
William Paul Goranson, PE. Manager, Radiation Safety Regulatory Compliance and Licensing

Quivira Mining Company 6305 Waterford Boulevard Suite 325, Oklahoma City Oklahoma 73118

405.858.4807 tel 405.810.2860 fax

CERTIFIED MAIL 7000 1670 0013 4034 8455 RETURN RECIEPT REQUESTED

Melvyn Leach Chief, Fuel Cycle Licensing Branch Division of Fuel Cycle Safety and Safeguards U.S. Nuclear Regulatory Commission Mail Stop T-8A33 Washington, DC 20555

Rio Algom

Subject: Pond #2 Run-on and Run-off Apron Design - License Condition 37M Ambrosia Lake Facility License No: SUA-1473 Docket No: 40-8905

Dear Mr. Leach:

As required in License Condition 37M, Quivira Mining Co. is submitting the Run-on and Run-off apron designs for Pond #2 at the Ambrosia Lake Facility. The design proposal can be found in Attachment A to this letter. The design follows the guidelines presented in NUREG-1623, *Design of Erosion Protection for Long-Term Stabilization*. Attachment B contains qualification data for the rock that is expected to be used for the construction. It is a Pennsylvanian limestone that is a substitution for the basalt that is has been previously approved and used at the site due to the closure of the basalt quarry. The qualification data is from 1991 testing, and the rock will be requalified before placement.

If you have any questions, please call me at (405) 858-4807.

Sincerely,

ulul

William Paul Goranson, P.E. Manager, Radiation Safety, Regulatory Compliance and Licensing

Enclosures

CC: Jill Caverly, NRC Marvin Freeman, QMC Terry Fletcher, QMC w/o attachments Peter Luthiger, QMC w/o attachments Russell Jones, QMC

NMSSO (Public

ATTACHMENT A

.....

DESIGN REPORT - POND 2 EROSION PROTECTION AMBROSIA LAKE MILL, NEW MEXICO ·

.

and the second second

Ţ

Č.

TECHNOLOGIES INC

.

DESIGN REPORT – POND 2 EROSION PROTECTION AMBROSIA LAKE MILL, NEW MEXICO

DESIGN REPORT – POND 2 EROSION PROTECTION AMBROSIA LAKE MILL, NEW MEXICO

Prepared for:

Quivira Mining Company P.O. Box 218 Grants, New Mexico 87020

Prepared by:

Maxim Technologies, Inc. 10601 Lomas NE, Suite 106 Albuquerque, New Mexico 87112

August 29, 2001

TABLE OF CONTENTS

<u>Page</u>

INTRODUCTION	1
1.0 PMP CALCULATION	1
2.0 RUN-ON CALCULATIONS	
 3.0 RUN-OFF APRON	3 3 5
4.0 OTHER DESIGN CONSIDERATIONS	6
5.0 REFERENCES	7

LIST OF FIGURES

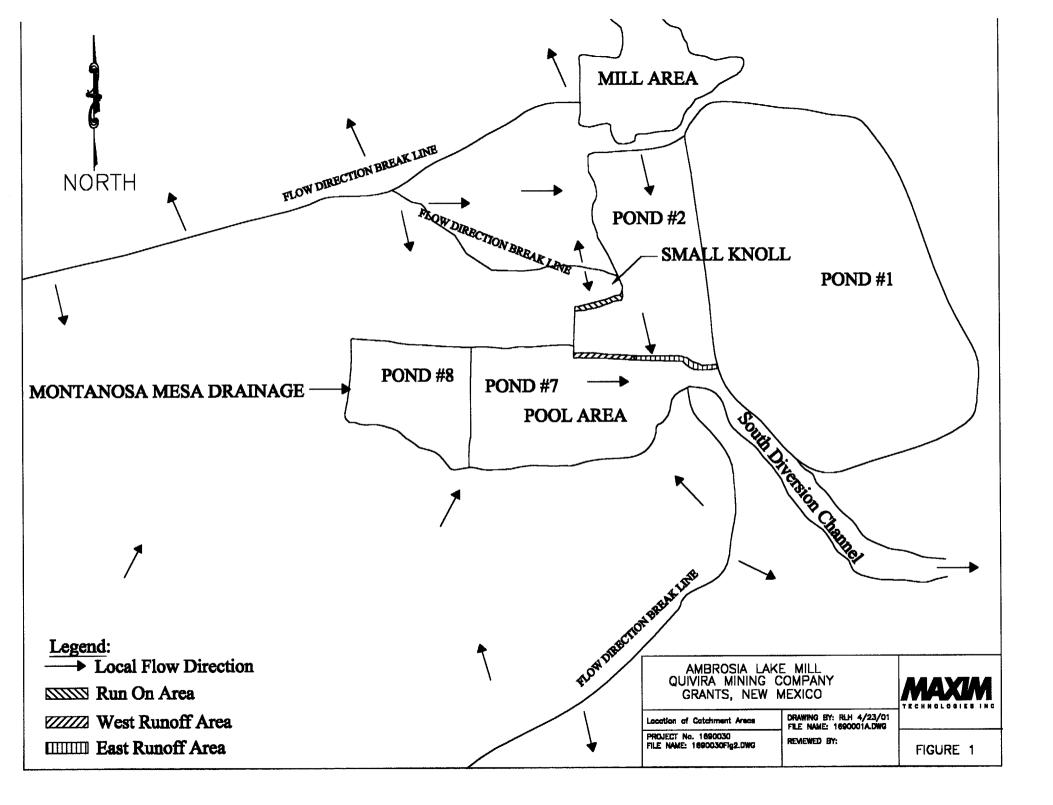
URE 1	
SURE 2	4
SURE 3	5

LIST OF APPENDICES

- APPENDIX A Calculations For Pond 2 Run-On
- APPENDIX B Calculations For Pond 2 Run-Off
- APPENDIX C Calculations for Montanosa PMF
- APPENDIX D Design Drawings

INTRODUCTION

This design report was prepared by Maxim Technologies, Inc. (Maxim) for Quivira Mining Company (Quivira) as part of their agreement for engineering services dated July 2001. Maxim has been retained to evaluate flood and long-term erosion conditions at the Ambrosia Lake Facility near Grants, New Mexico and to prepare designs for the long-term stability of tailings and evaporation ponds at this uranium mill tailings disposal site. This report provides the basis for the design required by the first of four tasks included in the agreement. Task One addresses erosion concerns at Pond 2, a reclaimed tailings pond, and consists of two sub-tasks: 1) Designing a run-on apron for the natural slope above the southwestern portion of the reclaimed pond; and 2) Designing the run-off apron for the southern toe of the reclaimed pond. Figure 1 is a schematic representation of the areas of concern in the current study.


Pond 2 is partially reclaimed but the northern portion remains uncovered to allow for burial of byproduct material and the mill. The southern portion of the reclaimed pond has a radon barrier rock cover serving as erosion protection. For purposes of this design effort, it has been assumed that the entire pond is covered with the radon barrier and the rock erosion protection since this future condition will generate more run-off than the existing condition.

The analysis conducted for this design is consistent with Nuclear Regulatory Commission (NRC) guidance, particularly, *Design of Erosion Protection for Long-Term Stabilization* (Johnson 1999). This guidance, referred to as NUREG-1623 in this report, requires, in most cases, that erosion protection be designed for a 1,000-year life to minimize future maintenance issues. Because flood events with a 1,000 year recurrence interval are difficult to quantify, the guidance recommends use of the probable maximum precipitation event (PMP) for design purposes. PMPs can be derived for various parts of the United States using appropriate hydrometeorological reports. The report that addresses New Mexico east of the continental divide is *Hydrometeorological Report No. 55A, Probable Maximum Precipitation Estimates – United States between the Continental Divide and the 103rd Meridian* (Hansen *et al.* 1988). Appropriate PMPs are used to develop runoff hydrographs and determine the probable maximum flood (PMF) for an area of concern. The final step in the design process is to apply the PMF to the appropriate erosion control design method. Guidance for design of riprap erosion protection is found in Appendix D of NUREG-1623.

This design report is limited to those items affecting design of Pond 2 erosion protection, namely, the runon and run-off issues mentioned previously. The report first addresses the run-on issue and then the runoff issue. Methods of analysis are described for both design issues including derivation of the PMP and calculation of the appropriate PMFs. The calculation of the riprap sizing is then described, and the report concludes with a discussion of other issues that affect the design.

1.0 PMP CALCULATION

Maxim verified the PMP calculation performed by others following the methods outlined in *Hydrometeorological Report No. 55A* (Hansen *et al.* 1988). The PMP rainfall depth calculated previously for the 1-hour local storm was 9.6 inches with no areal reduction. For the 3.7 square mile drainage that lies to the south of Pond 2 (called the Montanosa Mesa drainage in this report), the one-hour PMP rainfall depth was calculated to be 9.45 inches (Michaud 1990) presumably computed with an areal reduction factor. Maxim's calculation of the PMP depth arrived at a 9.5 inch value for the 1-hour, 1-square mile local storm, slightly less than the previously calculated value of 9.6 inches. Because the values are so similar, we used the slightly higher, previously determined values, in our calculations. Calculation sheets are attached in Appendix A.

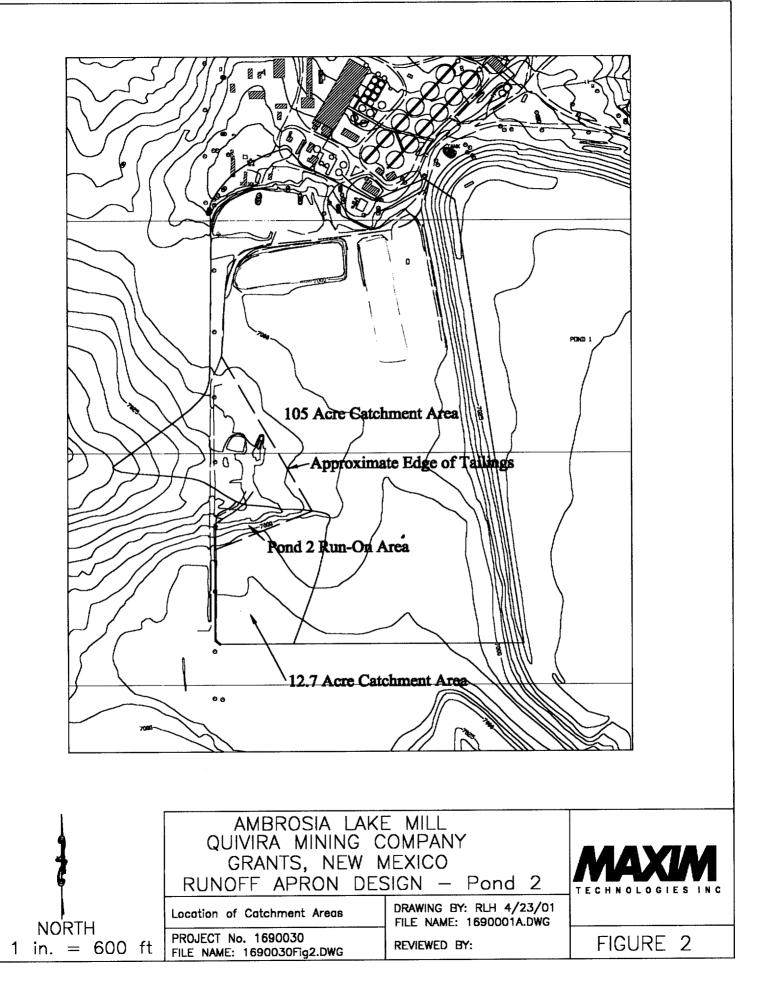
2.0 RUN-ON CALCULATIONS

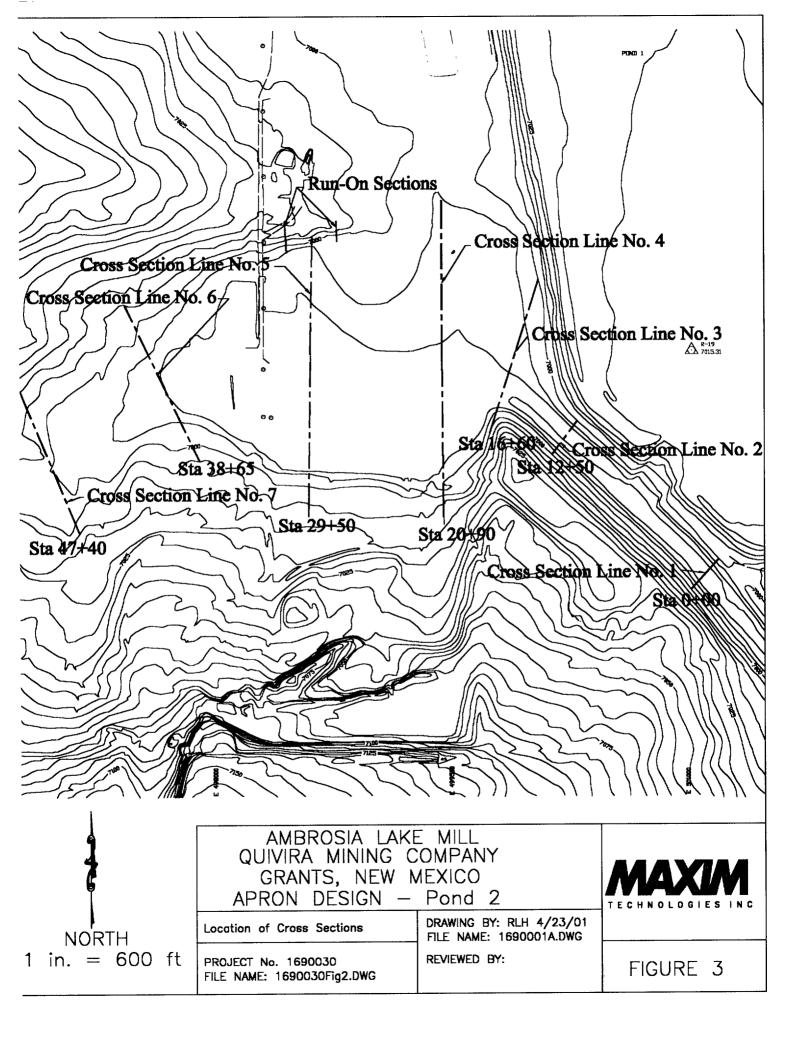
A small, south-facing slope of natural ground lies immediately above the southwest portion of Pond 2 (Figure 2). Quivira and the NRC have expressed concern that the run-on from this slope could erode the radon cover of this portion of Pond 2. In order to perform peak run-off calculations on this slope, Maxim asked Quivira to survey two cross-sections on the slope (Figure 3). Using the 9.6 inch PMP determined previously, Maxim performed a PMF calculation for this area (see Appendix A). The first step in this calculation was the determination of the time of concentration (t_c), which is 1.5 minutes on this short (250 feet), steep (20 foot drop) slope. NUREG-1623 guidance suggests setting the incremental rainfall period equal to the time of concentration. Because the shortest incremental rainfall listed in *Methodologies for Evaluating Long-Term Stabilization Designs for Uranium Mill Tailings Impoundments* (Nelson *et al.* 1986) is 2.5 minutes, this incremental rainfall was used in the calculation instead of 1.5 minutes. The small size of the catchment suggested use of the Rational Method for calculation of the PMF rather than the more detailed Soil Conservation Service (SCS) Soil Cover Complex Method or other unit hydrograph methods. The resulting peak PMF for the 250 ft long slope segment is 0.13 cfs/ft.

