Distribution for Amendment No. 1 to Facility Operating Lieonse NPF-8

. 44 June 15, 1981 Docket File 50-364 LB#1 Rdg B. J. Youngblood R. Tedesco OELD R. Purple D. Eisenhut J. Thoma E. Reeves, ORB#1 I. Bailey (4 w/encl.), ADM G. Deegan - p-130 ADM (2) R. Diggs, LFMB A. Toalston, UFB/DE I. Dinitz, OSP 2016 AR NMSS M. Rushbrook 1981 JUN 22 U.S. NUCLEAR REGULATORS COMMISSION bcc: w/encl. L/PDR NRC/PDR TERA TIE NSIC ACRS (16) ASLBP

ASLAB

err

ocket No.: 50-364

JUN 1 5 1981

Mr. F. L. Clayton, Jr. Senior Vice President Alabama Power Company Post Office Box 2641 Birmingham, Alabama 35291

Dear Mr. Clayton:

Subject: Issuance of Amendment No. 1 to Facility Operating License NPF-8 -Joseph M. Farley Nuclear Plant, Unit 2

The Nuclear Regulatory Commission has issued Amendment No. 1 to Facility Operating License No. NPF-8 in response to your application dated May 5, 1981.

A copy of this amendment is enclosed. The amendment revises Appendix A Technical Specifications Surveillance Requirements 4.8.1.1.2.C.4.b) and 4.8.1.1.2.C.6.b) and corrects typographical errors as stated in the enclosed page changes.

This amendment was effective May 6, 1981. Telephone authorization was given for this amendment on May 6, 1981 and was confirmed by letter dated May 6, 1981.

A copy of the amendment with Appendix A Technical Specification page changes, the supporting Safety Evaluation and a related notice, which has been forwarded to the Office of the Federal Register for publication are enclosed.

Sincerely,

B. J. Youngblood, Chief Licensing Branch No. 1 Division of Licensing

1.	Amendment No. 1 to NPF-8
	w/Appendix A Technical
	Specification page changes
2.	Safety Evaluation
3.	Federal Register Notice

•	cc. see r	iekt page						
8:	062403	26	nof	gal objection		٨		
OFFICE	DL:LB#1	DL:LB#1	OEL	D 811	DL	@htt#h		
URNAME	MRushpyook/1	gJThomaT	J	Triby	BJ	000001000		 *****
ĐATE	6/2/81 \	6/J/81	6/	9/81/ 	6/	5 ^{(B1}		 •.
NRC FOR	1 318 (10/80) NRCM	0240	- <u> </u>	FFICIAL	BE		OPV	* USGPO: 1980-329-824

Mr. F. L. Clayton, Jr., Serior Vice President Alabama Power Company Post Office Box 2641 Birmingham, Alabama 35291

cc: Mr. W. O. Whitt Executive Vice President Alabama Power Company Post Office Box 2641 Birmingham, Alabama 35291

> Mr. Ruble A. Thomas Vice President Southern Company Services, Inc. Post Office Box 2625 Birmingham, Alabama 35202

Mr. George F. Trowbridge Shaw, Pittman, Potts and Trowbridge 1800 M Street, N. W. Washington, D. C. 20036

Mr. W. Bradford NRC Resident Inspector P. O. Box 24, Route 2 Columbia, Alabama 36319

JUN 1 5 1981

Ira L. Myers, M. D. State Health Officer State Dept. of Public Health State Office Building Montgomery, Alabama 36104

1

Honorable A. A. Middleton Chairman Houston County Commission Dothan, Alabama 36301

U.S. Environmental Protection Agency ATTN: EIS Coordinator Region IV Office 345 Courtland Street, N.E. Atlanta, Georgia 30308

Attorney General State Capitol Montgomery, Alabama 36104

ALABAMA POWER COMPANY

DOCKET NO. 50-364

JOSEPH M. FARLEY NUCLEAR PLANT, UNIT 2

FACILITY OPERATING LICENSE

Amendment No. 1 License No. NPF-8

1. The Nuclear Regulatory Commission (the Commission) has found that:

- A. The application for amendment by Alabama Power Company (the licensee), dated May 5, 1981, complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act) and the Commission's regulations set forth in 10 CFR Chapter I:
- B. The facility will operate in conformity with the license, as amended, the provisions of the Act, and the regulations of the Commission;
- C. There is reasonable assurance (i) that the activities authorized by this amendment can be conducted without endangering the health and safety of the public, and (ii) that such activities will be conducted in compliance with the Commission's regulations;
- D. The issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public; and
- E. The issuance of this amendment is in accordance with 10 CFR Part 51 of the Commission's regulations and all applicable requirements have been satisfied.

81	0 6	24	03	2	7
----	------------	----	----	---	---

RC FOR	1 318 (10/80) NRCM	⊖240	OFFICIAL	RECORD C	OPY		* USGPO: 1980-329-824
	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	•••••	••••••		••••••	
BATE		5. •					
JRNAME							·
	•••••	•••••		•••••		•••••	• • • • • • • • • • • • • • • • • • • •
OFFICE							

2. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment. Facility Operating License No. NPF-8 is hereby amended to read as follows:

- 2 -

(2) Technical Specifications

The Technical Specifications contained in Appendix A, as revised through Amendment No. 1, are hereby incorporated into this license. The licensee shall operate the facility in accordance with the Technical Specifications.

3. This license amendment was effective May 6, 1981.

FOR THE NUCLEAR REGULATORY COMMISSION

B. J. Youngblood, Chief

Licensing Branch No. 1 Division of Licensing

Date of Issuance: JUN 1 5 1981

Enclosure: Revised pages to Appendix A Technical Specifications

	*SEE PREVIO	US YELLOW FOR	CONCURRENCE.			
			i			
OFFICE	DL:LB#1*	DL:LB#1*	OELD S	DLAR		
SURNAME	MRushbrook/	gJThoma	STreby	BJY04ngb1ood		
ĐATE	6/8/81	6/9/81	6/Q/81	6/ 31	• • • • • • • • • • • • • • • • • • • •	
NRC FOR	M 318 (10/80) NRCM	0240	OFFICIAL	RECORD CC	 	 * USGPO: 1980-329-824

F. Prior public notice of this amendment was not required since it does not involve a significant hazards consideration nor amendment of a license of the type described in 10 CFR Section 2.106 (a)(2).

- 2 -

- 2. Accordingly, the license is amended by changes to the Technical Specifications as indicated in the attachment to this license amendment. Facility Operating License No. NPF-8 is hereby amended to read as follows:
 - (2) Technical Specifications

The Technical Specifications contained in Appendix A, as revised through Amendment No. 1, are hereby incorporated into this license. The licensee shall operate the facility in accordance with the Technical Specifications.

3. This license amendment was effective May 6, 1981.

Date of Issuance:

FOR THE NUCLEAR REGULATORY COMMISSION

B. J. Youngblood, Chief Licensing Branch No. 1 Division of Licensing

	Enclosure: Revised pa Technica	ges to Append 1 Specificati	ix A ons		(
			fu	100	Jo D	7			
				No.	\mathcal{I}	•		- 2	
2		·) A	1					
OFFICE	DL:LB#1	DL:LB#1	OEL	٦ (L	DL:LB#1				
SURNAME	MRoust Mrook/1		5 TAG	/E	3JYoungblood		•••••••••••••••••••••••••••••••••••••••	•••••	•••
ÐATE	6/2/81	6/2/81	6/3/8 X	e	5/ /81				•••
NRC FORI	l 1 318 (10/80) NRCM 6	9240	OFFICI	ALF	RECORD C	OPY	· · · · · · · · · · · · · · · · · · ·	* USGPO: 1980-329	-824

ATTACHMENT TO LICENSE AMENDMENT NO. 1

4.

FACILITY OPERATING LICENSE NPF-8

DOCKET NO. 50-364

Replace the following pages of the Appendix "A" Technical Specifications with the enclosed pages. The revised pages are identified by Amendment number and contain vertical lines indicating the area of change.

PAGE REVISIONS

3/4 8-4 3/4 8-5

PAGE CHANGES FOR TYPOGRAPHICAL ERRORS

XII 3/4 3-39 3/4 3-60a 4-13 3/4 3/4 4-17 3/4 4-34 3/4 7-3 3/4 7-13 3/4 7-52 3/4 8-20 3/4 8-22 8-24 3/4 3/4 8-25 3/4 8-26 3/4 8-28 3/4 8-31 3/4 9-16 6-22

OFFICE			 			
URNAME						
ĐATE						
NRC FOR	И	318 (10/80) NRCM	 1.	RECORD C	L	* USGPO: 1980-329-824

LIMITING C	CONDITIONS FOR OPERATION AND SURVEILLANCE REQUIREMENTS	
SECTION		PAGE
<u>3/4.11 R/</u>	ADIOACTIVE EFFLUENTS	
3/4.11.1	LIQUID EFFLUENTS	
	Concentration	3/4 11-1
	Dose	3/4 11-5
	Liquid Waste Treatment	3/4 11-6
	Liquid Holdup Tanks	3/4 11-7
3/4.11.2	GASEOUS EFFLUENTS	
0, 11, 11	Dose Rate	3/4 11-8
	Dose-Noble Gases	3/4 11-12
	Dose-Radioiodines, Particulate, and	
	Radionuclides Other than Noble Gases	3/4 11-13
	Gaseous Radwaste Treatment	3/4 11-14
	Explosive Gas Mixture	3/4 11-15
	Gas Storage Tanks	3/4 11-16
3/4.11.3	RADWASTE SOLIDIFICATION	3/4 11-17
3/4.11.4	TOTAL DOSE	3/4 11-19
3/4.12	RADIOLOGICAL ENVIRONMENTAL MONITORING	
3/4.12.1	MONITORING PROGRAM	3/4 12-1
3/4.12.2	LAND USE CENSUS	3/4 12-10
3/4.12.3	INTERLABORATORY COMPARISON	3/4 12-11

INDEX

•

XI

INDEX

BASES	•
SECTION	PAGE
<u>3/4.0 APPLICABILITY</u>	B 3/4 0-1
3/4.1 REACTIVITY CONTROL SYSTEMS	
3/4.1.1 BORATION CONTROL	B 3/4 1-1
3/4.1.2 BORATION SYSTEMS	
3/4.1.3 MOVABLE CONTROL ASSEMBLIES	
3/4.2 POWER DISTRIBUTION LIMITS	
3/4.2.1 AXIAL FLUX DIFFERENCE	B 3/4 2-1
3/4.2.2 and 3/4.2.3 HEAT FLUX and NUCLEAR ENTHALPY HOT CHANNEL FACTORS	
3/4.2.4 QUADRANT POWER TILT RATIO	B 3/4 2-5
3/4.2.5 DNB PARAMETERS	B 3/4 2-5
3/4.3 INSTRUMENTATION	
3/4.3.1 and 3/4.3.2 REACTOR TRIP SYSTEM and ENGINEERED SAFETY FEATURE ACTUATION SYSTEM INSTRUMENTATION	B 3/4 3-1
3/4.3.3 MONITORING INSTRUMENTATION	B 3/4 3-2
3/4.3.4 TURBINE OVERSPEED PROTECTION	B 3/4 3-5
3/4.4 REACTOR COOLANT SYSTEM	
3/4.4.1 REACTOR COOLANT LOOPS AND COOLANT CIRCULATION	B 3/4 4-1
3/4.4.2 and 3/4.4.3 SAFETY VALVES	
3/4.4.4 PRESSURIZER	
3/4.4.5 RELIEF VALVES	B 3/4 4-2

XII

TABLE 3.3-6

RADIATION MONITORING INSTRUMENTATION

	INST	RUMEN	Ī	MINIMUM CHANNELS OPERABLE		PLICABLE MODES	ALARM/T SETPO		MEASUREMEN Range	ACTION	
1.	AREA	MONI	TORS	+							
	a.		Storage Pool (R-5)		1	(a)	<u><</u> 15 mf	R/hr	¹⁰⁻¹ -10 ⁴ n	nR/hr 23	
	b.	Conta	ainment Area (R-2	7A&B)	21,	2,3,4	N/A		$1 - 10^7 R_{e}$	/hr 27a	
2.	PROC	ESS M	DNITORS								
	a.		Storage Pool Are ous Activity- Ventilation Syst Isolation (R-25A	em	1	(b)	<u><</u> 8.73	x 10 ⁻³ µCi/cc(c) 10-10 ⁶ cj	om 25	
	b.	Cont i.	ainment Gaseous Activity a) Purge & Exhau Isolation (R-	st	1 1,2,3 1,2,3	1,2,3 (d 4,5,6 (d 4,5,6 (e 4,5,6 (f) < 2.27) < 2.27) < 4.54) < 2.27	x 10 ⁻² μCi/cc(c x 10 ₋₂ μCi/cc(c x 10 ₋₃ μCi/cc(c x 10 ₋₃ μCi/cc(c x 10 ⁻³ μCi/cc(c) 10-10 ⁶ cj)))	pm 26 26 26 26 26	
			b) RCS Leakage Detection (R-	12)	1	1,2,3 & 4	4	N/A	10-10 ⁶ cj	pm 24	
		ii.	Particulate Acti RCS Leakage Detection (R-11)	•	1	1,2,3 &	4	N/A	10-10 ⁶ c	pm 24	
	C.		rol Room ation (R35A&B)		1	l,2,3 & 4 during ma of irrad fuel or f of loads irradiat	ovement iated movement over	<u><</u> 800 срт	10-10 ⁶ ср	m 27	

ł

FARLEY-UNIT 2

3/4 3-39

Amendment No.

