KAISER ALUMINUM

40-2377

November 7, 2001

U. S. Nuclear Regulatory Commission Washington, DC 20555 Attn: Document Control Desk

<u>Technical Report</u> <u>Additional Site Characterization Activities</u> <u>Former Kaiser Aluminum Specialty Products Facility</u> <u>Tulsa, Oklahoma</u>

Dear Sir or Madam:

Kaiser Aluminum & Chemical Corporation is submitting one copy of the above-referenced technical report which describes the additional site characterization effort performed at Kaiser's former Specialty Products facility located in Tulsa, Oklahoma. If you have any questions concerning the enclosure, please do not hesitate to call me at (225) 231-5116.

Sincerely,

A.W. Bill Vingant

J.W. (Bill) Vinzant, P.E. Manager, Corporate Environmental Affairs

JWV:tls

Enclosure

cc: Mr. John Buckley – U.S. Nuclear Regulatory Commission Mr. Louis Carson II – U.S. Nuclear Regulatory Commission Ms. Pamela Bishop – Oklahoma Department of Environmental Quality Mr. Stephen L. Jantzen – State of Oklahoma Dr. Max Scott – ADA Consultants John Donnan – Houston Rob Buller - Tulsa M. David Tourdot – Earth Sciences Al Gutterman – Morgan, Lewis & Bockius Paul Handa – Tulsa Scott Van Loo – City of Tulsa Mr. Harry Patterson – Union Pacific Railroad

9141 INTERLINE AVENUE, SUITE 1A, BATON ROUGE, LA, 70809-1957

Additional Site Characterization Activities

Former Kaiser Aluminum Specialty Products Facility Tulsa, Oklahoma

Kaiser Aluminum & Chemical Corporation Tulsa, Oklahoma

Project No. 5427G November 2001

Earth Sciences Consultants, Inc. One Triangle Lane Export, PA 15632 724/733-3000 FAX: 724/325-3352

Table of Contents

Page

1.0 Introd	luction	1
2.0 Areas	of Concern, Aerial Photograph Review, and Site Characterization Approach	3
2.1	Trash Pile	3
	2.1.1 Aerial Photograph Review	3
	2.1.2 Characterization Approach	4
2.2	Structures and Paved Areas	5
	2.2.1 Aerial Photograph/Map Reviews	5
	2.2.2 Characterization Approach	7
3.0 Chara	acterization Activities and Results	8
3.1	USEPA Hazardous Waste Determination for the Thorium-Bearing Dross	8
3.2	Trash Pile Area	9
3.3	Subsurface Characterization Beneath Structures and Paved Areas	10
	3.3.1 Background Values	11
	3.3.2 Thorium Comparison Value	11
	3.3.3 Flux Building and Adjacent Paved Area	12
	3.3.4 Slag Storage Building and Adjacent Paved Area	13
	3.3.5 Crusher Building and Adjacent Paved Area	14
	3.3.6 Crusher Addition Building	16
	3.3.7 Maintenance Building Area	16
	3.3.8 Warehouse Building	17
4.0 Sumr	nary of Findings and Conclusions	19
4.1	USEPA Hazardous Waste Determination for the Thorium-Bearing Dross	19
4.2	"Trash Pile" Area Subsurface Characterization	19
4.3	Subsurface Characterization Beneath Structures and Paved Areas	20
	4.3.1 Flux Building and Adjacent Paved Area	20
	4.3.2 Slag Storage Building and Adjacent Paved Area	20
	4.3.3 Crusher Addition Building	21
	4.3.4 Crusher Building and Adjacent Paved Area	21
	4.3.5 Maintenance Building Area	21
	4.3.6 Warehouse Building	21

References

Tables

Table 1 - USEPA Hazardous Waste Determination, TCLP Analytical Results

Table 2 - Summary of Test Trench Excavation Results, Trash Pile Area

Table 3 – Net Gamma Exposure Rate Readings During Coring Activities

Table 4 – Gamma Survey Results – Soil Cores

Table 5 - Analytical Results for Th-232

Table of Contents (Continued)

Figures

Figure 1 – Site Location Map (Dwg 5427039)

Figure 2 – Site Map (Dwg 5427A439)

- Figure 3 Changes to Buildings Between 1958 and 1991 (Dwg 5427A258)
- Figure 4 Aerial Comparison of N. Extrusion Building Area 1958 and 1964 (Dwg 5427A259)

Figure 5 – Sampling Location Map (Dwg 5427A440)

Figure 6 - Th-232 Activity Concentrations, Core Hole Locations (Dwg 5427A441)

Figure 7 - Cross Sections of Investigated Areas (Dwg 5427240)

Appendices

Appendix A – Aerial Photographs with Overlay of Soil Core Hole Locations

Appendix B - Toxicity Characteristic Leaching Procedure (TCLP) Regulatory Levels

Appendix C - Hazardous Waste Determination Analytical Data Report

Appendix D - Procedure: ESC/HPM 3-6 Gross Gamma Surveys of Soil Cores

Appendix E - Soil Core Hole Samples Analytical Data Report

Technical Report Additional Site Characterization Activities Former Kaiser Aluminum Specialty Products Facility Tulsa, Oklahoma Kaiser Aluminum & Chemical Corporation

1.0 Introduction

This report was prepared by Earth Sciences Consultants, Inc. (Earth Sciences) on behalf of the Kaiser Aluminum & Chemical Corporation (Kaiser) to present the results of an additional site characterization effort performed for Kaiser's former Specialty Products facility located in Tulsa, Oklahoma (Figure 1). Historical operations at the facility included the smelting and manufacture of magnesium anodes. The additional site characterization was completed in support of the June 2000 Decommissioning Plan (DP) submittal for the facility. The DP addresses the remediation of areas on site contaminated with radioactive material. The radioactive material previously identified on site is thorium-bearing dross containing the isotopes Thorium-232 (Th-232), Thorium-230 (Th-230), and Thorium-228 (Th-228). Implementation of the DP will make the site suitable for unrestricted release. Extensive site characterization activities have been conducted since 1994 within a 14-acre land area of the facility known as the "pond parcel". These characterization activities have indicated the presence of residual radioactive material within a 10-acre portion of the "pond parcel". The affected portion of the parcel contains the retention pond and former reserve pond area. The unaffected portion of the "pond parcel" contains a freshwater pond. Previous surveys of potentially affected structures at the facility have shown no radioactive material above background levels. However, the DP identified the potential for radioactive material beneath several currently paved areas and building floor surfaces based upon an interpretation of historical data and/or observations made during the recent Adjacent Land Remediation Project (ALRP). The additional site characterization effort described within this report was designed primarily to identify additional radioactive material located beneath these structures located on the property. Secondary considerations of the additional site characterization included a hazardous waste determination for the thorium-bearing dross to be excavated at the site during remediation and an assessment of an area of the site historically identified as the "trash pile."

The remainder of this document provides background information on the aforementioned areas of concern, details the additional site characterization approach, and presents the results of characterization efforts. Conclusions based upon the results of the additional characterization activities are also provided.

The structure of the report is as follows:

- Chapter 2.0 Areas of Concern, Aerial Photograph Review, and Site Characterization Approach
- Chapter 3.0 Characterization Activities and Results
- Chapter 4.0 Summary of Findings and Conclusions

Supporting documentation is provided in appendices.

2.0 Areas of Concern, Aerial Photograph Review, and Site Characterization Approach

As discussed in Section 4.0 (Radiological Status of Facility) of the DP, modifications to site facilities (buildings, parking lots, etc.) during it's operating life may have resulted in the covering of thoriumbearing dross beneath several currently paved surface and building floor areas. These areas of concern include the Slag Storage Building and adjacent paved area, the original Crusher Building and adjacent paved area, the Crusher Addition Building, the Flux Building and adjacent paved area, the Warehouse Building, and the concrete paved area located to the west of the Maintenance Building. Another area of concern identified through a review of historical information on plant operations and aerial photographs is the "trash pile." These areas of concern are depicted in Figure 2. Background information and aerial photograph reviews for these areas of concern as well as a characterization approach for each area are provided in the following sections.

2.1 Trash Pile

Reportedly, an on-site "trash pile" existed at the facility during plant operations. However, the location, nature (physical and chemical composition), and period of use for this historical waste area are not well defined. Previous subsurface exploratory activities conducted at the site revealed the presence of building debris at several locations near the Freshwater Pond embankment at the edge of the Retention Pond. These locations were near the buried Freshwater Pond spillway. This was confirmed in more recent excavations made during the ALRP. Soil samples collected near the spillway, both inside and outside the Retention Pond parcel, exhibited Th-232 concentrations above the site derived guideline level of 3.0 pCi/g (June 2001 Decommissioning Plan).

Available aerial photographs of the site were reviewed and evaluated for the presence, and if found, the aerial extent of the "trash pile." A discussion of the aerial photograph review findings is provided below.

2.1.1 Aerial Photograph Review

Available aerial photographs for the site cover a time period from 1943 to 2001 (Appendix A). A review of aerial photographs dated prior to 1964 did not indicate the presence of a debris pile. However, the 1964 image of the site (Appendix A, Figure A-3) showed the presence of a considerable debris area extending from the then-existing south bank of the retention pond, to within 20 to 25 feet of the railroad right-of-way, and from the Freshwater Pond embankment to the Flux Building. A comparison of the 1964 photograph with later aerial photographs indicated that the debris pile extended beyond the current pond perimeter by approximately 30 to 60 feet. Aerial photographs for the years 1967 through 2001 did

not show the presence of the previously identified debris pile but indicated physical changes on the ground surface in the subject area and the limits of the pond.

The emergence of this debris pile sometime before 1964 may relate to an explosion and fire at the original magnesium smelter building in 1961. This smelter building was located midway between the current Maintenance Building and the original Crusher Building, and was adjacent to the west wall of a new smelter which was nearing completion in 1961. The scale of the fire is unknown, but one available photograph looking east from the Office Building shows a partially collapsed Warehouse Building, the (slightly damaged) new Smelter Building, and the damaged old Smelter Building. In addition, large sheets of metal siding appear scattered about the yard area between the buildings. As the Crusher Building is not clearly evident in the aerial photograph, it is impossible to evaluate damage from the fire. Similarly, the two smelters block the view toward the Flux Building location.

Significant changes are apparent to most of the structures on site between the 1958 and 1964 aerial photographs. The structures identified as the Maintenance Building, Warehouse Building, and Crusher Building appear significantly different in roof configurations and all have been enlarged. Whether changes are a result of expansion, or of the fire, is unknown. Regardless of the extent of fire damage, debris cleared for building modifications or reconstruction appears to have been transported to the retention pond area for management.

2.1.2 Characterization Approach

The site characterization objective for this area of concern was to define the physical, chemical (organic compounds), and radiological nature of subsurface materials in the former "trash pile" area as they relate to the proposed DP remediation activities for the area. Characterization activities for this area of concern consisted of the following:

- Examination of aerial photograph stereo pairs (pre- and post-facility construction and operation) for changes in site topography
- Excavation of test trenches to evaluate the physical nature of subsurface materials (biased locations)
- Examination of exhumed subsurface materials for the presence of organic compounds and elevated radioactivity through field screening methodologies

A discussion of the characterization activities and findings is presented in Chapter 3.0.

2.2 Structures and Paved Areas

Changes in the plant footprint over the last 40 years may have resulted in the covering of thorium-bearing dross and scrap metal residuum by plant buildings and/or paved areas. The most likely on-site locations for this condition include the immediate areas of the Flux, Slag Storage, Crusher, Crusher Addition, Warehouse, and Maintenance Buildings (Figure 3).

An example is the Flux Building. The Flux Building is suspected of having been built on top of thoriumbearing material. This condition is suggested by the presence of radioactive material on all four sides of the structure, both on- and off-site. Radioactive material was found along the east fence line within ALRP Characterization Grids 33 and 35 to depths of 5 to 6 feet (Figure 2). The remedial excavations for these characterization grids ended within approximately 3 feet of the structure's wall. Radioactive material was detected in the west wall of the excavation, extending under Kaiser property. Data collected during the ALRP from Characterization Grids 22 through 24 (directly south of the Flux Building) indicated the presence of thorium-bearing dross to depths of 8 to 9 feet below ground surface (bgs). In 1995, radioactive material also was identified at Borehole 30, located on the north side of the concrete paved area, to a depth of 10 feet bgs.

The following review of available aerial photograph stereo pairs was conducted to aid in understanding where:

- potentially affected material may have been used as fill in site grading; and
- potentially affected material may have been covered by concrete pavement or building floor slabs.

2.2.1 Aerial Photograph/Map Reviews

The Flux Building reportedly was constructed around 1961 to test and develop an etching process for magnesium metal. The process proved unsuccessful, and activities ceased by 1963. A 1989 site drawing identified the structure as an aluminum packaging facility, a function that is assumed to have started in the late 1970s. The facility consists of an approximate 80-foot-by-120-foot-by-20-foot tall concrete block structure with a flat roof. At the time of the 1964 photograph, several corrugated metal outbuildings with a combined footprint of approximately 40 feet by 70 feet were attached to the northern part of the Flux Building's west wall. Three vertical cylindrical tanks, each estimated at 12 to 15 feet in diameter and 25 to 30 feet high, were adjacent to the west side of the outbuildings. A concrete paved area located between

the Flux Building and the vertical cylindrical tanks, as well as to the west, completed this approximately 0.75-acre facility complex. The outbuildings and tanks were removed sometime between 1972 and 1979 based on the aerial photographs.

The Slag Storage Building is visible at the southeast corner of the Crusher Building in the 1964 through 1972 aerial photographs. It was approximately 90 feet by 40 feet in plan dimension and was constructed of galvanized steel walls. It apparently served as a holding facility, receiving dross fines from the Crusher. The 1964 aerial photograph showed the presence of drums, stacks, or piles of material within fenced areas east, north, and west of the building. That area appears to have been cleaned up by 1967. However, radioactive material was reported during the ALRP in several of the characterization grids (175 through 165) along East 41st Street, which are located directly south of the Slag Storage Building's footprint. Also, thorium-bearing dross material was reported present south of Characterization Grids 129 through 132 during the ALRP (Figure 2).

The yard area west of the Slag Storage Building was reportedly the site of a large shearing machine that was apparently used to chop metal into more manageable sizes. Around 1977, this area was covered by the Crusher Addition Building. The addition's concrete deck is approximately 4 feet above the original surface grade. This suggests that fill was placed to support the deck.

The Crusher Building has been expanded significantly, at least once between 1958 and 1964 and again around 1977. Less obvious changes are visible in other aerial photographs, possibly reflecting process changes in plant operations. The current structure features a concrete deck elevated at least 4 feet above the surrounding grade and equal to the level of the addition's deck. The expansion built in 1958 and 1961 may have covered residual radioactive material beneath the expanded decking.

Most of the surface area around the current plant layout is paved with concrete, including the areas between the offices, maintenance, new smelter, warehouse, crusher, and north extrusion buildings. Surface areas north and east of the Crusher Building consist of concrete driveways. The date(s) when paving was completed is not known. The 1958 aerial photograph appears to show bare soil for much of the surface area around plant buildings, but by 1964 most of the surface area appears to be paved. Areas of concern were identified near the maintenance building and the warehouse during the ALRP.

Historical aerial photographs for the years 1958 and 1964 suggest that the North Extrusion Building may also have been built over fill. Extensive changes in the site topography for the building area were noted

on these aerial photographs. The footprint of the North Extrusion Building falls within an area that was once inundated with surface water. The site topography of this particular low area appears to have been significantly elevated by late 1958. Figure 4 compares the extent of the North Extrusion Building in 1958 and 1964. The physical characteristics of the fill material observed in the aerial photographs also appear to be similar to that found in areas excavated during the ALRP.

2.2.2 Characterization Approach

The goal for this phase of characterization was to define the physical and radiological nature of materials beneath certain concrete building slabs and pavement areas as they relate to the proposed decommissioning of the site. Characterization activities consisted of the following:

- Advancement of soil core holes through concrete floor slabs and the concrete paved areas to evaluate the physical nature and radiological characteristics of subsurface materials present in each area of concern.
- Analytical testing of soil core samples for the presence of thorium.

The site areas characterized include the Slag Storage Building and adjacent paved area, the original Crusher Building and adjacent paved area, the Crusher Addition Building, the Flux Building and adjacent paved area, the Warehouse Building, and the concrete paved area located to the west of the Maintenance Building. A discussion of the specific characterization activities and findings for each of these areas of concern is presented in Chapter 3.0.

3.0 Characterization Activities and Results

This chapter provides a discussion of the characterization activities completed for each area of concern and presents the results of the additional site characterization effort. As previously mentioned, one of the secondary goals of the additional characterization event was to determine the chemical toxicity characteristics (U.S. Environmental Protection Agency [USEPA], Hazardous Waste Determination) of the thorium-bearing dross materials to be excavated at the site during implementation of the DP. An overview of this determination is also provided below.

3.1 USEPA Hazardous Waste Determination for the Thorium-Bearing Dross

In order to establish a baseline chemical toxicity characteristics profile of the thorium-bearing dross for material management purposes, 10 grab samples of subsurface dross materials were collected for laboratory analysis. Samples were obtained from test pit excavations advanced in the Retention Pond area (five samples), the Reserve Pond area (two samples), and the suspected area of the "trash pile" (three samples) (Figure 5). Test pits were excavated with a rubber-tired backhoe operated by A&M Engineering under the supervision of Earth Sciences' personnel. Subsurface materials encountered were screened in the field with a photoionization detector (PID) for the presence of organic compounds. No above-background organic vapor readings were detected with the field survey instrument during the intrusive subsurface characterization activities.

Samples for laboratory analyses were placed in appropriate containers, properly labeled, and packaged for shipment to the analytical laboratory in shuttles. Samples were chilled from the time of collection until their arrival at the analytical laboratory. Earth Sciences' standard chain-of-custody protocol was strictly adhered to during all phases of sample collection, transport, and delivery to the laboratory.

Samples were analyzed by Outreach Laboratory (Outreach) of Broken Arrow, Oklahoma for leachable concentrations of metals and volatile organic compounds (VOCs) via the Toxicity Characteristic Leaching Procedure (TCLP). Results of the TCLP testing of the 10 samples indicated that the thorium-bearing dross is nonhazardous (Table 1). No VOCs were detected above laboratory reporting limits. The metals arsenic, barium, chromium, selenium, and silver were detected at concentrations below their respective USEPA toxicity characteristic regulatory levels (Appendix B). A copy of the analytical data report is contained in Appendix C.