Maxim followed the guidance provided in NUREG-1623, Appendix D, Section 6 to size a run-on apron. Although this guidance, based on the method developed by Abt *et al.* (1998), is intended for run-off aprons, the geometrical situation is the same in this run-on scenario where a steep slope is transitioning to a flatter slope. In this case the steep slope is natural ground and the flat slope is the reclaimed Pond 2 surface. Use of the equation developed by Abt *et al.* and the calculated discharge of 0.13 cfs/ft results in a rock d_{50} of 2.9 inches to prevent erosion. Because a d_{50} =3.2 inch rock gradation was previously approved by the NRC for work performed at the Quivira Mine and an on-site stockpile of the same rock gradation is available, the run-on design incorporated the d_{50} =3.2 inch for construction.

The width and depth of the apron were determined using guidance in NUREG-1623, Appendix D, Section 6 and a filter gravel with a rock d_{50} of 1.0 inches was designed to prevent scour beneath the apron. Sheet 4 in Appendix D shows the details of the design and specifies the rock and filter gradations.

3.0 RUN-OFF APRON


A run-off apron is needed along the south toe of the Pond 2 embankment to prevent scour from incising the tailings cap during extreme run-off events. The general approach for this analysis consisted of two tasks:


- 1) Determining the apron requirements based on run-off analysis for Pond 2 in accordance with NUREG-1623, Appendix D, Section 6; and
- 2) Determining rock protection requirements due to the PMF passing through the Montanosa Mesa drainage south of Pond 2 in accordance with NUREG-1623, Appendix D, Section 5.

Each of these analyses is described separately in this section of the report.

3.1 RUN-OFF FROM POND 2

The 1 hr. local PMP depth for Pond 2 is 9.6 inches. The Pond 2 catchment includes both essentially impervious covered tailings and natural ground to the west of the impoundment. In these calculations it is assumed that the entire tailings area is capped although the northern portion of this area is not yet capped and closed. There are two catchment areas on the pond, a 105 acre area that includes a portion of the natural slopes west of the pond and the northern and eastern portions of the pond itself. This catchment drains to the south and exits across the south embankment of Pond 2. A smaller catchment of 12.7 acres includes the natural slope analyzed in Section 2.0 of this report as well as the southwest corner of the pond. This catchment drains to the south, exiting over the south embankment of Pond 2. Catchment areas are shown on Figure 2.

The time of concentration for the 105 acre area is 14 minutes and the 15 minute incremental rainfall amount given in *Hydrometeorological Report No. 55A* (Hansen *et al.* 1988) was used to determine a 6.5 inch PMP depth. Using the Rational Method, a PMF peak discharge of 2,316 cfs was calculated for this drainage. These calculations are presented in Appendix B, Run-Off Calculations.

Riprap was sized according to the method of Abt *et al.* (1998). The length of the south embankment is 1,000 feet, resulting in a unit flow of 2.32 cfs/ft. Using the maximum measured embankment slope of 14.7 percent and a concentration factor of 2.5, a riprap size d_{50} of 12 inches results. Due to the placement requirements for larger rock, we have provided a slope flattening design at Quivira Mine's request. By flattening the current slope of 14.7 percent to 10.0 percent, rock sizing was reduced from the d_{50} of 12 inches to a d_{50} of 9.2 inches, therefore, reducing the quantity of rock requiring "hand-placing" techniques. A riprap size gradation based on Army Corps of Engineers guidance was developed (ASCE 1995), and filter blankets were designed in accordance with the findings of Sherard *et al.* (1984). This method requires that five times the d_{85} of the filter be no smaller than the d_{15} of the riprap, and that the d_{15} of the filter larger range in sizes between the fine-grained base material (sandy loams) and the riprap, two filter layers were required; a finer sand filter underneath a coarser gravel filter. The riprap design applies to the eastern 1,000 feet of the south embankment of Pond 2 as shown on Sheet 1 of Appendix D.

For the 12.7 acre catchment, a time of concentration of six minutes was calculated and a six-minute PMP depth of 4.6 inches was calculated using the incremental rainfall information in Nelson *et al.* (1986). The Rational Method gives a unit peak flow of 0.93 cfs/ft. for this catchment. Using a maximum embankment slope of 12.9 percent and a flow concentration factor of 2.0, the method of Abt *et al.* (1998) predicts a rock d_{50} of 6.1 inches. At the request of the Quivira mine, the rock d_{50} was increased to 9.2 inches to coincide with the rock specified for the east portion of south embankment. Dimensions of the apron were likewise increased as a result of the larger, more conservative riprap sizing. This change was made due to operational concerns based on rock availability Calculations are found in Appendix B. Riprap gradation and filter requirements were determined as for the 105 acre catchment. This riprap design applies to the western portion of the southern embankment of Pond 2 as shown on Sheet 1 in Appendix D.

3.2 MONTANOSA MESA DRAINAGE PMF

In addition to potential extreme flows which will run off the Pond 2 embankment, the tailings cover must be protected from the PMF that could flow from the Montanosa Mesa drainage to the south of Pond 2 (Figure 1). An investigation was undertaken to determine what erosional forces could result from such a flow on the Pond 2 embankment. This investigation consisted of developing the PMF for the drainage (previously determined by others) using HEC-1 (USACE 1990) and determining the PMF water-surface profile in the vicinity of Pond 2 using HEC-RAS (USACE 1998). The velocity and depth of flow determined from the hydraulic analysis was used to determine the need for riprap on the Pond 2 embankment and apron. Calculations for this analysis are found in Appendix C.

The Montanosa Mesa drainage PMP depth is calculated at 9.45 inches using the areal reduction factor for a 3.7 square mile basin. A composite curve number of 73.4 was determined by Quivira Mining in a 1986 application to the NRC and was employed in this calculation. A hydrograph was developed using the SCS method and HEC-1 that showed that the peak flow was 12,842 cfs, very close to the 13,000 cfs value previously determined by others for Quivira. This hydrograph was then routed through the pool south of Pond 2 using HEC-1. Outflow from this pool is controlled by the South Diversion Channel, which constricts flows downstream of the pool. The pool has the effect of reducing the outflow through the South Diversion Channel, resulting in a peak outflow of 9,800 cfs. Reducing the east portion of the south embankment slope from 14.7 percent to 10 percent results in placement of approximately 4630 cubic yards of material within the pool footprint. Maxim conducted an analysis to determine whether construction of this embankment would have any effect on pool draindown time. A HEC-1 modeling run determined that after four hours of draindown, residual water in the pool is reduced by 0.3 acre feet over the existing condition. HEC-RAS was used to determine velocities and depths of flows in the vicinity of the Pond 2 embankment. Sections used for this model are shown in Figure 3. Sections 1 and 2 are based on the typical section of the engineering plans for the South Diversion Channel set at the elevations shown on the 2001 topographic map supplied by Quivira. Sections 3, 4 and 5 were surveyed in the field by Quivira. Sections 6 and 7, which are less critical to the analysis because they only determine the inflow water elevations and velocities, were developed from the 2001 topographic map.

A roughness coefficient (Manning's n) of 0.02 was used for graded areas surfaced with small diameter rock such as the south diversion channel and Pond 2 cover. A roughness coefficient of 0.03 was used for all other areas. Results of the hydraulic analysis shows that the inflow to the pool area is slightly supercritical and a hydraulic jump will occur at the upstream end of the pool. This hydraulic jump should occur at least 500 feet upstream of the Pond 2 embankment. Flow through the pool area is very slow with a left overbank velocity in the vicinity of the Pond 2 embankment of about 0.67 ft/sec. Depth of flow over the apron is about 10 feet. U.S. Army Corps of Engineers (ASCE 1995) guidance for riprap design does not consider velocities less than 8 ft/sec., at which velocity a $d_{30} = 0.3$ ft. stone is required. Because the expected velocity is much less than 8 ft./sec., no rock protection is required to prevent erosion from the PMF in the drainage south of Pond 2. Therefore, the runoff apron design has been based solely on run-off from Pond 2. Results from the HEC-1 and HEC-RAS analyses are found in Appendix C.

Because the HEC-RAS model was based on limited cross-section data and there are significant changes in hydraulic conditions through the modeled reach, the computer program generated warning messages. These messages are not considered detrimental to the general results obtained because the velocities calculated for the reach of interest are so low that further refinement of the model would be unlikely to increase the velocities enough to require riprap protection from the Montanosa Mesa drainage PMF.

4.0 OTHER DESIGN CONSIDERATIONS

The cross-sectional dimensions of the riprap aprons have been determined from the relations established by Abt *et al.* (1998) that the apron width should be at least 15 times d_{50} and the depth should be at least three times d_{50} . The aprons are generally wider than this criterion to permit construction of an erosion resistant transition at the junction of the existing rock cover with the apron. The edges of the apron excavations have also been sloped to 2V:1H to permit placement of filters to the surface of the ground. This should eliminate potential scour in the native material adjacent to the upstream and downstream edges of the aprons as well as below the aprons. Design drawings for the aprons are found in Appendix D.

The aprons should slope to the downstream edge with a minimum slope of two percent or at a slope that matches the slope of the natural ground, should it be steeper than two percent. This slope will help ensure that water exits from the outside edge of the apron. If the aprons need to be built on longitudinal slopes (slopes along the toe of the embankment) that are greater than 0.5 percent, measures will need to be taken to prevent flow along the apron causing channelized flow and potential scour of the apron. This is most likely to occur in the run-on apron shown on Sheet 4 in Appendix D. It is recommended that all portions of the apron with longitudinal slopes greater than 0.5 percent be constructed in the following manner:

- 1. Place rock in lifts no thicker than one foot.
- 2. Backfill the voids between rocks with a one to one mixture of native soil (taken from the trench excavation) and filter gravel.
- 3. Compact the backfilled riprap using vibratory methods to ensure material fills the voids.

4. Repeat steps 2 and 3 for additional lifts.

This procedure should eliminate the tendency for water to flow along the riprap apron. Specifications for riprap and filter materials are found on the construction drawings in Appendix D.

5.0 REFERENCES

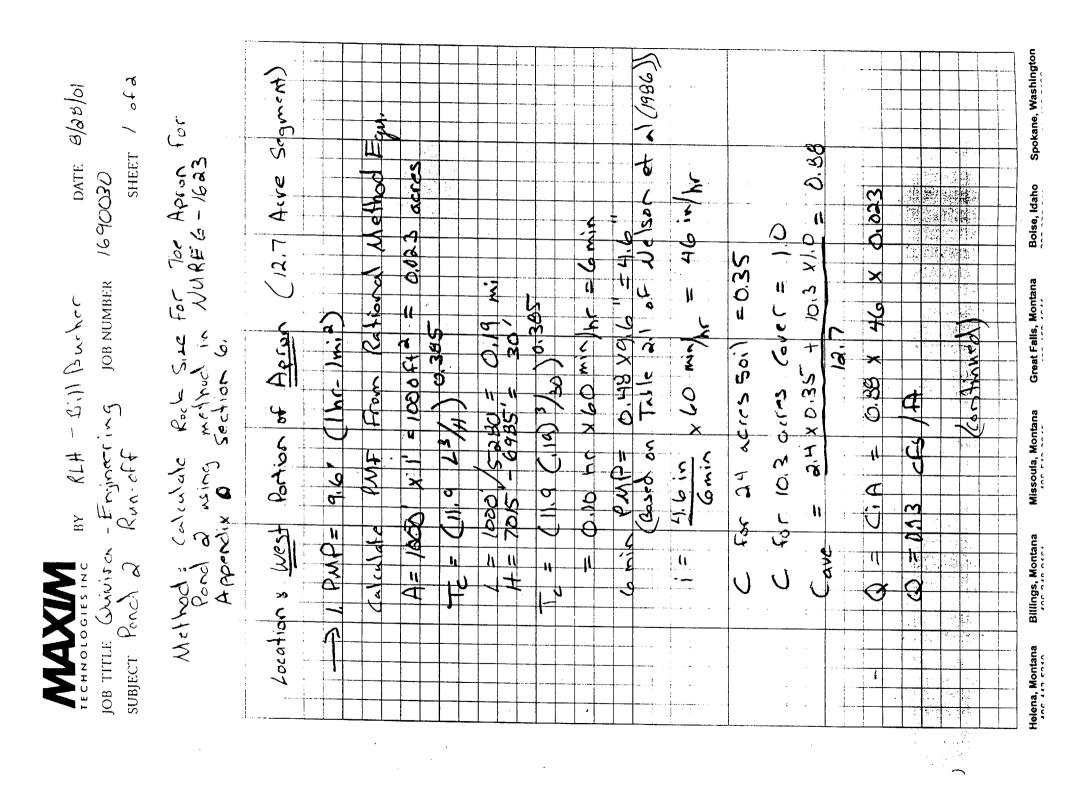
- Abt, S. R., T. L. Johnson, C. I. Thornton, and S. C. Trabant, 1998. *Riprap Sizing at Toe of Embankment Slopes.* Journal of Hydraulic Engineering, v. 124, No. 7.
- American Society of Civil Engineers (ASCE), 1995. *Hydraulic Design of Flood Control Channels*. U. S. Army Corps of Engineers engineer manual EM 1110-2-1601.
- Hansen, E. M., D. D. Fenn, L. C. Schreiner, R. W. Stodt, and J. F. Miller, 1988. Hydrometeorological Report No. 55A, Probable Maximum Precipitation Estimates – United States between the Continental Divide and the 103rd Meridian. U. S. Department of Commerce, Silver Spring, Maryland.
- Johnson, T. L., 1998. Design of Erosion Protection for Long-Term Stabilization. Draft Report for Comment, NUREG-1623. U. S. Nuclear Regulatory Commission, Washington, D.C.
- Michaud, P. W. 1990. Letter from U. S. Nuclear Regulatory Commission, Region IV to Quivira Mining company dated September 24, 1990.
- Nelson, J. D., S. R. Abt, R. L. Volpe, D. van Zyl, N. E. Hinkle, W. R. Staub, 1986. Methodologies for Evaluating Long-Term Stabilization Designs for Uranium Mill Tailings Impoundments. NUREG/CR-4620, U. S. Nuclear Regulatory Commission, Washington, D.C.
- Sherard, J. L., L. P. Dunnigan, and J. R. Talbot, 1984. *Filters for Silts and Clays*. Journal of Geotechnical Engineering, Vol. 110, No. 6.
- United States Army Corps of Engineers, 1990. HEC-1 Flood Hydrograph Package. Version 4.0. Hydrologic Engineering Center, Davis, California.
- United States Army Corps of Engineers, 1998. HEC-RAS River Analysis System. Version 2.2. Hydrologic Engineering Center, Davis, California.