⊢

TABLE 3.3-12FIRE DETECTION INSTRUMENTATION
(Continued)

Auxiliary Building

Room/ Fire Zone	Description	Elevation	Total Smoke Detectors	Minimum of Operable Smoke Detectors
2401 2452 2462	Control Room Storage Area Non-Radioactive Vent Equip. Rm.	155'-0" 155'0" 155'-0"	4 7 5	2 4 3
2466 2471	West Cable Chase Control Rm. (Instrument Racks)	155'-0" 155'-0"	7 12	4 6
2500 <u>Containment*</u>	West Cable Chase	168'-2"	7	4
55 55	Containment Coolers Containment	155'-9" 155'-0"	12/Fan 14	6/Fan 7
Service Water	Intake Structure			
72 A 72 A 72 B 72 C 72 D 72 E 73 74	Pump Room Area Strainer Bay Switchgear Room - Train B Foyer - Train B Foyer - Train A Switchgear Room - Train A Battery Room - Train B Battery Room - Train A	188'-9" 167'-0" 188'-9" 188'-9" 188'-9" 188'-9" 188'-9"	12 12 1 1 1 2 1 1	6 1 1 1 1 1
Diesel Generat	tor Building			
56 A 56 B 56 C 71	Switchgear Room - Train A Foyer Switchgear Room - Train B Hallway	155'-0" 155'-0" 155'-0" 155'-0"	12 4 12 9	6 2 6 5
Diesel Genera	tor Building (Heat Detectors)			
57 59 60 61 62 64 65 66	Diesel Driven Generator 2C Diesel Driven Generator 2B Diesel Driven Generator 1C Diesel Driven Generator 1-2A Day Tank Room Day Tank Room Day Tank Room Day Tank Room	155'-0" 155'-0" 155'-0" 155'-0" 155'-0" 155'-0" 155'-0"	5 5 5 1 1 1 1	3 3 3 1 1 1

*The Fire Detection instruments located within the Containment are not required to be OPERABLE during the performance of Type A Containment Leakage Rate Tests.

SURVEILLANCE REQUIREMENTS (Continued)

- 9. <u>Preservice Inspection</u> means an inspection of the full length of each tube in each steam generator performed by eddy current techniques prior to service to establish a baseline condition of the tubing. This inspection shall be performed after the field hydrostatic test and prior to initial POWER OPERATION using the equipment and techniques expected to be used during subsequent inservice inspections.
- b. The steam generator shall be determined OPERABLE after completing the corresponding actions (plug all tubes exceeding the plugging limit and all tubes containing through-wall cracks) required by Table 4.4-2.

4.4.6.5 Reports

- a. Following each inservice inspection of steam generator tubes, the number of tubes plugged in each steam generator shall be reported to the Commission within 15 days.
- b. The complete results of the steam generator tube inservice inspection shall be submitted to the Commission in a Special Report pursuant to Specification 6.9.2 within 12 months following the completion of the inspection. This Special Report shall include:
 - 1. Number and extent of tubes inspected.
 - 2. Location and percent of wall-thickness penetration for each indication of an imperfection.
 - 3. Identification of tubes plugged.
- c. Results of steam generator tube inspections which fall into Category C-3 and require prompt notification of the Commission shall be reported pursuant to Specification 6.9.1 prior to resumption of plant operation. The written followup of this report shall provide a description of investigations conducted to determine cause of the tube degradation and corrective measures taken to prevent recurrence.

TABLE 4.4-1

MINIMUM NUMBER OF STEAM GENERATORS TO BE INSPECTED DURING INSERVICE INSPECTION

No. of Steam Generators per Unit	Three
First Inservice Inspection	Two
Second & Subsequent Inservice Inspections	One*

^{*}The other steam generator not inspected during the first inservice inspection shall be reinspected. The third and subsequent inspections may be limited to one steam generator on a rotating schedule encompassing 3 N % of the tubes (where N is the number of steam generators in the plant) if the results of the first or previous inspections indicate that all steam generators are performing in a like manner. Note that under some circumstances, the operating conditions in one or more steam generators may be found to be more severe than those in other steam generators. Under such circumstances the same sequence shall be modified to inspect the most severe conditions.

OPERATIONAL LEAKAGE

LIMITING CONDITION FOR OPERATION

3.4.7.2 Reactor Coolant System leakage shall be limited to:

- a. No PRESSURE BOUNDARY LEAKAGE,
- b. 1 GPM UNIDENTIFIED LEAKAGE,
- c. 1 GPM total primary-to-secondary leakage through all steam generators and 500 gallons per day through any one steam generator,
- d. 10 GPM IDENTIFIED LEAKAGE from the Reactor Coolant System, and
- e. 31 GPM CONTROLLED LEAKAGE at a Reactor Coolant System pressure of 2235 \pm 20 psig.
- f. 1 GPM leakage from any Reactor Coolant System Pressure Isolation Valve specified in Table 3.4-1 at a Reactor Coolant System pressure of 2235 = 20 psig.

APPLICABILITY: MODES 1, 2, 3 and 4

ACTION:

- a. With any PRESSURE BOUNDARY LEAKAGE, be in at least HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours.
- b. With any Reactor Coolant System leakage greater than any one of the above limits, excluding PRESSURE BOUNDARY LEAKAGE, reduce the leakage rate to within limits within 4 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.
- c. With any Reactor Coolant System Pressure Isolation Valve leakage greater that the above limit, isolate the high pressure portion of the affected system from the low pressure portion within 4 hours by use of at least two closed manual or deactivated automatic valves, or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.4.7.2.1 Reactor Coolant System leakages shall be demonstrated to be within each of the above limits by;

- a. Monitoring the containment atmosphere particulate radioactivity monitor at least once per 12 hours.
- b. Monitoring the containment air cooler condensate level system or containment atmosphere gaseous radioactivity monitor at least once per 12 hours.

Amendment No. 1

SURVEILLANCE REQUIREMENTS (Continued)

- c. Measurement of the CONTROLLED LEAKAGE from the reactor coolant pump seals at least once per 31 days when the Reactor Coolant System pressure is 2235 ± 20 psig with the modulating valve fully open. The provisions of Specification 4.0.4 are not applicable for entry into MODE 3 or 4.
- d. Performance of a Reactor Coolant System water inventory balance at least once per 72 hours.
- e. Monitoring the reactor head flange leakoff system at least once per 24 hours.

4.4.7.2.2 Each Reactor Coolant System Pressure Isolation Valve specified in Table 3.4-1 shall be demonstrated OPERABLE pursuant to Specification 4.0.5 except that in lieu of any leakage testing required by Specification 4.0.5, each valve should be demonstrated OPERABLE by verifying leakage to be within its limit.

- a. Every refueling outage during startup.
- b. Prior to returning the valve to service following maintenance, repair or replacement work on the valve affecting the seating capability of the valve.
- c. Following valve actuation due to automatic or manual action or flow through the valve for valves identified in Table 3.4-1 by an asterisk.
- d. The provisions of Specification 4.0.4 are not applicable for entry into MODE 3 or 4.

SURVEILLANCE REQUIREMENTS

4.4.10.3.1 Each RHR relief valve shall be demonstrated OPERABLE by:

- a. Verifying the RHR relief valve isolation valves (8701a, 8701b, 8702a and 8702b) are open at least once per 72 hours when the RHR relief valve is being used for overpressure protection.
- b. Testing in pursuant to Specification 4.0.5.
- c. Verification of the RHR relief valve setpoint, of at least one RHR relief valve, at least once per 18 months on a rotating basis.

4.4.10.3.2 The RCS vent shall be verified to be open at least once per 12 hours* when the vent is being used for overpressure protection.

*Except when the vent pathway is provided with a valve which is locked, sealed, or otherwise secured in the open position, then verify these valves open at least once per 31 days.

3/4.4.11 STRUCTURAL INTEGRITY

ASME CODE CLASS 1, 2 and 3 COMPONENTS

LIMITING CONDITION FOR OPERATION

3.4.11 The structural integrity of ASME Code Class 1, 2 and 3 components shall be maintained in accordance with Specification 4.4.11.

APPLICABILITY: All MODES

ACTION:

- a. With the structural integrity of any ASME Code Class 1 component(s) not conforming to the above requirements, restore the structural integrity of the affected component(s) to within its limit or isolate the affected component(s) prior to increasing the Reactor Coolant System temperature more than 50°F above the minimum temperature required by NDT considerations.
- b. With the structural integrity of any ASME Code Class 2 component(s) not conforming to the above requirements, restore the structural integrity of the affected component(s) to within its limit or isolate the affected component(s) prior to increasing the Reactor Coolant System temperature above 200°F.
- c. With the structural integrity of any ASME Code Class 3 component(s) not conforming to the above requirements, restore the structural integrity of the affected component(s) to within its limit or isolate the affected component(s) from service.
- d. The provisions of Specification 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.4.11.1 The structural integrity of ASME Code Class 1, 2 and 3 components shall be demonstrated;

- a. Per the requirements of Specification 4.0.5 and
- b. By the augmented program specified in Specifications 4.4.11.2 and 4.4.11.3

TABLE 3.7-3 STEAM LINE VALVES PER LOOP

·	VAL	VE NUMBER	LIFT SETTING (± 1%)*	ORIFICE SIZE (SQ. IN.)
	a.	Q2N11VO - 10A, 11A, 12A	1075 psig	16
	b.	Q2N11VO - 10B, 11B, 12B	1088 psig	16
	c.	Q2N11VO - 10C, 11C, 12C	1102 psig	16
	d.	Q2N11VO - 10D, 11D, 12D	1115 psig	16
	e.	Q2N11VO - 10E, 11E, 12E	1129 psig	16

*The lift setting pressure shall correspond to ambient conditions of the valve at nominal operating temperature and pressure.

ł

AUXILIARY FEEDWATER SYSTEM

LIMITING CONDITION FOR OPERATION

3.7.1.2 At least three independent steam generator auxiliary feedwater pumps and associated manual actuation switches in the control room and flow paths shall be OPERABLE with:

- a. Two auxiliary feedwater pumps, each capable of being powered from separate emergency busses, and
- b. One auxiliary feedwater pump capable of being powered from an OPERABLE steam supply system.

APPLICABILITY: MODES 1, 2 and 3.

ACTION:

- a. With one auxiliary feedwater pump inoperable, restore the required auxiliary feedwater pumps to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in HOT SHUTDOWN within the following 6 hours.
- b. With two auxiliary feedwater pumps inoperable be in at least HOT STANDBY within 6 hours and in HOT SHUTDOWN within the following 6 hours.
- c. With three auxiliary feedwater pumps inoperable, immediately initiate corrective action to restore at least one auxiliary feedwater pump to OPERABLE status as soon as possible.

SURVEILLANCE REQUIREMENTS

4.7.1.2.1 Each motor-driven and the turbine-driven auxiliary feedwater pump shall be demonstrated OPERABLE pursuant to Specification 4.0.5. For the turbine-driven pump, the provisions of Specification 4.0.4 are not applicable for entry into MODE 3.

4.7.1.2.2 Each auxiliary feedwater pump shall be demonstrated OPERABLE:

- a. At least once per 31 days by:
 - 1. Verifying that each non-automatic value in the flow path that is not locked, sealed, or otherwise secured in position, is in its correct position.

3/4.7.5 RIVER WATER SYSTEM

LIMITING CONDITION FOR OPERATION

3.7.5 At least two independent river water loops shall be OPERABLE with at least two river water pumps per loop.

APPLICABILITY: MODES 1, 2, 3 and 4.

ACTION:

With only one river water loop OPERABLE, restore at least two loops to OPERABLE status within 72 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.7.5 Each river water loop shall be demonstrated OPERABLE:

- a. At least once per 31 days by verifying that each valve (manual, power operated or automatic), in the flow path, servicing safety related equipment that is not locked, sealed, or otherwise secured in position, is in its correct position.
- b. At least once per 18 months during shutdown, by:
 - 1. Verifying that each automatic valve servicing safety related equipment actuates to its correct position on a low pond level signal.
 - 2. Verifying that the buried piping is leak tight by a visual inspection of the ground area.

3/4.7.6 ULTIMATE HEAT SINK

RIVER

LIMITING CONDITION FOR OPERATION

3.7.6.1 The ultimate heat sink (river) shall be OPERABLE with a minimum water level at or above 70'-0" Mean Sea Level, USGS datum, and a maximum water level at or below 127' Mean Sea Level.

APPLICABILITY: MODES 1, 2, 3 and 4.

ACTION:

With the requirements of the above specification not satisfied, be in at least HOT STANDBY within 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.7.6.1 The ultimate heat sink shall be determined OPERABLE at least once per 24 hours by verifying the water level to be within limits.

۰.

