Brunswick Steam Electric Plant Units 1 and 2

Extended Power Uprate October 24, 2001

1

Agenda

- Opening Comments
 - Project Overview
 - Regulatory Reviews
 - Brunswick Unique Aspects of EPU
 - Open Discussion

Jeff Lyash Bob Kitchen Dave DiCello Mark Grantham

All

Meeting Objectives

- Provide Overview of EPU Project
 - Discuss Licensing Actions Necessary to Support EPU
 - Highlight Potential Focus Areas for Review

CP&L

EPU Benefits

- Design Strength and Plant Reliability Improvement
 - Current Life Attainment
 - Plant Life Extension
 - Plant Staff Technical Capabilities

Unit 1 Schedule and Modifications

Unit 2 Schedule and Modifications

Overall Generation Schedule

Project Overview Testing

- Chemistry and Radiation Monitoring
 - Nuclear Instrumentation Calibration
 - Core Performance
 - Pressure Control Incremental Regulation
 - Feedwater Level Control Regulation
 - Turbine Valve and MSIV Surveillance
 - Main Steam and FW Piping Vibration
 - BOP System Monitoring

Extended Power Uprate Licensing Status

Торіс	Submittal Date	Needed Approval Date	Impact
THI Option III (Units 1 & 2)	June 26, 2001	February 2002	PRNM Hardware in Place Unit 1 Startup
Safety Limit MCPR (Unit 1)	September 18, 2001	February 2002	Needed for Unit 1 Startup with GE-14 and Uprate
Alternative Source Term (Units 1 & 2)	August 1, 2001	February 2002	RFO Secondary Containment Relaxation
		June 2002	Needed to Support Uprate Submittal
Power Uprate (Units 1 & 2)	August 9, 2001	June 2002	Unit 1 Initial Uprate
MELLLA+ (Units 1 & 2)	April 2002	February 2003	Flow Window Expansion Unit 1 Core Design
SLC (Units 1 & 2)	June 2002	February 2003	Unit 2 Startup
Safety Limit MCPR (Unit 2)	October 2002	February 2003	Unit 2 Startup

Extended Power Uprate Key Communications Moving Forward

- RAI Goals
 - 3 Week Turnaround
 - RAI Clarity and RAI Matrix
 - BNP Available for Meetings As Needed
 - Lessons Learned
 - ACRS
 - Duane Arnold, Dresden/Quad Cities

Extended Power Uprate Plant Unique Aspects

- Containment Overpressure
 - Currently Committed to Safety Guide 1
 No Credit for Containment Overpressure
 - Short-Term NPSH
 - No Credit for Containment Overpressure Required
 - Long-Term NPSH
 - Maximum Required Overpressure 3.1 psig, With 11.3 psig Available
 - ♦ 5.0 psig Requested

Extended Power Uprate Plant Unique Aspects

- MSIV Closure Test Exception
 - CP&L Believes That the MSIV Closure Test Is Not Necessary
 - Industry Experience Has Demonstrated Predicted Plant Performance
 - Industry Modeling, Data Collection, and Analyses Capabilities
 - Unnecessarily Challenges Operators and Safety-Related Equipment
 - Aspects of Test Demonstrated by Component Level Testing

MSIV Closure Startup Test Criteria

- Minimal Heat Flux Increase/Thermal Limits Not Exceeded
 - Reactor Pressure Increase Close to Predictions
 - MSIV Closure Time (3 to 5 Seconds)
 - SRVs Close Properly Without Leakage
 - Feedwater Controls Prevent Steam Line Flooding
 - RCIC Starts and Operates Without Isolating

Heat Flux Increase/Thermal Limits Not Exceeded

- 0% Desired / 2% With Analysis
 - Scram Due to MSIV Position Switches Offsets Reactivity Increase Due to Pressure
 - Thermal Performance for Test Much Less Limiting Than Other Evaluated Transients
 - Minimal EPU Impact on Components Important to Achieving Desired Thermal Performance
 - Reactor Protection System Logic Unaffected
 - Control Rod Insertion Times
 - MSIV Closure Speed

Reactor Pressure Increase Close to Prediction

- 120 psi Desired / 145 psi With Evaluation
 - Since Flux Transient Minimal, Depends Primarily on SRV Performance
 - BNP Analysis Assumes 2 SRVs Out-of-Service
 - Significantly Improved SRV Performance
 - No High Lift Failures During Last Two Test Sets
 - ♦ No More Than Two High Failures Since Modifications
 - SRV Performance Confirmed During Component Tests

MSIV Closure Time

- Between 3 and 5 Seconds
 - MSIV Closure Speed Set by Actuator Adjustments
 - BNP MSIV Component Test Performance is Good
 - No Significant Industry Issues
 - MSIV Closure Times are Highly Reliable

SRVs Close Properly Without Leakage

- SRV Setpoints Not Being Changed by EPU
 - Leakage Performance Not Changed by EPU
 - SRV Performance Confirmed During Routine Component Testing

Feedwater Controls Prevent Steam Line Flooding

- Overfill at Vessel Level of 260 Inches
 - FW, HPCI, and RCIC Turbines Trip at Vessel Level of 208 Inches
 - BSEP Operating History Shows Significant Margin
 - Minimal EPU Impact on Level Overshoot
 - Turbine Trips Verified Reliable by Testing

RCIC Starts and Operates Without Isolating

- RCIC Performance Demonstrated During Several Plant Events
 - RCIC Routinely Tested per Tech Specs
 - HPCI Starts Concurrently with RCIC
 - Testing Would Not Confirm RCIC Capable of Maintaining Level

