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Chapter 11

Statistical characterization of spatial variability in 
sedimentary rock 

Scott Painter 
Center for Nuclear Waste Regulatory Analyses; Southwest Research Institute; Culebra Rd.; San 

Antonio Texas; 78250 

1. INTRODUCTION 

Spatial variability is a ubiquitous feature of sedimentary rock. The 

physical properties of sedimentary formations are not smoothly varying 

functions of position, but are subject to abrupt changes of various 
magnitudes. These abrupt contrasts in rock properties affect the propagation 

and dispersion of seismic energy, with important implications for 

geophysical studies. Spatial heterogeneity is also a dominant control on fluid 
and contaminant movement, thereby affecting the dynamics of groundwater 
aquifers and petroleum reservoir.  

The traditional view of heterogeneity in sedimentary rock is of idealized 
layers with constant properties within each layer. This view is not consistent 
with outcrop studies or borehole geophysical data, which typically show 

complex and erratic fluctuations on a variety of spatial scales. Motivated by 

the need to improve petroleum reservoir production forecasts, contaminant 
transport predictions, and seismic deconvolution/inversion methods, a 
number of researchers have constructed stochastic models of spatial 
variability in sedimentary rock. These modeling efforts have as a common 

element the abandonment of the familiar random process models based on
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the Gaussian distribution and a finite correlation scale, and use instead 
distributions other than the Gaussian, and/or multiple-scale fractal-like 
correlation models. This chapter summarizes various efforts to construct 
such non-classical models and compares the success of several approaches 
using several example datasets.  

2. REPRODUCIBLE STATISTICAL FEATURES OF 

SEDIMENTARY ROCK 

2.1 Non-Gaussian distribution of property fluctuations 

Exploration geophysicists were among the first to identify reproducible 
statistical features in the physical properties of sedimentary rock.  
Specifically, it has been known for some time that the probability densities 
for primary seismic reflection coefficients have a basic reproducible shape 
(Agard, 1961; O'Doherty and Anstey, 1971; Walden and Hosken, 1986). An 
example constructed from a borehole log of seismic velocity is shown in 
Figure 1. The velocity log is from the Goodwyn 1 well (located on the 
northwest shelf of Australia), which spans a long sequence of platform 
carbonates and marine clastics. Variations in formation density were 
neglected in constructing the reflection coefficients. The basic shape for the 
reflection coefficient probability density is "bell shaped" (concave 
downward in the center switching to concave upward in the tails), but is 
more peaked than the Gaussian (leptokurtic). When plotted on a logarithmic 
scale (Figure lb), it is also apparent that the tails of the density are enhanced 
by orders of magnitude over the Gaussian distribution (Painter et al. 1995).  

This identification of reproducible statistical features is in striking contrast to 
the conventional practice in petroleum and groundwater geostatistics, which 
rely heavily on empirical transforms and non-parametric methods to honor 
formation-specific statistical features. This difference in approach can be 
understood by noting that geophysicists focus naturally on the increments or 
contrasts in properties rather the properties themselves. Specifically, the 
reflection coefficient sequence R(z) can be written as increments 
R(z)=W(z+l)-W(z) when the impedance contrasts are small. Here W(z)=1/2 
Log[ I(z)], I(z) is the seismic impedance (product of rock density and
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Figure 1. Histograms of incremental values in the properties of sedimentary rock have a basic 
reproducible shape. Shown is the probability density for primary reflection coefficients on a 
linear (a) and logarithmic (b) scale. The reflection coefficients were calculated from velocity 

logs from a petroleum well by assuming constant density. The reflection coefficients are 
essentially increments in the seismic impedance. This basic shape is also seen in increments 

of other rock properties such as permeability and porosity (Painter, 1996).  

acoustic velocity), z is depth in the borehole, and I is the separation distance 
or lag. Geostatisticians, on the other hand, tend to focus on the rock 
properties not the incremental values, and their reliance on empirical 
transforms or non-parametric methods is due to lack of reproducibility in the 
rock property distributions between different sites. Because of the lack of
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reproducibility in the rock property distribution compared with the 
reproducibility in the increment distribution, it has been suggested (Painter, 
1995) that it is more appropriate to model the properties of sedimentary rock 
as non-stationary with stationary increments. This approach is similar to 
relaxing the second-order stationarity hypothesis in favor of the intrinsic 
hypothesis (see e.g. Journel and Huijbregts, 1978), a generalization that is 

rarely applied in practice. Stationarity in the increments is a weaker 
condition than stationarity in the rock properties; the latter implies the 

former, but the converse is not true. Such stationary increment models are 
sometimes referred to as random motion models, by analogy with the 
classical Brownian motion.  

