Indiana Michigan Power Company Cook Nuclear Plant 500 Circle Drive Buchanan, MI 49107 616465-5901

AEP INDIANA MICHIGAN POWER

August 31, 2001

C0801-05

Docket Nos: 50-315 50-316

U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Mail Stop O-P1-17 Washington, DC 20555-0001

Donald C. Cook Nuclear Plant Units 1 and 2 NRC GENERIC LETTER (GL) 96-06 ASSURANCE OF EQUIPMENT OPERABILITY AND CONTAINMENT INTEGRITY DURING DESIGN BASIS ACCIDENT CONDITIONS RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION (TAC NOS. M96801 AND M96802)

- References: 1. Letter from A. C. Bakken III, Indiana Michigan Power Company to Nuclear Regulatory Commission Document Control Desk, "NRC Generic Letter (GL) 96-06, Assurance of Equipment Operability and Containment Integrity During Design Basis Accident Conditions, (TAC Nos. M96801 and M96802)," submittal C0800-10, dated August 15, 2000.
 - 2. Letter from M. W. Rencheck, Indiana Michigan Power Company, to Nuclear Regulatory Commission Document Control Desk, "Donald C. Cook Nuclear Plant Unit 1, NRC Generic Letter (GL) 96-06, Assurance of Equipment Operability and Containment Integrity During Design Basis Accident Conditions, (TAC Nos. M96801 and M96802)," submittal C1100-01, dated November 7, 2000.
 - Letter from John F. Stang, Nuclear Regulatory Commission, to Robert P. Powers, Indiana Michigan Power Company, "Donald C. Cook Nuclear Plant, Units 1 and 2 – Request for Additional Information, 'Responses to Generic Letter (GL) 96-06 Assurance of Equipment Operability and Containment Integrity During Design-Basis Accident Conditions,' (TAC Nos. M96801 and M96802)," dated June 6, 2001.

AEP: America's Energy Partner®

C0801-05

U. S. Nuclear Regulatory Commission Page 2

In GL 96-06, the Nuclear Regulatory Commission (NRC) requested licensees to review their plant designs to determine if isolated piping sections inside of containment could be subjected to overpressurization following a design-basis accident. Additionally, the NRC requested licensees to determine if piping inside of containment could be subjected to either two-phase flow or waterhammer following a design-basis accident. Indiana Michigan Power Company responded to the GL in References 1 and 2, stating that there were piping sections inside containment that could be subjected to overpressurization and waterhammer following a design-basis accident.

In Reference 3, the NRC requested additional information regarding the evaluations that were performed in responding to the GL. This letter provides a response to the request for additional information.

This letter contains no new commitments. Should you have any questions, please contact Mr. Ronald W. Gaston, Manager of Regulatory Affairs, at (616) 697-5020.

Sincerely,

MW Renchar

M. W. Rencheck Vice President Nuclear Engineering

/dmb

c: J. E. Dyer MDEQ - DW & RPD, w/o attachments NRC Resident Inspector R. Whale, w/o attachments U. S Nuclear Regulatory Commission Page 3

C0801-05

AFFIRMATION

I, Michael W. Rencheck, being duly sworn, state that I am Vice President of Indiana Michigan Power Company (I&M), that I am authorized to sign and file this request with the Nuclear Regulatory Commission on behalf of I&M, and that the statements made and the matters set forth herein pertaining to I&M are true and correct to the best of my knowledge, information, and belief.

Indiana Michigan Power Company

Mh Kenchal

M. W. Rencheck Vice President Nuclear Engineering

SWORN TO AND SUBSCRIBED BEFORE ME

THIS 31 DAY OF August Unnelen irnoski

JENNIFER L KERNOSKY Notaty Public, Berrien County, Michigan My Commission Expires May 26, 2005

ATTACHMENT 1 TO C0801-05

RESPONSE TO GENERIC LETTER (GL) 96-06 REQUEST FOR ADDITIONAL INFORMATION

In GL 96-06, the Nuclear Regulatory Commission (NRC) requested licensees to review their plant designs and determine if piping inside of containment would be subject to overpressurization, waterhammer, or two-phase flow following a design basis accident. Indiana Michigan Power Company (I&M) responded to the GL in letters from A. C. Bakken III, I&M, to NRC Document Control Desk, dated August 15, 2000, and M. W. Rencheck, I&M, to NRC Document Control Desk, dated November 7, 2000. The NRC in a letter from J. F. Stang, Jr. to Robert P. Powers, I&M, dated June 6, 2001, requested additional information. The following responds to the NRC's request for additional information.