3.2 Trash Pile Area

Seven exploratory test trench excavations were advanced at biased locations (based on aerial photograph interpretations and field observations during the ALRP) to evaluate the physical nature and examine the radiological and chemical (organic compounds) characteristics of subsurface materials present in this area of concern. The placement of the test trench excavations was as follows (Figure 5):

- Two test trench excavations (Nos. 3 and 7) were advanced within the structural limits of the buried spillway, one between the south fence and the stockpile (No. 3), and one between the stockpile and the Retention Pond (No. 7).
- Two test trench excavations (Nos. 1 and 2) were advanced in the area of the small trash pile identifiable in the 1967 aerial photograph of the site (Appendix A).
- Three test trench excavations (Nos. 4, 5, and 6) were advanced along the southwestern perimeter of the Retention Pond in the area of the trash pile identifiable in the 1964 aerial photograph of the site (Appendix A).

Test trench excavations were advanced using a rubber-tired backhoe operated by A&M Engineering under the supervision of Earth Sciences' personnel. Earth Sciences' field representative prepared a descriptive log of the subsurface materials encountered in each test trench excavation. Subsurface materials encountered were also screened in the field with gamma detectors for radioactivity and a PID for the presence of organic compounds.

A descriptive summary of the subsurface materials encountered during trenching and the results of the field screening activities are presented by test trench location in Table 2. Test Trench Excavation Nos. 2 through 6 exhibited a combination of soil, dross, and buried debris. Debris materials typically consisted of concrete, scrap steel, rebar, wood, plastic, wire, cables, and rubber belts. Depths associated with these debris materials ranged from the ground surface to over 15 feet bgs. Metal drums containing dross were also encountered during the excavation of Test Trench No. 3.

Field screening activities indicated the presence of above-background radioactivity (Table 2). Gross gamma exposure rate survey measurements obtained with a Ludlum Model 19 instrument ranged from 11 μ R/hr (Test Trench No. 1) to 160 μ R/hr (Test Trench No. 3). Gross gamma survey measurements obtained with a Ludlum 2221 ratemeter coupled with a 2-inch-by-2-inch NaI detector ranged from 19,500 counts per minute (cpm) (Test Trench No. 1) to 260,000 cpm (Test Trench No. 3). No organic vapor readings were detected with the field survey instrument during the intrusive subsurface characterization activities.

3.3 Subsurface Characterization Beneath Structures and Paved Areas

As previously mentioned, modifications to on-site buildings/structures during the operating life of the facility may have resulted in the covering of residual radioactive material beneath concrete paved surfaces and building floor areas. The areas where radioactive material may exist beneath structures and paved areas were based upon an interpretation of historical data and/or observations made during the ALRP. These areas include the Flux Building and adjacent paved area, Slag Storage Building and adjacent paved area, the original Crusher Building and adjacent paved area, the Crusher Addition Building, the Warehouse Building, and the concrete paved area located to the west of the Maintenance Building (Figure 2).

An on-contact gamma exposure rate survey of each building concrete floor surface or concrete-paved surface was initially conducted to identify areas of elevated surface radioactivity. A total of 24 core sample holes were then advanced through the concrete surfaces of the areas of concern at locations biased towards the results of the gamma survey, previous characterization activities, and/or the ALRP (Figure 5). A GeoprobeTM sampler was used to collect soil cores (typically 4 feet in length) of the subsurface materials for characterization purposes. Gross gamma exposure rate readings were obtained directly above each core hole location during the core sampling activity. The results provided immediate feedback of potential radioactivity. The gross gamma exposure rate survey readings were obtained at each core hole location prior to the removal of the concrete core, following the removal of the concrete core, following the removal of each GeoprobeTM sample core (Table 3).

The soil cores were surveyed on-site for gross gamma activity and sampled for laboratory analysis in accordance with Procedure ESC/HPM3-6 (Appendix D). Soil cores were scanned with a sodium iodide detector in a controlled environment (i.e., lead cave). The maximum net count rate observed for each 1-foot segment of the core sample was recorded (Table 4). The most elevated 1-foot segment of soil core for each core hole location was sampled for laboratory analysis. Sample collection consisted of separating the most elevated 1-foot segment using an appropriate tool, placing the segment into a clean bucket, mixing the core segment with a trowel, and placing the material in an appropriate laboratory supplied container.

Samples for laboratory analyses were properly labeled and packaged for shipment to the analytical laboratory in shuttles. Earth Sciences' standard chain-of-custody protocol was strictly adhered to during all phases of sample collection, transport, and delivery to the laboratory. Samples were analyzed by Outreach via gamma spectroscopy. A copy of the analytical data report is contained in Appendix E.

Specific characterization activities conducted for each area of concern and the results thereof are presented in the following sections.

3.3.1 Background Values

Background values used in the interpretation of field and analytical results were established at the start of field activities. Background concentrations for Th-232 occurring naturally in soil were derived for the ALRP. The established value for the site is 1.1 picocuries per gram (pCi/g) Th-232. The derivation of this value is presented in the Adjacent Land Remediation Plan (Reference 3).

Background values for field instruments were calculated by averaging several ambient measurements taken in nonimpacted areas. Background exposure rates were obtained in the front grounds of the office building. Background for the Ludlum Model 19 was determined to be 9 μ R/hr. Background gross gamma rates were obtained in the lead cave that was utilized for the surveying of the soil cores. Background for the Ludlum Model 2221 with a 44-10 (2-inch-by-2-inch NaI) detector was determined to be 6,400 cpm.

3.3.2 Thorium Comparison Value

In order for the analytical results acquired during the additional characterization to be meaningful, a comparison value for the Th-232 reported results was needed. The value that was used for comparison was the Modeled Derived Concentration Guideline Level (DCGL) valued calculated for the DP (Reference 1, Section 5). This value, 3.0 pCi/g, was determined by taking the calculated DCGL value of 3.45 pCi/g Th-232 (which would result in a resident farmers dose of 25 mrem/yr.) and adjusting for the presence of other principal radionuclides and their ratios to Th-232. The following table illustrates the radionuclides of interest, their ratio to Th-232 and the adjusted DCGL with respect to the Unity Rule.

			Average	
	Single		Concentration	Adjusted
	Radionuclide	Ratio to Th-232	with Respect to	DCGL _w to Meet
	DCGLw	Assuming	Th-232 Ratio	Unity Rule
Radionuclide	(pCi/g)	Equilibrium	(pCi/g)	(pCi/g)
Pb-210	1.751	0.043	0.15	0.12
Ra-226	5.9	0.082	0.28	0.24
Ra-228	4.317	1	3.42	2.91
Th-228	3.366	1	3.42	2.91
Th-230	102.3	3.5	11.96	10.19
Th-232	3.418	1	3.42	2.91
111-232	J.+10	1	1	

3.3.3 Flux Building and Adjacent Paved Area

Characterization Activities

A total of 12 core holes was advanced through the concrete slab within the Flux Building and the concrete paved area located to the west of the building to evaluate the physical nature and examine the radiological characteristics of subsurface materials present in this area of concern (Figure 5). The placement of the core sample holes was as follows:

- Eight core holes were advanced through the Flux Building concrete slab. Core Hole Nos. 1 through 4 were placed along the eastern and southern interior walls of the building to confirm the presence or absence of radioactive material that was found outside of the building during site characterization and ALRP activities. Core Hole Nos. 5 through 8 were placed at biased locations as determined through a gamma exposure rate survey of the building floor surface.
- Four core holes (Nos. 9 through 12) were advanced through the concrete paving located to the west of the Flux Building. Core Hole Nos. 9 and 10 were biased to the area of the former vertical storage tanks.

Characterization Results

Physical Information

• Soils consisted mainly of a brown to gray clayey debris zone overlying a brown to dark brown clay. General profiles of the subsurface materials encountered beneath the Flux Building and Paved Area are presented in Figure 7 (Sections A and B).

Radiological Information

The soil cores net gamma activity survey and soil sample gross gamma spectroscopy analysis results for Th-232 are summarized in Tables 4 and 5 respectively. Figure 6 shows the spatial positioning of the core holes color-coded according to Th-232 activity concentrations.

Flux Building (Core Hole Nos. 1 through 8)

- Net gamma activity survey results for the soil cores ranged from 143 cpm to 10,097 cpm.
- Th-232 activity concentrations (gross) ranged from 1.82 pCi/g (Sample Location No. 2) to 89.0 pCi/g (Sample Location No. 7). Sample locations and corresponding depths with

activity concentrations above the DP Modeled DCGL of 3.0 pCi/g included Location No. 1, 8 to 9 feet (4.21 pCi/g); Location No. 3, 3 to 4 feet (11.1 pCi/g); Location No. 5, 5 to 6 feet (30.7 pCi/g); Location No. 6, 3 to 4 feet (71.4 pCi/g); and Location No. 7, 3 to 4 feet (89.0 pCi/g); and Location No. 8, 0 to 1 foot (3.33 pCi/g).

Paved Surface Area (Core Hole Nos. 9 through 12)

- Net gamma activity survey results for the soil cores ranged from 284 cpm to 1,249 cpm.
- Th-232 activity concentrations (gross) ranged from 0.641 pCi/g (Sample Location No. 11) to 0.954 pCi/g (Sample Location No. 9). No sample locations for this area exceeded the DP Modeled DCGL of 3.0 pCi/g.

3.3.4 Slag Storage Building and Adjacent Paved Area

Characterization Activities

A total of six core holes was advanced through the concrete slab of the former Slag Storage Building and the concrete paved area located to the north of the building footprint to evaluate the physical nature and examine the radiological characteristics of subsurface materials present in this area of concern (Figure 5). The placement of the core sample holes was as follows:

- Three core holes (Nos. 16 through 18) were advanced through the former Slag Storage Building concrete slab.
- Three core holes (Nos. 13 through 15) were advanced through the concrete paving located to the north of the building footprint.

Core holes were placed at biased locations as determined through a gamma exposure rate survey of the concrete surfaces, previous characterization activities, and/or the ALRP activities.

Characterization Results

Physical Information

Several layers of concrete and base material were encountered at Location Nos. 14 and 15. Underlying soils at these two locations consisted mainly of a thin dark brown to gray clayey debris zone overlying a brown to dark brown clay. Core Hole Location Nos. 13, 16, and 18 exhibited a single layer of concrete and base materials overlying a brown to dark brown clay. General profiles of the subsurface materials encountered in the area of the former Slag Storage Building are presented in Figure 7 (Sections B and C).

Radiological Information

The soil cores net gamma activity survey and soil sample gross gamma spectroscopy analysis results for Th-232 are summarized in Tables 4 and 5 respectively. Figure 6 shows the spatial positioning of the core holes color-coded according to Th-232 activity concentrations.

Building Footprint (Core Hole Nos. 16 through 18)

- Net gamma activity survey results for the soil cores ranged from 247 cpm to 1,364 cpm.
- Th-232 activity concentrations (gross) were reported as 0.659 pCi/g (Sample Location No. 16, 4 to 5 feet); 0.674 pCi/g (Location No. 17, 2 to 3 feet); and 1.33 pCi/g (Sample Location No. 18, 0 to 1 foot). No sample locations for this area exceeded the DP Modeled DCGL of 3.0 pCi/g.

Paved Surface Area North of Building Footprint (Core Hole Nos. 13 through 15)

- Net gamma activity survey results for the soil cores ranged from 437 cpm to 2,948 cpm.
- Th-232 activity concentrations (gross) were reported as 0.863 pCi/g (Sample Location No. 13, 1 to 2 feet); 6.26 pCi/g (Location No. 14, 0 to 1 foot); and 11.1 pCi/g (Sample Location No. 15, 1 to 2 feet). Sample locations exhibiting activity concentrations above the DP Modeled DCGL of 3.0 pCi/g included Location Nos. 14 and 15.

3.3.5 Crusher Building and Adjacent Paved Area

Characterization Activities

A total of two core holes was advanced through the concrete slab of the Crusher Building and the concrete paved area located to the north of the building to evaluate the physical nature and examine the radiological characteristics of subsurface materials present in this area of concern (Figure 5). The placement of the core sample holes was as follows:

- One core hole (No. 23b) was advanced through the Crusher Building concrete decking.
- One core hole (No. 19) was advanced through the concrete paving located to the north of the Crusher Building.

Core holes were placed at biased locations as determined through a gamma exposure rate survey of the concrete surfaces.

Characterization Results

Physical Information

A sand, dross, and brown clay mixture was encountered at Core Hole Location No. 19. Soils consisted mainly of a brown to gray clayey debris zone overlying a brown to dark brown clay at Corehole No. 23. General profiles of the subsurface materials encountered beneath the Crusher Building and Paved Area are presented in Figure 7 (Sections A and B).

Radiological Information

The soil cores net gamma activity survey and soil sample gross gamma spectroscopy analysis results for Th-232 are summarized in Tables 4 and 5 respectively. Figure 6 shows the spatial positioning of the core holes color-coded according to Th-232 activity concentrations.

Crusher Building (Corehole No. 23b)

- Net gamma activity survey results for the soil cores ranged from 449 cpm to 5,067 cpm.
- The Th-232 activity concentration (gross) reported for Sample Location No. 23b, 1 to 2 feet was 45.7 pCi/g. This activity concentration exceeded the DP Modeled DCGL of 3.0 pCi/g.

Paved Surface Area North of Crusher Building (Corehole No. 19)

- Net gamma activity survey results for the soil cores ranged from 624 cpm to 2,221 cpm.
- The Th-232 activity concentration (gross) reported for Sample Location No. 19, 4 to 5 feet was 5.63 pCi/g. This activity concentration exceeded the DP Modeled DCGL of 3.0 pCi/g.

3.3.6 Crusher Addition Building

Characterization Activities

A total of two core holes was advanced through the concrete slab of the Crusher Addition Building to evaluate the physical nature and examine the radiological characteristics of subsurface materials present in this area of concern (Figure 5). The two core holes (Nos. 20 and 21) were placed along the east-west centerline of the addition.

Characterization Results

Physical Information

A subsurface concrete layer encountered in Core Hole Location Nos. 20 and 21 prevented the adequate subsurface characterization of this area. A general profile of the subsurface materials encountered beneath the Crusher Addition Building is presented in Figure 7 (Section D).

Radiological Information

The soil cores net gamma activity survey and soil sample gross gamma spectroscopy analysis results for Th-232 are summarized in Tables 4 and 5 respectively. Figure 6 shows the spatial positioning of the core holes color-coded according to Th-232 activity concentrations.

- Net gamma activity survey results for the soil cores ranged from 389 cpm to 919 cpm.
- Th-232 activity concentrations (gross) reported for Sample Location Nos. 20 and 21 were 0.283 pCi/g and 2.69 pCi/g respectively. These activity concentrations do not exceed the DP Modeled DCGL of 3.0 pCi/g.

3.3.7 Maintenance Building Area

Characterization Activities

One core hole was advanced through the concrete paving located to the west of the Maintenance Building to evaluate the physical nature and examine the radiological characteristics of subsurface materials present in this area of concern (Figure 5). The positioning of this core hole (No. 24) was based on a gamma exposure rate survey of the concrete surface. A second sample for this area (Sample No. 25) was not collected during the Additional Characterization event. It was collected during the ALRP.

Characterization Results

Physical Information

A general profile of the subsurface materials encountered in the vicinity of the Maintenance Building is presented in Figure 7 (Section D).

Radiological Information

The soil cores net gamma activity survey and soil sample gross gamma spectroscopy analysis results for Th-232 are summarized in Tables 4 and 5 respectively. Figure 6 shows the spatial positioning of the core holes color-coded according to Th-232 activity concentrations.

- Net gamma activity survey results for the soil core ranged from 6,097 to 9,097 cpm.
- Th-232 activity concentrations (gross) reported for Sample Location Nos. 24 and 25 were 9.57 pCi/g and 8.47 pCi/g respectively. These activity concentrations exceeded the DP Modeled DCGL of 3.0 pCi/g.
- 3.3.8 <u>Warehouse Building</u>

Characterization Activities

One core hole was advanced through the concrete slab of the Warehouse Building to evaluate the physical nature and examine the radiological characteristics of subsurface materials present in this area of concern (Figure 5). The core hole (No. 22) was placed along the north wall outside of the warehouse office. The positioning of this core hole was based on a gamma exposure rate survey of the concrete surface.

Characterization Results Summary

Physical Information

A subsurface concrete layer encountered in Corehole Location No. 22 prevented adequate subsurface characterization of this area. A general profile of the subsurface materials encountered beneath the Warehouse Building is presented in Figure 7 (Section D).

Radiological Information

The soil cores net gamma activity survey and soil sample gross gamma spectroscopy analysis results for Th-232 are summarized in Tables 4 and 5 respectively. Figure 6 shows the spatial positioning of the core holes color-coded according to Th-232 activity concentrations.

- Net gamma activity survey results for the soil core ranged from 849 to 1,068 cpm.
- The Th-232 activity concentration (gross) reported for Sample Location No. 22 was 6.11 pCi/g. This activity concentration exceeded the DP Modeled DCGL of 3.0 pCi/g.

4.0 Summary of Findings and Conclusions

This chapter presents a summary of findings for the additional site characterization effort. Conclusions based on these findings relative to future characterization activities in support of the facility decommissioning are also contained in this section of the report.

4.1 USEPA Hazardous Waste Determination for the Thorium-Bearing Dross

The objective of this additional site characterization task was to establish a baseline chemical toxicity characteristics profile of the thorium-bearing dross materials to be excavated at the site during implementation of the DP for material management purposes. Ten grab samples of subsurface dross materials were collected from test pit excavations advanced in the Retention Pond area (five samples), the Reserve Pond area (two samples), and the suspected area of the "trash pile" (three samples). Samples were analyzed for leachable concentrations of metals and VOCs via the TCLP. No VOCs were detected above laboratory reporting limits. The metals arsenic, barium, chromium, selenium, and silver were detected at concentrations below their respective USEPA toxicity characteristics regulatory levels. Results of the TCLP testing of the 10 samples indicated that the thorium-bearing dross is a nonhazardous material.

4.2 "Trash Pile" Area Subsurface Characterization

Historical aerial photographs of the site indicated that a "trash pile" at one time existed within the 14-acre land parcel area prescribed in the DP for remediation. The objective of this additional site characterization task was to determine the physical, radiological, and chemical (organic compounds) characteristics of the subsurface materials within this area of concern relative to materials management planning.

Seven exploratory test trench excavations were advanced at biased locations based on aerial photograph interpretations and field observations. Five of the seven test trench excavations revealed the presence of a significant amount of debris material (concrete, scrap steel, rebar, wood, plastic, wire, cables, and rubber belts) intermixed with soil and dross. Planned DP activities may need to be modified to address the presence of debris materials in the excavation areas.