The reproducible shape of the reflection coefficient probability density is 
also shared by increments in other physical properties measured in 

sedimentary formations. This behavior has been observed in sonic velocity, 
density, and porosity logs from deep petroleum wells (Painter and Paterson, 
1994; Painter, 1995), in outcrop and core-based measurements of 
permeability (Painter, 1996, 2001) and in in-situ flow-meter measurements 
of permeability (Liu and Molz, 1997a). The basic shape for the distribution 
has been observed in both the horizontal and the vertical directions. The 
width of the increment distribution is typically smaller in the horizontal 
direction, reflecting reduced variability in the horizontal direction.  

The reproducible shape of the increment distribution is simply the 
manifestation of stratification. As we move from one point in the formation 
to the next, there is a large probability that the observed rock property will 
change little. These abundant small changes produce the large peak near 
zero. However, there is a small but non-negligible probability of finding an 
abrupt change that might, for example, be associated with changes in rock 
type or strata boundaries. These infrequent large changes in rock properties 
produce the slowly decaying tails in the distribution on increments.  

Most of the previous studies of the distributions of incremental values 
focused on increments defined on lag or separation distances in the range of 
a few centimeters to a few meters. Results for longer lag distances are more 
limited, but the available evidence suggests that the increment histogram 
retains the same basic shape but drifts slowly toward the Gaussian as the lag 
increases (Liu and Molz, 1997a; Painter, 2001). An example of this is shown 
in Figure 2. In constructing this plot, increments in transit time (1/v where v 
is velocity in meters/microseconds) defined on various lags were analyzed 
for the kurtosis excess. The data comes from the Goodwyn 1, 8 and 9 wells 
on the northwest shelf of Australia (18939 measurements). The kurtosis
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excess is a non-dimensional measure of the peakedness or flatness of the 
probability distribution relative to the Gaussian. The kurtosis excess is 

significantly greater than zero over most of the range, indicating that the 
distribution is more peaked than the Gaussian, but decreases slowly with 
increasing lag once the lag is larger than about 10 meters, indicating a slow 
return to Gaussian behavior. It should be noted that more rapid return to 
Gaussian behavior has also been observed (Liu and Molz, 1997; Painter, 
2001) on smaller datasets. The details of this drift toward Gaussian behavior 
and the exact crossover point at which the increment distribution reverts to 
the Gaussian distribution are issues that need further investigation.  
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Figure 2. Kurtosis excess in increments versus lag distance calculated from well logs 

from three petroleum wells (Goodwyn field) from the northwest continental shelf of Australia.  

The physical property considered is transit time (1/v where v is acoustic velocity in 

meters/microsecond). The kurtosis excess decreases slowly with lag for lags larger than about 

10 meters, indicating a slow return to Gaussian behavior at long lags.  

2.2 Multiple-scale heterogeneities 

The next step is to understand the spatial correlation in the rock 
properties. The classical approach to modeling spatial correlation in a time 
series or a spatially distributed dataset is to specify a simple analytical form 

for the two-point covariance function (Z(u)Z(u + 1)) which decays rapidly 

beyond some characteristic correlation scale. Here Z represents some rock 
property of interest, u is the spatial position, and I is the lag or separation 
distance. For example, a decaying exponential function is widely used in



groundwater hydrology to model spatial correlation in Y=log K, where K is 
the hydraulic conductivity. Within the exponential model, the characteristic 
decay length for the exponential function defines a characteristic length scale 
for the fluctuations. Experimental detection of the spatial correlation is often 
accomplished by considering estimators for the variogram 

function ([Z(u)- Z(u + l)]2), which is closely related to the two-point 

covariance if the sequence is stationary.  