NRC Question 1

"If a methodology other than that discussed in NUREG/CR-05220, 'Diagnosis of Condensationinduced Waterhammer,' was used in evaluating the effects of waterhammer, describe this alternate methodology in detail. Also, explain why this methodology is applicable and gives conservative results (typically accomplished through rigorous plant-specific modeling, testing, and analysis)."

I&M Response

NUREG/CR-05220 describes an approach for waterhammer analysis that is based on several primary steps. These are: (1) determine what type of waterhammer is possible, (2) perform analysis to determine the water velocity at collapse of the void or impact of two water slugs, (3) determine the waterhammer pressures using the impact velocity and the speed of sound, and (4) using the waterhammer pressure, determine the waterhammer loads and evaluate the impact of the loads on the system. These steps were followed in the non-essential service water (NESW) system evaluation.

Waterhammer was analyzed using a transient hydraulic computer code that includes the thermodynamic equations of state for water (both liquid and vapor); therefore, the code identifies the locations of voids and water slugs in the piping system, including their transient behavior. This is consistent with the methodology discussed in NUREG/CR-05220. For the NESW system, the primary waterhammer events are trapped void collapse and saturated water slug acceleration. The impact velocity and waterhammer pressure are calculated by the analysis code. Stress analyses were performed to evaluate the impact of the waterhammer loads on the piping and pipe supports. The stress analyses are discussed in the response to Question 2(d).

Additional details on the methodology used, its applicability, and its conservatisms, are described in detail in the Question 2 response.

NRC Question 2

"For both the waterhammer and two-phase flow analyses, provide the following information:

NRC Question 2(a)

Identify any computer codes that were used in the waterhammer and two-phase flow analyses and describe the methods used to benchmark the codes for the specific loading conditions involved (see Standard Review Plan Section 3.9.1)."

I&M Response

The transient hydraulic computer code SYSFLOW, which was developed by MPR Associates, Incorporated, was used to analyze the waterhammer events. The transient thermal hydraulic analysis computer program uses a fully implicit numerical technique to solve the integrated mass, energy, and momentum conservation equations over a set of control volumes connected by fluid connectors. The piping is divided into control volumes that contain mass and energy. Mass and energy are transferred between the control volumes via connections between the centroid of one control volume and the centroid of another control volume. The transient flow rate in the connector is determined by the integrated momentum conservation equation, and the transient behavior of the mass and energy in the control volumes is determined by the integrated mass and energy conservation equations. The pressure, temperature, enthalpy, density, and void fraction are all determined from the mass and energy in a control volume.

Since the analytic approach described above is based on the conservation of mass, energy, and momentum and includes the complete thermodynamic equations of state of steam/water, acoustic phenomena are included implicitly in the solution of the conservation equations. For example, the velocity at which sound propagates can be determined from the properties of steam/water from the partial derivative of pressure with respect to density at constant entropy and the wave equation which controls the propagation of sound waves can be derived directly from the conservation equations.

The computer code was verified by using it to analyze piping configurations for which the answers are known, including problems involving pressure waves traveling through the piping at the speed of sound.

In addition, the results of the computer code were compared with the steady state results calculated with a Proto-Flo steady state computer model of the NESW system. The results of these comparisons show that the calculated results of the transient computer code are acceptable.

The two-phase flow analysis was limited to hand calculations to demonstrate that boiling does not occur in the containment ventilation coolers. A transient analysis computer code was not used for this evaluation.

NRC Question 2(b)

"Describe and justify all assumptions and input parameters (including those used in any computer codes) such as amplifications due to fluid structure interaction, speed of sound, force reductions, and mesh sizes, and explain why the values selected give conservative results. Also, provide justification for omitting any effects that may be relevant to the analysis (e.g., fluid structure interaction, flow induced-vibration, erosion)."

