is a revised Table of Contents page (page 1i) which was omitted from the Amendments for each License and a correction to Section 3.3.F for each License (page 126 for Units 1 and 2, page 129 for Unit 3).

Sincerely,

NO.

Richard J. *K*lark, Project Manager Operating Reactors Branch #2 Division of Licensing

Enclosures: As Stated

cc w/enclosures See next page

	See next p	age				
	Distribution: Docket File L. NRC PDR D. Local PDR ACR ORB#2 Reading OPA D. Eisenhut R. S. Norris NSI R. Clark ASL OELD Gra SECY Ext IE-2 T. Barnhart=12			07010027 82 R Adock 050	0609 00259 PDR	
				1		
OFFICE	ORB#2 SNOPP1S	ORB#2	ORB#2 DVassallo		,	 ** • • • • • • • • • • • • • • • • • •
SURNAME 🌶		6/9/82	6/9/82			 •••••••••••••••••••••••••••••
DATE		••••••			•••••	 ••••••
NRC FORM 318	3 (10-80) NRCM 0240		OFFICIAL	RECORD C	OPY	USGPO: 1981-335-960

Mr. Hugh G. Parris

cc:

H. S. Sanger, Jr., Esquire General Counsel Tennessee Valley Authority 400 Commerce Avenue E 11B 33C Knoxville, Tennessee 37902

Mr. Ron Rogers Tennessee Valley Authority 400 Chestnut Street, Tower II Chattanooga, Tennessee 37401

Mr. Charles R. Christopher Chairman, Limestone County Commission P. O. Box 188 Athens, Alabama 35611

Ira L. Myers, M.D. State Health Officer State Department of Public Health State Office Building Montgomery, Alabama 36104

Mr. H. N. Culver 249A HBD 400 Commerce Avenue Tennessee Valley Authority Knoxville, Tennessee 37902

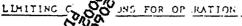
Athens Public Library South and Forrest Athens, Alabama 35611

James P. O'Reilly Regional Administrator, Region II U.S. Nuclear Regulatory Commission 101 Marietta Street, Suite 3100 Atlanta, Georgia 30303 U. S. Environmental Protection Agency Region IV Office Regional Radiation Representative 345 Courtland Street Atlanta, Georgia 30308

Resident Inspector U. S. Nuclear Regulatory Commission Route 2, Box 311 Athens, Alabama 35611

Mr. John F. Cox Tennessee Valley Authority W9-D 207C 400 Commerce Avenue Knoxville, Tennessee 37902

George Jones Tennessee Valley Authority P. O. Box 2000 Decatur, Alabama 35602


Mr. Oliver Havens U.S. Nuclear Regulatory Commission Reactor Training Center Osborne Office Center, Suite 200 Chattanooga, Tennessee 37411

UNIT 1

Section			\sim	ļ	Page No.
Section					125
	D.	Reactivity Anomalies		•	
	Ε.	Reactivity Control			126 126
3.4/4.4	F. Sta	Scram Discharge Volume ndby Liquid Control System	• • • • • • • • • •	•	135
	A.	Normal System Availability		•	135
	Β.	Operation with Inoperable Compo	nents 🔩	•	136
	C.	Sodium Pentaborate Solution .	• • • • • • • •	•	137
3.5/4.5	Cor	e and Containment Cooling System	S	•	143
	A.	Core Spray System	•••••	•	.143
	Β.	Residual Heat Removal System (R (LPCI and Containment Cooling)	HRS)	•	145
	C.	RHR Service Water System and Emergency Equipment Cooling Wat System (EECWS)	er • • • • • • • • •	•	151
	D.	Equipment Area Coolers		•	154
	E.	High Pressure Coolant Injection (HPCIS)	System	•	154
··· ··· ·	F.	Reactor Core Isolation Cooling (RCICS)	System	•	156
	G.	Automatic Depressurization Syst (ADS)	.em	•	157
	· H.	Maintenance of Filled Discharge	Pipe	•	158
	Ι.	Average Planar Linear Heat Gene	eration Rate	•	159
	J.	Linear Heat Generation Rate .	• • • • • • • •	•	159
	к.	Minimum Critical Power Ratio (N	1CPR)		160
	L.	Reporting Requirements		•	160
3.6/4.6	Pri	imary System Boundary	••••••	•	174
	Α.	Thermal and Pressurization Limi	itations		174
`	Β.	Coolant Chemistry			176

l

- 3.3 R-D. Ly Control
 - E. ecifications 3.3.0 and .D e cannot be met. an orderly cdown shall be initiated and e reactor shall be in the hutdown condition within 24 hours.

F. Scram Discharge Volume

The scram discharge volume drain and vent valves shall be operable any time that the Reactor Protection System scram function is required to be operable. When it is determined that one of these valves is inoperable at a time when operability is required, the reactor shall be in hot standby within 24 hours.

SURVILLEANCE REOUTRICHENTS

- 4.3 Resutivity Control
 - E. Surveillance requirements are as specified in 4.3.C and .D, above:

F. Scram Discharge Volume

- 1.a. The scram discharge volume drain and vent valves shall be verified open prior to each startup and monthly thereafter. The valves may be closed intermittently for testing not to exceed 1 hour in any 24 hour period during operation.
 - b. The scram discharge volume drain and vent valves shall be demonstrated operable monthly.