A large number of studies have produced clear evidence to contradict the 
notion of a characteristic correlation length in sedimentary rock. For 
example, meta-analyses of field data from groundwater aquifers have shown 
that hydraulic conductivity and dispersivities tend to increase with increasing 
scale (see, for example, Neuman (1990,1994)). Specifically, hydraulic 
conductivities tend to increase, on average, with increasing scale of support 
and apparent dispersivities tend to increase with increasing travel distance 
over a wide range. Moreover, the apparent correlation scale in the logarithm 
of hydraulic conductivity increases nearly linearly with the size of the data 
window (Gelhar, 1993). Although not specifically addressing the physical 
properties of sedimentary rock, the variances of gold grades have been 
reported (Krige, 1970) to increase with increasing area of investigation (see 
also Journel (1978)). Taken together, these observed dependencies on the 
spatial scale of support are inconsistent with a single scale for the spatial 
correlation and consistent with the intuitive notion that spatial fluctuations in 
rock properties occur over a wide range of scales. In other words, the trends 
are consistent with the concept of long-range or fractal correlation in the 
rock properties.  

Several authors provide direct evidence for long-range spatial correlation 
in sedimentary rock (Walden and Hosken, 1985; Hewett, 1986; Todoeschuck 
and Jensen 1988; Pilkington and Todoeschuck, 1990; Goggin et al., 1992; 
Molz and Boman, 1993; Painter and Paterson, 1994; Painter et al., 1995; 
Painter, 1995,1996). These studies consider a range of physical 
measurements and typically rely on one of three measures of spatial 
correlation: the variogram (or closely related measures of width of the 
increment distribution), the Fourier spectrum, or the R/S statistic 
(Mandelbrot, 1969). Each of these methods can detect a characteristic scale 
length; a power-law dependence on lag (or wavenumber in the case of 
spectral analysis) is the signature for scale-invariant or fractal behavior.  
Despite the differences in analysis techniques and measurement types, these 
studies all reach similar conclusions: that the physical properties of 
sedimentary rock are not consistent with the classical notion of characteristic 
correlation scale.
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Walden and Hosken (1985) and Todoeschuck and Jensen (1988) showed 
that primary reflection coefficients constructed from borehole geophysical 

measurements have a Fourier spectrum resembling a power law. Given that 

the reflection coefficients are essentially increments in the seismic 

impedance, this result is consistent with a random fractal motion model for 

the seismic impedance. Pilkington and Todoeschuck (1990) show that the 

spectra for several geophysical logs (density, resistivity, natural gamma-ray, 

neutron density) in several wells spanning sedimentary sequences are also 

well approximated as power-law.  

Hewett (1986) used the R/S analysis technique, variogram analyses, and 

spectral analyses to conclude that porosity measured by geophysical methods 
in nearly vertical boreholes have long-range spatial correlation. Molz and 

Boman (1993) took a similar approach, and considered spatial correlation in 
hydraulic conductivity, as did Goggin et al. (1992) who analyzed 
permeability measured on outcrops. All of these studies reached a similar 
conclusion about long-range spatial correlation. These studies considered the 

porosity or permeability to be the stationary increments in a random motion 
process.  

Painter and Paterson (1994), Painter et al. (1995), and Painter (1995b) 

follow a line of investigation similar to that of Walden and Hosken (1985) 

and consider several well logs (porosity, velocity, density, and resistivity) as 

random motions (non-stationary random processes with stationary 
increments). They considered a robust variant on the variogram - the first 

order structure function - and showed that it was accurately fitted by a 

power-law function over a wide range of spatial scales. Painter (1996) 
showed that the same scaling occurs in core-based and outcrop-based 
measurements of permeability in sedimentary formations.
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Figure 3. Experimental variogram constructed from well logs from three petroleum wells 

(Goodwyn field). The physical property considered is transit time, lIv, where v is acoustic 

velocity in meters/pAs. The experimental variogram is accurately approximated as power-law 

(solid line) over a wide range, a feature that is widely observed in sedimentary rock.  

The example shown in Figure 3 is typical of results presented in previous 
analyses of subsurface data. This experimental variogram was constructed 

from the same data as the plot in Figure 2. The nearly straight line for the 
variogram on the double logarithmic plot means that the variogram is well 
approximated as power law over a range of more than three orders of 

magnitude. A conventional correlation model would, by contrast, reach a 

well-defined plateau level near the correlation range. Failure to reach a 
plateau level means there is no characteristic scale for the spatial fluctuations 
in properties; property fluctuations exist at all spatial scales in the 

observation window. This direct method of analyzing spatial correlation 
should not be confused with the scale-of-support effect, whereby the 
distribution of properties is observed to vary with the volume of rock 
investigated in the measurement. Although such an effect may provide 
indirect evidence for long-range correlation, direct construction of the 

experimental variogram is a more direct approach for identifying long-range 
correlation in a particular property defined on a particular scale of support.  

