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ABSTRACT

An initial investigation is made into the significance of software reliability to the assessment of 
preclosure repository safety and into the potential application of software reliability methods to 
preclosure repository safety issues. Basic concepts and selected methodologies for software 
reliability analysis are described. Research and guidance developed by the U.S. Nuclear 
Regulatory Commission, the U.S. Department of Energy, the mining industry, and others for 
software reliability analysis in safety-critical systems are briefly surveyed. Based on this 
background, issues related to software reliability and preclosure repository safety are identified.
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1 INTRODUCTION

Software reliability may be a significant factor in the safe operation of the proposed Yucca 
Mountain repository. During the preclosure phase of repository development, operations are 
expected to be directly controlled or assisted by computer systems. The candidate operations and 
systems for computer control include overhead bridge cranes, trolleys, waste-container 
transporters, and gantries used to move casks, canisters, bare-fuel assemblies, or waste 
packages. Although descriptions of computer-controlled operations in the U.S. Department of 
Energy (DOE) documents provide little detail on the specific hardware and software systems 
planned to be used, it is clear that the DOE intends to apply software-based digital systems for 
safety-critical applications during repository operations. There are a great many techniques for 
analyzing the safety and reliability of software systems. In addition, the U.S. Nuclear Regulatory 
Commission (NRC) and other organizations have issued guidance on software reliability used in 
safety-critical applications. This large amount of information is reviewed and suggestions are made 
for incorporating software reliability considerations into the Center for Nuclear Waste Regulatory 
Analyses (CNWRA) PCSA Tool (Dasgupta, et al., 2000, 2001). As is the case with human 
reliability analysis, software reliability analysis has received intense study and continues to benefit 
from ongoing research activities. An important aspect of applying this large amount of information 
to the issues of preclosure repository safety review is to select existing methods and guidance with 
the greatest applicability to the repository safety issues.  

Section 2 of this report provides a brief overview of the issues, methods, and approaches to 
software reliability analysis. This overview includes: (2.1) definition of software reliability; 
(2.2) unique aspects of software reliability; (2.3) software reliability analysis methodologies and 
approaches (2.3), including a long, but not comprehensive, list of software reliability models, and 
a discussion of approaches to software reliability in safety-critical systems. Section 3 provides a 
summary of NRC guidance and research on software reliability analysis. Section 4 summarizes 
some of the DOE/Yucca Mountain Project approaches to software reliability analysis for repository 
operations. Section 5 summarizes important research and standard-setting work related to 
software safety accomplished in the mining industry and associated regulatory agencies. Section 6 
provides conclusions and recommendations, and Section 7 lists the references.
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2 OVERVIEW OF SOFTWARE RELIABILITY ANALYSIS-ISSUES, 
METHODS, AND APPROACHES 

2.1 Definition of Software Reliability 

According to the American National Standards Institute, software reliability is defined as the 
probability of failure-free software operation for a specified period of time in a specified 
environment (American National Standards Institute/Institute of Electrical and Electronic 
Engineers, 1991). Software reliability has also been defined as the probability that a software 
system will run continuously without failing, given a perfect operating environment (Knight and 
Littlewood, 1994).  

Software reliability engineering is the discipline "concerned with the assessment, prediction, and 
management of the reliability of software systems" (Tian, 1998).  

2.2 Unique Aspects of Software Reliability 

To provide a background for describing software reliability, it is necessary to articulate the 
substantial differences between the approaches for analyzing the reliability of software and the 
approaches used for mechanical, electrical, and electronic systems. Fundamental differences 
in the nature of software versus physical systems drive the substantial differences in the 
approaches to reliability analysis.  

The reliability of software has markedly different characteristics from the reliability of hardware.  
Mechanical, electrical, and electronic hardware devices generally have failure significantly 
influenced by time. For many mechanical systems, subsystems, and devices, the probability of 
failure increases markedly with time as components wear out. For many mechanical, electrical, 
and electronic hardware devices, a bathtub curve for probability of failure is characteristic (see 
Figure 2-1) because juvenile or burn-in failures occur more frequently at the beginning of 
service, a low rate of failure occurs after this initial period, and failures rise again later as aging
related failures increase. Software reliability (i.e., the inverse of failure probability) is not a 
direct function of time in service. Software does not wear out. It does not change with time, 
unless it is intentionally modified. Faults in the software are present from the time of its creation 
and may remain undiscovered for the entire service lifetime. Faults discovered in software, if 
corrected, increase the reliability of the software. Because changes to software have the 
potential to introduce additional errors, most authors indicate an initial increase in failure rate 
following the correction of an error, followed by time decay to a lower failure rate, until the next 
error correction is made (see Figure 2-2). Notice also that the apparent failure rate rises as 
more faults are discovered in the software. A dramatic example of how an attempted repair to 
software introduces additional defects is the case in which AT&T attempted to resolve a simple 
problem in its telephone system software, resulting in failure of the entire system for a client 
base of millions (Collins, et al., 1994).
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The differences in the reliability behavior between hardware and software are due to the 
fundamental differences in their natures. Some of these fundamental differences are 
mentioned in Table 2-1. Hardware reliability decreases in time, after an initial period of juvenile 
failures, because physical phenomena, such as wear, corrosion, and fatigue, degrade the 
hardware. There are no counterparts for software to these physical phenomena causing 
degradation. In fact, the physical existence of software is tenuous. The physical manifestation 
of software may be a floppy computer disk, compact disk, or other electronic medium. To be 
used, the software is entered into a computer's memory, where it is represented by binary code.  
In this sense, the software is physically manifested as the logical state of the computer. There 
is little concern regarding the physical media used to distribute copies of software, because the 
means for checking accurate reproduction are excellent and extremely reliable.

The physical phenomena that reduce hardware reliability in time are the primary cause for other 
differences in hardware and software reliability. The facts that wear-out is related to energy 
input and that environmental factors may have a significant impact for hardware are in stark 
contrast to the behavior of software, which does not wear out and is not directly affected by the 
environment in which it is used. Other differences between hardware and software reliability 
relate to the fact that software is typically created with a number of defects. Because software
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Table 2-1. Differences Between Hardware and Software That Are Relevant to Reliability 
(Keene, 1994; Pan, 1999) 

Attribute Hardware Software 

Cause of failure Wear, corrosion, fatigue, Mainly design defect, 
design defect, unanticipated unexpected input 
environment 

Wear-out Related to energy input None 

Repair Mechanical repair or Periodic restart may 
maintenance can diminish, eliminate problems for a time 
delay, or reverse wear 

Environmental factors May accelerate or decelerate No effect, except to the 
wear and degradation extent that inputs are 

changed 

Reliability models Predicted by physical models No physical basis for 
reliability, depends on design 

Redundancy Parallel subsystems can Parallel subsystems cannot 
improve reliability, except for improve reliability, because 
common-cause failure identical software will have 

the same errors 

Standardized components Adherence to engineering No standardized code; reuse 
specifications and codes has of software can improve 
greatly increased reliability of reliability 
mechanical systems



components (e.g., subroutines), are reproduced flawlessly, any defects are also replicated.  
This means that building software systems with parallel architecture will not increase reliability, 
because common-cause failures are essentially built in. Hardware reliability has been 
enhanced by standardized components and manufacturing codes and specifications. No such 
standardized components or manufacturing codes exist for software. Existing software 
standards attempt to control the software creation process, but fall short of specification of 
standardized components, which is common practice for hardware. Nevertheless, there is 
some standardization accomplished by reuse of software components, especially for certain 
military applications.  

2.3 Software Reliability Analysis Methodologies and Approaches 

Software reliability analysis uses some of the same concepts and methods used in conventional 
(traditional) reliability analysis. Those concepts and methods are briefly presented, with special 
attention to the differences between conventional and software reliability and to special terms 
used in software reliability analysis.  

An important concept in software reliability is the distinction between a fault and a failure. One 
author (Tian, 1998) states 

A failure is a behavioral deviation from the user requirement or specification, a fault is 
the underlying cause within a software system that causes certain failure(s), while an 
error refers to human mistakes or misconceptions that result in faults being injected in 
software systems.  

For example, educational software for children promises animation and sound if a certain icon 
is selected; however, nothing happens when the icon is selected. This condition is a failure.  
The underlying cause is some defect in the code, either incorrect code or missing code. Failure 
corresponds to the user's view and depends on the dynamic behavior of the software system; 
fault corresponds to the developer's view and is a static characteristic of the code. In certain 
contexts, this distinction is important because, although software may have several faults, these 
faults may never cause a failure, if the user and the environment of the software are such that 
the defective portions of the code are never used. By its very definition, failure requires the 
software to be operating; faults may be present in software, whether it is being utilized or not.  

2.3.1 Reliability Modeling 

Consider the usual definitions of cumulative distribution function, complementary cumulative 
distribution function, and probability density function for a continuous random variable (Bowen 
and Bannett, 1988): 

F(x) = Pr (X _5 x) (2-1) 

where 

F(x) - cumulative distribution function 
Pr(C) - probability that condition C exists

2-4



X - random variable 
x - a value that Xcan take 

and 
f(x) = dF(x)/dx (2-2) 

where f(x) is the probability density function 

and 
Fc(x)= 1 - F(x) (2-3) 

where F(x) is the complementary cumulative distribution function.  

