Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

CHARACTERIZATION SUMMARY

SURVEY PACKAGE NUMBER : A1400

SURFACES & STRUCTURES

PACKAGE DESCRIPTION Includes: Personnel Hatch Area and Ventilation Room Personnel Hatch Area - Elevation 21 ft.

SURVEY AREA DESCRIPTION Personnel Hatch Area

04/02/98

GENERAL HISTORICAL INFORMATION (Operational history, etc.)

The Personnel hatch is an integral portion of the containment building. Construction is painted, epoxied concrete floor and painted concrete block walls and ceiling with some structural steel. Ventilation equipment and filter banks are in one concrete block room. There is a Steel containment access door.

SUMMARY OF CHARACTERIZATION ACTIVITIES

Survey units were established for the areas as listed in the following Summary of Survey Units. Maps with the survey measurement locations for this package are included on the following pages.

Collected 54 direct measurements for total beta activity at the survey measurement locations indicated in the results listing report. Due to elevated background radioactivity in the survey area, a scan of a two meter area encompassing each survey measurement location was not performed. Each direct measurement for total beta activity was accompanied by a corresponding background measurement at the same location. The background was used in the calculation of net dpm/100cm².

Collected smear samples to analyze for removable alpha and beta activity at the same 54 survey locations as the direct measurements for total beta activity.

Collected one meter exposure rate measurements at 15 survey locations indicated in the results listing report.

The survey result statistical summaries, graphs and results listings are shown in the following individual reports including calibration summaries for the instruments used for each measurement type.

CHARACTERIZATION SURVEY RESULTS

o There were 4 direct measurements for total beta activity above 2000 dpm/100cm². There were 5 direct measurements for total beta activity above the individual measurements' MDA (Maximum MDA was 2,198 dpm/100cm²). The maximum measurement result was 6,758 dpm/100cm².

o There were 9 measurements for removable beta activity above MDA (35 dpm/100cm²) and 6 results greater than 100 dpm/100cm². The maximum measurement result was 658 dpm/100cm².

- o There were no measurements for removable alpha activity above MDA (8 dpm/100cm²).
- o The average and maximum exposure rate measurement results were 48 μR/hr and 180 μR/hr, respectively.

REFERENCES (Documents, Interviews)

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

03/29/98

CHARACTERIZATION SUMMARY

SURVEY PACKAGE NUMBER :A1400

SURFACES & STRUCTURES

Personnel Hatch Area - Elevation 21 ft.

PACKAGE DESCRIPTION Includes: Personnel Hatch Area and Ventilation Room

SURVEY AREA DESCRIPTION Personnel Hatch Area

GENERAL HISTORICAL INFORMATION (Operational history, etc.)

The equipment hatch is an integral portion of the containment building. Construction is painted, epoxied concrete floor and painted concrete block walls and ceiling. Some structural steel. Ventilation equipment and filter banks in one concrete block room. Steel containment access door. Due to present use and/or presence of radioactive materials, this area has been classified as Affected. Area may be reclassified during or following characterization.

SUMMARY OF CHARACTERIZATION ACTIVITIES

A background measurement for direct beta activity measurements was made at each survey location.

A direct measurement of total beta activity and a removable surface contamination measurement was made at each survey location.

The wall measurements included the walls above and below 2 meters. The ceiling measurements included the interior overhead surfaces of the ceilings.

The measurements on exterior surfaces of piping, cable trays, duct work, plant equipment etc., were using "Plant Equipment" type surface code, i.e., EQ1-N.

Floor measurements were collected on the present day floor covering.

Radiation levels in some areas may have precluded direct measurement of total beta activity. These areas were assessed on a case by case basis for alternative sampling if this was applicable.

A 1-meter gamma exposure rate measurement was made at each survey measurement location on floor surfaces.

CHARACTERIZATION SURVEY RESULTS

Maps of the surveys for this package are included on the following pages. The results of the surveys and statistical summaries are shown in the following individual reports. Reports include summary statistics and graphs of the data followed by the values associated with the survey measurement location code. Reports include:

o Direct Measurements for Total Beta Activity and Results Listing,

o Removable Contamination - Gross Beta Activity and Removable Contamination - Gross Alpha Activity and Results Listing, and

o Gamma Exposure Rate Measurements at 1 Meter and Results Listing.

If samples were collected for analysis by gamma spectrometry, the Gamma Spectrum Results Listing is also provided. In addition, instrument calibration summaries are provided for all instruments used for the reports.

REFERENCES (Documents, Interviews)

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98 JLM

SUMMARY OF SURVEY UNIT(S)

03/29/98

OUTPUT BATCH SN = 271

PACKAGE A1400 SURFACES & STRUCTURES Personnel Hatch Area - Elevation 21 ft. Includes: Personnel Hatch Area and Ventilation Room

UNIT(S)		SURFACE(S)	SURFACE(S) CL1 (Ceiling) EQ1 (Plant Equipment (exterior)) FL1 (Floor Surface) WS1 (Wall Surface (interior)) CL1 (Ceiling) EQ1 (Plant Equipment (exterior)) FL1 (Floor Surface) WS1 (Wall Surface (interior))			
01 - Personnel	Hatch Area	CL1 (Ceiling) EQ1 (Plant Equip FL1 (Floor Surfa WS1 (Wall Surfa				
02 - Ventilation	Room	CL1 (Ceiling) EQ1 (Plant Equip FL1 (Floor Surfa WS1 (Wall Surfa				
REASON(S) CH	HARACTERIZ	ATION SURVEY (C01)	<u></u>			
MATERIALS	MAT'L CODE	MATERIAL DESCRIPTION	BETA BKGD (dpm/100 cm²)			
	B0001 B0036	CONCRETE - PAINTED (INTERIOR) METAL - PAINTED	478.0 0.0			

SURVEY PACKAGE A1400

- S- survey points on walls
- survey points on floors
- (survey points on equipment

Personnel Hatch Area

03/31/98Direct Measurements For Total Beta ActivitySurvey PackageA1400 SURFACES & STRUCTURES
Personnel Hatch Area - Elevation 21 ft.
Includes: Personnel Hatch Area and Ventilation Room

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm ²
Mean	350.2
Maximum	6,758.3
Minimum	-894.2
Standard Deviation	1,379.9
MDA	2,197.8

Samples Reported	54
Samples Prescribed	54

Samples reported satisfy samples prescribed	YES
MDA <2000 net dpm/100 cm²	NO
Results above 2000 net dpm/100 cm²	4
Number of results above MDA	5

54 RESULTS ARE GRAPHED

03/31/98

Direct Measurements For Total Beta Activity

Survey Package: A1400 SURFACES & STRUCTURES Personnel Hatch Area - Elevation 21 ft.

Includes: Personnel Hatch Area and Ventilation Room

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
385 (2)	01	CI 1	B0001	C01	10	00001	823.3	-85.0
385 (2)	01	CL1	B0001	C01	10	00002	874.8	-154.3
385 (2)	01	CL1	B0001	C01	10	00003	923.2	-108.1
385 (2)	01	CL1	B0001	C01	10	00004	845.8	354.3
385 (2)	01	CL1	B0001	C01	10	00005	975.4	7.5
385 (2)	01	CL1	B0001	C01	10	00006	874.8	284.9
385 (2)	01	EQ1	B0036	C01	10	00001	815.6	-161.8
385 (2)	01	EQ1	B0036	C01	10	00002	823.3	-23.1
385 (2)	01	EQ1	B0036	C01	10	00003	2,097.9	-739.8
385 (2)	01	EQ1	B0036	C01	10	00004	1,154.3	439.3
385 (2)	01	FL1	B0001	C01	10	00001	1,625.2	76.9
385 (2)	01	FL1	B0001	C01	10	00002	916.4	-663.0
385 (2)	01	FL1	B0001	C01	10	00003	867.6	-385.5
385 (2)	01	FL1	B0001	C01	10	00004	784.2	-316.2
385 (2)	01	FL1	B0001	C01	10	00005	1,274.9	-755.4
385 (2)	01	FL1	B0001	C01	10	00006	1,255.6	<u>1,695.2</u>
385 (2)	01	FL1	B0001	C01	10	00007	1,739.5	<u>6,758.3</u>
385 (2)	01	FL1	B0001	C01	10	80000	1,722.1	<u>2,989.9</u>
385 (2)	01	FL1	B0001	C01	10	00009	1,245.9	<u>3,960.9</u>
385 (2)	01	FL1	B0001	C01	10	00010	1,410.5	<u>4,931.9</u>
385 (2)	01	WS1	B0001	C01	10	00001	881.9	-408.6
385 (2)	01	WS1	B0001	C01	10	00002	838.3	-177.5
385 (2)	01	WS1	B0001	C01	10	00003	956.2	-501.1
385 (2)	01	WS1	B0001	C01	10	00004	830.8	123.1
385 (2)	01	WS1	B0001	C01	10	00005	792.2	-154.3
385 (2)	01	WS1	B0001	C01	10	00006	2,197.8	1,880.2
385 (2)	01	WS1	B0001	C01	10	00007	943.1	701.1
385 (2)	01	WS1	B0001	C01	10	80000	1,127.5	-154.3
385 (2)	01	WS1	B0001	C01	10	00009	1,216.2	-894.1
385 (2)	01	WS1	B0001	C01	10	00010	1,042.6	-61.9
385 (2)	01	WS1	B0001	C01	10	00011	1,006.6	-38./
385 (2)	01	WS1	B0001	C01	10	00012	1,105.6	123.1
385 (2)	02	CL1	B0001	C01	10	00001	807.9	-01.9
385 (2)	02	CL1	B0001	C01	10	00002	1,054.4	-05.0
385 (2)	02	CL1	B0001	C01	10	00003	969.0	-200.0
385 (2)	02	CL1	B0001	C01	10	00004	/ 84.2	-100.1
385 (2)	02	CL1	80001	C01	10	00005	030.0	-01.9
385 (2)	02	EQ1	R0036	C01	10	00001	949.7	200.1
385 (2)	02	EQ1	R0036	C01	10	00002	0.660	340.0 209.1
385 (2)	02	EQ1	R0036	C01	10	00003	030.8	200.1

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds.

Underlined values exceed the MDA.

Bold values exceed 2000 dpm/100 cm².

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A1400 SURFACES & STRUCTURES Personnel Hatch Area - Elevation 21 ft. Includes: Personnel Hatch Area and Ventilation Room

RESULTS LISTING - SORTED BY SURFACE CODE

FILE #	UNIT	SURFACE	MATERIAL	REASON	COUNT TIME	MSRMNT LOCATION	MDA	RESULT	
385 (2)	02	EQ1	B0036	C01	10	00004	815.6	254.3	
385 (2)	02،	FL1	B0001	C01	10	00001	881.9	-778.5	
385 (2)	02	FL1	B0001	C01	10	00002	916.4	-616.7	
385 (2)	02	FL1	B0001	C01	10	00003	776.2	238.7	
385 (2)	02	FL1	B0001	C01	10	00004	815.6	53.7	
385 (2)	02	FL1	B0001	C01	10	00005	725.7	-61.9	
385 (2)	02	WS1	B0001	C01	10	00001	776.2	146.2	
385 (2)	02	WS1	B0001	C01	10	00002	759.8	-223.7	
385 (2)	02	WS1	B0001	C01	10	00003	1,621.5	909.2	
385 (2)	02	WS1	B0001	C01	10	00004	895.9	7.5	
385 (2)	02	WS1	B0001	C01	10	00005	929.9	238.7	
385 (2)	02	WS1	B0001	C01	10	00006	845.8	-177.5	
385 (2)	02	WS1	B0001	C01	10	00007	784.2	146.2	
385 (2)	02	WS1	B0001	C01	10	00008	807.9	-156	

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds. Underlined values exceed the MDA. Bold values exceed 2000 dpm/100 cm². 54 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7a - 3/30/98 JLM

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

 03/31/98
 Direct Measurements For Total Beta Activity

 Survey Package :
 A1400 SURFACES & STRUCTURES

 Personnel Hatch Area - Elevation 21 ft.
 Includes: Personnel Hatch Area and Ventilation Room

SURVEY		M23	350		DETECTOR	PRE		
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	EFF	TECHNICIAN
1/14/98	385 (2)	129440	6/10/98	43-106	128926	6/5/98	.21	LAC4593
					(CALIBRATION E	DATES VER	IFIED AS ACCEPTABLE

03/29/98

Removable Contamination - Gross Beta Activity

Survey Package A1400 SURFACES & STRUCTURES Personnel Hatch Area - Elevation 21 ft. Includes: Personnel Hatch Area and Ventilation Room

54

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm-				
Mean	47.1				
Maximum	657.5				
Minimum	-4.9				
Standard Deviation	126.8				
MDA	35.1				
Samples Reported	54				

Samples Prescribed

MDA <100 net dpm/100 cm ²	YES
Results above 100 net dpm/100 cm ²	6
Number of results above MDA	9

54 RESULTS ARE GRAPHED

JLM

YES 0 0

Maine Yankee Atomic Power Plant Site Characterization

 03/29/98
 Removable Contamination - Gross Alpha Activity

 Survey Package
 A1400 SURFACES & STRUCTURES

 Personnel Hatch Area - Elevation 21 ft.
 Includes: Personnel Hatch Area and Ventilation Room

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm ²	
Mean	-0.2	MDA <10 net dpm/100 cm²
Movimum	1.9	Results above 20 net dpm/100 cm ²
Minimum	-0.2	Number of results above MDA
Standard Deviation	0.3	
MDA	7.8	
O	54	
Samples Reported		
Samples Prescribed	54	

54 RESULTS ARE GRAPHED

03/29/98

Removable Contamination

Survey Package : A1400 SURFACES & STRUCTURES Personnel Hatch Area - Elevation 21 ft. Includes: Personnel Hatch Area and Ventilation Room

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E061.XLS	02	WS1	C01	8	-0.2	7.4	
SME1E061.XLS	02	WS1	C01	7	-0.2	7.4	
SME1E061.XLS	02	WS1	C01	6	-0.2	1.2	
SME1E061.XLS	02	WS1	C01	5	-0.2	-5.0	
SME1E061.XLS	02	WS1	C01	4	-0.2	7.4	
SME1E061.XLS	02	WS1	C01	3	-0.2	1.2	
SME1E061.XLS	02	WS1	C01	2	-0.2	32.2	
SME1E061.XLS	02	WS1	C01	1	-0.2	19.8	
SME1E061.XLS	02	FL1	C01	5	-0.2	1.2	
SME1E061.XLS	02	FL1	C01	4	-0.2	-5.0	
SME1E061.XLS	02	FL1	C01	3	-0.2	7.4	
SME1E061.XLS	02	FL1	C01	2	-0.2	1.2	
SMETEU61.XLS	02	FL1	C01	1	-0.2	(.4	
SMETEU6T.XLS	02	EQ1	C01	4	-0.2	1.2	
SMETEU6T.XLS	02	EQ1	C01	3	-0.2	7.4	
SME1E061.XLS	02	EQT	C01	2	-0.2	-5.0	
SMETEUGT.XLS	02	EQ1	C01	1	-0.2	13.6	
SIVIETEUGT.ALS	02		C01	5	-0.2	7.4	
SIVIETEUOTALS	02			4	-0.2	7.4	
SIVIE LEUGI ALS	02			ა 2	-0.2	-5.0	
SMETEOOT XLS	02		C01	2	-0.2	-5.0	
SME1E061 XLS	02	MIS1	C01	۰ ۵	-0.2	-3.0 57.0	
	01	WS1	C01	8	-0.2	26.0	
SME1E061 XLS	01	WS1	C01	7	-0.2	13.6	
SME1E061 XLS	01	WS1	C01	6	-0.2	1 2	
SME1E061 XLS	01	WS1	C01	5	-0.2	1.2	
SME1E061 XLS	01	WS1	C01	4	-0.2	-5.0	
SME1E061 XLS	01	WS1	C01	3	-0.2	74	
SME1E061 XLS	01	WS1	C01	2	-0.2	7 4	
SME1E061 XLS	01	WS1	C01	12	-0.2	26.0	
SME1E061.XLS	01	WS1	C01	11	-0.2	7.4	
SME1E061.XLS	01	WS1	C01	10	-0.2	19.8	
SME1E061.XLS	01	WS1	C01	1	-0.2	-5.0	
SME1E061.XLS	01	FL1	C01	9	-0.2	508.9	
SME1E061.XLS	01	FL1	C01	8	-0.2	403.7	
SME1E061.XLS	01	FL1	C01	7	-0.2	248.9	
SME1E061.XLS	01	FL1	C01	6	-0.2	143.6	
SME1E061.XLS	01	FL1	C01	5	-0.2	1.2	
SME1E061.XLS	01	FL1	C01	4	-0.2	13.6	

NOTES: Activity reported in net dpm/100 cm².

Underlined values exceed the associated MDA.

Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity).

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

Page 10 of 15

03/29/98

Removable Contamination

Survey Package : A1400 SURFACES & STRUCTURES Personnel Hatch Area - Elevation 21 ft. Includes: Personnel Hatch Area and Ventilation Room

RESULTS LISTING - SORTED BY SURFACE CODE

XLS FILE	UNIT	SURFACE	REASON	MSRMNT LOCATION	ALPHA	BETA	
SME1E061.XLS	01	FL1	C01	3	-0.2	32.2	
SME1E061.XLS	01	FL1	C01	2	-0.2	7.4	
SME1E061.XLS	01	FL1	C01	10	1.9	657.5	
SME1E061.XLS	01	FL1	C01	1	-0.2	1.2	
SME1E061.XLS	01	EQ1	C01	4	-0.2	149.8	
SME1E061.XLS	01	EQ1	C01	3	-0.2	38.4	
SME1E061.XLS	01	EQ1	C01	2	-0.2	7.4	
SME1E061 XLS	01	EQ1	C01	1	-0.2	7.4	
SME1E061.XLS	01	CL1	C01	6	-0.2	13.6	
SME1E061.XLS	01	CL1	C01	5	-0.2	7.4	
SME1E061.XLS	01	CL1	C01	4	-0.2	38.4	
SME1E061.XLS	01	CL1	C01	3	-0.2	-5.0	
SME1E061.XLS	01	CL1	C01	2	-0.2	7.4	
SME1E061.XLS	01	CL1	C01	1	-0.2	-5.0	

NOTES: Activity reported in net dpm/100 cm².

Underlined values exceed the associated MDA.

Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity). 54 results are listed.

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

DATAFILE & TENNELEC CALIBRATION SUMMARY

03/29/98

Removable Contamination

Survey Package : A1400 SURFACES & STRUCTURES Personnel Hatch Area - Elevation 21 ft. Includes: Personnel Hatch Area and Ventilation Room

SURVEYDATE	XLS FILE	INST ID	S/N	CAL DUE	LAB TECHNICIAN
3/6/98	SME1E061.XLS	1	15632	8/5/98	JMD
			(CALIBRATION DATE	VERIFIED AS ACCEPTABLE

03/29/98

Exposure Rate Measurements

Survey Package A1400 SURFACES & STRUCTURES Personnel Hatch Area - Elevation 21 ft. Includes: Personnel Hatch Area and Ventilation Room

STATISTICAL SUMMARY

TESTS PERFORMED

15 RESULTS ARE GRAPHED

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

JLM

03/29/98

Exposure Rate Measurements

Survey Package : A1400 SURFACES & STRUCTURES Personnel Hatch Area - Elevation 21 ft. Includes: Personnel Hatch Area and Ventilation Room

RESULTS LISTING - SORTED BY SURFACE CODE

FILE #	UNIT	SURFACE	MATERIAL	REASON	COUNT TIME	MSRMNT LOCATION	RESULT
514 (2)	01	FL1	B0001	C01	60.00	00001	180.2
514 (2)	01	FL1	B0001	C01	60.00	00002	30.3
514 (2)	01	FL1	B0001	C01	60.00	00003	23.0
514 (2)	01	FL1	B0001	C01	60.00	00004	30.0
514 (2)	01	FL1	B0001	C01	60.00	00005	57.0
514 (2)	01	FL1	B0001	CÓ1	60.00	00006	61.9
514 (2)	01	FL1	B0001	C01	60.00	00007	66.8
514 (2)	01	FL1	B0001	C01	60.00	00008	72.2
514 (2)	01	FL1	B0001	C01	60.00	00009	46.6
514 (2)	01	FL1	B0001	C01	60.00	00010	40.7
514 (2)	02	FL1	B0001	C01	60.00	00001	15.6
514 (2)	02	FL1	B0001	C01	60.00	00002	18.6
514 (2)	02	FL1	B0001	C01	60.00	00003	19.2
514 (2)	02	FL1	B0001	C01	60.00	00004	28.9
514 (2)	02	FL1	B0001	C01	60.00	00005	22.3

NOTES: Exposure rates reported in net μR/hr. Count times are reported in seconds. Underlined results did not meet the minimum required count time. Bold values exceed 15 μR/hr. 15 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98 JLM

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/29/98

Exposure Rate Measurements

Survey Package : A1400 SURFACES & STRUCTURES Personnel Hatch Area - Elevation 21 ft. Includes: Personnel Hatch Area and Ventilation Room

SURVEY		M23	350	[DETECTOR			
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	TECHNICIAN	
1/29/98	514 (2)	098639	4/16/98	44-2	129770	5/12/98	JJP1813	
					CALIBR	ATION DATES VE	RIFIED AS ACCEPTABLE	

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

04/02/98

CHARACTERIZATION SUMMARY

SURVEY PACKAGE NUMBER : A1500

SURFACES & STRUCTURES

PACKAGE DESCRIPTION

Mechanical Penetration Room - Elevation 21 ft.

SURVEY AREA DESCRIPTION Mechanical Pentration Room

GENERAL HISTORICAL INFORMATION (Operational history, etc.)

This room contains main steam piping from containment and Auxilary water feed pump systems. Construction is painted, epoxied concrete floor, and concrete walls and overhead. The area has been used in the past an an exit pathway from containment. The Auxilary feed pump has a sump and a drain.

SUMMARY OF CHARACTERIZATION ACTIVITIES

Survey units were established for the areas as listed in the following Summary of Survey Units. Maps with the survey measurement locations for this package are included on the following pages.

Collected 54 direct measurements for total beta activity at the survey measurement locations indicated in the results listing report. Due to elevated background radioactivity in the survey area, a scan of a two meter area encompassing each survey measurement location was not performed. Each direct measurement for total beta activity was accompanied by a corresponding background measurement at the same location. The background was used in the calculation of net dpm/100cm².

Collected smear samples to analyze for removable alpha and beta activity at the same 54 survey locations as the direct measurements for total beta activity.

Collected one meter exposure rate measurements at 23 survey locations indicated in the results listing report.

The survey result statistical summaries, graphs and results listings are shown in the following individual reports including calibration summaries for the instruments used for each measurement type.

CHARACTERIZATION SURVEY RESULTS

o There were 2 direct measurements for total beta activity above 2000 dpm/100cm². There were 7 direct measurements for total beta activity above the individual measurements' MDA (Maximum MDA was 661 dpm/100cm²). The maximum measurement result was 3,678 dpm/100cm².

o There were no measurements for removable beta activity above MDA (38 dpm/100cm²).

- o There were no measurements for removable alpha activity above MDA (8.4 dpm/100cm²).
- o The average and maximum exposure rate measurement results were 9.4 μ R/hr and 14 μ R/hr, respectively.

REFERENCES (Documents, Interviews)

SUMMARY OF SURVEY UNIT(S)

03/29/98

OUTPUT BATCH SN = 272

PACKAGE A1500 SURFACES & STRUCTURES Mechanical Penetration Room - Elevation 21 ft.

UNIT(S)	SURFACE(S)
01 - First Floor	CL1 (Ceiling) EQ1 (Plant Equipment (exterior)) EQ2 (Equipment) FD1 (Aux Feed Pump Sump) FL1 (Floor Surface) WS1 (Wall Surface (interior))
02 - Second Floor	EQ1 (Plant Equipment (exterior)) EQ2 (Plant Equipment (exterior)) FL1 (Floor Surface)
03 - Third Floor	FL1 (Floor Surface)
04 - Fourth Floor	EQ1 (Plant Equipment (exterior)) EQ2 (Plant Equipment (exterior)) EQ3 (Plant Equipment (exterior)) FL1 (Floor Surface)
05 - Fifth Floor	EQ1 (Plant Equipment (exterior)) EQ2 (Plant Equipment (exterior)) EQ3 (Plant Equipment (exterior)) FL1 (Floor Surface)

REASON(S) CHARACTERIZATION SURVEY (C01)

MATERIALS	MAT'L CODE	MATERIAL DESCRIPTION	BETA BKGD (dpm/100 cm ²)
	B0001	CONCRETE - PAINTED (INTERIOR)	478.0
	B0002	CONCRETE - BARE (INTERIOR)	665.0
	B0031	METAL - BARE	0.0
	B0036	METAL - PAINTED	0.0
	B0047	BLANKET INSULATION	0.0

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

SURVEY PACKAGE A1500

Mechanical Penetration Room

Nerth T

SURVEY PACKAGE A1500

03/31/98

Direct Measurements For Total Beta Activity

Survey Package A1500 SURFACES & STRUCTURES Mechanical Penetration Room - Elevation 21 ft.

STATISTICAL SUMMARY

TESTS PERFORMED

Net dpm/100 cm ³
214.9
3,677.6
-723.8
734.3
661.1

Samples Reported	54
Samples Prescribed	54

Samples reported satisfy samples prescribed	YES
MDA <2000 net dpm/100 cm²	YES
Results above 2000 net dpm/100 cm²	2
Number of results above MDA	7

54 RESULTS ARE GRAPHED

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7a - 3/30/98

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A1500 SURFACES & STRUCTURES Mechanical Penetration Room - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
424 (2)	01	CL1	B0001	C01	10	00001	578.5	125.4
424 (2)	01	CL1	B0001	C01	10	00002	578.5	-15.2
424 (2)	01	CL1	B0001	C01	10	00003	578.5	-343.3
424 (2)	01	CL1	B0001	C01	10	00004	661.1	72.7
424 (2)	01	CL1	B0001	C01	10	00005	605.3	-204.6
424 (2)	01	CL1	B0001	C01	10	00006	605.3	-181.2
426 (2)	01	EQ1	B0036	C01	10	00001	529.8	394.2
426 (2)	01	EQ1	B0036	C01	10	00002	529.8	<u>1,037.2</u>
426 (2)	01	EQ2	B0036	C01	10	00001	529.8	302.4
426 (2)	01	EQ2	B0036	C01	10	00002	529.8	26.8
426 (2)	01	EQ2	B0036	C01	10	00003	529.8	210.5
426 (2)	01	EQ2	B0036	C01	10	00004	529.8	<u>1,266.9</u>
431 (2)	01	FD1	B0002	C01	10	00001	628.0	<u>3,677.6</u>
431 (2)	01	FD1	B0002	C01	10	00002	586.1	66.4
416 (2)	01	FL1	B0001	C01	10	00001	585.6	-451.1
416 (2)	01	FL1	B0001	C01	10	00002	580.3	-478.0
416 (2)	01	FL1	B0001	C01	10	00003	575.9	-347.4
416 (2)	01	FL1	B0001	C01	10	00004	567.2	-385.8
416 (2)	01	FL1	B0001	C01	10	00005	570.5	-397.4
416 (2)	01	FL1	B0001	C01	10	00006	5/8.1	-/23.8
416 (2)	01		B0001	C01	10	00007	5/6.3	-164.4
410 (2)	01		B0001	C01	10	00008	576.3	-348./
410 (2)	01		B0001		10	00009	576.3	-3/1.8
410 (2)	01		B0001		10	00010	575.3	-394.8
415 (2) 415 (2)	01	VV31 \//S1	B0001	C01	10	00001	020.0 551.0	204.0
415 (2)	01	10/51	B0001	C01	10	00002	590.4	301.9 DE E
A15 (2)	01	10/01	B0001	C01	10	00003	5775	20.0
415 (2)	01	WS1	B0001	C01	10	00004	5363	-104.5
415 (2)	01	WS1	B0001	C01	10	00005	556.8	-517.0
426 (2)	01	WS1	B0001	C01	10	00000	520.8	-303.0
426 (2)	01	WS1	B0001	C01	10	00007	529.0	214.0
424 (2)	02	FQ1	B0047	C01	10	00001	578.5	-5.9
424 (2)	02	EQ2	B0031	C01	10	00002	578.5	-146.5
424 (2)	02	EQ2	B0047	C01	10	00001	578.5	1.400.2
424 (2)	02	FL1	B0031	C01	10	00001	5171	101 5
424 (2)	02	FL1	B0031	C01	10	00002	525.9	355.4
424 (2)	02	FL1	B0031	C01	10	00003	540.7	425.7
424 (2)	03	FL1	B0031	C01	10	00001	578.5	-287.1
424 (2)	03	FL1	B0031	C01	10	00002	578.5	-52.7
• •								

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds.

Underlined values exceed the MDA.

JLM

Bold values exceed 2000 dpm/100 cm².

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A1500 SURFACES & STRUCTURES Mechanical Penetration Room - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

FILE #	UNIT	SURFACE	MATERIAL	REASON	COUNT TIME		ΜΠΔ	
424 (2)	04	EQ1	B0047	C01	10	00001	578.5	2.548.4
424 (2)	04	EQ2	B0047	C01	10	00001	578.5	1.119.0
424 (2)	04	EQ3	B0047	C01	10	00001	578.5	415.9
424 (2)	04	FL1	B0031	C01	10	00001	578.5	87.9
424 (2)	04	FL1	B0031	C01	10	00002	578.5	158.2
424 (2)	04	FL1	B0031	C01	10	00003	578.5	369.1
424 (2)	04	FL1	B0031	C01	10	00004	578.5	228.5
424 (2)	05	EQ1	B0031	C01	10	00001	5785	251.9
424 (2)	05	EQ2	B0031	C01	10	00001	578.5	-76.2
424 (2)	05	EQ3	B0031	C01	10	00001	578.5	931.5
424 (2)	05	FL1	B0031	C01	10	00001	578.5	415.9
424 (2)	05	FL1	B0031	C01	10	00002	578.5	228.5
424 (2)	05	FL1	B0031	C01	10	00003	578.5	228 5
424 (2)	05	FL1	B0031	C01	10	00004	578.5	533.1

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds. Underlined values exceed the MDA. Bold values exceed 2000 dpm/100 cm². 54 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7a - 3/30/98

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A1500 SURFACES & STRUCTURES Mechanical Penetration Room - Elevation 21 ft.

SURVEY		M23	350	[DETECTOR		PRE	
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	EFF	TECHNICIAN
1/15/98	415 (2)	126201	4/15/98	43-106	133858	5/3/98	.21	BSM0490
<u>.</u>					(CALIBRATION	DATES VER	IFIED AS ACCEPTABLE
1/15/98	416 (2)	98620	3/20/98	43-106	128919	3/20/98	.21	DRK2986
		······································			(CALIBRATION	DATES VER	IFIED AS ACCEPTABLE
1/16/98	424 (2)	98620	3/20/98	43-106	128919	3/20/98	.20	DRK2986
<u> </u>					(CALIBRATION	DATES VER	IFIED AS ACCEPTABLE
1/16/98	426 (2)	126201	4/15/98	43-106	133858	5/3/98	.21	BSM0490
<u></u>	<u> </u>					CALIBRATION	DATES VER	IFIED AS ACCEPTABLE
1/19/98	431 (2)	126201	4/15/98	43-106	133858	5/3/98	.21	BSM0490
					(CALIBRATION	DATES VERI	IFIED AS ACCEPTABLE

03/29/98

Removable Contamination - Gross Beta Activity

Survey Package A1500 SURFACES & STRUCTURES Mechanical Penetration Room - Elevation 21 ft.

400

54 54

.....

STATISTICAL SUMMARY

TESTS PERFORMED

	Net apm/100 cm
Mean	4.4
Maximum	23.5
Minimum	-7.0
Standard Deviation	7.7
MDA	38.3
	<u></u>

Samples Reported

Samples Prescribed

MDA <100 net dpm/100 cm²	YES
Results above 100 net dpm/100 cm ²	0
Number of results above MDA	0

54 RESULTS ARE GRAPHED

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

03/29/98

Removable Contamination - Gross Alpha Activity

Survey Package A1500 SURFACES & STRUCTURES Mechanical Penetration Room - Elevation 21 ft.

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm ²		
Mean	-0.2	MDA <10 net dpm/100 cm²	YES
Maximum	3.9	Results above 20 net dpm/100 cm ²	0
Minimum	-0.3	Number of results above MDA	0
Standard Deviation	0.6		
MDA	8.4		
Samples Reported	54		
Samples Prescribed	54		

54 RESULTS ARE GRAPHED

JLM

03/29/98

Removable Contamination

Survey Package : A1500 SURFACES & STRUCTURES Mechanical Penetration Room - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E088.XLS	05	FL1	C01	4	-0.3	-0.9	
SME1E088.XLS	05	FL1	C01	3	-0.3	5.2	
SME1E088.XLS	05	FL1	C01	2	-0.3	-0.9	
SME1E088.XLS	05	FL1	C01	1	-0.3	-0.9	
SME1E088.XLS	05	EQ3	C01	1	-0.3	5.2	
SME1E088.XLS	05	EQ2	C01	1	-0.3	-0.9	
SME1E088.XLS	05	EQ1	C01	1	-0.3	23.5	
SME1E088.XLS	04	FL1	C01	4	-0.3	11.3	
SME1E088.XLS	04	FL1	C01	3	3.9	5.2	
SME1E088.XLS	04	FL1	C01	2	-0.3	-0.9	
SME1E088.XLS	04	FL1	C01	1	-0.3	11.3	
SME1E088.XLS	04	EQ3	C01	1	-0.3	-7.0	
SME1E088.XLS	04	EQ2	C01	1	-0.3	11.3	
SME1E088.XLS	04	EQ1	C01	1	-0.3	-0.9	
SME1E088.XLS	03	FL1	C01	2	-0.3	5.2	
SME1E088.XLS	03	FL1	C01	1	-0.3	11.3	
SME1E088.XLS	02	FL1	C01	3	-0.3	-0.9	
SME1E088.XLS	02	FL1	C01	2	-0.3	-0.9	
SME1E088.XLS	02	FL1	C01	1	-0.3	11.3	
SME1E088.XLS	02	EQ2	C01	2	-0.3	-0.9	
SME1E088.XLS	02	EQ2	C01	1	1.8	11.3	
SMETEU88.XLS	02	EQ1	C01	1	-0.3	11.3	
SIVIE I EUGO.ALS	01	VVS1	001	8	-0.3	5.2	
SIVIE LEUGO.ALS	01	VVS I	001	1	-0.3	17.4	
SIVIE I EUGO.ALS	01	VVS I	C01	0	-0.3	-0.9	
SMETEORS VIS	01	10/01	C01	5	-0.3	-7.0	
SMETEORR VIS	01	10/01	C01	4	-0.3	-7.0	
	01	10/01	C01	ა 2	-0.3	-0.9	
	01	10/01	C01	2	-0.3	-7.0	
SME1E088 XI S	01		C01	1	-0.3	-1.0	
SME1E088 XLS	01	FL1	C01	9	-0.3	-70	
SME1E088 XLS	01	FL1	C01	7	-0.3	52	
SME1E088 XLS	01	FL1	C01	6	-0.3	5.2	
SME1E088 XLS	01	FL1	C01	5	-0.3	-7.0	
SME1E088 XLS	01	FL1	C01	4	-0.3	-0.9	
SME1E088 XLS	01	FI 1	C01	3	-0.3	-0.0 17 4	
SME1E088 XLS	01	FI 1	C01	2	-0.3	11.3	
SME1E088 XLS	01	FL1	C01	10	-0.3	-0.9	
SME1E088 XLS	01	FL1	C01	1	-0.3	5.2	
	~ .	· _ ·		•		·	

NOTES: Activity reported in net dpm/100 cm².

Underlined values exceed the associated MDA.

Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity).

JLM

03/29/98

Removable Contamination

Survey Package : A1500 SURFACES & STRUCTURES Mechanical Penetration Room - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E088.XLS	01	FD1	C01	2	-0.3	-0.9	
SME1E088.XLS	01	FD1	C01	1	-0.3	11.3	
SME1E088.XLS	01	EQ2	C01	4	-0.3	11.3	
SME1E088.XLS	01	EQ2	C01	3	-0.3	-0.9	
SME1E088.XLS	01	EQ2	C01	2	-0.3	5.2	
SME1E088.XLS	01	EQ2	C01	1	-0.3	5.2	
SME1E088.XLS	01	EQ1	C01	2	-0.3	17.4	
SME1E088.XLS	01	EQ1	C01	1	-0.3	-7.0	
SME1E088.XLS	01	CL1	C01	6	-0.3	17.4	
SME1E088.XLS	01	CL1	C01	5	-0.3	5.2	
SME1E088.XLS	01	CL1	C01	4	-0.3	5.2	
SME1E088.XLS	01	CL1	C01	3	-0.3	5.2	
SME1E088.XLS	01	CL1	C01	2	-0.3	11.3	
SME1E088.XLS	01	CL1	C01	1	-0.3	11.3	

NOTES: Activity reported in net dpm/100 cm². Underlined values exceed the associated MDA. Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity). 54 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

DATAFILE & TENNELEC CALIBRATION SUMMARY

03/29/98

Removable Contamination

Survey Package : A1500 SURFACES & STRUCTURES Mechanical Penetration Room - Elevation 21 ft.

SURVEYDATE	XLS FILE	INST ID	S/N	CAL DUE	LAB TECHNICIAN
3/11/98	SME1E088.XLS	1	15632	8/5/98	JWD
			c	ALIBRATION DATE	VERIFIED AS ACCEPTABLE

03/29/98

Exposure Rate Measurements

Survey Package A1500 SURFACES & STRUCTURES Mechanical Penetration Room - Elevation 21 ft.

STATISTICAL SUMMARY

TESTS PERFORMED

23 RESULTS ARE GRAPHED

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

JLM

03/29/98

Exposure Rate Measurements

Survey Package: A1500 SURFACES & STRUCTURES Mechanical Penetration Room - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

FN F .4	1.05.077			DEVOON	COUNT	MSRMNT	
	UNIT	SURFACE	MATERIAL	REASON		LOCATION	RESULI
567 (2)	01	FL1	B0001	C01	60.00	00001	11.8
567 (2)	01	FL1	B0001	C01	60.00	00002	11.2
567 (2)	01	FL1	B0001	C01	60.00	00003	9.9
567 (2)	01	FL1	B0001	C01	60.00	00004	12.6
567 (2)	01	FL1	B0001	C01	60.00	00005	10.4
567 (2)	01	FL1	B0001	C01	60.00	00006	10.5
567 (2)	01	FL1	B0001	C01	60.00	00007	10.9
567 (2)	01	FL1	B0001	C01	60.00	80000	10.0
567 (2)	01	FL1	B0001	C01	60.00	00009	13.8
567 (2)	01	FL1	B0001	C01	60.00	00010	14.0
586 (2)	02	FL1	B0031	C01	60.00	00001	9.1
586 (2)	02	FL1	B0031	C01	60.00	00002	6.7
586 (2)	02	FL1	B0031	C01	60.00	00003	7.6
586 (2)	03	FL1	B0031	C01	60.00	00001	5.6
586 (2)	03	FL1	B0031	C01	60.00	00002	6.3
586 (2)	04	FL1	B0031	C01	60.00	00001	8.9
586 (2)	04	FL1	B0031	C01	60.00	00002	5.1
586 (2)	04	FL1	B0031	C01	60.00	00003	5.3
586 (2)	04	FL1	B0031	C01	60.00	00004	7.8
586 (2)	05	FL1	B0031	C01	60.00	00001	10.3
586 (2)	05	FL1	B0031	C01	60.00	00002	8.6
586 (2)	05	FL1	B0031	C01	60.00	00003	7.9
586 (2)	05	FL1	B0031	C01	60.00	00004	11.0

NOTES: Exposure rates reported in net μR/hr. Count times are reported in seconds. Underlined results did not meet the minimum required count time. Bold values exceed 15 μR/hr. 23 results are listed.

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/29/98

Exposure Rate Measurements

Survey Package: A1500 SURFACES & STRUCTURES Mechanical Penetration Room - Elevation 21 ft.

SURVEY		M23	350	[DETECTOR		
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	TECHNICIAN
2/9/98	567 (2)	98620	3/20/98	44-2	129304	4/19/98	DRK2986
					CALIBR	ATION DATES VE	RIFIED AS ACCEPTABLE
2/11/98	586 (2)	098620	3/20/98	44-2	129304	4/19/98	DRK2986
 					CALIBR	ATION DATES VE	RIFIED AS ACCEPTABLE

CHARACTERIZATION SUMMARY

SURVEY PACKAGE NUMBER : A1600

PACKAGE DESCRIPTION Includes: Elevations -2 ft., 20 ft. and 46 ft. SURFACES & STRUCTURES Electrical Penetration Room - All Elevations

SURVEY AREA DESCRIPTION Electrical Penetration Room

04/02/98

GENERAL HISTORICAL INFORMATION (Operational history, etc.)

The Electrical Penetration Room is a three-level room adjacent to the containment building. Construction of all elevations is painted concrete floor, and concrete walls and overhead. The first and second elevation contain mostly energized panels and busses. Cable trays are in the overhead. The third elevation is containment building penetrations. All elevations are accessed by a spiral staircase.

SUMMARY OF CHARACTERIZATION ACTIVITIES

Survey units were established for the areas as listed in the following Summary of Survey Units. Maps with the survey measurement locations for this package are included on the following pages.

Collected 32 direct measurements for total beta activity at the survey measurement locations indicated in the results listing report. Due to elevated background radioactivity in the survey area, a scan of a two meter area encompassing each survey measurement location was not performed. Each direct measurement for total beta activity was accompanied by a corresponding background measurement at the same location. The background was used in the calculation of net dpm/100cm².

Collected smear samples to analyze for removable alpha and beta activity at the same 32 survey locations as the direct measurements for total beta activity.

Collected one meter exposure rate measurements at 9 survey locations indicated in the results listing report.

The survey result statistical summaries, graphs and results listings are shown in the following individual reports including calibration summaries for the instruments used for each measurement type.

CHARACTERIZATION SURVEY RESULTS

o There were no direct measurements for total beta activity above the individual measurements' MDA (Maximum MDA was 654 dpm/100cm²).

- o There were no measurements for removable beta activity above MDA (37 dpm/100cm²).
- o There were no measurements for removable alpha activity above MDA (8 dpm/100cm²).
- o The average and maximum exposure rate measurement results were 12.7 μ R/hr and 14 μ R/hr, respectively.

REFERENCES (Documents, Interviews)

SUMMARY OF SURVEY UNIT(S)

03/29/98

OUTPUT BATCH SN = 273

PACKAGE A1600 SURFACES & STRUCTURES Electrical Penetration Room - All Elevations Includes: Elevations -2 ft., 20 ft. and 46 ft.

UNIT(S)	SURFACE(S)
01 - Electrical Penetration Room Elevation -2 ft.	CL1 (Ceiling) EQ1 (Breaker Panel) EQ2 (Cable Tray) FL1 (Floor) WS1 (Wall)
02 - Electrical Penetration Room Elevation 20 ft.	CL1 (Ceiling) EQ1 (Equipment -Breaker Panel) EQ2 (Equipment -Vent Duct) FL1 (Floor) WS1 (Wall)
03 - Electrical Penetration Room Elevation 46 ft.	CL1 (Ceiling) EQ1 (Equipment) EQ2 (Equipment -Breaker Panel) FL1 (Floor) WS1 (Wall)

REASON(S) CHARACTERIZATION SURVEY (C01)

MATERIALS	MAT'L CODE	MATERIAL DESCRIPTION	BETA BKGD (dpm/100 cm²)
	B0001	CONCRETE - PAINTED (INTERIOR)	478.0
	B0031	METAL - BARE	0.0
	B0036	METAL - PAINTED	0.0

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

SURVEY PACKAGE A1600

Electrical Penetration Room

Direct Measurements For Total Beta ActivitySurvey PackageA1600 SURFACES & STRUCTURES
Electrical Penetration Room - All Elevations
Includes: Elevations -2 ft., 20 ft. and 46 ft.

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm ²
Mean	-138.0
Maximum	557.1
Minimum	-789.7
Standard Deviation	269.7
MDA	653.8

Samples Reported	32
Samples Prescribed	32

Samples reported satisfy samples prescribed	YES
MDA <2000 net dpm/100 cm²	YES
Results above 2000 net dpm/100 cm²	0
Number of results above MDA	0

32 RESULTS ARE GRAPHED

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A1600 SURFACES & STRUCTURES Electrical Penetration Room - All Elevations Includes: Elevations -2 ft., 20 ft. and 46 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
411 (2)	01	CL1	B0001	C01	10	00001	628.6	-252.2
418 (2)	01	EQ1	B0036	C01	10	00001	561.1	43.3
418 (2)	01	EQ2	B0036	C01	10	00001	583.4	61.6
418 (2)	01	EQ2	B0036	C01	10	00002	583.4	-56.4
411 (2)	01	FL1	B0001	C01	10	00001	628.6	-453.7
411 (2)	01	FL1	B0001	C01	10	00002	628.6	-28.2
411 (2)	01	FL1	B0001	C01	10	00003	628.6	-789.7
411 (2)	01	WS1	B0001	C01	10	00001	628.6	-386.5
411 (2)	01	WS1	B0001	C01	10	00002	628.6	-274.6
411 (2)	01	WS1	B0001	C01	10	00003	628.6	-117.8
411 (2)	02	CL1	B0001	C01	10	00001	628.6	-5.8
418 (2)	02	EQ1	B0036	C01	10	00001	583.4	-103.5
418 (2)	02	EQ1	B0036	C01	10	00002	583.4	14.4
418 (2)	02	EQ2	B0036	C01	10	00001	583.4	132.4
418 (2)	02	FL1	B0001	C01	10	00001	650.8	300.6
418 (2)	02	FL1	B0001	C01	10	00002	653.8	-230.3
418 (2)	02	FL1	B0001	C01	10	00003	640.8	174.8
411 (2)	02	WS1	B0001	C01	10	00001	628.6	-28.2
411 (2)	02	WS1	B0001	C01	10	00002	628.6	-207.4
411 (2)	02	WS1	B0001	C01	10	00003	628.6	-632.9
411 (2)	02	WS1	B0001	C01	10	00004	628.6	-386.5
411 (2)	03	CL1	B0001	C01	10	00001	628.6	-408.9
418 (2)	03	EQ1	B0031	C01	10	00001	583.4	557.1
418 (2)	03	EQ1	B0031	C01	10	00002	583.4	-245.1
418 (2)	03	EQ2	B0036	C01	10	00001	583.4	-80.0
418 (2)	03	FL1	B0001	C01	10	00001	583.4	-156.9
418 (2)	03	FL1	B0001	C01	10	00002	583.4	244.2
418 (2)	03	FL1	B0001	C01	10	00003	583.4	-180.5
411 (2)	03	WS1	B0001	C01	10	00001	628.6	-73.0
411 (2)	03	WS1	B0001	C01	10	00002	628.6	-341.8
411 (2)	03	WS1	B0001	C01	10	00003	628.6	-162.6
411 (2)	03	WS1	B0001	C01	10	00004	628.6	-341.8

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds.

- Underlined values exceed the MDA.
 - Bold values exceed 2000 dpm/100 cm².
 - 32 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7a - 3/30/98

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/31/98

Direct Measurements For Total Beta Activity Survey Package: A1600 SURFACES & STRUCTURES **Electrical Penetration Room - All Elevations**

Includes: Elevations -2 ft., 20 ft. and 46 ft.

SURVEY		M23	350]	DETECTOR	PRE		
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	EFF	TECHNICIAN
1/15/98	411 (2)	126170	6/10/98	43-106	13387 8	6/8/98	.21	MBK5187
			<u> </u>			CALIBRATION I	DATES VER	IFIED AS ACCEPTABLE
1/15/98	418 (2)	129433	6/10/98	43-106	133864	6/5/98	.20	MEW9813
					<u></u>	CALIBRATION I	DATES VER	IFIED AS ACCEPTABLE

03/29/98

Samples Reported Samples Prescribed Removable Contamination - Gross Beta Activity

Survey Package A1600 SURFACES & STRUCTURES Electrical Penetration Room - All Elevations Includes: Elevations -2 ft., 20 ft. and 46 ft.

32

32

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm ²			
Mean	1.9			
Maximum	18.2			
Minimum	-6.3			
Standard Deviation	6.9			
MDA	37.3			

MDA <100 net dpm/100 cm²	YES
Results above 100 net dpm/100 cm ²	0
Number of results above MDA	0

32 RESULTS ARE GRAPHED

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

03/29/98

Removable Contamination - Gross Alpha Activity

Survey Package A1600 SURFACES & STRUCTURES Electrical Penetration Room - All Elevations Includes: Elevations -2 ft., 20 ft. and 46 ft.

32

STATISTICAL SUMMARY

TESTS PERFORMED

	Net apm/100 cm-				
Mean	-0.0	MDA			
Maximum	1.8	Resu			
Minimum	-0.2	Num			
Standard Deviation	0.6				
MDA	7.7				
Samples Reported	32				

Samples Prescribed

MDA <10 net dpm/100 cm²	YES
Results above 20 net dpm/100 cm ²	0
Number of results above MDA	0

32 RESULTS ARE GRAPHED

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

03/29/98

Removable Contamination

Survey Package: A1600 SURFACES & STRUCTURES Electrical Penetration Room - All Elevations Includes: Elevations -2 ft., 20 ft. and 46 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E096.XLS	03	WS1	C01	4	-0.2	-0.2	
SME1E096.XLS	03	WS1	C01	3	-0.2	-0.2	
SME1E096.XLS	03	WS1	C01	2	-0.2	-6.3	
SME1E096.XLS	03	WS1	C01	1	-0.2	18.2	
SME1E096.XLS	03	FL1	C01	3	1.8	-6.3	
SME1E096.XLS	03	FL1	C01	2	-0.2	-6.3	
SME1E096.XLS	03	FL1	C01	1	-0.2	5.9	
SME1E096.XLS	03	EQ2	C01	1	-0.2	-6.3	
SME1E096.XLS	03	EQ1	C01	2	-0.2	5.9	
SME1E096.XLS	03	EQ1	C01	1	-0.2	12.1	
SME1E096.XLS	03	CL1	C01	1	-0.2	-0.2	
SME1E096.XLS	02	WS1	C01	4	-0.2	-0.2	
SME1E096.XLS	02	WS1	C01	3	-0.2	5.9	
SME1E096.XLS	02	WS1	C01	2	-0.2	-0.2	
SME1E096.XLS	02	WS1	C01	1	1.8	5.9	
SME1E096.XLS	02	FL1	C01	3	1.8	12.1	
SME1E096.XLS	02	FL1	C01	2	-0.2	5.9	
SME1E096.XLS	02	FL1	C01	1	-0.2	18.2	
SME1E096.XLS	02	EQ2	C01	1	-0.2	-6.3	
SME1E096.XLS	02	EQ1	C01	2	-0.2	-0.2	
SME1E096.XLS	02	EQ1	C01	1	-0.2	-6.3	
SIVIETEU96.XLS	02	CL1	C01	1	-0.2	5.9	
SMETEU96.XLS	01	VVS1	C01	3	-0.2	5.9	
SMETEU96.XLS	01	VVS1	C01	2	-0.2	5.9	
SMETEU96.XLS	01	WS1	C01	1	-0.2	5.9	
SMETEU96.XLS	01	FL1	C01	3	-0.2	-6.3	
SIVIE LEU90.ALS	01	FL1	C01	2	-0.2	-6.3	
SMETEU90.XLS	01	FL1	C01	1	-0.2	-0.2	
SIVETEU90.ALS	01	EQ2	C01	2	-0.2	-0.2	
SIVIE LEUSO.ALS	01	EQ2	C01	1	-0.2	-0.2	
SIVIE LEU90.ALS	01	EQT	C01	1	-0.2	-0.2	
SIVIE LEUSO.VES	U1		CUT	Т	-0.2	-0.2	

NOTES:	Activity reported in net dpm/100 cm ² .
	Underlined values exceed the associated MDA.
	Bold values exceed 100.00 dpm/100 cm ² (beta activity) and/or 20.00 dpm/100 cm ² (alpha activity).
	32 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

DATAFILE & TENNELEC CALIBRATION SUMMARY

03/29/98 Removable Contamination Survey Package : A1600 SURFACES & STRUCTURES Electrical Penetration Room - All Elevations Includes: Elevations -2 ft., 20 ft. and 46 ft.

SURVEYDATE	XLS FILE	INST ID	S/N	CAL DUE	LAB TECHNICIAN
3/13/98	SME1E096.XLS	1	15632	8/5/98	JWD
		<u> </u>		CALIBRATION DATE	VERIFIED AS ACCEPTABLE

03/29/98

Exposure Rate Measurements

Survey Package A1600 SURFACES & STRUCTURES Electrical Penetration Room - All Elevations Includes: Elevations -2 ft., 20 ft. and 46 ft.

STATISTICAL SUMMARY

TESTS PERFORMED

9 RESULTS ARE GRAPHED

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

03/29/98

Exposure Rate Measurements

Survey Package : A1600 SURFACES & STRUCTURES Electrical Penetration Room - All Elevations Includes: Elevations -2 ft., 20 ft. and 46 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

FILE #	UNIT	SURFACE	MATERIAL	REASON	COUNT TIME	MSRMNT LOCATION	RESULT
608 (2) 608 (2) 608 (2) 608 (2) 608 (2) 608 (2) 608 (2) 608 (2)	01 01 02 02 02 03 03	FL1 FL1 FL1 FL1 FL1 FL1 FL1 FL1	B0001 B0001 B0001 B0001 B0001 B0001 B0001 B0001	C01 C01 C01 C01 C01 C01 C01 C01	60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00	00001 00002 00003 00001 00002 00003 00001 00002	12.2 12.9 10.1 14.0 12.0 13.2 13.7 13.0
608 (2)	03	FL1	B0001	C01	60.00	00003	13.1

NOTES: Exposure rates reported in net μ R/hr. Count times are reported in seconds. Underlined results did not meet the minimum required count time. Bold values exceed 15 μ R/hr. 9 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98 JLM

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/29/98

Exposure Rate Measurements

Survey Package : A1600 SURFACES & STRUCTURES Electrical Penetration Room - All Elevations Includes: Elevations -2 ft., 20 ft. and 46 ft.

SURVEY		M2350		[DETECTOR		
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	TECHNICIAN
2/17/98	608 (2)	126201	4/15/98	44-2	129300	5/12/98	BSM0490
·····					CALIBR	ATION DATES VI	ERIFIED AS ACCEPTABLE

Radiological Engineering & Field Services

Containment Spray Building - All Elevations

SURFACES & STRUCTURES

Maine Yankee Atomic Power Plant Site Characterization

04/02/98

CHARACTERIZATION SUMMARY

SURVEY PACKAGE NUMBERA1700

PACKAGE DESCRIPTION Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

SURVEY AREA DESCRIPTION Containment Spray Building

GENERAL HISTORICAL INFORMATION (Operational history, etc.)

The Containment Spray Building is a multi-level concrete structure housing pumps, valves and piping associated with emergency containment spray. The system used reactor water; therefore, all systems are contaminated. The lower elevations are posted Radiation, High Radiation and Contaminated areas. The floor, where concrete, is painted epoxy.

SUMMARY OF CHARACTERIZATION ACTIVITIES

Survey units were established for the areas as listed in the following Summary of Survey Units. Maps with the survey measurement locations for this package are included on the following pages.

Collected 194 direct measurements for total beta activity at the survey measurement locations indicated in the results listing report. Due to elevated background radioactivity in the survey area, a scan of a two meter area encompassing each survey measurement location was not performed. Each direct measurement for total beta activity was accompanied by a corresponding background measurement at the same location. The background was used in the calculation of net dpm/100cm².

Collected smear samples to analyze for removable alpha and beta activity at the same 194 survey locations as the direct measurements for total beta activity.

Collected one meter exposure rate measurements at 59 survey locations indicated in the results listing report.

The survey result statistical summaries, graphs and results listings are shown in the following individual reports including calibration summaries for the instruments used for each measurement type.

CHARACTERIZATION SURVEY RESULTS

o There were 107 direct measurements for total beta activity above 2000 dpm/100cm². There were 88 direct measurements for total beta activity above the individual measurements' MDA (Maximum MDA was 24,797 dpm/100cm²). The maximum measurement result was 4,968,088 dpm/100cm².

o There were 38 measurements for removable beta activity above MDA (37.3 dpm/100cm²) and 20 results greater than 100 dpm/100cm². The maximum measurement result was 19,727 dpm/100cm².

- o There were no measurements for removable alpha activity above MDA (7 dpm/100cm²).
- o The average and maximum exposure rate measurement results were 1.6 mR/hr and 9 mR/hr, respectively.