The slope of the line on the double logarithmic scale in Figure 3 is the 
power-law exponent and is equal to 2H, where H is the Hurst exponent. The 
fitted value of H=0.25 is typical for data from sedimentary rock in both the 
horizontal and vertical directions. A classical Brownian motion or random 
walk, where one step or increment is independent of the previous, would 

result in a power-law variogram with H=1/2. Larger values for H indicate 
that successive increments in rock properties are positively correlated 
(persistence) while smaller values indicate negative correlation among
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successive increments (anti-persistence). Anti-persistence means that a 
positive change in properties is followed, on average, by a negative change 

and vice-versa. Anti-persistence is the general situation for sedimentary 

rock, and is simply a manifestation of the tendency to switch back and forth 

- after a random duration - between two different rock types (i.e. alternating 
sequences of sand and shale).  

3. STATISTICAL MODELS FOR SPATIAL 
VARIABILITY 

Most of the previous effort on the statistical properties of sedimentary 

rock has focused on characterization only, i.e. on the identification of simple 

reproducible features; comparatively little effort has been devoted to 

developing well defined statistical models that capture these features.  

3.1 Models for the increment distribution 

Walden and Hosken (1986) considered models for the amplitude 

distributions for primary reflection coefficients. Because the primary 

reflection coefficients can be considered as increments in the seismic 
impedance, this work represents an important early effort at understanding 
property variations in a more general context. In the following the symbol A 

is used to represent increments in some rock property Z; if we associate the 

logarithm of seismic impedance with Z, then A represents seismic reflection 
coefficients.  

Walden and Hosken (1998) proposed two statistical distributions to 

capture the observed shape of the amplitude distribution for reflection 
coefficient: a mixture of two Laplace (or two-sided exponential) 
distributions, and a generalized Gaussian distribution. The probability 
density for increments in the Laplace-mixture model is 

f (A; P,,ý"1"2 ) = -1- ex -_IA[ l+ - p ex --•2,, 'A' 

fp'/pý 2A2AA 

where X• and X2 are scale parameters for the first and second populations, 
respectively, and p is a mixing parameter that defines the relative 
proportions of the two populations. Walden and Hosken provide a maximum 
likelihood estimator for the parameters, compare the fit to several reflection 

coefficient sequences, and discuss the interpretations from the perspective of 
sedimentary geology.
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The generalized Gaussian distribution considered by Walden and Hosken 

(1986) has probability density given by 

a[ 
f(A;a,b) = 2bF(l /a) 

where F is the gamma function, a is a shape parameter that runs between 0 

(exclusive) and 2 (inclusive), and b is a positive real number that defines the 

scale. When a=2, the generalized Gaussian reduces to the Gaussian. For a>2, 

the density for the generalized Gaussian is more peaked than the Gaussian 

and has more slowly decaying tails. When a>1, the density has a cusp at the 

origin. Walden and Hosken also discuss how the two models - the Laplace 

mixture and the generalized Gaussian - can be constructed from an infinite 

mixture of Gaussian distributions.  

A model for the distribution of seismic reflection coefficients and, more 

generally, increments in rock properties was also considered by Painter and 

colleagues (Painter and Paterson, 1994; Painter et al., 1995; Painter, 

1995,1996). This work relied on the family of probability distribution known 

as stable or Levy-stable distributions (Levy, 1936; Feller, 1972; Zolatarev, 

1986). This family of distributions generalizes the Gaussian distribution and 

has an important role in mathematical statistics as the limit distributions for 

sums of certain independent random variables. If the variance of the 

summand variables is finite, then the distribution of the sum will tend to the 

Gaussian distribution, according to the central limit theorem. If the summand 

variables have a distribution that is asymptotically power-law, then the 

distribution of the sum will tend to one of the non-Gaussian members of the 

stable distribution (generalized central limit theorem). Painter and colleagues 

used the symmetric non-Gaussian Levy-stable distributions as models for 

increments in rock properties. The probability density for these distributions 
does not have a closed form; the distribution is most easily defined through 
the characteristic function, which is the Fourier transform of the probability 
density. For the symmetric (about 0) stable distributions, the characteristic 
function is given by 

f(v;a, C) = exp[- (cv' )a''
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where C is a scale parameter and a e (0,2] is a shape parameter that 

measures the deviation from Gaussianity. Probability densities can be 
obtained from the characteristic function by inverse Fourier transform. The 

situation ot=2 represents the Gaussian distribution. As cc decreases from 2, 

the probability density becomes more and more peaked at the origin with a 
slowly decaying power-law tail.  