As mentioned in Section 4.2, three grab samples of subsurface materials were collected from test pit excavations advanced in the "trash pile" area. Results of TCLP testing of the samples indicated that the materials were nonhazardous material. Furthermore, subsurface materials encountered during test pitting

were also screened in the field with a PID for the presence of organic compounds. No organic vapor readings were detected with the field survey instrument during the intrusive subsurface characterization activities.

4.3 Subsurface Characterization Beneath Structures and Paved Areas

Modifications to on-site buildings/structures during the operating life of the facility may have resulted in the covering of residual radioactive material beneath concrete paved surfaces and building floor areas. The areas where radioactive material may exist beneath structures was based upon an interpretation of historical data and/or observations made during the ALRP. These areas included the Flux Building and adjacent paved area, Slag Storage Building and adjacent paved area, the original Crusher Building and adjacent paved area, the Crusher Addition Building, the Warehouse Building, and the concrete paved area located to the west of the Maintenance Building. The objective of this additional site characterization task was to determine if thorium-bearing dross/radioactive material was present beneath these areas of concern.

4.3.1 Flux Building and Adjacent Paved Area

A total of 12 core holes was advanced through the concrete slab within the Flux Building and the concrete paved area located to the west of the building to evaluate the physical nature and examine the radiological characteristics of subsurface materials present in this area of concern. Data obtained during the characterization effort in conjunction with observations made during the ALRP indicate the presence of radioactive material beneath a significant portion of the Flux Building structure. The presence of this material beneath the structure is most likely the result of grading activities prior to the building's construction. The limited subsurface characterization effort conducted for the concrete paved area located to the west of the Flux Building did not reveal the presence of radioactive material.

4.3.2 Slag Storage Building and Adjacent Paved Area

A total of six core holes was advanced through the concrete slab of the former Slag Storage Building and the concrete paved area located to the north of the building footprint to evaluate the physical nature and examine the radiological characteristics of subsurface materials present in this area of concern. Data obtained during the characterization effort in conjunction with observations made during the ALRP indicate the presence of radioactive material beneath the northern portion of the concrete pad which once utilized as a slag storage area. The limited subsurface characterization effort conducted within the footprint of the former building did not reveal the presence of radioactive material.

4.3.3 Crusher Addition Building

A total of two core holes was advanced through the concrete slab of the Crusher Addition Building to evaluate the physical nature and examine the radiological characteristics of subsurface materials present in this area of concern. The two core holes (Nos. 20 and 21) were placed along the east-west centerline of the addition. Data obtained during the characterization did not indicate the presence of radioactive material. However, a subsurface concrete layer prevented the adequate subsurface characterization of this area.

4.3.4 Crusher Building and Adjacent Paved Area

One core hole was advanced through the concrete slab of the Crusher Building and one in the concrete paved area located to the north of the building to evaluate the physical nature and examine the radiological characteristics of subsurface materials present in this area of concern. Data obtained during the characterization effort in conjunction with observations made during the ALRP indicate the presence of radioactive material beneath the north portion of the Crusher Building structure and beneath the paved area north/northeast of the building.

4.3.5 Maintenance Building Area

One core hole was advanced through the concrete paving located to the west of the Maintenance Building to evaluate the physical nature and examine the radiological characteristics of subsurface materials present in this area of concern. Data obtained during the characterization effort in conjunction with observations made during the ALRP indicate the presence of radioactive material beneath the concrete paving area located west of the Maintenance Building. The location of the elevated measurements identified in this area appears to correlate to an area that underwent several grading activities between 1950 and 1964.

4.3.6 Warehouse Building

One core hole was advanced through the concrete slab of the Warehouse Building to evaluate the physical nature and examine the radiological characteristics of subsurface materials present in this area of concern. The core hole was placed along the north wall outside of the warehouse office. Data obtained during the characterization effort indicate the presence of radioactive material beneath a portion of the concrete area inside of the Warehouse Building. The location of the elevated measurements identified in this area appears to correlate to an area which under went several grading activities between 1958 and 1964.

w:\5427g\rpt\kaiser.doc

References

References

Decommissioning Plan, Tulsa Facility, Tulsa, Oklahoma, Kaiser Aluminum and Chemical Corporation, Baton Rouge, Louisiana, Project No. 5427E, Earth Sciences Consultants, Inc. (June 2001).

Final Status Survey Report, Adjacent Land Area, Tulsa, Oklahoma Facility, Kaiser Aluminum & Chemical Corporation, Baton Rouge, Louisiana, Project No. 5427F, Earth Sciences Consultants, Inc. (July 2001).

Adjacent Land Remediation Plan for Kaiser Aluminum & Chemical Corporation, Tulsa, Oklahoma (July 1999, Revision 1).

W:\5427g\rpt\reference.doc

Tables

Table 1 USEPA Hazardous Waste Determination - TCLP Analytical Results Thorium-Bearing Dross Additional Site Characterization Former Kaiser Aluminum Specialty Products Facility Tulsa, Oklahoma

Kaiser Aluminum & Chemical Corporation

Sample No.	Analysis	(b) (b) (b)	(mg/l)	(Job Cadmium	(lygm) (lygm)	(mg/l)	innstand (mg/l)	(l/m) (l/m)	Silver (mg/l)
Reg. Level		5.0	100.0	1.0	5.0	5.0	0.2	1.0	5.0
1	Metals	< 0.005	14	< 0.011	< 0.010	< 0.005	< 0.0005	< 0.005	< 0.009
2	Metals	< 0.010	13.4	< 0.011	< 0.010	< 0.005	< 0.0005	< 0.105	0.047
3	Metals	0.01	7.85	< 0.011	0.015	< 0.005	< 0.0005	< 0.005	< 0.009
4	Metals	< 0.005	3.7	< 0.011	0.013	< 0.005	< 0.0005	0.007	0.014
5	Metals	< 0.005	13.9	< 0.011	< 0.010	< 0.005	< 0.0005	< 0.005	0.01
6	Metals	< 0.005	6.19	< 0.011	< 0.010	< 0.005	< 0.0005	0.007	< 0.009
7	Metals	< 0.005	3.61	< 0.011	< 0.010	< 0.005	< 0.0005	< 0.005	0.01
8	Metals	< 0.005	6.14	< 0.011	< 0.010	< 0.005	< 0.0005	0.008	< 0.009
9	Metals	< 0.005	5.16	< 0.011	< 0.010	< 0.005	< 0.0005	0.006	0.034
10	Metals	0.01	8.71	<0.011	0.011	<0.005	<0.0005	< 0.005	0.013

Sample No.	Analysis	au (V) (J) 1,1-Dichloroethene	a) 80 1,2-Dichloroethane	(<i>J/M</i>) 2-Butanonc	(<i>mg</i> /)	w) (V ⁶ arbon tetrachløride	(<i>mg/l</i>)	W (V ^K Tetrachloroethene	(<i>W</i> g/ <i>T</i> richloroethene	(W ^g W) (Vinyl Chloride	(<i>W</i> g <i>W</i>) (<i>W</i> g <i>W</i>)
Reg. Level		0.7	0.5	200.0	0.5	0.5	6.0	0.7	0.5	0.2	100.0
1	VOCs	< 0.005	<0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005
2	VOCs	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
3	VOCs	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
4	VOCs	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005
5	VOCs	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005
6	VOCs	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
7	VOCs	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	< 0.005
8	VOCs	<0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	<0.005
9	VOCs	<0.005	<0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005
10	VOCs	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005

ND = None Detected

w:\5427g\rpt\tbis1-5.xis

Table 2Summary of Test Trench Excavation ResultsTrash Pile AreaAdditional Site CharacterizationFormer Kaiser Aluminum Specialty Products FacilityTulsa, OklahomaKaiser Aluminum & Chemical Corporation

		Net Gamma Screening	Net Exposure Rate Screening	Organic Vapor
Test Trench	Physical Description of Subsurface Materials Encountered	Result ⁽¹⁾	Result ⁽¹⁾	Reading
No.		(Average CPM)	(Average µR/hr)	(ppm)
1	Bluish-gray to gray dross (0-0.25') and brown clay (0.25-10'). No debris encountered.	9,500	2	0.0
2	Dark brown silt loam (0-6') and brown clay (6'-10'). Elevated radioactivity appeared to be limited to the	10,000	11	0.0
	the initial 6' of material. An abandoned electrical conduit (8") was found at a depth of 5'.	70,000 on pipe		
3	Bluish-gray to gray dross (0-15') containing debris (sheet metal, rebar, wood, plastic, various cables,	250,000	81 @ 3'	0.0
	wire, bricks, 55-gallon drums of dross material, and rubber belts). Dross became wet at a depth of 9' with		91 @ 4'	
	a significant amount of water inflow at a depth of 11'. Total depth of excavation was 19'. Buried concrete		151 @ 11'	
	spillway was not encountered during excavation.			
4	Brown silt loam (0-1.5'), bluish-gray to gray compacted dross (1.5'-3'), and a bluish-gray to gray dross	18,000	71	0.0
	comingled with a brown silt loam and debris (3-10'). Debris consisted of rebar, plastic, and steel conduits.	Max 70,000		
5	Debris consisting of concrete blocks, large rocks, and lumber (0-1'), bluish-gray to gray dross (1-2'),	16,000	21	0.0
	and brown clay (2-10').	Max 90,000		
6	Debris consisting of concrete, belts, scrap steel, and wood (0-2'), dark brown silt loam (2-8'), and clay (8-10').	10,000	11	0.0
	Water inflow was noted at a depth of 9'.			
7	Brown clay (0-1'), bluish-gray to gray dross (1-2'), and light brown silt loam (2-10'). No debris encountered.	10,000	11	0.0

 $^{(1)}\text{Site}$ established background values are 9 $\mu\text{R/hr}$ and 10,000 cpm.

1

w:\5427g\rpt\tbls1-5.xls

Table 3 Net Gamma Exposure Rate Readings During Coring Activities Additional Site Characterization Former Kaiser Aluminum Specialty Products Facility Tulsa, Oklahoma Kaiser Aluminum & Chemical Corporation

		Before Concrete	Following Concrete	Following First	Following Second	Following Third
Building	Sample	Core Removal	Core Removal	Soil Core Removal	Soil Core Removal	Soil Core Removal
Location	No.	(µR/hr)	(µR/hr)	(µR/hr)	(µR/hr)	(µR/hr)
Flux Building	1	1	3	4	4	2
	2	. 0	2	-1	-1	N/A
	3	1	2	0	1	N/A
	4	0	2	-1	0	N/A
	5	3	9	7	7	N/A
	6	4	11	18	21	N/A
	7	6	21	23	23	N/A
	8	5	9	10	8	N/A
Paved Area Adjacent	9	13	13	5	4	N/A
to Flux Building	10	9	11	10	9	N/A
	11	11	4	4	4	N/A
	12	6	4	1	0	N/A
Slag Storage	13	1	3	4	4	N/A
Building Area	14	2	6	5	4	N/A
	15	6	.6	6	6	N/A
	16	2	-3	-1	-2	N/A
	17	5	2	0	0	N/A
	18	8	20	14	14	N/A
North of Crusher Building	19	. 6	1	0	0	N/A
Crusher Addition Building	20	-2	0	-3	N/A	N/A
	21	1	1	-2	N/A	N/A
Warehouse Building	22	1	4	4	N/A	N/A
Crusher Building	⁽¹⁾ 23a	5	16	N/A	N/A	N/A
	23b	2	11	9	N/A	N/A
Maintenance Building	24	-2	51	61	N/A	N/A

⁽¹⁾Sample location was moved to 23b because GeoprobeTM sampler could not reach original sample location. Background Gamma Exposure Rate (μR/hr): 9

w:\5427g\rpt\tbls1-5.xls

Table 4 Gamma Survey Results - Soil Cores Additional Site Characterization Former Kaiser Aluminum Specialty Products Facility Tulsa, Oklahoma Kaiser Aluminum & Chemical Corporation

			Section	Section								
	Core		0-1'	1-2'	2-3'	3-4'	4-5'	5-6'	6-7'	7-8'	8-9'	9-10'
Building	Hole			I							Net Gamma	Net Gamma
Location	No.	Notes	(cpm)	(cpm)								
Flux Building												
	1	1	286	149	447	548	475	492	577	1051	2164	1615
	2	1	545	1099	916	578	991	1011	819	611		
	3	1	648	1288	1948	3339	1548	1058	698	449		
	4	1	587	1349	927	1099	645	722	709	618		
	5	1	545	849	1038	1399	3318	3615	1289	513		
	6	1	1345	3465	4141	7584	4147	3057	1548	1145		
	7	1	954	4067	6646	10097	1399	1096	197	449		
	8	1	1649	699	548	483	349	143	351	340		
Paved Area Adjacent	9	1	964	449	1249	612	619	479	593	477		
to Flux Building	10	1	587	284	429	658	491	544	479	533		
	11	1	587	664	1139	437	611	449	577	437		
	12	1	1092	946	494	512	615	646	494	1013		
Slag Storage	13	1	668	1146	449	496	749	449	479	548		1
Building Area	14	1	1149	1039	449	573	437	449	946	1002		
	15	1	1849	2948	948	618	457	619	988	449		
	16	1	389	449	247	615	854	548	810	745		
	17	1	349	494	966	848	856	446	534	477		
	18	1	1364	1068	619	445	848	553	437	429		
North of Crusher Building	19	1	749	1086	949	899	2221	624	1058	1031		
Crusher Addition Building	20	1, 2	389	668								
	21	1, 2	919	706								
Warehouse Building	22	1, 2	849	1068								
Crusher Building	23	1	4284	5067	3245	597	649	449	537	688	[
Maintenance Building	24	1, 2	9097	6097								

Bolded numbers indicate core segment analyzed by the laboratory.

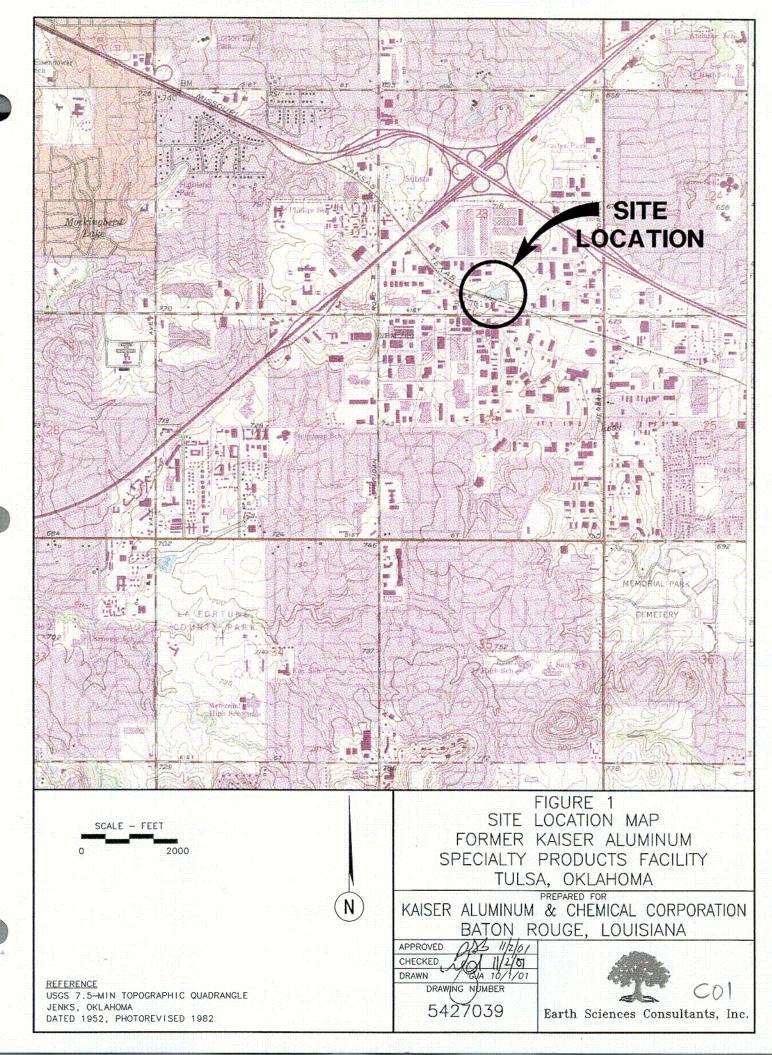
Concrete or similar subsurface obstructions were encountered. Entire soil core volume was required for laboratory analysis.

Counting Cave Background (cpm): 6400

ı.

w:\5427g\rpt\tbis1-5.xls

Table 5Analytical Results for Th-232Additional Site CharacterizationFormer Kaiser Aluminum Specialty Products FacilityTulsa, OklahomaKaiser Aluminum & Chemical Corporation


		Core	Net	Analytical
		Sample	Gamma	Results
	Sample	Depth	Count	Gross Th-232
Building Location	No.	(ft)	(cpm)	(pCi/g)
Flux Building	1	8-9	2164	4.21
	2	1-2	1099	1.82
	3	3-4	3339	11.1
	4	1-2	1349	2.83
	5	5-6	3615	30.7
	6	3-4	7584	71.4
	7	3-4	10097	89.0
	8	0-1	1649	3.33
Paved Area Adjacent to Flux Building	9	2-3	1249	0.954
	10	3-4	658	0.792
	11	2-3	1139	0.641
	12	0-1	1092	0.725
Slag Storage Building Area	13	1-2	1146	0.863
	14	0-1	1149	6.26
	15	1-2	2948	11.1
	16	4-5	854	0.659
	17	2-3	966	0.674
	18	0-1	1364	1.33
North of Crusher Building	19	4-5	2221	5.63
Crusher Addition Building	20	0-2	668	0.283
	21	0-2	919	2.69
Crusher Building	23a ⁽¹⁾	N/A	N/A	N/A
	23b	1-2	5067	45.7
Maintenance Building	24	0-2	9097	9.57
	25 ⁽²⁾	0-0.5	N/A	8.47
Warehouse Building	22	0-2	1068	6.11

⁽¹⁾Sample location was moved to 23b because GeoprobeTM sampler could not reach original sample location.

