

South Texas Project Electric Generating Station P.O. Box 289 Wadsworth, Texas 77483

October 2, 2001 NOC-AE-01001191 File No.: G09.06 STI: 31348178 10CFR50

U. S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555-0001

> South Texas Project Units 1 and 2 Docket Nos. STN 50-498, STN 50-499 Revision to Technical Specification Bases Pages

STP Technical Specification Bases pages B 3/4 3-1, B 3/4 3-2, B 3/4 3-2a and B 3/4 9-2 are attached for your information and for the update of the NRC copy of the STP Technical Specification Bases. These revisions reflect the changes approved under Amendments 130 and 132 for Unit 1 and 119 and 121 for Unit 2. The Bases pages that were issued as part of the Amendment approval packages were based upon the pages provided to the NRC as attachments in the associated STP License Amendment Requests (LARs). However, the Bases have been revised subsequent to these LARs, which resulted in the pages issued as part of Amendments 130, 132, 119, and 121 containing outdated information. Therefore, the current version of the Bases were revised to reflect the changes approved under these Amendments.

If you have any questions, please contact J. R. Morris at 361-972-8652 or me at 361-972-7136.

sull

Scott M. Head Manager, Licensing

jrm/

Attachments: Technical Specifications Bases Page B 3/4 3-1 Technical Specifications Bases Page B 3/4 3-2 Technical Specifications Bases Page B 3/4 3-2a Technical Specifications Bases Page B 3/4 9-2

AOO

Ellis W. Merschoff Regional Administrator, Region IV U.S. Nuclear Regulatory Commission 611 Ryan Plaza Drive, Suite 400 Arlington, Texas 76011-8064

Mohan C. Thadani Addressee Only U. S. Nuclear Regulatory Commission Project Manager, Mail Stop OWFN/7-D-1 Washington, DC 20555-0001

Cornelius F. O'Keefe U. S. Nuclear Regulatory Commission P. O. Box 289, Mail Code MN116 Wadsworth, TX 77483

A. H. Gutterman, EsquireMorgan, Lewis & Bockius1800 M. Street, N.W.Washington, DC 20036-5869

M. T. Hardt/W. C. Gunst City Public Service P. O. Box 1771 San Antonio, TX 78296

A. Ramirez/C. M. Canady City of Austin Electric Utility Department 721 Barton Springs Road Austin, TX 78704 Jon C. Wood Matthews & Branscomb 112 East Pecan, Suite 1100 San Antonio, Texas 78205-3692

Institute of Nuclear Power Operations - Records Center 700 Galleria Parkway Atlanta, GA 30339-5957

Richard A. Ratliff Bureau of Radiation Control Texas Department of Health 1100 West 49th Street Austin, TX 78756-3189

R. L. Balcom/D. G. TeesReliant Energy, Inc.P. O. Box 1700Houston, TX 77251

C. A. Johnson/R. P. Powers AEP - Central Power and Light Company P. O. Box 289, Mail Code: N5022 Wadsworth, TX 77483

U. S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555-0001

cc:

The second second second

3/4.3 INSTRUMENTATION

BASES

٩

3/4.3.1 and 3/4.3.2 REACTOR TRIP SYSTEM and ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION

The OPERABILITY of the Reactor Trip System and the Engineered Safety Features Actuation System instrumentation and interlocks ensures that: (1) the associated ACTION and/or Reactor trip will be initiated when the parameter monitored by each channel or combination thereof reaches its Setpoint, (2) the specified coincidence logic is maintained, (3) sufficient redundancy is maintained to permit a channel to be out-of-service for testing or maintenance, and (4) sufficient system functional capability is available from diverse parameters.

The OPERABILITY of these systems is required to provide the overall reliability, redundancy, and diversity assumed available in the facility design for the protection and mitigation of accident and transient conditions. The integrated operation of each of these systems is consistent with the assumptions used in the safety analyses. The Surveillance Requirements specified for these systems ensure that the overall system functional capability is maintained comparable to the original design standards. The periodic surveillance tests performed at the minimum frequencies are sufficient to demonstrate this capability. Specified surveillance intervals and surveillance and maintenance outage times have been determined in accordance with WCAP-10271, "Evaluation of Surveillance Frequencies and Out of Service Times for the Reactor Protection Instrumentation System," supplements to that report, and the South Texas Project probabilistic safety assessment (PSA). Surveillance intervals and out of service times were determined based on maintaining an appropriate level of reliability of the Reactor Protection System instrumentation.