Now consider the reliability of software in the time domain. Then the reliability, R(t), is given by 
(Tian, 1998; Musa, 1998; Friedman and Voas, 1995): 

R(t) = 1 - G(t) (2-4) 

where R(t) is the probability that the software will perform without any failure to time t (usually 
operation or execution time but may be real time, depending on choice of the analyst); 
G(t) is the failure probability (i.e., the probability that the time of failure is less than or 
equal to t).  

In other words, G(t) is the cumulative distribution function of failure time. The unconditional 
probability distribution function for failure time, g(t), follows from applying Eq. (2-2) and is 
given by: 

g(t) = dG/dt (2-5) 

The hazard rate (or hazard function), z(t), is the failure density, conditional on no failure 
occurring prior to time t. Using the rules of conditional probability, the hazard rate is given by: 

z(t) = g(t)/R(t) (2-6) 

Differentiating Eq. (2-4) and combining with Eqs. (2-5) and (2-6) yields 

dR/R = - z(t)dt (2-7) 

which may be integrated with the boundary condition, R(O) = 1, to yield 

R~t) = Sex~01 
0 (2-8) 

From the reliability function, R(t), one can derive the expression for mean time between failures, 
commonly known as MTBF, an important intuitive measure of reliability (Tian, 1998):
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MTBF fJR( )d 
0 (2-9) 

Musa (1998) denotes the integral in Eq. (2-9) as the mean time to failure, also commonly 
known as MTTF. In conventional reliability the MTBF = MTTF + MTTR (where MTTR is mean 
time to repair or replace). However, Musa considers execution time to be the operative variable 
for software reliability, so the processes that challenge the software cease until the fault is 
repaired. According to this assumption, the MTTR has no influence on the occurrence of 
additional faults, so MTBF may be considered the same as MTTF.  

Additional terminology is employed to describe stochastic processes, which form the basis for 
some of the software reliability models. A stochastic process may be defined as a sequence of 
random variables. For example, the number of failures of a software system may be 
considered to be a random variable, but may take on only an integral value. If the software is 
tested, a particular value, N1, may be obtained; in another test, a second value, N2, may be 
obtained. This variability is because the exact nature, sequencing, and timing of inputs by 
users in the two tests are likely to be different. One can then view the number of failures at a 
given time as a selection of the result from an infinite set of experiments or tests (i.e., a 
stochastic process). Working with this stochastic modeling viewpoint, one may define the mean 
value function, m(t): 

m(t) = E{N(t)} (2-10) 
where 

m(t) - mean value function 
E{X(t)} - the expected value of the random variable X(t) resulting from a stochastic 

process 
N(t) - cumulative number of faults in the software system experienced at time t 

Based on these definitions, one may define the instantaneous failure rate, A(t): 

A(t) = dm(t)/dt (2-11) 

The instantaneous failure rate, A(t), is similar to the failure intensity, z(t). However, the failure 
intensity, z(t), is defined for a specific software system and its actual failure history; the 
instantaneous failure rate, A(t), is defined for a stochastic view of a software system, so the 
actual failure history is considered to be just one realization of a large number of identical 
software systems. As a consequence of this difference in viewpoint, the failure intensity, z(t), is 
generally a discontinuous function, while the instantaneous failure rate, A(t), is generally a 
continuous function.  

2.3.2 Software Reliability Models 

Several references provide compilations of the software failure models (Tian, 1998; Musa and 
Okumoto, 1983; Musa, 1998; Smith, 1997; Friedman and Voas, 1995; Smidts and Li, 2000).  
Smidts and Li propose four categories of software reliability models: (i) reliability growth models; 
(ii) input domain models; (iii) architectural models; and (iv) early prediction models. These 
categories are discussed in more detail in Section 3.2.1. Musa (1998) and Tian (1998) propose
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and use classification schemes for software failure models. Musa and Okumoto (1983) 
propose a classification scheme based on four attributes: 

(i) Time domain-whether the model uses calendar or execution time 
(ii) Category-whether the number of failures is finite or infinite, considering an infinite 

operating time 
(iii) Type-the mathematical distribution of failures, given the time domain used 
(iv) Group-the functional form of the failure intensity (in terms of time, for the finite 

category; in terms of expected number of failures experienced, for the infinite category) 

Some important reliability models have been classified according to this scheme, which are 
reproduced as Table 2-2.  

As discussed in Section 2.2, one way that software reliability is quite different from reliability for 
mechanical or electrical systems is that there are no physical mechanisms that would cause 
elapsed time to be linked to the probability of software failure. Software does not have 
processes like corrosion or wear that can cause failure. Real time is not necessarily the correct 
variable to model software reliability. One important characteristic of software reliability models 
is the fundamental variable used to characterize reliability, as indicated in the Musa 
classification scheme (see Table 2-2). Although the distinction is of theoretical importance, on 
a practical basis, the distinction tends to be submerged. First, in most situations, there is a 
rough proportionality between execution time and real time; in those circumstances, a simple 
constant relates the two approaches. For example, suppose a software system is operated by 
a business during its normal business hours (8 hours per day, 5 days per week), then the ratio 
of execution time to real time is 40 hours per week, 168 hours per week. Another reason that 
the distinction between execution time and real time is less apparent to the users of information 
about software reliability is that the developers of models for software reliability are well 
acquainted with the fact that users wish to incorporate the software reliability models into an 
overall analysis of system reliability. For this reason, the reliability model must operate using 
real time as the fundamental variable, so the model will be compatible with the remainder of the 
analysis.  

The Tian (1998) classification scheme has as its major division the input domain used by the 
model. Tian defines two types of software reliability models 

Software reliability growth models-use time as the fundamental modeling variable and 
make use of failure data recorded as a function of time 

Input domain reliability models-use input sequence as the fundamental modeling 
variable and analyze the probability of various input states and combine that with the 
probability that a given input state will cause failure
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Table 2-2. Software Reliability Model Classification Scheme Adapted from Musa (1998)

Class
- 'I I

I t

Exponential

Poisson

Musa (1975) 
Moranda (1975) 
Schneidewind (1975) 
Goel-Okumoto 
(1979)

Type

i i
Binomial

Jelinski-Moranda 
(1972) 
Shooman (1972)

Other

Goel-Okumoto 
(1978) 
Musa (1979) 
Keiler, etal. (1983)

Weibull Schick-Wolverton 
(1973) 
Wagoner (1973) 

C1 Schick-Wolverton 
(1978) 

Pareto Littlewood (1981)

Gamma Yamada-Ohba
Osahi, (1983)

I L ___________ I ___________

Family Type

Poisson Other 

Geometric Musa-Okumoto Moranda (1975) 
(1984) 

Inverse Littlewood-Verrall (1973) 
Linear 

Inverse Littlewood-Verrall (1973) 
Polynomial

Power Crow (1974)
L ______________ .1.

Note: The year in parentheses indicates the publication year of the initial paper articulating the model.

2.3.2.1 Software Reliability Growth Models 

Some of the important software reliability growth models identified by Tian (1998) and Musa 
(1998) are described in the next sections. It is important to understand that these methods for 
quantifying reliability of software are subject to challenge. In particular, the ability to predict the 
reliability of software for safety-critical applications may not be amenable to such 
straightforward reliability estimation. Section 2.3.4 discusses methods applicable to 
safety-critical applications.
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2.3.2.1.1 De-eutrophication Models

De-eutrophication (literally nutrient-removal) models are so named because the failure 
probability is functionally related to the number of defects remaining in the software system at a 
given time; this model presumes that the reliability of the software is growing, because software 
faults are observed and removed. The Jelinski-Moranda model assumes that the hazard rate 
(probability of failure per unit time) is proportional to the number of defects remaining in the 
software system. Thus, 

z; = (o(N- [i- 1] (2-11) 

where 
z; - hazard rate for the jh failure (i.e., after the discovery of the i- 1 failure) 
N - initial number of faults in the software 
p -- constant of proportionality 

Between observation and correction of failures, the hazard rate remains constant; the hazard 
rate is reduced by (p at each fault observation and removal. Thus, hazard rate as a function of 
time is a sequence of decreasing steps. The Shooman model is similar to the Jelinski-Moranda 
model, but uses slightly different parameters and counts failures over defined periods.  

Moranda proposed a slight variation on Eq. (2-11) 

z; = Zopqi-11 (2-12) 
where 

z0 - initial hazard rate 
SD - a constant, as before 

and it is required that T <1. The time history for this model is also a sequence of steps, with 
each step initiated by the discovery and correction of a fault. However, unlike the 
Jelinski-Moranda model [Eq. (2-11)], the steps in this model is of decreasing magnitude. This 
decrease in hazard rate reduction with successive fault observations accounts for the increased 
difficulty in observing and removing the remaining faults.  

2.3.2.1.2 Nonhomogeneous Poisson Process Models 

The stochastic view of software reliability modeling is discussed in Section 2.3.1. For this 
concept of reliability, a straightforward application of a Poisson process yields 

P[X(t) =n [m(t)] nem(f) (2-13) n! 

where 
X(t) - number of failures for the time interval (0,t) 
n - an integer 
m(t) - mean value function defined in Eq. (2-9)

2-9



Some of the named models in Table 2-2 may be obtained by specifying the functional form of 
m(t) in Eq. (2-13). This choice is equivalent to specifying the distribution of failures as a 
function of time, i.e., specifying the functional form of A(t), the instantaneous failure rate, as 
defined in Eq. (2-10). The Goel-Okumoto model (exponential model) is obtained by the 
following choice 

m(t) = N(1 - e-b) (2-14) 

and the Yamada-Ohba-Osaki model (S-shaped model) is obtained by the following choice 

m(t) = M1 - (1 + bt)e-bl (2-15) 

where 
N - estimated number of total defects 
b - a constant 

The S-shaped model is useful for describing a failure rate history that starts small, rises rapidly 
in a middle phase, and then slows down again when many of the faults have been detected 
and repaired.  