REFERENCES (Documents, Interviews)

SUMMARY OF SURVEY UNIT(S)

03/29/98

OUTPUT BATCH SN = 274

PACKAGE A1700 SURFACES & STRUCTURES Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

UNIT(S)	SURFACE(S)
01 - Elevation 30 ft. of Containment Spray Building	CL1 (Ceiling) EQ1 (Equipment) FL1 (Floor) WS1 (Wall)
02 - Elevation 21 ft. of Containment Spray Building	CL1 (Ceiling) EQ1 (Equipment) FL1 (Floor) SW1 (Stairway) SW2 (Stairway) WS1 (Wall)
03 - Elevation 12 ft. of Containment Spray Building	CL1 (Ceiling) EQ1 (Equipment) FL1 (Floor) SW1 (Stairs) WS1 (Wall)
04 - Elevation 4 ft. of Containment Spray Building	CL1 (Ceiling) EQ1 (Equipment) FL1 (Floor) WS1 (Wall)
05 - Elevation -6 ft. of Containment Spray Building	CL1 (Ceiling) EQ1 (Equipment) FL1 (Floor) SW1 (Stairs) WS1 (Wall)
06 - Elevation 14 ft. of Containment Spray Building	CL1 (Ceiling) EQ1 (Equipment) FL1 (Floor) WS1 (Walls)

REASON(S) CHARACTERIZATION SURVEY (C01)

MATERIALS	MAT'L CODE	MATERIAL DESCRIPTION	BETA BKGD (dpm/100 cm²)
	B0001	CONCRETE - PAINTED (INTERIOR)	478.0
	B9999	OTHER	0.0

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

SURVEY PACKAGE A1700

Package # A 1700

Containment Spray Building Elevation 4 ft and -6 ft

SURVEY PACKAGE A1700

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

SURVEY PACKAGE A1700

Denotes Floor Locations (03FLI)
Denotes Wall Locations (03WSI)
Denotes star Locations (03SWI)
Denotes opening in floor.

03/31/98Direct Measurements For Total Beta ActivitySurvey PackageA1700 SURFACES & STRUCTURES
Containment Spray Building - All Elevations
Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

STATISTICAL SUMMARY

TESTS PERFORMED

	<u>Net dpm/100 cm²</u>
Mean	83,248.5
Maximum	4,968,087.8
Minimum	-87,887.3
Standard Deviation	431,253.4
MDA	24,796.5

Samples reported satisfy samples prescribed	YES
MDA <2000 net dpm/100 cm²	NO
Results above 2000 net dpm/100 cm²	107
Number of results above MDA	88

Samples Reported	194
Samples Prescribed	194

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A1700 SURFACES & STRUCTURES Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
487 (2)	01	CL1	B0001	C01	60	00001	1.811.8	896.7
487 (2)	01	CL1 ,	B0001	C01	60	00002	1,679.6	473.7
487 (2)	01	CL1	B0001	C01	60	00003	2,371.0	50.7
487 (2)	01	CL1	B0001	C01	60	00004	1,967.8	209.4
487 (2)	01	CL1	B0001	C01	60	00005	1,847.7	156.5
487 (2)	01	CL1	B0001	C01	60	00006	1,934.3	103.6
487 (2)	. 01	CL1	B0001	C01	60	00007	1,619.4	949.6
487 (2)	01	CL1	B0001	C01	60	00008	1,556.5	1,161.1
487 (2)	01	CL1	B0001	C01	60	00009	1,490.7	1,055.4
487 (2)	01	CL1	B0001	C01	60	00010	1,373.3	843.9
492 (2)	01	EQ1	B9999	C01	60	00001	1,967.6	651.1
492 (2)	01	EQ1	B9999	C01	60	00002	2,304.1	-596.9
492 (2)	01	EQ1	B9999	C01	60	00003	4,670.4	-1,844.9
492 (2)	01	EQ1	B9999	C01	60	00004	1,840.6	922.4
492 (2)	01	EQ1	B9999	C01	60	00005	2,633.6	-976.7
484 (2)	01	FL1	B0001	C01	60	00001	2,158.6	-812.2
484 (2)	01	FL1	B0001	C01	60	00002	2,716.7	1,360.3
484 (2)	01	FL1	B0001	C01	60	00003	1,769.6	<u>1,973.0</u>
484 (2)	01	FL1	B0001	C01	60	00004	2,303.9	1,137.4
484 (2)	01	FL1	B0001	C01	60	00005	2,540.5	<u>2,363.0</u>
484 (2)	01	FL1	B0001	C01	60	00006	2,856.9	1,081.7
484 (2)	01	FL1	B0001	C01	60	00007	2,319.4	1,081.7
484 (2)	01	FL1	B0001	C01	60	00008	2,090.5	1,583.1
484 (2)	01	FL1	B0001	C01	60	00009	2,001.9	858.9
484 (2)	01	FL1	B0001	C01	60	00010	2,224.4	1,527.4
484 (2)	01	FL1	B0001	C01	60	00011	2,319.4	301.9
484 (2)	01	FL1	B0001	C01	60	00012	2,175.2	79.1
492 (2)	01	FL1	B0001	C01	60	00013	2,182.5	1,475.4
484 (2)	01	FL1	B0001	C01	60	00014	2,240.6	79.1
484 (2)	01	FL1	B0001	C01	60	00015	2,609.8	1,694.5
492 (2)	01	FL1	B0001	C01	60	00016	2,228.9	10.4
492 (2)	01	FL1	B0001	C01	60	00017	2,086.3	<u>12,816.1</u>
492 (2)	01	FL1	B0001	C01	60	00018	1,914.3	878.5
492 (2)	01	FL1	B0001	C01	60	00019	2,182.5	1,312.6
492 (2)			B0001	C01	60	00020	1,859.4	1,366.9
485 (2)	01	VVST	BUUUT	001	60	00001	1,755.1	10.4
485 (2)	01	VVST	B0001	C01	60	00002	1,551.4	547.6
485 (2)	01	VVS1	B0001	001	60	00003	1,457.4	401.1
405 (2)	01	VVS1	B0001	001	60	00004	1,587.4	-38.4
485 (2)	01	VV51	BUUUT	CUT	60	00005	1,417.8	645.3

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds.

Underlined values exceed the MDA.

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A1700 SURFACES & STRUCTURES Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
485 (2)	01	WS1	B0001	C01	60	00006	1,569,5	-87.3
485 (2)	01	WS1	B0001	C01	60	00007	1.605.0	694.1
485 (2)	01	WS1	B0001	C01	60	00008	1.739.2	401.1
485 (2)	01	WS1	B0001	C01	60	00009	1,673.5	-819.9
485 (2)	01	WS1	B0001	C01	60	00010	1,495.8	59.2
485 (2)	01	WS1	B0001	C01	60	00011	1,847.9	401.1
485 (2)	01	WS1	B0001	C01	60	00012	2,047.1	59.2
485 (2)	01	WS1	B0001	C01	60	00013	1,706.7	-526.8
485 (2)	01	WS1	B0001	C01	60	00014	1,587.4	59.2
485 (2)	01	WS1	B0001	C01	60	00015	2,416.0	-1,210.6
487 (2)	01	WS1	B0001	C01	60	00016	2,064.7	843.9
487 (2)	01	WS1	B0001	C01	60	00017	1,882.9	-55.0
487 (2)	01	WS1	B0001	C01	60	00018	1,534.9	473.7
487 (2)	01	WS1	B0001	C01	60	00019	1,556.5	262.2
487 (2)	01	WS1	B0001	C01	60	00020	2,186.8	-266.5
568 (2)	02	CL1	B0001	C01	60	00001	9,314.4	<u>73,564.2</u>
568 (2)	02	CL1	B0001	C01	60	00002	9,806.6	81,699.4
568 (2)	02	CL1	B0001	C01	60	00003	14,704.	<u>14,495.5</u>
568 (2)	02	CL1	B0001	C01	60	00004	15,282.	<u>11,724.8</u>
568 (2)	02	CL1	B0001	C01	60	00005	20,139.	<u>9,484.6</u>
568 (2)	02	CL1	B0001	C01	60	00006	19,670.	-6,785.7
568 (2)	02	CL1	B0001	C01	60	00007	18,853.	<u>7,716.2</u>
568 (2)	02	EQ1	B9999	C01	60	00001	10,853.	<u>12,026.0</u>
568 (2)	02	EQ1	B9999	C01	60	00002	11,902.	943.2
568 (2)	02	EQ1	B9999	C01	60	00003	16,782.	<u>28,296.4</u>
568 (2)	02	EQ1	B9999	C01	60	00004	13,694.	<u>35,665.2</u>
568 (2)	02 62	EQ1	B9999	C01	60	00005	21,462.	<u>30,241.8</u>
568 (2)	02	EQ1	B9999	C01	60	00006	15,716.	-46,983.8
316 (2)	02	FL1	B0001	C01	60	00005	13,249.	<u>28,324.3</u>
316 (2)	02	FL1	B0001	C01	60	00006	10,959.	-1,805.6
316 (2)	02	FL1	B0001	C01	60	00007	5,079.2	-535.7
310 (2)	02	FL1	B0001	C01	00	80000	3,868.0	<u>8,584.1</u>
316 (2)	02	FLI	B9999	C01	60	00001	21,136.	<u>163,636.5</u>
310 (2)	02		B0000 B3333	001	00	00002	24,796.	<u>55,122.6</u>
310 (Z) 316 (D)	02		D9999	C01	00	00003	19,726.	299,9/1.3
310 (2)	02		D3333	C01	00	00004	10,957.	<u>550,245.7</u>
316 (2)	02	SVV I S\A/4	B0000 D3333	C01	00 60	00001	0,101.3	21,087.3
568 (2)	02	SVV 1 SVV1	B0000	C01	60	00002	9,300.2 15 ADE	-230.9
568 (2)	02	SIND	B0000	C01	60	00001	10,490.	16 211 4
300 (z)	~_	5002	09999	CUI	00	00002	19,005.	-10,211.4

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds.

Underlined values exceed the MDA.

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A1700 SURFACES & STRUCTURES Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
316 (2)	02	WS1	B0001	C01	60	00001	5.020.2	53.317.1
316 (2)	02	WS1	B0001	C01	60	00002	8,969.9	13.028.5
316 (2)	02	WS1	B0001	C01	60	00003	10.016.	6.737.0
316 (2)	02	WS1	B0001	C01	60	00004	14,090.	20.416.7
316 (2)	02	WS1	B0001	C01	60	00005	12,658.	-13,522.7
316 (2)	02	WS1	B0001	C01	60	00006	18,667.	791.8
316 (2)	02	WS1	B0001	C01	60	00007	17,415.	23,071.8
316 (2)	02	WS1	B0001	C01	60	80000	18,614.	-11,444.8
316 (2)	02	WS1	B0001	C01	60	00009	13,354.	-4,403.0
316 (2)	02	WS1	B0001	C01	60	00010	14,306.	40,965.0
316 (2)	02	WS1	B0001	C01	60	00011	14,809.	26,188.7
316 (2)	02	WS1	B0001	C01	60	00012	5,581.0	28,266.6
525 (2)	03	FL1	B0001	C01	60	00001	16,612.	<u>1,122,412.3</u>
525 (2)	03	FL1	B0001	C01	60	00002	15,322.	<u>71,649.4</u>
525 (2)	03	FL1	B0001	C01	60	00003	15,285.	<u>84,449.4</u>
525 (2)	03	FL1	B9999	C01	60	00004	19,652.	<u>1,592,351.1</u>
525 (2)	03	SW1	B0001	C01	60	00001	13,987.	<u>1,318,451.4</u>
525 (2)	03	SW1	B9999	C01	60	00002	18,490.	<u>2,457,539.7</u>
525 (2)	03	WS1	B0001	C01	60	00001	15,305.	<u>4,968,087.8</u>
525 (2)	03	WS1	B0001	C01	60	00002	16,592.	<u>156,625.5</u>
525 (2)	03	WS1	B0001	C01	60	00003	12,859.	<u>14,317.4</u>
525 (2)	03	WS1	B0001	C01	60	00004	16,347.	<u>117,738.9</u>
574 (2)	04	CL1	B0001	C01	60	00001	12,292.	<u>431,490.2</u>
5/4 (2)	04	CL1	B0001	C01	60	00002	11,212.	-13,264.4
574 (2)	04	CL1	B0001	C01	60	00003	7,014.0	<u>3,229.0</u>
574 (2)	04	CLT	B0001	C01	60	00004	17,163.	20,205.8
574 (2)	04	CL1	B0001	C01	60	00005	12,042.	-2,788.1
574 (2)	04		B0001	C01	00	00005	11,928.	-1,498.8
574 (Z)	04	CL1	B0001	C01	60	00007	7,411.8	<u>18,379.2</u>
574 (Z)	04		BOOOD		60	00008	15,750.	-48,937.2
574 (Z) 574 (D)	04	EQ1 EQ1	B9999	C01	00	00001	12 475	9,939.0
574 (2)	04	EQ1	B0000	C01	60	00002	12,475.	<u>Z3,030.7</u> <u>A6 525 2</u>
574(2)	04	EQ1	R0000	C01	60	00003	8 810 1	40,525.2
525 (2)	04	FI 1	B0001	C01	60	00004	0,019.1	<u>14,955.5</u> 30,810,0
525 (2)	04	FI 1	B0001	C01	60	00007	10 471	<u>-1 597 4</u>
525 (2)	04	FI 1	B0001	C01	60	00002	6 834 1	45 076 1
525 (2)	04	FI 1	B0001	C01	60	00004	19 849	76 954 3
525 (2)	04	FI 1	B0001	C01	60	00005	22 716	26 142 0
525 (2)	04	FI 1	B0001	C01	60	00006	14 333	38,895 2
		,	20001				1,000.	00,000.L

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds.

Underlined values exceed the MDA.

03/31/98

Direct Measurements For Total Beta Activity

Survey Package: A1700 SURFACES & STRUCTURES **Containment Spray Building - All Elevations** Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
525 (2)	04	FL1	B0001	C01	60	00007	8.365.3	184.464.1
574 (2́)	04	WS1	B0001	C01	60	00001	10,859.	17,573.3
574 (2)	04	WS1	B0001	C01	60	00002	9,729.4	6,989.7
574 (2)	04	WS1	B0001	C01	60	00003	8,156.2	6,989.7
574 (2)	04	WS1	B0001	C01	60	00004	12,993.	-5,474.4
574 (2)	04	WS1	B0001	C01	60	00005	14,557.	14,887.1
574 (2)	04	WS1	B0001	C01	60	00006	12,141.	217,051.4
574 (2)	04	WS1	B0001	C01	60	00007	12,621.	48,035.0
574 (2)	04	WS1	B0001	C01	60	00008	11,627.	<u>16,982.4</u>
574 (2)	04	WS1	B0001	C01	60	00009	21,888.	-87,887.3
574 (2)	04	WS1	B0001	C01	60	00010	15,663.	<u>19,238.8</u>
574 (2)	04	WS1	B0001	C01	60	00011	14,285.	<u>11,448.8</u>
574 (2)	04	WS1	B0001	C01	60	00012	6,409.7	1,509.8
574 (2)	04	WS1	B0001	C01	60	00013	11,616.	<u>23,536.7</u>
574 (2)	04	WS1	B0001	C01	60	00014	13,457.	<u>2,638.0</u>
574 (2)	04	WS1	B0001	C01	60	00015	12,144.	-2,143.5
574 (2)	04	WS1	B0001	C01	60	00016	10,246.	<u>23,160.7</u>
574 (2)	04	WS1	B0001	C01	60	00017	9,431.4	<u>12,577.0</u>
574 (2)	05	EQ1	B9999	C01	60	00001	5,801.7	<u>7,252.8</u>
574 (2)	05	EQ1	B9999	C01	60	00002	6,982.1	<u>3,707.0</u>
574 (2)	05	EQ1	B9999	C01	60	00003	4,665.8	<u>27,130.7</u>
574 (2)	05	EQ1	B9999	C01	60	00004	5,043.9	913.3
574 (2)	05	FL1	B0001	C01	60	00002	7,446.1	<u>43,468.4</u>
574 (2)	05	FL1	B0001	C01	60	00003	11,933.	<u>19,883.5</u>
574 (2)	05	FL1	B0001	C01	60	00004	5,231.6	<u>7,526.9</u>
574 (2)	05	FL1	B0001	C01	60	00006	11,382.	<u>29,392.7</u>
574 (2)	05	FL1	B0001	C01	60	00008	16,203.	-34,968.9
574 (2)	05	FL1	B0001	C01	60	00009	6,469.3	<u>200.934.0</u>
574 (2)	05	FL1	B0001	C01	60	00010	13,659.	-46,304.7
574 (2)	00	FL1	B9999	C01	60	00001	7,286.0	<u>270,555.2</u>
574 (2)	05	FL1	B9999	C01	60	00005	16,913.	<u>47,760.9</u>
574 (Z)	05		B9999	001	60	00007	20,731.	<u>111,209.1</u>
574 (2)	05	SVVI	B9999	C01	60	00001	7,484.6	<u>148,1/1.4</u>
574 (2) 574 (2)	05	SVVT	B9999	001	60	00002	8,026.5	<u>108,952.7</u>
514 (Z) 574 (D)	05	VVS1	B0001	01	00	00001	0,749.0	5,276.8
514 (2) 574 (2)	05	VVST	B0001		00	00002	0,∠4ŏ.U 2.600.0	4,249.7
574 (2)	05	10/01	B0001		00	00003	3,009.Z	1,993.3
574 (2)	05	10/01	B0001	C01	60	00004	3,133.3	<u>13,114.2</u> 12,060 5
574 (2)	05	10/01	B0001	C01	60	00005	4,000.0	13,000.0
574 (2)	00	1044	DUUUI	CUI	00	00000	11,103.	12,302.7

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds.

Underlined values exceed the MDA.

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A1700 SURFACES & STRUCTURES Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
574 (2)	05	WS1	B0001	C01	60	00007	7.797.2	1,348.6
574 (2)	05	WS1	B0001	C01	60	00008	23.078.	34.335.3
574 (2)	05	WS1	B0001	C01	60	00009	19,873.	31.165.6
574 (2)	05	WS1	B0001	C01	60	00010	18,595.	21.548.9
574 (2)	05	WS1	B0001	C01	60	00011	11,144.	-3.970.1
574 (2)	05	WS1	B0001	C01	60	00012	19,375.	16.015.3
574 (2)	05	WS1	B0001	C01	60	00013	17,309.	29.446.4
574 (2)	05	WS1	B0001	C01	60	00014	15,641.	14.564.8
574 (2)	05	WS1	B0001	C01	60	00015	16,339.	-4.614.8
574 (2)	05	WS1	B0001	C01	60	00016	6,253.2	27.888.4
574 (2)	05	WS1	B0001	C01	60	00017	5,735.0	2.691.7
574 (2́)	05	WS1	B0001	C01	60	00018	6,029.1	6,130.1
574 (2)	05	WS1	B0001	C01	60	00019	4,546.7	7,795.5
574 (2)	05	WS1	B0001	C01	60	00020	7,424.7	11,717.4
603 (2)	06	FL1	B0001	C01	60	00001	7,778.0	1,263.6
603 (2)	06	FL1	B0001	C01	60	00002	4,029.4	19,278.4
603 (2)	06	FL1	B0001	C01	60	00003	14,355.	17,917.8
603 (2)	06	FL1	B0001	C01	60	00004	10,075.	3,876.0
603 (2)	06	FL1	B0001	C01	60	00005	16,389.	47,579.6
603 (2)	06	FL1	B0001	C01	60	00006	4,285.3	610.5
603 (2)	06	FL1	B0001	C01	60	00007	15,207.	-4,342.2
603 (2)	06	FL1	B0001	C01	60	00008	3,746.5	-967.8
603 (2)	06	FL1	B0001	C01	60	00009	12,209.	<u>22,054.1</u>
603 (2)	06	FL1	B0001	C01	60	00010	14,054.	56,450.9
603 (2)	06	WS1.	B0001	C01	60	00001	15,504.	32,721.5
603 (2)	06	WS1	B0001	C01	60	00002	12,666.	-13,648.9
603 (2)	06	WS1	B0001	C01	60	00003	6,942.3	<u>12,801.8</u>
603 (2)	06	WS1	B0001	C01	60	00004	17,552.	-24,697.2
603 (2)	06	WS1	B0001	C01	60	00005	10,777.	<u>15,849.6</u>
603 (2)	06	WS1	B0001	C01	60	00006	4,663.2	<u>4,420.3</u>
603 (2)	06	WS1	B0001	C01	60	00007	7,786.4	<u>10,896.9</u>
603 (2)	06	WS1	B0001	C01	60	00008	10,995.	<u>12,203.1</u>
603 (2)	06	WS1	B0001	C01	60	00009	3,516.5	<u>2,080.0</u>
603 (2)	06	WS1	B0001	C01	60	00010	10,929.	392.8

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds. Underlined values exceed the MDA. Bold values exceed 2000 dpm/100 cm².

194 results are listed.

194 results are listed.

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/31/98		Direct Measurements For Total Beta Activity							
Survey Pa	ackage :	A1700 SU Containme Includes: E	RFACES & nt Spray Bi levations 3	& STRUCT uilding - All Oft, 21ft, 14	nd -11ft.				
SURVEY		M23	50		DETECTOR		PRE	//	
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	EFF	TECHNICIAN	
2/2/98	316 (2)	126196	4/15/98	44-40	119453	4/16/98	.11	DJH2236	
		·····			С	ALIBRATION	DATES VER	IFIED AS ACCEPTABLE	
1/26/98	484 (2)	98620	3/20/98	44-40	125861	3/22/98	.12	DRK2986	
					c	ALIBRATION	DATES VER	IFIED AS ACCEPTABLE	
1/26/98	485 (2)	126170	6/10/98	44-40	126170	4/29/98	.13	CWI5440	
					с	ALIBRATION	DATES VER	IFIED AS ACCEPTABLE	
1/27/98	487 (2)	126170	6/10/98	44-40	092644	4/29/98	.12	CWI5440	
					C	ALIBRATION	DATES VER	IFIED AS ACCEPTABLE	
1/27/98	492 (2)	98620	3/20/98	44-40	125861	3/22/98	.12	CWI5440	
					c	ALIBRATION	DATES VER	IFIED AS ACCEPTABLE	
2/2/98	525 (2)	080498	4/8/98	44-40	PR090001	4/8/98	.13	CWI5440	
					С	ALIBRATION	DATES VER	IFIED AS ACCEPTABLE	
2/9/98	568 (2)	126196	4/15/98	44-40	119453	4/16/98	.11	DJH2236	
					с	ALIBRATION	DATES VER	RIFIED AS ACCEPTABLE	
2/9/98	574 (2)	080498	4/8/98	44-40	PR090001	4/8/98	.12	CWI5440	
					c	ALIBRATION	DATES VER	RIFIED AS ACCEPTABLE	
2/16/98	603 (2)	080498	4/8/98	44-40	PR090001	4/8/98	.12	CWI5440	
					c	ALIBRATION	DATES VEF	RIFIED AS ACCEPTABLE	

03/29/98Removable Contamination - Gross Beta ActivitySurvey PackageA1700 SURFACES & STRUCTURES
Containment Spray Building - All Elevations
Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm ²	
Mean	177.5	M
Maximum	19,727.0	Re
Minimum	-6.3	
Standard Deviation	1,445.2	
MDA	37.3	
Samples Reported	194	

Samples Prescribed

194

MDA <100 net dpm/100 cm²	YES
Results above 100 net dpm/100 cm ²	20
Number of results above MDA	38

194 RESULTS ARE GRAPHED

Removable Contamination - Gross Alpha Activity 03/29/98 A1700 SURFACES & STRUCTURES Survey Package Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm ²
Mean	-0.0
Maximum	2.0
Minimum	-0.1
Standard Deviation	0.4
MDA	7.2
Samples Reported	194
Samples Prescribed	194

Samples Prescribed

MDA <10 net dpm/100 cm²	YES
Results above 20 net dpm/100 cm ²	0
Number of results above MDA	0

03/29/98

Removable Contamination

Survey Package : A1700 SURFACES & STRUCTURES Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	_
SMF1F093 XLS	06	WS1	C01	9	-0.1	5.9	
SMF1E093 XLS	06	WS1	C01	8	-0.1	-0.2	
SME1E093.XLS	06	WS1	C01	7	-0.1	30.5	
SMF1F093 XLS	06	WS1	C01	6	-0.1	5.9	
SME1E093 XLS	06	WS1	C01	5	-0.1	-0.2	
SME1E093 XLS	06	WS1	C01	4	-0.1	5.9	
SMF1F093 XLS	06	WS1	C01	3	-0.1	-0.2	
SMF1F093 XLS	06	WS1	C01	2	-0.1	-6.3	
SME1E093.XLS	06	WS1	C01	10	-0.1	-0.2	
SME1E093 XLS	06	WS1	C01	1	-0.1	5.9	
SME1E093.XLS	06	FL1	C01	9	-0.1	79.5	
SME1E093.XLS	06	FL1	C01	8	-0.1	-0.2	
SME1E093.XLS	06	FL1	C01	7	-0.1	-0.2	
SME1E093.XLS	06	FL1	C01	6	-0.1	18.2	
SME1E093.XLS	06	FL1	C01	5	-0.1	5.9	
SME1E093.XLS	06	FL1	C01	4	-0.1	24.3	
SME1E093.XLS	06	FL1	C01	3	-0.1	<u> 128.6</u>	
SME1E093.XLS	06	FL1	C01	2	-0.1	12.1	
SME1E093.XLS	06	FL1	C01	10	2.0	5.9	
SME1E093.XLS	06	FL1	C01	1	-0.1	24.3	
SME1E093.XLS	05	WS1	C01	9	-0.1	30.5	
SME1E093.XLS	05	WS1	C01	8	-0.1	-0.2	
SME1E093.XLS	05	WS1	C01	7	-0.1	5.9	
SME1E093.XLS	05	WS1	C01	6	-0.1	5.9	
SME1E093.XLS	05	WS1	C01	5	-0.1	-0.2	
SME1E093.XLS	05	WS1	C01	4	-0.1	-0.2	
SME1E093.XLS	05	WS1	C01	3	-0.1	12.1	
SME1E093.XLS	05	WS1	C01	20	-0.1	-0.3	
SME1E093.XLS	05	WS1	C01	2	-0.1	10.2	
SME1E093.XLS	05	WS1	C01	19	-0.1	-0.2	
SME1E093.XLS	05	WS1	C01	10	-0.1	10.2	
SME1E093.XLS	05	VVST	001	16	-0.1	-0.2	
SME1E093.XLS	05	VVS1	001	10	-0.1	-0.2	
SME1E093.XLS	05	WS1	C01	10	-0.1	30.5	
SME1E093.XLS	05	WST	C01	14	-0.1	<u> </u>	
SME1E093.XLS	05	WST	001	10	-0.1	10.0	
SME1E093.XLS	05	VVS1	C01	12	-0.1	50	
SME1E093.XLS	05	VVS1	001	11	-0.1	5.5 656 1	
SMETEU93.XLS	05	VVST		10	-0.1	50	
SME1E093.XLS	05	WST	CUT	ŀ	-0.1	0.9	

NOTES: Activity reported in net dpm/100 cm².

Underlined values exceed the associated MDA.

Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity).

03/29/98

Removable Contamination

Survey Package : A1700 SURFACES & STRUCTURES Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E093.XLS	05	SW1	C01	2	-0.1	79.5	
SME1E093.XLS	05	SW1	C01	1	-0.1	<u> </u>	
SME1E093.XLS	05	FL1	C01	9	-0.1	<u>1,649.9</u>	
SME1E093.XLS	05	FL1	C01	8	-0.1	30.5	
SME1E093.XLS	05	FL1	C01	7	-0.1	<u>2,189.7</u>	
SME1E093.XLS	05	FL1	C01	6	-0.1	55.0	
SME1E093.XLS	05	FL1	C01	5	2.0	<u>2,263.3</u>	
SME1E093.XLS	05	FL1	C01	4	-0.1	5.9	
SME1E093.XLS	05	FL1	C01	3	-0.1	24.3	
SME1E093.XLS	05	FL1	C01	2	-0.1	12.1	
SME1E093.XLS	05	FL1	C01	10	-0.1	36.6	
SME1E093.XLS	05	FL1	C01	1	-0.1	<u> </u>	
SME1E093.XLS	05	EQ1	C01	4	-0.1	5.9	
SME1E093.XLS	05	EQ1	C01	3	-0.1	<u>147.0</u>	
SME1E093.XLS	05	EQ1	C01	2	-0.1	5.9	
SME1E093.XLS	05	EQ1	C01	1	-0.1	12.1	
SME1E093.XLS	04	WS1	C01	9	-0.1	-6.3	
SME1E093.XLS	04	WS1	C01	8	-0.1	30.5	
SME1E093.XLS	04	WS1	C01	7	-0.1	12.1	
SME1E093.XLS	04	WS1	C01	6	-0.1	-0.2	
SME1E093.XLS	04	WS1	C01	5	-0.1	-0.2	
SME1E093.XLS	04	WS1	C01	4	-0.1	116.3	
SME1E093.XLS	04	WS1	C01	3	-0.1	18.2	
SME1E093.XLS	04	WS1	C01	2	-0.1	5.9	
SME1E093.XLS	04	WS1	C01	17	-0.1	5.9	
SME1E093.XLS	04	WS1	C01	16	-0.1	12.1	
SME1E093.XLS	04	WS1	C01	15	-0.1	-0.2	
SME1E093.XLS	04	WS1	C01	14	-0.1	5.9	
SME1E093.XLS	04	WS1	C01	13	-0.1	5.9	
SME1E093.XLS	04	WS1	CUI	12	-0.1	12.1	
SME1E093.XLS	04	WS1	C01	11	-0.1	48.9	
SME1E093.XLS	04	WS1	C01	10	-0.1	5.9	
SME1E093.XLS	04	VVS1	001		-0.1	5.9	
SME1E093.XLS	04	FL1	C01		-0.1	/ 3.4 477 7	
SME1E093.XLS	04	FL1	001	o c	-0.1	402.0	
SME1E093.XLS	04	FL1	C01	5	-0.1	<u> </u>	
SME1E093.XLS	04	FL1	001	4	-0.1	97.9	
SME1E093.XLS	04	FL1	C01	3	-0.1	170.2	
SME1E093.XLS	04	FL1	C01	2	-0.1	12.1	
SME1E093.XLS	04	FL1	C01	1	-0.1	5.9	

NOTES: Activity reported in net dpm/100 cm².

Underlined values exceed the associated MDA.

Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity).

03/29/98

Removable Contamination

Survey Package: A1700 SURFACES & STRUCTURES Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E093.XLS	04	EQ1	C01	4	-0.1	5.9	
SME1E093.XLS	04	EQ1	C01	3	-0.1	24.3	
SME1E093.XLS	04	EQ1	C01	2	-0.1	<u> 128.6</u>	
SME1E093.XLS	04	EQ1	C01	1	-0.1	42.7	
SME1E093.XLS	04	CL1	C01	8	-0.1	36.6	
SME1E093.XLS	04	CL1	C01	7	2.0	42.7	
SME1E093.XLS	04	CL1	C01	6	-0.1	18.2	
SME1E093.XLS	04	CL1	C01	5	-0.1	-0.2	
SME1E093.XLS	04	CL1	C01	4	-0.1	-0.2	
SME1E093.XLS	04	CL1	C01	3	-0.1	-0.2	
SME1E093.XLS	04	CL1	C01	2	-0.1	/3.4	
SME1E093.XLS	04	CL1	C01	1	-0.1	<u> </u>	
SME1E093.XLS	03	WS1	C01	4	-0.1	48.9	
SME1E093.XLS	03	WS1	C01	3	-0.1	55.U 20.5	
SME1E093.XLS	03	WS1	C01	2	2.0	30.5	
SME1E093.XLS	03	WS1	C01	1	-0.1	13.4	
SME1E093.XLS	03	SW1	C01	2	-0.1	19,121.0	
SME1E093.XLS	03	SVV1	C01	1	-0.1	<u> 2,373.7</u>	
SME1E093.XLS	03	FL1	C01	4	2.0	423.0	
SME1E093.XLS	03	FL1	C01	3	-0.1	40.9	
SME1E093.XLS	03	FL1	C01	2	-0.1	40.9 275 P	
SME1E093.XLS	03	FL1	C01	1	-0.1	275.0	
SME1E093.XLS	02	WS1	001	9	-0.1	-0.2	
SME1E093.XLS	02	VVS1	001	0	-0.1	-0.2	
SME1E093.XLS	02	WS1	C01	1	-0.1	-0.2	
SME1E093.XLS	02	WS1	C01	5	-0.1	-0.2	
SME1E093.XLS	02	WS1	C01	5	-0.1	-0.3	
SME1E093.XLS	02	WS1	C01	4	-0.1	6.2	
SME1E093.XLS	02	WS1	C01	3	-0.1	-0.3	
SME1E093.XLS	02	VVST	001	2 12	-0.1	-0.2	
SME1E093 XLS	02	VVS1	C01	12	-0.1	5.9	
SMETEU93.XLS	02	VVS I	C01	10	-0.1	-0.2	
SMETEU93.XLS	02	VVSI	C01	10	-0.1	-0.2	
SME1E093.XLS	02	VVST CIMO	C01	1 2	-0.1	18.2	
SMETEU93.XLS	02	SVVZ		<u> </u>	-0.1	10.2	
SMETEU93.XLS	02	SVV2	C01	1 2	-0.1	182.8	
SMETEU93.XLS	02	SVVI		<u>۲</u>	-0.1	18.2	
SMETEU93.XLS	02	5001	C01	1	-0.1	-0.2	
SMETE093.XLS	02	FL]	001	0 7	-0.1	-0.2	
SME1E093.XLS	02	FL1	CUI	1	-0.1	12.1	

NOTES: Activity reported in net dpm/100 cm².

Underlined values exceed the associated MDA.

Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity).

03/29/98

Removable Contamination

Survey Package : A1700 SURFACES & STRUCTURES Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E093,XLS	02	FL1	C01	6	-0.1	-0.2	
SME1E093.XLS	02	FL1	C01	5	-0.1	48.9	
SME1E093.XLS	02	FL1	C01	4	-0.1	5.9	
SME1E093.XLS	02	FL1	C01	3	-0.1	42.7	
SME1E093.XLS	02	FL1	C01	2	-0.1	-0.2	
SME1E093.XLS	02	FL1	C01	1	-0.1	-0.2	
SME1E093.XLS	02	EQ1	C01	6	-0.1	30.5	
SME1E093.XLS	02	EQ1	C01	5	-0.1	18.2	
SME1E093.XLS	02	EQ1	C01	4	-0.1	42.7	
SME1E093.XLS	02	EQ1	C01	3	-0.1	-6.3	
SME1E093.XLS	02	EQ1	C01	2	-0.1	18.2	
SME1E093.XLS	02	EQ1	C01	1	-0.1	-6.3	
SME1E093.XLS	02	CL1	C01	7	-0.1	-6.3	
SME1E093.XLS	02	CL1	C01	6	-0.1	-6.3	
SME1E093.XLS	02	CL1	C01	5	-0.1	-0.2	
SME1E093.XLS	02	CL1	C01	4	-0.1	-0.2	
SME1E093.XLS	02	CL1	C01	3	-0.1	-0.2	
SME1E093.XLS	02	CL1	C01	2	2.0	12.1	
SME1E093.XLS	02	CL1	C01	1	-0.1	18.2	
SME1E093.XLS	01	WS1	C01	9	-0.1	-6.3	
SME1E093.XLS	01	WS1	C01	8	-0.1	-6.3	
SME1E093.XLS	01	WS1	C01	7	-0.1	-0.2	
SME1E093.XLS	01	WS1	C01	6	-0.1	-0.2	
SME1E093.XLS	01	WS1	C01	5	2.0	-0.2	
SME1E093.XLS	01	WS1	C01	4	-0.1	5.9	
SME1E093.XLS	01	WS1	C01	3	-0.1	-0.3	
SME1E093.XLS	01	WS1	C01	20	-0.1	5.9	
SME1E093.XLS	01	WS1	C01	2	-0.1	-0.3	
SME1E093.XLS	01	WS1	C01	19	-0.1	-0.3	
SME1E093.XLS	01	WS1	C01	18	-0.1	-0.2	
SME1E093.XLS	01	WS1	C01	1/	-0.1	-0.2	
SME1E093.XLS	01	VVS1	001	10	-0.1	-0.2	
SME1E093.XLS	01	WS1	C01	10	-0.1	50.0	
SME1E093.XLS	01	WS1	001	14	-0.1	J.9 12 1	
SME1E093.XLS	01	WST		13	-0.1	50	
SMETEU93.XLS	01	VVST		12	-0.1	J. J	
SMETE093.XLS	01	VVST	001	11	-0.1	-0.2	
SME1E093.XLS	01	VVST		10	-0.1	-0.3	
SMETEU93.XLS	01	VVST	C01	1	-0,1	-0.3	
SMETEU93.XLS	01	FLI	CUI	9	-0.1	-0.5	

NOTES: Activity reported in net dpm/100 cm².

Underlined values exceed the associated MDA.

Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity).

03/29/98

Removable Contamination

Survey Package : A1700 SURFACES & STRUCTURES Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E093 XLS	01	FL1	C01	8	-0.1	12.1	
SME1E093.XLS	01	FL1	C01	7	-0.1	5.9	
SME1E093,XLS	01	FL1	C01	6	-0.1	-6.3	
SME1E093.XLS	01	FL1	C01	5	2.0	-0.2	
SME1E093.XLS	01	FL1	C01	4	-0.1	5.9	
SME1E093.XLS	01	FL1	C01	3	-0.1	5.9	
SME1E093.XLS	01	FL1	C01	20	-0.1	5.9	
SME1E093.XLS	01	FL1	C01	2	-0.1	12.1	
SME1E093.XLS	01	FL1	C01	19	-0.1	-0.2	
SME1E093.XLS	01	FL1	C01	18	-0.1	-0.2	
SME1E093.XLS	01	FL1	C01	17	-0.1	-0.2	
SME1E093.XLS	01	FL1	C01	16	-0.1	24.3	
SME1E093.XLS	01	FL1	C01	15	-0.1	30.5	
SME1E093.XLS	01	FL1	C01	14	-0.1	5.9	
SME1E093.XLS	01`	FL1	C01	13	-0.1	-0.2	
SME1E093.XLS	01	FL1	C01	12	-0.1	5.9	
SME1E093.XLS	01	FL1	C01	11	-0.1	-0.2	
SME1E093.XLS	01	FL1	C01	10	-0.1	-0.2	
SME1E093.XLS	01	FL1	C01	1	-0.1	5.9	
SME1E093.XLS	01	EQ1	C01	5	-0.1	12.1	
SME1E093.XLS	01	EQ1	C01	4	-0.1	5.9	
SME1E093.XLS	01	EQ1	C01	3	-0.1	61.1	
SME1E093.XLS	01	EQ1	C01	2	-0.1	24.3	
SME1E093.XLS	01	EQ1	C01	1	-0.1	5.9	
SME1E093.XLS	01	CL1	C01	9	-0.1	-6.3	
SME1E093.XLS	01	CL1	C01	8	-0.1	12.1	
SME1E093.XLS	01	CL1	C01	7	-0.1	-0.2	
SME1E093.XLS	01	CL1	C01	6	-0.1	5.9	
SME1E093.XLS	01	CL1	C01	5	-0.1	12.1	
SME1E093.XLS	01	CL1	C01	4	-0.1	-0.2	
SME1E093.XLS	01	CL1	C01	3	-0.1	12.1	
SME1E093.XLS	01	CL1	C01	2	-0.1	5.9	
SME1E093.XLS	01	CL1	C01	10	-0.1	12.1	
SME1E093.XLS	01	CL1	C01	1	-0.1	-6.3	

NOTES: Activity reported in net dpm/100 cm². Underlined values exceed the associated MDA. Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity). 194 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98 DBACORR Documentation :aProgDBACORR:F_0330.FSL OUTPUT BATCH SN = 322

DATAFILE & TENNELEC CALIBRATION SUMMARY

Re	movable Co	ntaminatio	n	
A1700 SURFACES Containment Spray I Includes: Elevations	& STRUCT Building - All 30ft, 21ft, 14	URES Elevations ft, 12 ft., 4	ft., -6 ft and -1	1ft.
XLS FILE	INST ID	S/N	CAL DUE	LAB TECHNICIAN
SME1E093.XLS	1	15632	8/5/98	JWD
		(ALIBRATION DATE	VERIFIED AS ACCEPTABLE
	Re A1700 SURFACES Containment Spray I Includes: Elevations XLS FILE SME1E093.XLS	Removable Col A1700 SURFACES & STRUCT Containment Spray Building - All Includes: Elevations 30ft, 21ft, 14 XLS FILE INST ID SME1E093.XLS 1	Removable Contamination A1700 SURFACES & STRUCTURES Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 XLS FILE INST ID S/N SME1E093.XLS 1 15632	Removable Contamination A1700 SURFACES & STRUCTURES Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -1 XLS FILE INST ID S/N CAL DUE SME1E093.XLS 1 15632 8/5/98 CALIBRATION DATE

Exposure Rate Measurements 03/31/98 A1700 SURFACES & STRUCTURES Survey Package **Containment Spray Building - All Elevations** Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft. STATISTICAL SUMMARY **TESTS PERFORMED** µR/hr Samples reported satisfy samples prescribed YES 1,597.6 Mean 9,040.8 Maximum 21.6 Minimum 2,124.1 Standard Deviation 59 Samples Reported Samples Prescribed 59 9045 6783.75 microR/hr 4522.5 2261.25 0 -MEASUREMENT LOCATION µR/hr **59 RESULTS ARE GRAPHED**

59 RESULTS ARE GRAPHE

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7a - 3/30/98

03/31/98

Exposure Rate Measurements

Survey Package : A1700 SURFACES & STRUCTURES Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

RESULTS LISTING - SORTED BY SURFACE CODE

FILE #	UNIT	SURFACE	MATERIAL	REASON	COUNT TIME	MSRMNT LOCATION	RESULT
573 (2)	. 01	FL1	B0001	C01	60.00	00001	59.8
573 (2)	01	FL1	B0001	C01	60.00	00002	43.7
573 (2)	01	FL1	B0001	C01	60.00	00003	28.5
573 (2)	01	FL1	B0001	C01	60.00	00004	30.5
573 (2)	01	FL1	B0001	C01	60.00	00005	29.0
573 (2)	01	FL1	B0001	C01	60.00	00006	48.0
573 (2)	01	FL1	B0001	C01	60.00	00007	62.7
573 (2)	01	FL1	B0001	C01	60.00	00008	33.8
573 (2)	01	FL1	B0001	C01	60.00	00009	21.6
573 (2)	01	FL1	B0001	C01	60.00	00010	25.1
573 (2)	01	FL1	B0001	C01	60.00	00011	26.3
573 (2)	01	FL1	B0001	C01	60.00	00012	24.0
573 (2)	01	FL1	B0001	C01	60.00	00013	25.2
573 (2)	01	FL1	B0001	C01	60.00	00014	25.2
573 (2)	01	FL1	B0001	C01	60.00	00015	30.5
573 (2)	01	FL1	B0001	C01	60.00	00016	28.1
573 (2)	01	FL1	B0001	C01	60.00	00017	27.8
573 (2)	01	FL1	B0001	C01	60.00	00018	46.5
573 (2)	01	FL1	B0001	C01	60.00	00019	30.1
573 (2)	01	FL1	B0001	C01	60.00	00020	32.9
610 (2)	02	FL1	B0001	C01	0.00	00001	<u>1053.1</u>
610 (2)	02	FL1	B0001	C01	0.00	00002	<u>1288.2</u>
610 (2)	02	FL1	B0001	C01	0.00	00003	<u>980.9</u>
610(2)	02	FLI	BUUUT	001	0.00	00004	1223.7
610 (2)	02	FL1	B0001	C01	0.00	00005	3803.3
610 (2) 610 (2)	02		B0001	C01	0.00	00000	2007.0
610 (2) 610 (2)	02		B0001	C01	0.00	00007	<u>039,5</u> 540,0
610(2)	02		B0001	C01	0.00	00008	2705 1
610 (2)	03	FLI El 1	B0001	C01	0.00	00001	2762.6
610 (2)	03		B0001 B0001	C01	0.00	00002	<u>3703.0</u> AA87.4
610 (2)	03		B0001	C01	0.00	00003	7274 6
610 (2)	04	FI 1	B0001	C01	0.00	00004	1973.8
610 (2)	04	FI 1	B0001	C01	0.00	00007	3763.4
610 (2)	04	FL1	B9999		0.00	00003	8227
610 (2)	04	FI 1	B9999	C01	0.00	00004	3473.8
610 (2)	04	FI 1	B9999	C01	0.00	00005	4405 6
610 (2)	04	FL1	B9999	C01	0.00	00006	1606.8
610 (2)	04	FI 1	B9999	C01	0.00	00007	1940.8
610 (2)	05	FL1	B0001	C01	0.00	00002	322.0
							<u> </u>

NOTES: Exposure rates reported in net µR/hr. Count times are reported in seconds.

Underlined results did not meet the minimum required count time. Bold values exceed 15 µR/hr.

03/31/98

Exposure Rate Measurements

Survey Package : A1700 SURFACES & STRUCTURES Containment Spray Building - All Elevations Includes: Elevations 30ft, 21ft, 14ft, 12 ft., 4 ft., -6 ft and -11ft.

RESULTS LISTING - SORTED BY SURFACE CODE

FILE #	UNIT	SURFACE	MATERIAL	REASON	COUNT TIME	MSRMNT LOCATION	RESULT
610 (2)	05	FL1	B0001	C01	0.00	00003	1231.0
610 (2)	05	FL1	B0001	C01	0.00	00004	248.1
610 (2)	05	FL1	B0001	C01	0.00	00006	1557.0
610 (2)	05	FL1	B0001	C01	0.00	00008	1588.5
610 (2)	05	FL1	B0001	C01	0.00	00010	306.5
610 (2)	05	FL1	B9999	C01	0.00	00001	373.7
610 (2)	05	FL1	B9999	C01	0.00	00005	3786.6
610 (2)	05	FL1	B9999	C01	0.00	00007	3498.3
610 (2)	05	FL1	B9999	C01	0.00	00009	366.3
610 (2)	06	FL1	B0001	C01	0.00	00001	1396.5
610 (2)	06	FL1	B0001	C01	0.00	00002	223.8
610 (2)	06	FL1	B0001	C01	0.00	00003	9040.8
610 (2)	06	FL1	B0001	C01	0.00	00004	<u>2451.1</u>
610 (2)	06	FL1	B0001	C01	0.00	00005	<u>762.8</u>
610 (2)	06	FL1	B0001	C01	0.00	00006	377.3
610 (2)	06	FL1	B0001	C01	0.00	00007	<u>4162.8</u>
610 (2)	06	FL1	B0001	C01	0.00	00008	409.1
610 (2)	06	FL1	B0001	C01	0.00	00009	<u>8562.6</u>
610 (2)	06	FL1	B0001	C01	0.00	00010	3497.6

NOTES: Exposure rates reported in net μR/hr. Count times are reported in seconds. Underlined results did not meet the minimum required count time. Bold values exceed 15 μR/hr. 59 results are listed.

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/31/98			Exposure	Rate Measur	ements		
Survey Pa	ckage :	A1700 SURF Containment Includes: Elev	FACES & S Spray Buildi vations 30ft,	TRUCTURES ng - All Eleva 21ft, 14ft, 12	S itions ft., 4 ft., -6	6 ft and -11ft.	
SURVEY	CII C 4	M23			DETECTOR		T E OL IN HOLMAN
		1051 5/10		MODEL	5/N	CAL DUE	TECHNICIAN
2/9/98	573 (2)	98620	3/20/98	44-2	129304	4/19/98	DRK2986
				· · · · · · · · · · · · · · · · · · ·	CALIBR	ATION DATES V	ERIFIED AS ACCEPTABLE
2/17/98	610 (2)	098620	3/20/98	44-38	091090	7/23/98	DRK2986
					CALIBR	ATION DATES V	ERIFIED AS ACCEPTABLE

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

CHARACTERIZATION SUMMARY

SURVEY PACKAGE NUMBER A1800

SURFACES & STRUCTURES Aux Feed Pump Rm - Elevation 21 ft.

PACKAGE DESCRIPTION

04/28/98

SURVEY AREA DESCRIPTION Auxiliary Feed Pump Room

GENERAL HISTORICAL INFORMATION (Operational history, etc.)

Constructed in 1968 to house the Auxilary Feed Pump, this small room has a large diameter gravel floor and painted concrete walls and ceiling as well as a steel sliding door.

SUMMARY OF CHARACTERIZATION ACTIVITIES

Survey units were established for the areas as listed in the following Summary of Survey Units. Maps with the survey measurement locations for this package are included on the following pages.

Collected 32 direct measurements for total beta activity at the survey measurement locations indicated in the results listing report. Due to elevated background radioactivity in the survey area, a scan of a two meter area encompassing each survey measurement location was not performed. Each direct measurement for total beta activity was accompanied by a corresponding background measurement at the same location. The background was used in the calculation of net dpm/100cm².

Collected smear samples to analyze for removable alpha and beta activity at the same 32 survey locations as the direct measurements for total beta activity.

Collected one meter exposure rate measurements at 10 survey locations indicated in the results listing report.

Collected 1 composite surface debris sample from floor surface for gamma spectral analysis.

The survey result statistical summaries, graphs and results listings are shown in the following individual reports including calibration summaries for the instruments used for each measurement type.

CHARACTERIZATION SURVEY RESULTS

o There were 3 direct measurements for total beta activity above the individual measurements' MDA (Maximum MDA was 2,019 dpm/100cm²). There were no direct measurements for total beta activity above 2000 dpm/100cm².

o There were no measurements for removable beta activity above MDA (37 dpm/100cm²).

- o There were no measurements for removable alpha activity above MDA (7 dpm/100cm²).
- o The average and maximum exposure rate measurement results were 19 μR/hr and 35 μR/hr, respectively.

o The sample analyzed by gamma spectroscopy indicated plant-derived radionuclide activity above MDA. The analysis of the sample indicated the presence of Co-60 and Cs-137.

REFERENCES (Documents, Interviews)

SUMMARY OF SURVEY UNIT(S)

OUTPUT BATCH SN = 275

PACKAGE A1800 SURFACES & STRUCTURES Aux Feed Pump Rm - Elevation 21 ft.

UNIT(S)

03/29/98

SURFACE(S)

01 - Aux Feed Pump Rm

CL1 (Ceiling) EQ1 (Plant Equipment (exterior)) FL1 (Floor Surface) WS1 (Wall Surface (interior))

REASON(S) CHARACTERIZATION SURVEY (C01)

MATERIALS	MAT'L CODE	MATERIAL DESCRIPTION	BETA BKGD (dpm/100 cm ²)
	B0001	CONCRETE - PAINTED (INTERIOR)	478.0
	B0031	METAL - BARE	0.0
	B0036	METAL - PAINTED	0.0
	B9999	OTHER	0.0

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

SURVEY PACKAGE A1800

Auxiliary Feed Pump Room

North

04/02/98

Direct Measurements For Total Beta Activity

Survey Package A1800 SURFACES & STRUCTURES Aux Feed Pump Rm - Elevation 21 ft.

STATISTICAL SUMMARY

TESTS PERFORMED

Net dpm/100 cm²Mean147.5Maximum1,278.4Minimum-446.2Standard Deviation422.4MDA2,018.6

Samples Reported	32
Samples Prescribed	32

Samples reported satisfy samples prescribed	YES
MDA <2000 net dpm/100 cm²	NO
Results above 2000 net dpm/100 cm ²	0
Number of results above MDA	3

32 RESULTS ARE GRAPHED

04/02/98

Direct Measurements For Total Beta Activity

Survey Package : A1800 SURFACES & STRUCTURES Aux Feed Pump Rm - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
519 (2)	01	CL1	B0001	C01	10	00001	715.7	-196.1
519 (2)	01	CL1	B0001	C01	10	00002	722.1	-176.3
519 (2)	01	CL1	B0001	C01	10	00003	681.8	89.7
519 (2)	01	CL1	B0001	C01	10	00004	698.0	-192.1
519 (2)	01	CL1	B0001	C01	10	00005	791.1	220.8
519 (2)	01	CL1	B0001	C01	10	00006	791.9	455.0
519 (2)	01	EQ1	B0031	C01	10	00004	872.8	520.1
519 (2)	01	EQ1	B0036	C01	10	00001	602.2	135.0
519 (2)	01	EQ1	B0036	C01	10	00002	587.5	-170.7
519 (2)	01	EQ1	B0036	C01	10	00003	663.1	285.9
519 (2)	01	FL1	B0001	C01	10	00001	700.8	58.0
519 (2)	01	FL1	B0001	C01	10	00002	696.1	220.8
519 (2)	01	FL1	B0001	C01	10	00003	702.7	-69.1
519 (2)	01	FL1	B0001	C01	10	00004	781.2	-112.7
519 (2)	01	FL1	B0001	C01	10	00005	680.8	46.1
519 (2)	01	FL1	B0001	C01	10	00006	708.3	-92.9
519 (2)	01	FL1	B0001	C01	10	00007	709.2	-216.0
519 (2)	01	FL1	B9999	C01	10	80000	778.7	<u>1,115.6</u>
519 (2)	01	FL1	B9999	C01	10	00009	880.2	<u>1,218.8</u>
519 (2)	01	FL1	B9999	C01	10	00010	809.0	1,278.4
519 (2)	01	WS1	B0001	C01	10	00001	641.8	-156.4
519 (2)	01	WS1	B0001	C01	10	00002	667.1	149.3
519 (2)	01	WS1	B0001	C01	10	00003	2,018.6	645.6
519 (2)	01	WS1	B0001	C01	10	00004	754.9	-251.7
519 (2)	01	WS1	B0001	C01	10	00005	666.1	105.6
519 (2)	01	WS1	B0001	C01	10	00006	645.9	208.8
519 (2)	01	WS1	B0001	C01	10	00007	653.1	61.9
519 (2)	01	WS1	B0001	C01	10	00008	664.1	208.8
519 (2)	01	WS1	B0001	C01	10	00009	718.4	-446.2
519 (2)	01	WS1	B0001	C01	10	00010	829.5	196.9
519 (2)	01	WS1	B0001	C01	10	0001 1	885.3	-287.4
519 (2)	01	WS1	B0001	C01	10	00012	814.6	-132.6

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds. Underlined values exceed the MDA.

- Bold values exceed 2000 dpm/100 cm².
- 32 results are listed.

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

04/02/98

Direct Measurements For Total Beta Activity

Survey Package : A1800 SURFACES & STRUCTURES Aux Feed Pump Rm - Elevation 21 ft.

SURVEY		M23	350	[DETECTOR		POST	
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	EFF	TECHNICIAN
1/30/98	519 (2)	98620	3/20/98	43-106	128919	3/20/98	.20	DRK2986
					(DATES VERI	FIED AS ACCEPTABLE

03/29/98

Removable Contamination - Gross Beta Activity

Survey Package A1800 SURFACES & STRUCTURES Aux Feed Pump Rm - Elevation 21 ft.

32

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm ²
Mean	2.3
Maximum	36.6
Minimum	-6.3
Standard Deviation	11.3
MDA	37.3
Samples Reported	32

Samples Prescribed

MDA <100 net dpm/100 cm²	YES
Results above 100 net dpm/100 cm ²	0
Number of results above MDA	0

32 RESULTS ARE GRAPHED

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

DBACORR Documentation :aProgDBACORR:F_0321.FSL OUTPUT BATCH SN = 275

03/29/98

Removable Contamination - Gross Alpha Activity

Survey Package A1800 SURFACES & STRUCTURES Aux Feed Pump Rm - Elevation 21 ft.