ACTION 4 of Table 3.3-1 is modified to indicate that normal plant control operations that individually add limited positive reactivity (e.g., temperature or boron fluctuations associated with RCS inventory management or temperature control) are not precluded by this Action, provided they are accounted for in the calculated SHUTDOWN MARGIN required by Technical Specifications. Introduction of coolant inventory must be from sources that have a boron concentration greater than what would be required in the RCS for minimum SHUTDOWN MARGIN. This may result in an overall reduction in RCS boron concentration, but provides acceptable margin to maintaining subcritical operation. Introduction of temperature changes must also be evaluated to ensure they do not result in a loss of SHUTDOWN MARGIN. Control rod withdrawal is not allowed.

ACTION 5 of Table 3.3-1 for the Extended Range Neutron Flux Instrumentation is similar to ACTION 4 for the Source Range Instrumentation. The Action indicates that normal plant control operations that individually add limited positive reactivity (e.g., temperature or boron fluctuations associated with RCS inventory management or temperature control) are not precluded by this Action, provided they are accounted for in the calculated SHUTDOWN MARGIN required by Technical Specifications. Introduction of coolant inventory must be from sources that have a boron concentration greater than that required in the RCS for minimum SHUTDOWN MARGIN or refueling boron concentration. This may result in an overall reduction in RCS boron concentration, but provides acceptable margin to maintaining subcritical operation. Introduction of temperature changes including temperature increases when operating with a positive Moderator Temperature Coefficient must also be evaluated to ensure they do not result in a loss of SHUTDOWN MARGIN. Control Rod withdrawal is not allowed.

SOUTH TEXAS - UNITS 1 & 2

B 3/4 3-1

Unit 1 - Amendment No. 116, 128 Unit 2 - Amendment No. 104, 117 01-14688

BASES

REACTOR TRIP SYSTEM and ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION (Continued)

The Engineered Safety Features Actuation System Instrumentation Trip Setpoints specified in Table 3.3-4 are the nominal values at which the bistables are set for each functional unit. A Setpoint is considered to be adjusted consistent with the nominal value when the "as measured" Setpoint is within the band allowed for calibration accuracy.

The measurement of response time at the specified frequencies provides assurance that the Reactor trip and the Engineered Safety Features actuation associated with each channel is completed within the time limit assumed in the safety analyses. No credit was taken in the analyses for those channels with response times indicated as not applicable.

Response time may be verified by actual response time tests in any series of sequential, overlapping or total channel measurements, or by the summation of allocated sensor, signal processing and actuation logic response times with actual response time tests on the remainder of the channel. Allocations for sensor response times may be obtained from: (1) historical records based on acceptable response time tests (hydraulic, noise, or power interrupt tests), (2) in place, onsite, or offsite (e.g., vendor) test measurements, or (3) utilizing vendor engineering specifications. WCAP-13632-P-A Revision 2, "Elimination of Pressure Sensor Response Time Testing Requirements" provides the basis and methodology for using allocated sensor response times in the overall verification of the channel response time for specific sensors identified in the WCAP.

Response time verification for other sensor types must be demonstrated by test. WCAP-14036-P-A Revision 1, "Elimination of Periodic Protection Channel Response Time Tests" and WCAP-15413, "Westinghouse 7300A ASIC-Based Replacement Module Licensing Summary Report" provide the basis and methodology for using allocated signal processing and actuation logic response times in the overall verification of the protection system channel response time. The allocations for sensor, signal conditioning and actuation logic response times must be verified prior to placing the component in operational service and re-verified following maintenance that may adversely affect response time. In general, electrical repair work does not impact response time provided the parts used for repair are of the same type and value. Specific components identified in the WCAP may be replaced without verification testing. One example where response time could be affected is replacing the sensing assembly of a transmitter. WCAP-15413 provides bounding response times where 7300 cards have been replaced with ASICs cards.