2.3.2.1.3 Generalized Poisson Model 

The Jelinski-Moranda model [Eq. (2-11)] may be generalized (i) by considering failures of a 
sequence of intervals of varying length and (ii) by considering the problem in the context of a 
stochastic process, rather than a deterministic process. A Poisson distribution is then used to 
describe the number of failures in each interval, as follows 

m,(t) = cp [N- Mi- . g,(t,, t2,..., t,) (2-16) 

where 
mi(t.) - mean value function described in Eq. (2-9) and is given here as the expected 

value of f4, the number of failures in interval i 
tj -- test length of interval i 
N - estimated total number of defects 
Mi - defects discovered and removed in the th interval 
D -- a constant of proportionality, as before 

ggi- a function of tj that has a specific form for a particular named model 

Named models result when specific functional forms are chosen for the functions fi and gi.  
In particular 

The Jelinski-Moranda model [Eq. (2-11)] results for the choices: f4 = 1 and g = ti. Note 
that for these choices, mi(ti) = q4[N - MAl]ti, so dm/dt = (p[N - Mi.,] = A(t) = z(t), which is 
the same result as in Eq. (2-11), except this expression is on a per-interval basis, while 
Eq. (2-11) is on a per-failure basis. As before, the precise mathematical distinctions 
between a deterministic versus a stochastic viewpoint are neglected.  

The Schick-Wolverton model results for the choices: fi = 1 and gi = ti2/2. For these 
choices, the instantaneous failure rate becomes A(t) = p[N-Mjj]tz, which, unlike the
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result for the Jelinski-Moranda model is not constant, but increases linearly with time.  
The probability of observing a failure increases as the square of time.  

2.3.2.1.4 Execution Time Models 

Musa (1998) argues strongly that execution time, rather than real time, is the correct variable to 
use for estimating software failure and failure rates; however, he acknowledges that real time is 
a more natural measure, is better understood by the user community, and can usually be 
converted to execution time by multiplying by a computer utilization factor. The Musa basic 
execution time model (Poisson/exponential/finite failure model, see Table 2-2) is 

A(-c) = AO0 exp( -Advo) -r (2-17) 
where, 

A(r) - instantaneous failure rate (= dm/dz-) 
T - execution time (not real time t) 
A - initial failure intensity at the beginning of execution 
vo - expected number of failures for an infinite time 

By assuming a logarithmic Poisson model, the Musa-Okumoto model 
(Poisson/geometric/infinite failure model) was obtained as shown in Eq. (2-18) 

rn(•) = e-1 log(Aoe T + 1) (2-18) 

where 
-T - execution time 
m(-r) - mean value function described in Eq. (2-9) 
e - failure intensity decay parameter, which is the fractional decrement of failure 

intensity with time 
Ao - initial failure intensity at the beginning of execution 

Because of their different time dependencies, the Musa basic model and the Musa-Okumoto 
model may be used to bound the actual failure history from above and below, respectively.  

2.3.2.1.5 Schneidewind Model 

The Schneidewind model provides the following estimate for the mean value function 

m, = (a/p)[e-0'-1) - e-'] (2-19) 
where 

m, is the expected number of failures in the fh interval, where all intervals have equal 
lengths and a and P3 are model-fitting parameters, which permit variable weighting of 
recent and older failures.
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2.3.2.1.6 Littlewood-Varrell Model

The Littlewood-Varrell model assumes that the faults are independent and their arrival time is 
described by an exponential distribution. No execution time is allocated to repair, because, 
generally, the software will be taken out of service until the fault is repaired. The instantaneous 
failure rate is given by 

A\(-r) = [(n-i).a]/[I + -;i + c] for ";i < - < r1 (2-20) 
where 

"- -- execution time (not the real time t) 
n - initial number of faults 
"j -- time of occurrence of the jh fault 
a - constants determined by fitting data 
P - constants determined by fitting data 

Using this model for instantaneous failure rate gives the following form for the mean 
value function 

m(-c) = [(n - i).a] . In {[P3 + -r + -r]/[p + -rj} (2-21) 

where the variables are defined as before. The values provided by Eqs. (2-20) and (2-21) are 
mean values. Because the Littlewood-Varrell model is based on Bayesian updating at each 
sequence, the instantaneous failure rate is described by a gamma distribution.  

2.3.2.2 Input Domain Reliability Models 

Input domain reliability models are substantially different from the time domain reliability models 
described in Sections 2.3.2.1.1 to 2.3.2.1.6. Unlike those models, the input domain models do 
not attempt to tie software reliability to time, neither execution time nor real time. Instead, the 
variable determining reliability is the input state of the software. Reliability, in this context, is 
defined as the probability of no failures, given a specific input state for the software 
(Tian, 1998).  

The input domain for a software model is defined by the set of inputs for the software and the 
probabilities that various inputs will occur. These probabilities are based on anticipated or 
actual usage patterns for the software. Suppose N different input variables, E,, must be 
specified in order for the software to execute a run. Each model input may be considered to be 
an N-component vector, E1 ,where j = 1,2 .... N indicates the particular input variable and 
i= 1,2 .... M indicates the enumeration (label) for each distinct input vector. Associated with 
each input vector, i, is a scalar, P,, which is the probability that the particular input vector will be 
used (the Pi conforms to the three postulates of probability theory). The Pi comprises the 
operational profile for the software system.  

As one example of an input domain reliability model, consider the Nelson model. An estimate 
of the reliability is obtained from a sample of n out of the M possible input vectors. A key 
assumption for the Nelson model is that no repair of faults is undertaken during the test. These 
n samples are randomly selected according to the input domain probabilities, P,. The estimated 
reliability is then given by:
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where 

R -- input domain reliability, as defined previously; 
f - number of failures encountered for a randomly selected sample of n inputs 

Note that exhaustive testing of all M input vectors is usually not an option for anything but the 
simplest software; this inability to test complexity is one reason why the value obtained from Eq.  
(2-22) is only estimate of reliability.  

Brown and Lipow provided a generalization of the Nelson model by partitioning the inputs into 
separate domains, Dk. In this case, a separate failure rate is calculated for each domain, and 
the reliability is based on a probability-weighted sum 

N 

R n1- KJP(Dk) (2-23) 
k=1k 

where 
fk - number of failures for testing domain k 
nk - number of domains 
P(Dk)- probability that inputs in domain, Dk, will be used in the application of the 

software 

Each domain, Dk, contains a subset of the input vectors, E., which are constrained in some 
fashion by the particular domain definition. Once again, since only a representative sample will 
be used from each domain, the value provided by Eq. (2-23) is only an estimate of 
the reliability.  

2.3.3 Difficulties in Quantifying Software Reliability 

Given these descriptions of various methods to quantify the reliability of software, it is important 
to point out that such methods have been seriously questioned and criticized by experts in the 
field of software reliability. These criticisms tend to fall into two categories: (i) theoretical issues 
regarding the applicability of various assumptions to quantifying software reliability (e.g., that a 
suitable variable to compute reliability is time) and (ii) practical issues regarding the feasibility of 
obtaining data for reliability models (e.g., obtaining failure data in a reasonable time with a 
reasonable amount of testing for highly reliable software). Smidts and Li (2000) indicate that 
"identification of a complete set of software engineering measures from which software 
reliability can be predicted" is not feasible at this time. Pan (1999) indicates that determination 
of software reliability is difficult because (i) understanding the nature of software is limited, 
(ii) there is no clear identification of what aspects of software are determinants of reliability, 
(iii) suitable measures for software reliability are not available, and (iv) there is lack of 
agreement on the definition of basic software characteristics (e.g., software size). Butler and 
Finelli have written several papers on the infeasibility of quantifying software reliability (Butler 
and Finelli, 1991,1993). Work by Butler and Finelli (1991) identifies the theoretical problem in 
assuming that separately programmed subsets of code will be statistically independent.
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Evidence is presented that coding performed by separate groups suffered from common faults 
and failures. A practical problem identified is that to give software a high level of reliability, 
using a standard reliability growth model (these are discussed in Section 2.3.2), an infeasible 
amount of testing is required. For example, in order to reach a range of ultra-reliability, with 
failure rates of 10-7 to 10-9 per hour, accelerated testing of the software would need to proceed 
for decades. The impracticality of determining reliability by testing, for highly reliable software, 
is repeated in a paper by Butler and Johnson (1993). It is asserted that to certify a probability 
of failure of 10-` for a 1-hour mission, testing must be done for 109 hours (i.e., 114,000 years).  
Similarly, Leveson (1991) indicates that although testing software to ascertain high reliability is 
currently infeasible, it may be possible with technological advances.  