STATISTICAL SUMMARY

TESTS PERFORMED

32 RESULTS ARE GRAPHED

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

DBACORR Documentation :aProgDBACORR:F_0321.FSL OUTPUT BATCH SN = 275

03/29/98

Removable Contamination

Survey Package: A1800 SURFACES & STRUCTURES Aux Feed Pump Rm - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E098,XLS	01	WS1	C01	9	-0.2	-6.3	
SME1E098.XLS	01	WS1	C01	8	-0.2	-6.3	
SME1E098.XLS	01	WS1	C01	7	-0.2	5.9	
SME1E098.XLS	01	WS1	C01	6	-0.2	-6.3	
SME1E098.XLS	01	WS1	C01	5	-0.2	-0.2	
SME1E098.XLS	01	WS1	C01	4	-0.2	-6.3	
SME1E098.XLS	01	WS1	C01	3	-0.2	-6.3	
SME1E098.XLS	01	WS1	C01	2	-0.2	-0.2	
SME1E098.XLS	01	WS1	C01	12	-0.2	-0.2	
SME1E098.XLS	01	WS1	C01	11	-0.2	-0.2	
SME1E098.XLS	01	WS1	C01	10	-0.2	-0.2	
SME1E098.XLS	01	WS1	C01	1	-0.2	12.1	
SME1E098.XLS	01	FL1	C01	9	-0.2	-0.2	
SME1E098.XLS	01	FL1	C01	8	-0.2	-0.2	
SME1E098.XLS	01	FL1	C01	7	-0.2	18.2	
SME1E098.XLS	01	FL1	C01	6	-0.2	12.1	
SME1E098.XLS	01	FL1	C01	5	1.8	-6.3	
SME1E098.XLS	01	FL1	C01	4	-0.2	-6.3	
SME1E098.XLS	01	FL1	C01	3	-0.2	5.9	
SME1E098.XLS	01	FL1	C01	2	-0.2	-0.2	
SME1E098.XLS	01	FL1	C01	10	-0.2	-6.3	
SME1E098.XLS	01	FL1	C01	1	-0.2	36.6	
SME1E098.XLS	01	EQ1	C01	4	-0.2	-6.3	
SME1E098.XLS	01	EQ1	C01	3	-0.2	5.9	
SME1E098.XLS	01	EQ1	C01	2	-0.2	-6.3	
SME1E098.XLS	01	EQ1	C01	1	-0.2	-6.3	
SME1E098.XLS	01	CL1	C01	6	1.8	12.1	
SME1E098.XLS	01	CL1	C01	5	-0.2	5.9	
SME1E098.XLS	01	CL1	C01	4	-0.2	36.6	
SME1E098.XLS	01	CL1	C01	3	-0.2	-6.3	
SME1E098.XLS	01	CL1	C01	2	-0.2	5.9	
SME1E098.XLS	01	CL1	C01	1	-0.2	-6.3	

NOTES: Activity reported in net dpm/100 cm².

Underlined values exceed the associated MDA.

Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity).

32 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

DATAFILE & TENNELEC CALIBRATION SUMMARY

03/29/98

Removable Contamination

Survey Package : A1800 SURFACES & STRUCTURES Aux Feed Pump Rm - Elevation 21 ft.

SURVEYDATE	XLS FILE	INST ID	S/N	CAL DUE	LAB TECHNICIAN
3/13/98	SME1E098.XLS	1	15632	8/5/98	JWD
			C	ALIBRATION DATE	VERIFIED AS ACCEPTABLE

03/29/98

Exposure Rate Measurements

Survey Package A1800 SURFACES & STRUCTURES Aux Feed Pump Rm - Elevation 21 ft.

STATISTICAL SUMMARY

TESTS PERFORMED

10 RESULTS ARE GRAPHED

µR/hr

03/29/98

Exposure Rate Measurements

Survey Package : A1800 SURFACES & STRUCTURES Aux Feed Pump Rm - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

FILE #	UNIT	SURFACE	MATERIAL	REASON	COUNT TIME	MSRMNT LOCATION	RESULT	
521 (2) 521 (2)	01	FL1	B0001	C01	60.00	00001	13.8	
521 (2)	01	FL1	B0001	C01	60.00	00002	12.0	
521 (2) 521 (2)	01 01	FL1 FL1	B0001 B0001	C01 C01	60.00 60.00	00004 00005	20.1 14.3	
521 (2) 521 (2)	01 01	FL1 FL1	B0001 B0001	C01	60.00	00006	15.1	
521 (2)	01	FL1	B9999	C01	60.00	00008	22.9	
521 (2) 521 (2)	01	FL1 FL1	B9999 B9999	C01 C01	60.00 60.00	00009 00010	34.9 25.4	

NOTES: Exposure rates reported in net μR/hr. Count times are reported in seconds. Underlined results did not meet the minimum required count time. Bold values exceed 15 μR/hr. 10 results are listed.

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/29/98

Exposure Rate Measurements

Survey Package : A1800 SURFACES & STRUCTURES Aux Feed Pump Rm - Elevation 21 ft.

		 M23	350		DETECTOR		
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	TECHNICIAN
1/30/98	521 (2)	126201	4/15/98	44-2	129300	5/12/98	BSM0490
					CALIBR	ATION DATES VE	RIFIED AS ACCEPTABLE

GAMMA SPECTRAL ANALYSIS RESULTS LISTING

NUMBER OF SAMPLES REPORTED =1

OUTPUT BATCH SN = 211

04/28/98

Survey Package A1800 SURFACES & STRUCTURES Aux Feed Pump Rm - Elevation 21 ft.

JNIT : 01	SURFACE	:FL1 R	EASON : C01	ANALYSIS	TYPE CODE	LAB06	
SAMPLE TYP	PE OR SURFACE S SAMPLE L	AMPLED: Surf	ace Code description 01	n not located			
LAB ID	SPECTRUM	MASS (grams)	COUNT TIME (seconds)	NUCLIDE	ACTIVITY (pCi/g)	MDA (pCi/g)	ERROR (± pCi/g)
MYX19	ENV00352	1.00	1200	Co-57	< 134.00	134.00	0.00
				Co-60	215.00	129.00	89.30
				Cs-134	< 162.00	162.00	0.00
				Cs-137	921.00	145.00	138.00
				K-40	46200.00	967.00	,160.00
				Mn-54	< 123.00	123.00	0.00

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

04/02/98

CHARACTERIZATION SUMMARY

SURVEY PACKAGE NUMBER A 1900

SURFACES & STRUCTURES HV-9 Area - Elevation 21 ft.

PACKAGE DESCRIPTION

SURVEY AREA DESCRIPTION HV-9 Area

GENERAL HISTORICAL INFORMATION (Operational history, etc.)

Constructed in 1968, the HV-9 structure has painted concrete floor and walls, and corrugated metal ceiling. It contains the condensate return pit (approximately 9m deep).

SUMMARY OF CHARACTERIZATION ACTIVITIES

Survey units were established for the areas as listed in the following Summary of Survey Units. Maps with the survey measurement locations for this package are included on the following pages.

Collected 60 direct measurements for total beta activity at the survey measurement locations indicated in the results listing report. Due to elevated background radioactivity in the survey area, a scan of a two meter area encompassing each survey measurement location was not performed. Each direct measurement for total beta activity was accompanied by a corresponding background measurement at the same location. The background was used in the calculation of net dpm/100cm².

Collected smear samples to analyze for removable alpha and beta activity at the same 60 survey locations as the direct measurements for total beta activity.

Collected one meter exposure rate measurements at 15 survey locations indicated in the results listing report.

The survey result statistical summaries, graphs and results listings are shown in the following individual reports including calibration summaries for the instruments used for each measurement type.

CHARACTERIZATION SURVEY RESULTS

o There were 1 direct measurements for total beta activity above 2000 dpm/100cm². There were 2 direct measurements for total beta activity above the individual measurements' MDA (Maximum MDA was 6,318 dpm/100cm²). The maximum measurement result was 2,563 dpm/100cm².

o There were no measurements for removable beta activity above MDA (36 dpm/100cm²).

o There were no measurements for removable alpha activity above MDA (8 dpm/100cm²).

o The average and maximum exposure rate measurement results were 91 μ R/hr and 183 μ R/hr, respectively.

REFERENCES (Documents, Interviews)

SUMMARY OF SURVEY UNIT(S)

03/29/98

OUTPUT BATCH SN = 276

PACKAGE A1900 SURFACES & STRUCTURES HV-9 Area - Elevation 21 ft.

UNIT(S)

01 - HV-9 Area

SURFACE(S)

CL1 (Ceiling) EQ1 (Equipment: HV-9) EQ2 (Equipment: HV-7) FL1 (Floor Surface) WS1 (Wall Surface (interior))

REASON(S) CHARACTERIZATION SURVEY (C01)

MATERIALS	MAT'L CODE	MATERIAL DESCRIPTION	BETA BKGD (dpm/100 cm²)
	B0001	CONCRETE - PAINTED (INTERIOR)	478.0
	B0031	METAL - BARE	0.0
	B0036	METAL - PAINTED	0.0
	B9999	OTHER	0.0

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

SURVEY PACKAGE A1900

Equipment Access Area (HV-9)

03/31/98

Direct Measurements For Total Beta Activity

Survey Package A1900 SURFACES & STRUCTURES HV-9 Area - Elevation 21 ft.

....

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm
Mean	130.6
Maximum	2,563.4
Minimum	-2,861.2
Standard Deviation	725.3
MDA	6,318.1

Samples Reported				
Samples Prescribed	60			

Samples reported satisfy samples prescribed	YES
MDA <2000 net dpm/100 cm²	NO
Results above 2000 net dpm/100 cm²	1
Number of results above MDA	2

60 RESULTS ARE GRAPHED

JLM

03/31/98

Direct Measurements For Total Beta Activity

Survey Package: A1900 SURFACES & STRUCTURES HV-9 Area - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
	01			004			4.5504	
386 (2)	01	CL1	B0036	C01	10	00001	1,552.1	70.6
386 (2)	01	CL1	B0036	001	10	00002	1,503.0	282.2
386 (2)	01	CL1	B0036	C01	10	00003	1,531.8	258.7
386 (2)	01	CL1	B0036	C01	10	00004	1,762.4	3/6.3
386 (2)	01	CL1	B0036	C01	10	00005	1,762.4	2,563.5
386 (2)	01	CL1	B0036	C01	10	00006	2,194.0	1,058.3
386 (2)	01	EQ1	B0031	C01	10	00002	1,190.3	-305.7
386 (2)	01	EQ1	B0031	C01	10	00003	1,107.6	282.2
386 (2)	01	EQ1	B0031	C01	10	00004	1,447.8	-493.9
386 (2)	01	EQ1	B0031	C01	10	00005	1,622.8	1,128.9
386 (2)	01	EQ1	B0031	C01	10	00006	1,060.6	776.1
386 (2)	01	EQ1	B9999	C01	10	00001	1,987.2	47.0
386 (2)	01	EQ2	B0031	C01	10	00001	1,531.8	-917.2
386 (2)	01	EQ2	B0031	C01	10	00002	1,660.7	305.7
386 (2)	01	EQ2	B0031	C01	10	00003	1,583.9	47.0
386 (2)	01	EQ2	B0031	C01	10	00004	1,871.7	987.8
386 (2)	01	EQ2	B0031	C01	10	00007	1,671.9	-258.7
386 (2)	01	EQ2 ⁴	B0031	C01	10	00008	1,277.3	423.3
386 (2)	01	EQ2	B999 9	C01	10	00005	2,099.1	-164.6
386 (2)	01	EQ2	B9999	C01	10	00006	2,024.2	70.6
386 (2)	01	FL1	B0001	C01	10	00001	1,376.8	227.5
386 (2)	01	FL1	B0001	C01	10	00002	1,490.4	792.0
386 (2)	01	FL1	B0001	C01	10	00003	1,965.3	-7.6
386 (2)	01	FL1	B0001	C01	10	00004	1,817.9	392.2
386 (2)	01	FL1	B0001	C01	10	00005	1,751.8	15.9
386 (2)	01	FL1	B0001	C01	10	00006	1,834.9	1,779.7
386 (2)	01	FL1	B0001	C01	10	00007	1,363.1	368.6
386 (2)	01	FL1	B0001	C01	10	00008	1,226.9	-572.1
386 (2)	01	FL1	B0001	C01	10	00009	1,066.6	439.2
386 (2)	01	FL1	B0001	C01	10	00010	1,078.5	-454.5
386 (2)	01	FL1	B0001	C01	10	00011	979.2	62.9
386 (2)	01	FL1	B0001	C01	10	00012	1,030.1	-242.8
386 (2)	01	FL1	B0001	C01	10	00013	1,011.4	-7.6
386 (2)	01	FL1	B0001	C01	10	00014	1,349.2	-101.7
386 (2)	01	FL1	B0031	C01	10	00015	1,130.3	47.0
386 (2)	01	WS1	B0001	C01	10	00001	1,078.5	<u>1,215.3</u>
386 (2)	01	WS1	B0001	C01	10	00002	1,072.6	392.2
386 (2)	01	WS1	B0001	C01	10	00003	1,101.8	204.0
386 (2)	01	WS1	B0001	C01	10	00004	1,452.2	-31.2
386 (2)	01	WS1	B0001	C01	10	00005	1,686.7	-478.0

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds.

Underlined values exceed the MDA.

Bold values exceed 2000 dpm/100 cm².

03/31/98

Direct Measurements For Total Beta Activity

Survey Package: A1900 SURFACES & STRUCTURES HV-9 Area - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

FILE #	UNIT	SURFACE	MATERIAL	REASON	COUNT TIME	MSRMNT LOCATION	MDA	RESULT
386 (2)	01	WS1	B0001	C01	10	00006	1.147.0	-78.2
386 (2)	01	WS1	B0001	C01	10	00007	867.8	15.9
386 (2)	01	WS1	B0001	C01	10	00008	1.084.4	792.0
386 (2)	01	WS1	B0001	C01	10	00009	1,152.5	-501.5
386 (2)	01	WS1	B0001	C01	10	00010	1.090.2	-31.2
386 (2)	01	WS1	B0001	C01	10	00011	1,376.8	-478.0
386 (2)	01	WS1	B0001	C01	10	00012	1,376.8	-242.8
386 (2)	01	WS1	B0001	C01	10	00013	1,465.0	368.6
386 (2)	01	WS1	B0001	C01	10	00014	1,564,1	-54.7
386 (2)	01	WS1	B0001	C01	10	00015	1,848,4	227.5
386 (2)	01	WS1	B0001	C01	10	00016	1.376.8	-172.3
386 (2)	01	WS1	B0001	C01	10	00017	1,615.1	1,027.1
386 (2)	01	WS1	B0001	C01	10	00018	1,817.9	509.8
386 (2)	01	WS1	B0001	C01	10	00019	1,999.6	-78.2
386 (2)	01	WS1	B0001	C01	10	00020	2,332.8	274.6
398 (2)	01	WS1	B0036	C01	60	00021	6,318.1	-448.8
398 (2)	01	WS1	B0036	C01	60	00022	3,443.5	-2.861.2
398 (2)	01	WS1	B0036	C01	60	00023	5,750.5	-897.6
398 (2)	01	WS1	B0036	C01	60	00024	6,138,7	-673.2
398 (2)	01	WS1	B0036	C01	60	00025	4,262.7	561.0

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds. Underlined values exceed the MDA.

Bold values exceed 2000 dpm/100 cm².

60 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7a - 3/30/98

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A1900 SURFACES & STRUCTURES HV-9 Area - Elevation 21 ft.

SURVEY		M2350			DETECTOR				
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	EFF	TECHNICIAN	
1/14/98	386 (2)	126201	4/15/98	43-106	133858	5/3/98	.20	BSM0490	
<u></u>						CALIBRATION [DATES VER	IFIED AS ACCEPTABLE	
1/15/98	398 (2)	98620	3/20/98	44-40	12586 1	3/22/98	.11	DRK2986	
	CALIBRATION DATES VERIFIED AS ACCEPTABLE								

03/29/98

Removable Contamination - Gross Beta Activity

Survey Package A1900 SURFACES & STRUCTURES HV-9 Area - Elevation 21 ft.

60

60

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm
Mean	0.6
Maximum	24.6
Minimum	-5.8
Standard Deviation	7.0
MDA	36.1

Samples Reported

Samples Prescribed

MDA <100 net dpm/100 cm²	YES
Results above 100 net dpm/100 cm ²	0
Number of results above MDA	0

60 RESULTS ARE GRAPHED

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

JLM

03/29/98

Removable Contamination - Gross Alpha Activity

Survey Package A1900 SURFACES & STRUCTURES HV-9 Area - Elevation 21 ft.

60

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm ²
Mean	-0.1
Maximum	1.8
Minimum	-0.3
Standard Deviation	0.6
MDA	8.2
Samples Reported	60

Samples Prescribed

MDA <10 net dpm/100 cm²	YES
Results above 20 net dpm/100 cm ²	0
Number of results above MDA	0

60 RESULTS ARE GRAPHED

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

03/29/98

Removable Contamination

Survey Package: A1900 SURFACES & STRUCTURES HV-9 Area - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

		•		MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E081.XLS	01	WS1	C01	9	-0.3	-5.8	
SME1E081.XLS	01	WS1	C01	8	-0.3	-5.8	
SME1E081.XLS	01	WS1	C01	7	-0.3	-5.8	
SME1E081.XLS	01	WS1	C01	6	-0.3	0.3	
SME1E081.XLS	01	WS1	C01	5	-0.3	-5.8	
SME1E081.XLS	01	WS1	C01	4	-0.3	-5.8	
SME1E081.XLS	01	WS1	C01	3	-0.3	0.3	
SME1E081.XLS	01	WS1	C01	25	-0.3	-5.8	
SME1E081.XLS	01	WS1	C01	24	-0.3	6.4	
SME1E081.XLS	01	WS1	C01	23	-0.3	-5.8	
SME1E081.XLS	01	WS1	C01	22	-0.3	18.5	
SME1E081.XLS	01	WS1	C01	21	-0.3	-5.8	
SME1E081.XLS	01	WS1	C01	20	-0.3	0.3	
SME1E081.XLS	01	WS1	C01	2	-0.3	-5.8	
SME1E081.XLS	01	WS1	C01	19	-0.3	0.3	
SME1E081.XLS	01	WS1	C01	18	-0.3	6.4	
SME1E081.XLS	01	WS1	C01	17	-0.3	0.3	
SME1E081.XLS	01	WS1	C01	16	-0.3	6.4	
SME1E081.XLS	01	WS1	C01	15	-0.3	6.4	
SME1E081.XLS	01	WS1	C01	14	-0.3	0.3	
SME1E081.XLS	01	WS1	C01	13	-0.3	-5.8	
SME1E081.XLS	01	WS1	C01	12	-0.3	0.4	
SME1E081.XLS	01	WS1	C01	11	-0.3	-0.0	
SME1E081.XLS	01	WS1	C01	10	-0.3	0.4	
SME1E081.XLS	01	WS1	C01	1	-0.3	0.3	
SME1E081.XLS	01	FL1	C01	9	1.7	0.3	
SME1E081.XLS	01	FL1	C01	8	-0.3	-0.0	
SME1E081.XLS	01	FL1	001	(-0.3	-5.0	
SME1E081.XLS	01	FL1	C01	5	-0.3	5.8	
SME1E081.XLS	01	FL1	C01	5	-0.3	-5.0	
SME1E081.XLS	01	FL1	C01	4	-0.3	-5.8	
SMETEU8T.XLS	01		C01	2	-0.5 -0.3	0.3	
SME1E081.XLS	01		C01	15	-0.5	0.0	
SMETEU81.XLS	01		C01	14	-0.5	12.4	
SIMETEU8T.ALS	01		C01	12	-0.3	12.4	
	01		C01	10	-0.3	12.4	
SIVIE LEUGI ALS	01		C01	11	-0.3	-5.8	
SIVIE I EUG I.ALS			C01	10	-0.3	0.3	
SIVIE I EUG I.ALS	01	FI 1	C01	1	-0.3	0.3	
SIVIE 1 EVO LALO	01	· L I	001	•	0.0		

NOTES: Activity reported in net dpm/100 cm².

Underlined values exceed the associated MDA.

Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity).

DBACORR Documentation :aProgDBACORR:F_0330.FSL OUTPUT BATCH SN = 276

03/29/98

Removable Contamination

Survey Package : A1900 SURFACES & STRUCTURES HV-9 Area - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E081.XLS	01	EQ2	C01	8	-0.3	6.4	
SME1E081.XLS	01	EQ2	C01	7	-0.3	-5.8	
SME1E081.XLS	01	EQ2	C01	6	-0.3	6.4	
SME1E081.XLS	01	EQ2	C01	5	-0.3	24.6	
SME1E081.XLS	01	EQ2	C01	4	-0.3	0.3	
SME1E081.XLS	01	EQ2	C01	3	1.7	-5.8	
SME1E081.XLS	01	EQ2	C01	2	-0.3	6.4	
SME1E081.XLS	01	EQ2	C01	1	-0.3	6.4	
SME1E081.XLS	01	EQ1	C01	6	-0.3	-5.8	
SME1E081.XLS	01	EQ1	C01	5	-0.3	-5.8	
SME1E081.XLS	01	EQ1	C01	4	-0.3	-5.8	
SME1E081.XLS	01	EQ1	C01	3	-0.3	12.4	
SME1E081.XLS	01	EQ1	C01	2	-0.3	0.3	
SME1E081.XLS	01	EQ1	C01	1	1.7	-5.8	
SME1E081.XLS	01	CL1	C01	6	-0.3	-5.8	
SME1E081.XLS	01	CL1	C01	5	-0.3	-5.8	
SME1E081.XLS	01	CL1	C01	4	-0.3	0.3	
SME1E081.XLS	01	CL1	C01	3	1.7	-5.8	
SME1E081.XLS	01	CL1	C01	2	-0.3	6.4	
SME1E081.XLS	01	CL1	C01	1	-0.3	6.4	

NOTES: Activity reported in net dpm/100 cm². Underlined values exceed the associated MDA. Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity). 60 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

DATAFILE & TENNELEC CALIBRATION SUMMARY

03/29/98	Removable Contamination							
Survey Package : A1900 SURFACES & STRUCTURES HV-9 Area - Elevation 21 ft.								
SURVEYDATE	XLS FILE	INST ID	S/N	CAL DUE	LAB TECHNICIAN			
3/9/98	SME1E081.XLS	[.] 1	15632	8/5/98	JWD			
			C	ALIBRATION DATE	VERIFIED AS ACCEPTABLE			

03/29/98

Exposure Rate Measurements

Survey Package A1900 SURFACES & STRUCTURES HV-9 Area - Elevation 21 ft.

STATISTICAL SUMMARY

TESTS PERFORMED

03/29/98

Exposure Rate Measurements

Survey Package: A1900 SURFACES & STRUCTURES

HV-9 Area - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

FILE #	UNIT	SURFACE	MATERIAL	REASON	COUNT TIME	MSRMNT LOCATION	RESULT	
609 (2)	01	FL1	B0001	C01	60.00	00001	77.2	
609 (2)	01	FL1	B0001	C01	60.00	00002	130.5	
609 (2)	01	FL1	B0001	C01	60.00	00003	182.9	
609 (2)	01	FL1	B0001	C01	60.00	00004	180.4	
609 (2)	01	FL1	B0001	C01	60.00	00005	140.7	
609 (2)	01	FL1	B0001	C01	60.00	00006	80.4	
609 (2)	01	FL1	B0001	C01	60.00	00007	63.3	
609 (2)	01	FL1	B0001	C01	60.00	00008	52.2	
609 (2)	01	FL1	B0001	C01	60.00	00009	51.9	
609 (2)	01	FL1	B0001	C01	60.00	00010	70.8	
609 (2)	01	FL1	B0001	C01	60.00	00011	45.0	
609 (2)	01	FL1	B0001	C01	60.00	00012	56.2	
609 (2)	01	FL1	B0001	C01	60.00	00013	59. 1	
609 (2)	01	FL1	B0001	C01	60.00	00014	88.3	
609 (2)	01	FL1	B0031	C01	60.00	00015	80.4	

NOTES: Exposure rates reported in net µR/hr. Count times are reported in seconds. Underlined results did not meet the minimum required count time. Bold values exceed 15 µR/hr. 15 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98 JLM

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/29/98

Exposure Rate Measurements

Survey Package: A1900 SURFACES & STRUCTURES HV-9 Area - Elevation 21 ft.

SURVEY		M2350		M2350 DETECTOR			
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	TECHNICIAN
2/17/98	609 (2)	126201	4/15/98	44-2	129300	5/12/98	BSM0490
					CALIBR	ATION DATES VE	RIFIED AS ACCEPTABLE

CHARACTERIZATION SUMMARY

SURVEY PACKAGE NUMBER A2100

04/28/98

PACKAGE DESCRIPTION Includes: RWST TK-4 and RWST Greenhouse SURFACES & STRUCTURES RWST TK-4 - Elevation 21 ft.

SURVEY AREA DESCRIPTION Reactor Water Storage Tank TK-4 (RWST)

GENERAL HISTORICAL INFORMATION (Operational history, etc.)

The Reactor Water Storage Tank (RWST) is a 325,000 gallon tank used for the storage or reactor cavity water when the cavity is not flooded. A structural steel and fiberglass building adjacent to the tank contains piping and valves RWST Greenhouse (Greenhouse) has a sealed asphalt floor. Valves and piping in the Greenhouse are posted Radiation/Contaminated Areas. It also contains the 18,000 gallon SCAT tank. Construction is a stainless steel tank with an = 20' concrete (bioshield) base.

SUMMARY OF CHARACTERIZATION ACTIVITIES

Survey units were established for the areas as listed in the following Summary of Survey Units. Maps with the survey measurement locations for this package are included on the following pages.

Collected 46 direct measurements for total beta activity at the survey measurement locations indicated in the results listing report. Due to elevated background radioactivity in the survey area, a scan of a two meter area encompassing each survey measurement location was not performed. Each direct measurement for total beta activity was accompanied by a corresponding background measurement at the same location. The background was used in the calculation of net dpm/100cm².

Collected smear samples to analyze for removable alpha and beta activity at the same 46 survey locations as the direct measurements for total beta activity.

Collected one meter exposure rate measurements at 6 survey locations indicated in the results listing report.

Collected 2 composite surface debris samples from floor surface for gamma spectral analysis.

The survey result statistical summaries, graphs and results listings are shown in the following individual reports including calibration summaries for the instruments used for each measurement type.

CHARACTERIZATION SURVEY RESULTS

o There were 24 direct measurements for total beta activity above 2000 dpm/100cm². There were 11 direct measurements for total beta activity above the individual measurements' MDA (Maximum MDA was 21,587 dpm/100cm²). The maximum measurement result was 54,719 dpm/100cm².

o There was 1 measurement for removable beta activity above MDA (38 dpm/100cm²) and no results greater than 100 dpm/100cm². The maximum measurement result was 72.4 dpm/100cm².

o There were no measurements for removable alpha activity above MDA (8.4 dpm/100cm²).

o The average and maximum exposure rate measurement results were 0.7 mR/hr and 1.1 mR/hr, respectively.

o Of the 2 samples analyzed by gamma spectroscopy, both samples indicated plant-derived radionuclide

Maine Yankee Atomic Power Plant - Site Characterization Survey CHARACTERIZATION SUMMARY

04/28/98

activity above MDA. The analysis of the samples indicated the presence of Co-60, Cs-134 and Cs-137 in one sample and Co-60 and Cs-137 in the other.

REFERENCES (Documents, Interviews)

SUMMARY OF SURVEY UNIT(S)

OUTPUT BATCH SN = 277

03/29/98

PACKAGE A2100 SURFACES & STRUCTURES RWST TK-4 - Elevation 21 ft. Includes: RWST TK-4 and RWST Greenhouse

UNIT(S)

SURFACE(S)

01 - RWST TK-4

02 - RWST Greenhouse

WE1 (Includes Tank, Bioshield, and Base)

CL1 (Ceiling: Plastic) CL2 (Ceiling: I Beams) EQ1 (Equipment: Pipe and insulation (blanket, fiberglass, reflective)) FL1 (Floor Surface) WE1 (Exterior Walls) WS1 (Wall Surface (interior))

REASON(S) CHARACTERIZATION SURVEY (C01)

MATERIALS	MAT'L CODE	MATERIAL DESCRIPTION	BETA BKGD (dpm/100 cm ²)
	B0016	ASPHALT	925.0
	B0031	METAL - BARE	0.0
	B0039	CONCRETE - BARE (EXTERIOR)	665.0
	B0047	BLANKET INSULATION	0.0
	B9999	OTHER	0.0

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

SURVEY PACKAGE A2100

03/31/98

Direct Measurements For Total Beta Activity

Survey Package A2100 SURFACES & STRUCTURES RWST TK-4 - Elevation 21 ft. Includes: RWST TK-4 and RWST Greenhouse

STATISTICAL SUMMARY

TESTS PERFORMED

	Net apm/100 cm-
Mean	3,602.4
Maximum	54,719.1
Minimum	-59,883.3
Standard Deviation	13,158.9
MDA	21,586.8

YES
NO
24
11

Samples Reported	46
Samples Prescribed	46

46 RESULTS ARE GRAPHED

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A2100 SURFACES & STRUCTURES RWST TK-4 - Elevation 21 ft. Includes: RWST TK-4 and RWST Greenhouse

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
576 (2)	01	WE1	B0031	C01	60	00008	12,180.	14.157.3
576 (2)	01	WE1	B0031	C01	60	00009	21,586.	9,590.4
576 (2)	01	WE1	B0031	C01	60	00010	18,155.	-59,883.2
576 (2)	01	WE1	B0039	C01	60	00001	1,855.4	705.1
576 (2)	01	WE1	B0039	C01	60	00002	2,439.5	3,959.0
576 (2)	01	WE1	B0039	C01	60	00003	4,876.2	19,828.9
576 (2)	01	WE1	B0039	C01	60	00004	4,396.1	13,606.5
576 (2)	01	WE1	B0039	C01	60	00005	3,429.3	1,047.6
576 (2)	01	WE1	B0039	C01	60	00006	2,702.3	5,957.0
576 (2)	01	WE1	B0039	C01	60	00007	2,106.5	-151.2
585 (2)	02	CL1	B9999	C01	60	00001	5,283.5	3,78 4.9
585 (2)	02	CL1	B9999	C01	60	00002	5,765.8	847.4
585 (2)	02	CL1	B9999	C01	60	00003	6,361.9	5,027.7
585 (2)	02	CL2	B0031	C01	60	00001	8,718.7	960.4
585 (2)	02	CL2	B0031	C01	60	00002	8,742.8	-1,412.3
585 (2)	02	CL2	B0031	C01	60	00003	9,640.9	1,638.3
585 (2)	02	EQ1	B0031	C01	60	00003	17,091.	15,026.7
585 (2)	02	EQ1	B0031	C01	60	00004	14,811.	9,660.0
585 (2)	02	EQ1	B0031	C01	60	00005	17,597.	-2,994.0
585 (2)	02	EQ1	B0031	C01	60	00006	7,027.3	4,349.8
585 (2)	02	EQ1	B0047	C01	60	00001	3,832.9	-1,581.8
585 (2)	02	EQ1	B0047	C01	60	00002	5,112.4	-3,502.5
585 (2)	02	EQ1	B0047	C01	60	00007	9,197.3	1,412.3

REMAINING RESULTS PRINTED ON NEXT PAGE

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds. Underlined values exceed the MDA. Bold values exceed 2000 dpm/100 cm².

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A2100 SURFACES & STRUCTURES RWST TK-4 - Elevation 21 ft. Includes: RWST TK-4 and RWST Greenhouse

RESULTS LISTING - SORTED BY SURFACE CODE

-					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
585 (2)	02	EQ1	B0047	C01	60	00008	7,624.4	-2,316.1
585 (2)	02	FL1	B0016	C01	60	00001	3,195.7	7.040.3
585 (2)	02	FL1	B0016	C01	60	00002	5,297.0	9,864.9
585 (2)	02	FL1	B0016	C01	60	00003	10,026.	2,521.0
585 (2)	02	FL1	B0016	C01	60	00004	7,384.8	54,719.1
585 (2)	02	FL1	B0016	C01	60	00005	5,603.5	5,063.1
585 (2)	02	FL1	B0016	C01	60	00006	3,477.8	3,198.9
576 (2)	02	WE1	B9999	C01	60	00001	3,648.2	1,141.7
576 (2)	02	WE1	B9999	C01	60	00002	3,718.2	5,309.0
576 (2)	02	WE1	B9999	C01	60	00003	4,876.2	970.5
576 (2)	02	WE1	B9999	C01	60	00004	7,501.1	3.710.6
576 (2)	02	WE1	B9999	C01	60	00005	11,064.	2,854.3
576 (2)	02	WE1	B9999	C01	60	00006	7,957.4	11,303.0
576 (2)	02	WE1	B9999	C01	60	00007	7,146.8	6,507.8
576 (2)	02	WE1	B9999	C01	60	00008	7,182.0	5,651.5
576 (2)	02	WS1	B9999	C01	60	00001	2,688.4	742.1
576 (2)	02	WS1	B9999	C01	60	00002	2,729.9	-1,084.6
576 (2)	02	WS1	B9999	C01	60	00003	3,503.9	-1,027.5
576 (2)	02	WS1	B9999	C01	60	00004	4,527.2	4,624.0
585 (2)	02	WS1	B9999	C01	60	00005	5,390.2	1,186.3
585 (2)	02	WS1	B9999	C01	60	00006	3,870.2	282.5
585 (2)	02	WS1	B9999	C01	60	00007	3,590.2	960.4
585 (2)	02	WS1	B9999	C01	60	80000	3,508.8	451.9

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds. Underlined values exceed the MDA. Bold values exceed 2000 dpm/100 cm². 46 results are listed.

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A2100 SURFACES & STRUCTURES RWST TK-4 - Elevation 21 ft. Includes: RWST TK-4 and RWST Greenhouse

SURVEY		M23	350	[DETECTOR	2	PRE	
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	EFF	TECHNICIAN
2/10/98	576 (2)	126201	4/15/98	44-40	119455	4/29/98	.11	
					(DATES VER	IFIED AS ACCEPTABLE
2/11/98	585 (2)	126201	4/15/98	44-40	119455	4/29/98	.11	
					(CALIBRATION [DATES VER	IFIED AS ACCEPTABLE

03/29/98Removable Contamination - Gross Beta ActivitySurvey PackageA2100 SURFACES & STRUCTURES
RWST TK-4 - Elevation 21 ft.
Includes: RWST TK-4 and RWST Greenhouse

STATISTICAL SUMMARY

TESTS PERFORMED

46 RESULTS ARE GRAPHED

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98 DBACORR Documentation :aProgDBACORR:F_0321.FSL OUTPUT BATCH SN = 277

 03/29/98
 Removable Contamination - Gross Alpha Activity

 Survey Package
 A2100 SURFACES & STRUCTURES RWST TK-4 - Elevation 21 ft. Includes: RWST TK-4 and RWST Greenhouse

46

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm ²				
Mean	-0.0				
Maximum	1.8				
Minimum	-0.3				
Standard Deviation	0.7				
MDA	8.4				
Samples Reported	46				

Samples Prescribed

MDA <10 net dpm/100 cm ²	YES
Results above 20 net dpm/100 cm ²	0
Number of results above MDA	0

46 RESULTS ARE GRAPHED

03/29/98

Removable Contamination

Survey Package: A2100 SURFACES & STRUCTURES RWST TK-4 - Elevation 21 ft. Includes: RWST TK-4 and RWST Greenhouse

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E090.XLS	02	WS1	C01	8	-0.3	5.2	
SME1E090.XLS	02	WS1	C01	7	-0.3	-0.9	
SME1E090.XLS	02	WS1	C01	6	-0.3	5.2	
SME1E090.XLS	02	WS1	C01	5	-0.3	-7.0	
SME1E090.XLS	02	WS1	C01	4	-0.3	-7.0	
SME1E090.XLS	02	WS1	C01	3	-0.3	-0.9	
SME1E090.XLS	02	WS1	C01	2	-0.3	-0.9	
SME1E090.XLS	02	WS1	C01	1	-0.3	11.3	
SME1E090.XLS	02	WE1	C01	8	-0.3	5.2	
SME1E090.XLS	02	WE1	C01	7	-0.3	-0.9	
SME1E090.XLS	02	WE1	C01	6	-0.3	-7.0	
SME1E090.XLS	02	WE1	C01	5	-0.3	-0.9	
SME1E090.XLS	02	WE1	C01	4	-0.3	11.3	
SME1E090.XLS	02	WE1	C01	3	-0.3	-7.0	
SME1E090.XLS	02	WE1	C01	2	1.8	5.2	
SME1E090.XLS	02	WE1	C01	1	-0.3	-7.0	
SME1E090.XLS	02	FL1	C01	6	-0.3	11.3	
SME1E090.XLS	02	FL1	C01	5	-0.3	5.2	
SME1E090.XLS	02	FL1	C01	4	1.8	-0.9	
SME1E090.XLS	02	FL1	C01	3	-0.3	-7.0	
SME1E090.XLS	02	FL1	C01	2	-0.3	-7.0	
SME1E090.XLS	02	FL1	C01	1	-0.3	-0.9	
SME1E090.XLS	02	EQ1	C01	8	-0.3	-0.9	

REMAINING RESULTS PRINTED ON NEXT PAGE

NOTES: Activity reported in net dpm/100 cm².

Underlined values exceed the associated MDA.

Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity).

03/29/98

Removable Contamination

Survey Package : A2100 SURFACES & STRUCTURES RWST TK-4 - Elevation 21 ft. Includes: RWST TK-4 and RWST Greenhouse

RESULTS LISTING - SORTED BY SURFACE CODE

			DEAGON	MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION		BETA	_
SME1E090.XLS	02	EQ1	C01	7	-0.3	-0.9	
SME1E090.XLS	02	EQ1	C01	6	-0.3	-0.9	
SME1E090.XLS	02	EQ1	C01	5	1.8	-0.9	
SME1E090.XLS	02	EQ1	C01	4	1.8	-0.9	
SME1E090.XLS	02	EQ1	C01	3	-0.3	11.3	
SME1E090.XLS	02	EQ1	C01	2	-0.3	29.7	
SME1E090.XLS	02	EQ1	C01	1	1.8	23.5	
SME1E090.XLS	02	CL2	C01	3	-0.3	-7.0	
SME1E090.XLS	02	CL2	C01	2	-0.3	-0.9	
SME1E090.XLS	02	CL2	C01	1	-0.3	-0.9	
SME1E090.XLS	02	CL1	C01	3	-0.3	-7.0	
SME1E090.XLS	02	CL1	C01	2	-0.3	-7.0	
SME1E090.XLS	02	CL1	C01	1	-0.3	-0.9	
SME1E090.XLS	01	WE1	C01	9	-0.3	11.3	
SME1E090.XLS	01	WE1	C01	8	-0.3	-0.9	
SME1E090.XLS	01	WE1	C01	7	-0.3	5.2	
SME1E090.XLS	01	WE1	C01	6	-0.3	-7.0	
SME1E090.XLS	01	WE1	C01	5	-0.3	-7.0	
SME1E090.XLS	01	WE1	C01	4	-0.3	17.4	
SME1E090.XLS	01	WE1	C01	3	-0.3	72.5	
SME1E090.XLS	01	WE1	C01	2	1.8	5.2	
SME1E090.XLS	01	WE1	C01	10	-0.3	-7.0	
SME1E090.XLS	01	WE1	C01	1	-0.3	-7.0	

NOTES: Activity reported in net dpm/100 cm².

Underlined values exceed the associated MDA.

Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity). 46 results are listed.

Page 12 of 17

DATAFILE & TENNELEC CALIBRATION SUMMARY

03/29/98

Removable Contamination

Survey Package : A2100 SURFACES & STRUCTURES RWST TK-4 - Elevation 21 ft. Includes: RWST TK-4 and RWST Greenhouse

SURVEYDATE	XLS FILE	INST ID	S/N	CAL DUE	LAB TECHNICIAN
3/11/98	SME1E090.XLS	1	15632	8/5/98	JWD
		· · · · · · · · · · · · · · · · · · ·		CALIBRATION DATE	VERIFIED AS ACCEPTABLE

03/30/98

Exposure Rate Measurements

Survey Package A2100 SURFACES & STRUCTURES RWST TK-4 - Elevation 21 ft. Includes: RWST TK-4 and RWST Greenhouse

STATISTICAL SUMMARY

TESTS PERFORMED

6 RESULTS ARE GRAPHED

03/30/98

Exposure Rate Measurements

Survey Package : A2100 SURFACES & STRUCTURES RWST TK-4 - Elevation 21 ft. Includes: RWST TK-4 and RWST Greenhouse

RESULTS LISTING - SORTED BY SURFACE CODE

FILE #	UNIT	SURFACE	MATERIAL	REASON	COUNT TIME	MSRMNT LOCATION	RESULT	
584 (2)	02	FL1	B0016	C01	60.00	00001	244.1	
584 (2)	02	FL1	B0016	C01	60.00	00002	830.8	
584 (2)	02	FL1	B0016	C01	60.00	00003	1039.8	
584 (2)	02	FL1	B0016	C01	60.00	00004	1078.4	
584 (2)	02	FL1	B0016	C01	60.00	00005	697.3	
584 (2)	02	FL1	B0016	C01	60.00	00006	234.5	

NOTES: Exposure rates reported in net μ R/hr. Count times are reported in seconds. Underlined results did not meet the minimum required count time. Bold values exceed 15 μ R/hr. 6 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/30/98

Exposure Rate Measurements

Survey Package : A2100 SURFACES & STRUCTURES RWST TK-4 - Elevation 21 ft. Includes: RWST TK-4 and RWST Greenhouse

SURVEY		M23	2350 DETECTOR		M2350		DETECTOR		
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	TECHNICIAN		
2/11/98	584 (2)	098620	3/20/98	44-2	129304	4/19/98	· · · · · ·		
					CALIBR	ATION DATES VI	ERIFIED AS ACCEPTABLE		

GAMMA SPECTRAL ANALYSIS RESULTS LISTING

04/28/98

NUMBER OF SAMPLES REPORTED =2

OUTPUT BATCH SN = 212

Survey Package A2100 SURFACES & STRUCTURES RWST TK-4 - Elevation 21 ft. Includes: RWST TK-4 and RWST Greenhouse

UNIT : 02 SURFACE :FL1 REASON : C01 ANALYSIS TYPE CODE : LAB06

SAMPLE TYI	PE OR SURFACE S SAMPLE L	SAMPLED: Surfa OCATOR: 0000	ice Code description 1	not located			
LAB ID	SPECTRUM	MASS (grams)	COUNT TIME (seconds)	NUCLIDE	ACTIVITY (pCi/g)	MDA (pCi/g)	ERROR (± pCi/g)
MY1074	ENV00282	1,960.00	3600	Co-57	< .06	0.06	0.00
				Co-60	3.47	0.05	0.17
				Cs-134	< .06	0.06	0.00
				Cs-137	14.40	0.07	1.05
				K-40	19.20	0.42	1.56
				Mn-54	< .06	0.06	0.00

SAMPLE TY	PE OR SURFACE S SAMPLE L	SAMPLED: Surfa	ce Code description 2	not located			
LAB ID	SPECTRUM	MASS (grams)	COUNT TIME (seconds)	NUCLIDE	ACTIVITY (pCi/g)	MDA (pCi/g)	ERROR (± pCi/g)
MY1075	ENV00281	1,760.00	3600	Co-57 Co-60 Cs-134 Cs-137 K-40 Mn-54	< .07 2.53 .05 37.70 21.40 < .05	0.07 0.05 0.04 0.10 0.30 0.05	0.00 0.12 0.01 2.61 1.55 0.00

CHARACTERIZATION SUMMARY

SURVEY PACKAGE NUMBER A2200

04/02/98

SURFACES & STRUCTURES Borated Water Storage Tank (BWST) - Elevation 21 ft.

PACKAGE DESCRIPTION Includes: BWST "A" Area and BWST "B" Area

SURVEY AREA DESCRIPTION Borated Water Storage Tanks Area

GENERAL HISTORICAL INFORMATION (Operational history, etc.)

The Borated Water Storage Tanks are two 148,000 gallon stainless steel tanks (A&B) separated and enclosed by a concrete floored and walled berm. There is some grating over the tanks base. Access is from the Fuel Building catwalk, down a ladder into tank enclosure. Both enclosures are posted Radiation Area/Contaminated Areas. There is a common sump in both enclosures.

SUMMARY OF CHARACTERIZATION ACTIVITIES

Survey units were established for the areas as listed in the following Summary of Survey Units. Maps with the survey measurement locations for this package are included on the following pages.

Collected 62 direct measurements for total beta activity at the survey measurement locations indicated in the results listing report. Due to elevated background radioactivity in the survey area, a scan of a two meter area encompassing each survey measurement location was not performed. Each direct measurement for total beta activity was accompanied by a corresponding background measurement at the same location. The background was used in the calculation of net dpm/100cm².

Collected smear samples to analyze for removable alpha and beta activity at the same 62 survey locations as the direct measurements for total beta activity.

Collected one meter exposure rate measurements at 22 survey locations indicated in the results listing report.

The survey result statistical summaries, graphs and results listings are shown in the following individual reports including calibration summaries for the instruments used for each measurement type.

CHARACTERIZATION SURVEY RESULTS

o There were 37 direct measurements for total beta activity above 2000 dpm/100cm². There were 18 direct measurements for total beta activity above the individual measurements' MDA (Maximum MDA was 21,255 dpm/100cm²). The maximum measurement result was 43,189 dpm/100cm².

o There were 5 measurements for removable beta activity above MDA (36 dpm/100cm²) and no results greater than 100 dpm/100cm². The maximum measurement result was 73 dpm/100cm².

o There were no measurements for removable alpha activity above MDA (8 dpm/100cm²).

o The average and maximum exposure rate measurement results were 0.7 mR/hr and 1.2 mR/hr, respectively.

REFERENCES (Documents, Interviews)

SUMMARY OF SURVEY UNIT(S)

03/31/98

OUTPUT BATCH SN = 341

PACKAGE A2200 SURFACES & STRUCTURES Borated Water Storage Tank (BWST) - Elevation 21 ft. Includes: BWST "A" Area and BWST "B" Area

UNIT(S)	SURFACE(S)	
01 - BWST "A" Area	CL1 (*Note* There is no ceiling.) EQ1 (Plant Equipment (exterior)) FD1 (Sump) FL1 (Floor Surface) WS1 (Wall Surface (interior))	
02 - BWST "B" Area	CL1 (*Note* There is no ceiling.) EQ1 (Plant Equipment (exterior)) FD1 (Sump) FL1 (Floor Surface) WS1 (Wall Surface (interior))	
REASON(S) CHARACTERIZATION SUR	RVEY (C01)	

MATERIALS	MAT'L CODE	MATERIAL DESCRIPTION	BETA BKGD (dpm/100 cm²)
	B0031	METAL - BARE	0.0
	B0038	CONCRETE - PAINTED (EXTERIOR)	478.0
	B0039	CONCRETE - BARE (EXTERIOR)	665.0

SURVEY PACKAGE A2200

A and B Borated Water Storage Tanks (BWST)

 O4/01/98
 Direct Measurements For Total Beta Activity

 Survey Package
 A2200 SURFACES & STRUCTURES

 Borated Water Storage Tank (BWST) - Elevation 21 ft.
 Includes: BWST "A" Area and BWST "B" Area

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm
Mean	7,269.8
Maximum	43,189.1
Minimum	-4,301.7
Standard Deviation	10,883.4
MDA	21,255.2
	Less

Samples Reported	62
Samples Prescribed	62

Samples reported satisfy samples prescribed	YES
MDA <2000 net dpm/100 cm²	NO
Results above 2000 net dpm/100 cm²	37
Number of results above MDA	18

62 RESULTS ARE GRAPHED

04/01/98

Direct Measurements For Total Beta Activity

Survey Package : A2200 SURFACES & STRUCTURES Borated Water Storage Tank (BWST) - Elevation 21 ft. Includes: BWST "A" Area and BWST "B" Area

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
537 (2)	01	FQ1	B0031	C01	60	00001	7.927.5	1.005.6
537 (2)	01	ĒQ1	B0031	C01	60	00002	10,706.	12,402.0
537 (2)	01	EQ1	B0031	C01	60	00003	11,856.	17,206.4
537 (2)	01	EQ1	B0031	C01	60	00004	16,772.	15,586.4
537 (2)	01	EQ1	B0031	C01	60	00005	14,494.	16,145.0
537 (2)	01	EQ1	B0031	C01	60	00006	21,255.	-4,301.7
537 (2)	01	FD1	B0031	C01	60	00001	4,585.4	<u>8,770.8</u>
537 (2)	01	FL1	B0039	C01	60	00001	4,374.7	36,988.1
537 (2)	01	FL1	B0039	C01	60	00002	4,076.2	25,759.2
537 (2)	01	FL1	B0039	C01	60	00003	4,084.8	<u>15,480.0</u>
537 (2)	01	FL1	B0039	C01	60	00004	4,430.3	<u>2,519.3</u>
537 (2)	01	FL1	B0039	C01	60	00005	4,508.6	1,513.7
537 (2)	01	FL1	B0039	C01	60	00006	4,764.6	<u>3,915.9</u>
537 (2)	01	FL1	B0039	C01	60	00007	5,083.2	<u>10,563.9</u>
537 (2)	01	FL1	B0039	C01	60	00008	4,194.9	<u>35,814.9</u>
537 (2)	01	FL1	B0039	C01	60	00009	4,901.7	<u>43,189.1</u>
537 (2)	01	FL1	B0039	C01	60	00010	4,350.6	<u>40,954.5</u>
537 (2)	01	FL1	B0039	C01	60	00011	4,485.2	<u>34,530.0</u>
537 (2)	01	WS1	B0038	C01	60	00001	6,050.1	<u>5,946.5</u>
537 (2)	01	WS1	B0038	C01	60	00002	6,665.1	415.8
537 (2)	01	WS1	B0038	C01	60	00003	4,050.3	1,589.0
537 (2)	01	WS1	B0039	C01	60	00004	4,531.8	340.6
537 (2)	01	WS1	B0039	C01	60	00005	4,735.3	61.2
537 (2)	01	WS1	B0039	C01	60	00006	5,157.9	<u>2,128.3</u>
537 (2)	01	WS1	B0039	C01	60	00007	3,658.0	2,240.0
537 (2)	01	WS1	B0039	C01	60	00008	4,101.4	101.J
537 (2)	01	WS1	B0039	C01	60	00009	4,000.9	204.0
537 (2)	01	VVST	B0039	C01	60	00010	4,342.0	<u>3,740.3</u> 055 1
537 (2)	01	VVS1	B0039	C01	60	00011	5,705.0	900.I 220.8
537 (2)	01	VVSI	B0039	001	60	00012	5,001.0	-328.0
537 (2)	07		B0039 B0021	C01	60	00013	11 011	-303.7
529(2)	02	EQI	B0031	C01	60	00001	15 777	7 072 1
529(2)	02	EQ1	B0031	C01	60	00002	14 035	A 909 6
529 (2)	02	EQ1	B0031	C01	60	00003	13 106	15 137 9
529 (2)	02	FO1	B0031	C01	60	00005	5 209 5	2.747.0
529 (2)	02	EQ1	B0031	C01	60	00006	9 993 5	7.656.6
537 (2)	02	FD1	B0031	C01	60	00001	5.048.8	9.050.1
529 (2)	02	FI 1	B0039	C01	60	00001	3.318.1	17.512.2
529 (2)	02	FI 1	B0039	C01	60	00002	3,124.9	5.413.5
						· · · · · · · · · · · · · · · · · · ·	-,	

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds.

Underlined values exceed the MDA.

Bold values exceed 2000 dpm/100 cm².

04/01/98

Direct Measurements For Total Beta Activity

Survey Package : A2200 SURFACES & STRUCTURES Borated Water Storage Tank (BWST) - Elevation 21 ft. Includes: BWST "A" Area and BWST "B" Area

RESULTS LISTING - SORTED BY SURFACE CODE

						MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON		LOCATION	MDA	RESULT
529 (2)	02	FL1	B0039	C01	60	00003	3,906.9	<u>3,893.9</u>
529 (2)	02	FL1	B0039	C01	60	00004	3,847.2	1,263.8
529 (2)	02	FL1	B0039	C01	60	00005	3,776.3	<u>2,725.0</u>
529 (2)	02	FL1	B0039	C01	60	00006	4,023.4	1,322.2
529 (2)	02	FL1	B0039	C01	60	00007	3,857.2	562.4
529 (2)	02	FL1	B0039	C01	60	80000	3,587.5	1,088.4
529 (2)	02	FL1	B0039	C01	60	00009	3,975.3	<u>3,134.1</u>
529 (2)	02	FL1	B0039	C01	60	00010	3,318.1	<u>2,491.2</u>
529 (2)	02	FL1	B0039	C01	60	00011	3,817.0	<u>6,640.9</u>
529 (2)	02	WS1	B0038	C01	60	00012	4,182.8	<u>2,853.5</u>
529 (2)	02	WS1	B0038	C01	60	00013	5,135.8	-127.3
529 (2́)	02	WS1	B0039	C01	60	00001	4,551.8	<u>3,660.1</u>
529 (2)	02	WS1	B0039	C01	60	00002	5,445.6	-3,996.5
529 (2)	02	WS1	B0039	C01	60	00003	4,543.3	1,146.9
529 (2)	02	WS1	B0039	C01	60	00004	3,433.0	1,146.9
529 (2)	02	WS1	B0039	C01	60	00005	3,282.8	503.9
529 (2)	02	WS1	B0039	C01	60	00006	5,060.9	1,965.1
529 (2)	02	WS1	B0039	C01	60	00007	4,145.8	<u>2,257.4</u>
529 (2)	02	WS1	B0039	C01	60	00008	3,329.8	1,965.1
529 (2)	02	WS1	B0039	C01	60	00009	5,120.9	1,672.9
529 (2)	02	WS1	B0039	C01	60	00010	4,708.9	1,088.4
529 (2)	02	WS1	B0039	C01	60	00011	3,223.0	<u>3,309.4</u>

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds. Underlined values exceed the MDA. Bold values exceed 2000 dpm/100 cm².

62 results are listed.

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

04/01/98

Direct Measurements For Total Beta Activity Survey Package: A2200 SURFACES & STRUCTURES Borated Water Storage Tank (BWST) - Elevation 21 ft.

Includes: BWST "A" Area and BWST "B" Area

SURVEY	_	M23	350	[DETECTOR		PRE	
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	EFF	TECHNICIAN
2/3/98	529 (2)	126201	4/15/98	44-40	119455	4/29/98	.11	BSM0490
					(CALIBRATION	DATES VERI	IFIED AS ACCEPTABLE
2/4/98	537 (2)	126201	4/15/98	44-40	119455	4/29/98	.12	BSM0490
						CALIBRATION	DATES VERI	FIED AS ACCEPTABLE

YES 0 5

Maine Yankee Atomic Power Plant Site Characterization

03/29/98Removable Contamination - Gross Beta ActivitySurvey PackageA2200 SURFACES & STRUCTURES
Borated Water Storage Tank (BWST) - Elevation 21 ft.
Includes: BWST "A" Area and BWST "B" Area

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm ²	
Mean	7.1	MDA <100 net dpm/100 cm²
Maximum	73.2	Results above 100 net dpm/100 cm ²
Minimum	-5.8	Number of results above MDA
Standard Deviation	16.9	
MDA	36.1	
Samples Reported	62	
Samples Prescribed	62	

62 RESULTS ARE GRAPHED

YES 0 0

Maine Yankee Atomic Power Plant Site Characterization

 03/29/98
 Removable Contamination - Gross Alpha Activity

 Survey Package
 A2200 SURFACES & STRUCTURES

 Borated Water Storage Tank (BWST) - Elevation 21 ft.