SURVEILLANCE REQUIREMENTS (Continued)

- With a half-life greater than 30 days (excluding Hydrogen 3), and
- 2. In any form other than gas.
- b. <u>Stored sources not in use</u> Each sealed source and fission detector shall be tested prior to use or transfer to another licensee unless tested within the previous six months. Sealed sources and fission detectors transferred without a certificate indicating the last test date shall be tested prior to being placed into use.
- c. <u>Startup sources and fission detectors</u> Each sealed startup source and fission detector shall be tested within 31 days prior to being subjected to core flux or installed in the core and following repair or maintenance to the source.

4.7.10.3 <u>Reports</u> - A report shall be prepared and submitted to the Commission on an annual basis if sealed source or fission detector leakage tests reveal the presence of greater than or equal to 0.005 microcuries of removable contamination.

3/4.7.11 FIRE SUPPRESSION SYSTEMS

FIRE SUPPRESSION WATER SYSTEM

LIMITING CONDITION FOR OPERATION

- 3.7.11.1 The fire suppression water system shall be OPERABLE with:
 - a. Two high pressure pumps, each with a capacity of 2500 gpm, with their discharge aligned to the fire suppression header,
 - Separate water supplies, each with a minimum contained volume of 250,000 gallons, and
 - c. An OPERABLE flow path capable of taking suction from each tank and transferring the water through distribution piping with OPERABLE sectionalizing control or isolation valves to the yard hydrant curb valves, the last valve ahead of the water flow alarm device on each sprinkler or hose standpipe, and the last valve ahead of the deluge valve on each deluge or spray system required to be OPERABLE per Specifications 3.7.11.2, 3.7.11.4 and 3.7.11.5.

APPLICABILITY: At all times.

ACTION:

- a. With one of the above required pumps and/or water supplies inoperable, restore the inoperable equipment to OPERABLE status within 7 days or, in lieu of any other report required by Specification 6.9.1, prepare and submit a Special Report to the Commission pursuant to Specification 6.9.2 within the next 30 days outlining the plans and procedures to be used to provide for the loss of redundancy in this system. The provisions of Specifications 3.0.3 and 3.0.4 are not applicable.
- b. With the fire suppression water system otherwise inoperable:
 - 1. Establish a backup fire suppression water system within 24 hours, and
 - 2. In lieu of any other report required by Specification 6.9.1, submit a Special Report in accordance with Specification 6.9.2:
 - a) By telephone within 24 hours,
 - b) Confirmed by telegraph, mailgram or facsimile transmission no later than the first working day following the event, and
 - c) In writing within 14 days following the event, outlining the action taken, the cause of the inoperability and the plans and schedule for restoring the system to OPERABLE status.

ACTION: (Continued)

e. With both of the above required diesel generator sets inoperable, demonstrate the OPERABILITY of two offsite A.C. circuits by performing Surveillance Requirement 4.8.1.1.1.a within 1 hour and at least once per 8 hours thereafter; restore at least one of the inoperable diesel generator sets to OPERABLE status within 2 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours. Restore both diesel generator sets to OPERABLE status within 72 hours from time of initial loss or be in least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.

SURVEILLANCE REQUIREMENTS

4.8.1.1.1 Each of the above required independent circuits between the offsite transmission network and the onsite Class 1E distribution system shall be:

- a. Determined OPERABLE at least once per 7 days by verifying correct breaker alignments, indicated power availability, and
- b. Demonstrated OPERABLE at least once per 18 months during shutdown by transferring unit power supply from the normal circuit to the alternate circuit.
- 4.8.1.1.2 Each diesel generator shall be demonstrated OPERABLE:
 - a. In accordance with the frequency specified in Table 4.8-1 on a STAGGERED TEST BASIS by:

1. Verifying the fuel level in the day tank,

- 2. Verifying the fuel level in the fuel storage tanks,
- 3. Verifying the fuel transfer pump can be started and transfers fuel from the storage system to the day tank,
- 4. Verifying the diesel starts from ambient condition and accelerates to at least 900 rpm, for the 2850 kw generator and 514 rpm for the 4075 kw generators, in less than or equal to 10 seconds. The generator voltage and frequency shall be \geq 3952 volts and \geq 57 Hz within 10 seconds after the start signal.
- 5. Verifying the generator is synchronized, loaded to greater than or equal to its continuous rating, and operates for greater than or equal to 60 minutes,

SURVEILLANCE REQUIREMENTS (Continued)

- 6. Verifying the diesel generator is aligned to provide standby power to the associated emergency busses.
- b. At least once per 92 days by verifying that a sample of diesel fuel from the fuel storage tank obtained in accordance with ASTM-D270-65 is within the acceptable limits specified in Table 1 of ASTM-D975-74 when checked for viscosity, water and sediment.
- c. At least once per 18 months by:
 - 1. Subjecting the diesel to an inspection in accordance with procedures prepared in conjunction with its manufacturer's recommendations for this class of standby service.
 - 2. Verifying the capability to reject a load of greater than or equal to the largest single load associated with that diesel generator, while maintaining voltage between 3120 and 4910 volts and speed less than or equal to 75% of the difference between nominal speed and the overspeed trip setpoint and verifying recovery to 4160 ± 420 volts and 60 ± 1.2 Hz within 2 seconds.
 - 3. Verifying the generator capability to reject a load equal to its continuous rating without tripping. The generator voltage shall not exceed 120% during and following the load rejection.
 - 4. Simulating a loss of offsite power by itself, and:
 - a) Verifying de-energization of the emergency busses and load shedding from the emergency busses.
 - b) Verifying the diesel starts on the auto-start signal, energizes the emergency busses with permanently connected loads within 10 seconds,* energizes the auto-connected shutdown loads through the load sequencer and operates for greater than or equal to 5 minutes while its generator is loaded with the shutdown loads. After energization of all loads, the steady state voltage and frequency of the emergency busses shall be maintained at 4160 ± 420 volts and 60 ± 1.2 Hz during this test.
 - 5. Verifying that on an Safety Injection test signal (without loss of offsite power) the diesel generator starts on the auto-start signal and operates on standby for greater than or equal to 5 minutes. The generator voltage and frequency shall be \geq 3952 volts and \geq 57 Hz within 10 seconds after the auto-start signal; the steady state generator voltage and frequency shall be maintained between 4160 ± 420 volts and 60 ± 1.2 Hz during this test.

*Energization of the Unit 2 emergency bus for diesel 2C is achieved within 24 seconds.

SURVEILLANCE REQUIREMENTS (Continued)

- 6. Simulating a loss of offsite power in conjunction with a Safety Injection test signal, and
 - a) Verifying de-energization of the emergency busses and load shedding from the emergency busses.
 - b) Verifying the diesel starts from ambient condition on the auto-start signal, energizes the emergency busses with permanently connected loads within 10 seconds,** energizes the auto-connected emergency (accident) loads through the load sequencer and operates for greater than or equal to 5 minutes while its generator is loaded with the emergency loads. After energization, the steady state voltage and frequency of the emergency busses shall be maintained at 4160 \pm 420 volts and 60 \pm 1.2 Hz during this test.
 - c) Verifying that all automatic diesel generator trips, except engine overspeed and generator differential and low lube oil pressure, are automatically bypassed upon loss of voltage on the emergency bus and/or a safety injection test signal.
- 7. Verifying the diesel generator operates for at least 24 hours. During the first 2 hours of this test, the diesel generator shall be loaded to greater than or equal to 4474 kw for the 4075 kw diesels and 3250 for the 2850 diesels and during the remaining 22 hours of this test, the diesel generator shall be loaded to greater than or equal to 4075 kw for the 4075 kw diesels and 2850 kw for the 2850 kw diesels. Immediately after completing this 24 hour test, perform Specification 4.8.1.1.2.c.4. The generator voltage and frequency shall be ≥ 3952 volts and ≥ 57 Hz within 10 seconds after the start signal; the generator voltage and frequency shall be maintained between 3120 and 4910 volts and 57 and 61.2 Hz during this test.*
- 8. Verifying that the auto-connected loads to each diesel generator do not exceed the 2000 hour rating of 4353 kw for the 4075 kw generator and 3100 kw for the 2850 kw generator.

*This surveillance is not required for MODE 3 or 4. This is a one time change to plant operations prior to initial criticality.

**Energization of the Unit 2 emergency bus for diesel 2C is achieved within 24 seconds.

FARLEY-UNIT 2

Amendment No. 1

SURVEILLANCE REQUIREMENTS (Continued)

- Verifying that with the diesel generator operating in a test mode (connected to its bus), a simulated safety injection signal overrides the test mode by returning the diesel generator to standby operation.
- 11. Verifying that the automatic load sequence timer is OPERABLE with each load sequence time within \pm 10% of its required value or 0.5 seconds whichever is greater.
- 12. Verifying that the following diesel generator lockout features prevent diesel generator starting only when required:
 - a) Oil Temperature High (OTH)
 - b) Coolant Temperature High (CTH)
 - c) Coolant Pressure Low (CPL)
 - d) Crankcase Pressure High (CCPH)
- d. At least once per 10 years or after any modifications which could affect diesel generator interdependence by starting the diesel generators simultaneously, and verifying that the diesel generators accelerate to at least 900 rpm, for the 2850 kw generator and 514 rpm for the 4075 kw generator, in less than or equal to 10 seconds.

4.8.1.1.3 <u>Reports</u> - All diesel generator failures, valid or non-valid, shall be reported to the Commission pursuant to Specification 6.9.1. Reports of diesel generator failures shall include the information recommended in Regulatory Position C.3.b of Regulatory Guide 1.108, Revision 1, August 1977. If the number of failures in the last 100 valid tests (on a per diesel type basis) is greater than or equal to 7, the report shall be supplemented to include the additional information recommended in Regulatory Position C.3.b of Regulatory Guide 1.108, Revision 1, August 1977.

FARLEY-UNIT 2

SURVEILLANCE REQUIREMENTS (Continued)

- (c) For each circuit breaker found inoperable during these functional tests, an additional representative sample of at least one of the circuit breakers of the inoperable type shall also be functionally tested until no more failures are found or all circuit breakers of that type have been functionally tested.
- 2. By selecting and functionally testing a representative sample of at least 10% of each type of lower voltage circuit breakers. Circuit breakers selected for functional testing shall be selected on a rotating basis. The functional test shall consist of injecting a current input at the specified setpoint to each selected circuit breaker and verifying that each circuit breaker functions as designed. For each circuit breaker found inoperable during these functional tests, an additional representative sample of at least 10% of all the circuit breakers of the inoperable type shall also be functionally tested until no more failures are found or all circuit breakers of that type have been functionally tested.
- 3. By selecting and functionally testing a representative sample of each type of fuse on a rotating basis. Each representative sample of fuses shall include at least 10% of all fuses of that type. The functional test shall consist of a non-destructive resistance measurement test which demonstrates that the fuse meets its manufacturer's design criteria. For each fuse found inoperable during these functional tests, an additional representative sample of at least 10% of all fuses of that type shall be functionally tested until no more failures are found or all fuses of that type have been functionally tested.
- b. At least once per 60 months by subjecting each circuit breaker to an inspection and preventive maintenance in accordance with procedures prepared in conjunction with its manufacturer's recommendations.

4.8.3.2 Power sources feeding circuits indicated by an asterisk (*) in Table 3.8-1 shall be verified to be interrupted by an open breaker or removed fuse at least once every 31 days.