⁽²⁾Surface sample taken west of the Maintenance Building.

w:\5427g\rpt\tbls1-5.xls

Figures

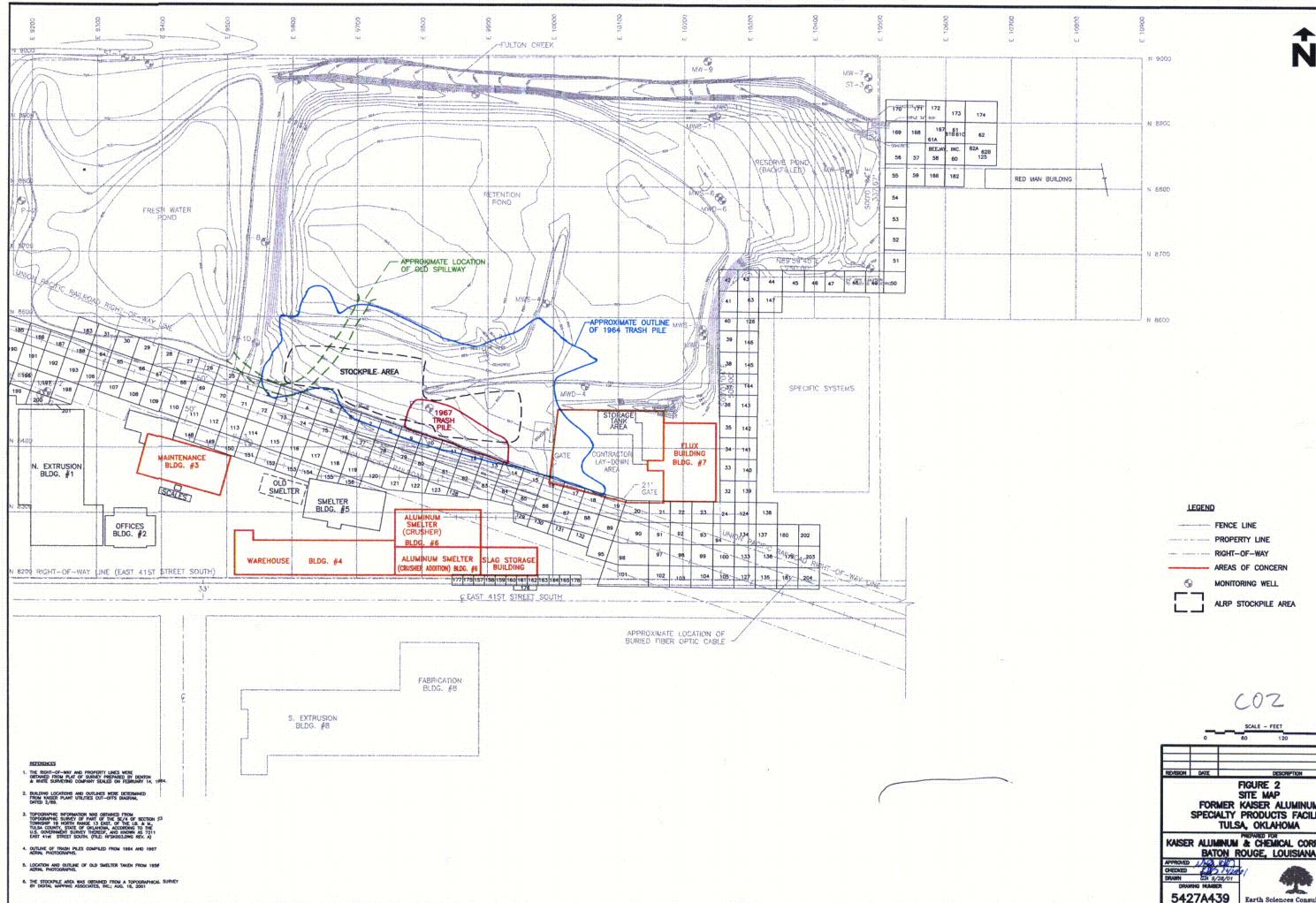


FIGURE 2 SITE MAP FORMER KAISER ALUMINUM SPECIALTY PRODUCTS FACILITY TULSA, OKLAHOMA KAISER ALUMINUM & CHEMICAL CORPORATION BATON ROUGE, LOUISIANA APPROVED 1/ACI (CI/) BHECKED 1/ACI (CI/) BHECKED 1/ACI (CI/) DRAWING RAWEER 2 Earth Sciences Consultants, Inc.

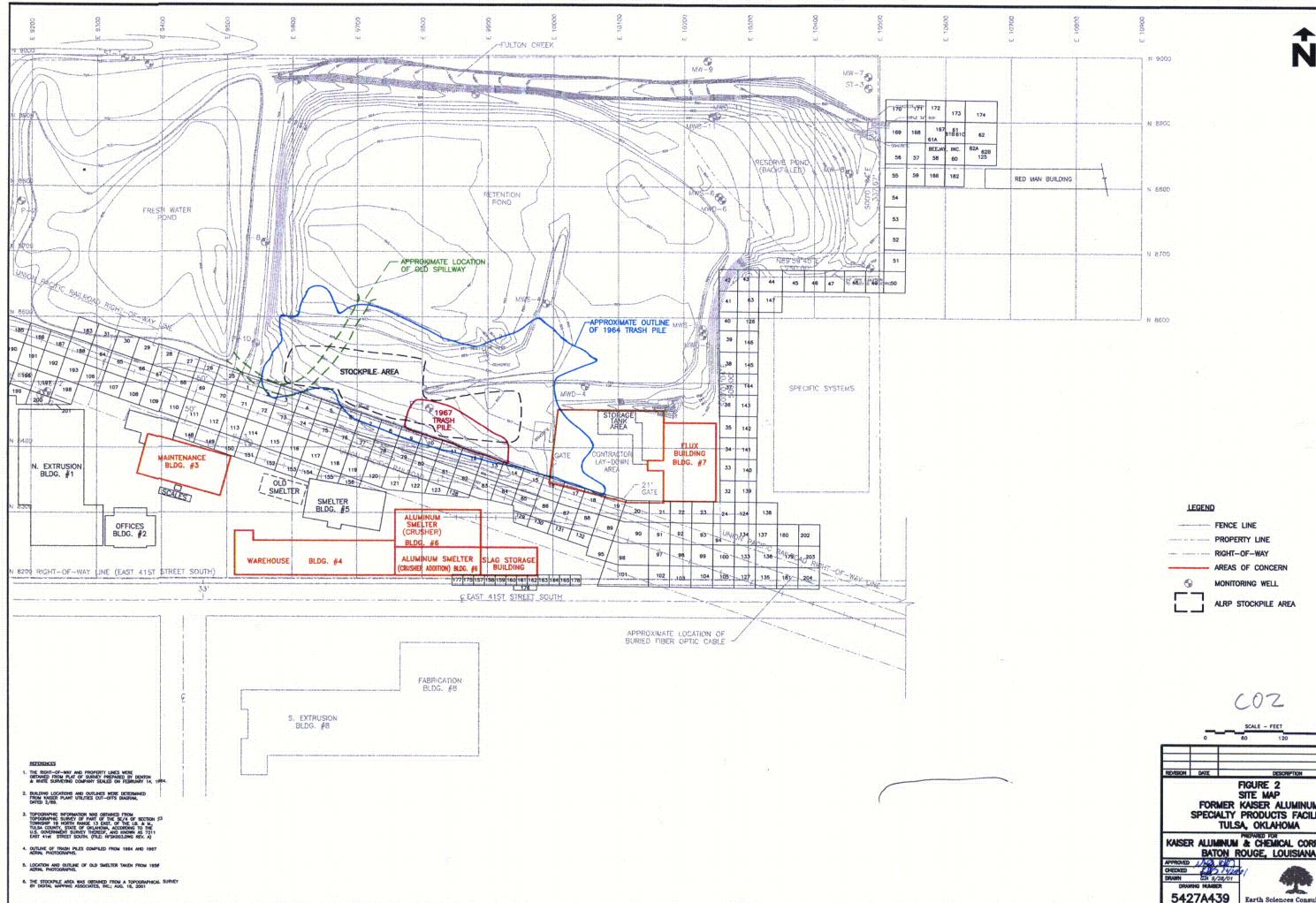
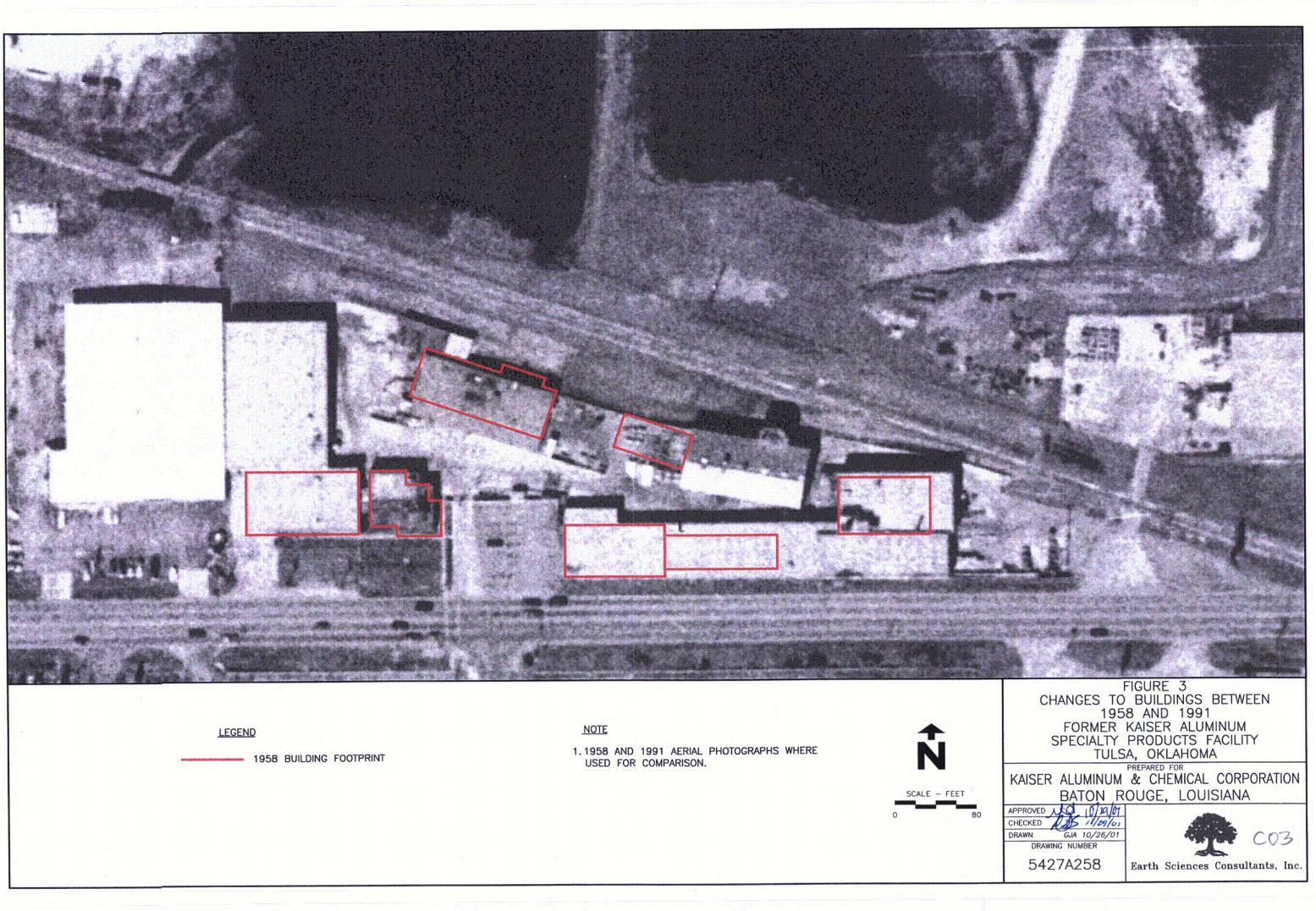
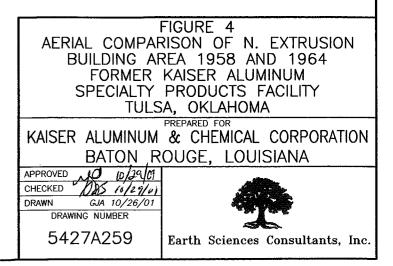
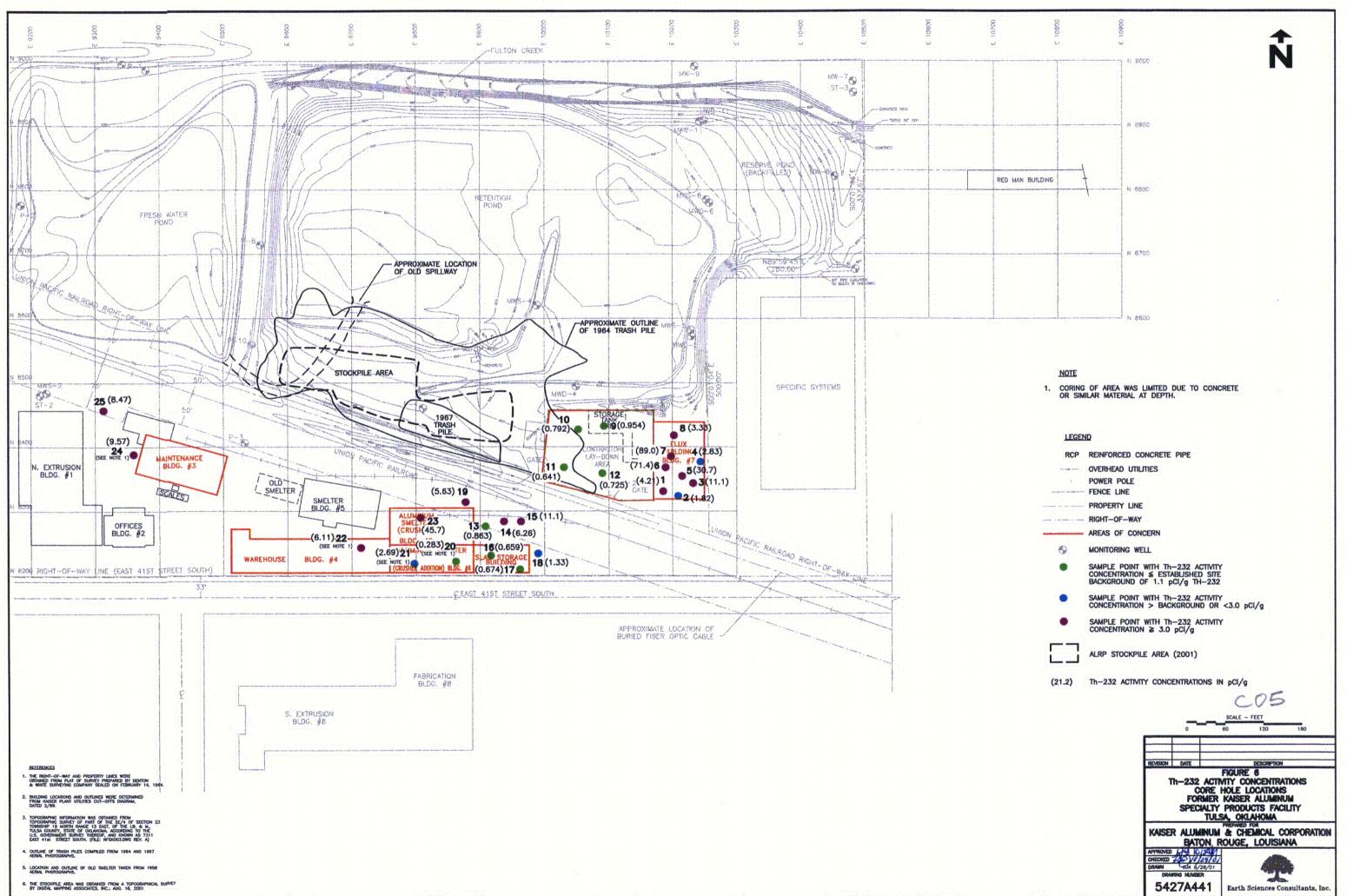



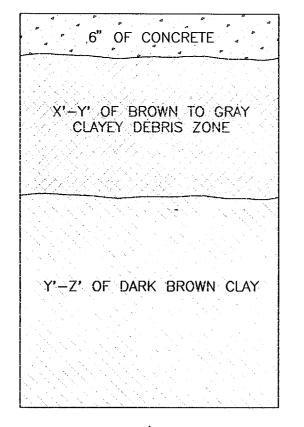
FIGURE 2 SITE MAP FORMER KAISER ALUMINUM SPECIALTY PRODUCTS FACILITY TULSA, OKLAHOMA KAISER ALUMINUM & CHEMICAL CORPORATION BATON ROUGE, LOUISIANA APPROVED 1/ACI (CI/) BHECKED 1/ACI (CI/) BHECKED 1/ACI (CI/) DRAWING CA 9/28/01 DRAWING RAWEER 2 Earth Sciences Consultants, Inc.

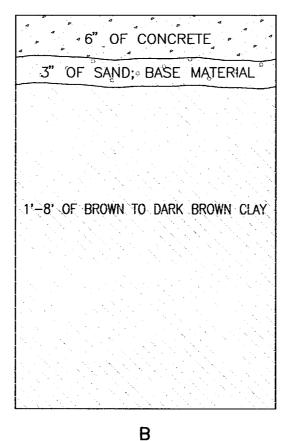


1958 AERIAL PHOTOGRAPH


(


1964 AERIAL PHOTOGRAPH


Ň



5427A440 Earth Sciences Consultants, Inc.