 Includes: BWST "A" Area and BWST "B" Area

STATISTICAL SUMMARY

TESTS PERFORMED

	<u>Net dpm/100 cm²</u>	
Mean	-0.1	MDA <10 net dpm/100 cm²
Maximum	1.8	Results above 20 net dpm/100 cm ²
Minimum	-0.3	Number of results above MDA
Standard Deviation	0.6	
MDA	8.2	
Samples Reported	62	
Samples Prescribed	62	

62 RESULTS ARE GRAPHED

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98 ć

Maine Yankee Atomic Power Plant Site Characterization

03/29/98

Removable Contamination

Survey Package : A2200 SURFACES & STRUCTURES Borated Water Storage Tank (BWST) - Elevation 21 ft. Includes: BWST "A" Area and BWST "B" Area

RESULTS LISTING - SORTED BY SURFACE CODE

			DEASON	MSRMNT		DETA	
	UNIT	SURFACE	REASON	LUCATION			
SME1E079.XLS	02	WS1	C01	9	-0.3	-5.8	
SME1E079.XLS	02	WS1	C01	8	1.7	-5.8	
SME1E079.XLS	02	WS1	C01	7	-0.3	-5.8	
SME1E079.XLS	02	WS1	C01	6	-0.3	0.3	
SME1E079.XLS	02	WS1	C01	5	-0.3	-5.8	
SME1E079.XLS	02	WS1	C01	4	-0.3	6.4	
SME1E079.XLS	02	WS1	C01	3	-0.3	6.4	
SME1E079.XLS	02	WS1	C01	2	-0.3	6.4	
SME1E079.XLS	02	VVS1	C01	13	-0.3	-5.8	
SME1E079.XLS	02	VVS1	C01	12	-0.3	-5.8	
SME1E079.XLS	02	VVS1	C01	11	-0.3	-5.8	
SIVIETEU79.XLS	02	VVS1		10	-0.3	0.3	
SMETEU79.XLS	02	VVS1	C01	1	-0.3	0.3	
SMETEU79.XLS	02	FLI	C01	9	-0.3	0.3	
SIVIE LEU/9.ALS	02		C01	0 7	-0.3	0.3	
SMETEU79.ALS	02			6	-0.3	0.3	
SIVIE IEU/9.ALS	02		C01	5	1.7	U.3 5 8	
SIVIE I EUT 9.ALS	02			J 4	-0.3	-5.0	
SIVIE TEUT 9.ALS	02	ГЦI FI1	C01	4	-0.3	-5.0	
SIVIE IEUT 9.ALS	02		C01	3	-0.3	0.4	
SMETEOT9.ALS	02		C01	2 11	-0.3	0.4	
SMETE079,XLO	02		C01	10	-0.5	0.3	
SME1E079 XLS	02	FL1	C01	10	-0.5	6.4	
SME1E079 XLS	02	FD1	C01	1	-0.3	-5.8	
SME1E079 XLS	02	FQ1	C01	6	-0.3	-5.8	
SME1E079 XLS	02	FQ1	C01	5	-0.3	-5.8	
SME1E079 XI S	02	FQ1	C01	4	-0.3	6.4	
SME1E079.XLS	02	EQ1	C01	3	-0.3	-5.8	
SME1E079,XLS	02	EQ1	C01	2	-0.3	6.4	
SME1E079 XLS	02	EQ1	C01	- 1	-0.3	6.4	
SME1E079.XLS	01	WS1	C01	9	-0.3	0.3	
SME1E079.XLS	01	WS1	C01	8	-0.3	0.3	
SME1E079.XLS	01	WS1	C01	7	-0.3	12.4	
SME1E079.XLS	01	WS1	C01	6	-0.3	0.3	
SME1E079.XLS	01	WS1	C01	5	-0.3	0.3	
SME1E079.XLS	01	WS1	C01	4	-0.3	6.4	
SME1E079.XLS	01	WS1	C01	3	-0.3	-5.8	
SME1E079.XLS	01	WS1	C01	2	-0.3	-5.8	
SME1E079.XLS	01	WS1	C01	13	-0.3	36.7	

NOTES: Activity reported in net dpm/100 cm².

Underlined values exceed the associated MDA.

Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity).

03/29/98

Removable Contamination

Survey Package : A2200 SURFACES & STRUCTURES Borated Water Storage Tank (BWST) - Elevation 21 ft. Includes: BWST "A" Area and BWST "B" Area

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE		SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E079.XLS	01	WS1	C01	12	-0.3	0.3	
SME1E079.XLS	01	WS1	C01	11	-0.3	6.4	
SME1E079.XLS	01	WS1	C01	10	-0.3	12.4	
SME1E079.XLS	01	WS1	C01	1	-0.3	12.4	
SME1E079.XLS	01	FL1	C01	9	-0.3	73.2	
SME1E079.XLS	01	FL1	C01	8	-0.3	42.8	
SME1E079.XLS	01	FL1	C01	7	-0.3	24.6	
SME1E079.XLS	01	FL1	C01	6	-0.3	12.4	
SME1E079.XLS	01	FL1	C01	5	-0.3	0.3	
SME1E079.XLS	01	FL1	C01	4	-0.3	-5.8	
SME1E079.XLS	01	FL1	C01	3	-0.3	6.4	
SME1E079.XLS	01	FL1	C01	2	-0.3	6.4	
SME1E079.XLS	01	FL1	C01	10	-0.3	67.1	
SME1E079.XLS	01	FL1	C01	1	1.7	24.6	
SME1E079.XLS	01	FD1	C01	1	-0.3	54.9	
SME1E079.XLS	01	EQ1	C01	7	1.7	12.4	
SME1E079.XLS	01	EQ1	C01	6	1.7	30.7	
SME1E079.XLS	01	EQ1	C01	5	1.7	0.3	
SME1E079.XLS	01	EQ1	C01	4	-0.3	12.4	
SME1E079.XLS	01	EQ1	C01	3	-0.3	-5.8	
SME1E079.XLS	01	EQ1	C01	2	-0.3	6.4	
SME1E079.XLS	01	EQ1	C01	1	-0.3	12.4	

NOTES: Activity reported in net dpm/100 cm². Underlined values exceed the associated MDA. Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity). 62 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. $\mathsf{Version}\ 3.0.7$ - 3/24/98

DATAFILE & TENNELEC CALIBRATION SUMMARY

03/29/98	Removable Contamination							
Survey Package :	A2200 SURFACES Borated Water Stora Includes: BWST "A"	& STRUCT age Tank (BV Area and B\	URES VST) - Ele WST "B" A	vation 21 ft. rea				
SURVEYDATE	XLS FILE	INST ID	S/N	CAL DUE	LAB TECHNICIAN			
3/9/98	SME1E079.XLS	1	15632 (8/5/98 CALIBRATION DATE	JWD VERIFIED AS ACCEPTABLE			

03/31/98

Exposure Rate Measurements

Survey Package A2200 SURFACES & STRUCTURES Borated Water Storage Tank (BWST) - Elevation 21 ft. Includes: BWST "A" Area and BWST "B" Area

STATISTICAL SUMMARY

TESTS PERFORMED

300 00004 0 9 00011 00002 00010 00001 00003 00005 00007 00009 00001 00003 00006 00008 00010 00002 00004 00008 00007 00006 00009 00011 MEASUREMENT LOCATION µR/hr

22 RESULTS ARE GRAPHED

PAJ

03/31/98

Exposure Rate Measurements

Survey Package : A2200 SURFACES & STRUCTURES Borated Water Storage Tank (BWST) - Elevation 21 ft. Includes: BWST "A" Area and BWST "B" Area

RESULTS LISTING - SORTED BY SURFACE CODE

FILE #	UNIT	SURFACE	MATERIAL	REASON	COUNT TIME	MSRMNT LOCATION	RESULT	
538 (2)	01	FL1	B0039	C01	60.00	00001	600.0	
538 (2)	01	FL1	B0039	C01	60.00	00002	784.6	
538 (2)	01	FL1	B0039	C01	60.00	00003	634.6	
538 (2)	01	FL1	B0039	C01	60.00	00004	940.9	
538 (2)	01	FL1	B0039	C01	60.00	00005	850.5	
538 (2)	01	FL1	B0039	C01	60.00	00006	642.7	
538 (2)	01	FL1	B0039	C01	60.00	00007	892.4	
538 (2)	01	FL1	B0039	C01	60.00	00008	485.0	
538 (2)	01	FL1	B0039	C01	60.00	00009	1002.6	
538 (2)	01	FL1	B0039	C01	60.00	00010	1196.7	
538 (2)	01	FL1	B0039	C01	60.00	00011	682.9	
538 (2)	02	FL1	B0039	C01	60.00	00001	291.8	
538 (2)	02	FL1	B0039	C01	60.00	00002	374.5	
538 (2)	02	FL1	B0039	C01	60.00	00003	622.9	
538 (2)	02	FL1	B0039	C01	60.00	00004	329.7	
538 (2)	02	FL1	B0039	C01	60.00	00005	328.2	
538 (2)	02	FL1	B0039	C01	60.00	00006	740.6	
538 (2)	02	FL1	B0039	C01	60.00	00007	915.6	
538 (2)	02	FL1	B0039	C01	60.00	00008	858.6	
538 (2)	02	FL1	B0039	C01	60.00	00009	510.5	
538 (2)	02	FL1	B0039	C01	60.00	00010	623.6	
538 (2)	02	FL1	B0039	C01	60.00	00011	377.4	

NOTES: Exposure rates reported in net μR/hr. Count times are reported in seconds. Underlined results did not meet the minimum required count time. Bold values exceed 15 μR/hr. 22 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7a - 3/3098

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/29/98

Exposure Rate Measurements

Survey Package : A2200 SURFACES & STRUCTURES Borated Water Storage Tank (BWST) - Elevation 21 ft. Includes: BWST "A" Area and BWST "B" Area

SURVEY		M23	350	C	DETECTOR	· · · · · · · · · · · · · · · · · · ·	
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	TECHNICIAN
2/4/98	538 (2)	098639	4/16/98	44-2	129770	5/12/98	JJP1813
					CALIBR	ATION DATES VE	ERIFIED AS ACCEPTABLE

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

04/02/98

CHARACTERIZATION SUMMARY

SURVEY PACKAGE NUMBER A2300

SURFACES & STRUCTURES Tank (PWST) - Elevation 21 ft.

PACKAGE DESCRIPTION

SURVEY AREA DESCRIPTION Primary Water Storage Tank

GENERAL HISTORICAL INFORMATION (Operational history, etc.)

The Primary Water Storage Tank is a 150,000 gallon tank used for the storage of Primary Water. Primary water is water from the local city water line. The PWST is a stainless steel tank on a concrete base.

SUMMARY OF CHARACTERIZATION ACTIVITIES

Survey units were established for the areas as listed in the following Summary of Survey Units. Maps with the survey measurement locations for this package are included on the following pages.

Collected 28 direct measurements for total beta activity at the survey measurement locations indicated in the results listing report. Due to elevated background radioactivity in the survey area, a scan of a two meter area encompassing each survey measurement location was not performed. Each direct measurement for total beta activity was accompanied by a corresponding background measurement at the same location. The background was used in the calculation of net dpm/100cm².

Collected smear samples to analyze for removable alpha and beta activity at the same 28 survey locations as the direct measurements for total beta activity.

Collected no one meter exposure rate measurements.

The survey result statistical summaries, graphs and results listings are shown in the following individual reports including calibration summaries for the instruments used for each measurement type.

CHARACTERIZATION SURVEY RESULTS

o There were 3 direct measurements for total beta activity above 2000 dpm/100cm². There were 2 direct measurements for total beta activity above the individual measurements' MDA (Maximum MDA was 2,780 dpm/100cm²). The maximum measurement result was 3,258 dpm/100cm².

o There were no measurements for removable beta activity above MDA (32 dpm/100cm²).

o There were no measurements for removable alpha activity above MDA (8.4 dpm/100cm²).

REFERENCES (Documents, Interviews)

SUMMARY OF SURVEY UNIT(S)

OUTPUT BATCH SN = 279

PACKAGE A2300 SURFACES & STRUCTURES Tank (PWST) - Elevation 21 ft.

B9999

OTHER

03/29/98

UNIT(S)		SURFACE(S)				
01 - Tank Exter	ior and Base	SS1 (Base) WE1 (Tank)	SS1 (Base) WE1 (Tank) CL1 (Ceiling) EQ1 (Equipment: Pipe and insulation (metal, blanket)) RF1 (Roof) WS1 (Walls)			
02 - Shack adja	acent to the T	ank CL1 (Ceiling) EQ1 (Equipment: RF1 (Roof) WS1 (Walls)				
REASON(S) CH	HARACTERIZ	ZATION SURVEY (C01)	· ·			
MATERIALS	MAT'L CODE	MATERIAL DESCRIPTION	BETA BKGD (dpm/100 cm²)	· · · · ·		
	B0039	CONCRETE - BARE (EXTERIOR)	665.0			

0.0

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

SURVEY PACKAGE A2300

03/31/98

Direct Measurements For Total Beta Activity

Survey Package A2300 SURFACES & STRUCTURES Tank (PWST) - Elevation 21 ft.

.. . .

....

STATISTICAL SUMMARY

TESTS PERFORMED

	Net apm/100 cm
Mean	667.8
Maximum	3,257.7
Minimum	-772.5
Standard Deviation	942.1
MDA	2,779.8

Samples Reported	28	
Samples Prescribed	28	

Samples reported satisfy samples prescribed	YES
MDA <2000 net dpm/100 cm²	NO
Results above 2000 net dpm/100 cm ²	3
Number of results above MDA	2

28 RESULTS ARE GRAPHED

JLM

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A2300 SURFACES & STRUCTURES Tank (PWST) - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
578 (2)	01	SS1	B0039	C01	60	00001	1.895.8	2.290.5
578 (2)	01	SS1	B0039	C01	60	00002	2,339.5	1.108.3
578 (2)	01	SS1	B0039	C01	60	00003	2,296.4	-772.5
578 (2)	01	SS1	B0039	C01	60	00004	1,895.8	570.9
578 (2)	01	SS1	B0039	C01	60	00005	1,492.0	3.257.7
578 (2)	01	SS1	B0039	C01	60	00006	1.931.1	947.1
578 (2)	01	SS1	B0039	C01	60	00007	2,033.2	463.5
578 (2)	01	SS1	B0039	C01	60	00008	1,999.8	141.0
578 (2)	01	WE1	B9999	C01	60	00001	1,859.7	376.2
578 (2)	01	WE1	B9999	C01	60	00002	1,624.8	698.6
578 (2)	01	WE1	B9999	C01	60	00003	2,543.7	-537.4
578 (2)	01	WE1	B9999	C01	60	00004	1,726.9	-591. 1
578 (2)	01	WE1	B9999	C01	60	00005	1,624.8	-107.5
578 (2)	01	WE1	B9999	C01	60	00006	1,318.3	161.2
578 (2)	01	WE1	B9999	C01	60	00007	1,581.9	-376.2
578 (2)	01	WE1	B9999	C01	60	00008	1,645.7	591.1
578 (2)	02	CL1	B9999	C01	60	00001	2,367.9	967.2
578 (2)	02	CL1	B9999	C01	60	00002	2,130.1	752.3
578 (2)	02	EQ1	B9999	C01	60	00001	1,948.5	429.9
578 (2)	02	EQ1	B9999	C01	60	00002	1,965.8	913.5
578 (2)	02	EQ1	B9999	C01	60	00003	1,982.9	-483.6
578 (2)	02	EQ1	B9999	C01	60	00004	2,033.2	698.6
578 (2)	02	RF1	B9999	C01	60	00001	2,066.1	1,719.5
578 (2)	02	RF1	B9999	C01	60	00002	2,049.7	1,827.0
578 (2)	02	WS1	B9999	C01	60	00001	2,779.7	591.1
578 (2)	02	WS1	B9999	C01	60	00002	2,395.8	<u>2,310.6</u>
578 (2)	02	WS1	B9999	C01	60	00003	1,804.1	429.9
578 (2)	02	WS1	B9999	C01	60	00004	1,804.1	322.4

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds.

Underlined values exceed the MDA.

Bold values exceed 2000 dpm/100 cm².

28 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7a - 3/30/98

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A2300 SURFACES & STRUCTURES Tank (PWST) - Elevation 21 ft.

SURVEY		M23	350		DETECTOR		PRE	
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	EFF	TECHNICIAN
2/10/98	578 (2)	080498	4/8/98	44-40	PR090001	4/8/98	.12	CWI5440
					C	ALIBRATION	DATES VER	FIED AS ACCEPTABLE

03/29/98

Removable Contamination - Gross Beta Activity

Survey Package A2300 SU

A2300 SURFACES & STRUCTURES Tank (PWST) - Elevation 21 ft.

28

STATISTICAL SUMMARY

TESTS PERFORMED

	Net apm/100 cm-
Mean	5.8
Maximum	27.4
Minimum	-3.5
Standard Deviation	7.1
MDA	32.2
Samples Reported	28

Samples Prescribed

MDA <100 net dpm/100 cm²	YES
Results above 100 net dpm/100 cm ²	0
Number of results above MDA	0

28 RESULTS ARE GRAPHED

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

JLM

03/29/98

Removable Contamination - Gross Alpha Activity

Survey Package

Samples Prescribed

A2300 SURFACES & STRUCTURES Tank (PWST) - Elevation 21 ft.

28

STATISTICAL SUMMARY

TESTS PERFORMED

	<u>Net dpm/100 cm²</u>
Mean	0.1
Maximum	1.8
Minimum	-0.3
Standard Deviation	0.8
MDA	8.4
Samples Reported	28

MDA <10 net dpm/100 cm²	YES
Results above 20 net dpm/100 cm ²	0
Number of results above MDA	0

28 RESULTS ARE GRAPHED

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

03/29/98

Removable Contamination

Survey Package : A2300 SURFACES & STRUCTURES Tank (PWST) - Elevation 21 ft.

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E033.XLS	02	WS1	C01	4	-0.3	15.1	
SME1E033.XLS	02	WS1	C01	3	-0.3	27.4	
SME1E033.XLS	02	WS1	C01	2	-0.3	2.7	
SME1E033.XLS	02	WS1	C01	1	1.8	-3.5	
SME1E033.XLS	02	RF1	C01	2	-0.3	2.7	
SME1E033.XLS	02	RF1	C01	1	-0.3	8.9	
SME1E033.XLS	02	EQ1	C01	4	-0.3	8.9	
SME1E033.XLS	02	EQ1	C01	3	-0.3	2.7	
SME1E033.XLS	02	EQ1	C01	2	-0.3	15.1	
SME1E033.XLS	02	EQ1	C01	1	-0.3	2.7	
SME1E033.XLS	02	CL1	C01	2	-0.3	8.9	
SME1E033.XLS	02	CL1	C01	1	-0.3	8.9	
SME1E033.XLS	01	WE1	C01	8	-0.3	8.9	
SME1E033.XLS	01	WE1	C01	7	-0.3	8.9	
SME1E033.XLS	01	WE1	C01	6	-0.3	-3.5	
SME1E033.XLS	01	WE1	C01	5	-0.3	2.7	
SME1E033.XLS	01	WE1	C01	4	-0.3	2.7	
SME1E033.XLS	01	WE1	C01	3	-0.3	-3.5	
SME1E033.XLS	01	WE1	C01	2	-0.3	2.7	
SME1E033.XLS	- 01	WE1	C01	1	-0.3	15.1	
SME1E033.XLS	01	SS1	C01	8	1.8	2.7	
SME1E033.XLS	01	SS1	C01	7	1.8	8.9	
SME1E033.XLS	01	SS1	C01	6	1.8	8.9	
SME1E033.XLS	01	SS1	C01	5	-0.3	8.9	
SME1E033.XLS	01	SS1	C01	4	-0.3	2.7	
SME1E033.XLS	01	SS1	C01	3	1.8	-3.5	
SME1E033.XLS	01	SS1	C01	2	-0.3	2.7	
SME1E033.XLS	01	SS1	C01	1	-0.3	-3.5	

NOTES: Activity reported in net dpm/100 cm².

Underlined values exceed the associated MDA.

Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity). 28 results are listed.

s results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

DATAFILE & TENNELEC CALIBRATION SUMMARY

03/29/98 Removable Contamination Survey Package : A2300 SURFACES & STRUCTURES Tank (PWST) - Elevation 21 ft.

SURVEYDATE	XLS FILE	INST ID	S/N	CAL DUE	LAB TECHNICIAN
2/25/98	SME1E033.XLS	1	15632	8/5/98	JWD
		··· -	(CALIBRATION DATE	VERIFIED AS ACCEPTABLE

04/02/98

CHARACTERIZATION SUMMARY

SURVEY PACKAGE NUMBER A2400

SURFACES & STRUCTURES

PACKAGE DESCRIPTION Includes: Test Tank 14A and Test Tank 14B Test Tanks 14A / 14B - Elevation 21 ft.

SURVEY AREA DESCRIPTION Test Tanks (Tanks 14A/14B)

GENERAL HISTORICAL INFORMATION (Operational history, etc.)

Tanks 14A&14B are stainless steel, each with 12, 400 gallon capacity, and used as final sample and holding tanks prior to liquid discharge to environment. They have a concrete base with small diameter piping to Auxiliary Building.

SUMMARY OF CHARACTERIZATION ACTIVITIES

Survey units were established for the areas as listed in the following Summary of Survey Units. Maps with the survey measurement locations for this package are included on the following pages.

Collected 36 direct measurements for total beta activity at the survey measurement locations indicated in the results listing report. Due to elevated background radioactivity in the survey area, a scan of a two meter area encompassing each survey measurement location was not performed. Each direct measurement for total beta activity was accompanied by a corresponding background measurement at the same location. The background was used in the calculation of net dpm/100cm².

Collected smear samples to analyze for removable alpha and beta activity at the same 36 survey locations as the direct measurements for total beta activity.

Collected no one meter exposure rate measurements.

The survey result statistical summaries, graphs and results listings are shown in the following individual reports including calibration summaries for the instruments used for each measurement type.

CHARACTERIZATION SURVEY RESULTS

o There were 6 direct measurements for total beta activity above 2000 dpm/100cm². There were 14 direct measurements for total beta activity above the individual measurements' MDA (Maximum MDA was 1,438 dpm/100cm²). The maximum measurement result was 4,300 dpm/100cm².

o There were no measurements for removable beta activity above MDA (36 dpm/100cm²).

o There were no measurements for removable alpha activity above MDA (8.2 dpm/100cm²).

REFERENCES (Documents, Interviews)

SUMMARY OF SURVEY UNIT(S)

OUTPUT BATCH SN = 500

PACKAGE A2400 SURFACES & STRUCTURES Test Tanks 14A / 14B - Elevation 21 ft. Includes: Test Tank 14A and Test Tank 14B

04/02/98

UNIT(S)	SURFACE(S)	
01 - Test Tank 14A	EQ1 (Equipment: Pipes and insulation) SS1 (Concrete Base) WE1 (Outer Surface)	
02 - Test Tank 14B	EQ1 (Equipment: Pipes and insulation) SS1 (Concrete Base) WE1 (Outer Surface)	
REASON(S) CHARACTERIZATION	SURVEY (CO1)	

REASON(S) CHARACTERIZATION SURVEY (C01)

MATERIALS	MAT'L CODE	MATERIAL DESCRIPTION	BETA BKGD (dpm/100 cm²)		
	B0039	CONCRETE - BARE (EXTERIOR)	665.0		
	B9999	OTHER	0.0		

YES

YES

6

14

Maine Yankee Atomic Power Plant Site Characterization

04/02/98

Direct Measurements For Total Beta Activity

Survey Package A2400 SURFACES & STRUCTURES Test Tanks 14A / 14B - Elevation 21 ft. Includes: Test Tank 14A and Test Tank 14B

STATISTICAL SUMMARY

TESTS PERFORMED

Samples reported satisfy samples prescribed

Results above 2000 net dpm/100 cm²

MDA <2000 net dpm/100 cm²

Number of results above MDA

	Net dpm/100 cm ²	
Mean	955.5	
Maximum	4,299.6	
Minimum	-353.1	
Standard Deviation	1,062.8	
MDA	1,437.5	

Samples Reported	36
Samples Prescribed	36

36 RESULTS ARE GRAPHED

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

÷

SURVEY PACKAGE A2400

Test Tanks Area

A2400

04/02/98

Direct Measurements For Total Beta Activity

Survey Package : A2400 SURFACES & STRUCTURES Test Tanks 14A / 14B - Elevation 21 ft. Includes: Test Tank 14A and Test Tank 14B

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT			
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT	
626 (2)	01	FQ1	B9999	C01	60	00001	792 8	437 1	
626 (2)	01	EQ1	B9999	C01	60	00002	694.6	-323.9	
626 (2)	01	EQ1	B9999	C01	60	00003	1.009.1	85.9	
626 (2)	01	EQ1	B9999	C01	60	00004	1,437.5	3.055.7	
626 (2)	01	EQ1	B9999	C01	60	00005	1,149,9	249.8	
591 (2)	01	SS1	B0039	C01	60	00001	870.5	216.0	
591 (2)	01	SS1	B0039	C01	60	00002	966.7	1,502.4	
591 (2)	01	SS1	B0039	C01	60	00003	634.4	-353.1	
591 (2)	01	SS1	B0039	C01	60	00004	824.7	1.654.4	
591 (2)	01	SS1	B0039	C01	60	00005	525.5	138.0	
591 (2)	01	WE1	B9999	C01	60	00001	501.9	417.1	
591 (2)	01	WE1	B9999	C01	60	00002	618.9	456.1	
591 (2)	01	WE1	B9999	C01	60	00003	548.0	304.1	
591 (2)	01	WE1	B9999	C01	60	00004	615.4	-226.1	
591 (2)	01	WE1	B9999	C01	60	00005	572.5	682.2	
591 (2)	01	WE1	B9999	C01	60	00006	688.2	319.6	
591 (2)	01	WE1	B9999	C01	60	00007	721.4	904.4	
591 (2)	01	WE1	B999 9	C01	60	00008	698.3	4,299.6	
626 (2)	02	EQ1	B9999	C01	60	00001	884.8	803.9	
626 (2)	02	EQ1	B9999	C01	60	00002	1,038.2	117.1	
626 (2)	02	EQ1	B9999	C01	60	00003	1,085.4	1,077.1	
626 (2)	02	EQ1	B9999	C01	60	00004	1,140.6	<u>1,842.0</u>	
626 (2)	02	EQ1	B9999	C01	60	00005	1,073.4	<u>2,501.5</u>	
626 (2)	02	SS1	B0039	C01	60	00001	745.4	<u>1,539.9</u>	
626 (2)	02	SS1	B0039	C01	60	00002	688.3	478.4	
626 (2)	02	SS1	B0039	C01	60	00003	386.2	37.5	
626 (2)	02	SS1	B0039	C01	60	00004	727.7	<u>962.4</u>	
626 (2)	02	SS1	B0039	C01	60	00005	743.9	<u>1,430.7</u>	
626 (2)	02	WE1	B9999	C01	60	00001	861.3	370.7	
626 (2)	02	WE1	B9999	C01	60	00002	1,356.9	<u>2,450.8</u>	
626 (2)	02	WE1	B9999	C01	60	00003	958.4	148.6	
626 (2)	02	WE1	B9999	C01	60	00004	1,239.7	<u>2,083.9</u>	
626 (2)	02	WE1	B9999	C01	60	00005	764.7	745.4	
626 (2)	02	WE1	B9999	C01	60	00006	1,072.6	<u>2,895.7</u>	
626 (2)	02	WE1	B9999	C01	60	00007	663.2	651.7	
626 (2)	02	WE1	B9999	C01	60	80000	791.3	441.0	

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds.

Underlined values exceed the MDA.

- Bold values exceed 2000 dpm/100 cm².
- 36 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7a - 3/30/98 DBACORR Documentation :aProgDBACORR:F_0130.FSL OUTPUT BATCH SN = 500

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

04/02/98

Direct Measurements For Total Beta Activity Survey Package: A2400 SURFACES & STRUCTURES Test Tanks 14A / 14B - Elevation 21 ft.

Includes: Test Tank 14A and Test Tank 14B

SURVEY		M2350		[DETECTOR	POST		
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	EFF	TECHNICIAN
2/11/98	591 (2)	129401	6/10/98	43-106	128924	6/8/98	.20	GLL9768
					(CALIBRATION	DATES VER	IFIED AS ACCEPTABLE
2/20/98	626 (2)	129401	6/10/98	43-106	128924	6/8/98	.20	GLL9768
					(CALIBRATION	DATES VER	IFIED AS ACCEPTABLE

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

03/29/98

CHARACTERIZATION SUMMARY

SURVEY PACKAGE NUMBER : A2400

SURFACES & STRUCTURES

Test Tanks 14A / 14B - Elevation 21 ft.

PACKAGE DESCRIPTION Includes: Test Tank 14A and Test Tank 14B

SURVEY AREA DESCRIPTION Test Tanks (Tanks 14A/14B)

GENERAL HISTORICAL INFORMATION (Operational history, etc.)

Tanks 14A&14B are stainless steel, each with 12, 400 gallon capacity, and used as final sample and holding tanks prior to liquid discharge to environment. They have a concrete base with small diameter piping to Auxiliary Building. Due to present use and/or presence of radioactive materials, this area has been classified as Affected. Area may be reclassified during or following characterization.

SUMMARY OF CHARACTERIZATION ACTIVITIES

A background measurement for direct beta activity measurements was made at each survey location.

A direct measurement of total beta activity and a removable surface contamination measurement was made at each survey location.

The wall measurements included the walls above and below 2 meters. The ceiling measurements included the interior overhead surfaces of the ceilings.

The measurements on exterior surfaces of piping, cable trays, duct work, plant equipment etc., were using "Plant Equipment" type surface code, i.e., EQ1-N.

Floor measurements were collected on the present day floor covering.

Radiation levels in some areas may have precluded direct measurement of total beta activity. These areas were assessed on a case by case basis for alternative sampling if this was applicable.

A 1-meter gamma exposure rate measurement was made at each survey measurement location on floor surfaces.

CHARACTERIZATION SURVEY RESULTS

Maps of the surveys for this package are included on the following pages. The results of the surveys and statistical summaries are shown in the following individual reports. Reports include summary statistics and graphs of the data followed by the values associated with the survey measurement location code. Reports include:

o Direct Measurements for Total Beta Activity and Results Listing,

o Removable Contamination - Gross Beta Activity and Removable Contamination - Gross Alpha Activity and Results Listing, and

o Gamma Exposure Rate Measurements at 1 Meter and Results Listing.

If samples were collected for analysis by gamma spectrometry, the Gamma Spectrum Results Listing is also provided. In addition, instrument calibration summaries are provided for all instruments used for the reports.

REFERENCES (Documents, Interviews)

DBACORR Documentation :aProgDBACORR:C_HISTRY.RSL OUTPUT BATCH SN = 280

SUMMARY OF SURVEY UNIT(S)

OUTPUT BATCH SN = 280

PACKAGE	A2400 SURFACES & STRUCTURES Test Tanks 14A / 14B - Elevation 21 ft. Includes: Test Tank 14A and Test Tank 14B
UNIT(S)	SURFACE(S)

03/29/98

EQ1 (Equipment: Pipes and insulation) SS1 (Concrete Base) WE1 (Outer Surface) EQ1 (Equipment: Pipes and insulation)

02 - Test Tank 14B

SS1 (Concrete Base) WE1 (Outer Surface)

REASON(S) CHARACTERIZATION SURVEY (C01)

MATERIALS	MAT'L CODE	MATERIAL DESCRIPTION	BETA BKGD (dpm/100 cm²)	
-	B0039	CONCRETE - BARE (EXTERIOR)	665.0	
	B9999	OTHER	0.0	

Direct Measurements For Total Beta Activity
Survey Package A2400 SURFACES & STRUCTURES
Test Tanks 14A / 14B - Elevation 21 ft.
Includes: Test Tank 14A and Test Tank 14B

STATISTICAL SUMMARY

TESTS PERFORMED

	<u>Net dpm/100 cm²</u>
Mean	1,207.5
Maximum	4,268.3
Minimum	-432.3
Standard Deviation	1,298.1
MDA	1,918.6

Samples Reported	36
Samples Prescribed	36

Samples reported satisfy samples prescribed	YES
MDA <2000 net dpm/100 cm²	YES
Results above 2000 net dpm/100 cm²	9
Number of results above MDA	14

36 RESULTS ARE GRAPHED

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A2400 SURFACES & STRUCTURES Test Tanks 14A / 14B - Elevation 21 ft. Includes: Test Tank 14A and Test Tank 14B

RESULTS LISTING - SORTED BY SURFACE CODE

					COUNT	MSRMNT		
FILE #	UNIT	SURFACE	MATERIAL	REASON	TIME	LOCATION	MDA	RESULT
626 (2)	01	EQ1	B9999	C01	60	00001	1.058.1	583.3
626 (2)	01	EQ1	B9999	C01	60	00002	927.0	-432.3
626 (2)	01	EQ1	B9999	C01	60	00003	1.346.8	114.6
626 (2)	01	EQ1	B9999	C01	60	00004	1,918.6	4.078.2
626 (2)	01	EQ1	B9999	C01	60	00005	1,534,7	333.3
591 (2)	01	SS1	B0039	C01	60	00001	864.2	209.6
591 (2)	01	SS1	B0039	C01	60	00002	959.6	1,486.6
591 (2)	01	SS1	B0039	C01	60	00003	629.8	-355.4
591 (2)	01	SS1	B0039	C01	60	00004	818.7	1,637.5
591 (2)	01	SS1	B0039	C01	60	00005	521.6	132.2
591 (2)	01	WE1	B9999	C01	60	00001	498.3	414.1
591 (2)	01	WE1	B9999	C01	60	00002	614.4	452.8
591 (2)	01	WE1	B9999	C01	60	00003	544.0	301.8
591 (2)	01	WE1	B9999	C01	60	00004	610.9	-224.4
591 (2)	01	WE1	B9999	C01	60	00005	568.3	<u>677.2</u>
591 (2)	01	WE1	B9999	C01	60	00006	683.2	317.3
591 (2)	01	WE1	B9999	C01	60	00007	716.1	<u>897.8</u>
591 (2)	01	WE1	B9999	C01	60	00008	693.3	4,268.3
626 (2)	02	EQ1	B9999	C01	60	00001	1,180.9	1,072.9
626 (2)	02	EQ1	B9999	C01	60	00002	1,385.6	156.2
626 (2)	02	EQ1	B9999	C01	60	00003	1,448.6	1,437.5
626 (2)	02	EQ1	B9999	C01	60	00004	1,522.3	<u>2,458.4</u>
626 (2)	02	EQ1	B9999	C01	60	00005	1,432.6	<u>3,338.6</u>
626 (2)	02	SS1	B0039	C01	60	00001	994.9	<u>2,277.8</u>
626 (2)	02	SS1	B0039	C01	60	00002	918.6	861.1
626 (2)	02	SS1	B0039	C01	60	00003	515.5	272.5
626 (2)	02	SS1	B0039	C01	60	00004	971.3	<u>1,506.9</u>
626 (2)	02	SS1	B0039	C01	60	00005	992.8	<u>2,131.9</u>
626 (2)	02	WE1	B9999	C01	60	00001	1,149.5	494.8
626 (2)	02	WE1	B9999	C01	60	00002	1,811.0	<u>3,270.9</u>
626 (2)	02	WE1	B9999	C01	60	00003	1,279.1	198.4
626 (2)	02	WE1	B9999	C01	60	00004	1,654.5	<u>2,781.3</u>
626 (2)	02	WE1	B9999	C01	60	00005	1,020.6	994.8
626 (2)	02	WE1	B9999	C01	60	00006	1,431.5	<u>3,864.7</u>
626 (2)	02	WE1	B9999	C01	60	00007	885.2	869.8
626 (2)	02	WE1	B9999	C01	60	00008	1,056.2	588.6

NOTES: Activity reported in net dpm/100 cm². Count times are reported in seconds.

Underlined values exceed the MDA. Bold values exceed 2000 dpm/100 cm².

36 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7a - 3/30/98 DBACORR Documentation :aProgDBACORR:F_0130.FSL OUTPUT BATCH SN = 324

DOWNLOAD FILE & SURVEY INSTRUMENTATION CALIBRATION SUMMARY

03/31/98

Direct Measurements For Total Beta Activity

Survey Package : A2400 SURFACES & STRUCTURES Test Tanks 14A / 14B - Elevation 21 ft. Includes: Test Tank 14A and Test Tank 14B

SURVEY		M2350]	DETECTOR	PRE		
DATE	FILE #	INST S/N	CAL DUE	MODEL	S/N	CAL DUE	EFF	TECHNICIAN
2/11/98	591 (2)	129401	6/10/98	43-106	128924	6/8/98	.21	GLL9768
						CALIBRATION [DATES VER	IFIED AS ACCEPTABLE
2/20/98	626 (2)	129401	6/10/98	43-106	128924	6/8/98	.15	GLL9768
						CALIBRATION I	DATES VER	IFIED AS ACCEPTABLE

03/29/98

Removable Contamination - Gross Beta Activity

Survey Package A2400 SURFACES & STRUCTURES Test Tanks 14A / 14B - Elevation 21 ft. Includes: Test Tank 14A and Test Tank 14B

STATISTICAL SUMMARY

TESTS PERFORMED

36 RESULTS ARE GRAPHED

03/29/98

Removable Contamination - Gross Alpha Activity

Survey Package A2400 SURFACES & STRUCTURES Test Tanks 14A / 14B - Elevation 21 ft. Includes: Test Tank 14A and Test Tank 14B

36

STATISTICAL SUMMARY

TESTS PERFORMED

	Net dpm/100 cm ²			
Mean	0.4			
Maximum	5.8			
Minimum	-0.3			
Standard Deviation	1.3			
MDA	8.2			
Samples Reported	36			

MDA <10 net dpm/100 cm²	YES
Results above 20 net dpm/100 cm²	0
Number of results above MDA	0

Samples	Reported
Samples	Prescribed

36 RESULTS ARE GRAPHED

JLM

03/29/98

Removable Contamination

Survey Package : A2400 SURFACES & STRUCTURES Test Tanks 14A / 14B - Elevation 21 ft. Includes: Test Tank 14A and Test Tank 14B

RESULTS LISTING - SORTED BY SURFACE CODE

				MSRMNT			
XLS FILE	UNIT	SURFACE	REASON	LOCATION	ALPHA	BETA	
SME1E083.XLS	02	WE1	C01	8	-0.3	-5.8	
SME1E083.XLS	02	WE1	C01	. 7	-0.3	6.4	
SME1E083.XLS	02	WE1	C01	6	1.7	6.4	
SME1E083.XLS	02	WE1	C01	5	-0.3	0.3	
SME1E083.XLS	02	WE1	C01	4	1.7	0.3	
SME1E083.XLS	02	WE1	C01	3	-0.3	30.7	
SME1E083.XLS	02	WE1	C01	2	-0.3	6.4	
SME1E083.XLS	02	WE1	C01	1	-0.3	0.3	
SME1E083.XLS	02	SS1	C01	5	-0.3	6.4	
SME1E083.XLS	02	SS1	C01	4	-0.3	6.4	
SME1E083.XLS	02	SS1	C01	3	-0.3	-5.8	
SME1E083.XLS	02	SS1	C01	2	-0.3	6.4	
SME1E083.XLS	02	SS1	C01	1	-0.3	6.4	
SME1E083.XLS	02	EQ1	C01	5	1.7	0.3	
SME1E083.XLS	02	EQ1	C01	4	-0.3	6.4	
SME1E083.XLS	02	EQ1	C01	3	1.7	0.3	
SME1E083.XLS	02	EQ1	C01	2	-0.3	6.4	
SME1E083.XLS	02	EQ1	C01	1	1.7	12.4	
SME1E083.XLS	01	WE1	C01	8	-0.3	6.4	
SME1E083.XLS	01	WE1	C01	7	-0.3	18.5	
SME1E083.XLS	01	WE1	C01	6	1.7	-5.8	
SME1E083.XLS	01	WE1	C01	5	1.7	-5.8	
SME1E083.XLS	01	WE1	C01	4	-0.3	0.3	
SME1E083.XLS	01	WE1	C01	3	1.7	6.4	
SME1E083.XLS	01	WE1	C01	2	-0.3	0.3	
SME1E083.XLS	01	WE1	C01	1	-0.3	0.3	
SME1E083.XLS	01	SS1	C01	5	-0.3	6.4	
SME1E083.XLS	01	SS1	C01	4	-0.3	12.4	
SME1E083.XLS	01	551	C01	3	-0.3	6.4	
SME1E083.XLS	01	551	C01	2	1.7	0.3	
SME1E083.XLS	01	551	C01	1	-0.3	0.3	
SIVIETEU83.ALS	01	EQT	C01	5	1.7	U.3 E 0	
SIVIETEU83.ALS	01	EQI		4	-0.3	-5.ð	
SIVIETEU83.ALS	01	EQI	001	3	-0.3	-5.8	
SIVIETEU83.XLS	01	EQT	001	2	-0.3	0.3	
SMETEU83.XLS	01	EQ1	CUI	1	5.9	0.3	

NOTES: Activity reported in net dpm/100 cm².

Underlined values exceed the associated MDA.

Bold values exceed 100.00 dpm/100 cm² (beta activity) and/or 20.00 dpm/100 cm² (alpha activity). 36 results are listed.

(C) 1998, GTS Duratek, Kingston Tennessee. All rights reserved. Version 3.0.7 - 3/24/98

DATAFILE & TENNELEC CALIBRATION SUMMARY

03/29/98	Removable Contamination						
Survey Package :	A2400 SURFACES Test Tanks 14A / 14 Includes: Test Tank	URES 21 ft. t Tank 14B	3				
SURVEYDATE	XLS FILE	INST ID	S/N	CAL DUE	LAB TECHNICIAN		
3/9/98	SME1E083.XLS	1	15632 c	8/5/98 ALIBRATION DATE	JWD VERIFIED AS ACCEPTABLE		

CHARACTERIZATION SUMMARY

SURVEY PACKAGE NUMBER: A9900

PACKAGE DESCRIPTION

Concrete Core Contamination Profile Sampling

SURVEY AREA DESCRIPTION

Selected concrete locations within the affected area

GENERAL HISTORICAL INFORMATION (Operational History)

Concrete core samples were taken from eleven locations within the affected area with high levels of surface radioactivity. Locations included four cores from the primary auxiliary building, one from the fuel building, one from the spray building, and four from the containment. The surface of each concrete location was unpainted.

SUMMARY OF CHARACTERIZATION ACTIVITIES

A 6 inch diameter core was obtained from each location using a concrete core drill. Each core was approximately 6 inches long. Core samples were taken to the hot machine shop where gross beta activity measurements were collected. Beginning at the concrete surface a shielded measurement was obtained with the detector to determine the gamma component of the detector response. A measurement was then taken without the shield. The gamma component was subtracted from the measurement, the detector efficiency and detector area conversions made to evaluate the net beta dpm/100 cm² from the concrete surface. A slice from the surface of concrete was made using a diamond tipped band saw, the slice thickness recorded, shielded and unshielded measurements were taken from the top of the remaining core and the contamination level again evaluated. All cutting was done under the direct supervision of a GTS Duratek survey technician and the saw blade was decontaminated after each cut. This process continued until two successive measurements were approximately in the range of the background study measurements for bare concrete. The samples were controlled by chain-of-custody and are available for further analysis if necessary.

A bare concrete (unpainted) background had been established during the background study. An average of 665 dpm/100 cm² was determined from the data set with a range from 386 dpm/100 cm² to 865 dpm/100 cm².

CHARACTERIZATION SURVEY RESULTS

The data are presented for each core location in tables and graphs showing the depth profile obtained. Most cores were at background levels within the first inch of concrete.

SURVEY PACKAGE A9900

Primary Aux Building Elevation 11' Concrete Core West Pipe Trench-Adjacent to Sump

File	L7	Net Beta	Comments	SliceThickness	Depth into Concrete
		dpm/100cm2			(inches)
566	00001	7947056	Top of Core	1.0"	0
587	00002	3346	After 1st cut	0.45"	1
587	00003	1622	After 2nd cut	0.39"	1.45
587	00004	1587	After 3rd cut	0.51"	1.84
587	00005	1259	After 4th cut	0.42"	2.35
594	00006	1505	After 5th cut	1.5" (Remaining)	2.77
				core length 4.27"	

P\S\MEYANKEE\REPORT\A9900.WPD

Page 2 of 12

SURVEY PACKAGE A9900

Primary Aux Building Elevation 21' Concrete Core P14S Cubicle

File	L7	Net Beta dpm/100cm2	Comments	Slice Thickness	Depth into Concrete (inches)
351	0001	13584	Top of Core	0.41"	0
325	0002	774	After 1st cut	0.41"	0.41
365	0003	590	After 2nd cut	3.5" (remaining)	0.82
				core length 4.32"	

P\S\MEYANKEE\REPORT\A9900.WPD

SURVEY PACKAGE A9900

Decon Room, Fuel Building Concrete Core

File	L7	Net Beta dpm/100cm2	Comments	SliceThickness	Depth into Concrete (inches)
518	00001	57744	Top of Core	0.34"	0
579	00002	18035	After 1st cut	0.45"	0.34
579	00003	1005	After 2nd cut	0.5"	0.79
579	00004	598	After 3rd cut	3.75" (remaining)	1.29
		· · · · · · · · · · · · · · · · · · ·		core length 5.04"	

P\S\MEYANKEE\REPORT\A9900.WPD

SURVEY PACKAGE A9900

Spray Building Elevation 11' Concrete Core Adjacent to Sump Pit

File	L7	Net Beta dpm/100cm2	Comments	SliceThickness	Depth into Concrete (inches)
625	00001	143698	Top of Core	0.29"	0
625	00002	2825	After 1st cut	0.28"	0.29
625	00003	2611	After 2 nd cut	5.5" (remaining)	0.57
				core length 6.07"	

SURVEY PACKAGE A9900

RCA Building Elevation 21' Concrete Core Bottom of TK-81 Pit

File	L7	Net Beta	Comments	SliceThickness	Depth into Concrete
		dpm/100cm2			(inches)
622	00001	8435227	Top of Core	0.29"	0
618	00002	6429	After 1st cut	0.31"	0.29
621	00003	1746	After 2nd cut	0.28"	0.60
621	00004	778	After 3rd cut	0.29"	0.88
621	00005	913	After 4th cut	0.31"	1.17
621	00006	659	After 5th cut	3.25"	1.48
				(remaining)	
				core length 4.73"	

P\S\MEYANKEE\REPORT\A9900.WPD

SURVEY PACKAGE A9900

Primary Auxillary Building Elevation 11' Concrete Core Boron Recovery Evaporator Cubicle, Near P11

File	L7	Net Beta dpm/100cm2	Comments	SliceThickness	Depth into Concrete (inches)
621	00001	2524	Top of Core	0.29"	0
621	00002	825	After 1st cut	0.32"	0.29
625	00003	730	After 2nd cut	4.4" (remaining)	0.61
				core length 5.01"	

SURVEY PACKAGE A9900

Primary Aux Building Elevation 11' Concrete Core In Trench Near PAB Sump

File	L7	Net Beta	Comments	SliceThickness	Depth into Concrete
		dpm/100cm2			(inches)
520	00001	1547312	Top of Core	0.46"	0
618	00002	6595	After 1st cut	0.29"	0.46
618	00003	3000	After 2nd cut	0.25"	0.75
618	00004	1726	After 3rd cut	0.26"	1
618	00005	1060	After 4th cut	0.29"	1.26
618	00006	849	After 5th cut	4" (Remaining)	1.55
				core length 5.55"	

SURVEY PACKAGE A9900

Containment Elevation -2' Concrete Core Loop Room 1

File	L7	Net Beta dpm/100cm2	Comments	SliceThickness	Depth into Concrete (inches)
672	00001	55760	Top of Core	0.25"	0
672	00002	902	After 1st cut	0.25"	0.25
672	00003	551	After 2nd cut	0.25"	0.5
672	00004	551	After 3rd cut	5" (remaining)	0.75
		.		core length 5.75"	

SURVEY PACKAGE A9900

Containment Elevation -2' Concrete Core Loop Room 2

File	L7	Net Beta	Comments	SliceThickness	Depth into Concrete
		apm/100cm2			(Inches)
672	00001	960827	Top of Core	0.25"	0
672	00002	10155	After 1st cut	0.25"	0.25
672	00003	3087	After 2nd cut	0.25"	0.50
672	00004	2260	After 3rd cut	0.25"	0.75
672	00005	1558	After 4th cut	0.25"	1.0
672	00006	1103	After 5th cut	0.25"	1.25
673	00007	564	Bottom of Core	4" (Remaining)	1.50
				core length 5.5"	

P\S\MEYANKEE\REPORT\A9900.WPD

SURVEY PACKAGE A9900

Containment Elevation -2' Concrete Core Loop Room 3

File	L7	Net Beta dpm/100cm2	Comments	SliceThickness	Depth into Concrete (inches)
126	00001	105631	Top of Core	0.25"	0
126	00002	2490	After 1st cut	0.25"	0.25
126	00003	1358	After 2nd cut	0.25"	0.50
126	00004	815	After 3rd cut	0.25"	0.75
126	00005	718	After 4th cut	0.25"	1.0
	-			core length 4.75"	

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

SURVEY PACKAGE A9900

Containment Elevation -2' Concrete Core Sump Trench in Annulus

File	L7	Net Beta dpm/100cm2	Comments	SliceThickness	Depth into Concrete (inches)
665	00001	3044615	Top of Core	0.25"	0
665	00002	2829	After 1st cut	0.25"	0.25
665	00003	496	After 2nd cut	0.25"	0.50
670	00004	1023	After 5th cut	5.75" (remaining)	0.75
	•		· · · · · · · · · · · · · · · · · · ·	core length 6.5"	

CHARACTERIZATION SUMMARY A9901

SURVEY PACKAGE NUMBER: A9901

PACKAGE DESCRIPTION

Core Sampling from Containment Crane Wall

SURVEY AREA DESCRIPTION

Selected locations for concrete core sampling within the Containment Building

GENERAL HISTORICAL INFORMATION (Operational History)

Concrete core samples were taken from five locations within the affected area. Locations included three cores from the 13' to 34' elevations of the Crane Wall and two cores from the 66' to 90' elevations of the Crane Wall.

The plant, with the concurrence of the DOC's, agreed to sample areas on the crane wall, overhead crane and missile shield. The core locations were requested/designated by the DOCs via memo to Peter Melhorn with CIANBRO.

SUMMARY OF CHARACTERIZATION ACTIVITIES

A 3 inch diameter core was obtained from each location using a concrete core drill. Each core was approximately 3 inches long. The core cutting and slicing operation was performed by CIANBRO.

Core samples were taken to the hot machine shop for slicing into nominal ½" sections. Slicing of the concrete cores was performed using a diamond tipped band saw. The slice thickness was recorded. All cutting was done under the direct supervision of a GTS Duratek survey technician.

The samples were controlled by chain-of-custody and were sent to Duke Engineering and Services Environmental Laboratory (DE&S) for analysis by gamma spectroscopy. Each core sample slice was analyzed for all gamma emitting fission and activation nuclides to reach a MDA of 1 pCi/gram of Eu-152.

The samples with chain-of-custody were returned to Maine Yankee following the analysis.

CHARACTERIZATION SURVEY RESULTS

The data are presented for each core location in tables and graphs showing the depth profile obtained for Eu-152. The individual core slice sample analysis result reports from DE&S are included as an attachment.

o The core sample A9901 01MC1, slice 00001 analysis results indicated plant-derived radionuclide activity above MDA. The analysis of the sample indicated the presence of Co-60 and BaLa-140.

o The core sample A9901 01MC3 analysis results indicated no plant-derived radionuclide activity above MDA.

o The core sample A9901 01MC5, slices 00001 to 00006 analysis results indicated plant-derived radionuclide activity above MDA. The analysis of the samples indicated the presence of Ag-110m, BaLa-140, Co-58, Co-60, Cs-137, Eu-152, Eu-154 and Sb-124.

o The core sample A9901 02MC1, slices 00001 to 00006 analysis results indicated plant-derived radionuclide activity above MDA. The analysis of the samples indicated the presence of BaLa-140, Co-60, Cs-134, Eu-152, and Sb-124.

CHARACTERIZATION SUMMARY A9901

o The core sample A9901 02MC3, slices 00001 to 00006 analysis results indicated plant-derived radionuclide activity above MDA. The analysis of the samples indicated the presence of BaLa-140, Co-60, Eu-152, and Sb-124.

CHARACTERIZATION SUMMARY A9901

Survey Unit: 01 Surface: MC1 13' to 34' Containment Building

Core S	Core Sample from loop 2 Crane wall (13' between Azimuth 160 and 200)												
L1	L2	L8	Weight (grams)	Eu-152 pCi/gram	MDC pCi/gram	Other Nuclides Present	Comments	Slice Thickness	Average Depth into Concrete (inches)				
A9901	01MC1	00001	129.5	0.27	0.33	Co-60, BaLa-140	Top of Core	0.5"	0.25				
A9901	01MC1	00002	132.9	0.10	0.51		After 1st cut	0.5"	0.75				
A9901	01MC1	00003	106.3	0.08	0.41		After 2nd cut	0.5"	1.25				
A9901	01MC1	00004	117.5	0.35	0.48		After 3rd cut	0.5"	1.75				
A9901	01MC1	00005	109.1	0.12	0.41		After 4th cut	0.5"	2.25				
A9901	01MC1	00006	116.6	0.19	0.35		After 5th cut	0.5"	2.75				
]	I	1	1	1		L	с С	ore thickness 3.0"				

CHARACTERIZATION SUMMARY A9901

Survey Unit: 01 Surface: MC3 13' to 34' Containment Building

Core S	Core Sample from loop 2 Crane wall (24' between Azimuth 160 and 200)											
L1	L2	L8	Weight (grams)	Eu-152 pCi/gram	MDC pCi/gram	Other Nuclides Present	Comments	Slice Thickness	Average Depth into Concrete (inches)			
A9901	01MC3	00001	112	0.53*	0.53		Top of Core	0.5"	0.25			
A9901	01MC3	00002	110.8	0.15	0.24		After 1st cut	0.5"	0.75			
A9901	01MC3	00003	112.7	0.05	0.34		After 2nd cut	0.5"	1.25			
A9901	01MC3	00004	112.6	0.27	0.46		After 3rd cut	0.5"	1.75			
A9901	01MC3	00005	112.7	0.18	0.33		After 4th cut	0.5"	2.25			
A9901	01MC3	00006					no sample	0.5"	2.75			
			<u> </u>						Core thickness 3.0"			

*Actual Concentration is less than MDC

CHARACTERIZATION SUMMARY A9901

Survey 13' to	y Unit: 34' Con	01 tainm	Su ent Build	urface: M ding	C5	· · · · · · · · · · · · · · · · · · ·						
Core S	Core Sample from near center of missle shield (Azimuth 225)											
L1	L2	L8	Weight (grams)	Eu-152 pCi/gram	MDC pCi/gram	Other Nuclides Present	Comments	Slice Thickness	Average Depth into Concrete (inches)			
A9901	01MC5	00001	90.1	0.67	0.37	Co-60,Cs-137, BaLa-140	Top of Core	0.5"	0.25			
A9901	01MC5	00002	99.1	0.58	0.42	Co-60	After 1st cut	0.5"	0.75			
A9901	01MC5	00003	116.6	0.48	0.39	Co-60, BaLa-140	After 2nd cut	0.5"	1.25			
A9901	01MC5	00004	104.2	0.28	0.57	Co-58, Co-60, Sb-124	After 3rd cut	0.5"	1.75			
A9901	01MC5	00005	114.3	0.51	0.45	Co-60, BaLa-140, Eu-154	After 4th cut	0.5"	2.25			
A9901	01MC5	00006	105.7	0.41	0.71	Ag-110M, BaLa-140	After 5th cut	0.5"	2.75			
	• · · · · · · · · · · · · · · · · · · ·	· · · · ·	•		••••••••••••••••••••••••••••••••••••••		Core th	nickness 3	.0"			

CHARACTERIZATION SUMMARY A9901

Surve 66' to	y Unit: 90' Con	02 Itainm	Su ent Build	Irface: M ding	C1			1				
Core S	Core Sample at Crane Wall (90' - Azimuth)											
L1	L2	L8	Weight (grams)	Eu-152 pCi/gram	MDC pCi/gram	Other Nuclides Present	Comments	Slice Thickness	Average Depth into Concrete (inches)			
A9901	02MC1	00001	108.1	0.72	0.6	Co-60	Top of Core	0.5"	0.25			
A9901	02MC1	00002	113.4	0.73	0.61	Sb-124	After 1st cut	0.5"	0.75			
A9901	02MC1	00003	99.9	0.72	0.72	Nb-94, Cs-134, BaLa-140	After 2nd cut	0.5"	1.25			
A9901	02MC1	00004	118.2	0.78	0.43	Sb-124	After 3rd cut	0.5"	1.75			
A9901	02MC1	00005	105.8	0.92	0.53	Sb-124	After 4th cut	0.5"	2.25			
A9901	02MC1	00006	107	0.71	0.51	BaLa-140	After 5th cut	0.5"	2.75			
								Core thickn	iess 3.0"			

Radiological Engineering & Field Services

Maine Yankee Atomic Power Plant Site Characterization

CHARACTERIZATION SUMMARY A9901

Survey Unit: 02 Surface: MC3 66' to 90' Containment Building

Core S	Core Sample at Containment wall directly above refueling cavity adjacent to transfer tube (66' to 90' Containment Building)												
L1	L2	L8	Weight (grams)	Eu-152 pCi/gram	MDC pCi/gram	Other Nuclides Present	Comments	Slice Thickness	Average Depth into Concrete (inches)				
A9901	02MC3	00001	119.5	1.52	0.77	Mn-54, Co-60, Eu-154	Top of Core	0.5"	0.25				
A9901	02MC3	00002	122.3	0.85	0.6	Co-60, BaLa-140	After 1st cut	0.5"	0.75				
A9901	02MC3	00003	105.2	0.85	0.65	Co-60,	After 2nd cut	0.5"	1.25				
A9901	02МС3	00004	129.4	0.63	0.39	Co-60,	After 3rd cut	0.5"	1.75				
A9901	02MC3	00005	123.6	0.60	0.41	Co-60, Sb-124	After 4th cut	0.5"	2.25				
A9901	02MC3	00006	125.7	0.67	0.46		After 5th cut	0.5"	2.75				
	Core thickness_3.0"												

CHARACTERIZATION SUMMARY A9901

ATTACHMENTS

MALED DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1998

DE&S

ENVIRONMENTAL LAB.