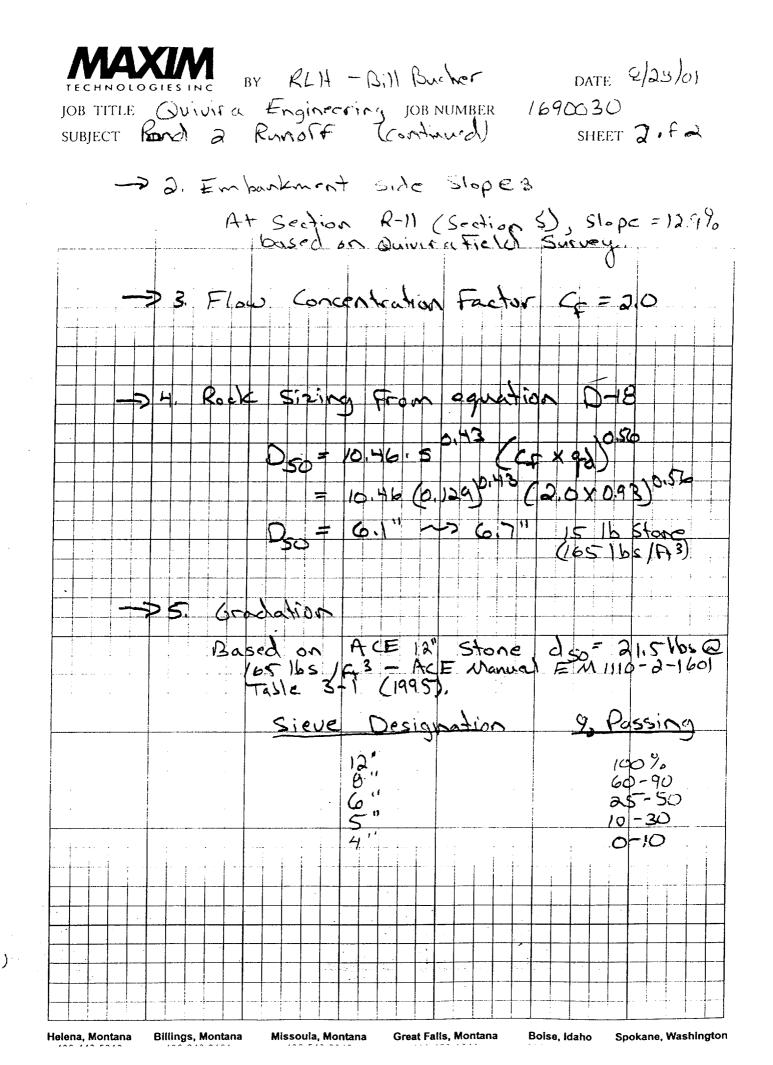
APPENDIX A

CALCULATIONS FOR POND 2 RUN-ON

•

BY B Bucher ____ DATE 1/1/01 JOB TITLE Quivir _ Engineering JOB NUMBER _1690030 SUBJECT PHP Calculation - Local Storm SHEET _ Reterence: Hydro meteorological Report No. 55A U.S. Dipti of Commerce, NOAA, June 1988 Calculate Local Storm PMP for mine site following method in Section 11.3. 1. 1-Kr I'mi PHP at 5000 H el. from 121ab II c 2. Elevation adjustment - use 7,000 H sile elevation Maximum, 12 ha persisting 1000 AB Dow Point 76,6°F. from Figure fill From Figure 14.3 + Elevition ochjustminit = 0.90 0190 × 10.5 in = 9.5 in 1 miz - 1 hr. . 3. From Table 12.4, 6 hr. storn is 1.35 x 14r. story 9.5 × 1.35 = 12.8 14 5. Annul reduction factors will depend on basin. ... For Arroyo del Aceto Bisin 1. 14 - 141 PMP at 5000' El = (0,4") from 1762 LTC 2. Assume average basin et of 75001; mar 12 hu persisted 1000 AB dem post - 26695 Elevation adjustment = 0.86 QBGr 10.4 = 8.9" 14- - 1 mi PMP 5. For I har storm and duction fector is .58 Brank Areq # 57 mil 0.5848.9 512

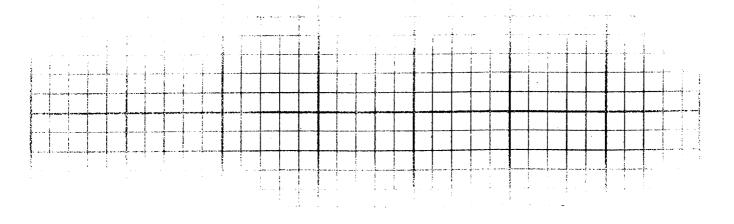

BY RLH- Bill Bucher DATE 8/27/01 JOB TITLE Quivira Engineeric, JOB NUMBER 1690030 SUBJECT Run-On to Pond 2 SHEE SHEET / of 2 Use Method in NUREG 1623 Appendix D Slope Length = 250' (From Quiviva Survey) Maximum Slope 1790 (From Quiving Survey) Elev. Difference = 20' $t_{c} = (11.41 + 3/4)^{0.385}$ 0.385 N.a 1. Smin Use 2.5 min rainfall from Nelson et al (1486) - the shortest increment available 2.5 PMD = 0.275 × 9.6" = 2.64" Use Rational Method Equation For Unit Slope (1'wde) A= 1x250' = 250 F12 or 0006 Acres i= 60 × 2.64/2.5 = 93 in/r Q= Cia = 0.35 ×63 × 0.006 Q= 0.132 CFS/F4 Use C= 3 Concentration Using Equil. D-18 From NURE G-1628 App. D. $O_{50} = 10.46 \cdot 5^{0.43} (4F \times gu)^{0.56}$ 050= 0.416 (0.17) (3×0.132) 0.56 291 250 = Spokane, Washington Helena, Montana Great Falls, Montana Billings, Montana Missoula, Montana Boise, Idaho 406.543.3045 406-443-5210 ADE 453 4644


Ì

BY RLH - Bill Bucher DATE 3/27/01 JOB TITLE Quivira Mining JOB NUMBER 1690030 SUBJECT Pand 2 Run-On (Continued) SHEET 2 of 2 Run-On Apron Rock Gradiations 2216 Stone @ 16516/A3 $d_{50} = 2.9$ in hBased on nrev approved at N 5a 0 3 \ll 2 2 2 ć C 5 100 B Weight 100 % .i.w 78-100 410 35-100 3 12-45 a O - 20

Helena, Montana 406-443-5210 Billings, Montana 406-248-9161 Missoula, Montana 406-543-3045 Great Falls, Montana 406-453-1641 Boise, Idaho 208-377-2100 Spokane, Washington 509-465-2188 APPENDIX B

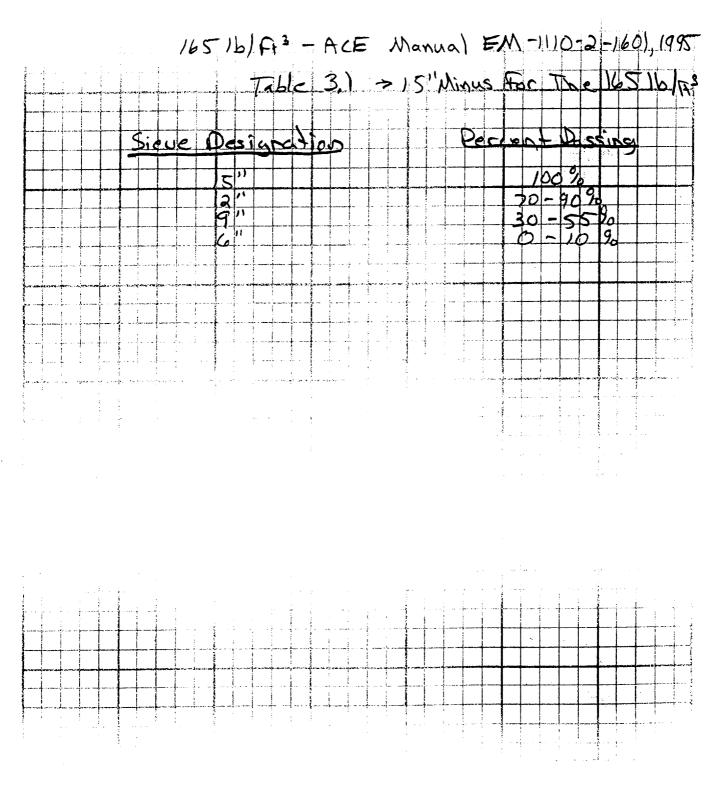
CALCULATIONS FOR POND 2 RUN-OFF



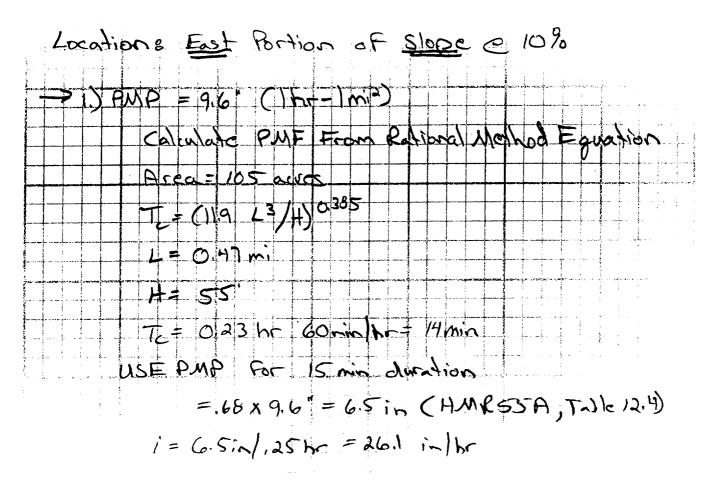
JOBNO. 1690030 JOB TITLE QUIVICA - Engineering PATE B/27/01 BY RLH-BB SUBJECT Run OFF From Pond 2 CHECKED SHEET 1 OF 2 Method: Calculate Rock Size For Toe Apron For Pond & using method in NUREG-1623 Appendix D Section 6. Locations East Portion of Apron (105 Acre Segment) -71. PMP = 9.6" (1hc - 1mi²)Calculate PME From Rational Equation Area = 105 alc 0.395 11.9 K= 2500/5280= 0.17 m A= 2040-6985'=55' $T_{L} = 0.23 HC \times 60 m/hr = 14 min$ USE PARP For 15 min Auradion = 0.68 × 9.6"= 6.5in (HUR5JA) i = 6.5 in), 25 hr = 26.1 in)hr For 25 aires of soil use C= 0.35 (heavy soil, steep - chow,1964) For 80 acres of tailings cover assume (=).0 (clay cop with no infiltration of adsorpt) 4AVE = 25 x .35 + (GIX DB CIA = OPS X 26,1 X 105 = 2316 KFS $|\mathbf{x}| = |$ Length of Toe = 1, and F (continued)

JOB NO. 1690030 JOB TITLE QUIVING - Ency DATE 8/27/01 BY RLH-B-B SUBJECT Run OFF Port 2 CHECKED SHEET 2 OF 2

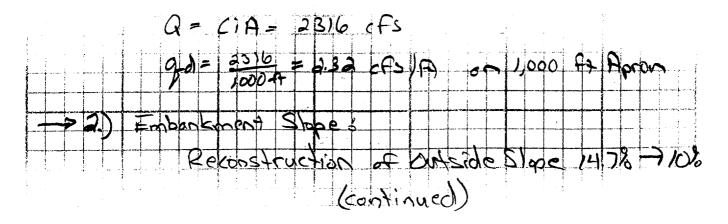
Q = 2316 cfs Length = 1000 ft



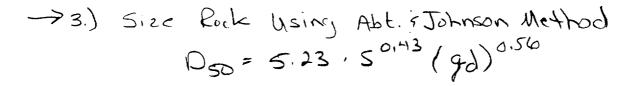
JOB NO. 1690030 JOB TITLE QUIVISA - Engin. DATE 2/27/0/BY RLH-B-B SUBJECT Pond 2- Run OFF Gradation CHECKED _____ SHEET ___ OF ___

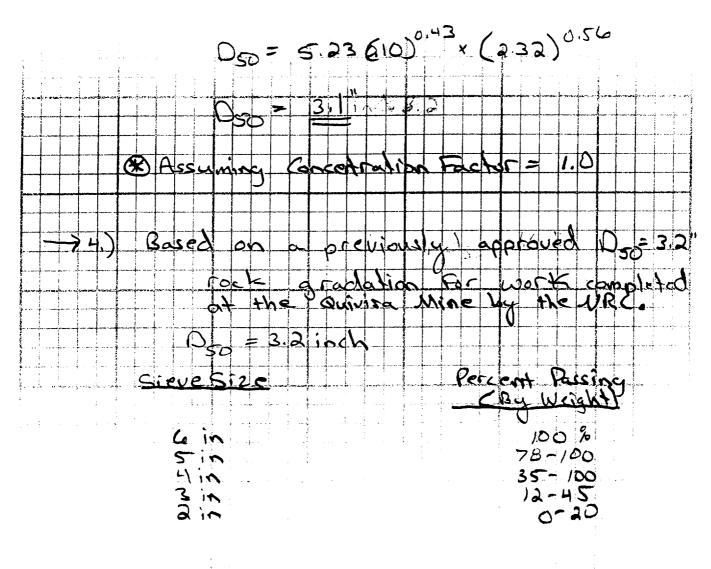

East Apron dso = 9.2" -> 38.916 stone @ 165 14/43

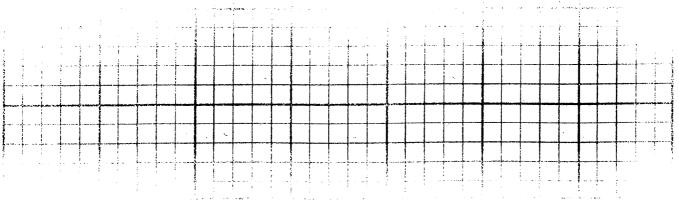
Base on ACE



JOB NO. 1690030 JOB TITLE QUIVIRG - Engine ringATE 3/21/01 BY RLH-DB SUBJECT RUN-DFF Pard 2 Slopes CHECKED SHEET 1 OF 2


Method Calculate Rock Size For Outside Jope For Pond 2 using method in NUREG-1623 Appondix D - Section 2 - Riprop For Side Slopes.




 $C_{AVE} = 25x_{13}5 + 80x_{10} = 0.85$

JOB NO. 1690030 JOB TITLE GUILISCE Engin. DATE 2/2/01 BY RLA BB SUBJECT Rod 2 Slopes. (ontinued) CHECKED SHEET 2 OF 2

JOB NO. 1690030 JOB TITLE QUIVIER - Engineer DATE 3/25/01 BY RLAI BB SUBJECT Rond 2 Run DFF - 5/0005 CHECKED SHEET 1 OF 2

Locations West Portion of Slope. (12.7 acre srymmt)

$$\rightarrow$$
 1. PMP = 96" (1hr-1min)
Calculate PMF From Polyonal Method Equal.
Area = 1000 x1 = 1000 A² = 0.023 arres
Area = 1271 acres
Te = (119 + 741) = 0.285
C for 10.3 arres Rock (our = 1.0
C for 2.41 arres Soil = 0.25
C for 10.3 arres Rock (our = 1.0
C for 2.41 (35) + 10.3 (10) = 0.877
Q = Cia = 0.877 x 46 x 0.023 = (0.93 cfs)ft
 \rightarrow 2. Embankment Side Stepe = Stepe = 12.9%
 \rightarrow 3. Size Rock (Using Aut ite moon Whethod
 $0.50 = 21$ " (assuming correntation Eacher = 10)
 $0.50 = 21$ " (assuming correntation Eacher = 10)

MAXIM TECHNOLOGIESINC BY RLH - Dill Bucher DATE JOB TITLE QUIVIRA Fusingering JOB NUMBER 1690030 SUBJECT Pond 2 - Run OFF Gradation - Slope SHEET 2 of 2 West Slope d 50= 2.1" -> 0.46 15 Stone @ 165 165 /A3 -> 4. Based on a previously approved Dev = 2" rock gradation for work completed at the Quivira Mite by the NRC. = 2.0 inch Percent Passi Sieve Size 4 ir 0 Юh 66 S \frown Spokane, Washington Helena, Montana **Billings, Montana** Missoula, Montana Great Falls, Montana Bolse, Idaho 406-248-9161 406-543-3045 406-453-1641 208-377-2100 406-443-5210

)

HEC1 S/N: 1343001338

HMVersion: 6.33

*

Data File: n:\quivira\pond2\pond2pmf.txt

FLOOD HYDROGRAPH PACKAGE (HEC-1) * MAY 1991 * VERSION 4.0.1E *

* RUN DATE 07/25/2001 TIME 13:49:09 *

* *

.