TABLE 3.8-1

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

Device Number <u>and Location</u> 1. 4160VAC Switchgears		Trip Setpoint (Ampere)	Response Time (Seconds)	System Powered
1.	DA04 DB03 DC03	9600 9600 9600	.0108 .0108 .0108	Reactor Coolant Pump 2A Reactor Coolant Pump 2B Reactor Coolant Pump 2C
2.	600VAC Load Centers EA04*, [#] EA10 EB05 EB06 EC12 ED11 ED15 ED16 EE08 EE13 EE16	$1000 \pm 10\% \\ 1800 \pm 10\% \\ 1800 \pm 10\% \\ 1800 \pm 10\% \\ 1800 \pm 10\% \\ 1200 \pm 10\% \\ 1500 \pm 10\% \\ 1500 \pm 10\% \\ 1500 \pm 10\% \\ 1500 \pm 10\% \\ 1200 \pm 10\% \\ 1200 \pm 10\% \\ 1500 \pm 10\% \\ 1500 \pm 10\% \\ 1500 \pm 10\% \\ 1500 \pm 10\% \\ 10\% \\ 1500 \pm 10\% \\ 10\% \\ 1500 \pm 10\% \\ 10\% $.0718 .0105 .0105 .0105 .0105 .0105 .0105 .0105 .0105 .0105 .0105	Reactor Polar Crane Containment Cooler 2A (Normal) Containment Cooler 2B (Normal) Containment Cooler 2C (Normal) Containment Cooler 2D (Normal) CRDM Cooler Fan 2A Containment Cooler 2A (Emergency) Containment Cooler 2B (Emergency) Containment Cooler 2C (Emergency) CRDM Cooler Fan 2B Containment Cooler 2D (Emergency)
3.	600VAC Motor Control Centers FA-F7 FA-I6 FA-I5 FA-J5 FB-I3 FB-I4 FD-H7R*,# FB-J7 FB-A4R*,# FC-P3 FC-P4 FC-I2*,# FC-N3 FC-J3* FC-J5 FC-J5 FC-N4*,#	210 (INST) 10 (INST) 105 (INST) 105 (INST) 105 (INST) 105 (INST) 105 (INST) 400-700 105 (INST) 400-700 105 (INST) 105 (INST) 400-700 125 (INST) 125 (INST) 210 (INST) 330 (INST) 400-700	.01016 .01016 .01016 .01016 .01016 .01016 .01016 .01016 .01016 .01016 .01016 .01016 .01016 .01016 .01016 .01016 .01016 .01016 .01016	Reactor Cavity Clg Fan Mtr. 2/ Reactor Cavity Cool Fan Mov_ CTMT Post LOCA Air Mixing Fan 2D CTMT Post LOCA Air Mixing Fan 2C CTMT Post LOCA Air Mixing Fan 2B CTMT Post LOCA Air Mixing Fan 2A CTMT G1B Crane (N2T31K005-N) Reactor Cavity Clg Fan Mtr. 2/ CTMT Elevator No. 3 Controller CTMT Dome Recirc. Fan 2A CTMT Dome Recirc. Fan 2B RCP Motor Space Heaters RCP BRG Oil Lift Pump Refueling Wtr Surface Supply Refueling Wtr Surface Exhaust CTMT Pre-Access Fan Motors RCP Mtr Space Heaters 2C