The difficulty of quantifying software reliability implies that for repository preclosure safety, the 
issue needs to be approached with caution. Although it would be desirable to have a simple 
and accepted method for quantifying software reliability so the implications for repository safety 
could be quantified, such a method is not currently available. A practical approach of limited 
testing of various reliability quantification methods seems appropriate, while the software 
engineering field continues research on reliability quantification methods and while DOE 
develops more details on the exact nature of the software systems it plans to use. In addition, 
procedural approaches, such as those contained in various standards, provide an additional 
yardstick by which to judge the effectiveness of the DOE effort.  

2.3.4 Software Reliability in Safety-Critical Systems 

Although software reliability may be estimated by a variety of methods, as discussed in 
Section 2.3.2, to use such methods in a straightforward manner in a risk analysis may, at best, 
substantially overestimate the risks or, at worst, obfuscate the true risks and system 
vulnerabilities needing improvement. This potential for over-estimation results from the 
fundamental definition of failure used in software reliability analysis. Any behavior produced by 
the software that does not meet the user's specification is considered a failure. For example, 
consider the possible failures of a hypothetical software system used for repository operations.  

1. To provide input to the system, each user must sign on with an identification and 
password. The software fails to obscure the password on the user's monitor, when a 
user types it in.  

2. To maintain the computer system, including hardware, operating system, and firmware 
updates, the software execution must be stopped periodically. The software fails to exit 
normally, and the computer must be manually turned off to end the program execution.  

3. For security purposes and to ensure worker safety, the software tracks the entry and 
exit of personnel into certain critical areas, so that sources of high radiation fields 
(e.g., waste containers, spent nuclear fuel assemblies) are not collocated with 
personnel. The software tracks each person with a unique identification number input to 
the system by a card reader at the entry point to the critical area. The software 
successfully tracks the entry and exit to the critical area of each personal identification 
number, but incorrectly associates the number with the person's name.
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4. As part of the operations in the cask carrier-handling system, the shipping cask is 
upended on the transport vehicle, so it can be placed on a cart in the Waste Handling 
Building (CRWMS M&O, 2000b). To minimize exposure of workers to radiation, the 
upending operation is controlled by the software system, after the lifting yoke is attached 
to the cask trunnions. Because of a software fault, the software may begin the 
upending operation before both sides of the yoke have been fastened to the cask or 
before the cask hold-downs have been released. This software failure may result in 
injury to workers or damage to the crane, the Waste Handling Building cart, the cask, or 
critical components of the Waste Handling Building with an associated possibility of 
radiological hazard.  

Although Failure 1 is technically a failure and may pose a slight security risk, it is unlikely to be 
safety related. Failure 2 is technically a failure, but is probably only an annoyance to the 
system operators. Failure 3 is also technically a failure, but is not likely to be safety related as 
long as the software consistently misidentifies workers. Failure 4 is not only a technical failure, 
but presents a potentially serious safety hazard. Clearly Failure 4 is the type to focus on. The 
issue, then, is what system of analysis will (i) identify critical parts of the software system that 
are safety related and (ii) provide a method for correcting or avoiding such software faults.  

The following definitions taken from Lawrence (1 995b) help to clarify the distinctions between 
software reliability and safety-critical software reliability: 

Safety-critical software is software whose inadvertent response to stimuli, 
failure to respond when required, response out-of-sequence, or response in 
unplanned combination with others can result in an accident or the exacerbation 
of an accident. This includes software whose operation or failure to operate can 
lead to a hazardous state, software intended to recover from equipment 
malfunctions or external insults, and software intended to mitigate the severity of, 
or recover from, an accident.  

A critical system is a system whose failure may lead to unacceptable 
consequences. The results of failure may affect the developers of the system, its 
direct users, their customers, or the general public. The consequences may 
involve loss of life or property, financial loss, legal liability, regulatory actions, or 
even the loss of good will if that is extremely important. The term safety critical 
refers to a system whose failure could lead to loss of life, injury, or damage to 
the environment. For nuclear reactors, this includes radiation releases or 
exposure to the public or operators and reactor workers. [Note: a generalized 
version would say facility workers instead of reactor workers].  

Hazard analysis is the process of identifying and evaluating the hazards of a 
system, and then either eliminating the hazard or reducing its risk to an 
acceptable level (National Institute of Standards and Technology, 1993).  

Software hazard analysis ".. . eliminates or controls software hazards and 
hazards related to interfaces between the software and the system (including 
hardware and human components) it includes analyzing the requirements,
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design, code, user interfaces and changes" (National Institute of Standards and 
Technology, 1993).  

Several authors have proposed approaches to software reliability in safety-critical systems. For 
example, over a period of decades, Leveson and her associates have developed a 
methodology, Safeware, to provide modeling and hazard analysis for complex systems 
comprised of a mix of hardware, software, and human elements (Leveson, 1995; 
Leveson, et al.,1997; Reese and Leveson, 1997). This methodology extends to computer 
controlled systems, the hazard analysis techniques developed to address safety and reliability 
for the hardware aspects of electromechanical systems. This methodology identifies system 
hazards and uses a process of software hazard analysis and control while software is being 
developed. Analysis continues during the software development process, rather than being 
performed at the end in an attempt to demonstrate that a particular level of safety has been 
achieved or to otherwise qualify the software. To accomplish this analysis, a variety of 
analytical, management, and software development techniques are deployed, including 
fault-tree analysis, human-error analysis, completeness and consistency analysis, deviation 
analysis, test data coverage analysis, system engineering analyses, and operator training.  

Smith (1999) provides a brief summary of approaches for safety-critical software. He points out 
that software fault-tree analysis (as proposed by Leveson) is an effective means of identifying 
safety-critical aspects of software. Formal methods, including model-, logic-, and net-based 
(e.g., Petri net) approaches, may improve the success of safety-critical software. Some 
programming languages, such as Ada, have been especially designed to produce fail-safe 
software. Finally, use of standards for software development helps to achieve safe system 
operation.  

It is clear from this modest examination of safety-critical software development methods, 
practices, and analytical tools that both software development and safety analysis must be 
performed in an integrated manner; separation of software considerations, from the remainder 
of a safety-critical system, will produce erroneous results and perhaps unsafe conditions. An 
integrated analysis is required.
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3.1

3 SUMMARY OF NRC GUIDANCE AND RESEARCH ON SOFTWARE 
RELIABILITY ANALYSIS 

Existing NRC Guidance on Software Reliability Analysis

Existing U.S. Nuclear Regulatory Commission (NRC) guidance on software reliability analysis 
and software quality assurance is largely contained in the NRC Regulatory Guide series.  
Additional guidance may also be found in other forms, such as standard review plans, branch 
technical positions, and other documents. The NRC regulatory guides are placed in 10 
divisions; all the guides related to computer software are in Division 1-Power Reactors. Table 
3-1 lists those guides related to computer software. Subsequent sections provide a brief 
description of these regulatory guides.  

All existing NRC guidance on software reliability analysis and computer software is written for 
nuclear power reactors. This limitation raises the question of whether the NRC staff will 
develop specific guidance for repository operations or whether existing guidance can be used.  

Table 3-1. NRC Regulatory Guides Related to Software Reliability 

Regulatory Title 
Guide Number 

1.152 Criteria for Digital Computers in Safety Systems of Nuclear Power 
Plants 

1.168 Verification, Validation, Reviews, and audits for Digital Computer 
Software Used in Safety Systems of Nuclear Power Plants 

1.169 Configuration Management Plans for Digital Computer Software Used 
in Safety Systems of Nuclear Power Plants 

1.170 Software Test Documentation for Digital Computer Software Used in 
Safety Systems of Nuclear Power Plants 

1.171 Software Unit Testing for Digital Computer Software Used in Safety 
Systems of Nuclear Power Plants 

1.172 Software Requirements Specifications for Digital Computer Software 
Used in Safety Systems of Nuclear Power Plants 

1.173 Developing Software Life Cycle Processes for Digital Computer 
Software Used in Safety Systems of Nuclear Power Plants
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The regulatory guides in Table 3-1 are briefly described in the following sections.  

Regulatory Guide 1.152 describes a method acceptable to the NRC staff for complying 
with the Commission's regulations for promoting high functional reliability and design 
quality for the use of digital computers in safety systems of nuclear power plants. The 
term computer refers to a system that includes computer hardware, software, firmware, 
and interfaces. This regulatory guide endorses, with exceptions, IEEE 
Standard 7-4.3.2-1993. An important regulatory position articulated is that 'The staff 
does not endorse the concept of quantitative reliability goals as a sole means of meeting 
the Commission's regulations for reliability of the digital computers used in 
safety systems." 

Regulatory Guide 1.168 describes an acceptable means to demonstrate compliance 
with the quality assurance requirements of 10 CFR Part 50 Appendix B. It endorses, 
with exceptions, IEEE Standard 1012-1986. Some important exceptions to the Institute 
of Electrical and Electronics Engineers standard, which reveal the NRC approach to 
software safety issues, include the following: 

- The definition of critical software is narrowed to apply only to safety-related 
systems within the context of the regulations and guidance 

- The staff does not endorse the concept of quantitative reliability goals as a sole 
means of meeting the Commission's regulations for reliability of the digital 
computers used in safety systems.  