.

.

XX XXXXX ¥

Х X XXXXXXX X Х X X Х Х XX Х х х X Х XXXXXXX XXXX Х · XXXXX Х · X X Х Х Х Х ХХ х Х X Х X XXXXXXX XXXXX XXX

· · ·

HYDROLOGIC ENGINEERING CENTER
 COO OFFORME FILL

*

*

609 SECOND STREET

U.S. ARMY CORPS OF ENGINEERS

DAVIS, CALIFORNIA 95616

(916) 756-1104

· · · · ·

37 Brookside Road * Waterbury, Connecticut 06708 * (203) 755-1666

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

٠

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE. THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

۰.

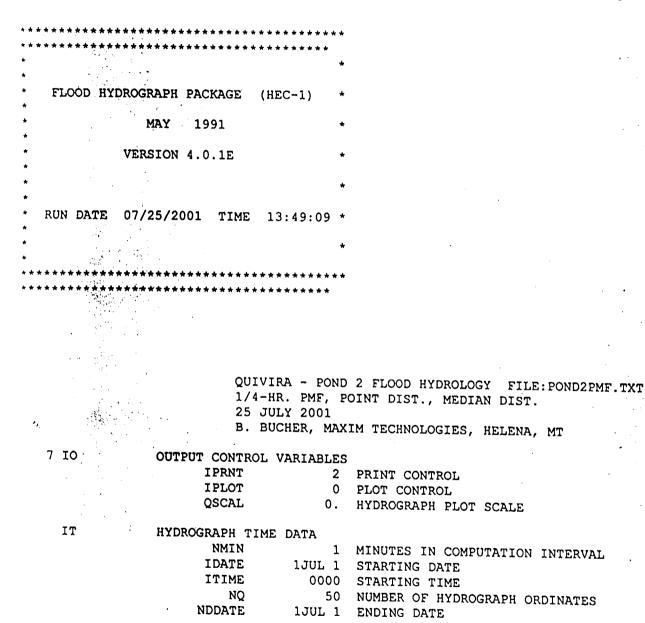
HEC-1 INPUT

امن ا

•

 \sim

			PAGE 1
LINE	ID123	4	10
1 2	ID QUIVIRA - POND 2 FLOOD HYDRO ID 1/4-HR. PMF, POINT DIST., ME	DLOGY FILE: POND2PMF TXT	
3	ID 25 JULY 2001	DIAN DIST.	
4			
* FREE ***	ID B. BUCHER, MAXIM TECHNOLOGIE	LS, HELENA, MT	
	*		
	* *** TIME SPECIFICATION		
5			
· •	IT 1 01JUL01 0000 5	50	
	* Rainfall time increment		
6	IN 5		
	*	· .	
	* *** GLOBAL OUTPUT OPTIONS		
7	IO 2 0		
· · ·	*		
· .	· * * * *		
	*	`.	
•	.*		
. · · ·			
8	KK IN1	· ·	
. 9	KM HYDROGRAPH FOR POND 2		
	* Basin area	•	
10	BA 0.164		
	*		
	* Rainfall data		
11	PB 6.4		
12	PI .52 .30 .18		
	*		
	* Basin Losses		
13	LS 0 84 0		
•	*		
	* Unit hydrograph		
14	UD 0.14		
	*		
	* ***		
	*	1	
	*		
15	22		
		·.	
		:	


. ~ ...

HEC1 S/N: 1343001338

HMVersion: 6.33

Data File: n:\quivira\pond2\pond2pmf.txt

* U.S. ARMY CORPS OF ENGINEERS

٠

+

:

- HYDROLOGIC ENGINEERING CENTER
 - 609 SECOND STREET
- DAVIS, CALIFORNIA 95616
 - (916) 756-1104

NDTIME ICENT	0049 ENDING TIME 19 CENTURY MARK	•		
COMPUTATION INTER	RVAL 0.02 HOURS			
TOTAL TIME B				
ENGLISH UNITS				
DRAINAGE AREA	SQUARE MILES	•		
PRECIPITATION DEPTH	INCHES	· .		
LENGTH, ELEVATION	FEET			
FLOW	CUBIC FEET PER SECOND			
STORAGE VOLUME	ACRE-FEET	•		
SURFACE AREA	ACRES			
TEMPERATURE	DEGREES FAHRENHEIT			
* *** *** *** *** *** *** ***	*** *** *** *** ***	*** *** *** ***	* *** *** *** *** *** ***	* *** *** *** ***
** *** *** *** *** *** *** *** *** ** 8 KK * IN1 *	*** *** *** *** ***	*** *** *** ***	*** *** *** *** ***	* *** *** *** ***
** *** *** *** *** *** *** *** *** ***	*** *** *** *** ***	*** *** *** ***	* *** *** *** *** ***	* *** *** *** ***
*****	*** *** *** *** *** *** PH FOR POND 2	*** *** *** ***	* *** *** *** *** ***	* *** *** *** ***
* * ***************** HYDROGRAE		*** *** *** ***	*** *** *** *** ***	* *** *** *** ***
* * **********************************	T TIME SERIES	*** *** *** *** ***	* *** *** *** *** ***	* *** *** *** ***
* ************************************	T TIME SERIES 5 TIME INTERVAL IN	*** *** *** *** *** MINUTES	* *** *** *** *** ***	* *** *** *** ***
* ************************************	T TIME SERIES	*** *** *** *** ***	*** *** *** *** ***	* *** *** *** ***
* ************************************	F TIME SERIES 5 TIME INTERVAL IN JUL 1 STARTING DATE	*** *** *** *** ***	*** *** *** *** ***	* *** *** *** ***
 * ***********************************	T TIME SERIES 5 TIME INTERVAL IN JUL 1 STARTING DATE 0 STARTING TIME	*** *** *** *** ***	*** *** *** *** ***	* *** *** *** ***
 * ***********************************	T TIME SERIES 5 TIME INTERVAL IN JUL 1 STARTING DATE 0 STARTING TIME	*** *** *** *** ***	*** *** *** *** ***	* *** *** *** ***
 * ***********************************	T TIME SERIES 5 TIME INTERVAL IN JUL 1 STARTING DATE 0 STARTING TIME ISTICS 0.16 SUBBASIN AREA	*** *** *** *** ***	*** *** *** *** ***	* *** *** ***

;

s . .

•

	\sim														
12 PI		נ	INCREM	ENTAL	PRECIPITA	TION PATTE	RN		•						
			0.10	0	0.10	0.10	0.10	0.10	0.06	0.06		0.00			
			0.04	4	0.04	0.04	0.04	0.04	0.00	0.00		0.06	0.06	0.0	06
13 LS		SCS	S LOSS	RATE											
				RTL	0.38	INITIAL	ABSTRACTIO	3							
			CRVI	NBR	84.00	CURVE NU	IMBER	•							
			RT:	IMP	0.00		IMPERVIOUS	AREA							
14 UD		SCS	S DTME	NSTONT.	ESS UNITG	מסעס									
				LAG		LAG									
									• .						
								* * *							
							UN	T HYDROGR	АРН						
							44 END-0	OF-PERIOD	ORDINATES						
		21.		65.	125.	208.	314.	416.	489.	5	28.	533.	r	<u>.</u> .	
		483.	4	439.	384.	316.	253.	209.	174.		45 [°] .	123.		21.	
		85.		71.	59.	49.	41.	34.	28.		24.	20.		03.	
		14.		11.	a	^	-					Z U.		16.	
					9.	8.	7.	6.	5.		4.				
	· · ·	2.		1.	J.	8. 0.	7.	6.	5.		4.	3.		3.	
******	****		*****				7.	6. *******	******	****	4.				
******	****		*****				7.	6. *****	5 . *******	*****	4. ****		*****		* * * * * * * * *
* * * * * * * *	****		****			0.	7. ********** HYDROGRAPH	*****	*****	*****	4 . ****		*****		* * * * * * * *
*****	****		*****			0.	*****	*****	*****	*****	4.		*****		* * * * * * * * *
* * * * * * * * *	****		* * * * * * *			0.	*****	*****	*****	*****	4 . ***** ****		*****		• • • • • • • • • • • •
,	***** *****	2.	**************************************	1. ****** *****	1. *********	0. *********	*********** HYDROGRAPH	*****	************ N IN1 *********	****	4 . ***** ****		*****		* * * * * * * * * *
,	***** *****		******* *******		1. *********	0.	*****	*****	*****	****	4 . ***** *****		*****	3.	***********
ĎA		2.	****** ******* ORD 1	1. ****** ****** RAIN	1. ********** **********	0. *********** *********** EXCESS	HYDROGRAPH	*****	*********** N IN1 *********** DA MON	****** ******	***** ***** ORD	3. **********	******* LOSS		COMP
, DA 1	JUL	2.		1. ****** RAIN 0.00	1. ********** ********** LOSS 0.00	0. *********** ********** EXCESS 0.00	HYDROGRAPH ********** COMP Q 0.	*****	**************************************	****** ****** HRMN 0025	***** ***** ORD 26	3. **********	*****	3. ********** ********* EXCESS	
, DA 1 1	JUL JUL	2. ******* HRMN 0000 0001	1	1. ****** RAIN 0.00 0.67	1. *********** LOSS 0.00 0.63	0. *********** EXCESS 0.00 0.04	********** HYDROGRAPH ********** COMP Q 0. 1.	AT STATIO	**************************************	****** ****** HRMN 0025 0026	***** ****** ORD 26 27	3. *********** RAIN	LOSS 0.00	3. ********** EXCESS 0.00	785
, DA 1 1 1	JUL JUL JUL	2. HRMN 0000 0001 0002	1	1. ****** RAIN 0.00 0.67 0.67	1. *********** LOSS 0.00 0.63 0.39	0. *********** EXCESS 0.00 0.04 0.28	********** HYDROGRAPH ********** COMP Q 0. 1. 8.	*****	************ N IN1 *********** DA MON 1 JUL 1 JUL 1 JUL 1 JUL	****** ****** HRMN 0025 0026 0027	***** ***** ORD 26	3. *********** RAIN 0.00	LOSS 0.00 0.00	3. ********* EXCESS 0.00 0.00	785 663
DA 1 1 1	JUL JUL JUL	2. HRMN 0000 0001 0002 0003	1 2 3 4	1. ****** RAIN 0.00 0.67 0.67 0.67	1. *********** LOSS 0.00 0.63 0.39 0.24	0. *********** EXCESS 0.00 0.04 0.28 0.43	*********** HYDROGRAPH *********** COMP Q 0. 1. 8. 32.	AT STATIO	*********** N IN1 *********** DA MON 1 JUL 1 JUL 1 JUL 1 JUL 1 JUL	****** HRMN 0025 0026 0027 0028	***** ****** ORD 26 27	3. *********** RAIN 0.00 0.00	LOSS 0.00 0.00 0.00 0.00	3. ********* EXCESS 0.00 0.00 0.00 0.00	785 663 553
, DA 1 1 1 1 1	JUL JUL JUL JUL JUL	2. HRMN 0000 0001 0002 0003 0004	1 2 3 4 5	1. ****** RAIN 0.00 0.67 0.67 0.67 0.67	1. ********** LOSS 0.00 0.63 0.39 0.24 0.16	0. *********** EXCESS 0.00 0.04 0.28 0.43 0.50	**************************************	AT STATIO	**************************************	****** HRMN 0025 0026 0027 0028 0029	***** ****** ORD 26 27 28	3. *********** RAIN 0.00 0.00 0.00 0.00 0.00	LOSS 0.00 0.00 0.00 0.00 0.00	3. ********* EXCESS 0.00 0.00 0.00 0.00 0.00	785 663 553 458
DA 1 1 1 1 1 1	JUL JUL JUL JUL JUL JUL	2. HRMN 0000 0001 0002 0003 0004 0005	1 2 3 4 5 6	1. ****** RAIN 0.00 0.67 0.67 0.67 0.67 0.67	1. ********** LOSS 0.00 0.63 0.39 0.24 0.16 0.12	0. *********** EXCESS 0.00 0.04 0.28 0.43 0.50 0.55	+********* HYDROGRAPH *********** COMP Q 0. 1. 8. 32. 81. 167.	AT STATIO	**************************************	****** HRMN 0025 0026 0027 0028 0029 0030	***** ****** ORD 26 27 28 29	3. *********** RAIN 0.00 0.00 0.00 0.00 0.00 0.00 0.00	LOSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00	3. ********** EXCESS 0.00 0.00 0.00 0.00 0.00 0.00 0.00	785 663 553 458 379
DA 1 1 1 1 1 1 1	JUL JUL JUL JUL JUL JUL JUL	2. HRMN 0000 0001 0002 0003 0004 0005 0006	1 2 3 4 5 6 7	1. ****** RAIN 0.00 0.67 0.67 0.67 0.67 0.67 0.67 0.38	1. ********** LOSS 0.00 0.63 0.39 0.24 0.16 0.12 0.05	0. *********** EXCESS 0.00 0.04 0.28 0.43 0.50 0.55 0.33	*********** HYDROGRAPH *********** COMP Q 0. 1. 8. 32. 81. 167. 297.	AT STATIO	**************************************	****** HRMN 0025 0026 0027 0028 0029 0030 0031	***** ORD 26 27 28 29 30	3. ************************************	LOSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	3. ********** EXCESS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	785 663 553 458 379 316
DA 1 1 1 1 1 1 1 1	JUL JUL JUL JUL JUL JUL JUL JUL	2. HRMN 0000 0001 0002 0003 0004 0005 0006 0007	1 2 3 4 5 6 7 8	1. ****** RAIN 0.00 0.67 0.67 0.67 0.67 0.67 0.38 0.38	1. ********** LOSS 0.00 0.63 0.39 0.24 0.16 0.12 0.05 0.05	0. *********** EXCESS 0.00 0.04 0.28 0.43 0.50 0.55 0.33 0.34	********** HYDROGRAPH ********** COMP Q 0. 1. 8. 32. 81. 167. 297. 469.	AT STATIO	**************************************	****** HRMN 0025 0026 0027 0028 0029 0030 0031	***** ORD 26 27 28 29 30 31	3. RAIN 0.00	LOSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	3. ********** EXCESS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	785 663 553 458 379 316 263
DA 1 1 1 1 1 1 1 1 1 1	JUL JUL JUL JUL JUL JUL JUL JUL	2. HRMN 0000 0001 0002 0003 0004 0005 0006 0007 0008	1 2 3 4 5 6 7 8 9	1. ****** RAIN 0.00 0.67 0.67 0.67 0.67 0.67 0.38 0.38 0.38	1. ********** LOSS 0.00 0.63 0.39 0.24 0.16 0.12 0.05 0.05 0.04	0. *********** EXCESS 0.00 0.04 0.28 0.43 0.50 0.55 0.33 0.34 0.34	********** HYDROGRAPH ********** COMP Q 0. 1. 8. 32. 81. 167. 297. 469. 674.	AT STATIO	**************************************	****** HRMN 0025 0026 0027 0028 0029 0030 0031 0032	***** ****** ORD 26 27 28 29 30 31 32 33	3. RAIN 0.00	LOSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	3. ************************************	COMP (785 663 553 458 379 316 263 220
DA 1 1 1 1 1 1 1 1 1 1	JUL JUL JUL JUL JUL JUL JUL JUL	2. HRMN 0000 0001 0002 0003 0004 0005 0006 0007	1 2 3 4 5 6 7 8	1. ****** RAIN 0.00 0.67 0.67 0.67 0.67 0.67 0.38 0.38	1. ********** LOSS 0.00 0.63 0.39 0.24 0.16 0.12 0.05 0.05 0.04	0. *********** EXCESS 0.00 0.04 0.28 0.43 0.50 0.55 0.33 0.34	********** HYDROGRAPH ********** COMP Q 0. 1. 8. 32. 81. 167. 297. 469.	AT STATIO	**************************************	****** HRMN 0025 0026 0027 0028 0029 0030 0031 0032 0033	***** ORD 26 27 28 29 30 31 32	3. RAIN 0.00	LOSS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	3. ********** EXCESS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	785 663 553 458 379 316 263