Amendment No. 1

-

in contraction of the second s

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

$FC-J6L^{*,\#}$ 600-1000.01016Receptacles Term. Box 2A Reactor Cavity Filter Pmp Recep. $FC-J6R^*$ 400-700.01016Up Ending Frame Winch Mtr Recep. $FC-S1L^*,\#$ 400-700.01016Up Ending Frame Winch Mtr Recep. $FC-N2L^{*,\#}$ 400-700.01016CTMT GIB Crane (N2T31K004-N) Reactor Cavity Manipulator Crane $FC-S3R^{*,\#}$ 400-700.01016SW Port Drain Pump Recept. $FC-S3R^{*,\#}$ 400-700.01016CTMT GIB Crane (N2T31K006-N) SW Port Drain Pump Recept. $FD-56$ 125 (INST).01016CTMT Dome Recirculation Fanzo $FD-64$ 125 (INST).01016CTMT Sump Pump Mtr 2A CTMT Sump Pump Mtr 2A $FD-72$ 125 (INST).01016CTMT Sump Pump Mtr 2A Pump 28 $FD-62$ 125 (INST).01016CTMT Sump Pump Mtr 2A Pump 28 $FD-63^{*,\#}$ 400-700.01016Receptacles Term Box 2C Reactor Cool Drain Tank Pump 28 $FD-63^{*,\#}$ 600-1000.01016Receptacles Term Box 22 $FE-A4L^{*,\#}$ 600-1000.01016Receptacles Term Box 28 $FE-A5$ 105 (INST).01016Receptacles Term Box 28 $FU-62$ 29 (INST).01016Receptacles Term Box 28 $FU-84$ 100 (INST).01016Receptacles Term Box 28 $FU-84$ 12 (INST).01016Receptacles Term Box 28 $FU-84$ 12 (INST).01016Receptacles Term Box 28 $FU-84$ 10 (INST).01016Receptacles Term Box 28<	Device Number and Location	Trip Setpoint (Ampere)	Response Time (Seconds)	System Powered
FC-S3L* 400-700 .01016 Wp Ending Frame Winch Mtr FC-M4L*:# 400-700 .01016 CTMT GIB Crane (N2T31K004-N) FC-S3R*:# 400-700 .01016 CTMT GIB Crane (N2T31K006-N) FD-65 125 (INST) .01016 RCP BRG Oil Lift Pump FD-61 125 (INST) .01016 Reactor Cool Drain Tank FD-702 125 (INST) .01016 CTMT Sump Pump Mtr 2A FD-62 125 (INST) .01016 CTMT Sump Pump Mtr 2A FD-72 125 (INST) .01016 CTMT Sump Pump Mtr 2A FD-63*:# 400-700 .01016 CTMT Sump Pump Mtr 2A FD-64 330 (INST) .01016 Receptacles Term Box 2C FE-A6 330 (INST) .01016 Receptacles Term Box 2B FE-A31*.# 600-1000 .01016 Receptacles Term Box 2B FE-A41*.## 600-1000 .010				
FC-S31*# 400-700 .01016 Up Ending Frame Winch Mtr FC-M4L**# 400-700 .01016 CTM GIB Crane (N2T31K004-N) FC-N2L*** 400-700 .01016 Reactor Cavity Manipulator FC-S3R**# 400-700 .01016 CTM GIB Crane (N2T31K004-N) FC-S3R**# 400-700 .01016 SW Port Drain Pump Recept. FD-06 125 (INST) .01016 CTM GIB Crane (N2T31K006-N) FD-22 125 (INST) .01016 CTM GIB Crane (N2T31K006-N) FD-23 105 (INST) .01016 CTM Tome Recirculation FD-84 330 (INST) .01016 CTM Sump Pump Mtr 2A FD-22 125 (INST) .01016 CTM Sump Pump Mtr 2A FD-03*** 400-700 .01016 CTM Sump Pump Mtr 2A FD-64 330 (INST) .01016 CTM Sump Pump Mtr 2A FD-63*** 600-1000 .01016 Receptacles Term Box 2C FE-A6 330 (INST) .01016 Receptacles Term Box 2B FE-A6 130 (INST) .01016 Receptacles Term Box 2B FE-A1*** 600-1000 .01016	FC-J6R*	400-700	.01016	
FC-M4L**400-700 $01-016$ CTMT GIB Crane (N2T31K004-N) Reactor Cavity Manipulator CraneFC-S1R**400-700 $01-016$ CTMT GIB Crane (N2T31K006-N)FC-S3R**400-700 $01-016$ CTMT GIB Crane (N2T31K006-N)FD-06125 (INST) $01-016$ RCP BRG 0il Lift Pump Recpt.FD-12105 (INST) $01-016$ RCP BRG 0il Lift Pump Recpt.FD-22125 (INST) $01-016$ CTMT Sump Pump Mtr 2AFD-22125 (INST) $01-016$ CTMT Sump Pump Mtr 2AFD-22125 (INST) $01-016$ CTMT Sump Pump Mtr 2BFD-24330 (INST) $01-016$ RCP Mtr Space Heaters 2BFD-31**600-1000 $01-016$ Receptacles Term Box 2CFE-A6330 (INST) $01-016$ Receptacles Term Box 2BFE-A4L**600-1000 $01-016$ Receptacles Term Box 2BFU-6229 (INST) $01-016$ Receptacles Term Box 2BFU-H312 (INST) $01-016$ RHR Pumps Inlet MovFU-H410 (INST) $01-016$ RHR Pumps Inlet MovFU-H312 (INST) $01-016$ CTMT Air Cooling Fan MovFU-H410 (INST) $01-016$ CTMT Air Cooling Fan MovFU-K610 (INST) $01-016$ CTMT Air Cooling Fan MovFU-K412 (INST) $01-016$ CTMT To Atmos Diff Press MovFU-K412 (INST) $01-016$ CTMT To Atmos Diff Press MovFU-K412 (INST) $01-016$ CTMT Cooler Disch MOVFU-K412 (INST) $01-016$ CTMT	FC-S3L* "	400-700	.01016	
FC-N2L*** 400-700 .01016 Reactor Cavity Manipulator Cane FC-S3R**# 400-700 .01016 .CTMT GIB Crane (N2T31K006-N) FC-C5R**# 400-700 .01016 RCP BRG 0il Lift Pump RC Paint Pump Recept. FD-06 125 (INST) .01016 RCP BRG 0il Lift Pump CTMT Dome Recirculation Fan 20 FD-84 330 (INST) .01016 CTMT Sump Pump Mtr 2A FD-02 125 (INST) .01016 CTMT Sump Pump Mtr 2A FD-24 330 (INST) .01016 CTMT Sump Pump Mtr 2A FD-64 330 (INST) .01016 CTMT Sump Pump Mtr 2A FD-64 330 (INST) .01016 CTMT Sump Pump Mtr 2A FD-64 330 (INST) .01016 CTMT Sump Pump Mtr 2A FD-64 330 (INST) .01016 Receptacles Term Box 2C FE-64 330 (INST) .01016 Receptacles Term Box 2B FE-64 .00-1000 .01016 Receptacles Term Box 2B FE-64 .005 (INST) .01016 Receptacles Term Box 2B FE-64 .005 (INST) .01016 RCP Mark 20 FE-61 .055 (INST)	FC-M41 * * #			
FC-S3R**# 400-700 .01016 .CTMT GIB Crane (N2T31K006-N) FC-C5R**# 400-700 .01016 SW Port Drain Pump Recept. FD-D6 125 (INST) .01016 RCP BG 0il Lift Pump FD-E3 105 (INST) .01016 RCP BG 0il Lift Pump FD-E4 330 (INST) .01016 CTMT Dome Recirculation FD-E3 105 (INST) .01016 CTMT Sump Pump Mtr 2A FD-C2 125 (INST) .01016 CTMT Sump Pump Mtr 2A FD-C4 # 330 (INST) .01016 CTMT Sump Pump Mtr 2B FD-C4 # 600-700 .01016 CTMT Pre-Access Fan Mtrs FD-G3**# 600-1000 .01016 Receptacles Term Box 2C Pump 2A FE-A4L**# 600-1000 .01016 Incore Det. Drive & Cont. Pn1. FE-FH5 105 (INST) .01016 CTMT Air Cooling Fan Mov FU-H2 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H2 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H2 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H4	FC-N2L*,#			Reactor Cavity Manipulator
FC-CSR**" 400-700 .01016 SW Port Drain Pump Recept. [FD-06 125 (INST) .01016 RCP BRG Oil Lift Pump FD-84 .05 (INST) .01016 CTMT Dome Recirculation FD-22 125 (INST) .01016 CTMT Sump Pump Mtr 2A FD-24 .01 .01016 CTMT Sump Pump Mtr 2A FD-25 125 (INST) .01016 CTMT Sump Pump Mtr 2A FD-26 125 (INST) .01016 CTMT Sump Pump Mtr 2A FD-27 125 (INST) .01016 CTMT Sump Pump Mtr 2A FD-28 .00-700 .01016 RCP Mtr Space Heaters 2B FD-31** .000-700 .01016 Receptacles Term Box 2C FE-A41** .000-1000 .01016 Receptacles Term Box 2B FE-53 .05 (INST) .01016 Receptacles Term Box 2B FU-42 .02 (INST) .01016 Receptacles Term Box 2B FU-42 .02 (INST) .01016 RCP Mtr Space Heaters FU-43 .05 (INST) .01016 RCP Mtr Space Heaters FU-44 .05 (INST) .01016 CTMT Air Cooling Fan Mov </td <td>FC-538*,#</td> <td>400-700</td> <td>01- 016</td> <td></td>	FC-538*,#	400-700	01- 016	
FD-06 125 (INST) .01016 RCP BRG 0il Lift Pump FD-E3 105 (INST) .01016 CTMT Dome Recirculation FD-B4 330 (INST) .01016 Reactor Cool Drain Tank PUmp 2B 125 (INST) .01016 CTMT Sump Pump Mtr 2A FD-C2 125 (INST) .01016 CTMT Sump Pump Mtr 2A FD-C4 330 (INST) .01016 CTMT Sump Pump Mtr 2B FD-C4 330 (INST) .01016 CTMT Sump Pump Mtr 2A FD-63**# 400-700 .01016 Receptacles Term Box 2C FE-A4L**# 600-1000 .01016 Receptacles Term Box 22 FE-A5 105 (INST) .01016 Incore Det. Drive & Cont. Pnl. FE-K4L**# 600-1000 .01016 Incore Det. Drive & Cont. Pnl. FE-K1 105 (INST) .01016 CTMT Air Cooling Fan Mov FU-G2 29 (INST) .01016 CTM Air Cooling Fan Mov FU-H2 12 (INST) .01016 CTM Air Cooling Fan Mov FU-H4 10 (INST) .01016 CTM Air Cooling Fan Mov FU-H4 10 (INST) .01016 CT	FC-C5R**			
FD-E3 105 (INST) .01016 CTMT Dome Recirculation Fan 2D FD-B4 330 (INST) .01016 Reactor Cool Drain Tank Pump 2B FD-C2 125 (INST) .01016 .CTMT Sump Pump Mtr 2A FD-C4 330 (INST) .01016 .CTMT Sump Pump Mtr 2A FD-C4 330 (INST) .01016 .CTMT Sump Pump Mtr 2B FD-C4 330 (INST) .01016 CTMT Sump Pump Mtr 2B FD-C4 330 (INST) .01016 CTMT Sump Pump Mtr 2B FD-63*:# 400-700 .01016 RCP Mtr Space Heaters 2B FD-A31** 600-1000 .01016 Receptacles Term Box 2C FE-A6 330 (INST) .01016 Receptacles Term Box 2B FE-A5 105 (INST) .01016 Receptacles Term Box 2B FE-A6 330 (INST) .01016 Receptacles Term Box 2B FE-A5 105 (INST) .01016 Receptacles Term Box 2B FE-A41** 600-1000 .01016 Receptacles Term Box 2B FU-62 29 (INST) .01016 RCM Pumps Inlet Mov FU-43 102 (INST) .01016 CTM	ED-06			
FD-84 330 (INST) .01016 Fan 2D FD-C2 125 (INST) .01016 CMT Sump Pump Mtr 2A FD-02 125 (INST) .01016 CTMT Sump Pump Mtr 2A FD-04 330 (INST) .01016 CTMT Sump Pump Mtr 2A FD-63**# 400-700 .01016 CTMT Pre-Access Fan Mtrs FD-63**# 600-1000 .01016 RCP Mtr Space Heaters 2B FD-A31**# 600-1000 .01016 Receptacles Term Box 2C FE-A41**# 600-1000 .01016 Receptacles Term Box 2B FE-63 .05 (INST) .01016 Receptacles Term Box 2B FE-64 .05 (INST) .01016 Incore Det. Drive & Cont. Pnl. FE-62 .29 (INST) .01016 CTMT Air Cooling Fan Mov FU-62 .29 (INST) .01016 CTMT Air Cooling Fan Mov FU-H2 .12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H3 .12 (INST) .01016 CTMT Air Cooling Fan Mov FU-K6 .10 (INST) .01016 CTMT Air Cooling Fan Mov FU-K5 .10 (INST) .01016 CTMT Air Cooli				
FD-C2 125 (INST) .01016 .CTMT Sump Pump Mtr 2A FD-D2 125 (INST) .01016 CTMT Sump Pump Mtr 2B FD-C4 330 (INST) .01016 CTMT Pre-Access Fan Mtrs FD-G3*,# 400-700 .01016 RCP Mtr Space Heaters 2B FD-A3L*,# 600-1000 .01016 Receptacles Term Box 2C FE-A6 330 (INST) .01016 Receptacles Term Box 2B FE-A4L*,# 600-1000 .01016 Receptacles Term Box 2B FU-G2 29 (INST) .01016 Receptacles Term Box 2B FU-H2 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H4 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H4 10 (INST) .01016 <t< td=""><td></td><td></td><td></td><td>Fan 2D</td></t<>				Fan 2D
FD-D2 125 (INST) .01016 CTMT Sump Pump Mtr 2B FD-C4 330 (INST) .01016 CTMT Pre-Access Fan Mtrs FD-G3*,# 400-700 .01016 RCP Mtr Space Heaters 2B FD-A3L*,* 600-1000 .01016 Receptacles Term Box 2C FE-A6 330 (INST) .01016 Reactor Cool Drain Tank FE-A4L*,* 600-1000 .01016 Receptacles Term Box 2B FE-C3L 600-1000 .01016 Receptacles Term Box 2B FE-C3L 600-1000 .01016 Incore Det. Drive & Cont. Pnl. FE-H5 105 (INST) .01016 CTMT Air Cooling Fan Mov FU-H2 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H3 12 (INST) .01016 CTMT To Atmos Diff Press Mov FU-K4 22 (INST) .01016 CTMT Cooler Disch MOV FU-K4 12 (INST) .01016 CTMT Cooler Disch MOV FU-K4 12 (INST) .01016 Pressurizer to Relief Tank MOV RU-K4 12 (INST) .01016 Post ACDT Air Sampler From CTMT Mov RU-L5 12 (FD-B4	330 (INST)	.01016	
FD-D2 125 (INST) .01016 CTMT Sump Pump Mtr 2B FD-C4 330 (INST) .01016 CTMT Pre-Access Fan Mtrs FD-G3*,# 400-700 .01016 RCP Mtr Space Heaters 2B FD-A3L*,** 600-1000 .01016 Receptacles Term Box 2C FE-A6 330 (INST) .01016 Reactor Cool Drain Tank FE-A4L*,** 600-1000 .01016 Receptacles Term Box 2B FE-C3L 600-1000 .01016 Receptacles Term Box 2B FE-C3L 600-1000 .01016 Receptacles Term Box 2B FE-C3L 600-1000 .01016 Receptacles Term Box 2B FU-G2 29 (INST) .01016 CTMT Dome Recirc. Fan 2C FU-G2 29 (INST) .01016 CTMT Air Cooling Fan Mov FU-H2 12 (INST) .01016 CTMT To Atmos Diff Press Mov FU-H4 10 (INST) .01016 CTMT Cooler Disch Mov FU-K4 22 (INST) .01016 Pressurizer to Relief Tank MOV Pu-L4 12 (INST) .01016 Post ACDT Air Sampler From FU-K4 12 (INST) .0101	FD-C2	125 (INST)	.01016	· CTMT Sump Pump Mtr 2A
FD-C4 330 (INST) .01016 CTMT Pre-Access Fan Mtrs FD-G3*;# 400-700 .01016 RCP Mtr Space Heaters 28 FD-A3L*;# 600-1000 .01016 Receptacles Term Box 2C FE-A6 330 (INST) .01016 Receptacles Term Box 2C FE-A6 330 (INST) .01016 Receptacles Term Box 28 FE-A4L*;# 600-1000 .01016 Receptacles Term Box 28 FE-C3L 600-1000 .01016 Receptacles Term Box 28 FE-C3L 600-1000 .01016 Receptacles Term Box 28 FU-G2 29 (INST) .01016 Receptacles Term Box 28 FU-G2 29 (INST) .01016 CTMT Dome Recirc. Fan 2C FU-H2 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H3 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H4 10 (INST) .01016 CTMT Air Cooling Fan Mov FU-H4 10 (INST) .01016 CTM To Atmos Diff Press Mov FU-H4 10 (INST) .01016 CTM Tooler Disch MOV FU-K4 22 (INST) .01016 Post ACD				
FD-G3*,# 400-700 .01016 RCP Mtr Space Heaters 28 FD-A3L*,# 600-1000 .01016 Receptacles Term Box 2C FE-A6 330 (INST) .01016 Reactor Cool Drain Tank FE-A4L*,# 600-1000 .01016 Receptacles Term Box 2B FE-A4L*,# 600-1000 .01016 Receptacles Term Box 2B FE-C3L 600-1000 .01016 Incore Det. Drive & Cont. Pnl. FE-H5 105 (INST) .01016 CTMT Dome Recirc. Fan 2C FU-G2 29 (INST) .01016 CTMT Air Cooling Fan Mov FU-H2 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H3 12 (INST) .01016 CTMT To Atmos Diff Press Mov FU-K4 22 (INST) .01016 CTMT Cooler Disch Mov FU-K4 12 (INST) .01016 Pressurizer to Relief Tank MOV FU-L5 12 (INST) .01016 Post ACDT Air Sampler From FU-L4 12 (INST) .01016 Post ACDT Air Sampler From CTMT Mov FU-L5 12 (INST) .01016 Post ACDT Air Sampler From CTMT Mov	ED-04			
FD-A3L* 600-1000 .01016 Receptactes ferm box 2c 1 FE-A6 330 (INST) .01016 Reactor Cool Drain Tank Pump 2A FE-C3L 600-1000 .01016 Receptactes Term Box 2B 1 FE-C3L 600-1000 .01016 Incore Det. Drive & Cont. Pnl. FE-H5 105 (INST) .01016 CTMT Dome Recirc. Fan 2C FU-R2 29 (INST) .01016 CTMT Air Cooling Fan Mov FU-H2 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H3 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H4 10 (INST) .01016 CTMT To Atmos Diff Press Mov FU-K4 22 (INST) .01016 CTMT To Atmos Diff Press Mov FU-K4 10 (INST) .01016 CTMT Cooler Disch MOV FU-L4 12 (INST) .01016 CTMT Mov FU-L5 12 (INST) .01016 Post ACDT Air Sampler From CTMT Mov FU-T4 22 (INST) .01016 Post ACDT Air Sampler From FU-M4 12 (INST) .01016 Post ACDT Air Sampler Return Mov </td <td>ED-C3**</td> <td></td> <td></td> <td></td>	ED-C3**			
FE-A6 330 (INST) .01016 Reactor Coor Drain Tank Pump 2A Pump 2A FE-C3L 600-1000 .01016 Receptacles Term Box 2B 1 FE-C3L 600-1000 .01016 Incore Det. Drive & Cont. Pnl. FE-H5 105 (INST) .01016 CTMT Dome Recirc. Fan 2C FU-G2 29 (INST) .01016 CTMT Air Cooling Fan Mov FU-H3 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H4 10 (INST) .01016 CTMT Air Cooling Fan Mov FU-H3 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H4 10 (INST) .01016 RCP Motor Cooler Disch Mov FU-K4 22 (INST) .01016 CTMT To Atmos Diff Press Mov FU-K4 12 (INST) .01016 Post ACDT Air Sampler From CTMT Mov FU-L5 12 (INST) .01016 Post ACDT Air Sampler From FU-T4 22 (INST) .01016 RCP Seal Water Return Isol. FU-M4 12 (INST) .01016 Post ACDT Air Sampler Return	ΕD-Δ31 *,#			
FE-A4L** 600-1000 .01016 Receptacles Term Box 28 FE-C3L 600-1000 .01016 Incore Det. Drive & Cont. Pnl. FE-H5 105 (INST) .01016 CTMT Dome Recirc. Fan 2C FU-G2 29 (INST) .01016 CTMT Dome Recirc. Fan 2C FU-H2 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H3 12 (INST) .01016 CTMT Air Cooling Fan Mov FU-H4 10 (INST) .01016 CTMT Air Cooling Fan Mov FU-H4 10 (INST) .01016 CTMT Air Cooling Fan Mov FU-H4 10 (INST) .01016 CTMT Air Cooling Fan Mov FU-H4 10 (INST) .01016 CTMT To Atmos Diff Press Mov FU-K4 22 (INST) .01016 CTMT Cooler Disch MOV FU-L4 12 (INST) .01016 CTMT Cooler Disch MOV FU-L5 12 (INST) .01016 CTMT Mov FU-L5 12 (INST) .01016 Post ACDT Air Sampler From CTMT Mov FU-L4 22 (INST) .01016 Post ACDT Air Sampler Return Isol. FU-M4 12 (INST) .01016	FE-A6			Reactor Cool Drain Tank
FE-C3LC600-1000.01016Incore Det. Drive & Cont. Phi.FE-H5105 (INST).01016CTMT Dome Recirc. Fan 2CFU-G229 (INST).01016RHR Pumps Inlet MovFU-H212 (INST).01016CTMT Air Cooling Fan MovFU-H312 (INST).01016CTMT Air Cooling Fan MovFU-H410 (INST).01016RCP Motor Cooler Disch MovFU-H410 (INST).01016CTMT To Atmos Diff Press MovFU-K422 (INST).01016CTMT Cooler Disch MOVFU-K410 (INST).01016CTMT Cooler Disch MOVFU-L412 (INST).01016CTMT Cooler Disch MOVFU-L512 (INST).01016Post ACDT Air Sampler FromCTMT MovFU-L512 (INST).01016RCP Seal Water Return Isol.FU-M412 (INST).01016Post ACDT Air Sampler Return	== sas+.#	COO 1000	07-016	
FE-H5105 (INST).01016CTMT Dome Recirc. Fan 2CFU-G229 (INST).01016RHR Pumps Inlet MovFU-H212 (INST).01016CTMT Air Cooling Fan MovFU-H312 (INST).01016CTMT Air Cooling Fan MovFU-H410 (INST).01016RCP Motor Cooler Disch MovFU-H410 (INST).01016CTMT To Atmos Diff Press MovFU-K422 (INST).01016CTMT Cooler Disch MOVFU-K410 (INST).01016Pressurizer to Relief Tank MOVFU-L412 (INST).01016CTMT MovFU-L512 (INST).01016Post ACDT Air Sampler From CTMT MovFU-T422 (INST).01016RCP Seal Water Return Isol.FU-M412 (INST).01016Post ACDT Air Sampler Return Mov	FE-A4L			
FU-G229 (INST).01016RHR Pumps Inlet MovFU-H212 (INST).01016CTMT Air Cooling Fan MovFU-H312 (INST).01016CTMT Air Cooling Fan MovFU-H410 (INST).01016RCP Motor Cooler Disch MovFU-J410 (INST).01016CTMT To Atmos Diff Press MovFU-K422 (INST).01016Pressurizer to Relief TankMOVV.01016CTMT Cooler Disch MOVFU-L412 (INST).01016CTMT Cooler Disch MOVFU-L512 (INST).01016Post ACDT Air Sampler From CTMT MovFU-T422 (INST).01016RCP Seal Water Return Isol.FU-M412 (INST).01016Post ACDT Air Sampler Return Mov				
FU-H212 (INST).01016CTMT Air Cooling Fan MovFU-H312 (INST).01016CTMT Air Cooling Fan MovFU-H410 (INST).01016RCP Motor Cooler Disch MovFU-J410 (INST).01016CTMT To Atmos Diff Press MovFU-K422 (INST).01016Pressurizer to Relief TankMOVV.01016CTMT Cooler Disch MOVFU-K610 (INST).01016CTMT Cooler Disch MOVFU-L412 (INST).01016Post ACDT Air Sampler FromFU-L512 (INST).01016Post ACDT Air Sampler FromFU-T422 (INST).01016RCP Seal Water Return Isol.FU-M412 (INST).01016Post ACDT Air Sampler Return				
FU-H312 (INST).01016CTMT Air Cooling Fan MovFU-H410 (INST).01016RCP Motor Cooler Disch MovFU-J410 (INST).01016CTMT To Atmos Diff Press MovFU-K422 (INST).01016Pressurizer to Relief Tank MOVFU-K610 (INST).01016CTMT Cooler Disch MOVFU-L412 (INST).01016Post ACDT Air Sampler From CTMT MovFU-L512 (INST).01016Post ACDT Air Sampler From CTMT MovFU-T422 (INST).01016RCP Seal Water Return Isol.FU-M412 (INST).01016Post ACDT Air Sampler Return 				
FU-H410 (INST).01016RCP Motor Cooler Disch MovFU-J410 (INST).01016CTMT To Atmos Diff Press MovFU-K422 (INST).01016Pressurizer to Relief Tank MOVFU-K610 (INST).01016CTMT Cooler Disch MOVFU-L412 (INST).01016Post ACDT Air Sampler From CTMT MovFU-L512 (INST).01016Post ACDT Air Sampler From CTMT MovFU-T422 (INST).01016RCP Seal Water Return Isol.FU-M412 (INST).01016Post ACDT Air Sampler Return Mov				
FU-J410 (INST).01016CTMT To Atmos Diff Press MovFU-K422 (INST).01016Pressurizer to Relief Tank MOVFU-K610 (INST).01016CTMT Cooler Disch MOVFU-L412 (INST).01016Post ACDT Air Sampler From CTMT MovFU-L512 (INST).01016Post ACDT Air Sampler From CTMT MovFU-T422 (INST).01016RCP Seal Water Return Isol.FU-M412 (INST).01016Post ACDT Air Sampler Return Mov	FU-H3			CTMT Air Cooling Fan Mov
FU-K422 (INST).01016Pressurizer to Relief Tank MOVFU-K610 (INST).01016CTMT Cooler Disch MOVFU-L412 (INST).01016Post ACDT Air Sampler From CTMT MovFU-L512 (INST).01016Post ACDT Air Sampler From CTMT MovFU-T422 (INST).01016RCP Seal Water Return Isol.FU-M412 (INST).01016Post ACDT Air Sampler Return Mov	FU-H4	10 (INST)		
FU-K610 (INST).01016CTMT Cooler Disch MOVFU-L412 (INST).01016Post ACDT Air Sampler From CTMT MovFU-L512 (INST).01016Post ACDT Air Sampler From CTMT MovFU-T422 (INST).01016RCP Seal Water Return Isol.FU-M412 (INST).01016Post ACDT Air Sampler Return Mov	FU-J4			
FU-L412 (INST).01016Post ACDT Air Sampler From CTMT MovFU-L512 (INST).01016Post ACDT Air Sampler From CTMT MovFU-T422 (INST).01016RCP Seal Water Return Isol.FU-M412 (INST).01016Post ACDT Air Sampler Return Mov	FU-K4	22 (INST)	.01016	
FU-L412 (INST).01016Post ACDT Air Sampler From CTMT MovFU-L512 (INST).01016Post ACDT Air Sampler From CTMT MovFU-T422 (INST).01016RCP Seal Water Return Isol.FU-M412 (INST).01016Post ACDT Air Sampler Return Mov	FU-K6	10 (INST)	.01016	CTMT Cooler Disch MOV
FU-L512 (INST).01016Post ACDT Air Sampler From CTMT MovFU-T422 (INST).01016RCP Seal Water Return Isol.FU-M412 (INST).01016Post ACDT Air Sampler Return Mov				Post ACDT Air Sampler From
FU-T422 (INST).01016RCP Seal Water Return Isol.FU-M412 (INST).01016Post ACDT Air Sampler Return Mov	FU-L5	12 (INST)	.01016	Post ACDT Air Sampler From
FU-M4 12 (INST) .01016 Post ACDT Air Sampler Return Mov	EII-TA	22 (INCT)	01- 016	
Mov				
FULDE 16 (TNCT) 01-016 CTMT Aim Somolon Mov				Mov
	FU-R5	16 (INST)	.01016	CTMT Air Sampler Mov.
FU-V4 12 (INST) .01016 CRDM Cool Fan Dampers Mov.	FU-V4			
FU-W2 16 (INST) .01016 CTMT Air Cooler Disch Mov.	FU-W2	16 (INST)	.01016	
FU-W4 29 (INST) .01016 Reactor Cavity H ₂ Dilution Fan VLV 2A	–			