- Although the Institute of Electrical and Electronics Engineers standard does not 
require independence in performing software verification and validation, NRC 
requires it 

- The requirement in the Institute of Electrical and Electronics Engineers standard, 
for reperforming verification and validation tasks if the software is changed, is 
tied into the regulatory requirement for reasonable assurance that operations 
can be conducted without endangering public health and safety 

- Post-development verification of off-the-shelf software is not allowed 

- Records of verification and validation activities must be maintained as quality 
assurance records 

- Certain steps in verification and validation, listed as optional in the Institute of 
Electrical and Electronics Engineers standard, are determined to be mandatory 
in this NRC guidance 

Regulatory Guide 1.169 endorses IEEE Standard 828-1990 on software configuration 
management plans, with exceptions.  

Regulatory Guide 1.170 endorses ANSI/IEEE Standard 829-1983, Institute of Electrical 
and Electronics Engineers Standard for Software Test Documentation, with exceptions.

3-2



Regulatory Guide 1.171 endorses ANSI/IEEE Standard 1008-1987, Institute of 
Electrical and Electronics Engineers Standard for Software Unit Testing, with 
exceptions. The exceptions relate to the independence of the software unit testing and 
requirements for record keeping.  

Regulatory guide 1.172 endorses IEEE Standard 830-1993, Institute of Electrical and 
Electronics Engineers Recommended Practice for Software Requirements 
Specifications, with exceptions. An important exception states: For safety system 
software, unnecessary requirements should not be imposed. There may be documented 
variations in essential requirements, but the variations must be linked in the software 
requirements specifications either to site and equipment variations or to specific plant 
design bases and regulatory provisions.  

Regulatory Guide 1.173 endorses IEEE Standard 1074-1995, Institute of Electrical and 
Electronics Engineers Standard for Developing Software Life Cycle Processes, with 
exceptions. An important exception is the additional requirement that: Planned and 
documented software safety analysis activities should be conducted for each phase of 
the software development life cycle. The regulatory guide then lists the analyses that 
should be identified in the applicant life cycle model related to inputs, activity 
descriptions, and outputs.  

3.2 NRC Research on Software Reliability Analysis 

NRC has sponsored some significant research on software reliability over the last decade, 
including significant efforts at The University of Maryland, Center for Technology Risk Studies 
and Lawrence Livermore National Laboratory, Fission Energy and Systems Safety Program.  

3.2.1 University of Maryland Research 

A recent report, Software Engineering Measures for Predicting Software Reliability in Safety 
Critical Digital Systems (Smidts and Li, 2000), was prepared under a joint research agreement 
between the NRC and the University of Maryland. The focus of this report is the evaluation of 
various software reliability measures. Software reliability measures are defined in this report as 
"the degree to which a software system, component, or process possesses a given software 
attribute. For instance, the measure Line of Code assesses the physical size of a code..." 
Ultimately an expert elicitation is used to rate various reliability measures for various phases of 
the software life cycle. Although the report attempts to determine the best "reliability predictions 
system-a complete set of software engineering measures which can be used to predict 
software reliability" for estimating the reliability of instrument and control software, it is found 
that the question cannot be definitively answered at this time. The report identifies several 
software reliability measures that are good candidates for inclusion in an effective software 
reliability prediction methodology.  

The report first defines reliability as the probability that the digital system will successfully 
perform its intended safety function (for all conditions under which it is expected to respond) 
upon demand with no unintended functions that might affect system safety. Note that this 
definition departs from the standard definition of software reliability by introducing the concept 
of failure on demand and relating failure to performance of a safety function.
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Four categories of models are considered for modeling the reliability of software (note that the 
Smith classification scheme is different from that used in Section 2.3.2) 

* Reliability growth models-extrapolate failure data and trends to predict subsequent 
reliability behavior 

* Input domain models-derive a probability of success from the properties of the input 
domain of the software and the results of test cases designed to cover the input domain 

* Architectural models-derive reliability estimates based on the architecture of the 
software and the reliability behavior of its constituent modules 

* Early prediction models-bases reliability estimates on the characteristics of the 
software development process extrapolated to the operational phase 

For each of these categories, a problem with its use for reliability prediction was identified.  

a Reliability growth models-for highly reliable software, the amount of testing required to 
quantify the reliability is excessive and impractical 

0 Input domain models-a problematic assumption is that a finite set of equivalence 
classes can represent and test for the infinite input domain 

* Architectural models-this approach requires the failure rates or probability of transition 
to a failure state for components of the software system, information that is generally not 
available or readily obtainable 

* Early prediction models-a problematic assumption is that empirical relationships 
derived from a subset of software development applies to safety-critical systems 

Based on these concerns, this report extends an evaluation begun by Lawrence Livermore 
National Laboratory (Lawrence, et al., 1998). Of the 78 measures identified by the Lawrence 
Livermore National Laboratory team, the University of Maryland team reduced these to 30 by 
eliminating models and other measures on the basis of importance. Then 10 additional 
measures, not yet in use, were suggested by the group of experts. Next each member of the 
team of 10 experts was elicited to rank the various measures. The experts' inputs were ranked 
using multiattribute utility theory, the ranks were aggregated, and the results analyzed. This 
process identified the top-ranked measures for both object-oriented software systems and 
nonobject-oriented software systems; because the measures have strengths and weaknesses 
that depend on the phase of software development, the rankings were obtained for four phases 
of development: (i) requirements, (ii) design, (iii) implementation, and (iv) testing. In addition, 
families, which relate to the primary attributes of a measure, such as functional size, were also 
ranked, as for the measures.
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Lawrence Livermore National Laboratory Research

The Lawrence Livermore National Laboratory, Fission Energy and Systems Safety Program, 
produced a series of reports for the NRC related to software reliability and the use of software 
in safety systems. The following briefly summarizes significant elements of this body of work: 

Techniques, Processes, and Measures for Software Safety and Reliability 
(Sparkman, 1992) reviews domestic and international standards related to software 
reliability and safety and identifies their similarities and differences. The field of software 
reliability is reviewed with a conclusion that two elements are required for highly reliable 
software: (i) good software engineering practices based in a life-cycle approach and 
(ii) assessing the reliability of software using reliability measurement techniques. Good 
practices for software engineering include using plans for software quality assurance, 
configuration management, verification, and validation; using coding standards; 
performing technical reviews and audits; using well-defined error-reporting procedures; 
employing risk management; and conducting safety analyses. Several groups of 
standards are identified. Those standards focusing on safety planning and analysis 
include IEEE 1228, MIL-STD-882B, MoD 00-55; those focusing on quality assurance 
include DoD 2167A and DoD 2168, FAA 13B, 16A and 18A, IEC 65A(Secretariat)122, 
IEC 880, and MoD 00-55; those that suggest schemes for relating hazard severity to 
software integrity levels include: MIL-STD-882B, IEC 65A(Secretariat)122, and MoD 
00-55 and MoD 00-56; two standards identifying software reliability measures and 
application guidance are IEEE 982.1 and IEEE 982.2.  

Survey of Industry Methods for Producing Highly Reliable Software (Lawrence and 
Warren, 1994) presents the result of an effort to identify current methods for software 
reliability by surveying a group of companies and organizations using or developing 
such methods. Methods were sought for measurement, estimation, error detection, and 
prediction of software reliability, which can be used during the software life cycle as an 
input to a risk assessment for nuclear power reactor safety systems. The companies 
surveyed included Computer Sciences Corporation, International Business Machines, 
Federal Systems Company, and Thompson Ramo Wooldridge. The organizations 
surveyed included National Aeronautics and Space Administration Software Engineering 
Lab/University of Maryland and American Institute of Aeronautics and Astronautics 
Software Reliability Project. The results of the interviews and discussion with the 
various entities are reported; however, no evaluation of this material is provided.  

Reviewing Real-Time Performance of Nuclear Reactor Safety Systems 
(Preckshot, 1993) develops guidance for the performance review of real-time computer 
systems used in nuclear powerplant safety systems. Three aspects of guidance are 
considered: (i) prototyping, (ii) timing analysis, and (iii) methods of estimating reliability 
of systems. This guidance was developed to avoid problems in this type of safety
critical software, such as late delivery of the system, operation that is too slow to 
perform critical safety functions, and defective software that cannot be economically 
rectified. Recommended prototypes include human factors, early prototypes to resolve 
technical questions, and validation prototypes to estimate software performance.  
Timing analysis should consider upper and lower bounds for the time of code execution, 
so that the software will behave predictably. In addition, code execution and
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communication times should be demonstrated to be correct and within limits. Final 
performance should be consistent with earlier indications from prototyping. Although the 
body of the report is short, two large appendices provide detail on methods of timing 
analysis, scheduling real-time computations, prototyping, real-time software 
development approaches, modeling and measurement, and real-time operating 
systems.  

Software Reliability and Safety in Nuclear Reactor Protection Systems (Lawrence, 1993) 
reviews software reliability methods and discusses the software life cycle and how 
actions taken during the life cycle may enhance the reliability of the resulting software 
product. Two important points made in the report include (i) software reliability should 
not be a separate activity from the reliability of the rest of the system (hardware and 
humans) and (ii) assuring the safety and reliability of software must be accomplished by 
activities during all phases of the life cycle. Reliability-enhancing activities for various 
phases of the software life cycle are identified and discussed.  