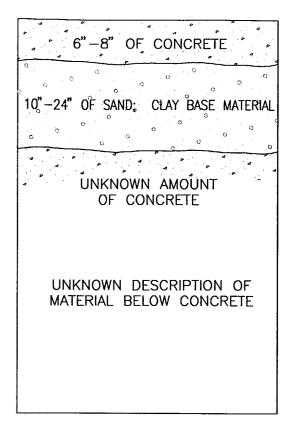
.....

a a	6" OF CONCRETE
° .6"	OF SAND; BASE MATERIAL
4	.6" OF CONCRETE
° 6"°	OF SAND; BASE WATERIAL
TO	1'-2' OF DARK BROWN GRAY CLAYEY DEBRIS ZONE
6'-8'	OF BROWN TO DARK BROWN CLAY

Α

CROSS SECTION FLUX BUILDING AND

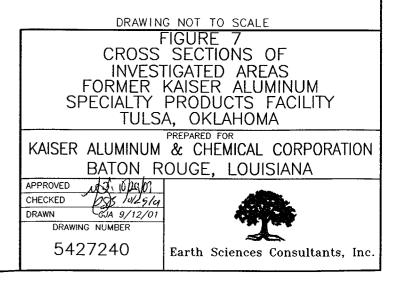
CRUSHER BUILDING



CROSS SECTION

SLAG STORAGE BUILDING AREA, AREA ADJACENT TO FLUX BUILDING, AND AREA NORTH OF CRUSHER BUILDING

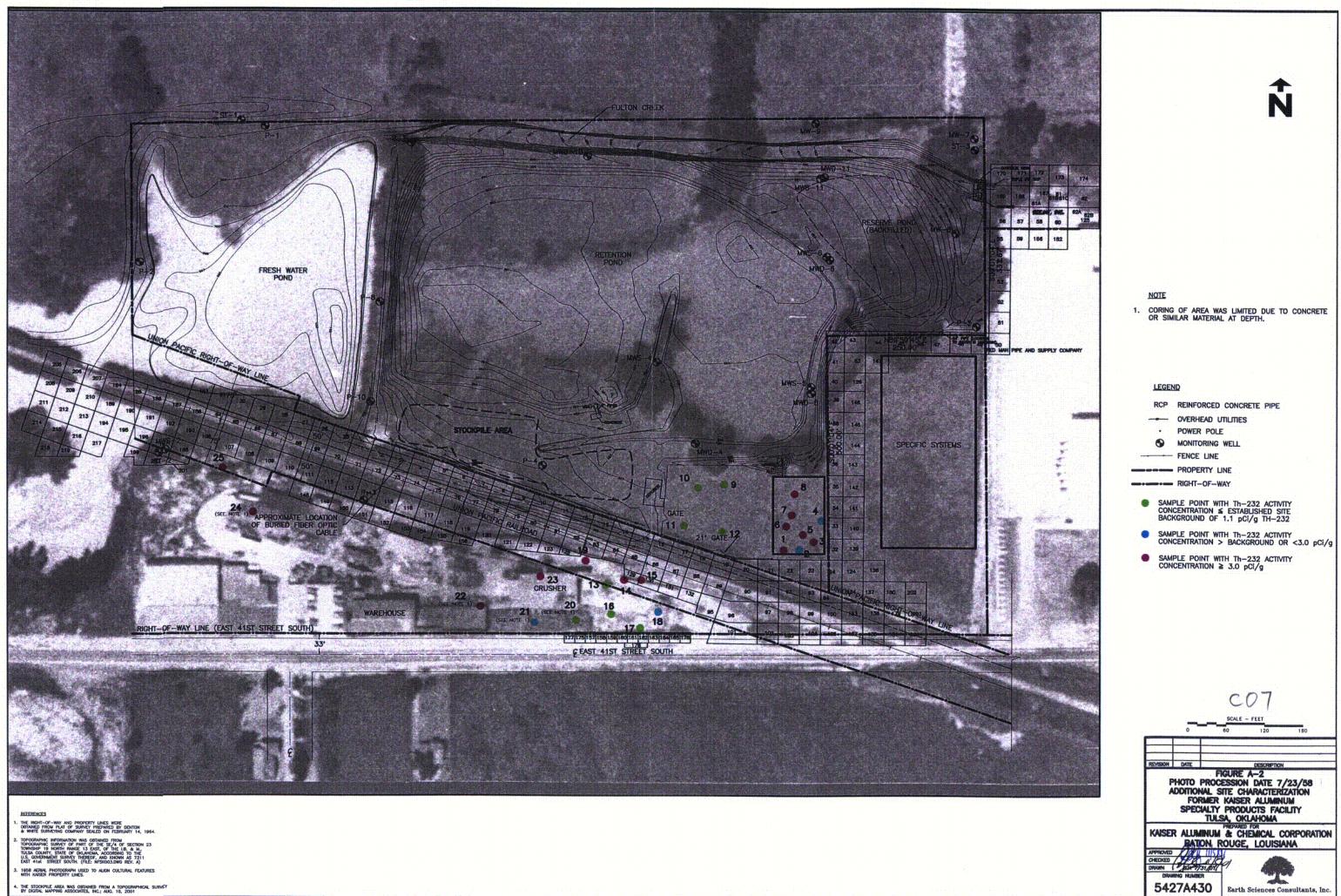
С


CROSS SECTION AREA NORTH OF SLAG STORAGE BUILDING

D

CROSS SECTION

CRUSHER ADDITION, WAREHOUSE BUILDING, AND AREA WEST OF THE MAINTENANCE BUILDING


Appendix A

Aerial Photographs with Overlay of Soil Core Hole Locations



THE STOCKPILE AREA WAS OBTAINED FROM A TOP BY DIGITAL MAPPING ASSOCIATES, INC.; AUG. 16.

				Ň		
	NG OF	area wa Material	s limite , at def	d due to Th.	CONCRETE	
SA CC BA SA CC	OVER POWE MONI FENC PROF RIGH MPLE P NOCENTR CKGROU MPLE P NOCENTR	ATION ≦ IND OF 1 OINT WIT ATION >	LITIES VELL IE Y H Th-23 ESTABU: I.1 pCI/4 H Th-23 BACKGR H Th-23	2 ACTIVITY SHED SITE 9 TH-232 2 ACTIVITY OUND OR 12 ACTIVITY		G
REVIS	PHOT	E FORMER PROCI FORMER PECIALTY	KAISER PRODU	DESCRIPTION A-1 DATE 12/ NRACTERIZ ALUMINU ICTS FACI	ATION M	
APPR			SA, OKI REPARED & CHI ROUGE,	AHOMA	RPORATI	DN

THE STOCKPILE AREA WAS OBTAINED FROM A TOPOGRAPHICAL SURVEY BY DIGITAL MAPPING ASSOCIATES, INC.; AUG. 16, 2001

THE RIGHT-OF-Y AY AND PROPERTY UNES WERE PLAT OF SURVEY PREPARED BY D

THEREOF, AND KNOWN AS 731 H. (FILE: NFSK003.DWG REV. A) U.S. GOVER 1964 AERAL PHOTOGRAPH USED TO ALIGN CULTURAL FEATURES WITH KAISER PROPERTY LINES.

4. THE STOCKPILE AREA WAS DETAINED FROM A TOPOGRAPHICAL SURVEY BY DIGITAL MAPPING ASSOCIATES, INC.; AUG. 16, 2001

LEGEND RCP REINFORCED CONCRETE PIPE ---- OVERHEAD UTILITIES POWER POLE MONITORING WELL FENCE LINE ---- PROPERTY LINE - RIGHT-OF-WAY SAMPLE POINT WITH Th-232 ACTIVITY CONCENTRATION ≤ ESTABLISHED SITE BACKGROUND OF 1.1 pCI/g TH-232 SAMPLE POINT WITH Th-232 ACTIVITY CONCENTRATION > BACKGROUND OR <3.0 pCI/g SAMPLE POINT WITH Th-232 ACTIVITY CONCENTRATION ≥ 3.0 pCi/g 008 SCALE - FEET 60 INN DATE DESCRIPTION FIGURE A-3 PHOTO PROCESSION DATE 10/08/64 ADDITIONAL SITE CHARACTERIZATION FORMER KAISER ALUMINUM SPECIALTY PRODUCTS FACILITY TULSA, OKLAHOMA PREVIEW FOR KAISER ALUMINUM & CHEMICAL CORPORATION BATON, ROUGE, LOUISIANA 5427A427 Earth Sciences Consultants, Inc.

NOTE

Ň

1. CORING OF AREA WAS LIMITED DUE TO CONCRETE OR SIMILAR MATERIAL AT DEPTH.

THE RIGHT-OF-WAY OBTAINED FROM PL

TOPOG TOWNS TULSA U.S. C 1972 AERIAL PHOTOGRAPH USED TO ALIGN CULTURAL FEAT

PILE AREA WAS OBTAINED FROM A TOPOGRAPHICAL SURV MAPPING ASSOCIATES, INC.; AUG. 16, 2001

.

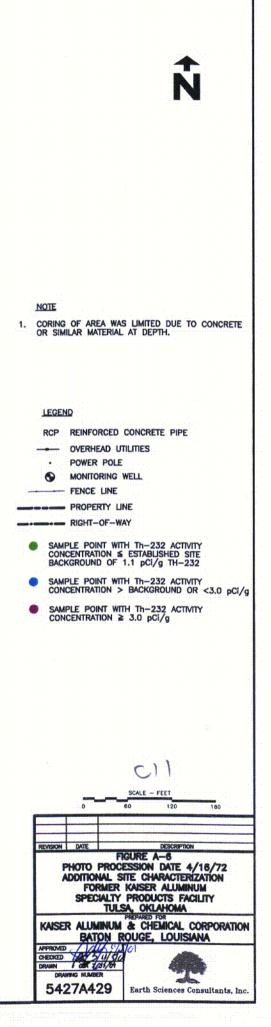
the second second

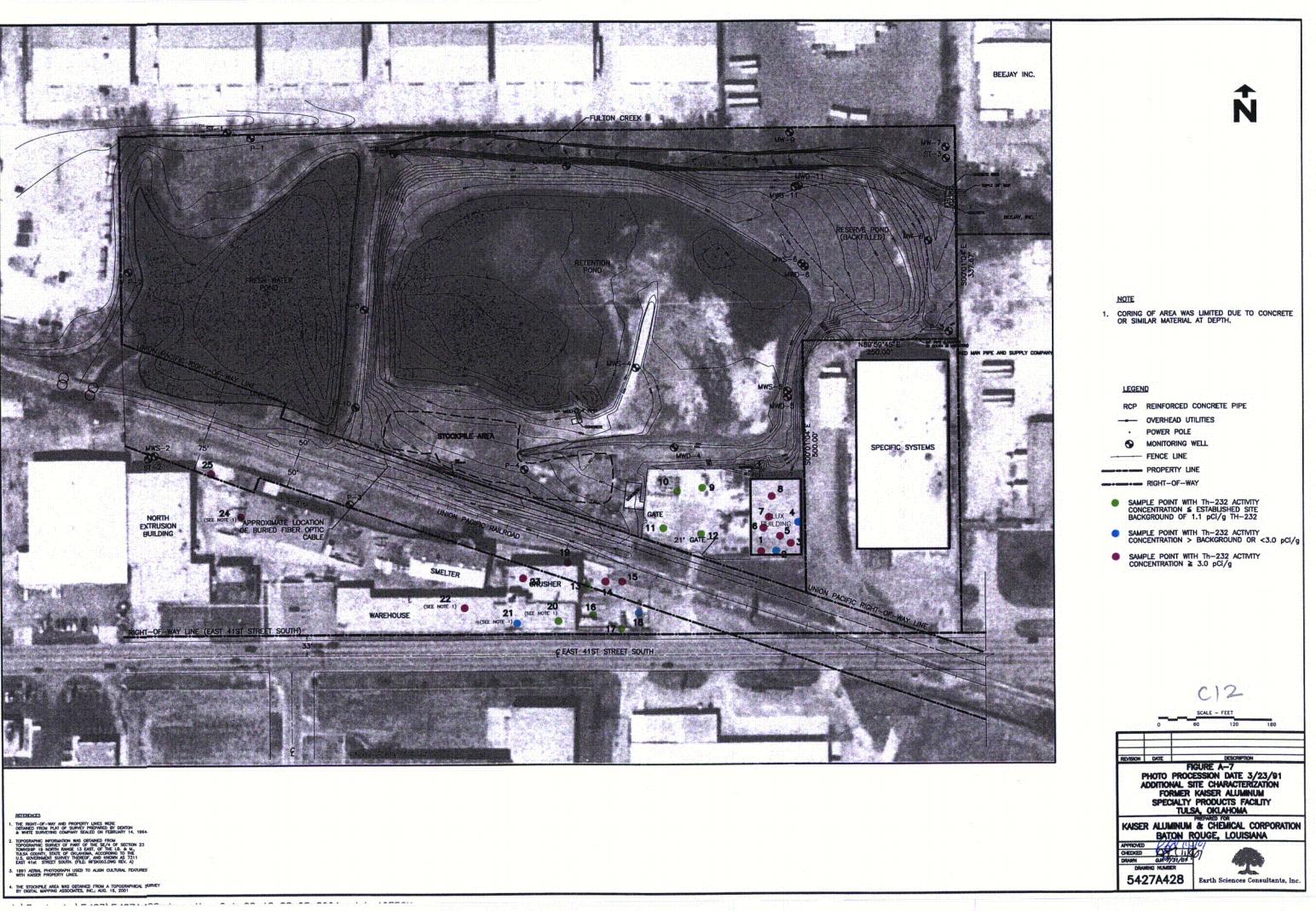
و بين بين

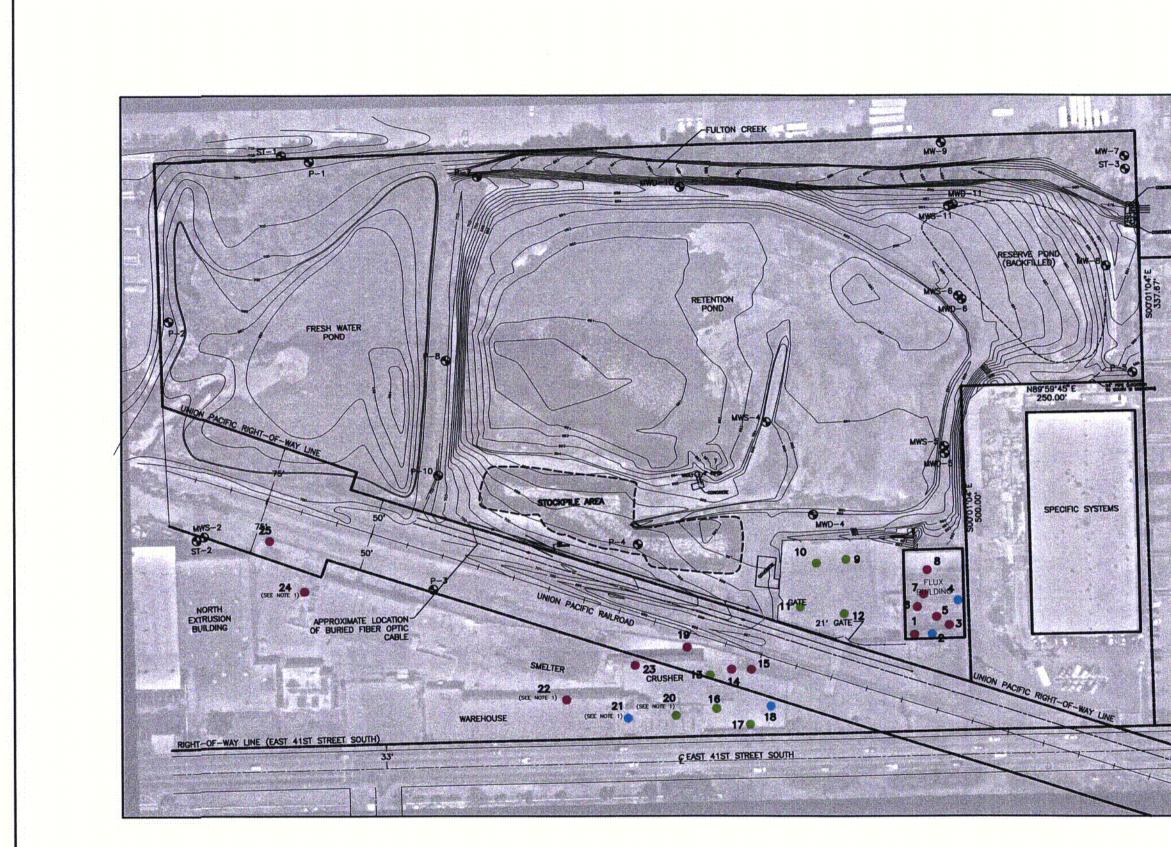
Ň NOTE 1. CORING OF AREA WAS LIMITED DUE TO CONCRETE OR SIMILAR MATERIAL AT DEPTH. LEGEND RCP REINFORCED CONCRETE PIPE ---- OVERHEAD UTILITIES POWER POLE . MONITORING WELL - FENCE LINE ----- PROPERTY LINE - RIGHT-OF-WAY SAMPLE POINT WITH Th-232 ACTIVITY CONCENTRATION ≦ ESTABLISHED SITE BACKGROUND OF 1.1 pCi/g TH-232 SAMPLE POINT WITH Th-232 ACTIVITY CONCENTRATION > BACKGROUND OR <3.0 pCi/g • SAMPLE POINT WITH Th-232 ACTIVITY CONCENTRATION ≥ 3.0 pCl/g 009 SCALE - FEET 60 RI DATE DESCRIPTION FIGURE A-4 PHOTO PROCESSION DATE 1/26/65 ADDITIONAL SITE CHARACTERIZATION FORMER KAISER ALUMINUM SPECIALTY PRODUCTS FACILITY TULSA, OKLAHOMA PREVABLID DESCRIPT KAISER ALUMINUM & CHEMICAL CORPORATION BATON, ROUGE, LOUISIANA 5427A435

Earth Sciences Consultants, Inc.

THE STOCKPILE AREA WAS OBTAINED FROM A TOPOGRAPHICAL SURVEY BY DIGITAL MAPPING ASSOCIATES, INC.; AUG. 16, 2001

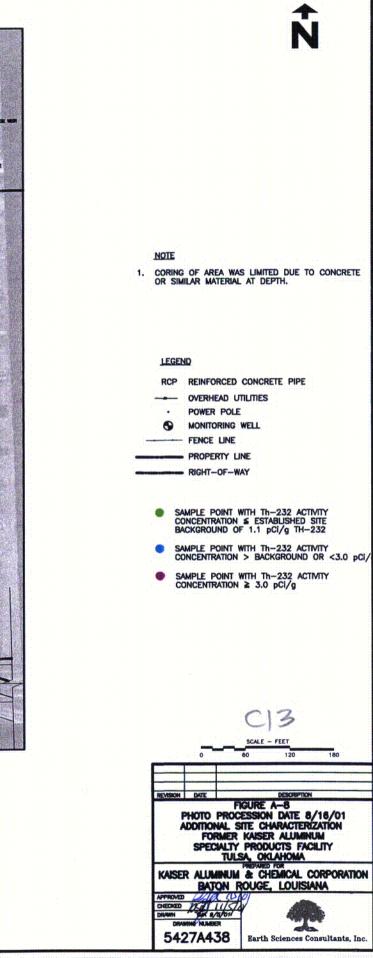

THE ROAT-OF-WAY AND PROPERTY LINES WERE OBTAINED FROM PLAT OF SURVEY PREPARED BY DEMTON & WHITE SURVEY INFORMATIVE SOLED ON TERMUNEY 14, 1964 TOPOGRAPHIC INFORMATION WAS ORTANED FROM TOPOGRAPHIC SURVEY OF PART OF THE SELF OF SECTION 23


TOWERSHIP TO ANOTH RANGE TO EAST, OF THE LB, & KE, TULSA COUNTY, STATE OF QUAHOMA, ACCORDING TO THE U.S. QOMERNMENT SURVEY THEREOF, AND KNOWA AS 7311 EAST 418: STREET SOUTH, (FEE: INFSKOLDMG REV, A) 1972 ADVIL, PHOTOGRAPH USED TO AUGN OULTURAL FEATURES WITH KNORE PROPERTY UNES.