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

	Device Number and Location	Trip Setpoint (Ampere)	Response Time (Seconds)	System Powered
	FU-T5	45 (INST)	.01016	RHR System Inlet Isol. Vlv.
	FU-Z2	400 (INST)	.01016	Accumulator 2A Disch. Vlv.
	FU-Z3	400 (INST)	.01016	Accumulator 2C Disch. Vlv.
	FV-M3	12 (INST)	.01016	Post ACDT Air Sampler Return Mov.
	FV-H4	12 (INST)	.01016	Post ACDT Air Sampler From CTMT Mov
	FV-H5	12 (INST)	.01016	Post ACDT Air Sampler From CTMT Mov
	FV-Y4	12 (INST)	.01016	Post LOCA CTMT Vent Mov
	FV-Y5	29 (INST)	.01016	Instr. Air Line Disch. Mov.
	FV-I2	12 (INST)	.01016	CRDM Cool Fan Damper
	FV-J4	16 (INST)	.01016	CTMT Air Cooler Disch. Mov.
	FV-J5	16 (INST)	.01016	CTMT Air Cooler Disch. Mov.
	FV-N2	29 (INST)	.01016	Reac. Cavity H_2 Dilution Fan Vlv. 2B
	FV-S2	400 (INST)	.01016	Accumulator 2B Disch. Vlv.
	FV-V3	45 (INST)	.01016	RHR System Inlet Isol. Vlv.
	FV-W4	22 (INST)	.01016	Pressurizer to Relief Isol. Mov.
	FV-V2	45 (INST)	.01016	RHR System Outlet Isol. Vlv.
	FV-C3	22 (INST)	.01016	RCP CCW Return from Oil Cool
	FV-F2	12 (INST)	.01016	CTMT Air Cooling Fan Mov.
	FV-F3	12 (INST)	.01016	CTMT Air Cooling Fan MOV.
4.	208 VAC Motor Control	Centers		-
	HA-03	105 (INST)	.01016	Reac. Cavity H ₂ Dilution Fan 2A
	HB-N7	150 (INST)	.01016	Reac. Cavity H_2 Dilution Fan 2B
5.	600VAC Pressurizer DistrPnl 2A			
	BKR #1 BKR #2 BKR #3 BKR #4 BKR #5	750-1600 750-1600 750-1600 750-1600 750-1600 750-1600	.01016 .01016 .01016 .01016 .01016	Pressurizer Htr Group 2A Terminal Box N2TB010
				``

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

Device Number and Location	Trip Setpoint (Ampere)	Response Time (Seconds)	System Powered
600VAC Pressurizer Distr. Pnl 2B			
BKR #1 BKR #2 BKR #3 BKR #4 BKR #5	750-1600 750-1600 750-1600 750-1600 750-1600	.01016 .01016 .01016 .01016 .01016	Pressurizer Htr Group 2B Terminal Box N2TB011
. 600VAC Pressurizer Htr. Distr. Pnl 2C Circuit Bkrs.			
BKR #1 BKR #2 BKR #3 BKR #4 BKR #4 BKR #5 BKR #6 BKR #7	750-1600 750-1600 750-1600 750-1600 750-1600 750-1600 750-1600 750-1600	.01016 .01016 .01016 .01016 .01016 .01016 .01016 .01016	Pressurizer Htr Group 2C Terminal Box N2TB008
. 600VAC Pressurizer Htr. Distr. Pnl 2D Circuit Bkrs.		1	
BKR #1 BKR #2 BKR #3 BKR #4	750-1600 750-1600 750-1600 750-1600	.01016 .01016 .01016 .01016	Pressurizer Htr Group 2D Terminal Box N2TB007
). 600VAC Pressurizer HTR. Distr. Pnl 2E Circuit Bkrs.			
BKR #1 BKR #2 BKR #3 BKR #4 BKR #5	750-1600 750-1600 750-1600 750-1600 750-1600	.01016 .01016 .01016 .01016 .01016	Pressurizer Htr Group 2E Terminal Box N2TB009

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

	Device Number and Location	Trip Setpoint (Ampere)	Response Time (Seconds)	System Powered
10.	125VDC Sol. Vlvs. Power Fuses			
	FB1 (TC-05A) FB1 (TC-25A) FB5 (TC-06A) FB6 (TC-06A) FB5 (TC-05A)	3 3 3 3 3	N.A. N.A. N.A. N.A. N.A.	PRZR PWR Relief VLV (445A) 2A PRZR PWR Relief VLV (444B) 2B Letdown Line Isol. Vlv. (459) Letdown Line Isol. Vlv. (460) Reac. Cool Drn Tank Pump Disc:
	FB6 (TC-05A)	3	N. A.	Vlv (1003A) Reac. Cool Drn Tank Vent Isol
	FB3 (TC-06A)	3	N.A.	Vlv (7126) RMW to RCP Standpipe Fill (8168C)
	FB4 (TC-25B)	3	N.A.	PRZR Rel. Tnk to RMW Isol. Vlv. (8030)
	FB5 (TC-25B)	3	N.A.	PRZR Rel. Tnk Drn to WPS Drn Tnk (8031)
	FB6 (TC-27B)	3	N.A.	Excess Letdown Isol. Vlv. (8153)
	FB5 (TC-27B)	3	N.A.	RCS PRZR Aux. Spray Vlv. (8145)
	FB7 (TC-27B)	3	N.A	Excess Letdown Isol. Vlv. (8154)
	FB2 (TC-27B)	3	N.A.	RMW to RCP Standpipe Fill (8168A)
	FB3 (TC-27B)	3	N.A.	RMW to RCP Standpipe Fill (8168B) -
	FB2 (TC-08A)	3	N.A.	Accum. N ₂ Supply & Vent Isol (8875A)
	FB6 (TC-08A)	3	N.A.	Accum. N $_2$ Supply & Vent Isol (8875C)
	FB4 (TC-08A)	3	N.A.	Accum. Line Test Isol. (8877A)
	FB8 (TC-08A)	3	N.A.	Accum. Line Test Isol. (8877C)
	FB3 (TC-08A)	3	N.A.	Accum. Fill Line Isol. (8878A)
	FB7 (TC-08A)	3	N.A.	Accum Fill Line Isol. (8878C)
	FB5 (TC-08A)	3	N.A.	Accum. Inject Test Line Isol. (8879A)
	FB9 (TC-08A)	3	N.A.	Accum. Inject. Test Line Isol. (8879C)
	FB2 (TC-29B)	3	N.A	Accum. N ₂ Supply & Vent Isol (8875B)

.

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

Device Number and Location	Trip Setpoint (Ampere)	Response Time (Seconds)	System Powered
FB4 (TC-29B)	3	N.A.	Accum. Test Line Isol.
FB3 (TC-29B)	3	N.A.	(8877B) Accum. Fill Line Isol. (8878B)
FB5 (TC-29B)	3	N.A.	Accum. Inject. Test Line Isol (8879B)
FB1 (TC-06A)	3	N.A.	RCP Seal Leak Off Isol (8141A)
FB1 (TC-29B)	3	N.A.	Damper Sol. Vlvs. CTMT Purge Isol (3196)
FB9 (TC-06A)	3	N.A.	Letdown Orifice Isol. Vlv. (8149B)
FB2 (TC-06A)	3	N.A.	RCP Seal Leak Off Isol. (8141C)
FB1 (TC-27B)	3	N.A.	RCP Seal Leak Off Isol. (8141B)
FB1 (TC-06A)	3	N.A.	RCS Alternate Charging Line (8147)
FB1 (TC-27B)	3	N.A.	RCS Normal Charging Line (8146)
FB7 (TC-25B)	3	N.A.	Reac. Vessel Leak Off Isol. (8032)
FB2 (TC-25B)	3	N.A.	PRZR Rel. Tnk to RMW Supply Isol (8047)
FB8 (TC-27B)	3	N.A.	RCP Seals Wtr By-pass Isol. Vlv. (8142)
FB5 (TC-27B)	3	N.A.	Excess L'Down to VLT or RC - DrnTk (8143)
FB10 (TC-06a)-	3	N.A.	Letdown Orifice Isol. Vlv. (8149A)
FB8 (TC-06A)	3	N.A.	Letdown Orifice Isol. Vlv. (8149C)
FB1 (TC-08A)	3	N.A.	Accum. Test Line Isol. Vlv. (8871)
FB4 (TC-31B) FB1 (TC-09A)	3 3	N.A. N.A.	RCP Comp. Cool (3184) Excess Letdown Hx Cool Disch
FAN (NBL2702B-B) FAM (NBL2702B-B)	3 3 3 3 3 3 3 3 3 3	N.A. N.A.	(3443) SG2A Blowdown (3179C) SG2B Blowdown (3180C)
FAL (NBL2702B-B) FAC (NBL2702B-B)	3 3	N.A. N.A.	SG2C Blowdown (3181C) SG2A Blowdown (3951B)
FAB (NBL2702B-B)	3	N.A.	SG2B Blowdown (3952B)
FAA (NBL2702B-B) FAD (NBL2702B-B)	3	N.A. N.A.	SG2C Blowdown (3953B) CVCS Letdown Line Vlv. (3950B)
FD (NBL2702A-A)	3	N.A.	CVCS Letdown Line Vlv. (3950A)