:

1 7777
1 JUL 0010 1 1 JUL 0011 1 1 JUL 0012 1 1 JUL 0013 1 1 JUL 0013 1 1 JUL 0014 1 1 JUL 0015 1 1 JUL 0016 1 1 JUL 0017 1 1 JUL 0019 2 1 JUL 0020 2 1 JUL 0021 2 1 JUL 0022 2 1 JUL 0023 2 1 JUL 0024 2

TOTAL RAINFALL =

•

•

٠,

.

.

.

•

: .

TOTAL RAI	NFALL =	6.40, TOT	AL LOSS =	1.83, TOTAL	L EXCESS =	4.57			
PEAK FLOW	TIME	(CFS) (INCHES) (AC-FT)	6-HR 1760. 4.568 40.	MAXIMUM AVER 24-HR 0.27 4.568 40.	RAGE FLOW 72-HR 4.568 40.	0.82-HR 592. 4.568 40.	(CFS) 592.	(HR) 592.	592.

CUMULATIVE AREA = 0.16 SQ MI

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

:

6-HOUR	OPERATION 24-HOUR	STATION 72-HOUR	PEAK FLOW	TIME OF PEAK	AVERAGE FI	LOW FOR MA	XIMUM PERIOD	BASIN AREA	MAXIMUM STAGE	TIME OF MAX STAGE
	HYDROGRAPH A	r		IN1	1760.	0.27	592.	592.	592.	0.16

*** NORMAL END OF HEC-1 ***

ڊر

APPENDIX C

CALCULATIONS FOR MONTANOSA MESA PMF

HEC1 S/N: 1343001338 HMVersion: 6.33 Data File: N:\QUIVIRA\MONTIN5.TXT

* * * * * * * * * * * * * * * * * * * *	* * * * * *	*******
*	*	* *
* FLOOD HYDROGRAPH PACKAGE (HE	C-1) *	* U.S. ARMY CORPS OF ENGINEERS *
* MAY 1991	*	* HYDROLOGIC ENGINEERING CENTER *
* VERSION 4.0.1E	*	* 609 SECOND STREET *
*	*	* DAVIS, CALIFORNIA 95616 *
* RUN DATE 10/01/2001 TIME 16	:36:10 *	* (916) 756-1104 *
*	*	* *
* * * * * * * * * * * * * * * * * * * *	*****	*****

Х	Х	XXXXXXX	XXXXX		х	
Х	Х	х	х	х		XX
Х	Х	х	х			х
XXXX	XXX	XXXX	х		XXXXX	х
Х	Х	х	х			х
Х	Х	х	х	х		х
Х	Х	XXXXXXX	XXXXX			XXX

	:	:
	:	:
::: :	:	:
::: Full Microcomputer Implementation :	:	:
::: by :	:	:
::: Haestad Methods, Inc. :	;	:
::: :	:	:
	:	:
	:	:

37 Brookside Road * Waterbury, Connecticut 06708 * (203) 755-1666

THIS PROGRAM REPLACES ALL PREVIOUS VERSIONS OF HEC-1 KNOWN AS HEC1 (JAN 73), HEC1GS, HEC1DB, AND HEC1KW.

THE DEFINITIONS OF VARIABLES -RTIMP- AND -RTIOR- HAVE CHANGED FROM THOSE USED WITH THE 1973-STYLE INPUT STRUCTURE.

THE DEFINITION OF -AMSKK- ON RM-CARD WAS CHANGED WITH REVISIONS DATED 28 SEP 81. THIS IS THE FORTRAN77 VERSION NEW OPTIONS: DAMBREAK OUTFLOW SUBMERGENCE, SINGLE EVENT DAMAGE CALCULATION, DSS:WRITE STAGE FREQUENCY, DSS:READ TIME SERIES AT DESIRED CALCULATION INTERVAL LOSS RATE:GREEN AND AMPT INFILTRATION KINEMATIC WAVE: NEW FINITE DIFFERENCE ALGORITHM

LINE	ID12345678910
1	ID QUIVIRA - MESA MONTANOSA FLOOD HYDROLOGY FILE:MONTIN5.TXT
2	ID 1-HR. PMF, WITH ROUTING THROUGH POOL, RATING CURVE FROM HEC-RAS
3	ID 1 OCTOBER 2001, REDUCED POOL VOLUME BY 4630 CU. YDS.
4	
	ID B. BUCHER, MAXIM TECHNOLOGIES, HELENA, MT
** FREE ***	*
_	* *** TIME SPECIFICATION
5	IT 5 01JUL01 0000 50
	*
	* Rainfall time increment
6	IN 15
	*
	* *** GLOBAL OUTPUT OPTIONS
7	IO 2 0
	*
	* ***
	*
	*
8	KK IN1
9	KM HYDROGRAPH FOR MESA MONTANOSA DRAINAGE
5	*
	* Basin area
10	BA 3.7
10	br 5:/ *
	* Rainfall data
11	PB 9.45
12	PI .68 .18 .08 .06
	*
	* Basin Losses
13	LS 0 73.4 0
	*
	* Unit hydrograph
14	UD 0.66
	*
	* ROUTE FLOOD THROUGH POOL
15	KK OUT1 OUTFLOW FROM POOL
16	RS 1 ELEV 6983.0
17	SQ 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
18	SQ 10000 11000 12000
19	
20	SE 6984.9 6987.7 6989.2 6990.3 6991.2 6992.0 6992.7 6993.4 6994.0 6994.6 SE 6995.1 6995.6 6996.16
20	55 6555.1 6555.0 0550.10

HEC-1 INPUT

PAGE 1

,

21	· SA	0	11.0	36.21	65.0
22	SE	6983	6985	6990	6995
	*				
	* **	*			
	*				
	*				
23	ZZ				

* * * * * * * * * * * * * * * * * * * *	********************
* *	* *
* FLOOD HYDROGRAPH PACKAGE (HEC-1) *	* U.S. ARMY CORPS OF ENGINEERS *
* MAY 1991 *	* HYDROLOGIC ENGINEERING CENTER *
* VERSION 4.0.1E *	* 609 SECOND STREET *
* *	* DAVIS, CALIFORNIA 95616 *
* RUN DATE 10/01/2001 TIME 16:36:10 *	* (916) 756-1104 *
* *	* *
* * * * * * * * * * * * * * * * * * * *	****

QUIVIRA - MESA MONTANOSA FLOOD HYDROLOGY FILE:MONTIN5.TXT 1-HR. PMF, WITH ROUTING THROUGH POOL, RATING CURVE FROM HEC-RAS 1 OCTOBER 2001, REDUCED POOL VOLUME BY 4630 CU. YDS. B. BUCHER, MAXIM TECHNOLOGIES, HELENA, MT

7 IO OUTPUT CONTROL VARIABLES

IPRNT	2	PRINT CONTROL
IPLOT	0	PLOT CONTROL
QSCAL	Ο.	HYDROGRAPH PLOT SCALE

IT HYDROGRAPH TIME DATA

NMIN	5	MINUTES IN COMPUTATION INTERVAL
IDATE	1 JUL 1	STARTING DATE
ITIME	0000	STARTING TIME
NQ	50	NUMBER OF HYDROGRAPH ORDINATES
NDDATE	1JUL 1	ENDING DATE
NDTIME	0405	ENDING TIME
ICENT	19	CENTURY MARK

COMPUTATION 1	INTERVAL	0.08	HOURS
TOTAL T	IME BASE	4.08	HOURS

ENGLISH UNITS

DRAINAGE AREA	SQUARE MILES
PRECIPITATION DEPTH	INCHES
LENGTH, ELEVATION	FEET
FLOW	CUBIC FEET PER SECOND
STORAGE VOLUME	ACRE-FEET
SURFACE AREA	ACRES
TEMPERATURE	DEGREES FAHRENHEIT

*** ***	· *** *** *** *** *** ***	** *** *** *** *** *** ***						
		** *** *** *** *** *** ***	*** *** ***	*** *** *	** *** ***	*** *** *	** *** *** ***	* * * * * *
	* * * * * * * * * * * * *							
8 KF	* * * * * * * * * * * * * * * * * * *							
0 10	* *							

	HYDROGRAPH	FOR MESA MONTANOSA DRAINAGE						
6 IN	TIME DATA FOR INPUT	TIME SERIES						
	JXMIN	15 TIME INTERVAL IN MINUTES						
		L 1 STARTING DATE						
	JXTIME	0 STARTING TIME	а.					
	SUBBASIN RUNOFF DATA							
10 BA	SUBBASIN CHARACTERIS	TICS						
	TAREA 3	.70 SUBBASIN AREA						
	PRECIPITATION DATA							
11 PE	STORM 9	.45 BASIN TOTAL PRECIPITATION						
12 PI	INCREMENTAL PRECIP	ITATION PATTERN						
	0.23 0.23	0.23 0.06 0.06	0.06	0.03	0.03	0.03	0.02	
	0.02 0.02						0.02	
13 LS	SCS LOSS RATE							
10 10		.72 INITIAL ABSTRACTION						
	CRVNBR 73	.40 CURVE NUMBER						
		.00 PERCENT IMPERVIOUS AREA						
14 UC	SCS DIMENSIONLESS UN	ТТСРАРН						
11 00		.66 LAG						

		UNIT HYDRO	GRAPH					

100 Mar.

?H	PH	f HYDROGRAF	UNIJ				
\DINATES	RDINATES	F-PERIOD OF	42 END-OF				
2417. 2534. 2530. 2388.	2417.	2124.	1651.	1096.	656.	341.	110.
	696.	840.	1026.	1267.	1598.	1923.	2178.
101. 84. 69. 57.	101.	123.	149.	182.	222.	268.	327.
16. 12. 9. 6.	16.	20.	23.	27.	32.	38.	47.
696. 585. 484. 393. 101. 84. 69. 57.	696. 101.	840. 123.	1026. 149.	1267. 182.	1598. 222.	1923. 268.	2178. 327.

3. 0.

HYDROGRAPH AT STATION IN1

***************************************	*****
*	

	DA MC	N HRMN	ORD	RAIN	LOSS	EXCESS	COMP Q	*	DA MON HRMN	ORD	RAIN	LOSS	EXCESS	COMP Q
	1 JU	L 0000	1	0.00	0.00	0.00	0.	*	1 JUL 0205	26	0.00	0.00	0.00	2119.
	1 JU	L 0005	2	2.14	1.74	0.40	44.	*	1 JUL 0210	27	0.00	0.00	0.00	1743.
	1 JU	L 0010	3	2.14	0.78	1.37	286.	*	1 JUL 0215	28	0.00	0.00	0.00	1435.
	1 JU	L 0015	4	2.14	0.42	1.72	916.	*	1 JUL 0220	29	0.00	0.00	0.00	1185.
	1 JU	L 0020	5	0.57	0.08	0.49	1972.	*	1 JUL 0225	30	0.00	0.00	0.00	978.
	1 JU	L 0025	6	0.57	0.07	0.50	3503.	*	1 JUL 0230	31	0.00	0.00	0.00	807.
	1 JU	L 0030	7	0.57	0.06	0.50	5530.	*	1 JUL 0235	32	0.00	0.00	0.00	665.
	1 JU	L 0035	8	0.25	0.03	0.23	7759.	*	1 JUL 0240	33	0.00	0.00	0.00	548.
	1 JU	L 0040	9	0.25	0.03	0.23	9743.	*	1 JUL 0245	34	0.00	0.00	0.00	451.
	1 JU	L 0045	10	0.25	0.02	0.23	11280.	*	1 JUL 0250	35	0.00	0.00	0.00	372.
	1 JU	L 0050	11	0.19	0.02	0.17	12317.	*	1 JUL 0255	36	0.00	0.00	0.00	308.
	1 JU	L 0055	12	0.19	0.02	0.17	12826.	*	1 JUL 0300	37	0.00	0.00	0.00	256.
	1 JU	L 0100	13	0.19	0.02	0.17	12842.	*	1 JUL 0305	38	0.00	0.00	0.00	214.
	1 JU	L 0105	14	0.00	0.00	0.00	12459.	*	1 JUL 0310	39	0.00	0.00	0.00	177.
	1 JU	L 0110	15	0.00	0.00	0.00	11695.	*	1 JUL 0315	40	0.00	0.00	0.00	146.
	1 JU	L 0115	16	0.00	0.00	0.00	10634.	*	1 JUL 0320	41	0.00	0.00	0.00	118.
	1 JU	L 0120	17	0.00	0.00	0.00	9492.	*	1 JUL 0325	42	0.00	0.00	0.00	93.
	1 JU	L 0125	18	0.00	0.00	0.00	8389.	*	1 JUL 0330	43	0.00	0.00	0.00	70.
	1 JU	L 0130	19	0.00	0.00	0.00	7315.	*	1 JUL 0335	44	0.00	0.00	0.00	50.
	1 JU	L 0135	20	0.00	0.00	0.00	6315.	*	1 JUL 0340	45	0.00	0.00	0.00	35.
	1 JU	L 0140	21	0.00	0.00	0.00	5400.	*	1 JUL 0345	46	0.00	0.00	0.00	26.
	1 JU	L 0145		0.00	0.00	0.00	4549.	*	1 JUL 0350	47	0.00	0.00	0.00	18.
		L 0150		0.00	0.00	0.00	3794.	*	1 JUL 0355	48	0.00	0.00	0.00	13.
	1 JU	L 0155	24	0.00	0.00	0.00	3145.	*	1 JUL 0400	49	0.00	0.00	0.00	9.
	1 JU	L 0200	25	0.00	0.00	0.00	2584.	*	1 JUL 0405	50	0.00	0.00	0.00	6.
								*						
******	*****	*****	*****	* * * * * * * * * *	******	*******	* * * * * * * * * * * *	*******	* * * * * * * * * * * * * * * *	*****	******	******	*****	*****

TOTAL RAINFALL = 9.45, TOTAL LOSS = 3.29, TOTAL EXCESS = 6.16

PEAK FLOW TIME

MAXIMUM AVERAGE FLOW

	6-HR	24-HR	72-HR	4.08-HR	(CFS)	(HR)	
(CFS)	12842.	1.00	3	3605.	3605.	3605.	3605.
(INCHES)	6.164	6.164	6.164	6.164			
(AC-FT)	1216.	1216.	1216.	1216.			