THE STOCKPILE AREA WAS OBTAINED FROM A TOPOGRAPHICAL SURVEY BY DIGITAL MAPPING ASSOCIATES, INC.; AUG. 16, 2001

--

.


THE RIGHT-OF-WAY AND PROPERTY LINES WERE OBTAINED FROM PLAT OF SURVEY PREPARED BY DENTON & WHITE SURVEYING COMPANY SEALED ON FEBRUARY 14,

. . .

TOPOGRAPHIC SURVEY OF PART OF THE \$2/4 OF SECTION 23 TOMMENH P1 NORTH PANGE 13 SECT, OF THE LB. & M., TULSA COUNTY, STATE OF ORLAHOMA, ACCORDING TO THE U.S. COUPENING SURVEY THEREOF, AND KNOWN AS 7311 EAST 141 STREET SOUTH, (FILE: NFSKOLJJWC HEY, A) 3, 1972 ARENA, PHOTOGRAPH USED TO ALIGN CULTURAL FRATURES WITH MARSE PROPERTY LINES.

WITH KAISER PROPERTY LINES. THE STOCKPILE AREA WAS OBTAINED FROM A TOPOGRAPHICAL SURVEY BY DIGITAL MAPPING ASSOCIATES, INC.; AUG. 16, 2001

1 F 1071 F 1071 100 1

Appendix B

Toxicity Characteristic Leaching Procedure (TCLP) Regulatory Levels

	Regulatory	USEPA
Contaminant	Level (mg/l)	Hazardous Waste
Arsenic	5.0	D004
Barium	100.0	D005
Cadmium	1.0	D006
Chromium	5.0	D007
Lead	5.0	D008
Mercury	0.2	D009
Selenium	1.0	D010
Silver	5.0	D011
Endrin	0.02	D012
Lindane	0.4	D013
Methoxychlor	10.0	D014
Toxaphene	0.5	D015
2,4-D	10.0	D016
2,4,5-TP (silvex)	1.0	D017
Benzene	0.5	D018
Carbon Tetrachloride	0.5	D019
Chlordane	0.03	D020
Chlorobenzene	100.0	D021
Chloroform	6.0	D022
o-Cresol	200.0	D023
m-Cresol	200.0	D024
p-Cresol	200.0	D025
Cresol	200.0	D026
1,4-Dichlorobenzene	7.5	D027
1,2-Dichloroethane	0.5	D028
1,1-Dichloroethene	0.7	D029
2,4-Dinitrotoluene	0.13	D030
Heptachlor (and its epoxide)	0.008	D031
Hexachlorobenzene	0.13	D032
Hexachlorobutadiene	0.5	D033
Hexachloroethane	3.0	D034
2-Butanone	200.0	D035
Nitrobenzene	2.0	D036
Pentachlorophenol	100.0	D037
Pyridine	5.0	D038
Tetrachloroethene	0.7	D039
Trichloroethene	0.5	D040
2,4,5-Trichlorophenol	400.0	D041
2,4,6-Trichlorophenol	2.0	D042
Vinyl Chloride	0.2	D043

Toxicity Characteristic Leaching Procedure (TCLP) Regulatory Levels

w:\5427g\rpt\ref-2.xls

-

((
	OUTREA	CH				CHA	IN OF CI	JSTO	DY				-		1501	<i>2</i> 2		
- (<u>68</u>)				sults To	•	Compan	V						Bill	To:				
	LABORA	TOR	V 1°°	39113 10	•	oumpen al	OUTREA	CH TE	CHNOL	OGIE	S. IN	C.	Cor	npany_			·	
•	LADUNA	IUN						311	N. Asoe	n		<u> </u>	11					
1 North A	sper					Address	BT	skert Ar	IOW, OK	7401	2		11					
oken Arro	w, OK 74012					City	\$	tate	Zip				H i					
one: (9	18) 251-2515		Į			Phone_			Fax /				Cit	y		_State	Zip_	
	118) 251-0008								SIS R	FOI	IFS	TED						
			•															
>#					c	SIZE &	PRESERVATIVE	2										
ROJECT #					O N	TYPE	1. HNO ₃ pHic? 2. Ios at*C	1 7					1					
ROJECT NJ	AME	1727	0		T	PLASTIC	1. HCI pH-2 4. H23C4 pH-2	ET							ł			
EQUESTED	D TURNAROUND TIME CHARGES MAY APPLY)	ASA	<u> </u>	-	Î.	GUSS	S. NaOH pit-11	Volatiles						1				
	•) E	Į –				ļ					-	1	ERARIS	
AMPLER	Signature				A S			1 7			1		ł			(L'III	DED, LIMPIC	
LAN SLAPPE	CLIERT SAMPLI	SANGE SANGE	TIME SAJECUE	NICE IN	1			M									R, COMPOSIT	
	20210471-01A	3/2/01	14:16	120				\bowtie							_£	tract	Nate	<u>5/10/0</u>
	20210471-07 A		14:24					\ge										
	200/0471-03 A		14:36					\boxtimes										
	202/0471-04 A		14:46					\bowtie										+
	20210471-05 A	11-	14:56					\bowtie										
	20210471-06A	1-1	15:06		1			\bowtie										¥
	25210471-074	$t \rightarrow -$	15:110	17-	1		1	\mathbb{X}									<u></u>	5/14/0
		1 1	15:26	11	1-		1	\boxtimes										14/01
	20010471-07 A	+-+	15:36	+	+	<u> </u>	<u> </u>	\mathbf{X}									5	115/0
		++	15:46	++	+	+	+	\mathbf{k}									3	14/01
	203/0471-10 A	↓⊻	12.90	 ¥	+	+	+											
			+	┣	+	+		+										
		ļ	<u></u>	┥	-									┝──┼				
			1	Ļ	1_	_	ļ	1	┝┡									
and the second secon				L		1	<u></u>						<u> </u>	ليسيل				
RELINQUIS	SHED BURGE	for Tont	E/17/11 TI	AE 1645	RECI	EIVED BY	A DL	2	DATES	7-01 T		15	PORL	ABORAT	ORY USE	ONLY		
	S- MUAL -	2	5-19-41-TH		BEC	FIVIFO 8Y			DATE		IME		Samo	e Conditio	n Upan A	rcaipt		
	SHED BY THE CALL AND A STATE OF A					a an metan tar	evenue. The compa	ov komes t	ber the end	ine balance	a upon m with the c	icalipt company			ntakot Y	N		
of sample data	on this chain of custody form indicate a and it is understood and egreed the by liable for any rescribile alloritely	er any balance ca and/or collection	arriad over thirty (h fees and all relat	30) daya is s ad costa (40	uciject lo sesetity 1	a 1.5% per in a nemi tre ent	onen (1875 per anvez Ire balanos lo Oufre	ng waar ondig ach Technol	ogies, Inc. (O	Minach I		rh.		•				
SAMPLE PLET	/ ·	aqueous sampl	ing anal to dapp?	red of 30 stary	e after e	sive of foul re	pert. All othe D	e returned a	t clerits exp	ariao.				Tempera	······································		<u> </u>	

.

ļ

Client:Kaiser AluminumClient Project:Add Characterization Plan 5427fLab Number:20010471Date Reported:5/23/01Date Received:5/9/01Page Number:1 of 8

. . .

Analytical Report

		Method	Result	Units	DL	Prep Date	Analysis Date	Analy
Lab ID:	20010471-01							
Client ID:	001				•			
Date Sampled:	5/9/01 2:16:0	10 PM						
Matrix:	Soil				÷			
		Metals	Analyses		•			
TCLP-Arsenic		EPA 1311/6010B	BDL	me/l	0.005	5/17/01	5/17/01	MG
TCLP-Barium		EPA 1311/6010B		mg/l	0.120	5/17/01	5/17/01	MG
TCLP-Cadmium		EPA 1311/6010B		mg/l	0.011	5/17/01	5/17/01	MG
TCLP-Chromium		EPA 1311/6010B	BDL	-	0.010	5/17/01	5/17/01	MG
TCLP-Lead		EPA 1311/5010B	BDL	-	0.005	5/17/01	5/17/01	MG
TCLP-Mercury		EFA 7470 /7471A	BDL		0.0005	5/18/01	5/22/01	MG
TCLP-Selenium		EPA 1311/6010B	BDL		0.005	5/17/01	5/17/01	MG
TCLP-Silver		EPA 1311/0010B	BDL	-	0.009	5/17/01	5/17/01	MG
		· Organic	s Analyses					
1,1-Dichloroethen	e	EPA 1311/8240A	•	mg/l	0.0050	5/10/01	5/21/01	
1,2-Dichloroethan	e	EPA 13118240A		mg/l	0.0050	5/10/01	5/21/01	
2-Butanone (MEK	.)	EPA 1311 8240A	ND	mg/1	0 0050	5/10/01	5/21/01	
Benzene		EPA 1311/8240A	ND	mg/l	010050	5/10/01	5/21/01	
Carbon tetrachlori	de	EPA 1311/8240A	ND	_	0.0050	5/10/01	5/21/01	
Chloroform		EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Tetrachloroethene		EPA 1311/8240A	ND	mg/l	d.0050	5/10/01	\$/21/01	
Trichloroethene		EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	,
Vinyl Chloride		EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Chlorobenzene		EPA 1311/8240A		mg/l	0.0050	5/10/01	5/21/01	
Lab ID:	20010471-02							
Client ID:	002							
Date Sampled:	5/9/01 2:26:0	90 PM						
Matrix:	Soil	•						
			Analyses					
TCLP-Arsenic		EPA 131 /6010B	BDL	-	0.010	5/17/01	5/17/01	MG
TCLP-Barium		EPA 131 /6010B	13.4	mg/i	0.120	5/17/01	5/17/01	MG
TCLP-Cadmium		EPA 1311/6010B	BDL	mg/l	p.011	5/17/01	5/17/01	MG
TCLP-Chromium		EPA 1311/6010B	BDL	mg/l	0.010	5/17/01	5/17/01	MG
TCLP-Lead		EPA 1311/6010B		mg/l	0.005	5/17/01	5/(7/01	MG
TCLP-Mercury		EPA 7470A/7471A	BDL	mg/l	h.0005	5/18/01	5/22/01	MG

BDL = Below Detection Limit

Client:Kaiser AluminumClient Project:Add Characterization Plan 5427fLab Number:20010471Date Reported:5/23/01Date Received:5/9/01Page Number:2 of 8

~ .

Analytical Report

		Method	Result	Units	DL	Prep Date	Anaiysis Date	Analyst
TCLP-Selenium		EPA 1311/6010B	BDL	mg/1	0.105	5/17/01	5/17/01	MG
TCLP-Silver		EPA 1311/60 0B	0.047	mg/l	0.009	5/17/01	5/17/01	MG
		Organic	s Analyses	•				
1,1-Dichloroethe	ne	EPA 1311/8240A		mg/l	0.0050	5/10/01	5/21/01	
1,2-Dichloroetha	ne	EPA 1311/8240A	ND	mg/1	0.0050	5/10/01	5/21/01	
2-Butanone (ME)	K)	EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Benzene		EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Carbon tetrachlor	ride	EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Chloroform		EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Tetrachloroethen	e	EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Trichloroethene		EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Vinyl Chloride		EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Chlorobenzene		EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Lab ID:	20010471-0	3						
Client ID:	003							
Date Sampled:	5/9/01 2:36:	00 PM						
Matrix:	Soit				i			
		Metals	Analyses		1			
TCLP-Arsenic		EPA 1311/6010B	0.01	mg/l	0.005	5/17/01	5/17/01	MG
TCLP-Barium		EPA 1311/6010B	7.85	mg/l	0.120	5/17/01	5/17/01	MG
TCLP-Cadmium		EPA 1311/6010B		mg/1	0.011	5/17/01	5/17/01	MG
TCLP-Chromium	ı	EPA 1311/6010B	0.015	-	0.010	5/17/01	5/17/01	MG
TCLP-Lead		EPA 1311/6010B	BDL	mg/l	0.005	5/17/01	5/17/01	MG
TCLP-Mercury		EPA 7470/7471A	BDL	mg/l	0.0005	5/18/01	5/22/01	MG
TCLP-Selenium		EPA 1311/6010B	BDL	mg/l	0.005	5/17/01	5/17/01	MG
TCLP-Silver		EPA 1311/6010B	BDL	mg/l	0.009	5/17/01	5/17/01	MG
		Organic	s Analyses	-				
1,1-Dichloroethe	ne	EPA 1311/8240A	דע	mg/1	0.0050	5/10/01	5/21/01	
1,2-Dichloroetha	ne	EPA 1311/8240A	ND	-	0.0050	5/10/01	5/21/01	
2-Butanone (ME	к)	EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Benzene		EPA 1311/8240A	ND	mg/l	0.do50	5/10/01	5/21/01	
Carbon tetrachlo	ride	EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Chloroform		EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Tetrachloroethen	e	EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Trichloroethene		EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/2)/01	
Vinyl Chloride		EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
BDL = Below Deta	ction Limit							

. .

Client:	Kaiser Aluminum
Client Project:	Add Characterization Plan 5427f
Lab Number:	20010471
Date Reported:	5/23/01
Date Received:	5/9/01
Page Number:	3 of 8

.

Analytical Report

	Method	Resu	lt Units	DL	Prep Date	Analysis Date	Analys
Chlorobenzene	EPA 1311/8	240A N	D mg/l	0.0050	5/10/01	5/21/01	
Lab ID:	20010471-04						
Client ID:	004						
Date Sampled:	5/9/01 2:46:00 PM						
Matrix:	Soit						
		Metals Analyses		:			
TCLP-Arsenic	EPA 1311/6	010B BD	L mg/l	0.005	5/17/01	5/17/01	MG
TCLP-Barium	EPA 1311/6	1	0 mg/l	0.120	5/17/01	5/17/01	MG
TCLP-Cadmium	EPA 1311/6		_	0.011	5/17/01	5/17/01	MG
TCLP-Chromium	EPA 1311/6	010B 0.01		0.010	5/17/01	5/17/01	MG
TCLP-Lead	EPA 1311/6	010B BD	L mg/l	0.005	5/17/01	5/17/01	MG
TCLP-Mercury	EPA 7470/7	71A BD	L mg/l	0.0005	5/18/01	5/22/01	MG
TCLP-Selenium	EPA 1311/6			0.005	5/17/01	5/17/01	MG
TCLP-Silver	EPA 1311/6	010B 0.01	4 mg/l	0.009	5/17/01	5/17/01	MG
		Organics Analyses		•			
l, I-Dichloroether	e EPA 1311/8	{ · · · · ·		0.0050	5/10/01	5/21/01	
1,2-Dichloroethar	e EPA 1311/8	240A NI	D mg/l	0.0050	5/10/01	5/21/01	
2-Butanone (ME)	() EPA 1311/8	240A N	D mg/l	0.0050	5/10/01	5/21/01	
Benzene	EPA 1311/8	240A NI	D mg/l	0.0050	5/10/01	5/21/01	
Carbon tetrachlor	ide EPA 1311/8	240A NI	D mg/l	0.0050	5/10/01	5/21/01	
Chloroform	EPA 1311/8	240A N	D mg/l	0.0050	5/10/01	5/21/01	
Tetrachloroethene	EPA 1311/8	240A NI	•	0.0050	5/10/01	5/21/01	
Trichloroethene	EPA 1311/8	240A NI	D mg/l	0.0050	5/10/01	5/21/01	
Vinyl Chloride	EPA 1311/8	240A N	D mg/l	0.0050	5/10/01	5/21/01	
Chlorobenzene	EPA 1311/8	240A NI	D mg/l	8.0050	5/10/01	5/21/01	
Lub JD:	20010471-05						
Client ID:	005						
Date Sampled:	5/9/01 2:56:00 PM		•				
Matrix:	Soil						
	1	Metals Analyses		•			
TCLP-Arsenic	EPA 1311/6	010B BD	L mg/l	0.005	5/17/01	5/17/01	MG
TCLP-Barium	EPA 1311/6	010B 13.	9 mg/1	0. 20	5/17/01	5/17/01	MG
TCLP-Cadmium	EPA 1311/6		L mg/l	0.011	5/17/01	5/17/01	MG
TCLP-Chromium	EPA 1311/5		L mg/l	0.010	5/17/01	5/17/01	MG
TCLP-Lead	EPA 1311/6	0108 80	L mg/l	0.005	5/17/01	5/17/01	MG

311 North Aspen Broken Arrow, OK 74012 (918) 251-2515 FAX (918) 251-0008 Client:Kaiser AluminumClient Project:Add Characterization Plan 5427fLab Number:20010471Date Reported:5/23/01Date Received:5/9/01Page Number:4 of 8

- -

Analytical Report

		2					
	Method	Result	Units	DI	Prep Date	Analysis Date	Analyst
TCLP-Mercury	EPA 7470/7471 A	BDI.	mg/l	0.0005	5/18/01	E /22 /0 /	
TCLP-Selenium	EPA 1311/6010B	BDL		0.005	5/17/01	5/22/01	MG
TCLP-Silver	EPA 1311/6010B	0.010	-	0.009	5/17/01	5/17/01	MG
	Orga	nics Analyses		0.007	3/1//01	5/17/01	MG
1,1-Dichloroethe	ne EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/31/01	
1,2-Dichloroetha	ле ЕРА 1311/8240А	ND		0.0050	5/10/01	5/21/01	
2-Butanone (ME	K) EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Benzene	EPA 1311/8240A	ND	mg/l	0.0050	-	5/21/01	
Carbon tetrachlor		ND	mg/l	0.0010	5/10/01	5/21/01	
Chloroform	EPA 1311/8240A	ND	mg/l	0.0030 0.0030	5/10/01	5/21/01	
Tetrachloroethen		ND	mg/l	0.0030	5/10/01	5/21/01	
Trichloroethene	EPA 1311/8240A	ND	mg/i	0.0030 0.00 3 0	5/10/01	5/21/01	
Vinyl Chloride	EPA 1311/8240A	ND	mg/l	0.0030	5/10/01	5/21/01	
Chlorobenzene	EPA 1311/8240A		mg/i		5/10/01	5/21/03	
			uig/i	0.0050	5/10/01	5/21/01	
Lab ID:	20010471-06						
Client ID:	006						
Date Sampled:	5/9/01 3:06:00 PM						
Matrix:	Soil						
	Vieta	ls Analyses					
TCLP-Arsenic	EPA 1311/6010B	BDL	mø/l	0.005	5/17/01	5/17/01	
TCLP-Barium	EPA 1311/6010B	6.19	-	0.120	5/17/01		MG
TCLP-Cadmium	EPA 1311/6010B	BDL		0.011	5/17/01	5/17/01	MG
TCLP-Chromium		BDL		0.010	5/17/01	5/17/01	MG
TCLP-Lead	EPA 1311/6010B	BDL	-	0.005	5/17/01	5/17/01	MG
TCLP-Mercury	EPA 7470/7471A	BDL		0.0005		5/17/01	MG
TCLP-Selenium	EPA 1311/6010B	0.007	mg/l	0.005	5/18/01 5/17/01	5/22/01	MG
TCLP-Silver	EPA 1311/6010B	BDL		0.009		5/17/01	MG
		ics Analyses	mg/t	0.009	5/17/01	5/17/01	MG
1,1.Dichloroethen		•	mg/l	0.0050	5/10/01	6/21/01	
1,2-Dichloroethan	EPA 1311/8240A		tng/l	0.0050	5/10/01	5/21/01 5/21/01	
2-Butanone (MEK		ND	mg/l	0.0050	5/10/01		
Benzene	EPA 1311/8240A		mg/l	0.0050	5/10/01	5/21/01 5/21/01	
Carbon tetrachlori			mg/{	0.0050	5/10/01		
Chloroform	EPA 1311/8240A		mg/l	0.0050 0.0050	5/10/01	5/21/01	
Tetrachloroethene		ND	mg/i	0.0050	5/10/01	5/21/01	
Trichloroethene	EPA 1311/8240A		mg/l	0.0050	5/10/01	5/21/01	
BDL - Below Detec				STON DA	JI LVIV 1	5/21/01	

Client:Kaiser AluminumClient Project:Add Characterization Plan 5427fLab Number:20010471Date Reported:5/23/01Date Received:5/9/01Page Number:5 of 8

•

Analytical Report

.