I&M Response

A number of assumptions were made in developing the analysis model and performing the hydraulic and stress analyses. The key assumptions made in the analyses and modeling included:

Waterhammer Analysis - Several key assumptions are built into the analysis methodology and computer code. The most important are:

- No credit is taken for the cushioning effect of any entrained air in the NESW system. This maximizes the magnitude of any resulting pressure pulses.
- The computer code and model neglect fluid structure interaction and the reduction in speed of sound due to pipe expansion. This overestimates the calculated waterhammer pressures.
- The analytic technique overestimates waterhammer pressures. When a void collapses and becomes water solid in the model, the computer code overestimates the mass in the control volume and overestimates the resulting pressure.

Other assumptions made in performing the waterhammer hydraulic analyses included:

- The geometrically similar piping inside containment was modeled as a single line with flow properties of the combined lines as the response would be similar to the response of the two lines individually.
- Several turbine building flow loads were modeled as a single flow connector and resistance. This approach has negligible impact on the analysis results.

Two-Phase Flow

• The containment ventilation coolers are assumed to have zero fouling. This increases the heat transfer rate from the containment atmosphere to the NESW system and increases the possibility of two-phase flow.

Stress Analysis

• A model of a single upper containment ventilation unit line was constructed. It was assumed that this line would provide results comparable to other lines because of the low loads, the ample margin, and the similarity in the piping designs.

NRC Question 2(c)

"Provide a detailed description of the 'worst case' scenarios for waterhammer and two-phase flow (i.e., scenarios that lead to most severe consequences when considering design-basis assumptions such as single-failure, loss of offsite power, etc.), taking into consideration the complete range of event possibilities, system configurations, and parameters. For example, all waterhammer types and water slug scenarios should be considered, as well as temperatures, pressures, flow rates, load combinations, and potential component failures. Additional examples include:

- the effect of void fraction on flow balance and heat transfer;
- the consequences of steam formation, transport, and accumulation;
- cavitation, resonance, and fatigue effects; and
- erosion consideration."

I&M Response

The most severe two-phase conditions that develop in the system result from column separation effects as pumping power is lost during loss-of-offsite power (LOOP) events. Thus, the waterhammer events associated with collapse or compression of steam pockets are not considered. The worst case scenarios for waterhammer in the NESW containment piping were determined by a failure modes and effects analysis (FMEA). These scenarios are:

A dual unit LOOP waterhammer event occurring in the upper-containment-ventilation unit's piping without a loss-of-coolant accident (LOCA). This event results in the maximum voiding in the NESW system, with the containment isolation valves remaining open. This is a classic column separation waterhammer scenario. The worst case pressures result from assuming the void collapses without air present (to cushion the impact) and with cold water in the system. The largest voids are in the upper containment ventilation unit piping. The FMEA determined that the limiting case is a LOOP with a lower containment ventilation unit isolation valve failing closed. This would direct more flow towards the upper containment ventilation units and increase the impact velocity.

A dual unit LOOP waterhammer event occurring in the lower-containment-ventilation unit's piping with a small break LOCA. Although the voids in the lower ventilation unit piping would not be as large as in the upper ventilation unit piping, it is possible that the refill velocity could

be higher, since the system will preferentially fill the lower unit's piping before filling the upper unit's piping. This is also a classic column separation waterhammer scenario, with the same assumptions as the previous case (no air cushioning, cold water, etc.). The FMEA determined that the limiting case is a LOOP with a lower containment ventilation unit isolation valve failing closed. This would direct more flow towards the open lower containment ventilation units and increase the impact velocity.

In summary, the worst case scenarios are classic column separation configurations, using traditional limiting assumptions.

The containment ventilation units are not used for accident mitigation. Thus, the effect on the heat transfer coefficients is not a concern, as the ventilation units are not credited with removing heat from containment following an accident.

NRC Question 2(d)

"Please provide the limiting piping loads for the bounding waterhammer and provide comparisons to the allowable limits for these loads. Please include results demonstrating integrity of the non-essential-service water (NESW) system inside containment and the results demonstrating the integrity of the system outside of the containment. Include consideration of containment isolation valves and penetrations."

I&M Response

The maximum piping stress due to the waterhammer loads was calculated to be 10 ksi. The calculated support loads varied, but were typically very small. The maximum support load due to the waterhammer loads was 570 lb.

