

### PBMR CORE DESIGN

Johan Slobber, Ph.D. PBMR, Pty 16 August 2001

Aug 01

1 Attachment 3-d



# Objective

- Inform and educate NRC regarding key safety design features
- Describe application of analytical codes used by PBMR Pty.
- Reach agreement on what constitutes sufficient design information and analytical methodologies to support a US license application

Aug 01

# Topics

- Physical Layout
- Pebble Flow Overview
- Core Calculations
- Conclusions

 $\leq$ 

Ρ

В

Μ

R

### Introduction

- Safety characteristics as basis for design
- HTR-MODUL Reactor Unit (RU) design as reference
  - Control elements in reflector only
  - H/D ratio increased 1:1 to 3:1
- Introduction of "graphite column" as central reflector

Aug 01



Aug 01



# PBMR RPV Layout

**Proprietary Information Removed** 

Aug 01



#### PBMR FHSS Schematic

**Proprietary Information Removed** 

Aug 01

# Fuel Sphere Design



5mm Graphite layer

Coated particles imbedded in Graphite Matrix

Pyrolytic Carbon 40/1000mm
Silicon Carbite Barrier Coating 35/1000mm
Inner Pyrolytic Carbon 40/1000mm
Porous Carbon Buffer 95/1000mm

#### Half Section

#### Dia. 0,92mm Coated Particle

Dia.0,5mm Uranium Dioxide Fuel

Dia. 60mm

**Fuel Sphere** 

#### < ( > > P B M R

### Geometry

- Pebble Flow Experiments
  - R&D Final Report by Siemens
- Computer Simulation
  - Model development at FZJ
- Select Benchmark Experiment
  - Compare experiment and computer model
- Verify VSOP pebble flow model

Aug 01



### *PFC-3D* code

- The *PFC*<sup>3D</sup> code used for PBMR analysis is divided into two parts:
  - Analysis of the top of the core in a cylindrical vessel
  - Analysis of the pebble flow through the core

Aug 01



# Filling the Vessel

**Proprietary Information Removed** 

Aug 01



## Core Sphere Flow Analysis

**Proprietary Information Removed** 

Aug 01



### Core Sphere Flow

**Proprietary Information Removed** 

Aug 01



#### **Proprietary Information Removed**

### Flow Lines

Aug 01



# Local Distribution vs. Core Radius

**Proprietary Information Removed** 

Aug 01



# Calculational Approach

- Prepare input models for:
  - Fuel
  - Geometry
  - Pebble flow
  - Core compositions
- Perform equilibrium and/or initial core calculations
- RU status is preserved for later restart

Aug 01



# Comments on Pebble Flow P B Experiments

**Proprietary Information Removed** 

Aug 01



### Flow of Pebbles

- Model Description:
  - Parallel flow in the upper part of the pebble bed
  - Effect of cone and discharge tube in the bottom region
  - Transition from parallel flow to flow pattern via interpolation



# VSOP Implementation

**Proprietary Information Removed** 

Aug 01



### VSOP RU Model

**Proprietary Information Removed** 

Aug 01

#### Calculational Logic



**Proprietary Information Removed** 

Aug 01

# Temperature Coefficients



#### **Proprietary Information Removed**

Aug 01



#### Radial Fast Flux Distribution at Various Axial Positions

#### **Proprietary Information Removed**

Aug 01



#### Radial Thermal Flux Distribution from Top of Core

**Proprietary Information Removed** 

Aug 01



# RCSS Position: Inserted

**Proprietary Information Removed** 

· .

Aug 01





#### **Proprietary Information Removed**

Aug 01



### Reactivity Balance

**Proprietary Information Removed** 

Aug 01



### Xenon Transient

**Proprietary Information Removed** 

Aug 01



# Benchmarking using PBMR

**Proprietary Information Removed** 

Aug 01