More recently, Painter (2001) proposed a new model for the increment 

distribution that is based on subordination. Subordination is the process of 

constructing a new random process by randomizing the variance in an 

existing process (see e.g. Feller (1971)). In the subordination model, the 

increment distribution is modeled as an infinite mixture of Gaussian 

distributions with different variances 

f (A)= fw(a)g (A; 0, a~do 
0 

where g is the Gaussian distribution with mean 0 and variance a, and the 

function w represents a weighting function or distribution for standard 

deviations. By choice of the subordinator w, considerable flexibility exists to 

tune the shape of the increment distribution. By selecting w to be a dirac 

delta function, the model reverts to a classical Gaussian based model. At the 

other extreme, by selecting w as a function that is asymptotically power law, 

the stable distribution is recovered. An intermediate degree of variability can 

be modeled by selecting the subordinator to be a skewed distribution that is 

more rapidly decaying than the power law. For example, Painter used a log

normal subordinator and showed that this was able to reproduce increment 

distributions in Log K, where K is hydraulic conductivity. Within this 

model, the increment distribution is given by 

f(A) = (c; a., A,)g (A;0, u)dc 
0 

where V(r; o"0, /1)is the log-normal distribution with geometric mean (7o and 

log-variance X. The X parameter measures the deviation from Gaussian 

behavior, with X=0 corresponding to the Gaussian distribution. Increasing X 

makes the tails in the distribution decay more slowly.  

Probability densities for the four families of probability distributions used 

to model the increment distribution can be found in the relevant references
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listed above. The main motivation for each of these models is to capture the 
leptokurtosis and non-Gaussian tails in the increment distribution. The 
generalized Gaussian model, the subordination model, and the Levy stable 
model each has two parameters: one that controls shape and another for the 
scale. The Laplace mixture has three parameters that mix shape and scale.  
Each of the models includes the Gaussian as a special case, except for the 
Laplace mixture.  

3.2 Models that incorporate scale-invariant spatial 
correlation 

Fractional Brownian motion (fBm) (Mandelbrot and Van Ness, 1968) is 
the prototype model that captures the power-law variogram like that shown 
in Figure 3. The fim model has been used to model porosity or permeability 
in sedimentary formations (Hewett, 1986; Tubman and Crane, 1995; Molz 
and Boman, 1993). An equivalent approach was taken by Walden and 
Hosken (1985) and by Todoeschuck and Jensen (1990). These authors use 
fractional Gaussian noise to model the seismic reflection coefficients.  
Fractional Gaussian noise is the increments in an fBm, and this approach is 
similar to an fBm model for the seismic impedance. The serious limitation of 
the fBm model is that it predicts the increment distribution as Gaussian and 
does not reproduce the slowly decaying tails and leptokurtosis that are 
evident in Figure 1. Failure to reproduce the non-Gaussian property 
fluctuations means that the fmm model does not capture adequately the sharp 
property contrasts associated with stratification.  

Painter and Paterson (1994) proposed fractional Levy motion (fLm) 
(Taqqu, 1986) as an alternative to flim. The fLm model can be constructed 
similarly to fBm by replacing the Gaussian with a Levy-stable distribution.  
The resulting model has more spatial variability and better captures the sharp 
contrasts in rock properties associated with stratification. The fLm model has 
the opposite problem to fBm in that it tends to overpredict variability. This 
wild variability may be tamed by placing explicit bounds on the modeled 
variable.  