Laboratory Sample Number: X10399 Sample Submission Code: QZZc04A1198 Media Type: Concrete

Total Amt of Sample Sent: 129.5 g

10 CFR Part 50/61 Analysis Report _____

Page 1 of 2

Customer: GTS Duratek Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: May 2, 1998 Report Date: May 5, 1998

Sample Description: A9901/01MC1/00001

Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activity Concentration Net ± 1σ Overall on Reference Date pe [µCi/g]			Minimum Detectable Concentration (A) on Reference Date CALCULATED REQUIRED [µCi/g] Note(
	120 5000	Cr-51				7 3 5-06		
Galuna Scan	129.5000	Mn = 54	ı ۲	0.0 ± 1.0	1 E - 07	4.8 E-07		
		Co-57	۲ ۲	-9 ± 34	1 E - 08	1.4 E-06		
		Co-58	ľ	-1.4 ± 1.7	1 E-07	7.6 E-07		
		Fe-59	ſ	3 ± 45) E-08	2.0 E-06		
		Co-60	Ì	6.27 ± 0.92	j E-07	4.7 E-08	в	
		Zn-65	Î	-7.6 ± 4.3	j E-07	2.0 E-06		
		Nb-94	ī	-3.7 ± 8.8	j E-08	3.9 E-07		
\smile		Zr-95	Ì	1.1 ± 2.6] E-07	1.1 E-06		
		Nb-95	Ē	9 ± 21] E-08	9.0 E-07		
		Ru-103	[-5 ± 12] E-08	5.5 E-07		
		Ru-106	[-9.0 ± 9.0] E-07	4.0 E-06		
		Ag-108m	[8.9 ± 5.1] E-08	2.0 E-07		
		Ag-110m]	2 ± 15] E-08	6.6 E-07		
		Sb-124	[2.1 ± 1.2] E-07	1.9 E-07		
		Sb-125	Ι	-1.5 ± 1.9] E-07	8.5 E-07		
		Cs-134	[-3.1 ± 1.2] E-07	5.4 E-07		
		Cs-137	[2.0 ± 9.5] E-08	4.1 E-07		
		BaLa-140]	1.12 ± 0.46] E-06	5.1 E-07		
		Ce-141]	-5 ± 17] E-08	7.0 E-07		
		Ce-144	ſ	-1.2 ± 3.3] E-07	1.4 E-06		

Note(s):

- A Calculated MDCs are a-posteriori values.
- B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Reviewed by

Moreno

Banavali

M	AILED DO	KE ENGINEEI	RING AND S	SERVICES	ENVIRONME	NTAL LA	BORATORY		
	Y 0 6 1998 DE&S VMENTAL LAB	10	CFR Part	50/61 Ar Page 2 of	alysis Re	port			
Laboratory S Sample Sub Total Amt of	Sample Number: omission Code: Media Type: f Sample Sent:	X10399 QZZc04A119 Concrete 129.5 g	98	Customer: Sample Reference Date: Date Sample Received: Count Date: Report Date:			r: GTS Duratek e: March 20, 1998 d: April 27, 1998 e: May 2, 1998 e: May 5, 1998		
Analysis Requested	S Aliquot Weight Processed [g]	ample Desci	Activit Net on Re	A990 y Concent ± 1σ Or eference [μCi/g	01/01MC1/0 cration verall Date	Mir Oor On CALCUI	nimum Det ncentrati Referenc LATED [μCi/g	ectable on (A) e Date REQUIRED]	Note(s)
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	[2.7 [1.	1 ± 0.96 2 ± 1.5 6 ± 29] E-07] E-07] E-08	3.3 H 5.9 H 1.3 H	5-07 5-07 5-06	1.0E-06	

>(s):

A - Calculated MDCs are a-posteriori values. B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

E. M. Moreno

5 18

A. D. Banavali

MA		JKE ENGINEER	ING AND	SERVICES	ENVIRONM	ental la	BORATORY	
MAY	0 6 1998	10	CFR Part	: 50/61 ♪	nalysis Re	eport		
	E&S //ENTAL LAB.			Page 1 c	of 2			
Laboratory Sample Number: Sample Submission Code: Media Type: Total Amt of Sample Sent:		X10400 QZZc04B119 Concrete 132.9 g	8	Sample Date	Cua Reference Sample Rea Count Report	GTS Duratek March 20, 1998 April 27, 1998 May 6, 1998 May 6, 1998		
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activit Net on 1	ty Concer ± 1σ (Reference [μCi/g	ntration Overall e Date]	Min Con On CALCUL	imum Detectable icentration (A) Reference Date ATED REQUIRED [μ Ci/g]	Note(s)
Gamma Scan	132.9000	Cr-51 Mn-54 Co-57 Co-58 Fe-59 Co-60 Zn-65 Nb-94 Zr-95 Nb-95 Ru-103 Ru-106 Ag-108m Ag-110m Sb-124 Sb-125 Cs-134 Cs-137 BaLa-140 Ce-141 Ce-144	$\begin{bmatrix} & 4 \\ [& 4 \\ [& 1 \\ [& -9 \\ [& -9 \\ [& 3 \\ [& 3 \\ [& 3 \\ [& 3 \\ [& 3 \\ [& -1 \\ [& 2 \\ [& -1 \\ [& 2 \\ [& -1 \\ [& -1 \\ [& -8 \\ [$	$\begin{array}{c} 6 \pm 16 \\ 8 \pm 14 \\ .3 \pm 3.7 \\ .9 \pm 1.3 \\ 6 \pm 51 \\ 2 \pm 22 \\ .7 \pm 5.0 \\ .2 \pm 9.8 \\ -6 \pm 17 \\ .7 \pm 2.0 \\ .2 \pm 1.3 \\ -6 \pm 11 \\ .9 \pm 2.2 \\ .5 \pm 1.8 \\ 9 \pm 2.2 \\ .5 \pm 1.8 \\ 9 \pm 16 \\ -7 \pm 13 \\ -7 \pm 13 \\ -1 \pm 19 \\ -1 \pm 23 \\ .4 \pm 4.8 \end{array}$	$\begin{array}{c} E = 07\\ E = 08\\ E = 07\\ E = 07\\ E = 07\\ E = 08\\ E = 08\\ E = 08\\ E = 07\\ E = 08\\ E = 07\\ E = 08\\ E = 08\\ E = 07\\ E = 08\\ E = 08\\ E = 07\\ E = 08\\ E = 08\\ E = 07\\ E = 08\\ E = 08\\$	7.0 E 6.0 E 1.4 E 4.9 E 2.3 E 2.3 E 2.4 E 4.2 E 4.2 E 4.2 E 4.5 E 1.6 E 1.0 E 5.7 E 1.0 E 5.8 E 5.8 F 5.8 F 5.8 F 2.1 E		

Note(s):

A - Calculated MDCs are a-posteriori values.

5698 E. M. Moreno

A. D. Bapavali fr

MAY 0 6 1998 DE&S ENVIRONMENTAL LAB. DE&S DE DE&S DE DE&S DE DE&S DE DE&S DE DE&S DE DE&S DE DE DE DE DE DE DE DE DE DE DE DE DE D											
ENVIRONMENTAL LAB.Page 2 of 2Laboratory Sample Number:X10400Customer:GTS DuratekSample Submission Code:QZZc04B1198Sample Reference Date:March 20, 1998Media Type:ConcreteDate Sample Received:April 27, 1998Total Amt of Sample Sent:132.9 gCount Date:May 6, 1998Sample Description:A9901/01MC1/00002A9901/01MC1/00002											
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Act Ne	ivity t ± on Re [Concen lσ O ference μCi/g	tration verall Date]	Mini Conc on F CALCULA [mum Detectable centration (A) Reference Date ATED REQUIRED μ Ci/g]) Note(s)		
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	[[[1.0 -8 -6.6	± 1.3 ± 21 ± 5.3] E-07] E-08] E-07	5.1 E- 8.8 E- 2.6 E-	-07 1.0E-06 -07 -06			

(8):

A - Calculated MDCs are a-posteriori values.

BUUMAUD 5/6/48 E. M. Moreno

Ellelyour for

A. D. Banavali

MAILED

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY _____

10 CFR Part 50/61 Analysis Report

Page 1 of 2

MAY 0 6 1998

DE&S ENVIRONMENTAL NUMBer: X10401 Sample Submission Code: QZZc04C1198

Media Type: Concrete Total Amt of Sample Sent: 106.3 g

Customer: GTS Duratek Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: May 2, 1998 Report Date: May 4, 1998

Sample Description: A9901/01MC1/00003

Analysis Requested	Aliquot Weight Processed [g]	Isotope	Act Ne	ivity Concent t ± 1σ Ov on Reference [μCi/g]	ration erall Date	Minimum Detectable Concentration (A) on Reference Date CALCULATED REQUIRED [µCi/g] Note(
Gamma Scan	106.3000	Cr-51 Mn-54 Co-57 Co-58 Fe-59 Co-60 Zn-65 Nb-94 Zr-95 Nb-95 Ru-103 Ru-106 Ag-108m Ag-110m Sb-124 Sb-125 Cs-134 Cs-137		$\begin{array}{c} 6 \pm 11 \\ -4.6 \pm 8.4 \\ -2 \pm 28 \\ -7.3 \pm 9.9 \\ 9 \pm 25 \\ 1.75 \pm 0.77 \\ -4.5 \pm 2.8 \\ 7 \pm 57 \\ -3.4 \pm 2.8 \\ -5 \pm 17 \\ -2 \pm 12 \\ -3.2 \pm 6.2 \\ 3.2 \pm 4.5 \\ -1.1 \pm 1.2 \\ -2 \pm 23 \\ 1.9 \pm 1.5 \\ -5.7 \pm 7.7 \\ 2.4 \pm 6.9 \\ \end{array}$] E-07] E-08] E-08] E-08] E-07] E-07] E-07] E-07] E-08] E-07] E-08] E-07] E-08] E-07] E-08] E-07] E-08] E-07] E-08] E-07	4.4 $E-06$ 3.7 $E-07$ 1.1 $E-06$ 4.5 $E-07$ 1.1 $E-06$ 2.5 $E-07$ 1.3 $E-06$ 2.4 $E-07$ 1.3 $E-06$ 7.4 $E-07$ 5.0 $E-07$ 2.7 $E-06$ 1.9 $E-07$ 5.6 $E-07$ 1.1 $E-06$ 5.8 $E-07$ 3.5 $E-07$ 2.9 $E-07$		
		Ce-141 Ce-144	[[1.5 ± 1.4 0.0 ± 2.8] E-07] E-07	5.5 E-07 1.1 E-06		

Note(s):

A - Calculated MDCs are a-posteriori values.

Banavali
MA	ILED D	JKE ENGINEE	RING	AND SI	ERVICES	ENVIRONM	ENTAL LA	BORATORY	5	
MAY	0 6 1998	10	CFR	Part 9	50/61 A	nalysis Re	eport			
D	E&S			Pa	age 2 o	f 2				
ENVIRONMENTALNABER: X104 Laboratory Sample Number: X104 Sample Submission Code: QZZc Media Type: Conc Total Amt of Sample Sent: 106.			98		Sample Date	Cua Reference Sample Rec Count Report	GTS Duratek March 20, 1998 April 27, 1998 May 2, 1998 May 4, 1998			
	4	Sample Desc	ripti	Lon:	A99	01/01MC1/0	00003			
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Act Ne	civity et ± on Ref	Concen 1ơ O ference µCi/g	tration verall Date]	Min Con On CALCUI	imum Det centrati Reference ATED [μCi/g	ectable on (A) ce Date REQUIRED]	Note(s)
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154] []	8 -1.4 4.2	± 11 ± 1.4 ± 1.8] E-08] E-07] E-07	4.1 E 5.8 E 6.7 E	-07 -07 -07	1.0E-06	

~e(s):

A - Calculated MDCs are a-posteriori values.

Celleptere 5 E. M. Moreno

Ellepeno for A. D. Banavali

M/ M/	AILED	JKE ENGINEE	RING AND S	ERVICES	ENVIRONME	NTAL LA	BORATORY		
	DELS	10	CFR Part	50/61 An	alysis Re	port			
ENVIRO	NMENTAL LAE	3	 P	age 1 of	2				
Laboratory S Sample Sub Total Amt of	Sample Number: omission Code: Media Type: Sample Sent:	X10402 QZZc04D119 Concrete 117.5 g	98	Sample Date S	Cue Reference ample Rec Count Report	tomer: Date: eived: Date: Date:	GTS Durat March 20, April 27, May 5, 19 May 5, 19	:ek , 1998 , 1998)98)98	
	5	Sample Desc:	ription:	A990	1/01MC1/0	0004			
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activity Net ± on Re [Concent 1σ Ov ference μCi/g]	ration erall Date	Min Con on CALCUL	imum Detec centration Reference ATED 1 [µCi/g]	ctable 1 (A) Date REQUIRED	Note(s)
Gamma Scan	117.5000	Cr-51 Mn-54 Co-57 Co-58 Fe-59 Co-60 Zn-65 Nb-94 Zr-95 Nb-95 Ru-103 Ru-106 Ag-108m Ag-110m Sb-124 Sb-125 Cs-134 Cs-137 BaLa-140	$\begin{bmatrix} -2.9\\ [-8\\ -8\\ [-4.2\\ [-4\\ [-6\\ [-1\\ [-7.5\\ [5.2\\ [-3.2\\ [-3.2\\ [-3.2\\ [-3.2\\ [-3.3\\ [1.04\\ [-3.3\\ [1.7\\ [-5.3\\ [4\\ [2.5\\] \end{bmatrix}$	$\begin{array}{c} \pm 2.3 \\ \pm 11 \\ \pm 5.0 \\ \pm 16 \\ \pm 39 \\ \pm 22 \\ \pm 5.2 \\ \pm 9.1 \\ \pm 4.7 \\ \pm 4.2 \\ \pm 24 \\ \pm 0.95 \\ \pm 7.4 \\ \pm 18 \\ \pm 2.0 \\ \pm 1.9 \\ \pm 12 \\ \pm 1.0 \\ \end{array}$] E-06] E-08] E-07] E-08] E-08] E-08] E-07] E-07] E-07] E-07] E-07] E-08] E-06] E-08] E-08] E-07] E-07] E-07] E-07] E-07] E-07	1.1 E 5.6 E 2.1 E 7.4 E 1.9 E 1.0 E 2.5 E 2.2 E 2.0 E 2.2 E 2.0 E 3.9 E 3.4 E 3.4 E 3.8 E 1.1 E 8.9 E 5.2 E 1.1 E	05 07 06 07 06 06 06 06 06		
		Ce-141 Ce-144	[-3.5 [-5.5	± 3.1 ± 5.0] E-07] E-07	1.3 H 2.1 H	-06 -06		

Note(s):

A - Calculated MDCs are a-posteriori values.

<u>ФШИрика</u> 55/28 Е.Э.) Moreno

A.D. Banavali

М м	AILED AY 0 6 1998	KE ENGINEER	ING AND CFR Part	SERV	VICES	ENVIRONM 	ENTAL LA	BORATORY		
ENVIRC	ENVIRONMENTAL LAB.			Page	e 2 c					
Laboratory Sample Number: X10402 Sample Submission Code: QZZC04 Media Type: Concret Total Amt of Sample Sent: 117.5		X10402 QZZc04D119 Concrete 117.5 g	8	Sa I	ample Date	Cus Reference Sample Rec Count Report	stomer: Date: ceived: t Date: t Date:	: GTS Duratek : March 20, 1998 : April 27, 1998 : May 5, 1998 : May 5, 1998		
	S	ample Descr	iption:		A99	01/01MC1/0	00004			
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activii Net on I	ty Co t Refe [µ0	oncer 10 C rence Ci/g	tration overall Date]	Min Con on CALCUL	imum Det centrati Referenc ATED [µCi/g	ectable on (A) ce Date REQUIRED]	Note(s)
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	[3. [1. [1.	.5 ± .3 ± .9 ±	1.4 1.9 4.0] E-07] E-07] E-07] E-07	4.8 E 7.6 E 1.8 E	-07 -07 -06	1.0E-06	

(s):

A - Calculated MDCs are a-posteriori values.

8 Ull perce 5 5 48

M. Moreno E.

PINIUronu h

А. б. Banavali

M. Ma	AILED NY 0 6 1998	JKE ENGINEER 10	ING AND S	ERVICES 50/61 A	ENVIRONM 	ENTAL LABORA	TORY	
ENVIRON	MENTAL LAB		P	 age 1 o	 f 2			
Laboratory S Sample Sul Total Amt of	Sample Number: bmission Code: Media Type: f Sample Sent:	X10403 QZZc04E119 Concrete 109.1 g Sample Descr	8 iption:	Sample Date A99	stomer: GTS e Date: Mar ceived: Apr t Date: May t Date: May	er: GTS Duratek te: March 20, 1998 ed: April 27, 1998 te: May 2, 1998 te: May 5, 1998		
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activity Net ± on Re [Concen 1σ O ference μCi/g	tration verall Date]	Minimum Concent on Refe CALCULATED [µC	Detectable ration (A) rence Date REQUIRED Li/g]	Note(s)
Gamma Scan	109.1000	Cr-51 Mn-54 Co-57 Co-58 Fe-59 Co-60 Zn-65 Nb-94 Zr-95 Nb-95 Ru-103 Ru-106 Ag-108m Ag-108m Ag-108m Ag-110m Sb-124 Sb-125 Cs-134 Cs-137 BaLa-140 Ce-141 Ce-144	$\begin{bmatrix} 1\\ -7\\ -7\\ 9.4\\ 1.0\\ 1.1\\ 1.0\\ -1.2\\ -6\\ -1.6\\ -3.8\\ 6\\ -1.6\\ -3.8\\ 6\\ -1.6\\ -3.8\\ -1.2\\ -6\\ -1.6\\ -1.8\\ -3.8\\ -5.2\\ 1.0\\ -5.2\\ -1.8\\ -5.2\\ $	$\begin{array}{c} \pm 13 \\ \pm 11 \\ \pm 35 \\ \pm 9.4 \\ \pm 3.6 \\ \pm 1.4 \\ \pm 2.4 \\ \pm 2.1 \\ \pm 2.1 \\ \pm 2.1 \\ \pm 13 \\ \pm 1.0 \\ \pm 5.3 \\ \pm 37 \\ \pm 37 \\ \pm 1.6 \\ \pm 9.8 \\ \pm 7.3 \\ \pm 1.5 \\ \pm 1.8 \\ \pm 3.8 \end{array}$	$\begin{bmatrix} E - 07 \\ E - 08 \\ E - 08 \\ E - 08 \\ E - 07 \\ E - 09 \\ E - 08 \\ E - 07 \\ E - 08 \\ E - 07 \\$	5.3 $E-06$ 5.0 $E-07$ 1.4 $E-06$ 3.9 $E-07$ 1.6 $E-06$ 6.2 $E-07$ 1.1 $E-06$ 3.9 $E-07$ 9.3 $E-07$ 9.3 $E-07$ 9.3 $E-07$ 4.7 $E-06$ 2.4 $E-07$ 4.5 $E-07$ 1.7 $E-06$ 6.3 $E-07$ 4.3 $E-07$ 3.2 $E-07$		

Note(s):

A - Calculated MDCs are a-posteriori values.

<u>ФШИРИЮ 5/5/48</u> Е. М. Могело

A. D. Banavali

MA MAY ENVIRONN	ILED 0 6 1998 E&S MENTAL LAB.	JKE ENGINEEF 10 	CFR Part	SERVICES 50/61 A Page 2 o	ENVIRONME nalysis Re f 2	NTAL LA port	BORATORY		
Laboratory S Sample Sub Total Amt of	ample Number: mission Code: Media Type: Sample Sent:	X10403 QZZc04E119 Concrete 109.1 g Sample Descr	98 ciption:	Sample Date A99	Cus Reference Sample Rec Count Report 01/01MC1/0	tomer: Date: Date: Date: Date:	GTS Dura March 20 April 2 May 2, 1 May 5, 1	۰.	
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activity Net : on Re	y Concen t 1σ O eference [μCi/g	tration verall Date]	Min Con on CALCUL	imum Dete centratic Reference ATED [μCi/g	ectable on (A) e Date REQUIRED]	Note(s)
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	[1.2 [3.0 [1.0	2 ± 1.1 0 ± 1.6 5 ± 3.0] E-07] E-07] E-07	4.1 E 5.9 E 1.3 E	-07 -07 -06	1.0E-06	

****(8):

A Calculated MDCs are a-posteriori values.

P/11/17/11/0 5/5/98 Moreno

Cillippeno te Α.

anavali

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1998

DE&S ENVIRONMENTAL LAB. 10 CFR Part 50/61 Analysis Report ے سے وبار باہ جد کرا ملا کہ ای کار بار بار کر کہ خان کا کو شاہ کا کہ خان منا جا این جار ہے کہ دین ہی ہے کے عاد س جن جے

Page 1 of 2

Laboratory Sample Number: X10404 Sample Submission Code: QZZc04F1198 Media Type: Concrete Total Amt of Sample Sent: 116.6 g

Customer: GTS Duratek Customer: GTS Duratek Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: April 30, 1998 Report Date: May 4, 1998

Sample Description: A9901/01MC1/00006

Analysis Requested	Aliquot Weight Processed [g]	Isotope	Act Ne	civity et ± on Ref [Conce lo erenc µCi/o	ontr Ove e D []	ation rall ate	Minimum Detecta Concentration (on Reference Da CALCULATED REQ [µCi/g]	ble A) te UIRED Note(s)
Gamma Scan	116.6000	Cr-51	 [-1	± 10] E-07	4.3 E-06	
		Mn-54	[8.5	± 6.3	3] E-08	2.5 E-07	
		Co-57	[1.0	± 2.9)] E-07	1.1 E-06	
		Co-58	1	1.20	± 0.5	6] E-07	2.0 E-07	
		Fe-59	ſ	0.0	± 2.9)] E-07	1.2 E-06	
		Co-60	[1.29	± 0.8	37] E-07	3.5 E-07	
		Zn-65	[-1	± 16] E-08	7.3 E-07	
\sim		Nb-94	[-3.4	± 5.9)] E-08	2.6 E-07	
		Zr-95	[3	± 24] E-08	1.0 E-06	
		Nb-95	E	7	± 12] E-08	5.2 E-07	
		Ru-103	I	-7	± 11] E-08	4.6 E-07	
		Ru-106	[-3.2	± 6.2	2] E-07	2.7 E-06	
		Ag-108m	[-2.2	± 3.7	1] E-08	1.6 E-07	
		Ag-110m	[1.1	± 1.0)] E-07	4.3 E-07	
		Sb-124	[-2	± 23] E-08	1.1 E-06	
		Sb-125	E	5	± 13] E-08	5.5 E-07	
		Cs-134	[1.62	± 0.€	51] E-07	2.1 E-07	
		Cs-137	[3.5	± 4.7	7] E-08	2.0 E-07	
		BaLa-140	[3.4	± 5.9)] E-07	2.6 E-06	
		Ce-141	[4	± 15] E-08	5.9 E-07	
		Ce-144	l	0.0	± 2.9	•] E-07	1.1 E-06	

Note(s):

A - Calculated MDCs are a-posteriori values.

Reviewed by

خان خان الا الا الا الا الله الله الا الله ال

M		KE ENGINEER	NG AND SERVICES ENVIRON	NMENTAL LA	BORATORY	
	Y 0 6 1998	10	CFR Part 50/61 Analysis	Report		
ENVIRO	VMENTAL LAB.		Page 2 of 2			
Laboratory Sample Number: Sample Submission Code: Media Type: Total Amt of Sample Sent:		X10404 QZZc04F119 Concrete 116.6 g	Cust 198 Sample Reference Date Sample Rece Count Report		GTS Duratek March 20, 1998 April 27, 1998 April 30, 1998 May 4, 1998	
	S	ample Descr	ption: A9901/01MC	1/00006		
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activity Concentration Net ± 1σ Overall on Reference Date [μCi/g]	Min Con On CALCUL	imum Detectable centration (A) Reference Date ATED REQUIRED [μ Ci/g]	Note(s)
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	$\begin{bmatrix} 1.92 \pm 0.95 \end{bmatrix} E-0^{\circ} \\ \begin{bmatrix} 8 \pm 13 \end{bmatrix} E-0^{\circ} \\ \begin{bmatrix} 1.9 \pm 2.1 \end{bmatrix} E-0^{\circ} \end{bmatrix}$	7 3.5 E 8 5.2 E 7 9.0 E	-07 1.0E-06 -07 -07	

(១):

A - Calculated MDCs are a-posteriori values.

PULLYDONU S 48

E. M. Moreno

PILLIPROVE fr

A. D. Bahavali

MAY 0 6 1998

DE&S

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

10 CFR Part 50/61 Analysis Report

Page 1 of 2

ENVIRGHMENTIALNUABER: X10388 Sample Submission Code: QZZc02A1198 Media Type: Concrete Total Amt of Sample Sent: 112.0 g

Customer: GTS Duratek Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: April 29, 1998 Report Date: May 5, 1998

Sample Description:

A9901/01MC3/00001

Analysis Requested	Aliquot Weight Processed [g]	Івоторе	Ac N	tivity et ± on Ref	Con fero µC	ncent 1σ Ov ence i/g]	rai er: Dai	tion all te	M C CALC	inimum Do oncentra n Referen ULATED [µCi/o	etectable tion (A) nce Date REQUIRED g]	Note(s)
Gamma Scan	112.0000	Cr-51 Mn-54 Co-57 Co-58 Fe-59	 [[[[-1 -2.8 5 5	± : ± : ± : ± :	13 10 3.9 13 33]]]]	E-07 E-08 E-07 E-08 E-08 E-08	5.4 4.4 1.6 5.6 1.5	E-06 E-07 E-06 E-07 E-06		
		Co-60 Zn-65 Nb-94] []	2.8 -1.27 4	± : ± : ± :	1.5 0.45 61]	E-07 E-06 E-09	5.8 2.1 2.8	E-07 E-06 E-07		
		2r-95 Nb-95 Ru-103 Ru-106 Ag-108m Ag-110m Sb-124 Sb-125 Cs-134 Cs-137 BaLa-140 Ce-141 Ce-144		-3.3 2.7 -7 1.35 -5.6 -4 -3.4 2.5 -6 8.2 -1 2.8 1.4	* * * * * * * * * * * * *	2.5 1.8 13 0.56 6.1 13 4.6 1.6 12 5.8 11 1.7 3.4		E-07 E-08 E-08 E-08 E-08 E-07 E-07 E-08 E-08 E-07 E-07 E-07 E-07	1.1 7.1 5.6 2.0 2.7 5.9 2.2 6.1 5.2 2.3 5.0 6.3 1.4	E-06 E-07 E-07 E-07 E-07 E-07 E-07 E-07 E-07		

Note(s):

A - Calculated MDCs are a-posteriori values.

M. Moreno

Banavali

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

10 CFR Part 50/61 Analysis Report

MAY 0 6 1998

DE&S

ENVIRONMENTAL LAB.

Laboratory Sample Number: X10388 Sample Submission Code: QZZcO2A1198 Media Type: Concrete Total Amt of Sample Sent: 112.0 g

_____ Page 2 of 2

Customer: GTS Duratek Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: April 29, 1998 Report Date: May 5, 1998

Sample Description:

A9901/01MC3/00001

Aliquot Weight Analysis Processed Requested [g] Isotope		Act Ne	ivity Concent t ± 1σ Ov on Reference [µCi/g]	ration verall Date	Minimum D Concentra on Refere CALCULATED [μCi/) Note(s)		
Gamma Scan (continued)		Eu-152 Eu-155 Eu-155 Eu-154] [[$\begin{array}{r} -2 \pm 13 \\ 1.1 \pm 1.5 \\ -3 \pm 28 \end{array}$] E-08] E-07] E-08	5.3 E-07 6.0 E-07 1.3 E-06	1.0E-06	

's):

A - Calculated MDCs are a-posteriori values.

Moreno

Banavali

MAI MAY (LED 1998	UKE ENGINEE 10	RING AND SERVICES ENVIRONMENTAL LABORATORY	
	E&S IENTAL LAB.		Page 1 of 2	
Laboratory Sample Su Total Amt o	Sample Number: bmission Code: Media Type: f Sample Sent:	X10389 QZZc02B11 Concrete 110.8 g	Customer: GTS Duratek 98 Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: April 29, 1998 Report Date: May 5, 1998	
		Sample Desc	ription: A9901/01MC3/00002	
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Minimum DetectableActivity ConcentrationConcentration (A)Net \pm 1 σ Overallon Reference Dateon Reference DateCALCULATED[μ Ci/g][μ Ci/g]	Note(s)
Gamma Scan	110.8000	Cr-51 Mn-54 Co-57 Co-58	$\begin{bmatrix} -4.2 \pm 8.2 \\ 1.1 \pm 5.2 \end{bmatrix} E-07 3.4 E-06 \\ \begin{bmatrix} 1.1 \pm 5.2 \\ -8 \pm 22 \end{bmatrix} E-08 2.2 E-07 \\ \begin{bmatrix} -8 \pm 22 \\ 7.1 \pm 5.6 \end{bmatrix} E-08 8.7 E-07 \\ \begin{bmatrix} 7.1 \pm 5.6 \\ 2.3 E-07 \end{bmatrix}$	

 -3.1 ± 2.7

 -2.8 ± 1.8

 -3.3 ± 4.3

 -2.6 ± 1.6

 1.1 ± 1.2

 -6.3 ± 9.2

 -1.5 ± 4.5

-4.5 ± 9.6

 2.6 ± 3.3

8 ± 20

-9 ± 12

 2.2 ± 5.9

8.2 ± 4.7

8.2 ± 9.4

-9 ± 21

 -2.2 ± 6.1

 1.60 ± 0.69

] E-07

] E-07

] E-07

] E-08

] E-07

] E-07

E-08

] E-07

] E-08

] E-08

] E-08

] E-08

] E-08

] E-08

] E-07

] E-08

] E-08

1.2 E-06

2.6 E-07

8.2 E-07

1.9 E-07

7.0 E-07

4.8 E-07

3.9 E-07

1.9 E-06

1.3 E-07

4.2 E-07

9.0 E-07

5.0 E-07

2.5 E-07

1.8 E-07

2.8 E-06

3.7 E-07

8.2 E-07

[

ſ

l

l

ſ

ſ

ſ

ſ

ſ

ſ

ſ

ſ

ſ

I

l

I

[

Fe-59

Co-60

Zn-65

Nb-94

Zr-95

Nb-95

Ru-103

Ru-106

Ag-108m

Ag-110m

Sb-124

Sb-125

Cs-134

Cs-137

Ce-141

Ce-144

BaLa-140

Note	(ទ):
------	-----	----

A - Calculated MDCs are a-posteriori values.

Banavali

MAY 0 6 1998 10 CFR Part 50/61 Analysis Report DE&S ENVIRONMENTAL LAB. Page 2 of 2 aboratory Sample Number:X10389Customer:GTS DuratekSample Submission Code:QZZc02B1198Sample Reference Date:March 20, 1998Media Type:ConcreteDate Sample Received:April 27, 1998otal Amt of Sample Sent:110.8 gCount Date:April 29, 1998 Laboratory Sample Number: X10389 Total Amt of Sample Sent: 110.8 g Report Date: May 5, 1998 A9901/01MC3/00002 Sample Description: _____ _____ Minimum Detectable Activity ConcentrationConcentration (A)Net ± 1σ Overallon Reference Dateon Reference DateCALCULATEDREQUIRED Aliquot Weight Analysis Processed [µCi/g] [µCi/g] Note(s) Requested [g] Isotope _____ Eu-152[1.50 ± 0.64]E-072.4 E-07Eu-155[1.66 ± 0.99]E-073.8 E-07Eu-154[1.1 ± 2.0]E-078.6 E-07 1.0E-06 Gamma Scan (continued)

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

в):

A - Calculated MDCs are a-posteriori values.

E. M. Moreno

A. D. Banavali

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

10 CFR Part 50/61 Analysis Report

MAY 0 6 1998

DE&S

ENVIRONMENTAL LAB.

Laboratory Sample Number: X10390 Sample Submission Code: QZZc02C1198 Media Type: Concrete Total Amt of Sample Sent: 112.7 g

______ Page 1 of 2

Customer: GTS Duratek Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: April 29, 1998 Report Date: May 5, 1998

Sample Description:

A9901/01MC3/00003

Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activity Concentration Net ± 1σ Overall on Reference Date [μCi/g]	Minimum Detectable Concentration (A) on Reference Date CALCULATED REQUIRED [µCi/g] Note(s)
Gamma Scan	112.7000	Cr-51 Mn-54 Co-57 Co-58 Fe-59 Co-60 Zn-65 Nb-94 Zr-95 Nb-95 Ru-103 Ru-106 Ag-108m Ag-110m Sb-124 Sb-125 Cs-134 Cs-137 BaLa-140 Ce-141 Ce-144	$\begin{bmatrix} -8 \pm 12 \\ 1.29 \pm 0.60 \end{bmatrix} E-07$ $\begin{bmatrix} 1.29 \pm 0.60 \\ 5.8 \pm 2.7 \end{bmatrix} E-07$ $\begin{bmatrix} 5.8 \pm 2.7 \\ 4.2 \pm 7.8 \\ 2.7 \end{bmatrix} E-07$ $\begin{bmatrix} 4.2 \pm 7.8 \\ -2.6 \pm 3.1 \\ 2.7 \\ 3.9 \pm 2.7 \\ 2.7 \\ -3.9 \pm 2.7 \\ 2.7 \\ -3.9 \pm 2.7 \\ 2.7 \\ -7 \pm 60 \\ 2.7 \\ -7 \pm 60 \\ 2.7 \\ 2.7 \\ 2.7 \\ 2.7 \\ 2.7 \\ 2.7 \\ 2.5 $	4.9 $E-06$ 2.2 $E-07$ 1.0 $E-06$ 3.4 $E-07$ 1.4 $E-06$ 3.2 $E-07$ 1.2 $E-06$ 2.6 $E-07$ 1.5 $E-06$ 6.0 $E-07$ 4.6 $E-07$ 2.3 $E-06$ 2.0 $E-07$ 5.9 $E-07$ 1.2 $E-06$ 5.1 $E-07$ 2.6 $E-07$ 2.8 $E-06$ 5.1 $E-07$ 2.8 $E-06$ 5.1 $E-07$ 1.1 $E-06$

Note(s):

A - Calculated MDCs are a-posteriori values.

98

Banavali

MAI		JKE ENGINEER	G AND SERVICES ENVIRONMENTAL LABO	RATORY
DE	&S	10 0	Part 50/61 Analysis Report Page 2 of 2	
ENVIRONME Laboratory S Sample Sub Total Amt of	ENTAL LAB. Sample Number: Sample Sent: Sample Sent:	X10390 QZZc02C119 Concrete 112.7 g	Customer: G Sample Reference Date: M Date Sample Received: A Count Date: A Report Date: M	TS Duratek arch 20, 1998 pril 27, 1998 pril 29, 1998 ay 5, 1998
	5	Sample Descr	tion: A9901/01MC3/00003	
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Minim ctivity Concentration Conce Net ± 1σ Overall on Re on Reference Date CALCULAT [μCi/g] [um Detectable ntration (A) ference Date ED REQUIRED µCi/g] Note(s)
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	5.3 ± 8.7] E-08 3.4 E-0 8 ± 13] E-08 5.2 E-0 -5 ± 26] E-08 1.2 E-0	7 1.0E-06 7 6

(s):

A - Calculated MDCs are a-posteriori values.

E. M. Moreno

CUUVAMO fr A. D. Banavali

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1998

DE&S

ENVIRONMENTAL LAB.

Laboratory Sample Number: X10391 Sample Submission Code: QZZc02D1198

Media Type: Concrete Total Amt of Sample Sent: 112.6 g

10 CFR Part 50/61 Analysis Report

Page 1 of 2

Customer: GTS Duratek Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: April 29, 1998 Report Date: May 5, 1998

Sample Description: A9901/01MC3/00004

Analysis Requested	Aliquot Weight Processed [g]	Isotope	AC ⁴ N	tivity et ± on Ref [Conce 10 (erence µCi/g	ntra Over e Da]	tion all ite	Minimum Detec Concentration on Reference CALCULATED [µCi/g]	ctable n (A) Date REQUIRED	Note(s)
Gamma Scan	112.6000	Cr-51	 [2.0	± 1.0]	E-06	3.9 E-06 3.8 E-07		
		Co-57	ſ	-1	+ 39	ן ד ו	E-09	1.6 E = 07		
		Co-58	ſ	4	± 14	1	E-08	6.0 = -07		
		Fe-59	ſ	6.0	± 5.2	1	E-07	2.2 = -06		
		Co-60	ſ	2.48	± 0.9	5 i	E-07	3.4 E-07		
		Zn-65	Ì	-2.4	± 3.3	j	E-07	1.5 E-06		
		Nb-94	Ē	0.0	± 8.0	j	E-08	3.3 E-07		
		Zr-95	Ĩ	4	± 32	J	E-08	1.4 E-06		
		Nb-95	E	4	± 190]	E-09	8.5 E-07		
		Ru-103	Ι	8	± 13]	E-08	5.5 E-07		
		Ru-106	[-5.7	± 9.7]	E-07	4.3 E-06		
		Ag-108m	E	7.0	± 4.7]	E-08	1.9 E-07		
		Ag-110m	[-2.1	± 1.7]	E-07	7.7 E-07		
		Sb-124	[2.1	± 1.2]	E-07	1.9 E-07		
		Sb-125	I	-1.3	± 1.9]	E-07	8.3 E-07		
		Cs-134]	3	± 10]	E-08	4.4 E-07		
		Cs-137	[-5.5	± 8.9]	E-08	4.0 E-07		
		BaLa-140]	4.4	± 8.4]	E-07	3.8 E-06		
		Ce-141 Ce-144	[[-1.5 4.1	± 1.6 ± 3.5]	E-07 E-07	6.6 E-07 1.4 E-06		

Note(s):

A - Calculated MDCs are a-posteriori values.

A. 6.

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1998

DE&S

ENVIRONMENTAL LAB.

10 CFR Part 50/61 Analysis Report _____ _____

Page 2 of 2

Customer: GTS Duratek Laboratory Sample Number: X10391 Sample Submission Code: QZZC02D1198 Media Type: Concrete Total Amt of Sample Sent: 112.6 g Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: April 29, 1998 Report Date: May 5, 1998

Sample Description:

A9901/01MC3/00004

Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activity Concentration Net ± 1σ Overall on Reference Date [μCi/g]	Minimum Detectable Concentration (A) on Reference Date CALCULATED REQUIRED [µCi/g] Note(s		
Gamma Scan (continued)		Eu-155 Eu-152 Eu-154	[2.7 ± 1.2] E-07 [-1.0 ± 1.1] E-07 [1.15 ± 0.70] E-07	4.6 E-07 4.6 E-07 1.0E-06 2.7 E-07		

's):

- Calculated MDCs are a-posteriori values. Α

Moreno

Banavali

MAILED	DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORAT	TORY
MAY 0 6 1998	10 CFR Part 50/61 Analygig Penort	
DE&3	Page 1 of 2	

ENVIRONMENTAL LAB.

Laboratory Sample Number: X10392 Sample Submission Code: QZZcO2E1198 Media Type: Concrete Total Amt of Sample Sent: 112.7 g

Customer: GTS Duratek Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: April 28, 1998 Report Date: May 5, 1998

Sample Description:

A9901/01MC3/00005

Analysis Requested	Aliquot Weight Processed [9]	Isotope	Activity Net = on Re	y Concen t 1σ Ο eference μCi/g	tration verall Date]	Minimum Detecta Concentration (on Reference Da CALCULATED REQ [μCi/g]	ble A) te UIRED Note(s)
Gamma Scan	112.7000	Cr-51 Mn-54 Co-57 Co-58 Fe-59 Co-60 Zn-65 Nb-94 Zr-95 Nb-95 Ru-103 Ru-106 Ag-108m Ag-110m Sb-124 Sb-125 Cs-134 Cs-137 BaLa-140 Ce-141	$\begin{bmatrix} -1.\\ 6.\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.3\\ 1.$	$\begin{array}{c} \pm 1.1 \\ 2 \pm 7.6 \\ 3 \pm 2.5 \\ 2 \pm 2.9 \\ 1 \pm 2.2 \\ 1 \pm 2.4 \\ 3 \pm 10 \\ 8 \pm 14 \\ 3 \pm 10 \\ 8 \pm 4.7 \\ 1 \pm 4.0 \\ 3 \pm 15 \\ 0 \pm 3.0 \\ 8 \pm 5.0 \\ 0 \pm 8.1 \\ 5 \pm 12 \end{array}$] E-06] E-08] E-07] E-08] E-07] E-08] E-07] E-08] E-07] E-08] E-08	4.7 $E-06$ 3.2 $E-07$ 1.0 $E-06$ 3.7 $E-07$ 1.3 $E-06$ 3.9 $E-07$ 1.0 $E-06$ 1.9 $E-07$ 1.1 $E-06$ 6.0 $E-07$ 4.3 $E-07$ 2.0 $E-06$ 1.6 $E-07$ 4.3 $E-07$ 1.5 $E-06$ 6.5 $E-07$ 2.0 $E-07$ 2.0 $E-07$ 3.8 $E-07$ 3.8 $E-07$ 3.8 $E-07$ 3.9 $E-07$ 3.0	

Note(s):

A - Calculated MDCs are a-posteriori values.

Moreno

Banavali

MA	ILED ,	DUKE ENGINEER	ING AND SERVICES ENVIRONMENTAL LABORATORY			
) 6 1998 E&S MENITAL LAB	10	CFR Part 50/61 Analysis Report Page 2 of 2			
ENVIRONMENTAL LAB. Laboratory Sample Number: X10392 Sample Submission Code: QZZc02E1198 Media Type: Concrete Total Amt of Sample Sent: 112.7 g Sample Description: A9901/01MC3/00005 Mage 2 of 2 Customer: GTS Duratek March 20, 1998 Date Sample Received: April 27, 1998 Report Date: May 5, 1998						
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Minimum DetectableActivity ConcentrationConcentration (A)Net ± 1σ Overallon Reference Dateon Reference DateCALCULATED[µCi/g][µCi/g]Note(s)			
Gamma Scan (continued)		Eu-155 Eu-152 Eu-154	[1.76 ± 0.91] E-07 3.3 E-07 [3.1 ± 8.1] E-08 3.2 E-07 1.0E-06 [1.9 ± 2.0] E-07 8.5 E-07			

(s):

A - Calculated MDCs are a-posteriori values.

QUUMINEUR 5/5/88 É. M. Moreno

PIULIpeno fr

A. D. Banavali

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1998

DE&S

ENVIRONMENTAL LAB.

10 CFR Part 50/61 Analysis Report

Page 1 of 2

Laboratory Sample Number: X10411 Sample Submission Code: QZZC06A1198 Media Type: Concrete Total Amt of Sample Sent: 90.1 g

Customer: GTS Duratek Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: May 2, 1998 Report Date: May 5, 1998

Sample Description:

A9901/01MC5/00001

Aliquot Weight Analysis Processed Requested [g]		Isotope	Activity Concentration Net ± 1σ Overall on Reference Date sotope [µCi/g]			Minimum Detectable Concentration (A) on Reference Date CALCULATED REQUIN [µCi/g]	RED Note(s)
Gamma Scan	90.1000	90.1000 Cr-51 Mn-54 Co-57 Co-58 Fe-59 Co-60 Zn-65	[[[[[[$\begin{array}{c} -1.3 \pm 1.3 \\ -6 \pm 11 \\ 1.5 \pm 3.0 \\ 1 \pm 11 \\ 1.1 \pm 2.8 \\ 9.21 \pm 0.9 \\ -1.9 \pm 3.2 \end{array}$] E-06] E-08] E-07] E-08] E-07 7] E-07] E-07] E-07	5.7 E-06 5.0 E-07 1.2 E-06 4.9 E-07 1.2 E-06 3.2 E-07 1.4 E-06	в
\smile		Nb-94 Zr-95 Nb-95 Ru-103 Ru-106 Ag-108m Ag-110m	[[[[$\begin{array}{r} -1.2 \pm 1.2 \\ 1.3 \pm 2.0 \\ 2 \pm 16 \\ -1.3 \pm 1.4 \\ -6.3 \pm 7.8 \\ 6.4 \pm 4.8 \\ -6 \pm 14 \end{array}$] E-07] E-07] E-08] E-07] E-07] E-08] E-08	5.3 E-07 8.5 E-07 7.0 E-07 6.2 E-07 3.4 E-06 1.9 E-07 6.0 E-07	
		Sb-124 Sb-125 Cs-134 Cs-137 BaLa-140 Ce-141 Ce-144		$1.4 \pm 2.9 \\ 1.7 \pm 1.6 \\ -6 \pm 10 \\ 2.53 \pm 0.7 \\ 5.8 \pm 2.9 \\ -7 \pm 18 \\ -3.3 \pm 3.2 \\ \end{array}$] E-07] E-07] E-08 5] E-07] E-07] E-08] E-07	1.3 E-06 6.2 E-07 4.3 E-07 2.4 E-07 4.0 E-07 7.1 E-07 1.3 E-06	В

Note(s):

- A Calculated MDCs are a-posteriori values.
- B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Moreno

A. D. Banavali

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1993

DE&S **INVIRONMENTAL LAB.**

_____ 10 CFR Part 50/61 Analysis Report _____

Page 2 of 2

Laboratory Sample Number:	X10411	Customer:	GTS Duratek
Sample Submission Code:	QZZc06A1198	Sample Reference Date:	March 20, 1998
Media Type:	Concrete	Date Sample Received:	April 27, 1998
Total Amt of Sample Sent:	90.1 g	Count Date:	May 2, 1998
		Report Date:	May 5, 1998

Sample Description: A9901/01MC5/00001

Analysis Requested	Aliquot Weight Processed [g]	Isotope	Act Ne	ivity Concent t ± 1σ Ov on Reference [μCi/g]	tration verall Date	Minimum Detectable Concentration (A) on Reference Date CALCULATED REQUIRED [μ Ci/g]		Note(s)
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	[[[$6.7 \pm 1.2 \\ -6 \pm 14 \\ 2.0 \pm 2.8$] E-07] E-08] E-07	3.7 E-07 5.8 E-07 1.2 E-06	1.0E-06	В

່ຮ):

A - Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Moreno

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1998

DE&S

ENVIRONMENTAL LAB.

10 CFR Part 50/61 Analysis Report

Page 1 of 2

Laboratory Sample Number: X10412 Sample Submission Code: QZZc06B1198 Media Type: Concrete Total Amt of Sample Sent: 99.1 g

Customer:	GTS Duratek
Sample Reference Date:	March 20, 1998
Date Sample Received:	April 27, 1998
Count Date:	April 30, 1998
Report Date:	May 4, 1998

Sample Description: A9901/01MC5/00002

Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activity Net ± on Re	Concentra : 1σ Over eference Da μCi/g]	tion all te	Minimum Det Concentrati on Referenc CALCULATED [µCi/g	ectable .on (A) :e Date REQUIRED] Note(s)
Gamma Scan	99.1000	Cr-51 Mn-54 Co-57 Co-58 Fe-59	[-3 [-2.7 [5.7 [-1.0 [-3.4	± 120] ± 7.7] ± 3.0] ± 1.1] ± 3.5]	E-08 E-08 E-07 E-07 E-07	4.8 E-06 3.5 E-07 1.1 E-06 5.1 E-07 1.6 E-06	
		Co-60 Zn-65 Nb-94 Zr-95 Nb-95 Ru-103 Ru-106 Ag-108m Ag-108m Ag-110m Sb-124 Sb-125 Cs-134 Cs-137 BaLa-140 Ce-144	$\begin{bmatrix} 6.34\\ [-3.6]\\ -3.6\\ [-2.9]\\ [-4.2]\\ [2.0]\\ [-1.6]\\ [1.2]\\ [9.1]\\ [1.2]\\ [-7]\\ [9.1]\\ [1.84\\ [5.0]\\ [88\\ [-1.8]\\] \end{bmatrix}$	$\begin{array}{c} \pm \ 0.90 \\ \pm \ 3.4 \\] \\ \pm \ 6.4 \\] \\ \pm \ 3.2 \\] \\ \pm \ 1.3 \\] \\ \pm \ 1.3 \\] \\ \pm \ 1.3 \\] \\ \pm \ 5.0 \\] \\ \pm \ 5.0 \\] \\ \pm \ 24 \\] \\ \pm \ 20 \\] \\ \pm \ 20 \\] \\ \pm \ 9.0 \\] \\ + \ 9.0 \\] \\ + \ 9.0 \\] \\ \\ + \ 9.0 \\] \\ \\ + \ 9.0 \\] \\ \\ + \ 9.0 \\] \\ \\ + \ 9.0 \\] \\ \\ + \ 9.0 \\] \\ \\ + \ 9.0 \\] \\ \\ + \ 9.0 \\] \\ \\ \\ + \ 9.0 \\] \\ \\ \\ + \ 9.0 \\] \\ \\ \\ \\ + \ 9.0 \\] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	E-07 E-07 E-08 E-07 E-07 E-08 E-08 E-08 E-08 E-08 E-08 E-08 E-08 E-08 E-07 E-08 E-07 E-08 E-07 E-08 E-07 E-08 E-08 E-07 E-08 E-07 E-08 E-07 E-08 E-07 E-08 E-07 E-08 E-07 E-08 E-07 E-08 E-07 E-08 E-07	3.1 $E-07$ 1.5 $E-06$ 2.8 $E-07$ 1.4 $E-06$ 5.7 $E-07$ 5.8 $E-07$ 2.8 $E-06$ 1.9 $E-07$ 5.6 $E-07$ 1.2 $E-06$ 8.4 $E-07$ 3.8 $E-07$ 2.5 $E-07$ 2.9 $E-06$ 5.4 $E-07$ 1.3 $E-06$	В

Note(s):

A - Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Reviewed by

A. D. Banavali

	0 6 1998	JKE ENGINEER	ING AND SERVICES ENVIRONMENTA	L LABORATORY
D ENVIRON Laboratory Sample Sul Total Amt o	E&S MENTAL LAB. Sample Number: bmission Code: Media Type: f Sample Sent:	X10412 QZZc06B119 Concrete 99.1 g Sample Descr	Page 2 of 2 Custom Sample Reference Da Date Sample Receiv Count Da Report Da A9901/01MC5/0000	er: GTS Duratek te: March 20, 1998 ed: April 27, 1998 te: April 30, 1998 te: May 4, 1998
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activity Concentration Net \pm 1 σ Overall on Reference Date CA [μ Ci/g]	Minimum Detectable Concentration (A) on Reference Date LCULATED REQUIRED [µCi/g] Note(s)
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	[5.8 ± 1.3] E-07 4 [8 ± 16] E-08 6 [-3.6 ± 3.5] E-07 1	4.2 E-07 1.0E-06 B 5.1 E-07 .6 E-06

:(s):

A - Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

48 Е.

M. Moreno

Norto

A. D. Banavali

M		UKE ENGINEEI	RING AND	SERVICES	ENVIRONM	ENTAL LA	BORATORY	
MA	0 0 1390	10	CFR Part	: 50/61 Aı	nalysis R	eport		
ENVIRO	DE&S JMENTAL LAB			Page 1 of				
Laboratory Sample Su Total Amt o	Sample Number: bmission Code: Media Type: f Sample Sent:	X10413 QZZc06C119 Concrete 116.6 g	98	Sample Date S	Cu Referenc Sample Re Coun Repor	stomer: e Date: ceived: t Date: t Date:	GTS Duratek March 20, 1998 April 27, 1998 May 5, 1998 May 5, 1998	
		Sample Desci	ription:	A990	01/01MC5/	00003		
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activit Net on F	y Concent ± 1σ Οτ deference [μCi/g]	tration verall Date]	Min Cor on CALCUI	imum Detectable centration (A) Reference Date ATED REQUIRED [μ Ci/g]) Note(s)
Gamma Scan	116.6000	Cr-51 Mn-54 Co-57 Co-58 Fe-59 Co-60 Zn-65 Nb-94 Zr-95 Nb-95 Ru-103 Ru-106 Ag-108m Ag-110m Sb-124 Sb-125 Cs-134 Cs-137	$\begin{bmatrix} -1.\\ \begin{bmatrix} 5.\\ \end{bmatrix} \\ 5.\\ \begin{bmatrix} -5.\\ 4.9\\ -2.\\ \end{bmatrix} \\ \begin{bmatrix} -2.\\ \end{bmatrix} \\ \begin{bmatrix} 2.\\ \end{bmatrix} \\ \begin{bmatrix} -1.\\ \end{bmatrix} \\ \begin{bmatrix} 0.\\ \end{bmatrix} \\ \begin{bmatrix} 2.\\ \end{bmatrix} \\ \begin{bmatrix} -2.\\ \end{bmatrix} \\ \end{bmatrix}$	$2 \pm 1.4 \\ 4 \pm 10 \\ 2 \pm 3.1 \\ 5 \pm 13 \\ 9 \pm 4.7 \\ 6 \pm 0.93 \\ 0 \pm 2.7 \\ 3 \pm 6.5 \\ 5 \pm 230 \\ 3 \pm 1.4 \\ 6 \pm 1.7 \\ 1 \pm 6.5 \\ 7 \pm 5.0 \\ 9 \pm 16 \\ 1 \pm 1.2 \\ 7 \pm 19 \\ 1 \pm 1.2 \\ 8 \pm 11 \\ $] E-06] E-08] E-07] E-07] E-07] E-07] E-07] E-09] E-07] E-07] E-07] E-08] E-08] E-08] E-08] E-08] E-08	6.1 E 4.3 E 1.2 E 5.7 E 2.2 E 4.3 E 1.3 E 2.7 E 1.0 E 5.6 E 7.4 E 2.7 E 1.9 E 1.9 E 1.9 E 8.1 E 5.4 E	2-06 2-07 2-06 2-07 2-06 2-07 2-06 2-07 2-06 2-07 2-06 2-07 2-07 2-07 2-07 2-07 2-07 2-07 2-07 2-07 2-07 2-07	в
		BaLa-140 Ce-141 Ce-144	$\begin{bmatrix} 1.0\\ [1.\\ [-2. \end{bmatrix}$	7 ± 0.48 7 ± 1.8 5 ± 3.5] E-08] E-06] E-07] E-07	5.8 E 6.9 E 1.4 E	2-07 2-07 2-06	

Note(s):

- A Calculated MDCs are a-posteriori values.
 B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

E. M. Moreno

A. D. Banavali

VI.		KE ENGINEER	ING AND S	ERVICES	ENVIRONME	NTAL LA	BORATORY		
M	AY 0 6 1998	10	CFR Part	50/61 A	nalysis Re	port			
ENVIRO	DE&S NMENTAL LAB.		P						
Laboratory Sample Su Total Amt o	Sample Number: bmission Code: Media Type: f Sample Sent:	X10413 QZZc06C119 Concrete 116.6 g	8	Sample Date	Cus Reference Sample Rec Count Report	tomer: Date: eived: Date: Date:	GTS Dur March 2 April 2 May 5, May 5,	atek O, 1998 7, 1998 1998 1998	
	S	ample Descr	iption:	A99	01/01MC5/0	0003			
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activity Net ± on Re [Concen 1ơ O ference µCi/g	tration verall Date]	Min Con on CALCUL	imum Det centrati Referenc ATED [μCi/g	ectable on (A) e Date REQUIRED]	Note(s)
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	[4.8 [2.2 [1.8	± 1.2 ± 1.4 ± 2.1] E-07] E-07] E-07	3.9 E 5.4 E 9.1 E	-07 -07 -07	1.0E-06	В

י~™(в):

Calculated MDCs are a-posteriori values.
 B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

PILLIZEND 5 5 18

E. M. Moreno

A. D. Banavali

MAILED DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1998

10 CFR Part 50/61 Analysis Report

Page 1 of 2

DE&S ENVIRONMENTAL LAB.