	Method	Result	Units	DL	Prep Date	Analysis Date	Analy
Vinyl Chloride	EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Chlorobenzene	EPA 1311/8240A	ND	mg/l	0.0050	5/10/01	5/21/01	
Lab ID:	20010471-07						
Client ID:	007						
Date Sampled:	5/9/01 3:16:00 PM						
Matrix:	Soll						
	Meta	ls Analyses		•			
TCLP-Arsenic	EPA 1311/6410B	BDL	mg/l	0.005	5/17/01	5/17/01	MG
TCLP-Barium	EPA 1311/6010B	3.61	mg/l	0.120	5/17/01	5/17/01	MG
TCLP-Cadmium	EPA 1311/6010B	BDL	mg/l	0.011	5/17/01	5/17/01	MG
TCLP-Chromium	EPA 1311/6010B	BDL	mg/l	0.010	5/17/01	5/17/01	MG
TCLP-Lead	EPA 1311/6010B	BDL	mg/l	0.005	5/17/01	5/17/01	MG
TCLP-Mercury	EPA 7470/7471A	BDL	mg/l	0.0005	5/18/01	5/22/01	MG
TCLP-Selenium	EPA 1311/6010B	BDL	mg/l	0.005	5/17/01	5/17/01	MG
TCLP-Silver	EPA 1311/6010B	0.010	mg/l	0.009	5/17/01	5/17/01	MG
	Organ	ics Analyses					
1,1-Dichloroethen	e EPA 1311/8240A	ND	mg/l	0.0050	5/14/01	5/21/01	
1,2-Dichloroethan	e EPA 1311/8240A	ND	mg/l	0.0050	5/14/01	5/21/01	
2-Butanone (MEK	.) EPA 1311/8240A	ND	mg/l	0.0050	5/14/01	5/21/01	
Benzene	EPA 13) 1/8240A	ND	mg/i	0.0050	5/14/01	5/21/01	
Carbon tetrachlori	de EPA 1311/8240A	ND	mg/l	0.0050	5/14/01	5/21/01	
Chloroform	EPA 1311/\$240A	ND	mg/1	0.0050	5/14/01	5/21/01	
Tetrachloroethene	EPA 1311/8240A	ND	mg/i	0.0050	5/14/01	5/21/01	
Trichloroethene	EPA 1311/8240A	ND	mg/l	0.0050	5/14/01	5/21/01	
Vinyl Chloride	EPA 1311/2240A	ND	mg/l	0.0050	5/14/01	5/21/01	
Chlorobenzene	EPA 1311/\$240A	ND	mg/l	0.0050	5/14/01	5/21/01	
Lab ID:	20010471-08						
Client ID:	008						
Date Sampled:	5/9/01 3:26:00 PM						
Matrix:	Soil						
	Meta	ils Analyses		I			
TCLP-Arsenic	EPA 1311/6010B	BDL	mg/l	0,005	5/17/01	5/17/01	MG
TCLP-Barium	EPA 1311/6010B	6.14	mg/l	0120	5/17/01	5/17/01	MG
TCLP-Cadmium	EPA 13116010B	BDL	mg/l	0011	5/17/01	5/17/01	MG
TCLP-Chromium	EPA 1311 5010B	DDI	mg/l	0 0 1 0	5/17/01	5/17/01	MG

Client:Kaiser AluminumClient Project:Add Characterization Plan 5427fLab Number:20010471Date Reported:5/23/01Date Received:5/9/01Page Number:6 of 8

.

Analytical Report

		Method	Result	Units	DL	Prep Date	Analysis Date	Analyst
TCLP-Lead		EPA 1311/6010B	BDL	mg/l	0.005	5/17/01	5/17/01	MG
TCLP-Mercury		EPA 7470/7411A	BDL	mg/l	0.0005	5/18/01	5/22/01	MG
TCLP-Selenium		EPA 1311/6010B	0.008	mg/l	0.005	5/17/01	5/17/01	MG
TCLP-Silver		EPA 1311/6010B	BDL	mg/l	0.009	5/17/01	5/17/01	MG
		Organi	es Analyses					
1,1-Dichloroethene		EPA 1311/8240A	ND	mg/l	0.0050	5/14/01	5/21/01	
1,2-Dichloroethane		EPA 1311/8240A	ND	mg/l	0.0050	5/14/01	5/21/01	
2-Butanone (MEK)		EPA 1311/8240A	ND	mg/l	0.0050	5/14/01	5/21/01	
Benzene		EPA 1311/8240A	ND	mg/l	0.0050	5/14/01	5/21/01	
Carbon tetrachloride	e	EPA 1311/8240A	ND	mg/l	0.0050	5/14/01	5/21/01	
Chloroform		EPA 1311/8240A	ND	mg/l	0.0050	5/14/01	5/21/01	
Tetrachloroethene		EPA 1311/8240A	ND	-	0.0050	5/14/01	5/21/01	
Trichloroethene		EPA 1311/8240A	ND	-	0.0050	5/14/01	5/21/01	
Vinyl Chloride		EPA 1311/8240A	ND	-	0.0050	5/14/01	5/21/01	
Chlorobenzene		EPA 1311/8240A	ND	-	0.0050	5/14/01	5/21/01	
	20010471-(009	09			·		•	
	5/9/01 3:36							
Matrix:	Soil	Mate	s Analyses					
			•	mg/t	0.005	5/17/01	5/17/01	MG
TCLP-Arsenic		EPA 1311/6010B		mg/l	0.120	5/17/01	5/17/01	MG
TCLP-Barium		EPA 1311/6010B	BDL	-	0.011	5/17/01	5/17/01	MG
TCLP-Cadmium		EPA 1311/6010B EPA 1311/6010B	BDL	-	0.010	5/17/01	5/17/01	MG
TCLP-Chromium				. mg/l	0.005	5/17/01	5/17/01	MG
TCLP-Lead		EPA 1311/6010B EPA 7470/7471A		. mg/l	0.0005	5/18/01	5/22/01	MG
TCLP-Mercury		EPA 1311/6010B	0.006		0.005	5/17/01	5/17/01	MG
TCLP-Selenium		4		+ mg/l	0.009	5/17/01	5/17/01	MG
TCLP-Silver		EPA 1311/6010B		• mg/s		5111101	5/1//01	
(10)11	_	EPA 1311/8240A	ics Analyses M) mg/i	0.0050	5/15/01	5/21/01	
1,1-Dichloroethen			NI		0.0050	5/15/01	5/21/01	
1,2-Dichloroethan		EPA 1311/8240A EPA 1311/8240A	NI		0.0050	5/15/01	5/21/01	
2-Butanone (MEK	.)	EPA 1311/8240A EPA 1311/8240A	NI	-	0.0050	5/15/01	5/21/01	
Benzene	da	EPA 1311/8240A	N	-	0.0050	5/15/01	5/21/01	
Carbon tetrachlori Chloroform	uc	EPA 1311/8240A	N	-	0.0050	5/15/01	5/21/01	
		EPA 1311/8240A		D mg/l	0.0050		5/21/01	
Terrachloroethene BDL ~ Below Detec		TLW IJIII4540W	14	C MARY	0.0000			

BDL ~ Below Detection Limit

Client:	Kaiser Aluminum
Client Project:	Add Characterization Plan 5427f
Lab Number:	20010471
Date Reported:	5/23/01
Date Received:	5/9/01
Page Number:	7 of 8

• •

Analytical Report

		Method	Result	Units	рŗ	Prep Date	Analysis Date	Analyst
Trichloroethene		EPA 1311/8240A	ND	mg/l	0.0050	5/15/01	5/21/01	
Vinyl Chloride		EPA 1311/8240A	ND	mg/l	0.0050	5/15/01	5/21/01	
Chlorobenzene		EPA 1311/8240A	ND	mg/l	0.0050	5/15/01	5/21/01	
Lab ID:	20010471-10							
Client ID:	010							
Date Sampled:	5/9/01 3:46:0	10 PM						
Matrix:	Soil							
		Me	tals Analyses					
TCLP-Arsenic		EPA 1311/6010B	0.01	mg/l	0.005	5/17/01	5/17/01	MG
TCLP-Barium		EPA 1311/6010B	8.71	mg/l	0.120	5/17/01	5/17/01	MG
TCLP-Cadmium		EPA 1311/6010B	BDL	mg/l	0.01	5/17/01	5/17/01	MG
TCLP-Chromium		EPA 1311/6010B	0.011	mg/l	0.010	5/17/01	5/17/01	MG
TCLP-Lead		EPA 1311/6010B	BDL	mg/l	0.00\$	5/17/01	5/17/01	MG
TCLP-Mercury		EPA 7470/741A	BDL	mg/l	0.0005	5/18/01	5/22/01	MG
TCLP-Selenium		EPA 1311/60 0B	BDL	mg/l	0.00S	5/17/01	5/17/01	MG
TCLP-Silver		EPA 1311/6010B	0.013	mg/l	0.009	5/17/01	5/17/01	MG
•		Огр	ganics Analyses		•			
1.1-Dichloroethe	ne	EPA 1311/8240A	ND	mg/l	0.0050	5/14/01	5/21/01	
1,2-Dichloroetha		EPA 1311/8240A	ND	mg/l	0.0050	5/14/01	5/21/01	
2-Butanone (ME		EPA 1311/8240A	ND	mg/i	0.0050	5/14/01	5/21/01	
Benzene		EPA 1311/8240A	ND	mg/i	0.0050	5/14/01	5/21/01	
Carbon tetrachlor	ride	EPA 1311/8240A	ND	mg/l	0.0050	5/14/01	5/21/01	
Chloroform		EPA 1311/8240A	ND	mg/1	0.0050	5/14/01	5/21/01	
Tetrachloroethen	e	EPA 1311/8240A	ND	-	0.0050	5/14/01	5/21/01	
Trichloroethene		EPA 1311/8240A	ND	-	0.0050	5/14/01	5/21/01	
Vinyl Chloride		EPA 1311/8240A	ND	-	0.0050	5/14/01	5/21/01	
Chlorobenzene		EPA 1311/8240A	NE	-	0.0050	5/14/01	5/21/01	

BDL = Below Detection Limit

311 North Aspen Broken Arrow, OK 74012 (918) 251-2515 FAX (918) 251-0008

Kaiser Aluminum Add Characterization Plan 5427f Client Project: 20010471 Lab Number: 5/23/01 Date Reported: 5/9/01 Date Received: 8 of 8 Page Number:

- -

			QC	Report	-	;			
Perameter	Blank	LCS	LC	SD	DUP	MS	MS		Date
		%REC •	%REC	RPD	RPD '	KREC	%REC	RPD	
1,1-Dichloroethane						91.0	105.0	14.2	5/21/01
•						93.0	108.0	15.1	5/21/01
Benzene						89.0	104.0	15.1	5/21/01
Chlorobenzene		00.7				95.5	95.4	0.1	5/17/01
TCLP-Arsenic	BDI	99.3				83.0	91.0	9.2	5/17/01
TCLP-Barium	BDI	102.0				94.0	93.6	0.3	5/17/01
TCLP-Cadmium	BDI	101.0							5/17/01
TCLP-Chromium	BDI	98.2				101.0	99,4	1.6	
	BDI	100.0				104.0	103.0	1.4	5/17/01
TCLP-Lead	per	94.0				94.0	97.0	2.6	5/22/01
TCLP-Mercury		•				95.0	97.4	2.4	5/17/01
TCLP-Selenium	BDI	94.8				112.0	115.0	3.0	5/17/01
TCLP-Silver Trichloroethane	BDI	120.0				91.0	105.0	14.6	5/21/01

Client:

QA Approval: Lab Approval:

BDL = Below Detection Limit

n.10

Appendix D

Procedure: ESC/HPM 3-6 Gross Gamma Surveys of Soil Cores **Procedure: ESC/HPM3-6**

Gross Gamma Surveys of Soil Cores

Kaiser Aluminum & Chemical Corporation Tulsa, Oklahoma Site

Revision: 0

Effective Date: February 2001

2/8/01

Prepared by:

Date:

2/8/01 In

Radiological Group Manager:

Date:

Health Physics Manual

Earth Sciences Consultants, Inc. One Triangle Lane Export, PA 15632 (724) 733-3000 Procedure: ESC/HPM-3-6

Title: Gross Gamma Surveys of Soil Cores

1.0 PURPOSE

As part of the adjacent land remediation activities, characterization soil core samples will be surveyed to identify the highest gross gamma reading 1-foot segment. At a minimum, the identified segment will be separated from the core, mixed, sampled as a surface sample and analyzed by gamma spectroscopy. Part of the sample may be added to a composite sample of soil cores. The purpose of this procedure is to provide instruction for performing gross gamma surveys of soil boring cores (soil cores) and the subsequent sampling of the core.

2.0 DEFINITIONS

Soil Core -A soil sample obtaining by boring down vertically through soil, usually in 4-foot increments. The resulting sample is a cylinder in shape with a constant diameter.

3.0 PREREQUISITES / PRECAUTIONS / LIMITATIONS

- 3.1 Instrument must pass pre-operational checks as outlined in ESC/HPM-2-1 and the appropriate instrument procedure. Ensure the pre-operational and source checks have been completed prior to initiating survey.
- 3.2 Background count rates may vary. Background should be at least daily for each area and counting geometry to be used.
- 3.3 Before initiating a gross gamma soil survey be sure to record the instrument serial number (s), calibration date (s), date of survey, time of survey, and any other pertinent information.
- 3.4 The NaI detector should be shielded with at least 1/16 inch of lead.
- 3.5 The detector and the scaler should be configured so that the Health Physics Technician can move the core past the detector while observing the count rate and hear the audible response.
- **3.6** Ensure that the NaI detector is in the standard counting configuration for the type of survey to be performed, e.g., inside of the shield, at a low background location.
- 3.7 Ensure that all samples are properly labeled with the Characterization Grid number and Quadrant letter.

4.0 EQUIPMENT

- 4.1 2-inch X 2-inch NaI scintillator detector, Ludlum Model 44-10 or equivalent
- 4.2 Ludlum Model 2221 Scaler or equivalent

Health Physics Manual

Earth Sciences Consultants, Inc. One Triangle Lane Export, PA 15632 (724) 733-3000 Procedure: ESC/HPM-3-6

Title: Gross Gamma Surveys of Soil Cores

4.3 Sturdy Mixing Bucket, or equivalent and trowel

5.0 PROCEDURE

Record the results of all measurements on HPM Form 1-2-15. Sections of the form that are not applicable to the survey should be marked "N/A". At a minimum, each soil core sample selected for survey should be scanned to identify the most elevated 1-foot section. This section should be separated from the core, mixed and forwarded to an appropriate lab for gamma spectroscopy analysis.

5.1 Determine background.

- 5.1.1 Ensure that the NaI detector is in the standard counting configuration, e.g., inside of the shield, at the location that scans or fixed counts are to be performed.
- 5.1.2 Perform five consecutive 1-minute fixed counts with the detector in the desired standard scanning configuration. (Ambient Background Geometry)
- 5.1.3 Calculate the average background count rate.
- 5.2 Perform soil core scan surveys as follows.
 - 5.2.1 Record the soil core serial number, e.g., for a core taken in Characterization Grid 24, Quadrant B from 4 to 8 feet depth, 24-B (4-8 feet).
 - 5.2.2 With the instrument in the rate mode, move the detector (or the soil core) at a rate of no greater than 1-inch per second, keeping the detector as close as possible to the soil core. Ensure that the scan rate is slow enough to detect changes in the audible response of the instrument.
 - 5.2.3 Record the maximum count rate observed for each 1-foot segment of the soil core. Core segments are 0-1 foot, 1-2 feet, 2-3 feet, etc.
- 5.3 Sample the most elevated 1-foot section of core as follows.
 - 5.3.1 Separate the most elevated 1-foot segments using an appropriate tool, e.g. a saw.
 - 5.3.2 Place the 1-foot segment into the bucket and mix the core thoroughly with the trowel.
 - 5.3.3 From the bucket fill a standard soil sample container with the soil. Clean the bucket and

Health Physics Manual

Earth Sciences Consultants, Inc. One Triangle Lane Export, PA 15632 (724) 733-3000 Procedure: ESC/HPM-3-6

Title: Gross Gamma Surveys of Soil Cores

trowel before handling the next sample.