More recently, a subordinated fBm (sfBm) model (Painter, 2001) was 
proposed as a model for spatial variability in sedimentary rock. The sfBm 
has the same spatial correlation structure as imm, but has a tunable increment 
distribution that matches empirical increment distributions better. The main 
limitation is that it does not allow the increment distribution to change with 
changing lags, a feature that is sometimes evident in large datasets.
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The random cascade or universal multifractal (see, for example, Marsan 
(2001)) has also been proposed as a model for spatial variability in 
sedimentary rock or unconsolidated sediments (Liu and Molz, 1997). This 
model has a power-law variogram, but also allows the increment distribution 
to change shape with increasing lag. This latter features manifests through a 
the generalized variogram or structure function that deviates from the 
monofractal result. In contrast to the random motion models, the random 
cascade model does not specify the increment distribution directly; the 
distribution is controlled indirectly through the choice of generator of the 
cascade. This is a promising approach, but it is not clear at this point whether 
the universal multifractal approach will be able to capture the reproducible 
shape in the increment distribution like that shown in Figure 1.  

4. COMPARISON WITH DATA 

A total of six datasets from three sedimentary formations are used here to 
test the relative performance of the four models for the increment 
distribution. These include three geophysical logs of acoustic transit time 
measured in petroleum wells from the Goodwyn field (see Figures 1-3), a 
composite of the three Goodwyn wells, minipermeameter measurements of 
permeability from an outcrop study (Goggin et al., 1992) of the Page 
formation, and core-based measurements of permeability the Kuparuk River 
formation on the Alaskan north slope (Gaynor et al., 2000). In constructing 
the increment distribution, lags of 0.45, 0.010, 0.15 meters were used for the 
Goodwyn, Page, and Kuparuk data, respectively. The determination of the 
model parameters was done by least-square fitting to the experimental 
histograms (logarithmic scale) for the generalized Gaussian and Laplace
mixture models, and by the procedures described previously (Painter, 
1996,2001) for the other two models. The fitted parameters are summarized 
in Table 1.  

Experimental histograms and fitted density functions are shown in Figure 
4; plots of the difference between the model and the empirical cumulative 
distributions are shown in Figure 5. All four models capture the leptokurtosis 
and the non-Gaussian tails of the increment histograms. Qualitatively, the 
Laplace mixture model and the subordination model reproduce the increment 
histogram over a wide range. The Levy stable model provides a good fit in 
the center and part way into the tails of the distribution, but tends to 
overestimate the extremes of the distribution. Such behavior has been
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reported previously (Painter, 2001). The generalized Gaussian model is too 

peaked near the origin, because of the cusp for values of a < 1.  

These qualitative observations are confirmed by more quantitative 

analyses, as summarized in Table 2. The quality of the fit as measured by the 

Kolmogorov-Smimov statistics - the maximum absolute deviation between 

the model and empirical distributions - is consistently better for the 

subordination and the Laplace mixture models compared with the other two 

models. The same trend is true when the root-mean-square deviation is used 

as the measure of the fit. The subordination model performs slightly better 

than the Laplace mixture model using both measures, but differences in the 

quality of the fit are not large and may be due in part to differences in the 

way the fitting was done. However, it should be noted that the Laplace 

mixture model contains three parameters compared to two for the 

subordination model. It is clear that the relative performance of the 

subordination model would have been even better had formal model 

discrimination tests, which penalize models for having more parameters, 

been used.  
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Figure 4. Probability density for increments of I/v from the Goodwyn wells compared with 

four model fits. The models are mixture of Laplace distributions (LM), generalized Gaussian 

distribution (GG). subordinated Gaussian distribution (SG), Levy-stable (LS). The top two 

plots are restricted to the central part of the distribution while the bottom two show the entire 
range with probability density on a logarithmic scale.
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Figure 5. Differences between four model cumulative distributions and the empirical 

distributions of increments in 1/v constructed from three Wells from the Goodwyn field 

Table 1. Fitted parameters for four models for the distribution of increments in physical 
properties of sedimentary rock.  

Dataset N Generalized Laplace Mixture Subordinated Levy
Gaussian Gaussian Stable 

a b p X1 X2 , a a C

Goodwyn 1 6687 0.59 1.16 0.68 2.04 6.76 0.75 3.36 1.23 1.96 

Goodwyn 8 5909 0.61 0.83 0.82 1.92 5.22 0.68 2.48 1.30 1.57 

Goodwyn 9 6343 0.51 0.41 0.90 2.05 7.35 0.71 2.43 1.37 1.57 
Goodwyn 
Aggregate 18939 0.55 0.70 0.81 2.03 6.84 0.75 2.72 1.27 1.70 

Kuparuk 1616 0.82 0.30 0.95 0.39 3.89 0.44 0.50 1.54 0.33 
PaLye 2855 0.49 0.02 0.92 0.10 0.38 0.66 0.13 1.41 0.08

Subordinated 
Gaussian A,u 0.005 

S0 

-0.005 

0.04 

S0.02 
2 0 
S -0.02

-- I a

1511.