UNIT 2

Section			Page No.
	D.	Reactivity Anomalies	125
3.4/4.4	E. F. St		126 126 135
	Α.	Normal System Availability	135
	Β.	Operation with Inoperable Components	136
	c.	Sodium Pentaborate Solution	137
3.5/4.5	Co	re and Containment Cooling Systems	143
	Α.	Core Spray System	143
	Β.	Residual Heat Removal System (RHRS) (LPCI and Containment Cooling)	145
	C.	RHR Service Water System and Emergency Equipment Cooling Water System (EECWS)	151
	D.	Equipment Area Coolers	154
	Ε.	High Pressure Coolant Injection System (HPCIS)	154
	F.	Reactor Core Isolation Cooling System (RCICS)	156
	G.	Automatic Depressurization System (ADS)	157
	Η.	Maintenance of Filled Discharge Pipe	158
	I.	Average Planar Linear Heat Generation Rate	159
	J.	Linear Heat Generation Rate	159
	К.	Minimum Critical Power Ratio (MCPR)	160
	L.	Reporting Requirements	160
3.6/4.6	Pri	mary System Boundary	174
	Α.	Thermal and Pressurization Limitations	174
	Β.	Coolant Chemistry	176

LIMITING CONDITIONS FOR OPERATION

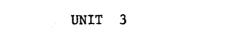
3.3 Reactivity Control

E. If Specifications 3.3.C and .D above cannot be met. an orderly shurdown shall be initiated and the reactor shall be in the shurdown condition within 24 hours.

F. Scram Discharge Volume

The scram discharge volume drain and vent valves shall be operable any time that the Reactor Protection System scram function is required to be operable. When it is determined that one of these valves is inoperable at a time when operability is required, the reactor shall be in hot standby within 24 hours.

SURVEILLANCE REQUIREMENTS


4.3 Resutivity Control

-

E. Surveillance requirements are as specified in 4.3.C and .D, above.

F. Scram Discharge Volume

- 1.a. The scram discharge volume drain and vent valves shall be verified open prior to each startup and monthly thereafter. The valves may be closed intermittently for testing not to exceed 1 hour in any 24 hour period during operation.
 - b. The scram discharge volume drain and vent valves shall be demonstrated operable monthly.

. .

... .

Section

Page No.

	с.	Scram Insertion Times	128
	D.	Reactivity Anomalies	129
3.4/4.4	E. F. Stan	Reactivity Control Scram Discharge Volume dby Liquid Control System	129 129 137
	Α.	Normal System Availability	137
	в.	Operation with Inoperable Components	139
	с.	Sodium Pentaborate Solution	139
3.5/4.5	Core	and Containment Cooling Systems	146
	Α.	Core Spray System	146
	в.	Residual Heat Removal System (RHRS) (LPCI and Containment Cooling)	149
	с.	RHR Service Water System and Emergency Equipment Cooling Water System (EECWS)	155
21	D.	Equipment Area Coolers	158
	E.	High Pressure Coolant Injection System (HPCIS)	159
	F.	Reactor Core Isolation Cooling System (RCICS)	160
	G.	Automatic Depressurization System (ADS)	161 -
	н.	Maintenance of Filled Discharge Pipe	163
	I.	Average Planar Linear Heat Generation Rate	165
	ј.	Linear Heat Generation Rate	166
· •	К.	Minimum Critical Power Ratio (MCPR)	167.
	L.	Reporting Requirements	167 a
3.6/4.6	Prim	ary System Boundary	184
	Α.	Thermal and Pressurization Limitations	184

LIMITING CONDITIONS FOR OPERATION

3.3 REACTIVITY CONTROL

D. <u>Reactivity Anomalies</u>

The reactivity equivalent of the difference between the actual critical rod configuration and the expected configuration during power operation shall not exceed $1\% \Delta k$. If this limit is exceeded, the reactor will be shut down until the cause has been determined and corrective actions have been taken as appropriate.

E. <u>Reactivity Control</u>

If Specifications 3.3.C and .D above cannot be met, an orderly shutdown shall be initiated and the reactor shall be in the shutdown condition within 24 hours.

F. Scram Discharge Volume

The scram discharge volume drain and vent valves shall be operable any time that the Reactor Protection System scram function is required to be operable. When it is determined that one of these valves is inoperable at a time when operability is required, the reactor shall be in hot standby within 24 hours.

SURVEILLANCE REQUIREMENTS

4.3 REACTIVITY CONTROL

D. <u>Reactivity</u> Anomalies

During the startup test program and startup following refueling outages, the critical rod configurations will be compared to the expected configurations at selected operating conditions. These comparisons will be used as base data for reactivity monitoring during subsequent power operation throughout the fuel cycle. At specific power operating conditions, the critical rod configuration will be compared to the configuration expected based upon appropriately corrected past data. This comparison will be made at least every full power month.

E. <u>Reactivity Control</u>

Surveillance requirements are as specified in 4.3.C and .D, above.

F. Scram Discharge Volume

- 1.a. The scram discharge volume drain and vent valves shall be verified open prior to each startup and monthly thereafter. The valves may be closed intermittently for testing not to exceed 1 hour in any 24 hour period during operation.
 - b. The scram discharge volume drain and vent valves shall be demonstrated operable monthly.