Software Safety Hazard Analysis (Lawrence, 1995b) proposes a method for performing 
software safety hazard analysis, based on an evaluation of published methods, 
approaches, and standards. The approach to software safety hazard analysis retains 
the generic goals of hazard analysis: (i) encouragement of design changes to reduce or 
eliminate hazards and (ii) performance of analyses and tests to enhance confidence in 
the reliability of critical system elements. The methodology focuses on the potential 
effects on system hazards from the correct functioning of the software, as well as the 
incorrect functioning of the software. Methods for estimating the reliability of software 
are not considered part of the methodology, but an extensive appendix reviews tools for 
software reliability analysis. An important point articulated is that the "software hazard 
analysis should be performed within the context of the overall system design." Two 
aspects of the overall system are important for analyzing software hazards: (i) those 
attributes generated by the safety requirements for the overall system (e.g., limits on 
public doses offsite at the repository) and (ii) those attributes generated by the primary 
mission of the overall system that could affect safety (e.g., the disposal of waste for the 
repository). The analysis must consider the role that software plays in accomplishing 
both the system safety function and its overall mission, through system control and 
monitoring functions. A description of the relationship between software safety analysis 
and overall system safety analysis is provided in IEEE Standard 1228.  

An Overview of Software Safety Standards (Lawrence, 1995a) is a short paper providing 
an overview of software safety standards available at the time the paper was written.  
No claim is made that the compilation is complete. An interesting aspect of the paper is 
the following list of organizations developing software safety standards: 

-Multidisciplinary societies 
-British Computer Society 
-International Electrotechnical Commission
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-Institute of Electrical Engineers 
-Institute of Electrical and Electronics Engineers 

-Government organizations 
-Canadian Standards Association 
-Deutsches Institut fur Nomrung e.V.  
-United States Department of Defense 
-United Kingdom Ministry of Defence 
-National Aeronautics and Space Administration 

-Industry sector societies 
-American Nuclear Society 
-American Society of Mechanical Engineers 
-Electronics Industry Association 
-Instrument Society of America 
-Requirements and Technical Concepts for Aviation 
-Underwriter's Laboratories 

3.2.3 National Institute of Standards and Technology Research 

In the early 1990s the NRC sponsored some work by the National Institute of Standards and 
Technology. One product of this research (Wallace, 1992) is a study of standards, draft 
standards, and guidelines establishing requirements to assure the safety and quality of 
software operated in association with safety systems in nuclear powerplants. This study 
(i) articulated attributes of a standard needed to provide assurance of safety, (ii) found a high 
degree of variability in the requirements and precision of existing standards, and 
(iii) recommended that a standard be developed specifically for software deployed in 
nuclearpower plant safety systems. A second product by the National Institute of Standards 
and Technology (Wallace, 1994) was the proceedings of a workshop held jointly by the NRC 
and the National Institute of Standards and Technology on September 13-14, 1993, entitled, 
Digital Systems Reliability and Nuclear Safety. The workshop had participants from industry, 
including the nuclear power industry, academia, and the regulatory community. Topics 
discussed at this workshop included possible inadequacies in current software engineering 
practices for safety-critical systems, methods for reducing risk in safety-critical software 
systems, proposed regulatory positions for nuclear powerplant systems, and proposed research 
associated with the use of digital systems in nuclear powerplants.
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4 DOE YUCCA MOUNTAIN PROJECT APPROACHES TO SOFTWARE 
RELIABILITY 

The DOE Yucca Mountain project has described some plans for software utilization during 
preclosure operations in the document Instrumentation and Controls for Waste Emplacement 
(CRWMS M&O, 2000a). Although the document does not provide complete descriptions of the 
repository preclosure safety operations (e.g., it only covers the Waste Emplacement/Retrieval 
System) or the plans for deployment of computer-controlled equipment, some important and 
interesting aspects of the planned use of software in safety-related repository operations are 
provided.  

Section 4.2 of this Department of Energy (DOE) report provides a list of design criteria for the 
Waste Emplacement/Retrieval System. These criteria are as follows (CRWMS M&O, 2000a): 

4.2.1-The waste system shall ensure that the possibility of an uncontrolled descent 
down the North or South Ramp of system equipment carrying a waste package is limited 
to less than 1 x 10-6 events/year (Criterion 1.2.2.1.1).  

4.2.2-The structures, systems, and components important to safety shall be designed 
to permit prompt termination of operations and maintain waste packages in a safe and 
sustainable position during an emergency (Criterion 1.2.2.1.5).  

4.2.3-The waste emplacement system shall be designed in accordance with the 
Project as low as is reasonably achievable program goals (TBD-406) and the applicable 
guidelines in "Information Relevant to Ensuring that Occupational Radiation Exposures 
at Nuclear Power Stations Will Be As Low As Is Reasonably Achievable" (Regulatory 
Guide 8.8) (Criterion 1.2.2.1.9).  

4.2.4-The system shall receive electrical power from the Subsurface Emplacement 
Transportation System (Criterion 1.2.4.11).  

4.2.5-The system shall receive and provide the operational information, status, and 
control data as outlined in the following Table 4-1 to the Monitored Geologic Repository 
Operations Monitoring and Control System (Criterion 1.2.4.13).  

4.2.6-The system shall include provisions for the inspection, testing, and maintenance 
of system equipment (Criterion 1.2.5.1).  

4.2.7-The inherent availability for the system shall be greater than 0.9485 
(Criterion 1.2.5.2).  

The numbered criteria listed previously refer to Waste Emplacement/Retrieval System 
Description document (CRWMS M&O, 2000c).
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Table 4-1. System Inputs/Outputs (CRWMS M&O, 2000a) 

Inputs Outputs 

Radiation monitoring data and status Equipment status and status of operations 

Subsurface electrical distribution system Equipment alarm status 
data and status monitoring 

Subsurface fire suppression system data Control equipment, status, and alarms 
and status monitoring 

Waste package identification and tracking Interlock status 
data 

Operational message advisory Video signals 

Activity plans and procedures Communications equipment status 

Emergency response commands Timeout warnings for handling equipment 

Mined geologic repository operational Control loads left in improper states 
alarm status (suspended loads, unattended controls) 

Remote control of system equipment Control equipment, status, and alarms 

These design criteria raise some concerns regarding the DOE approach to software reliability 
and safety in this context 

1. Criterion 4.2.4 requires that electrical power be received from the Subsurface 
Emplacement Transportation System. Safety may be enhanced by requiring the 
computer system, which may have safety-critical functions, to be powered by a source 
independent of that used to power the Subsurface Emplacement Transportation 
System. By introducing this increased redundancy, certain safety-critical monitoring and 
control functions can continue, even if the main power is lost.  

2. Criterion 4.2.7 requires an overall availability for the Waste Emplacement/Retrieval 
System. This is a system operability requirement, which is not necessarily related to 
safety; e.g., requiring that an assembly line operate 95 percent of the time does not 
necessarily assure safety of the workers or the product and may compromise safety.  
Consideration should be given to demonstrating that achievement of this criterion will 
not compromise the safety of the repository operations.  

The Instrumentation and Controls for Waste Emplacement document (CRWMS M&O, 2000a) 
lists a set of standards that will be used or adhered to for this part of the repository. The list is 
comprised solely of Institute of Electrical and Electronics Engineers standards.
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* ANSI/IEEE Std 352-1987. Institute of Electrical and Electronics Engineers Guide for 
General Principles of Reliability Analysis of Nuclear Power Generating Station Safety 
Systems.  

* ANSI/IEEE Std 577-1976. Institute of Electrical and Electronics Engineers Standard 
Requirements for Reliability Analysis in the Design and Operation of Safety Systems for 
Nuclear Power Generating Stations.  

* ANSI/IEEE Std 1008-1987. Institute of Electrical and Electronics Engineers Standard 
for Software Unit Testing.  

0 IEEE Std 7-4.3.2-1993. Institute of Electrical and Electronics Engineers Standard 
Criteria for Digital Computers in Safety Systems of Nuclear Power Generating Stations.  

0 IEEE Std 379-1994. Institute of Electrical and Electronics Engineers Standard 
Application of the Single-Failure Criterion to Nuclear Power Generating Station Safety 
Systems.  

a IEEE Std 603-1998. Institute of Electrical and Electronics Engineers Standard Criteria 
for Safety Systems for Nuclear Power Generating Stations.  

* IEEE Std 730-1998. Institute of Electrical and Electronics Engineers Standard for 
Software Quality Assurance Plans.  

0 IEEE Std 828-1998. Institute of Electrical and Electronics Engineers Standard for 
Software Configuration Management Plans.  

0 IEEE Std 829-1998. Institute of Electrical and Electronics Engineers Standard for 
Software Test Documentation.  

* IEEE Std 1028-1997. Institute of Electrical and Electronics Engineers Standard for 

Software Reviews.  

Some comments on the selection of these standards by DOE for repository operations include 

1. The criteria for selection of these standards has not been stated; statement of the 
criteria are an important aspect of judging the adequacy of the standards selected.  

2. A primary goal using a set of standards in this context is to assure safe operation of the 
repository; a secondary, but very important goal, is demonstrating to the NRC with 
reasonable assurance that the repository will be safely operated. It is not clear that this 
subset of standards will assure that these important goals are met.  

3. Guidance issued by NRC for software used in nuclear safety applications (mostly 
nuclear power plant applications) endorses certain industry standards, in many cases 
with exceptions. This DOE selection of standards is different and does not address the 
exceptions noted in NRC guidance (e.g., R.G. 1.152 endorses IEEE 
Standard 7-4.3.2-1993 with exceptions). It may be important to resolve the inconsistency 
between the standards adopted by DOE and those adopted with exceptions by NRC.
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4. Some standards adopted by NRC for software used in nuclear safety applications are 
not among those adopted by DOE for the repository. It may be important to determine 
whether these omitted standards should be included by DOE to assure safe operation.  