Full design stress analyses were not performed for the NESW piping for the waterhammer loads. This was because of the very low calculated stresses and support loads. Additionally, the system is not required to remain operational (there are no safe-shutdown required functions). The only requirement is that any failures will not adversely affect safety-related equipment or prevent containment isolation. The appropriate acceptance criteria for this loading are those defined in the Appendix F to Section III of the American Society of Mechanical Engineers (ASME) Code. These criteria provide ample margin, and a qualitative evaluation was performed to determine that the calculated loads and stresses, even when combined with gravity and other applicable loads, would still be considerably less than the code acceptance criteria.

The calculated pipe stresses were determined assuming no pipe supports were present. The maximum stress of 10 ksi is not a concern for significant piping damage or detrimental impact on isolation valve performance as this stress is well below the ASME Code, Appendix F limits. The NESW system is not safety related, so detailed design analyses of all piping segments and pipe supports were not performed. However, the maximum pipe support load of 570 lbs. is

comparable to the available normal design loads. These loads were considered acceptable even if some support damage occurred, particularly since the piping is acceptable even without the supports.

NRC Question 2(e)

"Confirm that the analyses included a complete failure modes and effects analysis (FMEA) for all components (including electrical and pneumatic failures) that could impact performance of the cooling water system and confirm that the FMEA is documented and available for review, or explain why a complete and fully documented FMEA was not performed."

I&M Response

A FMEA has been performed. The FMEA considered all postulated failures, including electrical, pneumatic and mechanical. The results of the FMEA are summarized in Table 1.

NRC Question 2(f)

"Explain and justify all uses of 'engineering judgement""

I&M Response

Engineering judgement was used in several instances in performing the hydraulic analysis and the piping stress analysis. The most significant use of judgement was in the selection of the basic analysis approach. It was judged that a full, detailed design analysis of all NESW piping inside containment for waterhammer loads is not required. Rather, an analysis of a single containment cooler and its associated piping is adequate. The analysis approach used, and key judgements made, are as follows:

- The hydraulic modeling was performed using two models. A coarse model of the piping inside and outside containment was used to calculate the magnitude and duration of the waterhammer pressure pulse. The profile of this pulse was used as input to a detailed model of a containment cooler and its associated piping to calculate the time history response of the pressure pulse traveling through the cooler's piping. This approach was judged to provide sufficiently accurate results for the NESW system analysis. This conclusion is based on the large margin that exists between the calculated stresses and the applicable acceptance criteria (ASME Code, Appendix F).
- Stress analyses using the hydraulic loads as inputs were performed for a single containment cooler piping segment. A typical cooler line was selected for detailed modeling. This was judged to be acceptable because of the common design approach used for all NESW piping inside containment (e.g., span lengths between supports, routing through the containment, etc.). The stress analyses were performed for two

conditions of pipe support stiffness $(1 \times 10^6 \text{ lb/ft}, \text{ and supports not active})$. These two conditions were judged to sufficiently represent the expected piping stresses and pipe support loads. This conclusion is based on the large margin that exists between the calculated stresses and the applicable acceptance criteria (ASME Code, Appendix F). The calculated support loads and piping stresses were judged sufficiently low that additional, detailed analyses considering all postulated design loads is not required.

• Judgement was used in several instances in developing the details of the hydraulic models and the stress analysis models previously discussed. These uses of judgement are typically used by the vendor who performed the analysis. The modeling techniques were implemented under a 10 CFR 50, Appendix B program and have been used in previous applications.

Overall, the use of engineering judgement as described above is considered acceptable for the NESW piping evaluation. The results of the analysis support the judgement. The calculated maximum waterhammer pressure pulses are very low, between 50 and 150 psi, and the associated piping loads are low. The calculated piping stresses were much less than the ASME Section III, Appendix F allowable limits. The postulated waterhammer events would be fairly benign events for the NESW system, and the use of the selected evaluation approach is acceptable.

NRC Question 3

"Was condensation induced waterhammer (CIWH) analyzed? Are there any long horizontal piping runs in the NESW system where CIWH could occur during system drain down following a loss of offsite power or during the refill after power was reestablished?"

I&M Response

CIWH is caused when water slugs are trapped between two steam pockets, with incoming cold water on one side and high-pressure steam on the other side. The presence of the cold water causes a sudden collapse (condensation) of the steam pocket, creating a situation with low pressure on one side of the slug (due to the rapid condensation), and high pressure on the other side. The water slug accelerates through the low-pressure pocket into the incoming water. This condition does not occur in the NESW piping. Although water slugs and steam pockets may form in the piping during drain down, there is always very low pressure on the downstream side of the water slugs (the NESW system is an open loop system). It is impractical to consider that significant CIWH events could occur in these situations. Any CIWH events in the horizontal piping are considered bounded by the column separation waterhammer analysis.