CUMULATIVE AREA = 3.70 SQ MI

ي. هاد الي

*** ***

HYDROGRAPH ROUTING DATA

16 RS	STORAGE ROUTI	ING									
	NSTPS	1	NUMBER	OF SUBREACE	HES						
	ITYP	ELEV	TYPE OF	INITIAL CO	ONDITION						
	RSVRIC	6983.00	INITIAL	CONDITION							
	Х	0.00	WORKING	R AND D CON	EFFICIENT						
21 SA	AREA	0.0	11.0	36.2	65.0						
22 SE	ELEVATION	6983.00	6985.00	6990.00	6995.00						
17 SQ	DISCHARGE	0. 10000.	1000. 11000.	2000. 12000.	3000.	4000.	5000.	6000.	7000.	8000.	9000.
19 SE	ELEVATION	6984.90 6995.10	6987.70 6995.60	6989.20 6996.16	6990.30	6991.20	6992.00	6992.70	6993.40	6994.00	6994.60

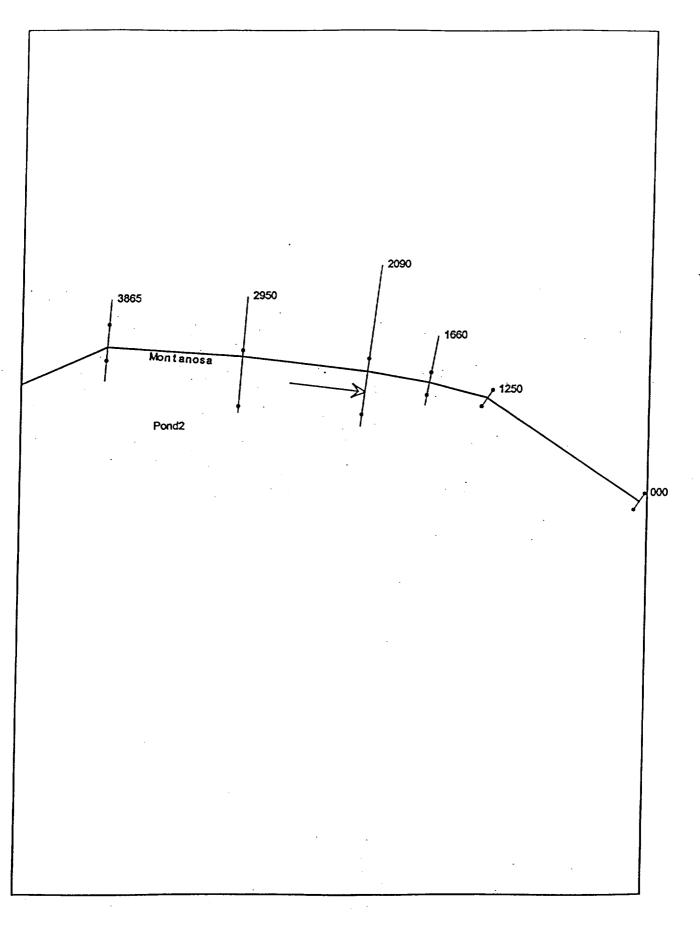
COMPUTED STORAGE-ELEVATION DATA

STORAGE ELEVATION	0.00 6983.00	7.33 6985.00	119.28 6990.00	368.82 6995.00						
			COMPUTI	ED STORAGE	-OUTFLOW-E	LEVATION D	ATA			
STORAGE OUTFLOW ELEVATION	0.00 0.00 6983.00	6.29 0.00 6984.90	7.33 35.75 6985.00	52.01 1000.00 6987.70	92.35 2000.00 6989.20	119.28 2727.35 6990.00	130.36 3000.00 6990.30	166.38 4000.00 6991.20	201.99 5000.00 6992.00	236.09 6000.00 6992.70
STORAGE OUTFLOW ELEVATION	273.03 7000.00 6993.40	307.06 8000.00 6994.00	343.35 9000.00 6994.60	368.82 9799.80 6995.00	375.36 10000.00 6995.10	409.03 11000.00 6995.60	448.76 12000.00 6996.16			

HYDROGRAPH AT STATION OUT1

* * * * * * * * * * * *	*****	* * * * * * * * *	******	******	****	****	****	* * * * *	*****	*****	******	****	****	*****	* * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * *
					*						*							
DA MON HRMN	ORD	OUTFLOW	STORAGE	STAGE	* D7 *	MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE *	DA	MON	HRMN	ORD	OUTFLOW	STORAGE	STAGE
1 JUL 0000) 1	Ο.	0.0	6983.0	* 3	. JUL	0125	18	9649.	364.0	6994.9 *	1	յու	0250	35	1634.	77.6	6988.7
1 JUL 0005	5 2	0.	0.2	6983.0	* :	JUL	0130	19	9298.	352.8	6994.7 *			0255		1431.	69.4	6988.3
1 JUL 0010) 3	0.	1.3	6983.4	* :	. JUL	0135	20	8834.	337.3	6994.5 *			0300		1250.	62.1	6988.1
1 JUL 0015	5 4	0.	5.4	6984.6	* :	. JUL	0140	21	8318.	318.6	6994.2 *	1	JUL	0305	38	1090.	55.7	6987.8
1 JUL 0020) 5	195.	14.7	6985.4	* :	. JUL	0145	22	7723.	297.6	6993.8 *	1	JUL	0310	39	956.	50.0	6987.6
1 JUL 0025	56	547.	31.0	6986.4	* 2	. JUL	0150	23	7071.	275.4	6993.4 *			0315	40	846.	44.9	6987.3
1 JUL 0030) 7	1109.	56.4	6987.9	* :	. JUL	0155	24	6451.	252.8	6993.0 *	1	JUL	0320	41	747.	40.3	6987.0
1 JUL 0039	58	1980.	91.5	6989.2	* :	. JUL	0200	25	5827.	230.2	6992.6 *			0325	42	658.	36.2	6986.7
1 JUL 004() 9	3109.	134.3	6990.4	* :	. JUL	0205	26	5190.	208.5	6992.1 *	1	JUL	0330	43	578.	32.5	6986.5
1 JUL 0045	5 10	4405.	180.8	6991.5	* :	. JUL	0210	27	4608.	188.0	6991.7 *	1	JUL	0335	44	507.	29.2	6986.3
1 JUL 0050) 11	5737.	227.1	6992.5	* :	JUL	0215	28	4075.	169.1	6991.3 *	1	JUL	0340	45	443.	26.2	6986.1
1 JUL 0055	5 12	6921.	270.1	6993.3	* :	. JUL	0220	29	3592.	151.7	6990.8 *	1	JUL	0345	46	385.	23.5	6986.0
1 JUL 0100	13	8002.	307.1	6994.0	* :	. JUL	0225	30	3154.	135.9	6990.4 *	1	JUL	0350	47	335.	21.2	6985.8
1 JUL 0105	5 14	8807.	336.4	6994.5	* :	. JUL	0230	31	2785.	121.6	6990.1 *	1	JUL	0355	48	291.	19.2	6985.7
1 JUL 0110) 15	9421.	356.8	6994.8	* :	. JUL	0235	32	2441.	108.7	6989.7 *					252.	17.4	
1 JUL 0115	5 16	9762.	367.6	6995.0	* :	. JUL	0240	. 33	2129.	97.1	6989.3 *			0405		218.	15.8	6985.5
1 JUL 0120) 17	9820.	369.5	6995.0	* :	. JUL	0245	34	1863.	86.8	6989.0 *							0,00,0
					*						*							
* * * * * * * * * * * * * *	*****	* * * * * * * * *	********	*******	****	****	* * * * *	* * * * *	******	*******	******	* * * :	****	*****	* * * * *	* * * * * * * *	* * * * * * * * *	* * * * * * * *
PEAK FLOW	TI	ME			м	VTMI	M AVE	חאכיד	FI OW									
FBAR FION	111			6-hr	1.11	24-			2-HR	4 00 UD			(
			(CFS)	9820.			IIK	,	355	4.08-HR	(CFS) 3558.		(H)		2	550		
		(1)	(CrS) NCHES)	6.084			01	c	5.084	6,084	3558.	•	3558	•	3	558.		
		•	AC-FT)	1201.		120			.201.									
		-		1201.		120	1.	1	.201.	1201.								
PEAK STORAGE	E TI				MA	IMUM	AVER	AGE S	TORAGE									
				6-HR		24-	HR	7	2-HR	4.08-HR	(AC-FT)		(H)	R)				
369.	1.	33		144.		14	4.		144.	144.								
PEAK STAGE	TI	ME			M			RAGE	STAGE									
				6-HR		24-			2-HR	4.08-HR	(FEET)		(H)	R)				
6995.01	1.	33	(6989.69	1	5989.	69	698	39.69	6989.69								
					_													

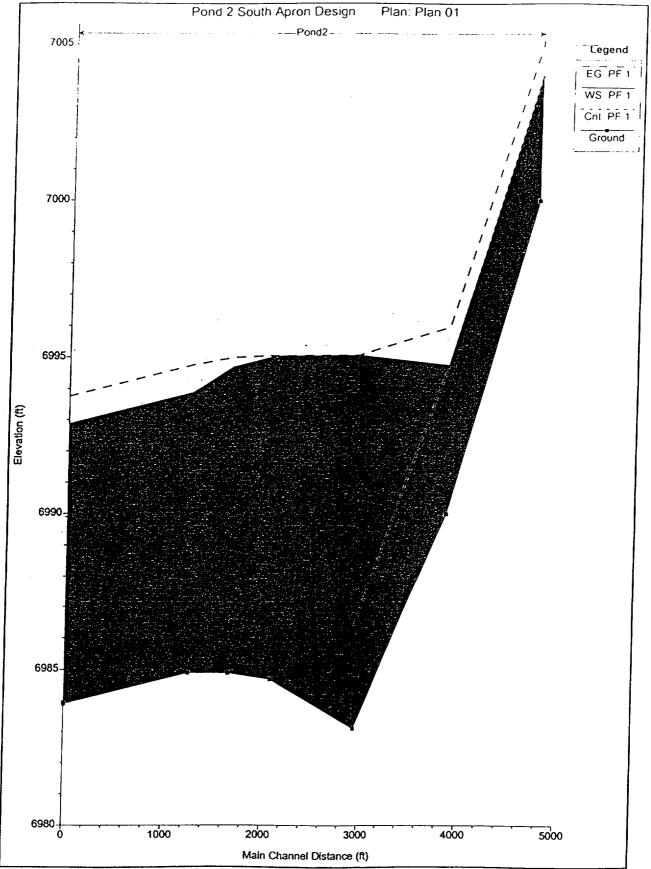
CUMULATIVE AREA = 3.70 SQ MI

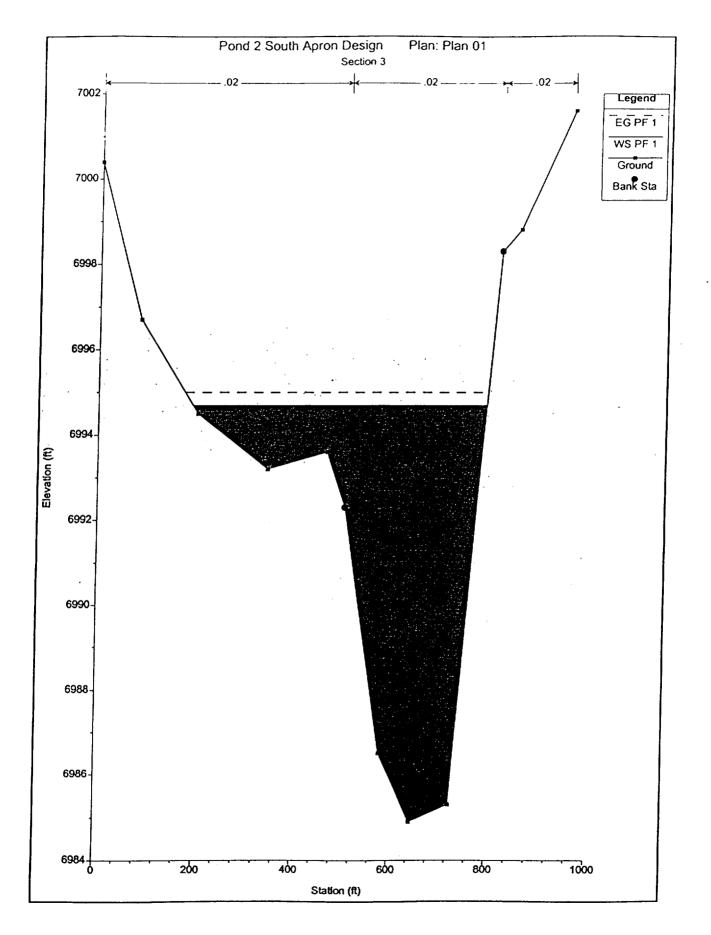

RUNOFF SUMMARY FLOW IN CUBIC FEET PER SECOND TIME IN HOURS, AREA IN SQUARE MILES

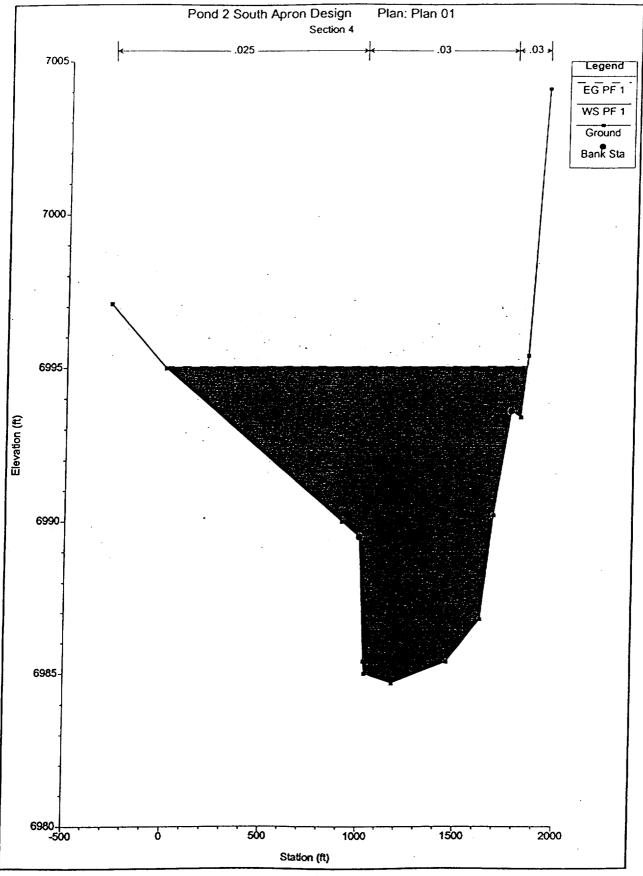
6-HOUR	OPERATION 24-HOUR	STATION 72-HOUR	PEAK FLOW	TIME OF PEAK	AVERAG	E FLOW FOR M	MAXIMUM PERIOD	BASIN AREA	MAXIMUM STAGE	TIME OF MAX STAGE
	HYDROGRAPH A	r		IN1	1284	2. 1.00	3605.	3605.	3605.	3.70
6995.01	ROUTED TO 1.33			OUT1	9820.	1.33	3558.	3558.	3558.	3.70