Section 6 of the DOE report (CRWMS M&O, 2000a) provides a broad description of the 
possible use of computer automation for emplacement operations. No definitive statements are 
made regarding the degree of automation for emplacement operations, but an entire range of 
options from a little to complete automation is discussed. In those cases in which automation 
would be increased, more sensing devices, such as position sensors, would need to be 
included in the system design. In those cases in which automation would be lessened, remote 
observation and control devices (e.g., television cameras and monitors and joysticks to control 
transporters) would need to be included in the system design. In addition to emplacement 
operations, digital control systems are expected to operate other safety-related functions, such 
as surface waste handling system, subsurface ventilation system, subsurface transportation 
system, power distribution system, repository environmental (temperature, humidity) monitoring, 
radiation monitoring systems, fire detection and suppression systems, personnel and process 
monitoring systems, emergency response, security and access control systems, warning and 
alarm systems (CRWMS M&O, 2000a).  

The DOE has taken a cautious approach to adopting digital technology for preclosure 
repository operations. Although the advantages of digital control systems are recognized, so 
are their potential liabilities. The report by the National Research Council (1997) prepared for 
the NRC is cited for some of this cautious attitude. Four issues articulated in the National 
Research Council report are discussed by DOE 

0 Systems Aspects of Digital Instrumentation and Control 
* Software Quality Assurance 
* Common-Mode Software Failure Potential 
* Safety and Reliability Assessment Methods 

The concern stated regarding the first two issues is that suitable programs for (i) system 
integration and (ii) software quality assurance may be so costly and require so much time to 
accomplish, that the use of digital systems for repository preclosure operations may be 
impractical. An approach to resolving the vulnerabilities that may arise, when a single computer 
controls many repository functions, is to use a defense-in-depth strategy 
(CRWMS M&O, 2000a).  

Defense-in-depth design strategies include use of redundant systems, use of 
diverse technologies and systems, physical separation of redundant or backup 
systems, and incorporation of fault-tolerant design features.  

Most of the defense-in-depth strategies cited by DOE are more applicable to hardware than 
software systems. Only fault-tolerant (fail-safe) design is commonly applied, while introduction 
of true redundancies in software has proven to be difficult. The DOE also states that another 
issue with adopting digital controls systems is that use of commercial off-the-shelf hardware 
and software is attractive only if a suitable and cost-effective process can be formulated for the 
technology's dedication (i.e., approval and acceptance) by the NRC (CRWMS M&O, 2000a).  
The approach adopted is to assume that the qualification process will preserve a significant part 
of the cost advantages of using off-the-shelf hardware and software. The report briefly
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discusses NRC involvement in software reliability and cites many of the Lawrence Livermore 
National Laboratory documents described in Section 4.2.2; however, the NRC Regulatory 
Guides on this topic do not seem to be acknowledged.  

Section 6.5 of the report (CRWMS M&O, 2000a) provides some detail for the instrumentation, 
controllers, and communication devices being considered for the repository. The DOE has 
undertaken survey of available equipment and practices and includes a broad range of devices 
and system sophistication. Among the devices considered were programmable logic 
controllers; multiple, distributed, and embedded microcontrollers, and microprocessing units.  
Although some detail included in Section 6.5 is informative, the level of detail is conceptual and 
mainly addresses the functions of various subsystems. The nature of the components 
comprising the subsystems, much less the software systems that control and connect the 
subsystems, are not specified because these design choices have not yet been made.
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5 SOFTWARE RELIABILITY IN THE MINING INDUSTRY

There are significant differences between conventional mining operations and preclosure 
operations at the proposed Yucca Mountain repository. The substantial investigations of 
software reliability and safety in mining operations should be considered in the evaluation of 
safety in preclosure operations, especially those underground. Especially pertinent in these 
evaluations of software reliability and mining safety is the consideration of computer-controlled 
heavy machinery in operations in which human life is at risk.  

Extensive work has been performed on computer reliability and mine safety as a joint effort of 
the Mine Safety and Health Administration and National Institute for Occupational Safety and 
Health (Dransite, 2000; Sammarco et al., 1997, 2001). A major product of these activities has 
been the issuance of the report, Programmable Electronic Mining Systems: Best Practice 
Recommendations (in Nine Parts), which has developed recommendations for safety of 
processor-controlled mining equipment. The audience for these recommendations includes 
mining companies, original equipment manufacturers, and aftermarket suppliers to mining 
companies. The major elements of these recommendations include the following: 

Introduction to Safety-This introductory discussion for the benefit of the mining industry 
presents the basic concepts of system and software safety, indicates the need within the 
mining industry to address the safety of programmable electronic controllers used for 
mining equipment, and asserts the benefits of implementing a program of system and 
software safety.  

System Safety-This discussion draws heavily on IEC Standard 61508 (International 
Electrotechnical Commission, 1998) and other standards to develop a set of 
recommendations for the safe, life-cycle development of both surface and underground 
mining systems that use embedded programmable electronic devices, both networked 
and non-networked.  

Software Safety-This discussion draws heavily on IEC Standard 61508 (International 
Electrotechnical Commission, 1998) and other standards to develop a set of 
recommendations for the safe, life-cycle development of the software subsystem of 
mining systems using programmable electronic devices.  

Safety File-This discussion describes the documentation required to demonstrate that 
the system will meet a prescribed level of safety for the intended application. This 
documentation identifies the limitations on the safe use of the system, is begun at the 
design stage, and is maintained throughout the entire life-cycle of the equipment, 
thereby providing the administrative records for the safety program.  

Safety Assessment-These recommendations provide for an independent evaluation of 
the information contained in the Safety File, to determine its completeness, suitability, 
and justification.  

Safety Framework Guidance-These recommendations provide a lower level of 
guidance that is more application oriented. The document reinforces safety and 
analytical concepts, describes a variety of methods that are applicable, provides
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examples, and references. Although this guidance does not claim to be exhaustive in its 
content, it does provide references to additional material that can be used, depending 
on the capabilities of the user and the issues confronted.  

This guidance is voluntary guidance developed by these government agencies, because a 
nonregulatory, cooperative approach was chosen.  

The issue of software safety arose in the mining industry in the late 1980s. More mining 
equipment with electronic programmable controllers, was being marketed and used as the 
practice of longwall mining grew (Dransite, 2000). In a longwall mining operation, which is 
highly automated, coal is cut from the face of a seam and carried away by a conveyor system.  
While the coal is being cut and removed, a set of hydraulically operated shields support the 
mine roof that is over the equipment and miners. As the mine face is completely mined, the 
hydraulic roof supports are sequentially advanced. This complex operation, Shearer-Initiated 
Roof Support Advance is controlled by programmable electronics. When the support is 
removed from sections of the roof, it subsides onto the mine floor. Clearly, the advance of the 
roof supports is a safety-critical operation. Industry and government agencies received many 
reports of accidents and near misses involving or attributable to the programmable electronics.  
The term ghosting was commonly used to depict the unexpected behavior of the electronically 
controlled devices. Although the new mining machinery provided considerable improvements in 
the safety of the working environment for the miners, the introduction of these electronic 
devices also introduced new and unfamiliar hazards. The following quote from Dransite 
(Dransite, 2000) graphically illustrates the type of safety-critical, life-threatening problems 
caused by a combination of malfunctioning equipment, improper maintenance, and inadequate 
operator training: 

A shield unexpectedly lowered and injured a face foreman (foreman controlling 
operations at mine faces) at a longwall mine. There were also complaints from 
the same mine that shields were "ghosting" and creating a serious personnel 
safety hazard. The problems were found to be due primarily to failure of the 
mine operator to conduct timely maintenance. Additionally, operator training was 
inadequate for following proper operational procedures and sequences, and in 
providing guidance for recognizing improper system operation. In the above 
mine example, 24 shields out of 186 had defective magnetic position 
transducers. These transducers signaled the controller that a shield had 
properly advanced. Without a proper advance signal from the transducer, the 
system was programmed to attempt four advance retries and then go into a drop 
and drag mode where the shield canopy was lowered and the shield dragged 
into position by the face conveyor advance. This advance attempt would occur 
even if a shield had properly advanced. With so many shields giving errant 
advance indications, the PE (programmable electronic) controller fell minutes 
behind in attempting the shield advances. Someone on or near a shield 
undergoing this delayed advance attempt would perceive the movement to be 
ghosting. Additionally, the movement could pose a physical injury threat to 
someone positioned on the shield. Further compounding the problems, the 
operators were inputting manual commands to advance the face conveyor when 
it was still under automatic control. This produced additional unplanned 
movement when the automatic conveyor advance was later executed.
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Additional incidents and accidents described by Dransite (2000) include the following graphic 
illustrations of dangerous interactions between heavy machinery, electronically programmable 
controllers, and human operators.  