NRC Question 4

"Determine the uncertainty in the waterhammer and two-phase flow analyses, explain how the uncertainty was determined, and how it was accounted for in the analyses to assure conservative results."

I&M Response

The analyses of waterhammer and two-phase flow do not include a formal uncertainty analysis. The results are based on bounding scenarios and conservative modeling approaches; therefore, the calculated results for waterhammer pressures, pipe stresses, and pipe supports are considered conservative. The overall conclusion of the evaluation was that the waterhammer loads are very small and would not cause gross failure of the piping and pipe supports. This conclusion was based on comparisons of calculated pipe stresses and pipe support loads to applicable acceptance criteria (ASME Code, Appendix F). The margins between calculated stresses and allowable stresses were sufficiently large to allow judgement to be used in place of a detailed design analysis of the entire system. Any expected uncertainties in the analysis methodology and results would not change this conclusion.

NRC Question 5

"Confirm that the waterhammer and two-phase flow loading conditions do not exceed any design specifications or recommended service conditions for the piping system and components, including those stated by equipment vendors; and confirm that the system will continue to perform its design-isolation functions as assumed in the safety analysis report for the facility."

I&M Response

The NESW system is a non-safety-related system, and its only safety-related function is to isolate the NESW piping following an accident signal. The NESW system is not required to operate to reach safe shutdown following an accident. Direct comparisons to design specifications, code acceptance criteria, etc., were not performed. Sufficient analyses were performed to provide support for the conclusion that the waterhammer loading is small and would not significantly damage or affect the NESW piping and pipe supports. The potential waterhammer events do not jeopardize the integrity of the containment isolation valves or safety related equipment installed inside containment, nor do they have a detrimental impact on isolation valve performance.

NRC Question 6

"With respect to the waterhammer and two-phase flow issue, provide a simplified diagram of the systems analyzed, showing major components, active components, relative elevations, lengths of piping runs, and the location of any orifices and flow restrictions."

I&M Response

Flow diagrams and isometric drawings of the NESW system are provided in Attachment 2.

NRC Question 7

"Describe in detail any plant modifications or procedural changes that have been made or are planned to be made to resolve the waterhammer and two-phase flow issues. Consider the circumstance by which the NESW would be isolated following a loss-of-coolant accident or steamline break, voided within the containment as the result of internal steam formation and subsequent opening of the isolations valves by operators for post accident containment cooldown. Would waterhammer occur under such a scenario? What procedural safeguards are provided?"

I&M Response

No plant modifications or procedural changes have been made, and none are planned. The NESW system is not used (or required) for post-accident containment cooldown.

NRC Question 8

"In the submittal of November 7, 2000, you identified 21 lines installed in Unit 1 that have no relief valves and are susceptible to thermally-induced pressurization. You classified three lines under category E1 and the remaining 18 lines under category E2 depending on the method you used for calculating peak pressure inside the affected line. You also stated that the 21 lines have been analyzed based on the inelastic analysis criteria in Appendix F to Section III of the American Society of Mechanical Engineers (ASME) Code."

NRC Question 8(a)

"Provide the maximum-calculated temperature and pressure for the pipe run. Describe in detail, the method used to calculate temperature and pressure values for the affected lines. This should include a discussion on the heat transfer model and the basis for the heat transfer coefficients used in the analysis."

I&M Response

Table 2 lists the maximum temperature and pressure for each Category E1 pipe, and the maximum pressure in each Category E2 pipe line.

For lines classified as Category E1, the temperature increase for the water inside the pipe and the associated pressure were determined. The water temperature is calculated by considering either forced convection or condensation heat transfer on the pipe's outer surface, conduction through

the pipe walls, and natural convection heat transfer on the pipe's inner surface. The calculation uses standard correlations for heat transfer coefficients. A sample calculation, whose methodology is applicable to both Unit 1 and Unit 2, is provided in Attachment 3.

The calculated water temperature is used as an input to a stress analysis in which the system pressure is calculated. The stress analysis evaluates system expansion, calculates a specific volume for the water inside the pipe and determines the pressure based on the water's equation of state. A sample calculation, whose methodology is applicable to both Unit 1 and Unit 2, is provided in Attachment 4.