SOUTH TEXAS - UNITS 1 & 2

Unit 1 - Amendment No. 116, 125 Unit 2 - Amendment No. 104, 113 01-14688

INSTRUMENTATION

BASES

REACTOR TRIP SYSTEM and ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION (Continued)

The Engineered Safety Features Actuation System senses selected plant parameters and determines whether or not predetermined limits are being exceeded. If they are, the signals are combined into logic matrices sensitive to combinations indicative of various accidents, events, and transients. Once the required logic combination is completed, the system sends actuation signals to those Engineered Safety Features components whose aggregate function best serves the requirements of the condition. As an example, the following actions may be initiated by the Engineered Safety Features Actuation System to mitigate the consequences of a steam line break or loss-of-coolant accident: (1) Safety Injection pumps start, (2) Reactor trip, (3) feedwater isolation, (4) startup of the standby diesel generators, (5) containment spray pumps start and automatic valves position, (6) containment isolation, (7) steam line isolation, (8) Turbine trip, (9) auxiliary feedwater pumps start and automatic valves position, (10) reactor containment fan coolers start, (11) essential cooling water pumps start and automatic valves position, (12) Control Room Ventilation Systems start, and (13) component cooling water pumps start and automatic valves position.

ACTION 27 for an inoperable channel of control room ventilation requires the associated train of control room ventilation to be declared inoperable and the appropriate action take in accordance with Specification 3.7.7. Each control room ventilation system (train) is actuated by its own instrumentation channel. Consequently an inoperable channel of ventilation actuation instrumentation renders that system/train of ventilation inoperable and Specification 3.7.7 prescribes the appropriate action.

With less than the minimum channels of Control Room Intake Air Radioactivity - High, ACTION 28 of Table 3.3-3 requires the Control Room Makeup and Cleanup Filtration System to be operated at 100% capacity in the recirculation and filtration mode. Any two of three 50% Control Room Makeup and Cleanup Filtration System trains meet the 100% capacity requirement.

SOUTH TEXAS - UNITS 1 & 2

B 3/4 3-2a

Unit 1 - Amendment No. Unit 2 - Amendment No. 01-14688

ľ

REFUELING OPERATIONS

BASES

3/4.9.4 CONTAINMENT BUILDING PENETRATIONS (Continued)

Operability of a containment personnel airlock door requires that the door is capable of being closed, i.e., that the door is unblocked and no cables or hoses run through the personnel airlock. Containment personnel airlock door closure is required to take place within 30 minutes of initiation of a fuel handling accident inside containment if the reactor has been subcritical for less than 165 hours. Fuel movement is not permitted with personnel airlock doors open, if the reactor has not been subcritical for \geq 95 hours. If the reactor has been subcritical for 165 hours or more, containment personnel airlock door closure is to occur as soon as practicable, but is assumed to occur within 2 hours to be consistent with the accident analysis. These requirements assure that the associated doses are limited to within acceptable levels. The requirement to have 23 feet of water above the reactor vessel flange is consistent with the fuel handling accident analysis assumptions, Regulatory Guide 1.25, and Technical Specification 3.9.10, Water Level - Refueling Cavity.

3/4.9.5 COMMUNICATIONS

The requirement for communications capability ensures that refueling station personnel can be promptly informed of significant changes in the facility status or core reactivity conditions during CORE ALTERATIONS.

3/4.9.6 (NOT USED)

3/4.9.7 CRANE TRAVEL - FUEL HANDLING BUILDING

The restriction on movement of loads in excess of the nominal weight of a fuel and control rod assembly and associated handling tool over other fuel assemblies in the storage pool, unless handled by the single-failure-proof main hoist of the FHB 15-ton crane, ensures that in the event this load is dropped: (1) the activity release will be limited to that contained in a single fuel assembly, and (2) any possible distortion of fuel in the storage racks will not result in a critical array. This assumption is consistent with the activity release assumed in the safety analyses.

SOUTH TEXAS - UNITS 1 & 2

B 3/4 9-2

Unit 1 - Amendment No. 69 Unit 2 - Amendment No. 58 01-14688