- 5.3.4 Label the sample container with the Characterization Grid number, the Quadrant letter and the depth interval, e.g., 24-B (5-6 feet).
- 5.4 Calculate the net cpm for each measurement by subtracting the appropriate average background, i.e., ambient background for scan measurements and the sample container background for fixed counts.
- 5.5 Forward the maximum 1-foot segment of the soil core sample to the laboratory for gamma spectroscopy analysis.
- 5.6 Archive the remaining samples and/or soil core.

6.0 **REFERENCES**

6.1 ESC/HPM-2-1, Basic Instrument Operation

7.0 ATTACHMENTS

7.1 Forms

7.1.1 Form HPM-1-2-15, Soil Core Gross Gamma Survey

Appendix E

Soil Core Hole Samples Analytical Data Report

	OUTREA	ACH ATOR	Y	Results To	Name Daniel Baher Address					Biti To: Compa Name_	ny	I Aanda				
orth As n Arrov n: (91	spen w, OK 74012 18) 251-2515					City			State	Fax#	Zip			Addres	s	Zip
) (9	18) 251-0008					Phone			ΙΔΙΥ	_		UEST	ED			
ECT # ECT NA IESTED	ME TURNAROUND TIME HARGES MAY APPLY	5497 ACP 7d	1F 4		CONTAINE	CONTAINER SIZE & TYPE PLASTIC OR GLASS	1. 2. 3.	ESERVATIV A HINO3 pH-2 Iou <7°C HCI pH-2 H2SO4 pH-2 NaCH pH-3	Th Na-							156 HEMARKS
PLER	Signature				8 -											(I.E. FATERED, UNFILTERED, GRAB, (OMPOSITE)
MAPLE .	CUERT SMILAR ID	DATT	TIME SAUMPLED	Ant		P		N/A								
	1500- 2a	5-11-01	2402	? Sail	+	,	+	1	++-	1	1					
<u>қ</u> 1	1501-122	+	+	++	╉──											
- - - - - - - -	1803-62															
<	1509-166						1-			<u> </u>		+-+				
U	1505-232					<u>↓</u>		+				┼──┢				
1	1502-56	<u></u>		╾┾╍╄╌		+			╶┼┼╴	+	+	┢──┼				
\$	1507-142		┼─┼				┼╴		-+	1	+	++				
4	1509-32 1509-212		╁╼╍╂			+ -	╋		-++-							
10	1570-202	+	+		-		-									
	1511 - Ta		+ +				Τ					 _		·		
13	Lena Ma							1	╺┿┨╌			╀─┼				
14	1h							$\overline{\mathbf{M}}$	#	1	7.1		In			
	HED BY:		1 19	TIME				Lo	12r		5/14/0	411ME				r USE ONLY: pon Receipt
	NUCH SV					ana complet i	or anal	lysis. The con	rpany agree	s to pay th	e ervore pai	datault, the co ch Laboratory)		Custody S	oals iniad	t Y N

	$\left(\right)$				
North Aspen Address North Aspen Address Dec. (916) 251-2515 Dec. (916) 251-2515 Dec. (916) 251-2515 Dec. (916) 251-251-2515 Dec. (917) 252-252-252-255-251-251-251-251-251-251-	Ma OUTREACH	CHA	IN OF CUSTODY	Bill To:	
North Aspen Ken Attrins. Address	LABORATORY	Results To: Company Name	Darl Bather	Company	ul Handa
Phone Fill # City 01 0110000000000000000000000000000000000	North Aspen ken Arrow, OK 74012			Address	
B. B. CONCURSE IN THE STATE INFORMATION INFORMA	ne: (918) 251-2515	Phone_			
MAPLER Bightline Bightlin	OJECT # 54717 ACP	- C SIZE A O TYPE N T PLASTIC A OR I GLASS	PRESERVATIVE 1. HH0g pH42 2. K06 <4°C 1. HC1pH42 4. H25pH42		2072-
x 1574 1C 5-rring 1400 3oil P N/R v w 1575 19a			Guint		(LE. FILTERED, CROFLITERED,
n 1510 T14 n 1510 T14 n 1517 T4a n 1517 T4a n 1518 T5a a 1517 T1a a 1517 T1a b 1520 T2a a 1520 T1a b 1522 T8a a 1573 T1a b 1572 T8a a 1573 T1a b 1572 T8a a 1573 T1a b 1572 T8a a 1573 T1a b 1573 T1a a 1573 T1a b 1573 T1a a 1573 T1a a 1573 T1a b 1573 T1a c T1a T1a a T1a T1a a T1a T1a a T1a T1a	B 15-11- 10 5-11-00 71/1		NA		
rt 0577-24a rt 1578-15a rt 1579-17a rt 1579-17a rt 1579-17a rt 1579-17a rt 1579-17a rt 1579-17a rt 1520-21a rt 1520-21a rt 1533-40a rt	- Martin I				
A ISTY IIA Y ISTY	ri 1517-24a				
** () 522 - 9a ** () 522 - 9a ** () 522 - 9a ** () 523 - 4a ** () 533 - 4a ** () 543 - 5a **) 543 - 5a <td>1009-110</td> <td></td> <td></td> <td></td> <td></td>	1009-110				
** / SPZ - 9a ** / SPZ - 9a <td< td=""><td>+ 1520-22a + (JZI-18a</td><td></td><td></td><td></td><td></td></td<>	+ 1520-22a + (JZI-18a				
RELINOUISHED BY:	100- 10-				
RELINQUISHED BY:DATETIMETIMEARECEIVED BYDATEDATETIMESample Condition Upon Receipt RELINQUISHED BY:DATETIMERECEIVED BY:DATETIME reliance to this chain of custody form indicates that I am authorized by the above company to release samples for analysis. The company agrees to pay the entire balance upon receipt to sample charge that any balance carried over thinly (30) days is subject to a 1.5% per month (18% per annum) kete charge. In the event of default, the company consent of updates that I am authorized by the above company to release samples for analysis. The company agrees to pay the event of default, the company of sample charge that any balance carried over thinly (30) days is subject to a 1.5% per month (18% per annum) kete charge. In the event of default, the company consent of updates that any balance carried over thinly (30) days after issue of shall report. All others will be returned at client's expense. Cooler Temperature					
RELINQUISHED BY:DATETIMETIMEARECEIVED BYDATEDATETIMESample Condition Upon Receipt RELINQUISHED BY:DATETIMERECEIVED BY:DATETIME reliance to this chain of custody form indicates that I am authorized by the above company to release samples for analysis. The company agrees to pay the entire balance upon receipt to sample charge that any balance carried over thinly (30) days is subject to a 1.5% per month (18% per annum) kete charge. In the event of default, the company consent of updates that I am authorized by the above company to release samples for analysis. The company agrees to pay the event of default, the company of sample charge that any balance carried over thinly (30) days is subject to a 1.5% per month (18% per annum) kete charge. In the event of default, the company consent of updates that any balance carried over thinly (30) days after issue of shall report. All others will be returned at client's expense. Cooler Temperature					
RELINQUISHED BY:DATETIMERECEIVED BY:DATETIMESample Condition Upon Reosipt My signature on this chain of custody form indicates that I am authorized by the above company to release samples for analysis. The company agrees to pay the entire balance upon receipt of sample charge that any balance carried over thinly (30) days is subject to a 1.5% per month (19% per annum) late charge. In the event of declaut, the company company to release thinly (30) days is subject to a 1.5% per month (19% per annum) late charge. In the event of declaut, the company company to release thinly (30) days is subject to a 1.5% per month (19% per annum) late charge. In the event of declaut, the company company to release thinly (30) days is subject to a 1.5% per month (19% per annum) late charge. In the event of declaut, the company company to release the test of the event of declaut, the company company to release the test of the event of declaut, the company company to release the test of the event of the event of declaut, the company company to release the release to Outreach Technologies, Inc. (Outreach Laboratory). Cooler Temperature	Soyau de 05/A	tol TIME O . 40 RECEIVED BY	Im stide	TIME OHO FOR LABORATORY	USE ONLY:
of sample data and it is understood and byteed that any output to a large data of the second of and byteed to a large data of the second of sample data and it is understood and byteed to a large data of the second of sample data and it is understood and byteed to a large data of the second of sample data and it is understood and byteed to a large data of the second of sample data and it is understood and byteed to a large data of the second of sample data and it is understood and byteed to a large data of the second of sample data and it is understood and byteed to a large data and it is understood and byteed to a large data and it is understood and byteed to a large data and it is understood and byteed to a large data and it is understood and byteed to a large data and it is understood and byteed to a large data and it is understood and byteed to a large data and it is understood and byteed to a large data and it is understood and byteed to a large data and it is understood and byteed to a large data and it is understood and byteed to a large data and it is understood and byteed to a large data and it is understood and byteed to a large data and it is understood and byteed to a large data and it is understood and byteed to a large data and the second and byteed to a large data and the second and byteed to a large data and the second	RELINQUISHED BY:DATE	TIMERECEIVED BY:	DATE	nce upon receipt Custody Seals Intact	
	of sample data and it is understood and append that any control of a	all related costs necessary to remit the en	tire balance to Oureach Technologies, Inc. (Oureac epon. All others will be returned at client's expense.	Cooler Temperature	

ı.

 	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER	_		
~	- /	` ^	//	0
11	σd	6	x	8
<i></i>	111 #	\mathcal{V}	L .	υ
\mathcal{N}				

1 North Aspen sken Arrow, OK 74012 18) 251-2515 X (918) 251-0008

Client:	Kaiser Aluminum
Client Project:	ACP 5427F
Lab Number:	20010484
Date Reported:	5/21/2001
Date Received:	5/14/01
Page Number:	1 of 6

Analytical Report

		Method	Result Units	DL	Prep Date	Analysis Date	Analyst
Lab ID:	20010484-01	1					
Client ID: Data Samplada	1500-2a 5/11/2001						
Date Sampled: • Matrix:	Soll						
Watter.	300	Ra	lochemical Analyses				
Th-232		HASL 300	1.82 +/- 0.062 pCi/g	0.368		5/17/2001	SD
Lab ID:	20010484-02	2					
Client ID:	1501-12a						
Date Sampled:	5/11/2001						
Matrix:	Soil	_					
			liochemical Analyses	•			
h-232		HASL 300	0.725 +/- 0.105 pCi/g	0.355		5/17/2001	SD
Lab ID:	20010484-03	3					
Client ID:	1502-8Ь						
Date Sampled:	5/11/2001						
Matrix:	Soil						
			liochemical Analyses			_ //	
Th-232		HASL 300	3.33 +/- 0.143 pCi/g	0.275		5/17/2001	SD
Lab ID:	20010484-0	4					
Client ID:	1503-6a						
Date Sampled:	5/11/2001						
Matrix:	Soil	1	,				
~			diochemical Analyses				
Th-232		HASL 300	71.4 +/- 1.91 pCi/g	1.26		5/17/2001	SD
Lab ID:	20010484-0	5					
Client ID:	1504-165						
Date Sampled:	5/11/2001			٢			
Matrix:	Soll	-	 .				
TL 300			diochemical Analyses	~ ~~~			
Th-232		HASL 300	0.659 +/- 0.068 pCi/g	0.282		5/17/2001	SD

BDL - Below Detection Limit

- .

Client:	Kaiser Aluminum
Client Project:	ACP 5427F
Lab Number:	20010484
Date Reported:	5/21/2001
Date Received:	5/14/01
Page Number:	2 of 6

Analytical Report

		Method	Result	Units	DL	Prep Date	Analysis Date	Analyst
Lab ID: Client ID: Date Sampled: Matrix:	20010484-06 1505-23a 5/11/2001 Sojl	j						
			iochemical Analyse					
Th-232		HASL 300	45.7 +/- 0.851	pCi/g	0.711		5/17/2001	SD
Lab ID: Client ID: Date Sampled: Matrix;	20010484-07 1506-55 5/11/2001 Soil	7						
		rt.ad	liochemical Analyse	9				
Th-232		HASL 300	30.7 +/- 0.870	pCi/g	1.26		5/17/2001	\$D
Lab ID: Client ID: Date Sampled: Matríx:	20010484-08 1507-14a 5/11/2001 Soil	8						
TATRILIX:	- 9011 	Rad	liochemical Analyse					
Th-232		HASL 300	6.26 +/- 0.256		0.460		5/17/2001	SD
Lab ID: Client ID: Date Sampled: Matrix:	20010484-09 1508-3a 5/11/2001 Soil							
		,	liochemical Analyse					
Th-232		HASL 300	11.1 +/- 0.470	pCi/g	0.781		5/17/2001	SD
Lab ID; Client ID; Date Sampled; Matrix;	20010484-1 1509-21a 5/11/2001 Soil							
Th-232			liochemical Analyse		0.204		6 13 B 10 6 6 6	4 5
111-232		HASL 300'	2.69 +/- 0.122	pCvg	0.398		5/17/2001	SD

I North Aspen sken Arrow, OK 74012 18) 251-2515 X (918) 251-0008 Client:Kaiser AluminumClient Project:ACP 5427FLab Number:20010484Date Reported:5/21/2001Date Received:5/14/01Page Number:3 of 6

Analytical Report

		Method	Result	Units	DL	Prep Date	Analysis Date	Analyst
Lab ID: Client ID:	20010484-11 1510- 2 0a	l						
Date Sampled:	5/11/2001							
Matrix:	Soil							
		Rad	liochemical Analyse	s				
Th-232		HASL 300	0.283 +/- 0.085	pCi/g	0.352		5/17/2001	SD
Lab ID;	20010484-12	,			•			
Client ID:	1511-7a	2						
Date Sampled:	5/11/2001							
Matrix:	Sail			•				
		Ras	liochemical Analyse	25				
rh-232		HASL 300	89.0 +/- 1.41	pCi/g	1.09		5/17/2001	\$D
Lab ID:	20010484-13	2						
Client ID:	1512-13a	3			·			
Date Sampled:	5/11/2001							
Matrix:	Soil							
	-	1 \$90	liochemical Analys	25				
Th-232		HASL 300	0.863 +/- 0.111	pCi/g	0.256		5/17/2001	SD
Lab (D:	20010484-14	4						
Client ID:	1513-10a							
Date Sampled:	5/11/2001							
Matrix:	Soil	i						
~) 000			liochemical Analys					
Th-232		HASL 300	0.792 +/- 0.093	pCi/g	0.277		5/17/2001	SD
Lab ID:	20010484-1	5						
Client ID:	1514-1c			•				
Date Sampled:	5/11/2001							
Matrix:	Soil							
		1	diochemical Analys		A 100			- *
Th-232		HASL 300	4.21 +/- 0.236	pC/g	0.420		5/17/2001	SD

BDL = Below Detection Limit

ţ

1 North Aspen sken Arrow, OK 74012 8) 251-2515 x (918) 251-0008 Client:Kaiser AluminumClient Project:ACP 5427FLab Number:20010484Date Reported:5/21/2001Date Received:5/14/01Page Number:4 of 6

Analytical Report

,

	1	Method	Result	Units	DL ·	Prep Date	Analysis Date	Analyst
Lab ID: Client ID: Date Sampled: Matrix:	20010484-16 1515-19a 5/11/2001 Soil							
Th-232		Radi HASL 300	ochemical Analyse 5.63 +/- 0.246		0.529		5/17/2001	SD
Lab ID: Client ID: Date Sampled: Matrix:	20010484-17 1516-17a 5/11/2001 Soii							
•			iochemical Analys 0.674 +/- 0.111		0.270		5/17/2001	SD
h-232		HASL 300	0.674 +/- 0.111	heng	0(2) 0			
Lab ID: Client ID: Date Sampled: Matrix:	20010484-18 1517-24a 5/11/2001 Soil		liochemical Analys	ses	•			
Th-232		HASL 300	9.57 +/- 1.6		1.30		5/17/2001	SD
Lab ID: Client ID: Date Sampled: Matrix:	20010484-1 1518-15a 5/11/2001 Soil		diochemical Analy	1865	,			
Th-232		HASL 300	11.1 +/- 0.48	33 pCi/g	0.605		5/17/2001	SD
Lab ID: Client ID: Date Sampled: Matrix:	20010484-: 1519-11a 5/11/2001 Soil		adiochemical Anal	VSP¢				
Th-232		HASL 300	0.641 +/- 0.0		0.285	5	5/17/200	1 SD

BDL - Below Detection Limit

I North Aspen sken Atrow, OK 74012 8) 251-2515 K (918) 251-0008

Client:	Kaiser Aluminum
Client Project:	ACP 5427F
Lab Number:	20010484
Date Reported:	5/21/2001
Date Received:	5/14/01
Page Number:	5 of 6

Analytical Report

		Method	Result	Units	DL	Prep Date	Analysis Date	Analyst
Lab ID:	20010484-21	· · · · · ·						
Client ID:	1520-22a							
Date Sampled:	5/11/2001							
Matrix:	Sofi							
		Rapi	iochemical Analyse	5				
Th-232		HASL 300	6.11 +/- 0.255	pCi/g	0.334		5/17/2001	SD
Lab ID:	20010484-22	2						
Client ID:	1521-18a				•			
Date Sampled:	5/11/2001							
Matrix:	Soil							
		Rád	iochemical Analyse	s .				
h-232		HASL 300	1.33 +/- 0.086	pCi/g	0.201		5/17/2001	SD
Lab ID:	20010484-23	5						
Client ID:	1522-9a							
Date Sampled:	5/11/2001				•			
Matrix:	Soil							
		Rad	iochemical Analyse					
Th-232		HASL 300	0.954 +/- 0.088	pCi/g	0.352		5/17/2001	SD
Lab ID:	20010484-24	4						
Client ID:	1523-4a							
Date Sampled:	5/11/2001							
Matrix:	Soil							
		Rad	liochemical Analyse					
Th-232		HASL 300	2.83 +/- 0.164	pCi/g	0.341		5/17/2001	SD

1 North Aspen aken Arrow, OK 74012 18) 251-2515 X (918) 251-0008 Client:Kaiser AluminumClient Project:ACP 5427FLab Number:20010484Date Reported:5/21/2001Date Received:5/14/01Page Number:6 of 6

QC Report										
Parameter	Blank	LCS %REC	LCSD		DUP RPD	MS %REC	MSD %REC RPD		Date	
Ac-228	BDL		%REC	RPD	9.1		%REC	RPD	5/18/2001	
Ac-228	BDL				8.6				5/17/2001	
Co-60		95.1							5/18/2001	
Co-60		97 .2							5/17/2001	
Cs-137		93.1							5/18/2001	
Cs-137		97.6							5/17/2001	
<-40		74.7			•				5/18/2001	
K-40		90.5							5/17/2001	
Mn-54		92.0							5/18/2001	
Mn-54		89.4							5/17/2001	

QA Approval: Lab Approval:

BDL = Below Detection Limit