For lines classified as Category E2, the pressure at which certain diaphragm valves in the pipe system would lift off their seats to provide a momentary relief path was calculated. The calculation determines the system pressure required to open the valve a distance equal to 10% of its full-stroke length. Factors considered in this calculation are the diaphragm area exposed to the pressure in the isolated section and the valve's spring constant. The system pressure at which the valve is considered to open is the value at which the pressure force equals the spring force when the valve has opened a distance equal to 10% of it full-stroke length. Details of the calculation are provided in Attachment 5.

NRC Question 8(b)

"Describe the applicable design criteria for the piping and the valves. Include the required load combinations and the methodology for calculating primary membrane stress intensity for combined loads. Identify the licensing basis code edition of Appendix F to Section III of the ASME Code. Provide the maximum calculated and allowable stress and stain in the carbon steel and/or stainless steel penetrations."

I&M Response

The code of record for the valves is USAS B31.1.0-1967, which references USA Standards B16.1, B16.5 and B16.1. Where these acceptance criteria were exceeded, the 1989 version of the ASME Code, Section III, Appendix F was used.

Load combinations analyzed include overpressure, deadweight, and seismic induced loads. The methodology is fully described in Attachment 6.

The code of record for the piping systems is USAS B31.1.0-1967. Table 126.1 of this code references the ASME Boiler and Pressure Vessel Code, although Appendix F was not yet a part of Section III of the ASME Code at that time.

Where B31.1 code criteria were exceeded, piping segments were evaluated to Appendix F to Section III of the 1989 ASME Code. Use of Appendix F is consistent with the recommendations in Supplement 1 to Generic Letter 96-06. As a check, design stress intensity and yield strength

values from the 1989 ASME Code were compared to the values from the 1968 version, as shown in Attachment 6. This comparison showed that the 1989 edition material properties are comparable to the 1968 edition properties. Accordingly, the 1989 ASME Code version is appropriate to use for this evaluation.

The maximum stresses and strains in the piping are listed in Table 3. All lines are acceptable for overpressurization based on Appendix F criteria.

NRC Question 8(c)

"Based on the results of inelastic analysis of the 21 lines, provide the calculation for the line that has the maximum calculated stress/strain. The calculation should clearly indicate all design input parameters including material stress-strain curve and justification thereof, and the methodology for inelastic analysis including the analysis results. Provide the detailed calculation of maximum primary membrane stress intensity, membrane hoop strain, and the peak strain at local discontinuity. Acceptance criteria for stress and strain limits and its justification should also be provided along with the reference to specific articles of Appendix F to Section III of the ASME Code."

I&M Response

The reactor coolant pump (RCP) Seal Bypass line has the highest stress. The manner in which the stress and strain was calculated during overpressurization conditions is described in detail in Attachment 7 (which includes the calculation of peak pressure and shows the stress strain curves) and Attachment 6 (which includes stress and strain calculations and acceptance criteria).

NRC Question 8(d)

"For piping in E2 category, you indicated that credit for the momentary lifting of diaphragm valves was taken in the calculation of peak pressure that are listed in the submittal. Describe the method used to estimate the valve lift off pressure. Discuss any source of uncertainty associated with the calculation of the valve lift off pressure."

I&M Response

The method used to estimate the valve lift off pressure is discussed in the Question 8(a) response. The calculation to determine the valve lift off pressure did not credit leakage that would occur prior to the valve's opening by 10% of its full stroke. This conservatism was used to bound any uncertainty in the vendor supplied values used to calculate the opening pressure as the valves would begin to leak once the trapped water pressure was sufficient to just start lifting the valve.

NRC Question 9

"In the submittal of August 15, 2000, you identified four lines installed in Unit 2 that have no relief valves and are susceptible to thermally-induced pressurization. You stated that the four lines were analyzed based on the inelastic analysis criteria in Appendix F to Section III of the ASME Code."

NRC Question 9(a)

"Provide the maximum calculated temperature and pressure values for the pipe run. Describe in detail, the method to calculate temperature and pressure, if different from that provided in response to question 8(a)."

<u>I&M Response</u>

The maximum pressures and temperatures for each Unit 2-pipe segment are listed in Table 4. The methodology was previously discussed in the Question 8(a) response.