]

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

	Device Number and Location	Trip Setpoint (Ampere)	Response Time (Seconds)	System Powered
	FC (NBL2702A-A) FB (NBL2702A-A) FA (NBL2702A-A) FK (NBL2702A-A) FJ (NBL2702A-A) FH (NBL2702A-A) FAK (NBL2702B-B) FAJ (NBL2702B-B) FAS (NBL2702B-B) FAS (NBL2702B-B)	3 3 3 3 3 3 3 3 3 3 3 3 3 3	N. A. N. A. N. A. N. A. N. A. N. A. N. A. N. A. N. A. N. A.	SG2A Blowdown (3951A) SG2B Blowdown (3952A) SG2C Blowdown (3953A) SG2A Blowdown (7697A) SG2B Blowdown (7698A) SG2C Blowdown (7699A) SG2A Blowdown (7697B) SG2B Blowdown (7698B) SG2C Blowdown (7699B) Press. Stm Space Sampler (3880) Press. Liq Space Sampler (3881)
	F/3766(NFSS2607A-A) F/3179A(NFSS2607A-A) F/3179B(NFSS2607A-A) F/3180A(NFSS2607A-A) F/3180B(NFSS2607A-A) F/3181A(NFSS2607A-A) F/3162(NFSS2607A-A) F/3162(NFSS2607A-A) F/3164(NFSS2607A-A) F/3101(NFSS2607A-A) F/3102(NFSS2607B-B) F/3102(NFSS2607B-B) FA(NGB25Q4) FC(NGB25Q4) FC(NGB25Q4) F/3103(NFSS2607B-B) F/3104(NFSS2607B-B) F/3765(NFSS2607B-B)) 3) 3) 3) 3	N. A. N. A.	Accumulator Sampler (3766) SG2A Blowdown Sampler (3179A) SG2A Blowdown Sampler (3179B) SG2B Blowdown Sampler (3180A) SG2B Blowdown Sampler (3180B) SG2C Blowdown Sampler (3181A) SG2C Blowdown Sampler (3181A) SG2C Blowdown Sampler (3181B) Accum. Tank 2A Sampler (3162) Accum. Tank 2B Sampler (3163) Accum. Tank 2C Sampler (3164) Reac.Coolant Hot Leg (3101) Reac.Coolant Hot Leg (3102) CTMT Sump Disch. (3376) CTMT Cooler Drains (3395A) CTMT Cooler Drains (3395B) CTMT Cooler Drains (3395D) PRZR Liquid Sampler (3104) Reac. Hot Leg Sampler (3765)
11.	120VAC Sol. Vlvs. Power Fuses FM(NGB2504M) FF(NGB25040)	3 3	N.A. N.A.	Reac. Cavity Cooling (3999A) Reac. Cavity Cooling (3999B)

.

TABLE 3.8-1 (Continued)

.,‡

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

Device Number and Location	Trip Setpoint (Ampere)	Response Time (Seconds)	System Powered		
Variable D.C. Voltage CRDM Fuses (125 V Max)					
FU13/A22	10	N.A.	Mechanism #1 Sta.Gripper Group A		
FU14/A22	10	N.A.	Mechanism #2 Sta.Gripper Group A		
FU15/A22	10	N.A.	Mechanism #3 Sta.Gripper Group A		
FU16/A22	10	N.A.	Mechanism #4 Sta.Gripper Group A		
FU25/A23	10	N. A.	Mechanism #1 Sta.Gripper Group B		
FU26/A23	10	N. A.	Mechanism #2 Sta.Gripper Group B		
FU27/A23	10	N. A.	Group B #3 Sta.Gripper		
FU28/A23	10	N.A.	Mechanism #4 Sta.Gripper Group B		
FU41/A24	10	N.A.	Mechanism #1 Sta.Gripper Group C		
FU42/A24	10	N.A.	Mechanism #2 Sta.Gripper Group C		
FU43/A24	10	N. A.	Mechanism #3 Sta.Gripper Group C		
FU44/A24	10	N. A.	Mechanism #4 Sta.Gripper Group C		
FU1/A51	50	N.A.	Mechanism #1 Lift Group A		
FU2/A51	50	N.A.	Mechanism #2 Lift Group A		
FU1/A52	50	N.A.	Mechanism #3 Lift Group A		
FU2/A52	50	N. A.	Mechanism #4 Lift Group A		
FU1/A53	50	N. A.	Mechanism #1 Lift Group A		
FU2/A53	50	N.A.	Mechanism #2 Lift Group B		
FU1/A54	50	N.A.	Mechanism #3 Lift Group B		
FU2/A54	50	N. A.	Mechanism #4 Lift Group B		
FU1/A55	50	N. A.	Mechanism #1 Lift Group C		
	50	N. A.	Mechanism #2 Lift Group C		
FU2/A55	50	N. A.	Mechanism #3 Lift Group C		
FU1/A56	50	N.A.	Mechanism #4 Lift Group C		
FU2/A56 FU21/A25	10	N. A.	Mechanism #1 Moving Gripper Group A		
FU22/A25	10	N.A.	Mechanism #2 Moving Gripper Group A		
FU23/A25	10	N.A.	Mechanism #3 Moving Gripper Group A		

TABLE 3.8-1 (Continued)

CONTAINMENT PENETRATION CONDUCTOR OVERCURRENT PROTECTIVE DEVICES

	Device Number and Location	Trip Setpoint (Ampere)	Response Time (Seconds)	System Powered
	FU24/A25	10	N.A.	Mechanism #4 Moving Gripper
	FU33/A26	10	N.A.	Group A Mechanism #1 Moving Gripper
	FU34/A26	10	N. A.	Group B Mechanism #2 Moving Gripper
	FU35/A26	10	N.A.	Group B Mechanism #3 Moving Gripper
	FU36/A26	10	N. A.	Group B Mechanism #4 Moving Gripper
	FU49/A27	10	N.A.	Group B Mechanism #1 Moving Gripper
	FU50/A27	10	N.A.	Group C Mechanism #2 Moving Gripper
	FU51/A27	10	N. A.	Group C Mechanism #3 Moving Gripper
	FU52/A27	10	N.A.	Group C Mechanism #4 Moving Gripper Group C
13.	480/277 VAC Lighting Cables			
	No Prot. Device No Prot. Device No Prot. Device No Prot. Device No Prot. Device	N.A. N.A. N.A. N.A. N.A.	N. A. N. A. N. A. N. A. N. A. N. A.	Lighting Panel 2R(N2T51L001A-N Lighting Panel 20(N2T51L001D-N Lighting Panel 2Q(N2T51L001B-N Lighting Panel 2P(N2T51L001C <u>-</u> N Receptacle Panel 2F(N2T51L002A-N)
14.	480 VAC, 30, H ₂ Recombiner Power Supply			
	No Prot. Device	N.A.	N.A.	H ₂ Recombiner HTRS
	No Prot. Device	N.A.	N.A.	(Q2E17GO01A-A) H ₂ Recombiner HTRS (Q2E17G001B-B)
*Cir	cuits are to be deenergi	zed excent where a	llowed by note #	

*Circuits are to be deenergized except where allowed by note #.

May be energized under administrative controls when required for operational or maintenance activities.

1

TABLE 3.8-2 (Continued)

. .

•

MOTOR OPERATED VALVES THERMAL OVERLOAD <u>PROTECTION DEVICES</u>*

VALVE NUMBER	FUNCTION	BYPASS DEVICE
MOV-8106	Charging Pump Mini Flow Isolation	No
MOV-8826A	Containment Spray Suction from	No
107 002011	Containment Sump	No
MOV-8826B	Containment Sump	M.,
107 00208	Containment Spray Suction from	No
MOV-8827A	Containment Sump	
HOV 8827A	Containment Spray Suction from	No
MOV-8827B	Containment Sump	
11U 4 - 002 / D	Containment Spray Suction from	No
MOV-00174	Containment Sump	
MOV-8817A	Containment Spray Suction from RWST	No
MOV-8817B	Containment Spray Suction from RWST	No
MOV-8836A	Eductor Suction from Spray Additive	No '
	Tank	
MOV-8836B	Eductor Suction from Spray Additive	No No
	Tank	
MOV-8820A	Discharge to Spray Ring	No
MOV-8820B	Discharge to Spray Ring	No
MOV-8803A	BIT Inlet	No
MOV-8803B	BIT Inlet	No
MOV-8801A	BIT Outlet	No
MOV-8801B	BIT Outlet	No
MOV-8886	Charging Pump Discharge to Hot Leg	No
MOV-8884	Charging Pump Discharge to Hot Leg	No
MOV-8885	Charging Pump Discharge to Cold Leg	No
MOV-8808A	SIS Accumulator Outlet	No
MOV-8808B	SIS Accumulator Outlet	No
MOV-8808C	SIS Accumulator Outlet	No
MOV-8811A	RHR Suction from Containment Sump	No
MOV-8811B	RHR Suction from Containment Sump	No
MOV-8812A	RHR Suction from Containment Sump	No
MOV-8812B	RHR Suction from Containment Sump	No
MOV-8809A	RHR Suction from RWST	No
MOV-8809B	RHR Suction from RWST	No
	RHR Discharge Crossconnect	No
MOV-8887B	RHR Discharge Crossconnect	No
FCV-602B	RHR Pump Mini Flow	No
FCV-602A	RHR Pump Mini Flow	No
MOV-8889	RHR Discharge to Hot Leg	No
MOV-8888A	RHR Discharge to Cold Leg	No
MOV-8888B	RHR Discharge to Cold Leg	
MOV-8706A		No
MOV-8706B	RHR Discharge to Charging Pump Suct	ion No
MOV-8112	RHR Discharge to Charging Pump Suct Seal Water Return Containment	
HOA OTTC	Isolation	No
MOV-8100		М.,
HOA OTOO	Seal Water Return Containment	No
	Isolation	

TABLE 3.8-2 (Continued)

MOTOR OPERATED VALVES THERMAL OVERLOAD <u>PROTECTION DEVICES</u>*

VALVE NUMBER	FUNCTION	SYPASS DEVICE
QSP25V513	RW to Pond Isolation	No
QSP25V514	RW to Pond Isolation	No
QSP25V517	RW to Wet Pit Isolation	No
QSP25V518	RW to Wet Pit Isolation	No
MOV-3536	CTMT Air Purge Isolation	No
MOV-3530	Post LOCA Vent Isolation	No
MOV-3740	Post LOCA Vent Isolation	No
MOV-3528A	CTMT Air Sample Isolation	No
MOV-3528B	CTMT Air Sample Isolation	No
MOV-3528C	CTMT Air Sample Isolation	No
MOV-3528D	CTMT Air Sample Isolation	No
MOV-3739A	CTMT Air Sample Isolation	No
MOV-3739B	CTMT Air Sample Isolation	No
MOV-3745A	CTMT Air Sample Isolation	No
MOV-3745B	CTMT Air Sample Isolation	No
MOV-3835A	CTMT Air Sample Isolation	No
MOV-3835B	CTMT Air Sample Isolation	No
MOV-3362A MOV-3362B	Pen Room Vent Damper	No
MOV-3361A	Pen Room Vent Damper	No
MOV-3361B	Pen Room Vent Damper Pen Room Vent Damper	No
MOV-3406	Turbine Trip and Throttle	No
MOV-3232A	Feedwater Isolation	No
MOV-3232B	Feedwater Isolation	No No
MOV-3232C	Feedwater Isolation	No
Q2P16V514	Turbine Building Isolation	No
Q2P16V515	Turbine Building Isolation	No
Q2P16V516	Turbine Building Isolation	No
Q2P16V517	Turbine Building Isolation	No
Q2P16V538	Pond Recirculation	No
Q2P16V539	Pond Recirculation	No ′
LCV-115C .	Charging Pump Suction from VCT	No
LCV-115E	Charging Pump Suction from VCT	No
LCV-115B	Charging Pump Suction from RWST	No
LCV-115D	Charging Pump Suction from RWST	No
MOV-8131A	Charging Pump Suction Crossconnect	No
MOV-8131B	Charging Pump Suction Crossconnect	No
MOV-8130A	Charging Pump Suction Crossconnect	No
MOV-8130B	Charging Pump Suction Crossconnect	No
MOV-8132A	Charging Pump Discharge Crossconnect	
MOV-8132B	Charging Pump Discharge Crossconnect	
MOV-8133A	Charging Pump Discharge Crossconnect	
MOV-8133B	Charging Pump Discharge Crossconnect	
MOV-8107	Charging Line Isolation	No
MOV-8108	Charging Line Isolation	No
MOV-8109A	Charging Pump Mini Flow Isolation	No
MOV-8109B	Charging Pump Mini Flow Isolation	No
MOV-8109C	Charging Pump Mini Flow Isolation	No

*Licensee may delete valves from this table provided the thermal overload protection devices are permanently bypassed.