Table 2. Relative measures of fit for four models of the increment distribution. The two 

numbers given are the Kolmogorov-Smirnov statistic and the root-mean-square deviation 

between the empirical and the model distribution.  

Dataset Generalized Laplace Subordinated Levy
Gaussian Mixture Gaussian Stable 

Goodwyn 1 0.0241 0.0130 0.0175 0.0175 

0.0110 0.0046 0.0069 0.0084 

Goodwyn 8 0.0441 0.0161 0.0152 0.0164 

0.0228 0.0050 0.0045 0.0057 

Goodwyn 9 0.0695 0.0138 0.0138 0.0150 
0.0403 0.0046 0.0049 0.0053 

Goodwyn 0.0436 0.0099 0.0089 0.0127 

Aggregate 0.0225 0.0040 0.0034 0.0054 

Kuparuk 0.0501 0.0384 0.0220 0.0286 

0.0270 0.0194 0.0088 0.0100 
Page 0.0880 0.0350 0.0350 0.0350 

0.0527 0.0103 0.0079 0.0105 

5. SUMMARY AND CONCLUSIONS 

Analyses of spatially distributed data on the physical properties of 
sedimentary rock have revealed a small number of highly reproducible 
statistical features. Experimental variograms and closely related measures 
are typically found to be well approximated by a power-law over a wide 
range of spatial scales, which is consistent with a non-stationary system with 
spatial fluctuations that span a wide range of scales. This is sometimes 
referred to as "fractal scaling" behavior. The power-law exponent or Hurst 
parameter appearing in the fitted variogram is typically in the range 
associated with antipersistence, meaning that a jump in one direction on a 
one-dimensional trace tends to be followed, on average, by a jump in the 
opposite direction. The evidence for fractal scaling or other type of long
range behavior comes mostly from near-vertical boreholes; much less 
information is available for horizontal variation, but there is some evidence 
to suggest that fractal scaling also occurs in the horizontal direction. It 
should be noted, however, that the issue of horizontal variations requires 
further investigation.  

Remarkably consistent results have also been reported for the histograms 
of increments in rock properties, at least for separation distances in the range 
of a few centimeters to a few tens of meters. Specifically, the increment 
histograms are consistently symmetric and more peaked that the Gaussian
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density, and have tails that decay more slowly than the Gaussian. There is 

some evidence to suggest that the increment distribution trends toward 

Gaussian with increasing separation distance, although the exact nature of 

this trend and the crossover point to Gaussian behavior is somewhat 

uncertain. The consistent non-Gaussian shape has been observed for both 

horizontal and vertical separation distances. The width in the observed 

distribution tends to be smaller in the horizontal direction, consistent with 

reduced variability in the horizontal compared with the vertical.  

Several models for the increment distribution have been put forward in 

the groundwater, petroleum engineering, and exploration geophysics 

literatures. The performance of four of these models is compared using data 

from several sources. A model based on a mixture of two Laplace 

distributions and a model based on subordination of a Gaussian process both 

outperformed models based on a Levy-stable distribution and a generalized 

Gaussian distribution. The generalized Gaussian model is more peaked than 

the increment histograms and the Levy stable model predicts too much 

probability density in the tails of the distribution. The Laplace mixture 

model and the subordination model fit the histograms well over a wide range 

of increment values, but the fit of the subordination model is slightly better.  

The subordination model also has fewer parameters and is thus preferred 

from the perspective of parsimony. Moreover, the subordinated fBm model 

also allows models the observed spatial correlation.  

ACKNOWLEDGMENTS 

This work was performed in part by the Center for Nuclear Waste 

Regulatory Analyses under contract NRC-02-97-009. This report is an 

independent product and does not necessarily reflect the regulatory position 
of the NRC.  

REFERENCES 

Agard, J., 1961, L'analyses statistique et probabiliste des sismogrammes, Revue de L'Institut 

Francais du Pitrole 16:1-85.  