*** NORMAL END OF HEC-1 ***

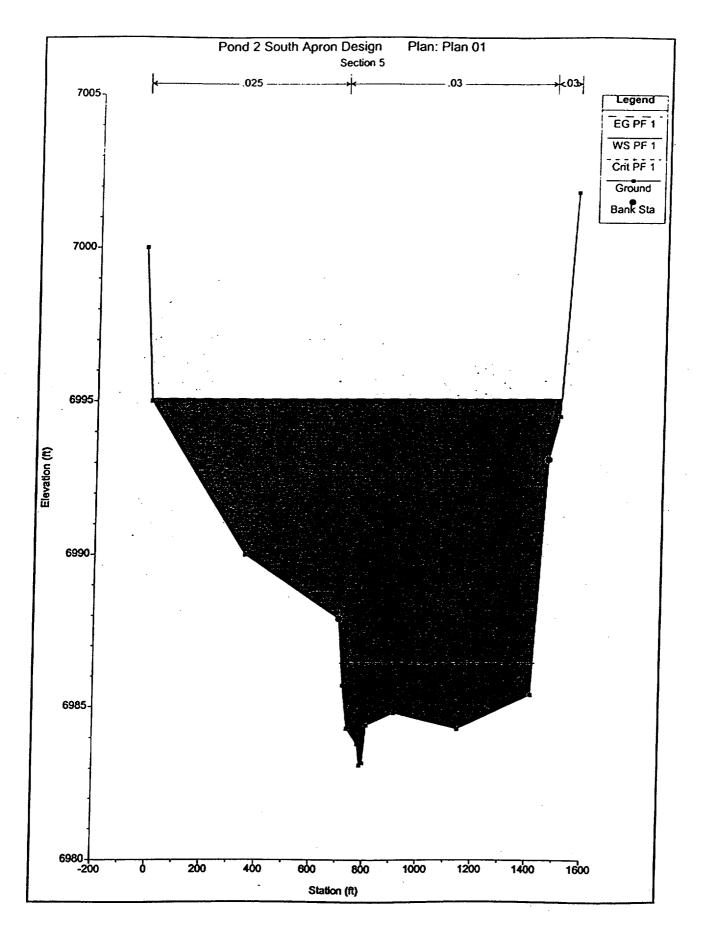
•


HEC-RAS RESULTS FOR MONTANOSA MESA DRAINAGE PMF




HEC-RAS Plan: PMF River: Montanosa Reach: Pond2 Profile: PF 1

Reach	Sta Q Total	Min Chiel	W.S. Elev	CriLW.S.	E.G. Elev	E.G. Slope	Vet Chnl	Flow Area	Top Width	Froude # Chl
P. EW.		×,7.7.(R)	(n) (a)	14 (ft)	(ft)	(fl/ft)	1 Ka (fl/s) ;	(sq.ft)	(ſL) ,	
Pond2 4740 5	9800.0	0 7000.00	7003.88	7003.98	7004.99	0.012004	8.44	1160.58	597.88	1 07
Pond2 3865 1	9800.0	6990.00	6994.76	6994.76	6995.97	0.009984	8.82	1110.80	466.60	101
Pond2-11-14 2950	9800.0	6983.10	6995.07	6986.44	6995.08	0.000019	1,00	10794.47	1504.23	0 06
Pond2, 152 2090	9800.0	6984.70	6995.04		6995.06	0.000032	1.19	9557.65	1845.87	0 07
Pond2 2011 1660	9800.0	0 6984.90	6994.70		6995.00	0.000265	4.50	2423.24	601.97	0.30
Pond2 19 1250	9800.0	0 6984.90	6993.88		6994.76	0.000799	7.53	1301.20	189.80	0.51
Pond2: 17, 000 1 1	9800.0	0 6983.90	6992.87	6989.89	6993.76	0.000802	7.54	1299.72	169.72	0 51


••

Plan: PMF Montano	sa ronuz no		Fione. i	-1 1			
E.G. Elev (ft)	6995.08	Eleme			List EllenoB	Fiss achannel	Right OB
Vel Head (ft)	0.01	Wt n	Val		0.025	0.030	0.030
W:S:Elev (ft)	6995.07	React	i Len: (ft)		850.00	860.00	870.00
CritiWiSi (ft) 4 - + 4	6986.44	2. 2. 4. 4.	Area (sq ft	n estates	3040.38	7704.81	49.28
E G Slopel (ft/ft) # a	0.000019	Area (sq ft) 🖓 📲		3040.38	7704.81	49.28
Q Total (cfs)	9800.00	Flow,	cfs) 能容	常设 计	2078.99	7709.25	11.76
Top:Width:(ft)(計))。		1.10	[[dth:((ft))]]	能认为	700.41	762.00	41.82
VeliTotal (ft/s) sets:	0.91	Avg N	/el-;(ft/s);-	iterer 1	0.68	1.00	0.24
Max Chl Doth (ft) . 1		1. S.	Depth (ft)		4.34	10.11	1.18
Convi)Totali(cfs)		1.14 44 79 44	(cfs), ¢.h	2 B	480855.1	1783096.0	2720.4
Length Wids (ft)		2. The 7 data is a	LPerc(f)	A CASS FRANCE	700.46	762.88	41.88
		1	(10/sqif) (AP ACT AS A READ AP A REAL	0.01	0.01	0.00
Alpha 29 Konton in A		TO BE A COLORED TO BE	nEowerd	and the second second	0.00	0.01	0.00
REICITILOSS (f) AL		State - 197 - 27 - 18	olume (ac	COLUMN SHE SHE	90.01	238.32	2.10
IC/&/E/Lossi(ft)	0.00	tcum S	Ai(acies)		31.37	27.98	1.67

. ``

Plan: PMF Montanosa Pond2 RS: 2950 Profile: PF 1

E.G. Elev. (ft)	6995.06	Element	Left OB	- Est Channel	22512Right@B
Vel Head (ft) de sou	0.02	Wt n-Val	0.025	0.030	0.030
WS_Elev (ft)	6995.04	Reach Len. (ft)	875.00	430.00	600.00
Crlt WS*(ft)		Flow Area (sq ft)	2789.61	6672.45	95.59
E.G. Slope (ft/ft)	0.000032	Area (sqift)	2789.61	6672.45	95.59
Q Total: (cfs) the second	9800.00	Flow (cfs) (10-10-10-00-00-00-00-00-00-00-00-00-00-0	1852.72	7915.59	31.69
Top Width (ft)	1845.87	Top:Width (ft)	1005.60	766.00	74.27
Vel Total (ft/s)	1.03	Avg Avel # (fvs) # 10 + 13	0.66	1.19	0.33
Max Chil Dpth; (ft)	10.34	Hydr: Depth (ft) N 101 A	2.77	8.71	1.29
Convarotal (cfs)	1731503.0	Conv. (cis): \$25 (0.5 ch	327345.7	1398559.0	5599.1
Length Wide(ft) Parts	482.53	Wetted Ren (ft) 1245	1005.61	766.49	74.33
MiciChiEf(ft)	6984.70	Shean(lb/solit))	0.01	0.02	0.00
Alphanetering	1.16	Stream/Power/(b/ft/s)	0.00	0.02	0.00
Frein Lossi (ft) Les -	0.03	Gum Volume (acrest) act	33.13	96.40	0.66
Ci& ELoss (fl) - Line	0.03	IGUm SA (acres) A Market	14.72	12.90	0.51

÷

Plan: PMF Montanosa Pond2 RS: 2090 Profile: PF 1

\$ 1.	A.4.	€1 -
ŝ.	े ्र ्ष	

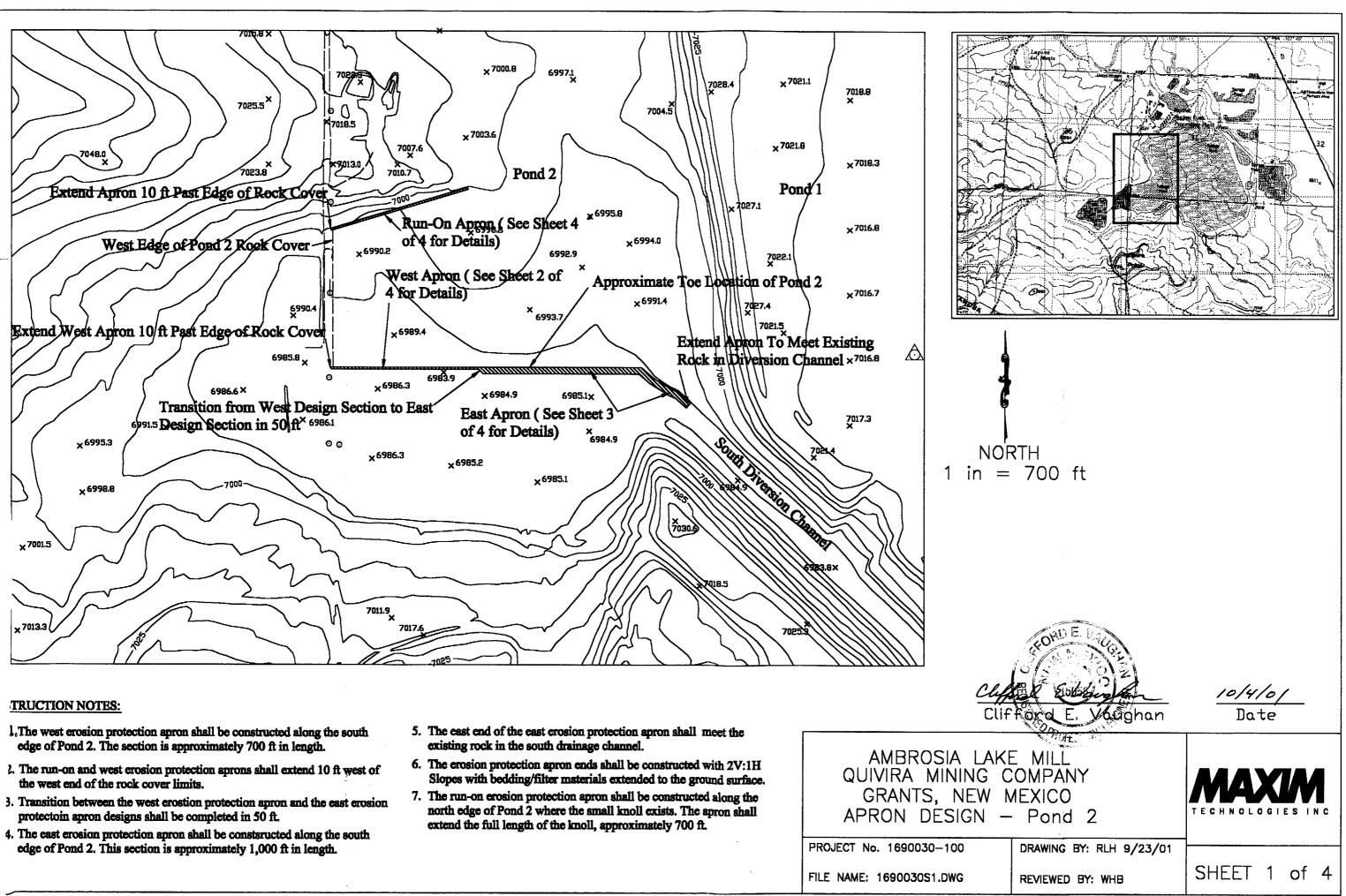
4

Location:	River: Montanosa Reach: Pond2 RS: 3865 Profile: PF 1
Warning:	The energy equation could not be balanced within the specified number of iterations. The program
	used critical depth for the water surface and continued on with the calculations.
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
	additional cross sections.
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Warning:	During the standard step iterations, when the assumed water surface was set equal to critical depth,
	the calculated water surface came back below critical depth. This indicates that there is not a valid
	subcritical answer. The program defaulted to critical depth.
Location:	River: Montanosa Reach: Pond2 RS: 2950 Profile: PF 1
Note:	Hydraulic jump has occurred between this cross section and the previous upstream section.
Location:	River: Montanosa Reach: Pond2 RS: 2090 Profile: PF 1
Warning:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
Location:	River: Montanosa Reach: Pond2 RS: 1660 Profile: PF 1
Warning:	The velocity head has changed by more than 0.5 ft (0.15 m). This may indicate the need for
•	additional cross sections.
Naming:	The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7
	or greater than 1.4. This may indicate the need for additional cross sections.
ocation:	River: Montanosa Reach: Pond2 RS: 1250 Profile: PF 1
Varning:	The energy loss was greater than 1.0 ft (0.3 m), between the current and previous cross section.
	This may indicate the need for additional cross sections.

÷

.

٠.


Errors Warnings and Notes for Plan : PMF

.

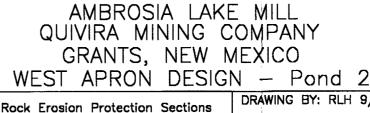
APPENDIX D

DESIGN DRAWINGS

CONSTRUCTION NOTES:

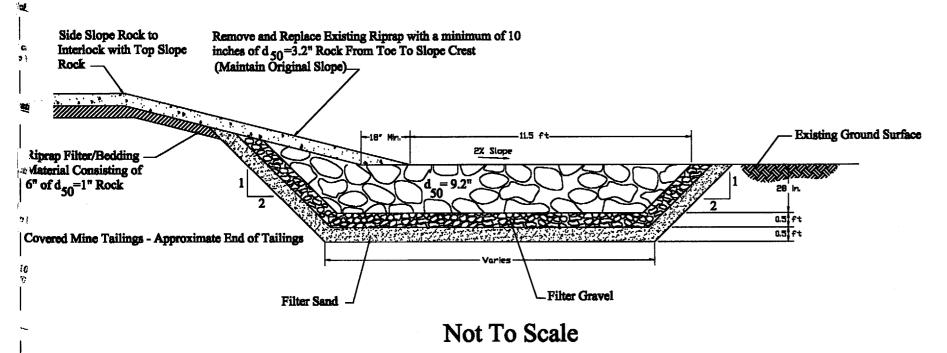
- 1. Drawings.
- 2.
- 3. filter materials to the surface of the ground.
- 4.
- 5. conforming to the following gradation: Sieve Designation

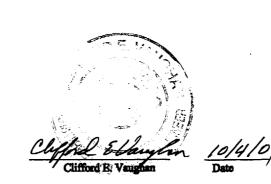
6.


- 8.