Laboratory Sample Number: X10414 Sample Submission Code: QZZc06D1198 Media Type: Concrete Total Amt of Sample Sent: 104.2 g Customer: GTS Duratek Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: May 5, 1998 Report Date: May 5, 1998

Sample Description:

A9901/01MC5/00004

Analysis Requested	Aliquot Weight Processed [g]	Isotope	Ac N	tivity Conce et ± 1σ on Referenc [μCi/g	ove e D	ation rall ate	Minimum Dete Concentratic on Reference CALCULATED [μCi/g]	ectable on (A) e Date REQUIRED	Note(s)
Compa Soop		Cr-51	 r	-2.0 + 1.6			7.1 E-06		
Galillia Scall	104.2000	Mn-54	ſ	1.06 ± 0.9	2	1 E-07	3.8 E-07		
		Co-57	ſ	3.7 ± 3.9)	I E-07	1.5 E-06		
		Co-58	ī	1.55 ± 0.5	59	E-07	6.0 E-08		
. •		Fe-59	ſ	3.0 ± 3.0)] E-07	1.3 E-06		
		Co-60	Ì	4.57 ± 0.8	35] E-07	5.4 E-08		В
		Zn-65	i	-1.05 ± 0.4	19] E-06	2.3 E-06		
		Nb-94	Ĩ	9.0 ± 6.6	5] E-08	2.6 E-07		
<u> </u>		Zr-95	Ĩ	9 ± 37] E-08	1.6 E-06		
		Nb-95	[-1.3 ± 2.5	5] E-07	1.1 E-06		
		Ru-103	I	-1 ± 16] E-08	6.8 E-07		
		Ru-106	1	-1.6 ± 7.9	•] E-07	3.5 E-06		
		Ag-108m	[0.0 ± 6.3	3] E-08	2.7 E-07		
		Ag-110m	[-1 ± 12] E-08	5.6 E-07		
		Sb-124	ſ	4.5 ± 2.0)] E-07	2.4 E-07		
		Sb-125	I	-1.5 ± 2.3	3] E-07	1.0 E-06		
		Cs-134	[-4.0 ± 1.5	5	} E-07	6.7 E-07		
		Cs-137	E	7.5 ± 8.4	1] E-08	3.5 E-07		
		BaLa-140]	-2.0 ± 1.6	5] E-06	8.2 E-06		
		Ce-141	1	4 ± 22] E-08	9.0 E-07		
		Ce-144	I	-5.8 ± 4.3	3] E-07	1.8 E-06		

Note(s):

- A Calculated MDCs are a-posteriori values.
- B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Moreno

A. D. Banavali

Ň		KE ENGINEEF	RING AND SERVICES ENVIRONMENTAL LABORATORY	
	MAI U 0 1330	10	CFR Part 50/61 Analysis Report	
ENVIR Laboratory Sample Su Total Amt o	DE&S ONMENTAL LA Sample Number: bmission Code: Media Type: f Sample Sent:	Sx10414 QZZc06D119 Concrete 104.2 g	Page 2 of 2 Customer: GTS Duratek 98 Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: May 5, 1998 Report Date: May 5, 1998 ription: A9901/01MC5/00004	
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Minimum Detectable Activity Concentration Concentration (A) Net ± 1 or Overall on Reference Date on Reference Date CALCULATED REQUIRED [µCi/g] [µCi/g] Note	÷(5)
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	[2.8 ± 1.5] $E-07$ 5.7 $E-07$ 1.0 $E-06$ [-1.0 ± 2.0] $E-07$ 8.0 $E-07$ [2 ± 25] $E-08$ 1.2 $E-06$	

(s):

- A Calculated MDCs are a-posteriori values.
- B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

lillipens 518

M. Moreno

Clillypern fr

A. D. Banavali

MALED DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1998

DEAS

ENVIRONMENTAL LAB.

10 CFR Part 50/61 Analysis Report

Page 1 of 2

Laboratory Sample Number: X10415 Sample Submission Code: QZZc06E1198 Media Type: Concrete Total Amt of Sample Sent: 114.3 g

Customer: GTS Duratek Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: May 2, 1998 Report Date: May 4, 1998

Sample Description: A9901/01MC5/00005

Analysis Requested	Aliquot Weight Processed [g]	Isotope	Ac N	tivity Concer et ± 1σ C on Reference [µCi/g	ntra Dver: 2 Da }	tion all te	Minimum Det Concentrati on Referenc CALCULATED [µCi/g	ectable on (A) e Date REQUIRED]	Note(s)
Gamma Scan	114.3000	Cr-51 Mn-54 Co-57	 [[-2 ± 13 -1.0 ± 1.2 1.9 ± 3.6)]]	E-07 E-07 E-07	5.5 E-06 5.5 E-07 1.4 E-06		
		Co-58	ſ	1.1 ± 1.2	j	E-07	4.9 E-07		
		Fe-59	Ì	1.4 ± 2.8	j	E-07	1.2 E-06		
		Co-60	ī	5.22 ± 0.8	9 j	E-07	3.9 E-07		в
		Zn-65	ĺ	-8.3 ± 3.9]	E-07	1.8 E-06		
<		Nb-94	ĺ	3.6 ± 7.5]	E-08	3.2 E-07		
0		Zr-95	[-1.19 ± 0.43	3]	E-06	2.0 E-06		
		Nb-95	1	-9 ± 25]	E-08	1.1 E-06		
		Ru-103	[1.3 ± 1.1]	E-07	4.3 E-07		
		Ru-106	ſ	-9 ± 72]	E-08	3.1 E-06		
		Ag-108m]	9.0 ± 5.3]	E-08	2.0 E-07		
		Ag-110m	[-1.6 ± 1.6]	E-07	7.3 E-07		
		Sb-124	[-2.1 ± 2.8]	E-07	1.5 E-06		
		Sb-125	[-1.4 ± 2.0]	E-07	8.6 E-07		
		Св-134	[-5 ± 10]	E-08	4.6 E-07		
		Св-137]	2.32 ± 0.8	1]	E-07	2.8 E-07		
		BaLa-140	Ţ	1.03 ± 0.42	2]	E-06	4.6 E-07		
		Ce-141 Ce-144] [-2.2 ± 2.2 3.5 ± 3.4]	E-07 E-07	9.0 E-07 1.3 E-06		

Note(s):

- A Calculated MDCs are a-posteriori values.
- B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Reviewed by

A. D. Banavali

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1998

DE&S

ENVIRONMENTAL LAB.

10 CFR Part 50/61 Analysis Report

Page 2 of 2

Laboratory Sample Number: X10415 Sample Submission Code: QZZc06E1198 Media Type: Concrete Total Amt of Sample Sent: 114.3 g Customer: GTS Duratek Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: May 2, 1998 Report Date: May 4, 1998

Sample Description:

A9901/01MC5/00005

Aliquot Weight Analysis Processed Requested [g] Isotope			Acti Net C	lvity Concent ± 1σ Ov on Reference [μCi/g]	ration verall Date	Minimum Detectable Concentration (A) on Reference Date CALCULATED REQUIRED [μ Ci/g] Note		
Gamma Scan (continued)		Eu-152 Eu-155 Eu-155 Eu-154	[[[5.1 \pm 1.4 1.1 \pm 1.8 3.5 \pm 1.3] E-07] E-07] E-07] E-07	4.5 E-07 7.1 E-07 1.2 E-07	1.0E-06	В

(ន):

A - Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

E. M. Moreno

A. D.^V Banavali

MAILED ••	KE ENGINEERING AND	SERVICES ENVIRONMENTAL I	ABORATORY
MAY 0 6 1998	10 CFR Par	t 50/61 Analysis Report	
DE&S ENVIRONMENTAL LAB Laboratory Sample Number: Sample Submission Code: Media Type: Total Amt of Sample Sent:	X10416 QZZc06F1198 Concrete 105.7 g	Page 1 of 2 Customer: Sample Reference Date: Date Sample Received: Count Date: Report Date:	GTS Duratek March 20, 1998 April 27, 1998 May 5, 1998 May 5, 1998
S	ample Description:	A9901/01MC5/00006	
Aliquot Weight Analysis Processed Requested [g]	Activi Net Isotope	Mi ty Concentration Co ± 1σ Overall or Reference Date CALCU [μCi/g]	nimum Detectable oncentration (A) a Reference Date MLATED REQUIRED [μ Ci/g] Note(s)

Gamma	Scan	105.7000	Cr-51	[2.3 ±	2.8]	E-06	1.1 E-05
			Mn-54	Ĩ	3 ±	16 j	E-08	7.7 E-07
			Co-57	Ĩ	1.6 ±	6.1 j	E-07	2.5 E-06
			Co-58	i	-9.4 ±	4.7]	E-07	2.3 E-06
			Fe-59	Ĩ	9.0 ±	4.1]	E-07	4.9 E-07
			Co-60	Ĩ	6.7 ±	3.4 j	E-07	1.3 E-06
			Zn-65	Ĩ	-2.3 ±	8.0 j	E-07	3.7 E-06
			Nb-94	ĺ	-6 ±	15 j	E-08	7.3 E-07
\bigcirc			Zr-95	ĺ	-2 ±	37 j	E-08	1.8 E-06
			Nb-95	E	1.3 ±	5.6]	E-07	2.5 E-06
			Ru-103	ĺ	4.2 ±	2.5 j	E-07	9.4 E-07
			Ru-106	[-1.6 ±	2.1 j	E-06	1.0 E-05
			Ag-108m	[-9 ±	12]	E-08	5.5 E-07
			Ag-110m	ĺ	1.9 ±	1.1 j	E-07	1.7 E-07
			Sb-124	Ĩ	0 ±	0]	E+02	7.1 E-07
			Sb-125	ĺ	5.9 ±	3.0 j	E-07	1.1 E-06
			Cs-134	Ĺ	-1.8 ±	1.9 j	E-07	9.2 E-07
			Cs-137	ĺ	1.8 ±	1.5 j	E-07	6.0 E-07
			BaLa-140	Ĺ	2.4 ±	1.4]	E-06	2.1 E-06
			Ce-141	[7 ±	37 j	E-08	1.5 E-06
			Ce-144	[-9.0 ±	6.7]	E-07	3.0 E-06

Note(s):

A - Calculated MDCs are a-posteriori values.

PHILIPPAD 5 8 E

M. Moreno

L. A. D. Banavali

MAI MAY O DE ENVIRONM	LED 16 1998 E&S ENTAL LAB.	UKE ENGINEERI 10 c 	NG AND SERVICES ENVIRONMENTAL LABORATORY FR Part 50/61 Analysis Report Page 2 of 2	
Laboratory S Sample Sub Total Amt of	Sample Number: omission Code: Media Type: E Sample Sent:	X10416 QZZc06F1198 Concrete 105.7 g Sample Descri	Customer: GTS Duratek Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: May 5, 1998 Report Date: May 5, 1998 ption: A9901/01MC5/00006	•
Analysis Requested	Aliquot Weight Processed [g]	Івоторе	Minimum Detectable Activity Concentration Concentration (A) Net ± 1σ Overall on Reference Date on Reference Date CALCULATED [µCi/g] [µCi/g]) Note(s)
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	[4.1 ± 2.0] E-07 7.1 E-07 1.0E-06 [8 ± 31] E-08 1.3 E-06 [-1.4 ± 6.9] E-07 3.4 E-06	

···· ~(s):

A-Calculated MDCs are a-posteriori values.

QUULIAND 5/5/98 E. M. Moreno

Cillificano fr

A. D. Banavali

MAY 0 6 1	998	10	CFR	Part 5	0/61 An	aly	sis Re	port			
DELC				Pa	ge 1 of						
DEQC LUBRANNES Sample Sub Total Amt of	Ampie Number: mission Code: Media Type: Sample Sent:	X10393 QZZc03A129 Concrete 108.1 g Sample Descr	98 ript:	Lon:	Sample Date S A990	Ref amp	Cus erence ole Rec Count Report 2MC1/0	tomer: Date: eived: Date: Date: 00001	GTS Dur March 2 April 2 May 2, May 5,	catek 26, 1998 27, 1998 1998 1998	
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Act Ne	civity et ± on Ref [Concent 10 Ov erence µCi/g]	rat vera Dat	ion 111 ce	Mi Cc or CALCU	nimum De ncentrat Referend ULATED [μCi/g	tectable ion (A) ce Date REQUIRED]	Note(8)
Gamma Scan	108.1000	Cr-51 Mn-54 Co-57 Co-58 Fe-59 Co-60 Zn-65 Nb-94 Zr-95 Nb-95 Ru-103 Ru-106 Ag-108m Ag-110m Sb-124 Sb-125 Cs-134 Cs-137 BaLa-140 Ce-141 Ce-144		$\begin{array}{c} 2.06\\ 0.0\\ 5.5\\ -1.7\\ -3.7\\ 4.38\\ -6.0\\ -8\\ -5\\ -2.5\\ 4\\ 2.4\\ -6.5\\ -1.4\\ -1.4\\ -3.0\\ 1.52\\ 1.23\\ 2.3\\ 2.0\\ -4.8\end{array}$	$\begin{array}{r} \pm \ 0.93 \\ \pm \ 1.1 \\ \pm \ 3.0 \\ \pm \ 1.5 \\ \pm \ 3.6 \\ \pm \ 3.4 \\ \pm \ 80 \\ \pm \ 22 \\ \pm \ 1.9 \\ \pm \ 11 \\ \pm \ 6.1 \\ \pm \ 2.8 \\ \pm \ 1.9 \\ \pm \ 1.9 \\ \pm \ 1.9 \\ \pm \ 0.68 \\ \pm \ 1.9 \\ \pm \ 0.65 \\ \pm \ 1.4 \\ \pm \ 3.5 \end{array}$		E-06 E-07 E-07 E-07 E-07 E-07 E-09 E-08 E-08 E-08 E-07 E-08 E-07	3.4 4.6 1.1 6.8 1.7 3.2 1.6 3.5 1.0 8.7 4.7 2.6 2.8 6.8 1.4 8.7 2.5 2.4 2.5 2.4 2.5 2.4 5.2	E-06 E-07 E-06 E-07 E-06 E-07 E-06 E-07 E-06 E-07 E-07 E-06 E-07 E-07 E-06 E-07 E-06 E-07 E-07 E-06 E-07 E-07 E-06 E-07 E-07 E-06 E-07 E-07 E-06 E-07 E-07 E-07 E-07 E-06 E-07 E-07 E-07 E-06 E-07 E-07 E-06 E-07 E-07 E-07 E-07 E-06 E-07 E-07 E-06 E-07		В

Note(s):

- A Calculated MDCs are a-posteriori values. B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

E.G. Moreno

A. D. Banavali

MA		JKE ENGINEER	ING AND SERVICES ENVIRONMENTAL LABORATORY	.*
	0 6 1998			
DI	E&S		Page 2 of 2	
ENVIRONN Laboratory S Sample Sub Total Amt of	ENTAL LAB. ample Number: mission Code: Media Type: Sample Sent:	X10393 QZZc03A1299 Concrete 108.1 g	Customer: GTS Duratek 8 Sample Reference Date: March 26, 1998 Date Sample Received: April 27, 1998 Count Date: May 2, 1998 Report Date: May 5, 1998	
		Sample Descr	iption: A9901/02MC1/00001	
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Minimum Detectable Activity Concentration Concentration (A) Net ± 1 or Overall on Reference Date on Reference Date CALCULATED REQUIRED [µCi/g] [µCi/g] No	ote(s)
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	$\begin{bmatrix} 7.2 \pm 1.7 \\ 1.3 \pm 1.6 \end{bmatrix} E-07 \begin{array}{c} 6.0 \ E-07 \\ 6.3 \ E-07 \\ \hline -2.5 \pm 3.5 \end{bmatrix} E-07 \begin{array}{c} 1.6 \ E-06 \\ \hline \end{array}$	В

(s):

- A Calculated MDCs are a-posteriori values.
 B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

È. M. Moreno

Cilliprens for A. D. Banavali

MA	ILED _。	UKE ENGINEER	ING AND SERVICES ENVIRONMENTAL LABORATORY	.e
MAY	0 6 1998		CFR Part 50/61 Analysis Report	
	E&S MENTAL LAB.		Page 1 of 2	
Laboratory S Sample Sub Total Amt of	ample Number: mission Code: Media Type: Sample Sent:	X10394 QZZc03B129 Concrete 113.4 g	Customer: GTS Duratek 8 Sample Reference Date: March 26, 199 Date Sample Received: April 27, 199 Count Date: May 5, 1998 Report Date: May 5, 1998	8 8
		Sample Descr	iption: A9901/02MC1/00002	
 Analysis Requested	Aliquot Weight Processed [g]	Isotope	Minimum DetectablActivity ConcentrationConcentration (A)Net \pm 1 σ Overallon Reference Dateon Reference DateCALCULATED[μ Ci/g][μ Ci/g]	e RED Note(s)
Gamma Scan	113.4000	Cr-51 Mn-54 Co-57 Co-58 Fe-59 Co-60 Zn-65 Nb-94 Zr-95 Nb-95 Ru-103 Ru-106 Ag-108m Ag-110m Sb-124 Sb-125 Cs-134 Cs-137 BaLa-140 Ce-141 Ce-144	$\begin{bmatrix} -2.4 \pm 2.1 \\ 2.0 \pm 1.1 \end{bmatrix} E-06 \qquad 9.5 E-06 \\ 2.0 \pm 1.1 \end{bmatrix} E-07 \qquad 4.3 E-07 \\ -3.2 \pm 5.0 \end{bmatrix} E-07 \qquad 2.1 E-06 \\ 8 \pm 20 \end{bmatrix} E-08 \qquad 8.7 E-07 \\ -3.0 \pm 5.1 \end{bmatrix} E-07 \qquad 2.5 E-06 \\ 1.4 \pm 2.3 \end{bmatrix} E-07 \qquad 1.0 E-06 \\ -3.9 \pm 5.5 \end{bmatrix} E-07 \qquad 2.5 E-06 \\ -1.1 \pm 1.6 \end{bmatrix} E-07 \qquad 7.2 E-07 \\ 1.9 \pm 3.6 \end{bmatrix} E-07 \qquad 1.5 E-06 \\ -2 \pm 27 \end{bmatrix} E-08 \qquad 1.2 E-06 \\ 2.1 \pm 1.3 \end{bmatrix} E-07 \qquad 4.7 E-07 \\ 1.4 \pm 1.0 \end{bmatrix} E-06 \qquad 4.0 E-06 \\ 0.0 \pm 1.0 \end{bmatrix} E-07 \qquad 4.2 E-07 \\ 2.3 \pm 1.6 \end{bmatrix} E-07 \qquad 6.3 E-07 \\ 4.1 \pm 2.4 \end{bmatrix} E-07 \qquad 3.7 E-07 \\ 4.1 \pm 2.4 \end{bmatrix} E-07 \qquad 3.7 E-07 \\ 4.1 \pm 2.4 \end{bmatrix} E-07 \qquad 1.3 E-06 \\ -2.0 \pm 1.6 \end{bmatrix} E-07 \qquad 7.4 E-07 \\ -2.4 \pm 2.9 \end{bmatrix} E-07 \qquad 1.3 E-06 \\ -2.0 \pm 1.6 \end{bmatrix} E-07 \qquad 7.4 E-07 \\ -1.8 \pm 4.9 \end{bmatrix} E-07 \qquad 2.0 E-06 \\ =-06 \\ -100 \\ =-06 \\ -100 \\ =-07 \\ -2.0 \\ =-07 \\ -1.8 \pm 4.9 \end{bmatrix} E-07 \qquad 2.0 \\ =-06 \\ -2.0 \\ =-06 \\ -2.0 \\ =-06 \\ -2.0 \\ =-06 \\ -2.0 \\ =-07 \\ -2.0 \\ =-06 \\ -2.0 \\ =-07 \\ -1.8 \\ =-07 \\ -1.8 \\ =-07 \\ -2.0 \\ =-07 \\ -2.0 \\ =-06 \\ =-07 \\ -2.0 \\ =-06 \\ =-07 \\ -2.0 \\ =-06 \\ =-07 \\ -2.0 \\ =-06 \\ =-07 \\ -2.0 \\ =-06 \\ =-07 \\ -2.0 \\ =-07 \\ -2.0 \\ =-07 \\ =-07 \\ -2.0 \\ =-06 \\ =-07 \\ -2.0 \\ =-06 \\ =-07 \\ -2.0 \\ =-07 $	

Note(s):

A - Calculated MDCs are a-posteriori values.

PUULIAND 5598 E. M. Moreno

A. D. Banavali

МА ма	AILED Y 0 6 1998	JKE ENGINEER	ING AND SI	CRVICES	ENVIRONME	NTAL LA	BORATORY	7	
-NVIRON	MENTAL LAB	•	Page 2 of 2						
Laboratory S Sample Sub Total Amt of	Sample Number: omission Code: Media Type: f Sample Sent:	X10394 QZZc03B129 Concrete 113.4 g	8	Sample Date	Cus Reference Sample Rec Count Report	tomer: Date: Date: Date: Date:	GTS Dur March 2 April 2 May 5, May 5,	atek 26, 1998 27, 1998 1998 1998	
		Sample Descr	iption:	A99	01/02MC1/C				
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activity Net ± on Re: [Concen 1σ O ference µCi/g	tration verall Date]	Min Con on CALCUL	imum Det centrati Referenc ATED [µCi/g	ectable on (A) e Date REQUIRED]	Note(s)
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	[7.3 [-4.6 [1.1	± 1.9 ± 2.6 ± 4.0] E-07] E-07] E-07	6.1 E 1.1 E 1.9 E	-07 -06 -06	1.0E-06	В

N-+-(B):

Calculated MDCs are a-posteriori values.
 B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Chillerow 5 5 18 Moreno

Banavali

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1998

DE&S ENVIRONMENTAL LAB.

_____ 10 CFR Part 50/61 Analysis Report _____

Page 1 of 2

Customer: GTS Duratek Sample Reference Date: March 26, 1998 Date Sample Received: April 27, 1998 Count Date: May 2, 1998 Report Date: May 5, 1998 Laboratory Sample Number: X10395 Sample Submission Code: QZZC03C1298 Media Type: Concrete Total Amt of Sample Sent: 99.9 g

Sample Description:

A9901/02MC1/00003

Analysis Requested	Aliquot Weight Processed [g]	Isotope Cr-51	Act Ne	tivity Concent et ± 1σ Ov on Reference [μCi/g]	ration erall Date	Minimum Detectabl Concentration (A) on Reference Date CALCULATED REQUI [µCi/g]	e RED Note(s)
Camma Scan	99,9000		 [2 ± 20		8.3 E-06	
		Mn-54	i	-7 ± 15	j E-08	7.2 E-07	
		Co-57	Ì	-8.8 ± 5.9] E-07	2.5 E-06	
		Co-58	Ì	1.5 ± 1.3] E-07	5.5 E-07	
		Fe-59	Ĩ	-1.2 ± 5.2] E-07	2.5 E-06	
		Co-60	ĺ	1.7 ± 2.1] E-07	8.8 E-07	
		Zn-65	ĺ	-7.8 ± 6.2] E-07	2.9 E-06	
N 2		Nb-94	ĺ	1.64 ± 0.62] E-07	6.3 E-08	
\smile		Zr-95	Č	3.8 ± 2.5] E-07	1.0 E-06	
		Nb-95	ſ	1.5 ± 2.8] E-07	1.2 E-06	
		Ru-103	[1.6 ± 1.5] E-07	6.3 E-07	
		Ru-106	[7.4 ± 9.8] E-07	4.2 E-06	
		Ag-108m	[-7 ± 12] E-08	5.4 E-07	
		Ag-110m	ſ	-2.4 ± 2.9] E-07	1.4 E-06	
		Sb-124	[0 ± 0] E+02	3.7 E-07	
		Sb-125	ſ	1.1 ± 3.0] E-07	1.3 E-06	
		Cs-134	[2.27 ± 0.69] E-07	1.4 E-07	В
		Cs-137	Ε	-2.1 ± 1.8] E-07	8.4 E-07	
		BaLa-140	[1.39 ± 0.63] E-06	7.5 E-07	
		Ce-141]	3.3 ± 2.3] E-07	8.7 E-07	
		Ce-144	[1.7 ± 4.9] E-07	2.0 E-06	

Note(s):

.

- A Calculated MDCs are a-posteriori values.
- B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Moreno

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

DE&S ENVIRONMENTAL LAB.

MAY 0 6 1998

10 CFR Part 50/61 Analysis Report _____

Page 2 of 2

Customer: GTS Duratek Laboratory Sample Number: X10395 Sample Submission Code: QZZc03C1298 Sample Reference Date: March 26, 1998 Media Type: Concrete Date Sample Received: April 27, 1998 Total Amt of Sample Sent: 99.9 g Count Date: May 2, 1998 Report Date: May 5, 1998

> A9901/02MC1/00003 Sample Description:

Analysis Requested	Aliquot Weight Processed [9]	Івоторе	Act Ne	ivity Concent t ± 1σ Οτ on Reference [μCi/g]	ration verall Date	Minimum D Concentra on Refere CALCULATED [µCi/	Note(s)	
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	[[[7.2 \pm 2.1 3.5 \pm 2.6 3 \pm 58] E-07] E-07] E-08	7.2 E-07 1.0 E-06 2.7 E-06	1.0E-06	В

`s):

A - Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Moreno

Ellippens fr

A. D. Banavali

MAILED DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

10 CFR Part 50/61 Analysis Report

Page 1 of 2

MAY 0 6 1998

DE&S ENVIRONMENTAL LAB.

Laboratory Sample Number: X10396 Sample Submission Code: QZZc03D1298 Media Type: Concrete

Total Amt of Sample Sent: 118.2 g

Customer: GTS Duratek Sample Reference Date: March 26, 1998 Date Sample Received: April 27, 1998 Count Date: May 5, 1998

Report Date: May 5, 1998

Sample Description: A9901/02MC1/00004

Analysis Requested	Aliquot Weight Processed [9] 118.2000	Isotope Cr-51 Mn-54 Co-57	Act Ne	tivity Concent et ± 1σ Ov on Reference [µCi/g]	ration erall Date	Minimum Detectable Concentration (A) on Reference Date CALCULATED REQUIREN [µCi/g]	Note(s)
Gamma Scan]]]	1.9 ± 1.0 -1 ± 11 7.4 ± 3.6] E-06] E-08] E-07	3.9 E-06 4.9 E-07 1.3 E-06	
		Co-58 Fe-59 Co-60	[[]	9.1 ± 7.5 -8.8 ± 5.2 4.20 ± 0.85] E-08] E-07] E-07	3.0 E-07 2.4 E-06 2.8 E-07	в
\smile		Zn-65 Nb-94 Zr-95	[[-4 ± 28 1.03 ± 0.60 -2 + 2 = 3] E-08] E-07	1.3 E-06 2.3 E-07 1 1 E-06	
		Nb-95 Ru-103	[[1.5 ± 1.9 -5 ± 13] E-07] E-08	7.9 E-07 5.8 E-07	
		Ru-106 Ag-108m Ag-110m	[[r	3.0 ± 7.9 -1.5 ± 6.3 -1.1 + 1.2] E-07] E-08	3.4 E-06 2.7 E-07 5.8 E-07	
		Sb-124 Sb-125	[2.2 ± 1.3 -1.9 ± 2.1] E-07] E-07	2.0 E-07 9.3 E-07	
		Cs-134 Cs-137 Bala-140	[[[-2.2 ± 1.3 -1.6 ± 7.7 1.7 ± 1.7] E-07] E-08] E-07	5.8 E-07 3.5 E-07 4.7 E-07	
		Ce-141 Ce-144	[[1.2 ± 1.9 -6.3 ± 3.8] E-07] E-07	7.4 E-07 1.6 E-06	

Note(s):

- A Calculated MDCs are a-posteriori values.
- B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