Feller, W., 1971, An introduction to probability theory and its applications Vol. 2, Wiley and 

Sons, Inc., New York?.



18 Chapter 11 

Gelhar, L. M., 1993, Stochastic subsurface hydrology, Prentice Hall, Englewood Cliffs, New 

Jersey.  

Goggin, D. J., Chandler, M. A., Kocurek, G., and Lake, L. W., 1992, Permeability transects of 

eolian sands and their use in generating random permeability fields, SPE Formation 

Evaluation 92(3):7-16.  

Hewett, T. A., 1986, Fractal distributions of reservoir heterogeneity and their influence on 

fluid transport, in: Proceedings of the 61' Annual Technical Conference of the Society of 

Petroleum Engineers, Rep. 15386, Richardson Texas.  

Journel, A. G., and Huijbregts, Ch. J., 1978, Mining Geostatistics, Academic Press, New 

York.  

Krige, D. G., 1970. The role of mathematical statistics in improving ore valuation techniques 

in South African gold mines, in: Topics in Mathematical Geology, Consultants Bureau, 

New York and London.  

Lavy, P., 1937, The4orie de I'addition des variables algatoires, Gauthier-Villars, Paris.  

Liu, H. H., and Molz, F. J., 1997a, Comment on "Evidence for non-Gaussian scaling behavior 

in heterogeneous sedimentary formations" by Scott Painter, Water Resour. Res.  

33(4):907-908.  

Liu, H. H., and Molz, F. J., 1997b, Multifractal analyses of hydraulic conductivity 

distributions, Water Resour. Res. 33(11):2483-2488.  

Mandelbrot, B. B., 1969, Robustness of the rescaled range R/S in the measurement of 

noncyclic long run statistical dependence, Water Resources Research 5:967-988.  

Mandelbrot, B. B. and Van Ness, J. W., 1968, Fractional Brownian motions, fractional noises 

and applications, SIAM Rev. 10:422-437.  

Molz, F. J., and Boman, G. K., 1993, A fractal-based stochastic interpolation scheme in 

subsurface hydrology, Water Resour. Res. 29(11):3769-3774.  

Molz, F. J., and Boman, G. K., 1995, Further evidence of fractal structure in hydraulic 

conductivity distributions, Geophys. Res. Lett. 22:2545-2548.  

Neuman, S. P., 1990. Universal scaling of hydraulic conductivities and dispersivities in 

geological media, Water Resour. Res. 26(8):1749-1758.  

Neuman, S. P., 1994. Generalized scaling of permeability: Validation and effect of support 

scale, Geophys. Res. Lett. 21(5):349-352.  

O'Doherty, R. F., and Anstey, N. A., 1971, Reflections on amplitudes, Geophys. Prosp.  
19:440-458.  

Painter, S., 1995, Random fractal models of heterogeneity: The Levy-stable approach, Math.  

Geol. 27:813-830.



11. 19 

Painter, S., 1996, Evidence for non-Gaussian scaling behavior in heterogeneous sedimentary 
formations, Water Resour. Res. 32(5): 1183-1195.  

Painter, S., 2001, Flexible scaling model for use in random field simulation of hydraulic 
conductivity, Water Resour. Res. In press.  

Painter, S, and Paterson, L., 1994, Fractional Levy motion as a model for spatial variability in 

sedimentary rock, Geophys. Res. Lens. 21:2857-2860.  

Painter, S., Beresford, G., and Paterson, L., 1995, On the distribution of seismic reflection 
coefficients and seismic amplitudes, Geophysics 60(4):1187-1194.  

Pilkington, M., and Todoeschuck, J. P., 1990, Stochastic inversion for scaling geology, 
Geophys. J. Internat. 102:205-217.  

Todoeschuck, J. P., and Jenson, 0. G., 1988, Scaling geology and seismic deconvolution.  
Geophysics 53:1410-1414.  

Walden, A. T., and Hosken, J. W. J., 1985, An investigation of the spectral properties of 

primary reflection coefficients, Geophys. Prosp. 33:400-435.  

Walden, A. T., and Hosken, J. W. J., 1986, The nature of the non-gaussianity of primary 

reflection coefficients and its significance for deconvolution, Geophys. Prosp. 34:1038
1066.  

Zolotarev, V. M., 1986, One-dimensional stable distributions, Am. Math. Soc.