Filter Gravel		Filter San	Filter Sand		
Sieve Designation	Percent Passing	Sieve Designation	Percent Passing		
3"	100	No.4	100		
2"	80 - 100	No. 10	80 - 100		
3/4"	20 - 70	No. 20	36 - 76		
3/8"	10 - 30	No. 40	10 - 20		
No.4	0 - 10	No.100	0 - 10		

9.


Sieve Designation
3"
2"
3/4"
3/8"
No.4
n protection disturbe


10. Existing crosion

PROJECT No. 1690030 FILE NAME: 1690030S2.DWG

WEST APRON DESIGN - Typical Section See Sheet 1 of 4 for Placement Location

Rock Riprap for erosion protection aprons shall be placed and in conformance with Appendix F of Design of Erosion Protection for Long-Term Stabilization, U.S. Nuclear Regulatory Commission's NUREG - 1623 Draft Report unless otherwise specified in the Pond 2 Erosion Control Design Report or the Design

Erosion protection aprons shall be sloped to the downstream edge with a minimum slope of two percent or at a slope that matches the slope of the natural ground, should it be steeper than two percent.

Erosion protection apron excavations shall be constructed with 2V:1H slopes to permit placement of the

Excavations shall be constructed with flat bottoms free of loose debris, vegetation and muddy surfaces. The transition between the West Apron design and the East Apron design shall be completed in 50 ft.

The west portion of the erosion protection apron shall be constructed of a rock diameter $d_{50} = 9.2^{\circ}$

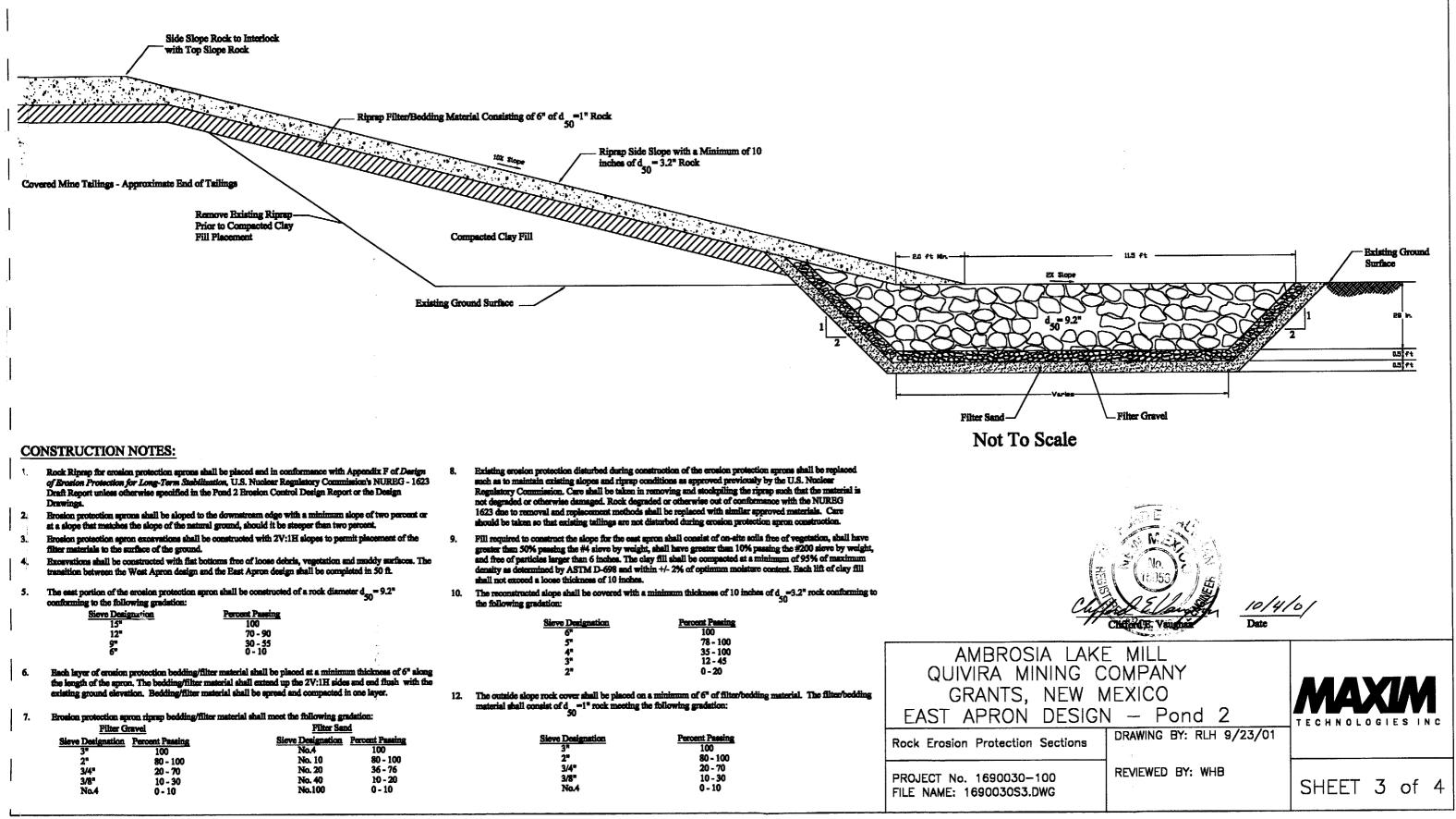
Percent Passing
100
70 - 90
30 - 55
0 - 10

The west portion of the south slope of Pond 2 shall be covered using d $_{so}$ =3.2". The slope shall be covered from the slope crest to the toe. The slope protection riprap rock shall conform to the following gradation:

Percent Passing
100
78 - 100
35 - 100 12 - 45
0-20

Each crosion protection bedding/filter material shall be placed at a minimum thickness of 6" along the length of the apron. The bedding/filter material shall extend up the 2V:1H sides and end flush with the existing ground elevation. Bedding/filter material shall be spread and compacted in one layer.

Erosion protection rip-rap bedding/filter material shall meet the following gradation:


The outside slope rock cover shall be placed on a minimum of 6" of filter/bedding material. The filter/bedding material shall consist of $d_{ro} = 1^{"}$ rock meeting the following gradation:

Percent Passing		
100		
80 - 100		
20 - 70		
10 - 30		
0 - 10		

bed during crosion protection aprons shall be replaced such as to maintain existing slopes and riprap conditions as approved previously by the U.S. Nuclear Regulatory Commission. Care shall be taken in removing and stockpiling the riprap such that the material is not degraded or otherwise damaged. Rock degraded or otherwise out of conformance with the NUREG 1623 due to removal and replacement methods shall be replaced with similar approved materials. Care should be taken so that existing tailings are not disturbed during erosion protection apron construction.

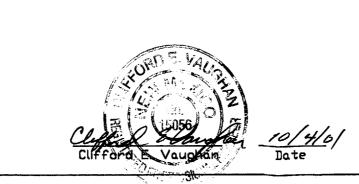
DRAWING BY: RLH 9/23/01 **REVIEWED BY: WHB** SHEET 2 of

EAST APRON DESIGN - Typical Section See Sheet 1 of 4 for Placement Location

Percent Pas
100
80 - 1
20 - 7
10 - 3
0 - 10

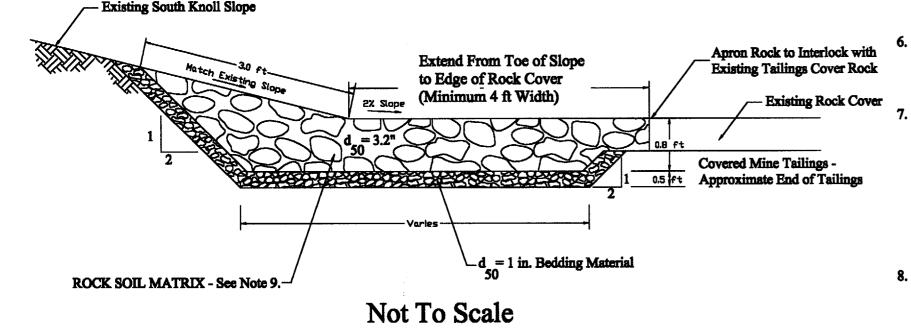
CONSTRUCTION NOTES:

- 1. Drawings.
- 2.
- 3. filter materials to the surface of the ground.
- 4.
- 5. conforming to the following gradation:


Sieve Designation

- 51 4" 3" 2"
- ground elevation. Bedding/filter material shall be spread and compacted in one layer.
- previous reclamation work at the site For use on Run-On Apron Only)

Filter Gravel


Sieve Designation	=
3"	
2"	
3/4"	
3/8"	
No.4"	

- 8. existing tailings are not disturbed during erosion protection apron construction.
- 9.

PROJECT No. 1690030 FILE NAME: 1690030S4.DWG

Rock Rip-Rap for erosion protection aprons shall be placed and in conformance with Appendix F of Design of Erosion Protection for Long-Term Stabilization, U.S. Nuclear Regulatory Commission's NUREG - 1623 Draft Report unless otherwise specified in the Pond 2 Brosion Control Design Report or the Design

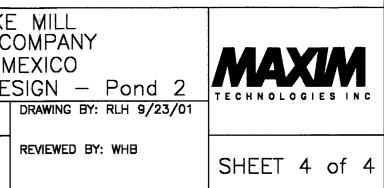
Erosion protection aprons shall be sloped to the downstream edge with a minimum slope of two percent or at a slope that matches the slope of the natural ground, should it be steeper than two percent.

Erosion protection apron excavations shall be constructed with 2V:1H slopes to permit placement of the

Excavations shall be constructed with flat bottoms free of loose debris, vegetation and muddy surfaces and such that the existing rock cover will interlock with the run-on erosion protection apron rock.

The run-on portion of the erosion protection apron shall be constructed of a rock diameter $d_{50} = 3.2$ "

Percent Passing 100 78 - 100 35 - 100 12 - 45 0 - 20


Erosion protection bedding/filter material shall be placed at a minimum thickness of 6" along the length of the apron. The bedding/filter material shall extend up the 2V:1H sides and end flush with the existing

Run-on erosion protection riprap bedding/filter material shall meet the d_{50} ⁼ 1" gradation that follows:(Gradation supplied by Quivira - Gradation performed on available site stockpile remnents from

Percent Passing 100 70 - 100 25 - 55 15 - 40 0 - 25

Existing erosion protection disturbed during erosion protection aprons shall be replaced such as to maintain existing slopes and riprap conditions as approved previously by the U.S. Nuclear Regulatory Commission. Care shall be taken in removing and stockpiling the rip-rap such that the material is not degraded or otherwise damaged. Rock degraded or otherwise out of conformance with the NUREG 1623 due to removal and replacement methods shall be replaced with similar approved materials. Care should be taken so that

See Section 4.0 OTHER DESIGN CONSIDERATIONS for placement of soil fill into the rock apron matrix to prevent flow along the apron causing channelized flow and potential scour of the apron.

ATTACHMENT B

ROCK QUALIFICATION DATA MAY 3, 1991

AMBROSIA LAKE MILL, NEW MEXICO

I

Oct	09	01	10:3	11a	QUIVIRA
				· · · · · · · · · · · · · · · · · · ·	

505 285 5550

p.2

T-106	P.001/002	F52	4
LA	BORATO	YRC	REPORT

Client

.....

...

From™ TECHNOLOGIES INC.

C & E CONCRETE

P. O. BOX 2547 MILAN, NK 87021 Albuquerque, New Mexico 87113 (505) 823-4488 • fax 821-2963

Job No. 3243	0215
Lab./Invoice No	1001
Date of Report	May 3, 199
Reviewed By	محمد من المربق المربقة من المحمد ا

Project Proposed Aggregate Province Protection	
Albuquerque Laboratury	_Date 3-18-9
Material/Specimen Bays, S./WT	Date 3-18-9:
Walter Les Meeti	Date 3-18-9;
Test Procedure See Balow Authorized By	

RESULTS

Fest Description, designation	Result	Score
	2.693	8.8
Specific Gravity, (ssd) ASTM C127 Absorption, ASTM C127	0.2	9.5
Sodium Sulfate Soundness, ASTM C88	2.1	9.5
Abrasion, ASTM C131 (100 Revolution)	4.5	8.2
Schmidt Hammer, ISRM Method **	52.0	6.8
Tensile Strenth, ISRM Method ***	1456.0	10.0

6 Cyclet

** Average of 20 Readings

... Average of 5 Specimens

ī

ROCK QUALTLY SCORE (Using Table 02278-A)

Weighting Factor -Limestone Total Score = 400.1

······

2587-25944 287-287-7364 FAX

Copies to:

Client: C & E Concrete

PO Box 2547

Milan, NM 87021

EARLS RESTAURANT

Western Technologies Inc. The Quality People Since 1955 8305 Washington Place, N.E. Albuquerque, New Mexico 87113 (505) 823-4488 • fax 821-2963

505	285	5550	
1505	8634	1073	

р.3 р.2

F. -

LABORATORY REPORT

Job No.
Lab/Invoice No32440605
Date of Report 10-11-94
Reviewed By D. Rush

Aggregate Test Data

Test Data Per AASHTO General Data	Coarse Results	NMSHTD Specifications
Bulk Specific Gravity (SSD), T-85	2.662	N/A
Absorption, T-85	1.10%	N/A
Dry Rodded Unit Weight, T-19	96.7 lbs/cf	N/A
Clay Lumps, T-112	0.06%	0.25% max
Coal & Lignite, T-113	0.10%	0.25% max
Material Passing #200 Sieve, T-11	0.3%	1.0% max
Organic Impurities, T-21	LTS*	1.00% max
Flat or Elongated Pieces	0.0%	15.0% max
Soundness Loss, T-105 5 Cycle Magnesium	0.9%	15.0% max
Fractured Faces, by count - 2 faces	100.0%	50.0% min
Percent Wear, T-96 500 Revolutions	20.0%	45.0% max

* Lighter Than Standard

Source of Sample:

Coarse Aggregate

Tinaja Pit, 36 Miles South of Grants off New Mexico Highway 53, Cibola County

Albuquerque, New Mexico 87113 (505) 823-4488 • fax 821-2963

505	285	55	50	p. 1
		T-106	P.002/002	F-524
		1	LABUKAIÇ	KY KEPURT

Client: C & E Concrete PO Box 2547 Milan, NM 87021

Job No.	
Lab/Invoice No	32440605
Date of Report_	10-11-94
Reviewed By D	

Aggregate Test Data

Test Data Per AASHTO General Data	Coarse Results	NMSHTD Specifications
Bulk Specific Gravity (SSD), T-85	2.662	N/A
Absorption, T-85	1.10%	N/A
Dry Rodded Unit Weight, T-19	96.7 lbs/cf	N/A
Clay Lumps, T-112	0.06%	0.25% max
Coal & Lignite, T-113	0.10%	0.25% max
Material Passing #200 Sieve, T-11	0.3%	1.0% max
Organic Impurities, T-21	LTS*	1.00% max
Flat or Elongated Pieces	0.0%	15.0% max
Soundness Loss, T-105 5 Cycle Magnesium	0.9%	15.0% max
Fractured Faces, by count - 2 faces	100.0%	50.0% min
Percent Wear, T-96 500 Revolutions	20.0%	45.0% max

* Lighter Than Standard

Source of Sample:

Coarse Aggregate Tinaja Pit, 36 Miles South of Grants off New Mexico Highway 53, Cibola County

-