5|5|18 Elliptoni
MA MAN	AILED (0 6 1998	JKE ENGINEERI 10 (ING AND S	ERVICES	ENVIRONME nalysis Re	NTAL LA	BORATORY	č	
ENVIRON	IMENTAL LAB.		Page 2 of 2						
Laboratory S Sample Sub Total Amt of	Sample Number: omission Code: Media Type: Sample Sent: S	X10396 QZZcO3D1298 Concrete 118.2 g Sample Descri	B iption:	Sample Date A99	Cue Reference Sample Rec Count Report 01/02MC1/0	otomer: Date: Date: Date: Date: Date:	GTS Dur March 2 April 2 May 5, May 5,	ratek 26, 1998 27, 1998 1998 1998	
Analysis Requested	Aliquot Weight Processed [g]	Isotope	Activity Net d on Re	Concen : 1σ C ference μCi/g	tration overall Date]	Min Con On CALCUL	imum Det centrat: Referend ATED [µCi/g	tectable ion (A) ce Date REQUIRED }	Note(s)
Gamma Scan (continued)		Eu-152 Eu-155 Eu-154	[7.8 [1.7 [3.3	3 ± 1.5 7 ± 1.6 3 ± 2.5] E-07] E-07] E-07	4.3 E 6.0 E 1.0 E	-07 -07 -06	1.0E-06	В

```(s):

A Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

5 18

E. M. Moreno

Gill

A. D. Banavali

| MAI                                        |                                                                 | JKE ENGINEER                                                                                                                                                                                             | ING AN             | ID SEI                                    | RVICES                                                                                                                                                                                      | EN                       | IRONM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ENTAL I                                                                                                                                  | ABORATORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|--------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| MAY 0                                      | 6 1998                                                          | <br>10                                                                                                                                                                                                   | CFR Pa             | <br>1rt 5(                                | )/61 A                                                                                                                                                                                      | nal                      | ysis R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eport                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| DE<br>ENVIRONM                             | &S<br>ENTAL LAB.                                                |                                                                                                                                                                                                          | Page 1 of 2        |                                           |                                                                                                                                                                                             |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| Laboratory S<br>Sample Sub<br>Total Amt of | Sample Number:<br>omission Code:<br>Media Type:<br>Sample Sent: | X10397<br>QZZc03E129<br>Concrete<br>105.8 g                                                                                                                                                              | 8                  | 5                                         | Sample<br>Date                                                                                                                                                                              | Re:<br>Samj              | Cur<br>ference<br>ple Rec<br>Count<br>Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | stomer:<br>e Date:<br>ceived:<br>t Date:<br>t Date:                                                                                      | GTS Duratek<br>March 26, 1998<br>April 27, 1998<br>May 2, 1998<br>May 5, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
|                                            | s                                                               | ample Descr                                                                                                                                                                                              | iption             | 1:                                        | A99                                                                                                                                                                                         | 01/0                     | D2MC1/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00005                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[g]                           | Isotope                                                                                                                                                                                                  | Activ<br>Net<br>on | rity (<br>±<br>1 Refe<br>[ <i>F</i>       | Concen<br>10 O<br>erence<br>Ci/g                                                                                                                                                            | trai<br>vera<br>Dai<br>] | cion<br>all<br>ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mi<br>Cc<br>on<br>CALCU                                                                                                                  | nimum Detectable<br>oncentration (A)<br>Reference Date<br>LATED REQUIRED<br>[ $\mu$ Ci/g ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Note(s) |
| Gamma Scan                                 | 105.8000                                                        | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103<br>Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141<br>Co-144 |                    | 1.5 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± | $ \begin{array}{c} 1.8\\ 14\\ 4.6\\ 18\\ 5.7\\ 2.0\\ 4.5\\ 12\\ 1.5\\ 1.5\\ 1.6\\ 3.3\\ 1.7\\ 1.9\\ 2.4\\ 1.4\\ 11\\ 19\\ 4.8\\ 19\\ 4.8\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19\\ 19$ |                          | E-06<br>E-08<br>E-07<br>E-07<br>E-07<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-07<br>E-07<br>E-07<br>E-07<br>E-07<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-07<br>E-07<br>E-07<br>E-07<br>E-07<br>E-07<br>E-08<br>E-07<br>E-07<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-07<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08<br>E-08 | 8.0<br>6.5<br>1.8<br>8.1<br>2.7<br>8.2<br>2.1<br>5.5<br>1.4<br>5.9<br>6.8<br>2.5<br>3.5<br>7.1<br>3.0<br>9.1<br>6.5<br>5.2<br>5.1<br>7.9 | E = 06<br>E = 07<br>E = 06<br>E = 07<br>E = 06<br>E = 07<br>E = 06<br>E = 07<br>E = |         |

Note(s):

A - Calculated MDCs are a-posteriori values.

E.M.) Moreno

Clillyruo A. D. Banavali

| MA                                         |                                                                 | JKE ENGINEER                                                | ING AND SERVICES ENVIRONMENTAL LABORATORY                                                                                                                                    |     |
|--------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| MAY<br>D<br>ENVIRONI                       | 0 6 1998<br>E&S<br>MENTAL LAB.                                  | 10                                                          | CFR Part 50/61 Analysis Report<br>Page 2 of 2                                                                                                                                |     |
| Laboratory S<br>Sample Sub<br>Total Amt of | Sample Number:<br>omission Code:<br>Media Type:<br>Sample Sent: | X10397<br>QZZc03E129<br>Concrete<br>105.8 g<br>Sample Descr | Customer: GTS Duratek<br>Sample Reference Date: March 26, 1998<br>Date Sample Received: April 27, 1998<br>Count Date: May 2, 1998<br>Report Date: May 5, 1998                |     |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[g]                           | Isotope                                                     | Minimum Detectable<br>Activity Concentration Concentration (A)<br>Net ± 1 or Overall on Reference Date<br>on Reference Date CALCULATED REQUIRED<br>[ µCi/g ] [ µCi/g ] Note( | (2) |
| Gamma Scan<br>(continued)                  |                                                                 | Eu-152<br>Eu-155<br>Eu-154                                  | [ 9.2 ± 1.8 ] E-07 5.3 E-07 1.0E-06 B<br>[ -9 ± 22 ] E-08 9.0 E-07<br>[ -2.8 ± 4.4 ] E-07 2.1 E-06                                                                           |     |

(s):

A - Calculated MDCs are a-posteriori values.
 B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

(Q)5 8 5

É. M. Moreno

Α. İBanavali

## MAILED

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1998

DE&S

ENVIRONMENTAL LAB.

10 CFR Part 50/61 Analysis Report

Page 1 of 2

Laboratory Sample Number: X10398 Sample Submission Code: QZZc03F1298 Media Type: Concrete Total Amt of Sample Sent: 107.0 g Customer: GTS Duratek Sample Reference Date: March 26, 1998 Date Sample Received: April 27, 1998 Count Date: May 2, 1998 Report Date: May 4, 1998

Sample Description:

A9901/02MC1/00006

| Analysis<br>Requested | Aliquot<br>Weight<br>Processed<br>[9] | Isotope                 | AC <sup>†</sup>  | tivity<br>et ±<br>on Ref<br>[ | Concen<br>10 O<br>erence<br>µCi/g | itrati<br>iveral<br>: Date<br>] | ion<br>11<br>2       | Min<br>Con<br>On<br>CALCU | nimum Det<br>ncentrat:<br>Referend<br>LATED<br>[ µCi/g | tectable<br>ion (A)<br>ce Date<br>REQUIRED<br>] | Note(s) |
|-----------------------|---------------------------------------|-------------------------|------------------|-------------------------------|-----------------------------------|---------------------------------|----------------------|---------------------------|--------------------------------------------------------|-------------------------------------------------|---------|
| Gamma Scan            | 107.0000                              | Cr-51<br>Mn-54<br>Co-57 | ]<br>]<br>]<br>] | 1.2<br>-1.0<br>9.2            | ± 1.1<br>± 9.6<br>± 3.2           | <br>1<br>1<br>1                 | E-06<br>E-08<br>E-07 | 4.3<br>4.2<br>1.1         | E-06<br>E-07<br>E-06                                   |                                                 |         |
|                       |                                       | Co-58                   | [                | -8                            | ± 13                              | ]]                              | E-08                 | 5.7                       | E-07                                                   |                                                 |         |
|                       |                                       | Co-60                   | L<br>F           | 3.2                           | $\pm 1.4$                         | 11                              | E-07<br>E-07         | 5.6                       | E-00<br>E-07                                           |                                                 |         |
|                       |                                       | Zn-65                   | ſ                | -2.6                          | $\pm 3.1$                         | 1 1                             | E-07                 | 1.4                       | E-06                                                   |                                                 |         |
|                       |                                       | Nb-94                   | ſ                | -6.4                          | ± 7.8                             | 11                              | E-08                 | 3.5                       | E-07                                                   |                                                 |         |
| -                     |                                       | Zr-95                   | Ì                | -1.0                          | ± 3.2                             | jı                              | E-07                 | 1.4                       | E-06                                                   |                                                 |         |
|                       |                                       | Nb-95                   | Ĩ                | -8                            | ± 20                              | jı                              | E-08                 | 8.8 1                     | E-07                                                   |                                                 |         |
|                       |                                       | Ru-103                  | Ī                | 5                             | ± 13                              | jı                              | E-08                 | 5.5                       | E-07                                                   |                                                 |         |
|                       |                                       | Ru-106                  | Ĩ                | 9                             | ± 74                              | jı                              | E-08                 | 3.2                       | E-06                                                   |                                                 |         |
|                       |                                       | Ag-108m                 | [                | 4.0                           | ± 5.1                             | ]]                              | E-08                 | 2.1                       | E-07                                                   |                                                 |         |
|                       |                                       | Ag-110m                 | Ι                | -1                            | ± 13                              | ] ]                             | E-08                 | 5.7                       | E-07                                                   |                                                 |         |
|                       |                                       | Sb-124                  | Ε                | 1.0                           | ± 3.1                             | ] ]                             | E-07                 | 1.4                       | E-06                                                   |                                                 |         |
|                       |                                       | Sb-125                  | ]                | 2                             | ± 15                              | ] ]                             | E-08                 | 6.4                       | E-07                                                   |                                                 |         |
|                       |                                       | Св-134                  | [                | -1                            | ± 11                              | ] ]                             | E-08                 | 4.7                       | E-07                                                   |                                                 |         |
|                       |                                       | Cs-137                  | ]                | -1.2                          | ± 7.6                             | ]]                              | E-08                 | 3.3                       | E-07                                                   |                                                 |         |
|                       |                                       | BaLa-140                | I                | 3.8                           | ± 2.2                             | 11                              | E-07                 | 3.4                       | E-07                                                   |                                                 |         |
|                       |                                       | Ce-141<br>Ce-144        | (<br>[           | -2<br>-4.9                    | $\pm 15$<br>$\pm 3.3$             | ]]                              | E-08<br>E-07         | 1.4                       | E-07<br>E-06                                           |                                                 |         |

Note(s):

A - Calculated MDCs are a-posteriori values.

| MAI                                        | LED                                                           | KE ENGINEERI                                 | ING AND SI                       | RVICES                              | ENVIRONME                                         | NTAL LA                                     | BORATORY                                            |                                              |         |
|--------------------------------------------|---------------------------------------------------------------|----------------------------------------------|----------------------------------|-------------------------------------|---------------------------------------------------|---------------------------------------------|-----------------------------------------------------|----------------------------------------------|---------|
| MAY O                                      | 6 1998                                                        |                                              | CFR Part !                       | 50/61 Ai                            | nalysis Re                                        | <br>port                                    |                                                     |                                              |         |
| ENVIRONME                                  | ENTAL LAB.                                                    |                                              | P                                | age 2 of                            |                                                   |                                             |                                                     |                                              |         |
| Laboratory S<br>Sample Sub<br>Total Amt of | ample Number:<br>mission Code:<br>Media Type:<br>Sample Sent: | X10398<br>QZZc03F1298<br>Concrete<br>107.0 g | 3                                | Sample<br>Date :                    | Cus<br>Reference<br>Sample Rec<br>Count<br>Report | tomer:<br>Date:<br>eived:<br>Date:<br>Date: | GTS Dur<br>March 2<br>April 2<br>May 2,<br>May 4,   | atek<br>6, 1998<br>7, 1998<br>1998<br>1998   |         |
|                                            | S                                                             | ample Descri                                 | lption:                          | A99(                                | 01/02MC1/0                                        | 0006                                        |                                                     |                                              |         |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[g]                         | Isotope                                      | Activity<br>Net ±<br>on Re:<br>[ | Concent<br>1σ Ο<br>ference<br>μCi/g | tration<br>verall<br>Date<br>]                    | Min<br>Con<br>on C<br>CALCUL                | imum Det<br>centrati<br>Referenc<br>ATED<br>[ μCi/g | ectable<br>on (A)<br>e Date<br>REQUIRED<br>] | Note(8) |
| Gamma Scan<br>(continued)                  |                                                               | Eu-152<br>Eu-155<br>Eu-154                   | [ 7.1<br>[ -1.1<br>[ -2          | ± 1.6<br>± 1.6<br>± 26              | ] E-07<br>] E-07<br>] E-08                        | 5.1 E<br>6.8 E<br>1.2 E                     | -07<br>-07<br>-06                                   | 1.0E-06                                      | B       |

`?(s):

A-- Calculated MDCs are a-posteriori values.
 B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Moreno

Bahavali D.

| MAILED DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY |                                                                   |                                                    |                                                                                                                                                                                                                                                                                                                                      |              |  |  |  |  |  |  |
|---------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|--|--|
| MAY                                                           | 0 6 1998                                                          | <br>10                                             | CFR Part 50/61 Analysis Report                                                                                                                                                                                                                                                                                                       |              |  |  |  |  |  |  |
| D                                                             | E&S<br>MENTAL LAB.                                                |                                                    | Page 1 of 2                                                                                                                                                                                                                                                                                                                          |              |  |  |  |  |  |  |
| Laboratory S<br>Sample Sul<br>Total Amt or                    | Sample Number:<br>bmission Code:<br>Media Type:<br>f Sample Sent: | X10405<br>QZZc05A129<br>Concrete<br>119.5 g        | Customer: GTS Duratek<br>Sample Reference Date: March 27, 1998<br>Date Sample Received: April 27, 1998<br>Count Date: May 2, 1998<br>Report Date: May 5, 1998                                                                                                                                                                        |              |  |  |  |  |  |  |
|                                                               |                                                                   | Sample Descr                                       | Lption: A9901/02MC3/00001                                                                                                                                                                                                                                                                                                            |              |  |  |  |  |  |  |
| Analysis<br>Requested                                         | Aliquot<br>Weight<br>Processed<br>[g]                             | Isotope                                            | Minimum Detectable<br>Activity Concentration Concentration (A)<br>Net ± 1 o Overall on Reference Date<br>on Reference Date CALCULATED REQUIRE<br>[ µCi/g ] [ µCi/g ]                                                                                                                                                                 | D<br>Note(s) |  |  |  |  |  |  |
| Gamma Scan                                                    | 119.5000                                                          | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60 | $\begin{bmatrix} 3 \pm 21 \\ 2.20 \pm 0.90 \end{bmatrix} E-07 & 8.9 E-06 \\ \begin{bmatrix} 2.20 \pm 0.90 \\ 1.63 \pm 0.60 \end{bmatrix} E-07 & 1.0 E-07 \\ \begin{bmatrix} -2.0 \pm 2.2 \\ -5.4 \pm 9.4 \end{bmatrix} E-07 & 1.1 E-06 \\ \begin{bmatrix} -5.4 \pm 9.4 \\ 1.13 \pm 0.21 \end{bmatrix} E-06 & 7.3 E-07 \end{bmatrix}$ | в            |  |  |  |  |  |  |

 $-2.9 \pm 6.8$ 

 $-3.8 \pm 2.8$ 

 $-8.9 \pm 6.1$ 

 $-3.5 \pm 3.7$ 

 $-1.5 \pm 2.8$ 

-8 ± 19

 $-7 \pm 12$ 

 $1.4 \pm 2.2$ 

0 ± 0

 $1.3 \pm 3.5$ 

-3 ± 19

 $4.0 \pm 4.0$ 

 $1.9 \pm 2.6$ 

 $2.3 \pm 6.4$ 

 $-1.6 \pm 2.3$ 

] E-07

] E-07

] E-07

] E-07

] E-07

] E-07

] E-08

] E-07

] E+02

] E-07

] E-07

] E-08

] E-07

1 E-07

] E-07

3.1 E-06

1.3 E-06

2.9 E-06

1.8 E-06

1.3 E-06

8.5 E-06

5.6 E-07

1.0 E-06

5.6 E-07

1.5 E-06

1.0 E-06

8.6 E-07

1.1 E-06

1.0 E-06

2.6 E-06

ł

I

E

E

I

I

I

ſ

ſ

ſ

ſ

Zn-65

Nb-94

Zr-95

Nb-95

Ru-103

Ru-106

Ag-108m

Ag-110m

Sb-124

sb-125

Cs-134

Св-137

Ce-141

Ce-144

BaLa-140

Note(s):

A - Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Reviewed by

E. Moreno

Banavali

| MAI                                        |                                                               | KE ENGINEER                                 | ING AND SERVICES ENVIRONMENTAL LABORATORY                                                                                                                     |       |
|--------------------------------------------|---------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| MAY 0                                      | 6 1998                                                        | 10                                          | CFR Part 50/61 Analysis Report                                                                                                                                |       |
|                                            | S<br>NTAL LAB.                                                |                                             | Page 2 of 2                                                                                                                                                   |       |
| Laboratory S<br>Sample Sub<br>Total Amt of | ample Number:<br>mission Code:<br>Media Type:<br>Sample Sent: | X10405<br>QZZc05A129<br>Concrete<br>119.5 g | Customer: GTS Duratek<br>Sample Reference Date: March 27, 1998<br>Date Sample Received: April 27, 1998<br>Count Date: May 2, 1998<br>Report Date: May 5, 1998 |       |
|                                            | s                                                             | ample Descr                                 | iption: A9901/02MC3/00001                                                                                                                                     |       |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[g]                         | Isotope                                     | Minimum DetectableActivity ConcentrationConcentration (A)Net $\pm$ 1 $\sigma$ Overallon Reference Dateon Reference DateCALCULATED[ $\mu$ Ci/g ][ $\mu$ Ci/g ] | :e(s) |
| Gamma Scan<br>(continued)                  |                                                               | Eu-152<br>Eu-155<br>Eu-154                  | [ 1.52 ± 0.29 ] E-06 7.7 E-07 1.0E-06 E<br>[ 5.3 ± 2.8 ] E-07 1.1 E-06<br>[ 4.3 ± 2.5 ] E-07 3.9 E-07                                                         | 3     |

M-1 (8):

A - Calculated MDCs are a-posteriori values.
 B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

18

Moreno

Banavali

## MAILED

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1993

DE&S ENVIRONMENTAL LAB. 10 CFR Part 50/61 Analysis Report

#### Page 1 of 2

| Laboratory Sample Number:                                                                                                                                                                   | X10406      | Customer:              | GTS Duratek    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|----------------|
| Sample Submission Code:                                                                                                                                                                     | QZZc05B1298 | Sample Reference Date: | March 27, 1998 |
| Media Type:                                                                                                                                                                                 | Concrete    | Date Sample Received:  | April 27, 1998 |
| Total Amt of Sample Sent:                                                                                                                                                                   | 122.3 g     | Count Date:            | May 2, 1998    |
| <b>IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</b> | -           | Report Date:           | May 4, 1998    |

Sample Description: A

A9901/02MC3/00002

\_\_\_\_\_

| Analysis<br>Requested | Aliquot<br>Weight<br>Processed<br>[g] | Isotope                                                                         | Acti<br>Net                | ivity Con<br>: ± 1<br>on Refere<br>[ μCi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | centra<br>σ Ove:<br>nce D<br>/g ]           | ation<br>rall<br>ate                                                                   | Minimum D<br>Concentra<br>on Refere<br>CALCULATED<br>[ µCi/                                              | etectable<br>tion (A)<br>nce Date<br>REQUIRED<br>g ] | Note(s) |
|-----------------------|---------------------------------------|---------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------|
| Gamma Scan            | 122.3000                              | Cr-51<br>Mn-54<br>Co-57<br>Co-58                                                | [<br>[<br>[<br>[           | $ \begin{array}{r} -9 \pm 1 \\ 2 \pm 1 \\ -7 \pm 3 \\ -1.7 \pm 1 \\ -7 2 \pm 5 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2<br>1<br>8<br>• 5                          | ] E-07<br>] E-08<br>] E-08<br>] E-07                                                   | 5.4 E-06<br>4.7 E-07<br>1.6 E-06<br>7.0 E-07<br>2 5 E-06                                                 |                                                      |         |
| $\sim$                |                                       | Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103<br>Ru-106<br>Ag-108m        |                            | $5.8 \pm 1 \\ -8 \pm 3 \\ -2.7 \pm 7 \\ -3.6 \pm 3 \\ 0.0 \pm 1 \\ -3.6 \pm 1 \\ 4 \pm 5 \\ 2.0 \pm 6 \\ 2.7 \pm 2 \\ 2.7 \pm 2 \\ 1.5 \\ 2.7 \pm 2 \\ 1.5 \\ 2.7 \pm 2 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 $ | .0<br>7<br>.4<br>.5<br>.9<br>.7<br>.3<br>.5 | ] E-07<br>] E-08<br>] E-08<br>] E-07<br>] E-07<br>] E-07<br>] E-08<br>] E-08<br>] E-08 | 4.0 E-07<br>1.6 E-06<br>3.3 E-07<br>1.6 E-06<br>7.8 E-07<br>7.7 E-07<br>2.4 E-06<br>2.7 E-07<br>1.0 E-06 |                                                      | В       |
|                       |                                       | Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141<br>Ce-144 | [<br>[<br>[<br>[<br>[<br>[ | $\begin{array}{c} -2.7 \pm 2 \\ -3.3 \pm 3 \\ -1.1 \pm 2 \\ 1.6 \pm 1 \\ 4.9 \pm 9 \\ 7.5 \pm 3 \\ 1.1 \pm 1 \\ -2.3 \pm 3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .3<br>.2<br>.1<br>.8<br>.4<br>.4            | ] E-07<br>] E-07<br>] E-07<br>] E-08<br>] E-07<br>] E-07<br>] E-07<br>] E-07           | 1.7 E-06<br>1.0 E-06<br>4.2 E-07<br>4.1 E-07<br>4.0 E-07<br>5.7 E-07<br>1.5 E-06                         |                                                      |         |

Note(s):

- A Calculated MDCs are a-posteriori values.
- B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Reviewed by

Moreno

inavali

| MAILED       | DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY |
|--------------|--------------------------------------------------------|
| MAY 0 6 1998 |                                                        |

10 CFR Part 50/61 Analysis Report

### Page 2 of 2

| Laboratory Sample Number:<br>Sample Submission Code: | X10406<br>QZZc05B1298 | Customer:<br>Sample Reference Date: | GTS Duratek<br>March 27, 1998 |
|------------------------------------------------------|-----------------------|-------------------------------------|-------------------------------|
| - Media Type:                                        | Concrete              | Date Sample Received:               | April 27, 1998                |
| Total Amt of Sample Sent:                            | 122.3 g               | Count Date:                         | May 2, 1998                   |
| •••••••                                              | . –                   | Report Date:                        | May 4, 1998                   |

Sample Description:

A9901/02MC3/00002

| Analysis<br>Requested     | Aliquot<br>Weight<br>Processed<br>[g] | Isotope                    | Minimum DetectableActivity ConcentrationConcentration (A)Net $\pm$ 1 $\sigma$ Overallon Reference Dateon Reference DateCALCULATEDREQUIRED[ $\mu$ Ci/g ][ $\mu$ Ci/g ]N | lote(s) |
|---------------------------|---------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Gamma Scan<br>(continued) |                                       | Eu-152<br>Eu-155<br>Eu-154 | [ 8.5 ± 1.9 ] E-07 6.0 E-07 1.0E-06<br>[ -2.7 ± 1.9 ] E-07 8.1 E-07<br>[ -2.8 ± 3.8 ] E-07 1.8 E-06                                                                    | В       |

(8):

DE&S

ENVIRONMENTAL LAB.

- A Calculated MDCs are a-posteriori values.
- B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Moreno

| MAI                                        |                                                                 | KE ENGINEER                                                                                                                                                                                              | ING AND SI                                                                                                                                                                       | RVICES                                                                                                                                                                                                               | ENVIRONME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NTAL LA                                                                                                                                                                 | BORATORY                                                                                                                                                                             |              |
|--------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| MAY O                                      | 6 1998                                                          | 10 0                                                                                                                                                                                                     | CFR Part S                                                                                                                                                                       | 50/61 An                                                                                                                                                                                                             | alysis Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eport                                                                                                                                                                   |                                                                                                                                                                                      |              |
|                                            | &S<br>ENTAL LAB.                                                |                                                                                                                                                                                                          | Pa                                                                                                                                                                               | age 1 of                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                      |              |
| Laboratory S<br>Sample Sub<br>Total Amt of | Sample Number:<br>omission Code:<br>Media Type:<br>Sample Sent: | X10407<br>QZZc05C1299<br>Concrete<br>105.2 g                                                                                                                                                             | 8                                                                                                                                                                                | Sample<br>Date S                                                                                                                                                                                                     | Cus<br>Reference<br>Sample Rec<br>Count<br>Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tomer:<br>Date:<br>ceived:<br>Date:<br>Date:                                                                                                                            | GTS Duratek<br>March 27, 1998<br>April 27, 1998<br>April 30, 1998<br>May 5, 1998                                                                                                     |              |
|                                            | 5                                                               | Sample Descr                                                                                                                                                                                             | iption:                                                                                                                                                                          | A990                                                                                                                                                                                                                 | 01/02MC3/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0003                                                                                                                                                                    |                                                                                                                                                                                      |              |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[g]                           | Isotope                                                                                                                                                                                                  | Activity<br>Net ±<br>on Re<br>[                                                                                                                                                  | Concent<br>10 Ov<br>ference<br>µCi/g ]                                                                                                                                                                               | ration<br>verall<br>Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mir<br>Cor<br>On<br>CALCUI                                                                                                                                              | imum Detectable<br>centration (A)<br>Reference Date<br>ATED REQUIRE<br>[μCi/g]                                                                                                       | D<br>Note(s) |
| Gamma Scan                                 | 105.2000                                                        | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103<br>Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141<br>Ce-144 | $\begin{bmatrix} 2.5\\ -3\\ -3\\ -5.2\\ 1\\ -2.5\\ 6.8\\ -2.05\\ -2.05\\ -8\\ 5.7\\ -2.2\\ -4\\ 0.0\\ 6.9\\ 1.2\\ -3.6\\ -3.5\\ 1.9\\ -1.6\\ -1.6\\ -1.6\\ -4.0\\ \end{bmatrix}$ | $\begin{array}{r} \pm 1.4 \\ \pm 16 \\ \pm 5.1 \\ \pm 5.1 \\ \pm 17 \\ \pm 5.5 \\ \pm 1.3 \\ \pm 2.2 \\ \pm 2.7 \\ \pm 160 \\ \pm 1.0 \\ \pm 1.0 \\ \pm 1.6 \\ \pm 2.8 \\ \pm 1.2 \\ \pm 1.1 \\ \pm 5.0 \end{array}$ | $\begin{bmatrix} E-06\\ E-08\\ E-07\\ E-07\\ E-07\\ E-07\\ E-07\\ E-07\\ E-06\\ E-08\\ E-07\\ E-08\\ E-08\\ E-08\\ E-08\\ E-08\\ E-08\\ E-08\\ E-07\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\ E-07\\ E-07\\ E-08\\ E-08\\ E-07\\ E-07\\ E-08\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\ E-07\\ E-08\\ E-07\\ E-08\\ E-07\\ E-07\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\ E-07\\ E-07\\ E-07\\ E-08\\ E-07\\ E-08\\ E-07\\ E-07\\ E-08\\ E-07\\ E-08\\ E-07\\ E-08\\ E-07\\ E-08\\ E-07\\ E-08\\ E-07\\ E-07\\ E-07\\ E-08\\ E-07\\ E-08\\ E-07\\ E-07\\ E-07\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-08\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-08\\ E-08\\ E-08\\ E-08\\ E-08\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\ E-$ | 5.2 H<br>7.0 H<br>2.1 H<br>7.6 H<br>2.5 H<br>4.1 H<br>3.3 H<br>6.1 H<br>7.2 H<br>1.2 H<br>7.0 H<br>4.3 H<br>3.1 H<br>6.8 H<br>1.3 H<br>4.7 H<br>4.4 H<br>5.8 H<br>7.0 H | E-06<br>E-07<br>E-06<br>E-07<br>E-06<br>E-07<br>E-06<br>E-07<br>E-06<br>E-07<br>E-06<br>E-07<br>E-06<br>E-07<br>E-06<br>E-07<br>E-06<br>E-07<br>E-06<br>E-07<br>E-06<br>E-07<br>E-06 | В            |

Note(s):

A - Calculated MDCs are a-posteriori values.
B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

911 5/5/18 E. M. Moreno

Celllypeno

A. D. Banavali

| MA                                     |                                                                    | KE ENGINEERING                               | ; AND SI                        | ERVICES ENVIRONME                                             | NTAL LAE                                    | ORATORY                                                                           |         |
|----------------------------------------|--------------------------------------------------------------------|----------------------------------------------|---------------------------------|---------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------|---------|
|                                        | 0 6 1998                                                           | <br>10 CFF                                   | R Part S                        | 50/61 Analysis Re                                             | port                                        |                                                                                   |         |
| D<br>ENVIRONA                          | E&S<br>//ENTAL LAB.                                                |                                              | Pa                              | age 2 of 2                                                    |                                             |                                                                                   |         |
| Laboratory<br>Sample Su<br>Total Amt c | Sample Number:<br>bmission Code:<br>Media Type:<br>of Sample Sent: | X10407<br>QZZc05C1298<br>Concrete<br>105.2 g |                                 | Cus<br>Sample Reference<br>Date Sample Rec<br>Count<br>Report | tomer:<br>Date:<br>eived:<br>Date:<br>Date: | GTS Duratek<br>March 27, 1998<br>April 27, 1998<br>April 30, 1998<br>May 5, 1998  |         |
|                                        | S                                                                  | ample Descript                               | cion:                           | A9901/02MC3/0                                                 | 0003                                        |                                                                                   |         |
| Analysis<br>Requested                  | Aliquot<br>Weight<br>Processed<br>[9]                              | Ac<br>Isotope                                | ctivity<br>Net ±<br>on Re:<br>[ | Concentration<br>1σ Overall<br>ference Date<br>μCi/g ]        | Mini<br>Conc<br>on I<br>CALCULA             | imum Detectable<br>centration (A)<br>Reference Date<br>ATED REQUIRED<br>[ μCi/g ] | Note(s) |

| ہ جب جے کہ جب جے کہ کہ جب جے کہ کہ جب ہے کہ کہ جب ہے کہ ایک جب کے خلی ہے کے بنی جے کے بنی ا |                            |             |                                            |                            | <del>کہ حک</del> میں جن جن دی میں جب جب میں چی جب ، |         |   |
|---------------------------------------------------------------------------------------------|----------------------------|-------------|--------------------------------------------|----------------------------|-----------------------------------------------------|---------|---|
| Gamma Scan<br>(continued)                                                                   | Eu-152<br>Eu-155<br>Eu-154 | [<br>[<br>[ | $8.5 \pm 2.0 \\ -5 \pm 21 \\ -1.2 \pm 4.4$ | ] E-07<br>] E-08<br>] E-07 | 6.5 E-07<br>8.7 E-07<br>2.1 E-06                    | 1.0E-06 | В |

(s):

- A Calculated MDCs are a-posteriori values.
- B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

M. Moreno

Celuly Rew

Banavali A. D.

| MAILED                     | DUKE ENGINEERING | AND SERVICES ENVIR | CONMENTAL LA | BORATORY    |
|----------------------------|------------------|--------------------|--------------|-------------|
| MAY 0 6 1998               | 10 CFF           | Part 50/61 Analysi | s Report     |             |
| DE&S<br>ENVIRONMENTAL LAB. |                  | Page 1 of 2        |              |             |
| Laboratory Sample Number   | r: X10408        |                    | Customer:    | GTS Duratek |

Laboratory sample Number:AlocoSample Submission Code:QZZc05D1298Media Type:ConcreteTotal Amt of Sample Sent:129.4 gSample Sent:129.4 gCount Date:May 2, 1998Report Date:May 5, 1998

Sample Description:

A9901/02MC3/00004

| Aliquot<br>Weight<br>Analysis Processed<br>Requested [g] |          | Isotope                                                                                                                                                                                        | Activity Concentration<br>Net ± 1σ Overall<br>on Reference Date<br>[ µCi/g ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Minimum Detectable<br>Concentration (A)<br>on Reference Date<br>CALCULATED REQUIRED<br>[ $\mu$ Ci/g ] Note(s)                                                                                                                                                                                                            |
|----------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gamma Scan                                               | 129.4000 | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103<br>Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141 | $\begin{bmatrix} -1.5 \pm 1.4 \\ 1.22 \pm 0.98 \\ 0.98 \end{bmatrix} E-07$ $\begin{bmatrix} 1.3 \pm 3.7 \\ 2.23 \pm 0.90 \\ 0.0 \pm 3.8 \\ 0.83 \end{bmatrix} E-07$ $\begin{bmatrix} 0.0 \pm 3.8 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.83 \\ 0.96 \\ 0.96 \\ 0.97 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0$ | $\begin{array}{c} 6.1 \ E-06 \\ 4.0 \ E-07 \\ 1.5 \ E-06 \\ 3.0 \ E-07 \\ 1.6 \ E-06 \\ 5.4 \ E-08 \\ 8 \\ 2.0 \ E-06 \\ 3.9 \ E-07 \\ 1.2 \ E-06 \\ 9.1 \ E-07 \\ 4.1 \ E-07 \\ 3.8 \ E-06 \\ 2.8 \ E-07 \\ 6.0 \ E-07 \\ 2.1 \ E-07 \\ 8.8 \ E-07 \\ 6.6 \ E-07 \\ 2.7 \ E-07 \\ 3.4 \ E-06 \\ 5.6 \ E-07 \end{array}$ |

Note(s):

A - Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Reviewed by

Moreno

A. D. Banavali

| MAIL<br>                                   | ED <sub>DU</sub><br>998                                       | KE ENGINEERI                                 | NG AND SERVICES ENVIRONMENTAL LABORATORY                                                                                                                      |       |
|--------------------------------------------|---------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| DE&S                                       | TAL LAB.                                                      |                                              | Page 2 of 2                                                                                                                                                   |       |
| Laboratory S<br>Sample Sub<br>Total Amt of | ample Number:<br>mission Code:<br>Media Type:<br>Sample Sent: | X10408<br>QZZc05D1298<br>Concrete<br>129.4 g | Customer: GTS Duratek<br>Sample Reference Date: March 27, 1998<br>Date Sample Received: April 27, 1998<br>Count Date: May 2, 1998<br>Report Date: May 5, 1998 |       |
|                                            | ٤                                                             | ample Descri                                 | ption: A9901/02MC3/00004                                                                                                                                      | +     |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[g]                         | Isotope                                      | Minimum DetectableActivity ConcentrationConcentration (A)Net $\pm$ 1 $\sigma$ Overallon Reference Dateon Reference DateCALCULATED[ $\mu$ Ci/g ][ $\mu$ Ci/g ] | :e(s) |
| Gamma Scan<br>(continued)                  |                                                               | Eu-152<br>Eu-155<br>Eu-154                   | [ 6.3 ± 1.3 ] E-07 3.9 E-07 1.0E-06 E<br>[ 1.9 ± 1.7 ] E-07 6.4 E-07<br>[ 4.4 ± 2.8 ] E-07 1.1 E-06                                                           | 3     |

™~\* (8):

A Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Moreno Е.

Α.

## MAILED

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1998

DE&S

ENVIRONMENTAL LAB.

ہے کا جہ ان کا ان کا دی بنیا ہے جا کہ ان کا جا ہے جا کا ہے اور ان کا 10 CFR Part 50/61 Analysis Report سر جو دو به هد به به من ها مر بو مر به من مر بو من به مر بو مر بو مر \_\_\_\_\_

### Page 1 of 2

| Isborstory Sample Number: | x10409             | Customer:              | GTS Duratek    |
|---------------------------|--------------------|------------------------|----------------|
| Sample Submission Code:   | OZZc05E1298        | Sample Reference Date: | March 27, 1998 |
| Media Type:               | Concrete           | Date Sample Received:  | April 27, 1998 |
| Total Amt of Sample Sent: | mple Sent: 123.6 g | Count Date:            | April 30, 1998 |
| Total And of Dampie Sent  |                    | Report Date:           | May 4, 1998    |

Sample Description: A9901/02MC3/00005

| Analysis<br>Requested | Aliquot<br>Weight<br>Processed<br>[g] | Isotope                                                                                                                                              | Activity Concentration<br>Net $\pm$ 1 $\sigma$ Overall<br>on Reference Date<br>[ $\mu$ Ci/g ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Minimum Detectable<br>Concentration (A)<br>on Reference Date<br>CALCULATED REQUIRED<br>[ µCi/g ] Note(s)                                                                                                                       |
|-----------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gamma Scan            | 123.6000                              | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103<br>Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125 | $\begin{bmatrix} 6.2 \pm 8.1 \\ 9.3 \pm 8.0 \end{bmatrix} E-07 \\ \begin{bmatrix} 9.3 \pm 8.0 \\ -3.4 \pm 2.9 \end{bmatrix} E-07 \\ \begin{bmatrix} 8.2 \pm 8.6 \\ -1.5 \pm 2.8 \end{bmatrix} E-07 \\ \begin{bmatrix} 4.44 \pm 0.76 \\ -1.2 \pm 2.3 \end{bmatrix} E-07 \\ \begin{bmatrix} -1.2 \pm 2.3 \\ -1.2 \pm 2.3 \end{bmatrix} E-07 \\ \begin{bmatrix} -2.7 \pm 6.6 \\ -1.2 \pm 2.9 \end{bmatrix} E-07 \\ \begin{bmatrix} -6 \pm 13 \\ -6 \pm 13 \end{bmatrix} E-08 \\ \begin{bmatrix} -6 \pm 13 \\ -6 \pm 11 \end{bmatrix} E-08 \\ \begin{bmatrix} -6 \pm 11 \\ -6 \pm 11 \end{bmatrix} E-08 \\ \begin{bmatrix} 3.6 \pm 6.3 \\ -6 \pm 3 \end{bmatrix} E-07 \\ \begin{bmatrix} 8 \pm 34 \\ -6 \end{bmatrix} E-07 \\ \begin{bmatrix} 8 \pm 34 \\ -6 \end{bmatrix} E-07 \\ \begin{bmatrix} 1.39 \pm 0.80 \\ -6 \end{bmatrix} E-07 \\ \begin{bmatrix} 1.39 \pm 0.91 \\ -6 \end{bmatrix} E-07 \\ \end{bmatrix}$ | 3.3 $E-06$<br>3.3 $E-07$<br>1.2 $E-06$<br>3.6 $E-07$<br>1.3 $E-06$<br>2.6 $E-07$ B<br>1.0 $E-06$<br>2.9 $E-07$<br>1.3 $E-06$<br>5.7 $E-07$<br>4.9 $E-07$<br>2.6 $E-06$<br>1.5 $E-07$<br>3.2 $E-07$<br>1.3 $E-07$<br>3.4 $E-07$ |
|                       | ·                                     | Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141<br>Ce-144                                                                                                     | $\begin{bmatrix} 7.9 \pm 8.1 \\ -2.8 \pm 7.8 \end{bmatrix} E-08 \\ \begin{bmatrix} -2.8 \pm 7.8 \\ -2.8 \pm 7.8 \end{bmatrix} E-08 \\ \begin{bmatrix} 7 \pm 40 \\ -08 \\ 2 \pm 13 \end{bmatrix} E-08 \\ \begin{bmatrix} 4 \pm 27 \\ -08 \end{bmatrix} E-08$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3 E-07<br>3.4 E-07<br>1.9 E-06<br>5.1 E-07<br>1.1 E-06                                                                                                                                                                       |

Note(s):

A - Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Moreno

Banavali Α.

|                                                                                                                                                                               | NLED<br>0 6 1998<br>DE&S<br>MENTAL LAB | KE ENGINEER:<br><br>10 (   | ING AND SERVICES ENVIRONMENTAL LABORATORY<br>CFR Part 50/61 Analysis Report<br>Page 2 of 2                                                                              |   |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|
| Laboratory Sample Number: X10409<br>Sample Submission Code: QZZc05E1298<br>Media Type: Concrete<br>Total Amt of Sample Sent: 123.6 g<br>Sample Description: A9901/02MC3/00005 |                                        |                            |                                                                                                                                                                         |   |  |  |
| Analysis<br>Requested                                                                                                                                                         | Aliquot<br>Weight<br>Processed<br>[g]  | Isotope                    | Minimum Detectable<br>Activity Concentration Concentration (A)<br>Net ± 1g Overall on Reference Date<br>on Reference Date CALCULATED REQUIRED<br>[ µCi/g ] [ µCi/g ] No |   |  |  |
| Gamma Scan<br>(continued)                                                                                                                                                     |                                        | Eu-152<br>Eu-155<br>Eu-154 | [ 6.0 ± 1.3 ] E-07 4.1 E-07 1.0E-06<br>[ 3.2 ± 1.3 ] E-07 4.8 E-07<br>[ 2.5 ± 2.7 ] E-07 1.1 E-06                                                                       | B |  |  |

s):

A - Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

6 WILL DEMO 98

E. M. Moreno

A. D. Banavali

| MA                                         |                                                                 | JKE ENGINEEF                                                                                                                                                                                             | ING AND                                                                                                                                  | SERVICES                                                                                                                                                                                                                                                                                                    | ENVIRONME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NTAL LA                                                                                                                                                                 | BORATORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
|--------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| MAY I                                      | 0 6 1998                                                        | 10                                                                                                                                                                                                       | CFR Part                                                                                                                                 | 50/61 An                                                                                                                                                                                                                                                                                                    | alysis Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eport                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
|                                            | E&S<br>IENTAL LAB.                                              |                                                                                                                                                                                                          | 2                                                                                                                                        |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| Laboratory S<br>Sample Sub<br>Total Amt of | Sample Number:<br>omission Code:<br>Media Type:<br>Sample Sent: | X10410<br>QZZc05F129<br>Concrete<br>125.7 g                                                                                                                                                              | 98                                                                                                                                       | Sample<br>Date S                                                                                                                                                                                                                                                                                            | Cua<br>Reference<br>ample Rec<br>Count<br>Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | stomer:<br>Date:<br>ceived:<br>Date:<br>Date:                                                                                                                           | GTS Duratek<br>March 27, 1998<br>April 27, 1998<br>April 30, 1998<br>May 4, 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
|                                            | :                                                               | Sample Descr                                                                                                                                                                                             | iption:                                                                                                                                  | A990                                                                                                                                                                                                                                                                                                        | 01/02MC3/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00006                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[9]                           | Isotope                                                                                                                                                                                                  | Activit<br>Net<br>on R                                                                                                                   | y Concent<br>± 1σ Ου<br>eference<br>[ μCi/g ]                                                                                                                                                                                                                                                               | ration<br>verall<br>Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Min<br>Con<br>on<br>CALCUL                                                                                                                                              | imum Detectable<br>centration (A)<br>Reference Date<br>ATED REQUIREN<br>[ μCi/g ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )<br>Note(s) |
| Gamma Scan                                 | 125.7000                                                        | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103<br>Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141<br>Ce-144 | $\begin{bmatrix} 5.\\ 1.1\\ 3.\\ 1.2\\ 2.\\ 2.8\\ -5.\\ 2.8\\ -5.\\ 2.\\ -5.\\ -1.\\ -1.\\ -1.\\ 1.8\\ -2.\\ 1.4\\ -1.\\ -4.\\ -1.\\ 2.$ | $9 \pm 8.5$<br>$8 \pm 0.47$<br>$0 \pm 2.7$<br>$8 \pm 0.69$<br>$3 \pm 2.0$<br>$3 \pm 0.70$<br>$4 \pm 3.3$<br>$8 \pm 5.5$<br>$2 \pm 23$<br>$8 \pm 7.2$<br>$5 \pm 5.9$<br>$3 \pm 5.4$<br>$1 \pm 1.3$<br>$5 \pm 0.93$<br>$5 \pm 1.8$<br>$8 \pm 0.60$<br>$1 \pm 5.2$<br>$6 \pm 5.3$<br>$4 \pm 13$<br>$1 \pm 2.7$ | $\begin{array}{c} E-07\\ E-07\\ E-07\\ E-07\\ E-07\\ E-07\\ E-07\\ E-08\\ E-08\\ E-08\\ E-08\\ E-08\\ E-08\\ E-08\\ E-08\\ E-07\\ E-08\\ E-07\\ E-07\\ E-07\\ E-07\\ E-07\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\ E-08\\ E-07\\ E-08\\  | 3.4 E<br>1.6 E<br>1.0 E<br>2.6 E<br>8.5 E<br>4.0 E<br>1.5 F<br>2.3 F<br>4.2 F<br>3.0 F<br>2.3 F<br>2.3 F<br>2.1 F<br>2.3 F<br>2.1 F<br>2.3 F<br>2.1 F<br>2.6 F<br>1.1 F | E-06<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-06<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C-07<br>C | В            |

Note(s):

A - Calculated MDCs are a-posteriori values. B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Reviewed by

E. M. Moreno

Ellepen

A. D. Banavali

| MA                                                    | AILED                                                                                | DUKE ENGINE                                                             | ERING AND S                                                                                                                    | ERVICES                            | ENVIRONM                       | ENTAL LABORATO                                              | RY                                                                               |         |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------|---------|--|
| U MAY                                                 | Y 0 6 1998                                                                           |                                                                         | ) CFR Part                                                                                                                     | 50/61 A                            | nalysis Re                     | eport                                                       |                                                                                  |         |  |
| ENVIRON<br>Laboratory S<br>Sample Sul<br>Total Amt of | DE&S<br>IMENTAL LAE<br>Sample Number<br>bmission Code<br>Media Type<br>f Sample Sent | 3.<br>: X10410<br>: QZZC05F12<br>: Concrete<br>: 125.7 g<br>Sample Desc | Page 2 of 2<br>Customer:<br>298 Sample Reference Date:<br>Date Sample Received:<br>Count Date:<br>Report Date:<br>Report Date: |                                    |                                |                                                             | GTS Duratek<br>March 27, 1998<br>April 27, 1998<br>April 30, 1998<br>May 4, 1998 |         |  |
| Analysis<br>Requested                                 | Aliquot<br>Weight<br>Processed<br>[g]                                                | Isotope                                                                 | Activity<br>Net ±<br>on Re<br>[                                                                                                | Concen<br>10 C<br>ference<br>µCi/g | tration<br>verall<br>Date<br>] | Minimum D<br>Concentra<br>on Refere<br>CALCULATED<br>[ µCi/ | etectable<br>tion (A)<br>nce Date<br>REQUIRED<br>g ]                             | Note(s) |  |
| Samma Scan<br>(continued)                             |                                                                                      | Eu-152<br>Eu-155<br>Eu-154                                              | [ 6.7<br>[ 2.7<br>[ 2.2                                                                                                        | ± 1.4<br>± 1.3<br>± 1.7            | ] E-07<br>] E-07<br>] E-07     | 4.6 E-07<br>4.6 E-07<br>6.9 E-07                            | 1.0E-06                                                                          | В       |  |

3):

A - Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

(O ||

E ( Moreno

MULDEN fn

A. D. Banavali



### **CHARACTERIZATION SUMMARY A9902**

SURVEY PACKAGE NUMBER: A9902

#### PACKAGE DESCRIPTION

Core Sampling from the Containment Building Bioshield

### SURVEY AREA DESCRIPTION

Selected locations for concrete core sampling from the Containment Building Bioshield and metal scraping samples from the Containment Cavity

#### GENERAL HISTORICAL INFORMATION (Operational History)

Concrete core samples were taken from two locations within the affected area from the Containment Building Bioshield. Locations included one core from the -2' to 18' elevations of the Containment Building Bioshield and one core from the -37' elevation of the Containment Building Bioshield.

Three samples consisting of metal scrapings were taken from the Containment Cavity.

The core locations for the bioshield were recommended by DESI. The core locations were requested/designated by the DOCs via memo to Peter Melhorn with CIANBRO.

### SUMMARY OF CHARACTERIZATION ACTIVITIES

A 3 inch diameter core was obtained from each location using a concrete core drill. Each core was approximately 3 inches long. The core cutting and slicing operation was performed by CIANBRO. Core samples were taken to the hot machine shop for slicing into nominal ½" sections. Slicing of the concrete cores was performed using a diamond tipped band saw. The slice thickness was recorded. All cutting was done under the direct supervision of a GTS Duratek survey technician. The metal scraping samples collected from the Containment Cavity were placed in a petri dish and sealed.

All samples were controlled by chain-of-custody and were sent to Duke Engineering and Services Environmental Laboratory (DE&S) for analysis. Each core sample slice was analyzed for all gamma emitting fission and activation nuclides to reach a MDA of 1 pCi/gram of Eu-152 by gamma spectroscopy.

Each metal scraping sample was analyzed for all gamma emitting fission and activation nuclides by gamma spectroscopy to reach a MDA of 0.1 pCi/gram of Co-60. After the gamma spectrum analysis, the sample was prepared and analyzed for Fe-55 by liquid scintillation counting to reach a MDA of 0.1 µCi/gram of Fe-55.

The concrete core slice samples with chain-of-custody were returned to Maine Yankee following the analysis. The metal scraping samples were consumed by the sample preparation process and were not be returned to Maine Yankee following the analysis.

#### CHARACTERIZATION SURVEY RESULTS

The data are presented for each core location in tables and graphs showing the depth profile obtained for Eu-152. The individual core slice sample analysis result reports from DE&S are included as an attachment.

o The core sample A9902 01MC1, slices 00002 to 00006 analysis results indicated plant-derived radionuclide activity above MDA. The analysis of the samples indicated the presence of Ag-110m, BaLa-140, Co-60, Eu-154 and Sb-124.



### **CHARACTERIZATION SUMMARY A9902**

o The core sample A9902 02MC1 slices 00001 to 00006 analysis results indicated plant-derived radionuclide activity above MDA. The analysis of the samples indicated the presence of Co-60, Cs-134, Eu-152 and Eu-154.

The data are presented for each metal scraping location in tables showing the individual sample concentration obtained for Fe-55. The individual metal scraping sample analysis result reports from DE&S are included as an attachment.

o The metal scraping sample A9902 03WE1, sample 00001 analysis result indicated plant-derived radionuclide activity above MDA. The analysis of the sample indicated the presence of Fe-55, Co-60, Cs-134, Cs-137 and Sb-124.

o The metal scraping sample A9902 03WE1, sample 00002 analysis result indicated plant-derived radionuclide activity above MDA. The analysis of the sample indicated the presence of Co-60 and Cs-137.

o The metal scraping sample A9902 03WE1, sample 00003 analysis result indicated plant-derived radionuclide activity above MDA. The analysis of the sample indicated the presence of Co-60.



### **CHARACTERIZATION SUMMARY A9902**

Survey Unit: 01 Surface: MC1 2' to 18' Containment Building

| Core S | Core Sample from Bioshield Wall (12" - Azimuth 174) |       |                   |                    |                 |                                       |               |                    |                                         |  |  |
|--------|-----------------------------------------------------|-------|-------------------|--------------------|-----------------|---------------------------------------|---------------|--------------------|-----------------------------------------|--|--|
| L1     | L2                                                  | L8    | Weight<br>(grams) | Eu-152<br>pCi/gram | MDC<br>pCi/gram | Other Nuclides<br>Present             | Comments      | Slice<br>Thickness | Average Depth into Concrete<br>(inches) |  |  |
| A9902  | 01MC1                                               | 00001 | 123.1             | 0.13               | 0.47            |                                       | Top of Core   | 0.5"               | 0.25                                    |  |  |
| A9902  | 01MC1                                               | 00002 | 112.4             | 0.68*              | 0.68            | BaLa-140, Eu-154                      | After 1st cut | 0.5"               | 0.75                                    |  |  |
| A9902  | 01MC1                                               | 00003 | 106.2             | 0.36               | 0.76            | Ag-110M                               | After 2nd cut | 0.5"               | 1.25                                    |  |  |
| A9902  | 01MC1                                               | 00004 | 129.1             | 0.19               | 0.42            |                                       | After 3rd cut | 0.5"               | 1.75                                    |  |  |
| A9902  | 01MC1                                               | 00005 | 103.3             | 0.01               | 0.07            | Sb-124                                | After 4th cut | 0.5"               | 2.25                                    |  |  |
| A9902  | 01MC1                                               | 00006 | 114.3             | 0.10               | 0.39            | Co-60,Sb-124,<br>BaLa-140             | After 5th cut | 0.5"               | 2.75                                    |  |  |
|        | L                                                   | L     |                   | <u></u>            | 1               | · · · · · · · · · · · · · · · · · · · |               | Co                 | re thickness_3.0"                       |  |  |

\*Actual Concentration is less than MDC





### **CHARACTERIZATION SUMMARY A9902**

Survey Unit: 02 Surface: MC1 37' Containment Building

| Core S | ample | from f       | loor of l         | CI Sump a          | area            |                           |               |                    |                                         |
|--------|-------|--------------|-------------------|--------------------|-----------------|---------------------------|---------------|--------------------|-----------------------------------------|
| L1     | L2    | L8           | Weight<br>(grams) | Eu-152<br>pCi/gram | MDC<br>pCi/gram | Other Nuclides<br>Present | Comments      | Slice<br>Thickness | Average Depth into Concrete<br>(inches) |
| A9902  | 02MC1 | 00001        | 114.9             | 384.00             | 15              | Co-60, Cs-134, Eu-154     | Top of Core   | 0.5"               | 0.25                                    |
| A9902  | 02MC1 | 00002        | 110.2             | 570.00             | 20              | Co-60, Cs-134, Eu-154     | After 1st cut | 0.5"               | 0.75                                    |
| A9902  | 02MC1 | 00003        | 104.4             | 623.00             | 27              | Co-60, Cs-134, Eu-154     | After 2nd cut | 0.5"               | 1.25                                    |
| A9902  | 02MC1 | 00004        | 110.1             | 700.00             | 20              | Co-60, Cs-134, Eu-154     | After 3rd cut | 0.5"               | 1.75                                    |
| A9902  | 02MC1 | 00005        | 112.8             | 598.00             | 15              | Co-60, Cs-134, Eu-154     | After 4th cut | 0.5"               | 2.25                                    |
| A9902  | 02MC1 | 00006        | 108.7             | 580.00             | 13              | Co-60, Cs-134, Eu-154     | After 5th cut | 0.5"               | 2.75                                    |
|        | L     | г <u>,</u> , | £                 | L                  |                 | •                         |               | Core th            | iickness 3.0"                           |





## CHARACTERIZATION SUMMARY A9902

| Survey Unit: 03 Surface WE1<br>Containment Cavity |        |        |                   |                   |                 |                               |  |  |  |  |
|---------------------------------------------------|--------|--------|-------------------|-------------------|-----------------|-------------------------------|--|--|--|--|
| Contai                                            | inment | Cavity | Metal S           | crapings          |                 |                               |  |  |  |  |
| L1                                                | L2     | L8     | Weight<br>(grams) | Fe-55<br>µCi/gram | MDC<br>µCi/gram | Other Nuclides<br>Present     |  |  |  |  |
| A9902                                             | 03WE1  | 00001  | 10.31             | 0.006             | 0.0049          | Co-60, Cs-134, Cs-137, Sb-124 |  |  |  |  |
| A9902                                             | 03WE1  | 00002  | 12.01             | 0.0056            | 0.013           | Co-60, Cs-137                 |  |  |  |  |
| A9902                                             | 03WE1  | 00003  | 2.47              | -0.013            | 0.044           | Co-60                         |  |  |  |  |

Radiological Engineering & Field Services



Maine Yankee Atomic Power Plant Site Characterization

## CHARACTERIZATION SUMMARY A9902

## ATTACHMENTS

## MAILED

MAY 0 6 1998

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

10 CFR Part 50/61 Analysis Report 

Page 1 of 2

DE&S LENSYARGEN MENNIA MUMBBE: X10382 Sample Submission Code: QZZc01A1298 Media Type: Concrete Total Amt of Sample Sent: 123.1 g

Customer: GTS Duratek Sample Reference Date: March 27, 1998 Date Sample Received: April 27, 1998 Count Date: April 30, 1998 Report Date: May 4, 1998

Sample Description: A9902/01MC1/00001

| Analysis<br>Requested | Aliquot<br>Weight<br>Processed<br>[g] | Isotope                                                                                                                                                                  | Activity Concentration<br>Net ± 1σ Overall<br>on Reference Date<br>[ μCi/g ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Minimum Detectable<br>Concentration (A)<br>on Reference Date<br>CALCULATED REQUIRED<br>[ µCi/g ] Note(s)                                                                                                                                                 |
|-----------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gamma Scan            | 123.1000                              | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103<br>Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137 | $\begin{bmatrix} -4 \pm 11 \\ -6 \pm 81 \end{bmatrix} = -07$ $\begin{bmatrix} -6 \pm 81 \\ 2.7 \pm 3.4 \end{bmatrix} = -07$ $\begin{bmatrix} -1.1 \pm 1.3 \\ -4.4 \pm 3.9 \end{bmatrix} = -07$ $\begin{bmatrix} -4.4 \pm 3.9 \\ 2.4 \pm 1.0 \end{bmatrix} = -07$ $\begin{bmatrix} -8 \pm 35 \\ 2.4 \pm 1.0 \end{bmatrix} = -07$ $\begin{bmatrix} -8 \pm 35 \\ 2.4 \pm 1.0 \end{bmatrix} = -07$ $\begin{bmatrix} -8 \pm 35 \\ 2.4 \pm 1.0 \end{bmatrix} = -07$ $\begin{bmatrix} -8 \pm 35 \\ 2.4 \pm 1.0 \end{bmatrix} = -07$ $\begin{bmatrix} -8 \pm 35 \\ 2.4 \pm 1.0 \end{bmatrix} = -07$ $\begin{bmatrix} -3.5 \pm 3.0 \\ 2.4 \pm 1.0 \end{bmatrix} = -07$ $\begin{bmatrix} 0.0 \pm 1.6 \\ 2.0 \pm 9.8 \end{bmatrix} = -08$ $\begin{bmatrix} -3.5 \pm 3.0 \\ 2.0 \pm 9.8 \end{bmatrix} = -08$ $\begin{bmatrix} 4.4 \pm 6.0 \\ 2.07 \end{bmatrix} = -07$ $\begin{bmatrix} 5.4 \pm 5.2 \\ 2.8 \pm 2.8 \end{bmatrix} = -07$ $\begin{bmatrix} -2.8 \pm 2.8 \\ 2.8 \end{bmatrix} = -07$ $\begin{bmatrix} -2.8 \pm 2.8 \\ 2.8 \end{bmatrix} = -08$ $\begin{bmatrix} -8 \pm 11 \\ 2.074 \end{bmatrix} = -08$ | 4.8 $E-06$<br>3.7 $E-07$<br>1.3 $E-06$<br>6.1 $E-07$<br>1.8 $E-06$<br>3.7 $E-07$<br>1.5 $E-06$<br>2.6 $E-07$<br>1.4 $E-06$<br>6.7 $E-07$<br>4.2 $E-07$<br>2.5 $E-06$<br>2.1 $E-07$<br>6.2 $E-07$<br>1.5 $E-06$<br>7.5 $E-07$<br>5.1 $E-07$<br>2.6 $E-07$ |
|                       |                                       | BaLa-140<br>Ce-141<br>Ce-144                                                                                                                                             | $\begin{bmatrix} -6.4 \pm 7.4 \\ 1.4 \pm 1.4 \end{bmatrix} E-07$ $\begin{bmatrix} 1.4 \pm 1.4 \\ -3.5 \pm 3.4 \end{bmatrix} E-07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.6 E-06<br>5.6 E-07<br>1.4 E-06                                                                                                                                                                                                                         |

Note(s):

A - Calculated MDCs are a-posteriori values.

Reviewed by

Moreno

Banavali

| MA                                      | AILED »                                                                         | UKE ENGINEEF                                | RING AND S                      | ERVICES                            | ENVIRONM                                          | ENTAL LA                                      | BORATORY                                                                         |                                         |         |
|-----------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------|---------------------------------|------------------------------------|---------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------|---------|
| MA                                      | Y 0 6 <b>1998</b>                                                               | 10                                          | CFR Part                        | 50/61 A                            | eport                                             |                                               |                                                                                  |                                         |         |
|                                         | DE&S                                                                            |                                             | P                               | age 2 o                            | f 2                                               |                                               |                                                                                  |                                         |         |
| Laboratory<br>Sample Sul<br>Total Amt o | MMENIALIAB<br>Sample Number:<br>bmission Code:<br>Media Type:<br>f Sample Sent: | X10382<br>QZZc01A129<br>Concrete<br>123.1 g | 98                              | Sample<br>Date                     | Cus<br>Reference<br>Sample Rec<br>Count<br>Report | stomer:<br>Date:<br>ceived:<br>Date:<br>Date: | GTS Duratek<br>March 27, 1998<br>April 27, 1998<br>April 30, 1998<br>May 4, 1998 |                                         |         |
|                                         |                                                                                 | Sample Descr                                |                                 | A99                                |                                                   |                                               |                                                                                  |                                         |         |
| Analysis<br>Requested                   | Aliquot<br>Weight<br>Processed<br>[g]                                           | Isotope                                     | Activity<br>Net ±<br>on Re<br>[ | Concen<br>1σ O<br>ference<br>μCi/g | tration<br>verall<br>Date<br>]                    | Min<br>Con<br>on<br>CALCUL                    | imum Dete<br>centratic<br>Reference<br>ATED<br>[ µCi/g ]                         | ectable<br>on (A)<br>e Date<br>REQUIRED | Note(s) |
| Gamma Scan<br>(continued)               |                                                                                 | Eu-152<br>Eu-155<br>Eu-154                  | [ 1.3<br>[ 1.2<br>[ -2.5        | ± 1.2<br>± 1.4<br>± 3.4            | ] E-07<br>] E-07<br>] E-07<br>] E-07              | 4.7 E<br>5.5 E<br>1.6 E                       | <br>-07<br>-07<br>-06                                                            | 1.0E-06                                 |         |

:(s):

A - Calculated MDCs are a-posteriori values.

PHILLAND 5/4/48 E. M. Moreno

Cullpano n А. Banavali

## MALED DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

\_\_\_\_\_

MAY 0 6 1998 10 CFR Part 50/61 Analysis Report \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* DE&S Page 1 of 2 ENVIRONMENTAL LAB. Laboratory Sample Number: X10383 Customer: GTS Duratek Sample Reference Date: March 27, 1998 Date Sample Received: April 27, 1998 Count Date: May 5, 1998 Report Date: May 5, 1998 Sample Submission Code: QZZcO1B1298 Media Type: Concrete Total Amt of Sample Sent: 112.4 g Sample Description: A9902/01MC1/00002 Minimum Detectable Activity Concentration Net ± 1 o Overall on Reference Date On Reference Date CALCULATED REQUIRED Aliquot Weight Processed Analysis [g] Isotope Requested [ µCi/g ] [ µCi/g ] Note(s) Cr-51 [ 7 ± 15 ] E-07 6.1 E-06 1 ± 13 ] E-08 5.8 E-07 Gamma Scan 112.4000 Mn-54 [  $\begin{bmatrix} -7.4 \pm 4.5 \\ -1.7 \pm 2.1 \end{bmatrix} = -07 = 2.0 = -06$  $\begin{bmatrix} -1.7 \pm 2.1 \\ 3 \pm 38 \end{bmatrix} = -08 = 1.8 = -06$  $\begin{bmatrix} -3 \pm 30 \\ -3 \pm 30 \end{bmatrix} = -08 = 1.4 = -06$ Co-57 Co-58 Fe-59 Co-60  $\begin{bmatrix} -3 \pm 30 & 1 \end{bmatrix} = -07 \quad 1.2 = -06 \\ \begin{bmatrix} -2 \pm 14 & 1 \end{bmatrix} = -08 \quad 6.2 = -07 \\ \hline 1 = -08 \quad 1 = 0 = 06 \end{bmatrix}$ Zn-65  $\begin{bmatrix} -2 \pm 14 \\ -3.6 \pm 3.8 \end{bmatrix} = -07$   $\begin{bmatrix} -2.4 \pm 2.5 \\ 5 \pm 22 \end{bmatrix} = -08$ Nb-94 Zr-95 1.9 E-06 Nb-95 1.2 E-06 Ru-103 9.4 E-07 4.0 E-06  $\begin{bmatrix} 5 \pm 22 \\ -3.6 \pm 8.4 \end{bmatrix} = -08$ Ru-106 [ -6.4 ± 9.4 ] E-08 Ag-108m 4.3 E-07 1.6 ± 1.5 ] E-07 6.4 E-07 Ag-110m [ Sb-124 9.5 ± 3.6 ] E-07 3.7 E-07 [ Sb-125 5.7 ± 2.0 ] E-07 6.1 E-07 E Cs-134 [ -1.7 ± 1.4 ] E-07 6.7 E-07 Cs-137 -2.4 ± 1.6 ] E-07 7.5 E-07 [ 9.0 ± 5.2 ] E-07 8.2 E-07 -3 ± 22 ] E-08 9.1 E-07 4.9 ± 3.7 ] E-07 1.4 E-06 BaLa-140 [ Ce-141 [ Ce-144

Note(s):

A - Calculated MDCs are a-posteriori values.

Reviewed by

ſ

Banavali

| MA                                                    | AILED <sup>D</sup>                                                             | KE ENGINEEF                                 | RING AND S                 | SERVICES                                      | ENVIRONME                                         | NTAL LAP                                    | BORATORY                                                               |                              |         |
|-------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------|----------------------------|-----------------------------------------------|---------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------|------------------------------|---------|
| MAY                                                   | 0 6 1998                                                                       | 10                                          | CFR Part                   | 50/61 Ar                                      | alysis Re                                         | port                                        |                                                                        |                              |         |
|                                                       | DE&S                                                                           |                                             | I                          | Page 2 of                                     | 5 2                                               |                                             |                                                                        |                              |         |
| ENVIRON<br>Laboratory S<br>Sample Sub<br>Total Amt of | MENTALLAB.<br>Sample Number:<br>Denission Code:<br>Media Type:<br>Sample Sent: | X10383<br>QZZc01B129<br>Concrete<br>112.4 g | 98                         | Sample<br>Date S                              | Cus<br>Reference<br>Sample Rec<br>Count<br>Report | tomer:<br>Date:<br>eived:<br>Date:<br>Date: | GTS Durate<br>March 27, 1<br>April 27, 1<br>May 5, 1998<br>May 5, 1998 | k<br>1998<br>1998<br>8<br>8  |         |
|                                                       | S                                                                              | ample Descr                                 | iption:                    | A990                                          | 02/01MC1/0                                        | 0002                                        |                                                                        |                              |         |
| Analysis<br>Requested                                 | Aliquot<br>Weight<br>Processed<br>[g]                                          | Isotope                                     | Activity<br>Net d<br>on Re | y Concent<br>t 1σ Οτ<br>eference<br>[ μCi/g ] | ration<br>verall<br>Date                          | Mini<br>Cond<br>on I<br>CALCULI             | imum Detect<br>centration<br>Reference D<br>ATED REC<br>$\mu$ Ci/g ]   | able<br>(A)<br>ate<br>QUIRED | Note(s) |
| Gamma Scan<br>(continued)                             |                                                                                | Eu-152<br>Eu-155<br>Eu-154                  | [ -6<br>[ -2.0<br>[ 5.5    | $5 \pm 16$<br>$2 \pm 2.0$<br>$5 \pm 2.3$      | ] E-08<br>] E-07<br>] E-07                        | 6.8 E<br>8.8 E<br>2.5 E                     | -07 1.<br>-07<br>-07                                                   | 0E-06                        |         |

e(s):

A - Calculated MDCs are a-posteriori values.

CUILLAND 5/5/48 E. M. Moreno

A. D. Banavali

# MAILED DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

10 CFR Part 50/61 Analysis Report

Page 1 of 2

Laboratory Sample Aunder X10384 Sample Submission Code: QZZC01C1298 Media Type: Concrete Total Amt of Sample Sent: 106.2 g

MAY 0 6 1998

DE&S

Customer: GTS Duratek Sample Reference Date: March 27, 1998 Date Sample Received: April 27, 1998 Count Date: May 2, 1998 Report Date: May 5, 1998

Sample Description:

A9902/01MC1/00003

| Analysis<br>Requested | Aliquot<br>Weight<br>Processed<br>[g] | Isotope                                                                                                                                                                                                   | Act<br>Ne | ivity Concent<br>t ± 1σ Ov<br>on Reference<br>[ μCi/g ]                                                                                                                                                                                                                       | ration<br>erall<br>Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Minimum Det<br>Concentrati<br>on Referenc<br>CALCULATED<br>[ µCi/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cectable<br>ion (A)<br>ce Date<br>REQUIRED<br>] | Note(s) |
|-----------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|
| Gamma Scan            | 106.2000                              | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103<br>Ru-106<br>Ag-108m<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141 |           | $5 \pm 12$ $1.11 \pm 0.88$ $-1.7 \pm 4.6$ $7 \pm 14$ $-4.1 \pm 5.8$ $8 \pm 16$ $-1.6 \pm 3.6$ $0.0 \pm 1.3$ $-2 \pm 27$ $2.2 \pm 2.3$ $-2.3 \pm 1.7$ $-1 \pm 10$ $1.01 \pm 0.47$ $2.03 \pm 0.78$ $0 \pm 0$ $3.1 \pm 2.3$ $2.1 \pm 1.0$ $2 \pm 13$ $2.1 \pm 2.1$ $1.4 \pm 1.6$ | $\begin{array}{c} E = 07\\ E = 07\\ E = 07\\ E = 07\\ E = 08\\ E = 07\\  | 5.3 $E-06$<br>3.6 $E-07$<br>1.9 $E-06$<br>5.9 $E-07$<br>2.7 $E-06$<br>7.1 $E-07$<br>1.7 $E-06$<br>5.6 $E-07$<br>1.2 $E-06$<br>1.0 $E-06$<br>8.2 $E-07$<br>4.6 $E-06$<br>1.6 $E-07$<br>7.9 $E-08$<br>3.0 $E-07$<br>9.2 $E-07$<br>3.6 $E-07$<br>5.8 $E-07$<br>5.9 $E-06$ |                                                 |         |

Note(s):

A - Calculated MDCs are a-posteriori values.

Moreno

Banavali

| MA<br>MAY                                                   | ILED ▷0<br>0 6 1998                                                                   | VKE ENGINEER<br><br>10                                      | RING AND SERVICES ENVIRONMENTAL LABORATORY<br>CFR Part 50/61 Analysis Report                                                                                                                                                             |          |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| D<br>ENVIRONN<br>Laboratory S<br>Sample Sub<br>Total Amt of | E&S<br>MENTAL LAB.<br>Sample Number:<br>omission Code:<br>Media Type:<br>Sample Sent: | X10384<br>QZZc01C129<br>Concrete<br>106.2 g<br>Sample Descr | Page 2 of 2<br>Customer: GTS Duratek<br>Sample Reference Date: March 27, 1998<br>Date Sample Received: April 27, 1998<br>Count Date: May 2, 1998<br>Report Date: May 5, 1998<br>ription: A9902/01MC1/00003                               |          |
| Analysis<br>Requested                                       | Aliquot<br>Weight<br>Processed<br>[g]                                                 | Isotope                                                     | Minimum DetectableActivity ConcentrationConcentration (A)Net $\pm$ 1 $\sigma$ Overallon Reference Dateon Reference DateCALCULATEDREQUIRED[ $\mu$ Ci/g ][ $\mu$ Ci/g ]Note                                                                | <br>≥(s) |
| Gamma Scan<br>(continued)                                   |                                                                                       | Eu-155<br>Eu-152<br>Eu-154                                  | $\begin{bmatrix} 3.6 \pm 2.0 \\ 1.5 \pm 1.5 \end{bmatrix} E-07  7.6 E-07 \\ \begin{bmatrix} 1.5 \pm 1.5 \\ -5 \pm 46 \end{bmatrix} E-07  5.9 E-07  1.0E-06 \\ \begin{bmatrix} -5 \pm 46 \\ 1 \end{bmatrix} E-08  2.1 E-06 \end{bmatrix}$ |          |

∍(s):

A - Calculated MDCs are a-posteriori values.

E. M. Moreno

Clifforeno A. D. Banavali

## MAILED

MAY 0 6 1998

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

10 CFR Part 50/61 Analysis Report 

### Page 1 of 2

DE&S Total Amt of Sample Sent: 129.1 g

DE&S Customer: 010 Durace ample Submission Code: 02Zc01D1298 Sample Submission Code: 02Zc01D1298 Sample Submission Code: 02Zc01D1298 Date Sample Received: April 27, 1998 Count Date: April 30, 1998 Report Date: May 4, 1998

Sample Description:

A9902/01MC1/00004

| Analysis<br>Requested | Aliquot<br>Weight<br>Processed<br>[g] | Isotope                                                                                                                                                                                                             | Activity Concentration<br>Net $\pm 1\sigma$ Overall<br>on Reference Date<br>[ $\mu$ Ci/g ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Minimum Detectable<br>Concentration (A)<br>on Reference Date<br>CALCULATED REQUIRED<br>[ µCi/g ] Note(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gamma Scan            | 129.1000                              | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103<br>Ru-106<br>Ag-108m<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141<br>Ce-144 | $\begin{bmatrix} 8.2 \pm 8.3 \\ 3.8 \pm 7.0 \end{bmatrix} E-07$ $\begin{bmatrix} 3.8 \pm 7.0 \\ 1.0 \pm 3.0 \end{bmatrix} E-08$ $\begin{bmatrix} 1.0 \pm 3.0 \\ -2.3 \pm 1.4 \end{bmatrix} E-07$ $\begin{bmatrix} -2.3 \pm 1.4 \\ -2.7 \end{bmatrix} E-07$ $\begin{bmatrix} 1.2 \pm 1.1 \\ -1.0 \pm 0.38 \\ -1.7 \pm 0.38 \end{bmatrix} E-06$ $\begin{bmatrix} -1.1 \pm 5.5 \\ -1.7 \pm 0.7 \\ -2.0 \pm 1.5 \\ -3 \pm 10 \end{bmatrix} E-08$ $\begin{bmatrix} -1.7 \pm 2.7 \\ -3 \pm 10 \\ -3 \pm 10 \end{bmatrix} E-08$ $\begin{bmatrix} 2.3 \pm 6.2 \\ -3 \pm 10 \\ -3 \pm 11 \\ -3 \pm 11 \end{bmatrix} E-08$ $\begin{bmatrix} -3 \pm 11 \\ -3 \pm 11 \\ -3 \pm 11 \\ -3 \pm 11 \end{bmatrix} E-08$ $\begin{bmatrix} 1 \pm 12 \\ -3 \pm 11 \\ -3 \pm 0.8 \\ -3 \pm 11 \\ -3 \pm 0.8 \\ -3 \pm 11 \\ -3 \pm 0.8 \\ -5.4 \pm 5.4 \\ -6.8 \\ -6.3 \pm 6.0 \\ -6.3 \pm 6.0 \\ -6.3 \pm 6.0 \\ -6.3 \pm 6.0 \\ -6.3 \\ -6.3 \\ -6.3 \\ -6.3 \\ -6.7 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -7.2 \\ -$ | 3.3 $E-06$<br>3.0 $E-07$<br>1.2 $E-06$<br>6.4 $E-07$<br>7.3 $E-07$<br>4.4 $E-07$<br>1.8 $E-06$<br>2.5 $E-07$<br>1.2 $E-06$<br>6.1 $E-07$<br>4.4 $E-07$<br>2.6 $E-06$<br>1.6 $E-07$<br>5.1 $E-07$<br>5.1 $E-07$<br>5.3 $E-07$<br>5.1 $E-07$<br>5.3 $E-07$<br>5.1 $E-07$<br>5.3 $E-07$<br>5.3 $E-07$<br>5.3 $E-07$<br>5.1 $E-07$<br>5.2 $E-07$<br>5.3 $E-07$<br>5.3 $E-07$<br>5.4 $E-07$<br>5.5 $E-07$<br>5.6 $E-07$<br>5.6 $E-07$<br>5.7 $E-07$<br>5.6 $E-07$<br>5.6 $E-07$<br>5.7 |