Problem: Shield advances out of sequence in the automatic mode, appearing to 
be ghosting 
Cause: Inadequate power supply current capacity 

Problem: Unexpected shield advance causes foot injury 
Cause: Lack of maintenance and a lack of understanding of system programming 

Problem: Foreman lost all toes of right foot while attempting to pass through the active 
shield advance area 
Cause: Failure to follow proper procedure by pausing the automatic system for 
safe passage 

Problem: Operator pinned by unexpected shield advance 
Cause: Sticking hydraulic valve 

Problem: System Emergency Stop Function worked intermittently 
Cause: A firmware change caused pulse width modulation of the drive signal to motor 
valves controlling the shields; this change allowed a 100-microsecond window in which 
an emergency stop command would not be executed, if the controller found the motor 
valve signal in an off state 

Problem: Unplanned shield movement 
Cause: An intermittent hardware fault in the shearer erroneous location information to 
be transmitted from the shearer controller to the shield advance system controller. In 
addition, a programming change in the shield advance system controller inadvertently 
deleted some code that rejected shearer location information outside reasonable 
parameters 

Problem: An unanticipated lowering of the shield canopy caused head and neck injury 
to a shearer operator 
Cause: Lack of maintenance on a defective position transducer caused the shield to go 
into a programmed drop and drag mode under this controller input condition 

Overall, four areas have been identified for improvement in automated machinery used in 
mines. They include: (i) operator training, (ii) timely maintenance, (iii) maintaining the integrity 
of enclosure sealing, and (iv) being alert to detect abnormal operating sequences, which might 
indicate software problems.  

An important conclusion from this literature is that significant effort has been applied to the 
interaction of humans, heavy machinery, and electronic controllers, including their software.  
However, the basic standards adopted by this industry and government collaboration are 
different from those adopted by DOE or NRC. The key standards used as the basis for the 
National Institute of Occupational Safety and Health/Mine Safety and Health Administration 
recommendations (Sammarco, et al., 2001) are
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IEC 61508 Parts 1-7, Functional Safety: Safety Related Systems (International 
Electrotechnical Commission, 1998) 

MIL-STD-882C, System Safety Program Requirements (U.S. Military Standard, 1993) 

Software in Programmable Components (Underwriter Laboratories, 1998) 

This raises the issue of the compatibility of these standards for heavy equipment controllers, 
which may be applicable to the Yucca Mountain operations, with the set of standards adopted 
by DOE, and with the set of standards adopted, with exceptions, by the NRC staff.
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6 CONCLUSIONS, RECOMMENDATIONS, AND ISSUES

6.1 Conclusions 

Specific, definitive conclusions about software reliability and (i) its role in preclosure repository 
safety and (ii) how it should be incorporated into the analysis of preclosure safety require 
additional investigation, further development of the PCSA Tool (Dasgupta, et al., 2001) and, 
most importantly, further details about repository operations from DOE. A few general 
conclusions can be made.  

Software reliability, particularly in the context of safety-critical systems, has received 
considerable study over the past 30 to 40 years. There is no need to develop new 
software reliability methodologies for specific application to the problems of repository 
preclosure safety. Instead, an appropriate method(s) needs to be selected for use in 
each phase of repository development and each review of the safety analysis. Because 
of the large amount of information available on this subject, selection of a methodology 
based on a logical rationale is not likely to be simple, straightforward, or effortless.  

Software reliability could be a significant aspect of preclosure repository safety and 
should be addressed in the safety analysis review.  

Before a quantitative capability for software reliability is incorporated into the PCSA 
Tool, further evaluation is needed to assure that (i) quantification will provide meaningful 
results; (ii) the capability will be compatible with the remainder of the analysis; and (iii) 
an integrated approach to safety evaluation will be achieved.  

Because software reliability has strong interactions with the hardware system and 
human operators, an integrated analysis for safety evaluation is needed.  

The effort and detail of the software reliability analysis used as part of the PCSA Tool 
should be consistent with the level of detail in the remaining aspects of the analysis and 
the availability of information about the repository design and operational characteristics, 
especially the hardware, software, and human components.  

The level of detail that appears to be available from DOE on the use of electronic 
programmable controllers and computer systems, including the embedded software 
systems, is insufficient to provide a basis for incorporating a quantitative capability into 
the PCSA Tool. Furthermore, the level of detail makes a qualitative evaluation of the 
safety aspects of the software for preclosure operations infeasible, except at a generic 
and superficial level.  

The NRC has been among the leaders in applying software reliability analysis methods 
to problems of nuclear safety; adoption of methodologies developed or used by the NRC 
is advocated for the benefits that include: ready acceptance by the regulatory staff, NRC 
staff familiarity and experience in use of these methods, and familiarity and acceptance 
by the broader nuclear safety community. Currently, the NRC staff have not considered 
any methodology for quantifying software reliability to be sufficiently accurate to use 
quantification as the sole determinant of system safety.
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The NRC has issued a large body of guidance related to software reliability analysis and 
procedures for enhancing software reliability. The NRC staff should determine which 
part of this guidance, if any, may be applicable to preclosure safety. Specifying which 
guidance is applicable will help to constrain the issues that need to be addressed by 
software reliability analysis incorporated into the PCSA Tool.  

6.2 Recommendations for Further Study 

Further evaluation of various software reliability models may be warranted as more 
detail regarding the hardware, software, and operations of the repository become 
available. With more detail available, possibly including failure data on the specific 
software to be deployed in the repository, an evaluation could be made to determine 
whether it is advisable to attempt quantification of the software reliability and if 
quantification is attempted, what specific models would be most appropriate.  

This report skimmed the surface on the literature, methods, and procedures for software 
reliability in the context of safety-critical systems. It would appear that these methods 
are extremely pertinent to preclosure repository safety. More investigation of these 
methods should be directed at enhancing the NRC/CNWRA review capability and 
providing tools for identifying vulnerabilities in DOE approaches and designs.  

Because software reliability analysis and software reliability in the context of safety
critical systems are subjects of current research, a modest effort should be devoted to 
monitoring developments in this dynamic field to assure that the most appropriate 
methods are available to evaluate repository safety.  

It is premature to attempt to put a quantitative capability into the CNWRA PCSA Tool.  
Further work is advised to develop a qualitative capability; in addition, an approach to 
quantifying a software reliability in the PCSA Tool should be investigated.  

Further evaluation of DOE documents related to software reliability and repository 
design and operations is advised.  

Additional investigation of experiences in the mining industry with software reliability is 
recommended, because this industry appears to be a good analogue for some 
repository operations and systems.
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Issues Arising from this Study

6.3.1 Technical and Policy Issues for Consideration by the NRC Staff 

The information reviewed in this initial survey raises some technical/policy issues that the NRC 
staff may wish to address.  

The NRC staff may wish to consider whether additional guidance should be articulated 
for software systems used in safety critical aspects of the repository. In particular, the 
existing regulatory guides related to software reliability are designed for nuclear power 
plants and, in some cases, gaseous diffusion plants; it is not clear that this guidance is 
suitable or sufficient for repository operations.  

The NRC guidance, the guidance ascribed to DOE, and the guidance recommended by 
the mining industry are not the same. The NRC may wish to consider to what degree 
these different guidance documents and principles should be reconciled.  

6.3.2 Informational Issues Related to DOE 

The information reviewed in this initial survey appears to identify some information needs to 
related to the DOE designs and plans.  

6.3.2.1 Questions about DOE Operational Plans for the Repository 

Some of these information needs relate to DOE operational plans.  

More mature approaches to software safety advocate an integrated approach that 
includes hardware, software, and human components of the system. DOE documents 
indicate, correctly, that there is some flexibility in assigning functions to humans or to 
automated systems with embedded software. It may be important for DOE to articulate 
how these assignments will be made, what principles or rationales will be used to make 
them, and the schedule for making these assignments.  

It may be important for DOE to articulate whether monitoring and control functions 
during the preclosure phase of repository development be centralized or distributed.  

6.3.2.2 Questions about DOE Designs.  

Some of these information needs relate to DOE designs.  

DOE should indicate what measures it employs to assure that software reliability 
considerations are being incorporated into the design of preclosure repository facilities.  
DOE should indicate how it is assuring that repository designs reflect good software 
safety principles, including: (i) an integrated approach incorporating hardware, software, 
and human performance considerations, (ii) a fail-safe approach for safety-critical 
software, (iii) a quantification of safety-related software reliability to demonstrate 
compliance with the applicable regulations, and (iv) a quantification of safety-related 
software reliability to demonstrate safe design and operation.
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DOE may wish to replace some of the current vagueness regarding the proposed 
software systems for the repository preclosure operations. Some of the information 
needed includes: (i) what is the software; (ii) what functions does it perform; (iii) what 
process was used to control the development of the software; (iv) what is the hardware; 
(v) what is the firmware; (vi) what is the operating system, if any; (vii) what is the history 
of faults and failures for this software; (viii) what is the revision history of the software; 
(ix) what failsafe protocols or requirements were used in developing the software; 
(x) what are the human, instrumentation, and communication interfaces for the 
software system.  

6.3.2.3 Information Needs Related to Questions About How DOE Will Incorporate 
Software Reliability Analysis Considerations Into Operational Planning and 
Facility Design 

Some of these information needs relate to how DOE will incorporate SRA considerations into 
operational planning and facility design.  

DOE may wish to articulate what strategy it will use to develop preclosure designs and 
operational plans in a consistent, unified fashion. In particular, DOE may wish to state 
what strategy will be used to integrate hardware, software, and human elements, for 
both design and operations.  

If operational planning continues to lag behind facility design, DOE may wish to consider 
and state how it will demonstrate that designs meet the applicable regulatory 
requirements and assure that software requirements and operational characteristics 
have sufficient reliability and safety features to compensate for potential human error 
during operations.
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