REFUELING OPERATIONS

3/4.9.13 STORAGE POOL VENTILATION (FUEL MOVEMENT)

LIMITING CONDITION FOR OPERATION

3.9.13 Two independent penetration room filtration systems (Specification 3.7.8) shall be OPERABLE and aligned to the spent fuel pool room:

教習問題

- - - 大文教会会社会社

<u>APPLICABILITY</u>: During crane operation with loads, over the fuel in the spent fuel pit and during fuel movement within the spent fuel pit.

ACTION

- a. With one penetration room filtration system inoperable return both systems to OPERABLE status within 48 hours or suspend all movement of fuel and crane operation with loads over the spent fuel in the storage pool room.
- b. The provisions of Specification 3.0.3 and 3.0.4 are not applicable.

SURVEILLANCE REQUIREMENTS

4.9.13.1 Two penetration room filtration systems shall be verified to be aligned to the spent fuel pool room within 12 hours prior to fuel handling or crane operations in the storage pool room and at least once per 24 hours thereafter until fuel movement operations in the storage pool room are suspended.

4.9.13.2 The penetration room filtration system shall be demonstrated OPERABLE per the requirements of Specification 4.7.8.

4.9.13.3 At least once per 18 months verify that the normal spent fuel pool system ventilation system will isolate upon receipt of either;

- a. The spent fuel pool ventilation low differential pressure test signal, or
- b. A spent fuel pool high radiation test signal.

REFUELING OPERATIONS

3/4.9.14 CONTAINMENT PURGE EXHAUST FILTER

LIMITING CONDITION FOR OPERATION

3.9.14 The containment purge exhaust filter shall be OPERABLE and valve N1P13V293 closed.

<u>APPLICABILITY</u>: During CORE ALTERATIONS and Fuel Movement inside containment with any containment purge isolation valve open.*

ACTION: With the containment purge exhaust filter inoperable either:

- Immediately close the 48 inch containment purge isolation valves (CBV-HV-3196, 3197, 3198A and 3198D) and the 18 inch containment mini-purge isolation valves (CBV-HV-2866A, 2866B, 2867A and 2867B), or
- 2. Cease all CORE ALTERATIONS and fuel movement.

SURVEILLANCE REQUIREMENTS

4.9.14 The above required containment purge exhaust filter shall be demonstrated OPERABLE:

a. At least once per 18 months or (1) after any structural maintenance on the HEPA filter or charcoal adsorber housings, or (2) following painting, fire or chemical release that could have contaminated the charcoal adsorbers or HEPA filter in any ventilation zone communicating with the system by:

*Not applicable during initial fuel loading.

ADMINISTRATIVE CONTROLS

- j. Offsite releases of radioactive materials in liquid and gaseous effluents which exceed the limits of Specification 3.11.1.1 or 3.11.2.1.
- k. Exceeding the limits in Specification 3.11.1.4 or 3.11.2.6 for the storage of radioactive materials in the listed tanks. The written follow-up report shall include a schedule and a description of activities planned and/or taken to reduce the contents to within the specified limits.

THIRTY-DAY WRITTEN REPORTS

6.9.1.13 The types of events listed below shall be the subject of written reports to the Director of the Regional Office within 30 days of occurrence of the event. The written report shall include, as a minimum, a completed copy of a licensee event report form. Information provided on the licensee event report form shall be supplemented, as needed, by additional narrative material to provide complete explanation of the circumstances surrounding the event.

- a. Reactor protection system or engineered safety feature instrument settings which are found to be less conservative than those established by the Technical Specifications but which do not prevent the fulfillment of the functional requirements of affected systems.
- b. Conditions leading to operation in a degraded mode permitted by a Limiting Condition for Operation or plant shutdown required by a Limiting Condition for Operation.
- c. Observed inadequacies in the implementation of administrative or procedural controls which threaten to cause reduction of degree of redundancy provided in reactor protection systems or engineered safety feature systems.
- d. Abnormal degradation of systems other than those specified in 6.9.1.12.c above designed to contain radioactive material resulting from the fission process.
- e. An unplanned offsite release of 1) more than 1 curie of radioactive material in liquid effluents, 2) more than 150 curies of noble gas in gaseous effluents, or 3) more than 0.05 curies of radioiodine in gaseous effluents. The report of an unplanned offsite release of radioactive material shall include the following information:
 - 1. A description of the event and equipment involved.
 - 2. Cause(s) for the unplanned release.
 - 3. Actions taken to prevent recurrence.
 - 4. Consequences of the unplanned release.
- f. Measured levels of radioactivity in an environmental sampling medium determined to exceed the reporting level values of Table 3.12-2 when average over any calendar quarter sampling period.

ADMINISTRATIVE CONTROLS

RADIAL PEAKING FACTOR LIMIT REPORT

6.9.1.14 The F_{xy} limit for Rated Thermal Power (F_{xy}^{RTP}) shall be provided to the Director of the Regional Office of Inspection and Enforcement, with a copy to the Director, Nuclear Reactor Regulation, Attention Chief of the Core Performance Branch, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555 for all core planes containing bank "D" control rods and all unrodded core planes at least 60 days prior to cycle initial criticality. In the event that the limit would be submitted at some other time during core life, it will be submitted 60 days prior to the date the limit would become effective unless otherwise exempted by the Commission.

Any information needed to support F_{xy}^{RTP} will be by request from the NRC and need not be included in this report.

SPECIAL REPORTS

6.9.2 Special reports shall be submitted to the Director of the Office of Inspection and Enforcement Regional Office within the time period specified for each report.

6.10 RECORD RETENTION

In addition to the applicable record retention requirements of Title 10, Code of Federal Regulations, the following records shall be retained for at least the minimum period indicated.

6.10.1 The following records shall be retained for at least five years:

- a. Records and logs of unit operation covering time interval at each power level.
- b. Records and logs of principal maintenance activities, inspections, repair and replacement of principal items of equipment related to nuclear safety.
- c. All REPORTABLE OCCURRENCES submitted to the Commission.
- d. Records of surveillance activities, inspections and calibrations required by these Technical Specifications.
- e. Records of changes made to the procedures required by Specification 6.8.1.
- f. Records of radioactive shipments.
- g. 'Records of sealed source and fission detector leak tests and results.

Amendment No. 1

SAFETY EVALUATION REPORT

JOSEPH M. FARLEY NUCLEAR PLANT, UNITS 1 & 2

DIESEL GENERATOR TECHNICAL SPECIFICATION CHANGE

Introduction

The primary purpose of the 2C diesel generator at the Farley Plant is to start the five river water pumps of the river water system's Train B. The attached table shows that emergency bus 1J of Unit 1 is energized 10 seconds following receipt of signal and river water pumps 4 and 5 are started at five second intervals.

Since diesel 2C is relatively small at 2850kw output, care is taken to prevent two river water pumps from starting simultaneously so that the diesel will not trip. A time delay was designed into the system so that emergency bus 2J of Unit 2 is not energized until approximately 21 seconds following receipt of signal. As shown in the attached table, the number 1, 2 and 3 river water pumps are started in sequence after the bus is energized.

Farley, Unit 2 utilizes the Standard Technical Specifications. One of the requirements is that each diesel generator shall start and energize its emergency buses within 10 seconds following receipt of signal. Although a time delay was attached to emergency bus 2J by design, diesel 2C does not meet this requirement.

By letter dated May 5, 1981, the licensee requested a Technical Specification change to allow diesel generator 2C 24 seconds to energize its emergency buses. All of the remaining diesels will meet the 10 second requirement.

Evaluation

The proposed Technical Specification change does not involve a safety consideration. The safety analysis involving the river water pumps has previously included the time delay. The purpose of the river water pumps is to maintain the service water pond. Pond water flows to the common service water suction pit, flows to the two units and then it is normally discharged directly to the river. Under transient conditions, the service water can be pumped directly back to either the pond or the service water suction pit thus reducing or eliminating any immediate need of the river water pumps. If, however, the seismically designed dam failed causing loss of the service water pond, the river water pumps would be relied upon to discharge directly into the service water suction pit. If diesel generator 2C energized both emergency buses 1J and 2J ten seconds following receipt of signal, the automatic sequencing would attempt to start two river water pumps simultaneously. In order to avoid any potential of tripping the diesel, the liensee has the following time delay for bus 2J:

1 second for intermediate relay actuation and breaker tip

- 1 second for closing of the output breaker
- 20 second time delay for relay actuation
- +2 seconds tolerance for relay actuation
- 24 seconds total time to energize bus 2J

All river water pumps from Train B are therefore postulated to be in operation 36 seconds following the initiating event. The river water pumps on the redundant Train A (whose emergency buses are all energized within 10 seconds) are all postulated to be in operation 32 seconds following the initiating event.

The proposed Technical Specification change has been made to accomodate the system design. There are no deficiencies in either the equipment or its design to prompt this change. There are no safety considerations involved because the plant's analysis has previously included the time delay.

Due to the above considerations, we find the proposed change to the plant's Technical Specifications to be acceptable.

Environmental Consideration

We have determined that the amendment does not authorize a change in effluent types or total amounts nor an increase in power level and will not result in any significant environmental impact. Having made this determination, we have further concluded that the amendment involves an action which is insignificant from the standpoint of environmental impact and, pursuant to 10 CFR S1.5(d)(4), that an environmental impact statement or negative declaration and environmental impact appraisal need not be prepared in connection with the issuance of this amendment.

Conclusion

We have concluded, based on the considerations discussed above, that: (1) because the amendment does not involve a significant increase in the probability or consequences of accidents previously considered and does not involve a significant decrease in a safety margin, the amendment does not involve a significant hazards consideration, (2) there is reasonable assurance that the health and safety of the public will not be endangered

JUN 1 5 1981

by operation in the proposed manner, and (3) such activities will be conducted in compliance with the Commission's regulations and the issuance of this amendment will not be inimical to the common defense and security or to the health and safety of the public.

JUN 1 5 1981

Diesel Generator 2C

Loss of Offsite Power (LOSP)

Typical Sequence of Events

Time	Event
0	LOSP (Signal to start diesel 2C and trip breaker DG-13)
1 SEC	Bus 1J and 2J load shed and starts 20 second timer for Bus 2J
10 SEC	2C D/G energized Bus 1J and its permanent loads
15 SEC	RW 4 starts
20 SEC .	RW 5 starts
21 SEC	2C D/G energizes Bus 2J and its permanent loads
26 SEC .	RW 1 starts
31 SEC	RW 2 starts
36 SEC	RW 3 starts

UNITED STATES NUCLEAR REGULATORY COMMISSION

DOCKET NO. 50-364

ALABAMA POWER COMPANY

NOTICE OF ISSUANCE OF AMENDMENT TO FACILITY OPERATING LICENSE NO. NPF-8

The U. S. Nuclear Regulatory Commission (the Commission) has issued Amendment No. 1 to Facility Operating License No. NPF-8. This amendment was issued to Alabama Power Company for the Joseph M. Farley Nuclear Plant, Unit 2 to correct typographical errors in the Technical Specifications and to allow a 24 second delay in energizing one emergency bus for one diesel generator.

The Joseph M. Farley Nuclear Plant is located in Houston County, Alabama. This amendment was effective on May 6, 1981.

The application for the amendment complies with the standards and requirements of the Atomic Energy Act of 1954, as amended (the Act), and the Commission's requirements. The Commission has made appropriate findings as required by the Act and the Commission's regulations in 10 CFR Chapter I, which are set forth in the license amendment. Prior public notice of this amendment was not required since the amendment does not involve a significant hazards considerations.

The Commission has determined that the issuance of this amendment will not result in any significant environmental impact and that pursuant to 10 CFR Section 51.5(d)(4) an Environmental Impact Statement, or Negative Declaration and Environmental Impact Appraisal need not be prepared in connection with issuance of this amendment.

For further details with respect to this action, see (1) the application for amendment, dated May 5, 1981; (2) Amendment No. 1 to Facility Operating License NPF-8; and (3) the Commission's related Safety Evaluation. All of these

NRC FO	RM 318	(10-80) NRCM 0240		OFFICIAL	RECORD C	OPY		USGPO: 1981-335-960
-								
	ATE N	81.0624	329					
SURN	AME 🕨	•••••						*******
OF	FICE			•••••		••••••	••••••	••••••

documents are available for public inspection at the Commission's Public Document Room, located at 1717 H Street, N. W., Washington, D. C. 20555 and at the G. S. Houston Memorial Library, 212 W. Burdeshaw Street, Dothan, Alabama 36303 or may be requested by writing to the U. S. Nuclear Regulatory Commission, Washington, D. C. 20555 Attention: Director, Technical Information and Document Control.

2

Dated at Bethesda, Maryland, this 15 day of \int 1981.

FOR THE NUCLEAR REGULATORY COMMISSION

B. J. Youngblood, Chief Licensing Branch No. 1 Division of Licensing

6 6/2 81 670 ' 81 ĐATE NRC FORM 318 (10/80) NRCM 0240 OFFICIAL RECORD COPY

DL

ΒJ

ígb1ood

* USGPO: 1980-329-824

0E

DL:LB#1

Menoh

fook/1

OFFICE

DL:LB#1

JTboma