Note(s):

A - Calculated MDCs are a-posteriori values.

Reviewed by

E. M. Moreno

|                                                                                                                                                 | LED DU<br>6 1998                             | KE ENGINEE<br><br>10       | RING<br>CFR                                                                                     | AND SI                  | ERVICES                            | ENVIRONM<br>nalysis R          | ENTAL LA<br><br>eport      | BORATORY                                                                                        |                                              |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------|-------------------------|------------------------------------|--------------------------------|----------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------|---------|
|                                                                                                                                                 | -85                                          |                            |                                                                                                 |                         |                                    |                                |                            |                                                                                                 |                                              |         |
| ENVIRONMENTAL LAB.<br>Laboratory Sample Number: X1038<br>Sample Submission Code: QZZCO<br>Media Type: Concre<br>Total Amt of Sample Sent: 129.1 |                                              |                            | Customer:<br>298 Sample Reference Date:<br>Date Sample Received:<br>Count Date:<br>Report Date: |                         |                                    |                                |                            | :: GTS Duratek<br>:: March 27, 1998<br>:: April 27, 1998<br>:: April 30, 1998<br>:: May 4, 1998 |                                              |         |
|                                                                                                                                                 | S                                            | ample Desc:                | ripti                                                                                           | .on:                    | A99                                | 02/01MC1/                      | 00004                      |                                                                                                 |                                              |         |
| Analysis<br>Requested                                                                                                                           | Aliquot<br>Weight<br>Processed<br>[g]        | Isotope                    | Act<br>Ne                                                                                       | ivity<br>et ±<br>on Ref | Concen<br>1ơ C<br>ference<br>µCi/g | tration<br>verall<br>Date<br>] | Min<br>Con<br>on<br>CALCUL | imum Det<br>centrati<br>Referenc<br>ATED<br>[ µCi/g                                             | ectable<br>on (A)<br>e Date<br>REQUIRED<br>] | Note(s) |
| Gamma Scan<br>(continued)                                                                                                                       | 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40 | Eu-152<br>Eu-155<br>Eu-154 | [<br>[<br>[                                                                                     | 1.9<br>1.2<br>-2.6      | ± 1.1<br>± 1.4<br>± 3.6            | ] E-07<br>] E-07<br>] E-07     | 4.2 E<br>5.3 E<br>1.7 E    | -07<br>-07<br>-06                                                                               | 1.0E-06                                      |         |

· ·(s):

A - Calculated MDCs are a-posteriori values.

E. M. Moren 4/18

Moreno

Banavali Α. `D.`

| MAI                                                                                                                                                     |                                       | JKE ENGINEER                                                                                                                                                                                             | RING AND                                                                                                      | SERVICES                                                                                                                                                                                                                                                              | ENVIRONME                                                                                                                                                                                                                                                                                                                                                                                    | ENTAL LAI                                                                                                                                                                                                   | BORATORY                                                                                                                                        |               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| MAY (                                                                                                                                                   | ) 6 1998                              | <br>10                                                                                                                                                                                                   | CFR Part                                                                                                      | 50/61 A                                                                                                                                                                                                                                                               | nalysis Re                                                                                                                                                                                                                                                                                                                                                                                   | eport                                                                                                                                                                                                       |                                                                                                                                                 |               |  |
| DE                                                                                                                                                      | E&S                                   |                                                                                                                                                                                                          |                                                                                                               | Page 1 of                                                                                                                                                                                                                                                             | £ 2                                                                                                                                                                                                                                                                                                                                                                                          | ir 80 iur ius uu                                                                                                                                                                                            |                                                                                                                                                 |               |  |
| ENVIRONMENTAL LAB.<br>Laboratory Sample Number: X10386<br>Sample Submission Code: QZZc01E1<br>Media Type: Concrete<br>Total Amt of Sample Sent: 103.3 g |                                       |                                                                                                                                                                                                          | €                                                                                                             | Sample<br>Date S                                                                                                                                                                                                                                                      | Cus<br>Reference<br>Sample Rec<br>Count<br>Report                                                                                                                                                                                                                                                                                                                                            | stomer:<br>Date:<br>ceived:<br>Date:<br>Date:                                                                                                                                                               | GTS Duratek<br>March 27, 1998<br>April 27, 1998<br>May 2, 1998<br>May 4, 1998                                                                   |               |  |
|                                                                                                                                                         | \$                                    | Sample Descr                                                                                                                                                                                             | ription:                                                                                                      | A99(                                                                                                                                                                                                                                                                  | 02/01MC1/0                                                                                                                                                                                                                                                                                                                                                                                   | 00005                                                                                                                                                                                                       |                                                                                                                                                 |               |  |
| Analysis<br>Requested                                                                                                                                   | Aliquot<br>Weight<br>Processed<br>[g] | Isotope                                                                                                                                                                                                  | Activit<br>Net<br>on R                                                                                        | y Concent<br>± 1σ Ο<br>eference<br>[ μCi/g                                                                                                                                                                                                                            | tration<br>verall<br>Date<br>]                                                                                                                                                                                                                                                                                                                                                               | Min<br>Con<br>on<br>CALCUL                                                                                                                                                                                  | imum Detectable<br>centration (A)<br>Reference Date<br>ATED REQUIR<br>[ $\mu$ Ci/g ]                                                            | ED<br>Note(s) |  |
| Gamma Scan                                                                                                                                              | 103.3000                              | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103<br>Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141<br>Ce-144 | $\begin{bmatrix} -1.\\ 4.\\ -2.\\ -2.\\ -2.\\ -2.\\ -2.\\ -2.\\ -3.\\ -3.\\ -3.\\ -3.\\ -3.\\ -3.\\ -3.\\ -3$ | $5 \pm 1.1 \\ 4 \pm 9.8 \\ 8 \pm 3.6 \\ 8 \pm 11 \\ 4 \pm 3.7 \\ 9 \pm 1.5 \\ 0 \pm 3.8 \\ 1 \pm 2.6 \\ 6 \pm 2.3 \\ 4 \pm 1.6 \\ 0 \pm 7.9 \\ .0 \pm 0.62 \\ 1 \pm 12 \\ 7 \pm 1.3 \\ .9 \pm 21 \\ 4 \pm 9.8 \\ .0 \pm 0.73 \\ 2 \pm 5.7 \\ 1 \pm 1.7 \\ .3 \pm 34 $ | ] $E-06$<br>] $E-08$<br>] $E-07$<br>] $E-08$<br>] $E-08$<br>] $E-08$<br>] $E-08$<br>] $E-07$<br>] $E-08$ | 4.8 E<br>4.2 E<br>1.5 E<br>4.5 E<br>1.7 E<br>6.1 E<br>1.8 E<br>3.9 E<br>1.1 E<br>7.5 E<br>1.1 E<br>7.5 E<br>2.9 E<br>1.8 E<br>2.5 E<br>2.5 E<br>2.9 E<br>2.5 E<br>2.5 E<br>1.8 E<br>2.5 E<br>1.8 E<br>2.5 E | -06<br>-07<br>-06<br>-07<br>-06<br>-07<br>-06<br>-07<br>-06<br>-07<br>-06<br>-07<br>-07<br>-07<br>-07<br>-07<br>-07<br>-07<br>-07<br>-07<br>-07 | ·             |  |

Note(s):

A - Calculated MDCs are a-posteriori values.

PUULPIERO 5/4/48 E. M. Moreno

CUUUAUG - In A. 6. VBanavali 1n

| MA                                         |                                                                 | KE ENGINEER                                 | ING AND SERVICES ENVIRONMENTAL LABORATORY                                                                                                                                                               |              |
|--------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| MAT                                        | 0 6 1998                                                        | 10                                          | CFR Part 50/61 Analysis Report                                                                                                                                                                          |              |
|                                            | E&S<br>⁄IENTAL LAB.                                             |                                             | Page 2 of 2                                                                                                                                                                                             |              |
| Laboratory S<br>Sample Sub<br>Total Amt of | Sample Number:<br>omission Code:<br>Media Type:<br>Sample Sent: | X10386<br>QZZc01E129<br>Concrete<br>103.3 g | Customer: GTS Duratek<br>8 Sample Reference Date: March 27, 1998<br>Date Sample Received: April 27, 1998<br>Count Date: May 2, 1998<br>Report Date: May 4, 1998                                         |              |
|                                            | Ś                                                               | ample Descr                                 | iption: A9902/01MC1/00005                                                                                                                                                                               |              |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[g]                           | Isotope                                     | Minimum Detectable         Activity Concentration       Concentration (A)         Net ± 1σ Overall       on Reference Date         on Reference Date       CALCULATED         [ µCi/g ]       [ µCi/g ] | D<br>Note(s) |
| Gamma Scan<br>(continued)                  |                                                                 | Eu-152<br>Eu-155<br>Eu-154                  | [ 1 ± 13 ] E-08 5.1 E-07 1.0E-06<br>[ 1.2 ± 1.7 ] E-07 6.6 E-07<br>[ -7 ± 29 ] E-08 1.3 E-06                                                                                                            | ,            |

\*^\_\_@(s):

A- Calculated MDCs are a-posteriori values.

E. M. Moreno

A. D. Banavali

## MAILED

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

Page 1 of 2

10 CFR Part 50/61 Analysis Report

MAY 0 6 1998

DE&S

ENVIRONMENTAL LAB.

Laboratory Sample Number: X10387 Sample Submission Code: QZZc01F1298 Media Type: Concrete

Total Amt of Sample Sent: 114.3 g

Customer: GTS Duratek Sample Reference Date: March 27, 1998 Date Sample Received: April 27, 1998 Count Date: May 1, 1998 Report Date: May 4, 1998

Sample Description: A9902/01MC1/00006

| Analysis<br>Requested | Aliquot<br>Weight<br>Processed<br>[g] | Isotope                                                                         | Act<br>Ne       | ivity Concent<br>t ± 1σ Ον<br>on Reference<br>[ μCi/g ]                                                                                    | ra<br>ver<br>Da       | tion<br>all<br>te                                            | Minimum Det<br>Concentrat:<br>on Referenc<br>CALCULATED<br>[ µCi/g                                           | tectable<br>ion (A)<br>ce Date<br>REQUIRED<br>] | Note(s) |
|-----------------------|---------------------------------------|---------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|
| Gamma Scan            | 114.3000                              | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59                                       | <br>[<br>[<br>[ | $8.7 \pm 7.2 \\ -1.5 \pm 1.1 \\ -2.9 \pm 3.2 \\ 1.06 \pm 0.59 \\ -3.0 \pm 3.5 $                                                            | )<br>)<br>)<br>]      | E-07<br>E-07<br>E-07<br>E-07<br>E-07<br>E-07                 | 2.8 E-06<br>4.8 E-07<br>1.3 E-06<br>2.2 E-07<br>1.6 E-06                                                     |                                                 |         |
|                       |                                       | Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103<br>Ru-106<br>Ag-108m                 |                 | $\begin{array}{r} -4.5 \pm 3.0 \\ 3.9 \pm 6.3 \\ -6.2 \pm 3.1 \\ -1.1 \pm 1.4 \\ 1.63 \pm 0.89 \\ 8.6 \pm 6.4 \\ -4.3 \pm 5.9 \end{array}$ | ]<br>]<br>]<br>]      | E-07<br>E-08<br>E-07<br>E-07<br>E-07<br>E-07<br>E-07<br>E-08 | 1.9 $E-07$<br>1.4 $E-06$<br>2.6 $E-07$<br>1.4 $E-06$<br>6.5 $E-07$<br>3.4 $E-07$<br>2.5 $E-06$<br>2.6 $E-07$ |                                                 | в       |
|                       |                                       | Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141<br>Ce-144 |                 | $1.20 \pm 0.70 \\ 1.57 \pm 0.91 \\ -6 \pm 15 \\ 4.4 \pm 9.6 \\ 9.5 \pm 6.0 \\ 5.0 \pm 2.3 \\ 7 \pm 13 \\ 1.4 \pm 2.9 \\ 1.4 \pm 2.9$       | ]<br>]<br>]<br>]<br>] | E-07<br>E-08<br>E-08<br>E-08<br>E-08<br>E-07<br>E-08<br>E-07 | 2.7 E-07<br>1.4 E-07<br>6.7 E-07<br>4.1 E-07<br>2.3 E-07<br>2.7 E-07<br>5.2 E-07<br>1.2 E-06                 |                                                 |         |

Note(s):

- A Calculated MDCs are a-posteriori values.
- B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Reviewed by

| MAII                                       |                                                               | VKE ENGINEERI                                | G AND SERVICES ENVIRONMENTAL LABORA                                                                                      | TORY                                                                |
|--------------------------------------------|---------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| MAY 01                                     | 6 1998                                                        | 10 0                                         | R Part 50/61 Analysis Report                                                                                             |                                                                     |
| DE                                         | &S<br>ENTAL LAB.                                              |                                              | Page 2 of 2                                                                                                              |                                                                     |
| Laboratory S<br>Sample Sub<br>Total Amt of | ample Number:<br>mission Code:<br>Media Type:<br>Sample Sent: | X10387<br>QZZc01F1298<br>Concrete<br>114.3 g | Customer: GTS<br>Sample Reference Date: Mar<br>Date Sample Received: Apr<br>Count Date: May<br>Report Date: May          | Duratek<br>ch 27, 1998<br>il 27, 1998<br>1, 1998<br>4, 1998         |
|                                            | S                                                             | Sample Descri                                | tion: A9902/01MC1/00006                                                                                                  |                                                                     |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[g]                         | Isotope                                      | Minimumctivity ConcentrationConcentNet $\pm$ 1 $\sigma$ Overallon Refeon Reference DateCALCULATED[ $\mu$ Ci/g ][ $\mu$ C | Detectable<br>ration (A)<br>rence Date<br>REQUIRED<br>i/g ] Note(s) |
| Gamma Scan<br>(continued)                  |                                                               | Eu-152<br>Eu-155<br>Eu-154                   | 1.0 ± 1.0 ] E-07 3.9 E-07<br>1.8 ± 1.3 ] E-07 4.9 E-07<br>1.8 ± 2.5 ] E-07 1.1 E-06                                      | 1.0E-06                                                             |

э(s):

A - Calculated MDCs are a-posteriori values. B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

CUUMPEND 5/4/48 E. N. Moreno

A. D. Banavali

## MAILED

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1998

DE&S

10 CFR Part 50/61 Analysis Report

#### Page 1 of 2

Laboratory Sample Number:X10417Customer:GTS DuratekSample Submission Code:QZZc07A1198Sample Reference Date:March 20, 1998Media Type:ConcreteDate Sample Received:April 27, 1998Total Amt of Sample Sent:114.9 gCount Date:May 2, 1998Report Date:May 4, 1998

Sample Description:

A9902/02MC1/00001

| Analysis<br>Requested | Aliquot<br>Weight<br>Processed<br>[g] | Isotope                                                                                                        | Minimum DetectaActivity ConcentrationConcentration (Net $\pm$ 1 $\sigma$ Overallon Reference Daon Reference DateCALCULATED[ $\mu$ Ci/g ][ $\mu$ Ci/g ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ble<br>A)<br>te<br>UIRED<br>Note(s) |
|-----------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Gamma Scan            | 114.9000                              | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95                         | $\begin{bmatrix} 3 \pm 30 \\ -3.1 \pm 2.5 \end{bmatrix} E-06 \\ 1.2 E-04 \\ \hline -3.1 \pm 2.5 \end{bmatrix} E-06 \\ 1.1 E-05 \\ \hline -1.42 \pm 0.74 \end{bmatrix} E-05 \\ 2.9 E-05 \\ \hline 1.9 \pm 3.1 \end{bmatrix} E-06 \\ 1.3 E-05 \\ \hline 6.7 \pm 9.2 \end{bmatrix} E-06 \\ 3.8 E-05 \\ \hline 2.35 \pm 0.12 \end{bmatrix} E-04 \\ 4.2 E-06 \\ \hline -4 \pm 110 \end{bmatrix} E-07 \\ 4.4 E-05 \\ \hline -6 \pm 19 \end{bmatrix} E-07 \\ 7.7 E-06 \\ \hline 2.15 \pm 0.78 \end{bmatrix} E-05 \\ 3.0 E-05 \\ \hline -1.08 \pm 0.50 \end{bmatrix} E-05 \\ 2.1 E-05 \\ \hline 3.0 E-05 \\ \hline 3$ | в                                   |
|                       |                                       | Ru-103<br>Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141<br>Ce-144 | $\begin{bmatrix} 4 \pm 32 \\ -1.9 \pm 1.8 \\ 1.4 \end{bmatrix} E-05  1.3 E-05 \\ \hline -1.3 \pm 1.4 \\ 1.4 \end{bmatrix} E-06  5.6 E-06 \\ \hline -5.1 \pm 3.9 \\ 1.5 E-05 \\ \hline -1.6 \pm 3.2 \\ 1.5 E-05 \\ \hline 4.2 \pm 4.0 \\ 1.5 E-05 \\ \hline 4.2 \pm 4.0 \\ 1.5 E-05 \\ \hline 5.74 \pm 0.33 \\ 1.6 E-05 \\ \hline 5.3 \pm 3.6 \\ 1.4 E-05 \\ \hline -3.4 \pm 7.1 \\ 1.6 E-06 \\ 1.4 E-05 \\ \hline 5.8 E-05 \\$                                                                                                       | в                                   |

Note(s):

A - Calculated MDCs are a-posteriori values.

\_\_\_\_\_

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Reviewed by

\_\_\_\_\_

A. D. Banavali
| МА                                                                                                                             | 0 6 1998                              | KE ENGINEER<br><br>10                       | ING AND S<br><br>CFR Part  | SERVICES ENVIRO                                           | ONMENTAL LA<br><br>8 Report                                      | BORATORY                                                                                                                   |         |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------|----------------------------|-----------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------|
| DEAS<br>ENVIRONMENTAL LAB.<br>Laboratory Sample Number:<br>Sample Submission Code:<br>Media Type:<br>Total Amt of Sample Sent: |                                       |                                             | F                          | age 2 of 2                                                |                                                                  |                                                                                                                            |         |
|                                                                                                                                |                                       | X10417<br>QZZc07A119<br>Concrete<br>114.9 g | 8                          | Sample Refere<br>Date Sample<br>Co<br>Rep                 | Customer:<br>ence Date:<br>Received:<br>ount Date:<br>port Date: | ustomer: GTS Duratek<br>ce Date: March 20, 1998<br>eceived: April 27, 1998<br>nt Date: May 2, 1998<br>rt Date: May 4, 1998 |         |
|                                                                                                                                | s                                     | ample Descr                                 | iption:                    | A9902/02M0                                                | c1/00001                                                         |                                                                                                                            |         |
| Analysis<br>Requested                                                                                                          | Aliquot<br>Weight<br>Processed<br>[g] | Isotope                                     | Activity<br>Net 4<br>on Re | y Concentration<br>1σ Overall<br>eference Date<br>μCi/g ] | Min<br>n Con<br>on<br>CALCUL                                     | imum Detectable<br>centration (A)<br>Reference Date<br>ATED REQUIRED<br>[ μCi/g ]                                          | Note(s) |
| Gamma Scan<br>(continued)                                                                                                      |                                       | Eu-152<br>Eu-154<br>Eu-155                  | [ 3.84<br>[ 4.93<br>[ -6   | 4 ± 0.20 ] E-0<br>3 ± 0.44 ] E-0<br>5 ± 41 ] E-0          | 04 1.5 E<br>05 1.2 E<br>07 1.6 E                                 | -05 1.0E-06<br>-05<br>-05                                                                                                  | B<br>B  |

····:

A - Calculated MDCs are a-posteriori values.
 B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

1/98 Ellepens

E. M. Moreno

Banavali A.

| MA                         | AILED                                 | DUKE ENGINEEF                                                                                        | RING      | AND SE                                                                    | RVICES                                                                                                                                             | ENV                 | VIRONM                                                                       | ENTAL I                                                                   | ABORATORY                                                                                    |                                     |
|----------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------|
| M                          | ay o 6 1998                           | <br>10                                                                                               | CFR       | Part 5                                                                    | 0/61 Ar                                                                                                                                            | haly                | ysis Re                                                                      | eport                                                                     |                                                                                              |                                     |
| ENVIRO                     | DE&S<br>NMENTAL LA                    | <br>\B.<br>x10418                                                                                    |           | Pa                                                                        | ge 1 of                                                                                                                                            | 2                   | <br>Cus                                                                      | stomer:                                                                   | GTS Duratek                                                                                  |                                     |
| Sample Sub<br>Total Amt of | Media Type:<br>Sample Sent:           | QZZc07B119<br>Concrete<br>110.2 g<br>Sample Descr                                                    | 98        | ion:                                                                      | Sample<br>Date S<br>A990                                                                                                                           | Re:<br>Samj<br>02/0 | ference<br>ple Rec<br>Count<br>Report<br>02MC1/0                             | Date:<br>Date:<br>Date:<br>Date:<br>Date:                                 | March 20, 1<br>April 27, 1<br>May 5, 1998<br>May 5, 1998                                     | 998<br>998                          |
| Analysis<br>Requested      | Aliquot<br>Weight<br>Processed<br>[g] | Isotope                                                                                              | Act<br>No | tivity<br>et ±<br>on Ref<br>[                                             | Concent<br>1σ Ov<br>erence<br>µCi/g ]                                                                                                              | rat<br>vera<br>Dat  | tion<br>all<br>te                                                            | Mi<br>Co<br>OI<br>CALCU                                                   | nimum Detecta<br>oncentration (<br>n Reference Da<br>JLATED REQ<br>[ μCi/g ]                 | ble<br>A)<br>te<br>UIRED<br>Note(s) |
| Gamma Scan                 | 110.2000                              | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103     |           | 4.3<br>-1.5<br>9<br>-2<br>1.2<br>3.16<br>2.2<br>-1<br>3.4<br>-7.0<br>-5.0 | $\begin{array}{r} \pm 4.8 \\ \pm 3.7 \\ \pm 11 \\ \pm 52 \\ \pm 1.4 \\ \pm 0.17 \\ \pm 1.6 \\ \pm 27 \\ \pm 9.5 \\ \pm 8.0 \\ \pm 5.1 \end{array}$ | ]                   | E-05<br>E-06<br>E-07<br>E-05<br>E-04<br>E-05<br>E-07<br>E-06<br>E-06<br>E-06 | 1.9<br>1.5<br>4.3<br>2.1<br>5.9<br>7.6<br>6.6<br>1.1<br>3.9<br>3.4<br>2.1 | E-04<br>E-05<br>E-05<br>E-05<br>E-06<br>E-05<br>E-05<br>E-05<br>E-05<br>E-05<br>E-05<br>E-05 | В                                   |
|                            |                                       | Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141<br>Ce-144 |           | 4<br>3<br>1.1<br>-2<br>3.3<br>7.24<br>2.0<br>2.7<br>-7.2<br>-3            | $\begin{array}{r} \pm 28 \\ \pm 19 \\ \pm 5.8 \\ \pm 34 \\ \pm 5.8 \\ \pm 0.44 \\ \pm 3.0 \\ \pm 1.6 \\ \pm 6.3 \\ \pm 11 \end{array}$             | ]                   | E-06<br>E-07<br>E-06<br>E-05<br>E-05<br>E-06<br>E-06<br>E-06<br>E-06         | 1.1<br>7.5<br>2.4<br>1.6<br>2.3<br>7.5<br>1.2<br>6.5<br>2.5<br>4.3        | E-04<br>E-06<br>E-05<br>E-05<br>E-05<br>E-06<br>E-05<br>E-05<br>E-05<br>E-05                 | В                                   |

 A - Calculated MDCs are a-posteriori values.
 B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

ιx

M/ Moreno

ΨI

A. D. Banavali

| r<br>S                                                                                                                       | AILED                                 | KE ENGINEER                                  | ING AND SERVICES ENVIRONMENTAL LA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>JORATORY</b>                                                                                |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                                                                              | MAY 0 6 1998                          | 10 (                                         | CFR Part 50/61 Analysis Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                |
| DE&S<br>ENVIROHMENTAL LA<br>Laboratory Sample Number:<br>Sample Submission Code:<br>Media Type:<br>Total Amt of Sample Sent: |                                       | <br>3.                                       | Page 2 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                |
|                                                                                                                              |                                       | X10418<br>QZZc07B1198<br>Concrete<br>110.2 g | Customer:<br>Sample Reference Date:<br>Date Sample Received:<br>Count Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GTS Duratek<br>March 20, 1998<br>April 27, 1998<br>May 5, 1998                                 |
|                                                                                                                              | S                                     | ample Descr                                  | Report Date:<br>iption: A9902/02MC1/00002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | may 5, 1990                                                                                    |
| Analysis<br>Requested                                                                                                        | Aliquot<br>Weight<br>Processed<br>[g] | Isotope                                      | MinActivity ConcentrationConNet $\pm$ 1 $\sigma$ Overallon 1on Reference DateCALCUL[ $\mu$ Ci/g ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | imum Detectable<br>centration (A)<br>Reference Date<br>ATED REQUIRED<br>[ $\mu$ Ci/g ] Note(s) |
| Gamma Scar<br>(continued                                                                                                     | n<br>d)                               | Eu-152<br>Eu-154<br>Eu-155                   | $\begin{bmatrix} 5.70 \pm 0.30 \\ 6.39 \pm 0.66 \end{bmatrix} = -04 = 2.0 = 2.0 = 2.0 = 2.0 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.4 = 2.$ | -05 1.0E-06 B<br>-05 B<br>-05                                                                  |

:(s):

A - Calculated MDCs are a-posteriori values.
 B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

EF M. Moreno 5 18

Elligreno fr A. D. Banavali

MALED DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 6 1998

DE&S

10 CFR Part 50/61 Analysis Report 

## Page 1 of 2

ENVIRONMENTAL LAB. Laboratory Sample Number: X10419 Sample Submission Code: QZZc07C1198 Media Type: Concrete Total Amt of Sample Sent: 104.4 g

Customer: GTS Duratek Sample Reference Date: March 20, 1998 Date Sample Received: April 27, 1998 Count Date: May 6, 1998 Report Date: May 6, 1998

Sample Description: A9902/02MC1/00003

| Analysis<br>Requested | Aliquot<br>Weight<br>Processed<br>[9] | Isotope                                | Activity Concentration<br>Net $\pm$ 1 $\sigma$ Overall<br>on Reference Date<br>[ $\mu$ Ci/g ]                                         | Minimum Detectable<br>Concentration (A)<br>on Reference Date<br>CALCULATED REQUIRED<br>[ µCi/g ] Note(s |
|-----------------------|---------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Gamma Scan            | 104.4000                              | Cr-51<br>Mn-54<br>Co-57<br>Co-58       | $\begin{bmatrix} -1.37 \pm 0.85 \\ 4.5 \pm 6.4 \end{bmatrix} = -04$ $\begin{bmatrix} 1.0 \pm 1.7 \\ -1.2 \pm 8.6 \end{bmatrix} = -05$ | 3.5 E-04<br>2.6 E-05<br>6.8 E-05<br>3.6 E-05                                                            |
|                       |                                       | Fe-59<br>Co-60<br>Zn-65<br>Nb-94       | $\begin{bmatrix} 4 \pm 26 \\ 3.96 \pm 0.22 \end{bmatrix} E-06$ $\begin{bmatrix} -1.2 \pm 1.5 \\ 2.2 \pm 4.7 \end{bmatrix} E-05$       | 1.1 E-04<br>2.1 E-05 B<br>6.0 E-05<br>1.9 E-05                                                          |
| $\smile$              |                                       | Zr-95<br>Nb-95<br>Ru-103               | $\begin{bmatrix} 2.8 \pm 1.6 \\ 2 \pm 14 \end{bmatrix} = -05$ $\begin{bmatrix} 2 \pm 14 \\ -5.5 \pm 9.1 \end{bmatrix} = -06$          | 6.5 E-05<br>5.6 E-05<br>3.8 E-05                                                                        |
|                       |                                       | Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124 | $\begin{bmatrix} -4.1 \pm 4.7 \\ -1.3 \pm 3.2 \end{bmatrix} E-06 \\ \begin{bmatrix} -1.7 \pm 1.1 \\ -4.0 \pm 7.6 \end{bmatrix} E-06$  | 2.0 E-04<br>1.3 E-05<br>4.7 E-05<br>3.8 E-05                                                            |
|                       |                                       | Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140 | $\begin{bmatrix} 4 \pm 10 \\ 6.11 \pm 0.50 \end{bmatrix} = -06$ $\begin{bmatrix} 2.6 \pm 5.3 \\ -5.1 \pm 3.9 \end{bmatrix} = -06$     | 4.2 E-05<br>1.5 E-05 B<br>2.2 E-05<br>1.9 E-04                                                          |
|                       |                                       | Ce-141<br>Ce-144                       | [ -8 ± 93 ] E-07<br>[ 9 ± 17 ] E-06                                                                                                   | 3.7 E-05<br>6.6 E-05                                                                                    |

Note(s):

- A Calculated MDCs are a-posteriori values.
- B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Reviewed by

\_\_\_\_\_\_

|                                            | ILED<br>0 6 1998<br>E&S<br>MENTAL LAB.                             | KE ENGINEER:<br><br>10 (<br>                 | ING AND SERVICES ENVIRONMENTAL LABORATORY<br>CFR Part 50/61 Analysis Report<br>Page 2 of 2                                                                                                              |       |
|--------------------------------------------|--------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Laboratory S<br>Sample Sub<br>Total Amt of | ample Number:<br>mission Code:<br>Media Type:<br>Sample Sent:<br>S | X10419<br>QZZc07C1198<br>Concrete<br>104.4 g | Customer: GTS Duratek<br>8 Sample Reference Date: March 20, 1998<br>Date Sample Received: April 27, 1998<br>Count Date: May 6, 1998<br>Report Date: May 6, 1998<br>iption: A9902/02MC1/00003            |       |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[g]                              | Isotope                                      | Minimum Detectable         Activity Concentration       Concentration (A)         Net ± 1σ Overall       on Reference Date         on Reference Date       CALCULATED         [ µCi/g ]       [ µCi/g ] | ce(s) |
| Gamma Scan<br>(continued)                  |                                                                    | Eu-152<br>Eu-154<br>Eu-155                   | [ 6.23 ± 0.34 ] E-04 2.7 E-05 1.0E-06 E<br>[ 7.52 ± 0.97 ] E-05 2.4 E-05 E<br>[ 1.68 ± 0.92 ] E-05 3.5 E-05                                                                                             | 3     |

....e(s):

A- Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Allacho

S. M. Moreno

W

A. D. Banavali

| MAI                                        | LED DI                                                                        | JKE ENGINEEF                                                                                         | ING A       | AND SE                                                                    | RVICES                                                                                                                                           | ENV                                                                                         | IRONME                                                                               | ENTAL L                                                                   | ABORATORY                                                                                            | Z.                                              |         |
|--------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|
| MAY C                                      | ) 6 1993                                                                      | 10                                                                                                   | CFR F       | Part 5                                                                    | 0/61 Ar                                                                                                                                          | naly                                                                                        | 7sis Re                                                                              | eport                                                                     |                                                                                                      |                                                 |         |
| 08                                         | E&S                                                                           | Page 1 of 2                                                                                          |             |                                                                           |                                                                                                                                                  |                                                                                             |                                                                                      |                                                                           |                                                                                                      |                                                 |         |
| Laboratory S<br>Sample Sub<br>Total Amt of | ENTALLAB<br>Sample Number:<br>omission Code:<br>Media Type:<br>f Sample Sent: | X10420<br>QZZc07D119<br>Concrete<br>110.1 g                                                          | 8           |                                                                           | Sample<br>Date S                                                                                                                                 | Rei<br>Samj                                                                                 | Cus<br>ference<br>ple Rec<br>Count<br>Report                                         | stomer:<br>Date:<br>ceived:<br>Date:<br>Date:                             | GTS Dur<br>March 2<br>April 2<br>May 5,<br>May 5,                                                    | ratek<br>20, 1998<br>27, 1998<br>1998<br>1998   |         |
|                                            | ٤                                                                             | Sample Desci                                                                                         | iptic       | on:                                                                       | A99(                                                                                                                                             | 02/0                                                                                        | D2MC1/0                                                                              | 00004                                                                     |                                                                                                      |                                                 |         |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[g]                                         | Isotope                                                                                              | Acti<br>Net | ivity<br>z ±<br>on Ref                                                    | Concent<br>1ơ Or<br>erence<br>µCi/g                                                                                                              | crat<br>vera<br>Dat                                                                         | tion<br>all<br>te                                                                    | Mi<br>Co<br>on<br>CALCU                                                   | nimum De<br>ncentrat<br>Referen<br>LATED<br>[ µCi/g                                                  | tectable<br>ion (A)<br>ce Date<br>REQUIRED<br>] | Note(s) |
| Gamma Scan                                 | 110.1000                                                                      | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103     |             | $2.0 \\ -1.7 \\ 1.5 \\ -3 \\ -5 \\ 3.93 \\ -5.5 \\ -2 \\ 1 \\ -8 \\ -2.5$ | $\begin{array}{r} \pm 5.0 \\ \pm 4.0 \\ \pm 1.2 \\ \pm 55 \\ \pm 16 \\ \pm 2.0 \\ \pm 280 \\ \pm 280 \\ \pm 10 \\ \pm 84 \\ \pm 5.5 \end{array}$ | ]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>]<br>] | E-05<br>E-06<br>E-05<br>E-07<br>E-06<br>E-04<br>E-05<br>E-08<br>E-06<br>E-07<br>E-06 | 2.0<br>1.7<br>4.4<br>2.3<br>6.7<br>5.3<br>8.3<br>1.1<br>4.2<br>3.5<br>2.2 | E-04<br>E-05<br>E-05<br>E-05<br>E-06<br>E-05<br>E-05<br>E-05<br>E-05<br>E-05<br>E-05<br>E-05<br>E-05 |                                                 | в       |
|                                            |                                                                               | Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141<br>Ce-144 |             | -3.3<br>4<br>-5.1<br>-4.2<br>3.0<br>5.78<br>7<br>2.6<br>9.2<br>2          | $\begin{array}{r} \pm 3.1 \\ \pm 21 \\ \pm 6.6 \\ \pm 5.6 \\ \pm 6.6 \\ \pm 0.38 \\ \pm 33 \\ \pm 1.3 \\ \pm 6.5 \\ \pm 12 \end{array}$          |                                                                                             | E-05<br>E-07<br>E-06<br>E-06<br>E-06<br>E-05<br>E-07<br>E-05<br>E-06<br>E-06         | 1.3<br>8.4<br>2.8<br>2.6<br>2.6<br>7.8<br>1.4<br>4.8<br>2.5<br>4.5        | E-04<br>E-06<br>E-05<br>E-05<br>E-05<br>E-06<br>E-05<br>E-05<br>E-05<br>E-05<br>E-05                 |                                                 | В       |

A - Calculated MDCs are a-posteriori values.
 B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

E Moreno

A. D. U Banavali

| MAIL                                       |                                                                 | KE ENGINEER                                 | ING AND SERVICES ENVIRONMENTAL LABORATORY                                                                                                                                                                                                              |         |
|--------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| MAY 0 6                                    | 1998                                                            | 10                                          | CFR Part 50/61 Analysis Report                                                                                                                                                                                                                         |         |
| DE&<br>DE&                                 | S<br>NTAL LAB.                                                  |                                             | Page 2 of 2                                                                                                                                                                                                                                            |         |
| Laboratory S<br>Sample Sub<br>Total Amt of | Sample Number:<br>omission Code:<br>Media Type:<br>Sample Sent: | X10420<br>QZZc07D119<br>Concrete<br>110.1 g | Customer: GTS Duratek<br>8 Sample Reference Date: March 20, 1998<br>Date Sample Received: April 27, 1998<br>Count Date: May 5, 1998<br>Report Date: May 5, 1998                                                                                        |         |
|                                            | S                                                               | ample Descr                                 | iption: A9902/02MC1/00004                                                                                                                                                                                                                              |         |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[g]                           | Isotope                                     | Minimum DetectableActivity ConcentrationConcentration (A)Net $\pm$ 1 $\sigma$ Overallon Reference Dateon Reference DateCALCULATED[ $\mu$ Ci/g ][ $\mu$ Ci/g ]                                                                                          | Note(s) |
| Gamma Scan<br>(continued)                  |                                                                 | Eu-152<br>Eu-154<br>Eu-155                  | $\begin{bmatrix} 7.00 \pm 0.37 \\ 6.35 \pm 0.70 \end{bmatrix} = -04 = 2.0 = -05 = 1.0 = -06$ $\begin{bmatrix} 6.35 \pm 0.70 \\ 2.8 \pm 6.5 \end{bmatrix} = -05 = 2.4 = -05$ $\begin{bmatrix} 2.8 \pm 6.5 \\ 2.5 = -05 \end{bmatrix} = -06 = 2.5 = -05$ | B<br>B  |

™o+e(s):

La Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

E. M. Moreno

A. D. Banavali

| MAI                                        | ED DU                                                         | KE ENGINEER                                                                                          | ING AND S                                                                                                               | ERVICES F                                                                                                                                              | NVIRONME                                                                                                   | NTAL LABORATORY                                                                                                                  |                                                |
|--------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| MAY 0 6                                    | 1998                                                          | 10                                                                                                   | CFR Part                                                                                                                | 50/61 Ana                                                                                                                                              | lysis Re                                                                                                   | <br>port                                                                                                                         |                                                |
| DE&<br>ENVIRONME                           | S<br>NTALLAR                                                  |                                                                                                      | P                                                                                                                       | age 1 of                                                                                                                                               | 2                                                                                                          |                                                                                                                                  |                                                |
| Laboratory S<br>Sample Sub<br>Total Amt of | ample Number:<br>mission Code:<br>Media Type:<br>Sample Sent: | X10421<br>QZZc07E119<br>Concrete<br>112.8 g                                                          | 8                                                                                                                       | Sample H<br>Date Sa                                                                                                                                    | Cus<br>Reference<br>ample Rec<br>Count<br>Report                                                           | tomer: GTS Dura<br>Date: March 20<br>eived: April 27<br>Date: May 5, 1<br>Date: May 5, 1                                         | tek '<br>, 1998<br>, 1998<br>998<br>998        |
|                                            | S                                                             | ample Descr                                                                                          | iption:                                                                                                                 | A9902                                                                                                                                                  | 2/02MC1/0                                                                                                  | 0005                                                                                                                             |                                                |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[g]                         | Isotope                                                                                              | Activity<br>Net ±<br>on Re<br>[                                                                                         | Concenti<br>lơ Ove<br>ference I<br>µCi/g ]                                                                                                             | ration<br>erall<br>Date                                                                                    | Minimum Dete<br>Concentratio<br>on Reference<br>CALCULATED<br>[ µCi/g ]                                                          | ctable<br>n (A)<br>Date<br>REQUIRED<br>Note(s) |
| Gamma Scan                                 |                                                               | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103     | [ -7<br>[ -2.9<br>[ -1.42<br>[ 2.3<br>[ -1.3<br>[ 3.21<br>[ 3.8<br>[ 1.8<br>[ 1.41<br>[ 1.01<br>[ 4                     | $\begin{array}{c} \pm 46 \\ \pm 3.5 \\ \pm 0.98 \\ \pm 4.5 \\ \pm 1.4 \\ \pm 0.17 \\ \pm 1.4 \\ \pm 2.4 \\ \pm 0.81 \\ \pm 0.67 \\ \pm 49 \end{array}$ | ] E-06<br>] E-06<br>] E-05<br>] E-06<br>] E-05<br>] E-04<br>] E-05<br>] E-06<br>] E-05<br>] E-05<br>] E-07 | 1.8 E-04<br>1.5 E-05<br>3.8 E-05<br>1.8 E-05<br>6.0 E-05<br>6.8 E-06<br>5.5 E-05<br>1.0 E-05<br>3.3 E-05<br>2.7 E-05<br>2.0 E-05 | в                                              |
|                                            |                                                               | Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141<br>Ce-144 | $\begin{bmatrix} 2.6\\ [ 2.2\\ [ -1.28\\ [ -3.2\\ [ -5.5\\ [ 6.40\\ [ -3.4\\ [ 1.57\\ [ -6.3\\ [ 1.20\\ \end{bmatrix}]$ | $\begin{array}{r} \pm 2.3 \\ \pm 1.8 \\ \pm 0.57 \\ \pm 4.0 \\ \pm 5.8 \\ \pm 0.39 \\ \pm 3.0 \\ \pm 0.86 \\ \pm 5.2 \\ \pm 0.92 \end{array}$          | ] E-05<br>] E-06<br>] E-06<br>] E-06<br>] E-06<br>] E-05<br>] E-06<br>] E-05<br>] E-06<br>] E-05<br>] E-06 | 9.4 E-05<br>7.0 E-06<br>2.4 E-05<br>1.9 E-05<br>2.4 E-05<br>7.5 E-06<br>1.2 E-05<br>3.4 E-05<br>2.0 E-05<br>3.5 E-05             | В                                              |

- A Calculated MDCs are a-posteriori values.
- B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Moreno

A. D. Banavali

| MA<br>MAY (                                                                                                                 | ILED D                                | JKE ENGINEER                                | TING AND SERVICES ENVIRONMENTAL LABORATORY<br>CFR Part 50/61 Analysis Report                                                                                  |       |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                                                                                                                             |                                       |                                             | Page 2 of 2                                                                                                                                                   |       |
| Laboratory Sample Number: X10421<br>Sample Submission Code: QZZc07<br>Media Type: Concre<br>Total Amt of Sample Sent: 112.8 |                                       | X10421<br>QZZc07E119<br>Concrete<br>112.8 g | Customer: GTS Duratek<br>Sample Reference Date: March 20, 1998<br>Date Sample Received: April 27, 1998<br>Count Date: May 5, 1998<br>Report Date: May 5, 1998 |       |
|                                                                                                                             |                                       | Sample Descr                                | ription: A9902/02MC1/00005                                                                                                                                    |       |
| Analysis<br>Requested                                                                                                       | Aliquot<br>Weight<br>Processed<br>[g] | Isotope                                     | Minimum DetectableActivity ConcentrationConcentration (A)Net $\pm$ 1 $\sigma$ Overallon Reference Dateon Reference DateCALCULATED[ $\mu$ Ci/g ][ $\mu$ Ci/g ] | ;e(s) |
| Gamma Scan<br>(continued)                                                                                                   |                                       | Eu-152<br>Eu-154<br>Eu-155                  | [ 5.98 ± 0.31 ] E-04 1.5 E-05 1.0E-06 E<br>[ 5.13 ± 0.54 ] E-05 1.8 E-05 E<br>[ 1.0 ± 5.2 ] E-06 2.0 E-05                                                     | 3     |

`e(s):

A - Calculated MDCs are a-posteriori values.
 B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Moreno

A. D. Banavali

| MA                                         | DU DU                                                              | KE ENGINEER                                                                                          | ING AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SERVICES                                                                                                                                                                  | ENVIRONME                                                                                        | NTAL LABORA                                                                                                                      | TORY                                                          |              |
|--------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------|
| MAY                                        | 0 6 1998                                                           | <br>10                                                                                               | CFR Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 50/61 Ar                                                                                                                                                                  | alysis Re                                                                                        | port                                                                                                                             |                                                               |              |
|                                            | E&S<br>ENTAL LAB.                                                  |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Page 1 of                                                                                                                                                                 | 2                                                                                                | -                                                                                                                                |                                                               |              |
| Laboratory S<br>Sample Sub<br>Total Amt of | ample Number:<br>mission Code:<br>Media Type:<br>Sample Sent:<br>S | X10422<br>QZZc07F119<br>Concrete<br>108.7 g<br>Sample Descr                                          | 8<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample<br>Date S<br>A990                                                                                                                                                  | Cue<br>Reference<br>Sample Rec<br>Count<br>Report<br>02/02MC1/0                                  | otomer: GTS<br>Date: Mar<br>eived: Apr<br>Date: May<br>Date: May                                                                 | Duratek<br>ch 20, 1998<br>il 27, 1998<br>72, 1998<br>75, 1998 |              |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[g]                              | Isotope                                                                                              | Activit<br>Net<br>on F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y Concent<br>± 1σ Or<br>teference<br>[ μCi/g                                                                                                                              | ration<br>verall<br>Date                                                                         | Minimum<br>Concent<br>on Refe<br>CALCULATEI<br>[ µC                                                                              | <pre>Detectable ration (A) rence Date REQUIRED Si/g ]</pre>   | )<br>Note(s) |
| Gamma Scan                                 | 108.7000                                                           | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103     | $\begin{bmatrix} & 6. \\ [ & -1.2 \\ [ & 1.2 \\ [ & 1.2 \\ [ & 1.2 \\ [ & -4. \\ [ & 1.7 \\ [ & -4. \\ [ & 1.7 \\ [ & -4. \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & 3.2 \\ [ & $ | $4 \pm 3.3$ $4 \pm 29$ $4 \pm 0.84$ $6 \pm 36$ $6 \pm 10$ $4 \pm 0.16$ $4 \pm 12$ $4 \pm 2.2$ $9 \pm 0.89$ $-9 \pm 53$ $.7 \pm 3.5$                                       | ] E-05<br>] E-07<br>] E-05<br>] E-07<br>] E-06<br>] E-06<br>] E-06<br>] E-05<br>] E-07<br>] E-06 | 1.3 E-04<br>1.2 E-05<br>3.2 E-05<br>1.5 E-05<br>4.3 E-05<br>8.5 E-06<br>5.1 E-05<br>9.0 E-06<br>3.5 E-05<br>2.2 E-05<br>1.4 E-05 |                                                               | В            |
|                                            |                                                                    | Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141<br>Ce-144 | $\begin{bmatrix} -1 \\ 1 \\ 2 \\ -1 \\ 4 \\ 4 \\ 4 \\ 4 \\ -1 \\ 4 \\ -1 \\ -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 6 \pm 2.1 \\ .2 \pm 1.4 \\ .2 \pm 4.5 \\ .6 \pm 3.3 \\ .6 \pm 4.3 \\ .0 \pm 0.32 \\ -1 \pm 23 \\ -1 \pm 11 \\ .1 \pm 4.1 \\ .6 \pm 0.82 \\ \end{array}$ | ] E-05<br>] E-06<br>] E-06<br>] E-06<br>] E-06<br>] E-05<br>] E-07<br>] E-06<br>] E-06<br>] E-05 | 8.6 E-05<br>5.5 E-06<br>1.8 E-05<br>1.6 E-05<br>1.7 E-05<br>5.9 E-06<br>9.3 E-06<br>5.1 E-05<br>1.6 E-05<br>3.1 E-05             |                                                               | B            |

A - Calculated MDCs are a-posteriori values.
 B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

18 E. Moreno

A. D. Banavali

| MA                                         |                                                                | IKE ENGINEERI                                | G AND SERVICES ENVIRONMENTAL LABORATORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ſ                                                       |  |  |  |  |
|--------------------------------------------|----------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| MAY                                        | 0 6 1998                                                       | 10 0                                         | R Part 50/61 Analysis Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                         |  |  |  |  |
|                                            | E&S<br>IENTAL LAB.                                             |                                              | Page 2 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |  |  |  |  |
| Laboratory S<br>Sample Sub<br>Total Amt of | Sample Number:<br>mission Code:<br>Media Type:<br>Sample Sent: | X10422<br>QZZc07F1198<br>Concrete<br>108.7 g | Customer: GTS Dur<br>Sample Reference Date: March 2<br>Date Sample Received: April 2<br>Count Date: May 2,<br>Report Date: May 5,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | atek<br>20, 1998<br>27, 1998<br>1998<br>1998            |  |  |  |  |
|                                            | :                                                              | Sample Descri                                | tion: A9902/02MC1/00006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                         |  |  |  |  |
| Analysis<br>Requested                      | Aliquot<br>Weight<br>Processed<br>[g]                          | Isotope                                      | $\begin{array}{rcl} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ &$ | :ectable<br>ion (A)<br>ce Date<br>REQUIRED<br>] Note(s) |  |  |  |  |
| Gamma Scan<br>(continued)                  |                                                                | Eu-152<br>Eu-154<br>Eu-155                   | 5.80 ± 0.30 ] E-04 1.3 E-05<br>4.47 ± 0.49 ] E-05 1.7 E-05<br>-9.1 ± 4.8 ] E-06 1.9 E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.0E-06 B<br>B                                          |  |  |  |  |

∵^te(s):

Calculated MDCs are a-posteriori values.
 B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

CIU Yren 5/18

Moreno

Pillyperio fr

Α.

| <u>*</u> 1AI              |                                                                     | KE ENGINEER                              | ING AND SERVICES ENVIRONMENTAL LABORATORY                                                                                                                                                               |      |
|---------------------------|---------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| MAY 0 5 1998              |                                                                     |                                          | Page 1 of 2                                                                                                                                                                                             |      |
| Sample St<br>Total Amt of | EAMPAL NAMBer:<br>ubmission Code:<br>Media Type:<br>of Sample Sent: | Z10367<br>QMET01 149<br>Metal<br>10.31 g | Customer: GTS Duratek<br>8 Sample Reference Date: April 9, 1998<br>Date Sample Received: April 24, 1998<br>Report Date: May 2, 1998                                                                     |      |
|                           | S                                                                   | ample Descr                              | iption: A9902/03WE1/LAB10/00001 (MYD88 #1)                                                                                                                                                              |      |
| Analysis<br>Requested     | Aliquot<br>Weight<br>Processed<br>[g]                               | Analysis<br>Date                         | Minimum Detectable         Activity Concentration       Concentration (A)         Net ± 1σ Overall       on Reference Date         on Reference Date       CALCULATED         [ µCi/g ]       [ µCi/g ] | :(s) |
| <br>Fe-55                 | 3.3000E-03                                                          | 05/01/98                                 | [ 6.0 ± 1.7 ] E-03 4.9 E-03 1.0E-01 B                                                                                                                                                                   |      |

+ • (s):

A Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

E. M. Moreno

th

A. D. Banavali

| MAILED DUKE                                                                                                   | ENGINEERING AND S                 | ERVICES ENVIRONMENTAL LA                                                                    | BORATORY                                                                        |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| MAY 0 5 1998                                                                                                  | 10 CFR Part                       | 50/61 Analysis Report                                                                       |                                                                                 |
|                                                                                                               | F                                 | Page 2 of 2                                                                                 |                                                                                 |
| Laboratory Sample Number: 210<br>Sample Submission Code: QM<br>Media Type: Me<br>Total Amt of Sample Sent: 10 | 0367<br>ETO1 1498<br>tal<br>.31 g | Customer:<br>Sample Reference Date:<br>Date Sample Received:<br>Count Date:<br>Report Date: | GTS Duratek<br>April 9, 1998<br>April 24, 1998<br>April 24, 1998<br>May 2, 1998 |
| Samp                                                                                                          | le Description:                   | A9902/03WE1/LAB06/00                                                                        | 0001 (MYD88 #1)                                                                 |
| Aliquot<br>Weight                                                                                             | Activity<br>Net ±                 | Min<br>Concentration Con<br>1 o Overall on                                                  | nimum Detectable<br>acentration (A)<br>Reference Date                           |

| Analysis   | Processed |          |   | on Reference    | Date   | CALCULATED | REQUIRED |         |
|------------|-----------|----------|---|-----------------|--------|------------|----------|---------|
| Requested  | [a]       | Isotope  |   | [ µCi/g ]       |        | [ μCi,     | /g ]     | Note(s) |
|            |           |          |   |                 |        |            |          |         |
| Gamma Scan | 10.3100   | Cr-51    | [ | $-5.0 \pm 8.8$  | ] E-05 | 3.6 E-04   |          |         |
|            |           | Mn-54    | [ | $5 \pm 11$      | ] E-06 | 4.5 E-05   |          |         |
|            |           | Co-57    | ſ | $4.6 \pm 3.7$   | ] E-06 | 1.4 E-05   |          |         |
|            |           | Co-58    | [ | $2.2 \pm 1.1$   | ] E-05 | 4.1 E-05   |          |         |
|            |           | Fe-59    | [ | 9 ± 15          | ] E-06 | 6.7 E-05   |          |         |
|            |           | Co-60    | [ | $5.46 \pm 0.32$ | ] E-04 | 3.6 E-05   | 1.0E-01  | В       |
|            |           | Zn-65    | [ | -3.2 ± 3.0      | ] E-05 | 1.4 E-04   |          |         |
| <          |           | Nb-94    | I | $1.2 \pm 8.1$   | ] E-06 | 3.4 E-05   |          |         |
|            |           | Zr-95    | [ | -1.1 ± 1.9      | ] E-05 | 8.4 E-05   |          |         |
|            |           | Nb-95    | [ | 4 ± 12          | ] E-06 | 5.0 E-05   |          |         |
|            |           | Ru-103   | Ĩ | $-1 \pm 11$     | ] E-06 | 4.4 E-05   |          |         |
|            |           | Ru-106   | Ĩ | $-8.1 \pm 8.6$  | ] E-05 | 3.8 E-04   |          |         |
|            |           | Ag-108m  | ſ | -8 ± 81         | ] E-07 | 3.5 E-05   |          |         |
|            |           | Ag-110m  | ſ | $1.5 \pm 1.8$   | ] E-05 | 7.3 E-05   |          |         |
|            |           | sb-124   | Î | $1.27 \pm 0.64$ | ] E-05 | 8.6 E-06   |          |         |
|            |           | Sb-125   | i | $4.3 \pm 2.4$   | ] E-05 | 1.0 E-04   |          |         |
|            |           | Cs-134   | ĩ | $2.93 \pm 0.61$ | j E-05 | 2.6 E-05   |          | в       |
|            |           | Cs-137   | ſ | 6.53 ± 0.39     | j E-04 | 2.9 E-05   |          | В       |
|            |           | BaLa-140 | ŕ | 6 ± 14          | i E-06 | 6.3 E-05   |          |         |
|            |           | Ce-141   | ř | $-2 \pm 10$     | 1 E-06 | 4.2 E-05   |          |         |
|            |           | Ce-144   | ĺ | $-4.2 \pm 3.4$  | ] E-05 | 1.4 E-04   |          |         |

- A Calculated MDCs are a-posteriori values. B Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Reviewed by

EUNINER 57/48 M. Moreno Е<sup>(</sup>.

Ellenne h

A. D. Banavali

| MA                                                     |                                                                                | JKE ENGINEEF                                                                                                                                         | RING AND                                                                                                                                                                                     | SERVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENVIRONME                                                                                                                                                    | ENTAL LABORATO                                                                                                                                                                                                                                           | ORY                                                                              |         |
|--------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------|
| MAY                                                    | 0 5 1998                                                                       | 10                                                                                                                                                   | CFR Part                                                                                                                                                                                     | 50/61 Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | alysis Re                                                                                                                                                    | eport                                                                                                                                                                                                                                                    |                                                                                  |         |
| D                                                      | E&S                                                                            |                                                                                                                                                      |                                                                                                                                                                                              | Page 2 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                            |                                                                                                                                                                                                                                                          |                                                                                  |         |
| ENVIRONI<br>Laboratory S<br>Sample Sub<br>Fotal Amt of | VENTAL LAB.<br>Sample Number:<br>omission Code:<br>Media Type:<br>Sample Sent: | Z10368<br>QMET02 149<br>Metal<br>12.01 g<br>Sample Descr                                                                                             | 98<br>ription:                                                                                                                                                                               | Sample<br>Date S<br>A99(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cus<br>Reference<br>Sample Rec<br>Count<br>Report<br>02/03WE1/1                                                                                              | atomer: GTS )<br>a Date: Apri<br>ceived: Apri<br>t Date: Apri<br>t Date: May 2<br>LAB06/00002 ()                                                                                                                                                         | Duratek<br>1 9, 1998<br>1 24, 1998<br>1 24, 1998<br>2, 1998<br>MYD89 <b>#</b> 2) |         |
| Analysis<br>Requested                                  | Aliquot<br>Weight<br>Processed<br>[g]                                          | Isotope                                                                                                                                              | Activit<br>Net<br>on R                                                                                                                                                                       | y Concent<br>± 1σ Οτ<br>eference<br>[ μCi/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ration<br>verall<br>Date                                                                                                                                     | Minimum H<br>Concentra<br>on Refere<br>CALCULATED<br>[ µCi                                                                                                                                                                                               | Detectable<br>ation (A)<br>ence Date<br>REQUIRED<br>/g ]                         | Note(s) |
| Jamma Scan                                             | 12.0100                                                                        | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103<br>Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125 | $\begin{bmatrix} -2.\\ 1.\\ -2.\\ 4.\\ 0.\\ 4.9\\ -7.\\ -2.\\ -4.\\ 1.\\ 2.\\ -4.\\ -1.\\ -3.\\ -1.\\ 4.\\ 4.\\ 4.\\ 4.\\ 4.\\ 4.\\ 5.\\ -3.\\ -1.\\ -1.\\ -1.\\ -1.\\ -1.\\ -1.\\ -1.\\ -1$ | $2 \pm 2.2$<br>$3 \pm 2.2$<br>$2 \pm 1.0$<br>$7 \pm 2.3$<br>$0 \pm 7.4$<br>$6 \pm 0.37$<br>$3 \pm 6.2$<br>$5 \pm 2.4$<br>$7 \pm 2.8$<br>$5 \pm 2.3$<br>$5 \pm 2.3$<br>$5 \pm 2.5$<br>$7 \pm 2.5$ | ] E-05<br>] E-06<br>] E-06 | 9.2 $E-05$<br>9.3 $E-06$<br>4.2 $E-06$<br>8.6 $E-06$<br>3.1 $E-05$<br>5.9 $E-06$<br>2.8 $E-05$<br>1.0 $E-05$<br>1.2 $E-05$<br>1.2 $E-05$<br>1.2 $E-05$<br>1.1 $E-04$<br>1.1 $E-04$<br>1.1 $E-05$<br>1.7 $E-05$<br>2.7 $E-05$<br>2.3 $E-05$<br>2.6 $E-05$ | 1.0E-01                                                                          | В       |
|                                                        |                                                                                | Cs-134<br>Cs-137<br>BaLa-140<br>Ce-141<br>Ce-144                                                                                                     | [ 4.<br>[ 3.6<br>[ 3.<br>[ 6.<br>[ 5.                                                                                                                                                        | $8 \pm 2.0 \\ 2 \pm 0.33 \\ 2 \pm 4.9 \\ 2 \pm 2.6 \\ 3 \pm 8.1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ] E-06<br>] E-05<br>] E-06<br>] E-06<br>] E-06                                                                                                               | 7.6 E-06<br>6.8 E-06<br>2.1 E-05<br>1.0 E-05<br>3.2 E-05                                                                                                                                                                                                 |                                                                                  | В       |

A - Calculated MDCs are a-posteriori values.

B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Reviewed by

٩Y Moreno

th

A. D. Banavali

## MAILED

DUKE ENGINEERING AND SERVICES ENVIRONMENTAL LABORATORY

MAY 0 5 1998

DE&S ENVIRONMENTAL LAB. 10 CFR Part 50/61 Analysis Report \_\_\_\_\_

Page 1 of 2

| Laboratory Sample Number: | Z10368      | Customer:              | GTS Duratek    |
|---------------------------|-------------|------------------------|----------------|
| Sample Submission Code:   | QMET02 1498 | Sample Reference Date: | April 9, 1998  |
| - Media Type:             | Metal       | Date Sample Received:  | April 24, 1998 |
| Total Amt of Sample Sent: | 12.01 g     | Report Date:           | May 2, 1998    |

Sample Description: A9902/03WE1/LAB10/00002 (MYD89 #2)

\_\_\_\_

| Analysis<br>Requested | Aliquot<br>Weight<br>Processed<br>[g] | Analysis<br>Date | Act<br>Ne | ivity Concent<br>t ± 1σ O<br>on Reference<br>[ μCi/g | tration<br>verall<br>Date<br>) | Minimum De<br>Concentrat<br>on Referen<br>CALCULATED<br>[ µCi/g | Note(s) |  |
|-----------------------|---------------------------------------|------------------|-----------|------------------------------------------------------|--------------------------------|-----------------------------------------------------------------|---------|--|
|                       | 1.4400E-03                            | 05/01/98         | [         | 5.6 ± 4.3                                            | ] E-03                         | 1.3 E-02                                                        | 1.0E-01 |  |

·'`?(s):

A - Calculated MDCs are a-posteriori values.

| MAIL                                                | ED DU                                                                          | KE ENGINEE                             | RING AND SERVICES ENVIRONMENTAL LABORATORY                                                                                                                               |       |
|-----------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| MAY 0 5                                             | 1998                                                                           | 10                                     | CFR Part 50/61 Analysis Report                                                                                                                                           |       |
| DE&                                                 | S                                                                              |                                        | Page 1 of 2                                                                                                                                                              |       |
| JVIRONMEN<br>Laboratory<br>Sample Su<br>Total Amt o | NIAL LAB.<br>Sample Number:<br>bmission Code:<br>Media Type:<br>f Sample Sent: | Z10369<br>QMET03 14<br>Metal<br>2.47 g | Customer: GTS Duratek<br>98 Sample Reference Date: April 9, 1998<br>Date Sample Received: April 24, 1998<br>Report Date: May 2, 1998                                     |       |
|                                                     | s                                                                              | ample Desc                             | ription: A9902/03WE1/LAB10/00003 (MYD90 #3)                                                                                                                              |       |
| Analysis<br>Requested                               | Aliquot<br>Weight<br>Processed<br>[g]                                          | Analysis<br>Date                       | Minimum DetectableActivity ConcentrationConcentration (A)Net $\pm$ 1 $\sigma$ Overallon Reference Dateon Reference DateCALCULATEDREQUIRED[ $\mu$ Ci/g ][ $\mu$ Ci/g ]Not | :e(s) |
| Fe-55                                               | 5.8100E-04                                                                     | 05/01/98                               | [ -1.3 ± 1.3 ] E-02 4.4 E-02 1.0E-01                                                                                                                                     |       |

÷

····•(s):

A Calculated MDCs are a-posteriori values.

Ý۴

M. Moreno Е.

Ŵ Ш |} Banavali Α. б.

| MAI                                                    |                                                                          | UKE ENGIN                                                                                                                                                                                     | NEERING AND S                                                                                                                                                                                                                                  | ERVICES E                                                                                                                                                                                                                                   | NVIRONM                                                                                                                                                                                              | ENTAL LABORATOF                                                                                                                                                                                                                                                                                    | ΥΥ                                                                  |         |
|--------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------|
| O YAM                                                  | 5 1998                                                                   |                                                                                                                                                                                               | 10 CFR Part                                                                                                                                                                                                                                    | 50/61 Ana                                                                                                                                                                                                                                   | lysis Re                                                                                                                                                                                             | eport                                                                                                                                                                                                                                                                                              |                                                                     |         |
| DE                                                     | &S                                                                       |                                                                                                                                                                                               | P                                                                                                                                                                                                                                              | age 2 of                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                    |                                                                     |         |
| ENVIRONM<br>Laboratory S<br>Sample Sub<br>Total Amt of | ENTALLAB<br>Sample Number:<br>Dedia Code:<br>Media Type:<br>Sample Sent: | Z10369<br>QMET03<br>Metal<br>2.47 g<br>Sample De                                                                                                                                              | 1498<br>escription:                                                                                                                                                                                                                            | Sample R<br>Date Sa<br>A9902                                                                                                                                                                                                                | Cus<br>eference<br>mple Red<br>Count<br>Report<br>/03WE1/1                                                                                                                                           | atomer: GTS Du<br>Date: April<br>ceived: April<br>Date: April<br>Date: May 2,<br>CAB06/00003 (MY                                                                                                                                                                                                   | ratek<br>9, 1998<br>24, 1998<br>27, 1998<br>1998<br>D90 <b>#</b> 3) |         |
| Analysis<br>Requested                                  | Aliquot<br>Weight<br>Processed<br>[g]                                    | Isotope                                                                                                                                                                                       | Activity<br>Net ±<br>on Re<br>[                                                                                                                                                                                                                | Concentr<br>lσ Ove<br>ference D<br>μCi/g ]                                                                                                                                                                                                  | ation<br>rall<br>ate                                                                                                                                                                                 | Minimum De<br>Concentrat<br>on Referen<br>CALCULATED<br>[ µCi/g                                                                                                                                                                                                                                    | tectable<br>ion (A)<br>ce Date<br>REQUIRED                          | Note(s) |
| Gamma Scan                                             | 2.4700                                                                   | Cr-51<br>Mn-54<br>Co-57<br>Co-58<br>Fe-59<br>Co-60<br>Zn-65<br>Nb-94<br>Zr-95<br>Nb-95<br>Ru-103<br>Ru-106<br>Ag-108m<br>Ag-110m<br>Sb-124<br>Sb-125<br>Cs-134<br>Cs-137<br>BaLa-14<br>Ce-141 | $\begin{bmatrix} -9\\ [ -1.7\\ [ 4.1]\\ [ 1.1]\\ [ 1.2\\ [ 5.88\\ [ -4.3\\ [ 0.0\\ [ -1.7\\ [ 1.4\\ [ 1.12\\ [ -2.7\\ [ 1.4\\ [ 1.12\\ [ -2.7\\ [ -6.0\\ [ 1.4\\ [ -3]\\ [ 1.2\\ [ -2\\ [ 1.14\\ 0 \ [ 1.7\\ [ 2.8\\ [ -4.1\\ ] \end{bmatrix}$ | $\begin{array}{c} \pm 78 \\ \pm 1.0 \\ \pm 3.5 \\ \pm 1.0 \\ \pm 2.6 \\ \pm 0.80 \\ \pm 2.7 \\ \pm 8.7 \\ \pm 1.7 \\ \pm 1.1 \\ \pm 7.6 \\ \pm 1.2 \\ \pm 23 \\ \pm 1.8 \\ \pm 2.4 \\ \pm 1.0 \\ \pm 2.4 \\ \pm 1.0 \\ \pm 3.0 \end{array}$ | ] E-06<br>] E-05<br>] E-05<br>] E-05<br>] E-05<br>] E-05<br>] E-06<br>] E-05<br>] E-05<br>] E-05<br>] E-06<br>] E-05<br>] E-05<br>] E-05<br>] E-05<br>] E-05<br>] E-05<br>] E-05<br>] E-05<br>] E-05 | 3.2 $E-04$<br>4.5 $E-05$<br>1.4 $E-05$<br>4.3 $E-05$<br>1.1 $E-04$<br>3.0 $E-05$<br>1.2 $E-04$<br>3.5 $E-05$<br>7.3 $E-05$<br>4.4 $E-05$<br>3.4 $E-05$<br>3.2 $E-04$<br>3.7 $E-05$<br>4.9 $E-05$<br>1.0 $E-04$<br>7.2 $E-05$<br>3.6 $E-05$<br>2.6 $E-05$<br>1.0 $E-04$<br>3.9 $E-05$<br>1.2 $E-04$ | 1.0E-01                                                             | В       |

A - Calculated MDCs are a-posteriori values.
 B - Results are statistically positive at the 99.9% confidence level (activity is greater than three times the standard deviation).

Reviewed by

E. M. Moreno

Ŷ

A. D. Banavali