NRC Question 9(b)

"Provide the maximum calculated stress and strain in the carbon steel and/or stainless steel penetrations. Describe the design criteria, if different from that provided in response to question 8(b)."

I&M Response

The maximum stresses and strains in the piping are listed in Table 5. All lines are acceptable for overpressurization based on Appendix F criteria.

Unit 2 segments were evaluated to the requirements of ASME Code Section III Appendix F. Load combinations analyzed include hoop stresses due to overpressure, and longitudinal stresses due to pressure, deadweight and seismic induced loads. Longitudinal stresses were conservatively assumed to be equal to the allowable material stress to simplify the analysis. The methodology is fully described in Attachment 8.

NRC Question 9(c)

"Provide the calculation for the line with the maximum calculated stress/strain, if the maximum calculated stress/strain are not enveloped by and/or the calculation process is different from the sample calculation provided in response to question 8(c)."

I&M Response

The RCP Seal Bypass line has the highest stress. The manner in which the stress and strain was calculated during overpressurization conditions is described in detail in Attachment 8.

Table 1Limiting Configurations of Donald C. Cook Nuclear Plant NESW SystemDuring Scenarios Considered for GL 96-06

		Scenario	·····
Parameter	Max Potential for Column Separation in Upper Containment Ventilation Units	Max Potential for Column Separation in Lower Containment Ventilation Units	Max Potential for Two-Phase Flow
Plant Condition	LOOP without LOCA	LOOP with Small Break LOCA	LOOP with Small Break LOCA
Number of NESW Pumps Running	All four pumps are assumed to operate to maximize flow (2 pumps per unit)	All four pumps are assumed to operate to maximize flow (2 pumps per unit)	Only the two pumps in the other unit are assumed to operate to minimize flow
Status of NESW Discharge Header Cross-Tie	Open	Open	Open
Number of NESW Flow Paths Open in Containment			
Upper Containment Ventilation Units (4 total)	4	0	4
Lower Containment Ventilation Units (4 total)	3	3	4
Instrument Room	2	0	2
RCP Coolers	0	0	4
Status of Other NESW Loads Outside of Containment			
Air Compressors Other Loads	Open Closed	Open Closed	Closed Open

Donald C. Cook Nuclear Plant Unit 1 Piping Segments Maximum-Calculated Temperature and Pressure

Segment	Description	Maximum Temperature (°F)	Maximum Pressure (psig)
NESW Cooling for Instrumentation Room Ventilation Units (2 segments)	Piping between NESW supply and return isolation valves located outside of containment.	NA*	325
NESW Cooling for Upper Containment Ventilation Units (4 segments)	Piping between NESW supply and return isolation valves located outside of containment.	NA*	711
NESW Cooling for RCP Motor Air Coolers (4 segments)	Piping between NESW supply and return isolation valves located outside of containment.	NA*	711
NESW Cooling for Lower Containment Ventilation Units (4 segments)	Piping between NESW supply and return isolation valves located outside of containment.	NA*	215
Primary Water Supply to RCPs and pressurizer relief tank (PRT) (CPN 33)	Piping between Primary Water Supply line isolation valve outside containment to RCP and PRT isolation valves inside containment.	NA*	212
Demineralized Water Supply to Refueling Cavity Scrub Down Hose Connections (CPN 36)	Piping between Demineralized Water Supply line isolation valves outside containment to manual isolation valves for hose connections inside containment.	NA*	325
Reactor Coolant Drain Tank Pump Suction (CPN 40)	Piping from PRT drain line isolation valve and reactor coolant drain tank (RCDT) drain line check valve inside containment to isolation valves outside containment.	NA*	262
Containment Sump Pump Discharge (CPN 41)	Piping between sump pump discharge check valves inside containment and discharge isolation valves outside containment.	NA*	212
Safety Injection Test Line and Accumulator Fill Line (CPN 32)	Piping between accumulator isolation valves and fill line isolation valves.	235	15,310
RCP Seal Bypass Line	Piping between RCP seal bypass check valves and RCP seal bypass isolation valve, all inside containment.	235	16,940
RCP Seal Leakoff Return Line (CPN 37)	Piping between isolation valves located inside and outside of containment.	240	1,800

* No temperature was calculated for these lines since they have diaphragm valves that will open under overpressure conditions.

Donald C. Cook Nuclear Plant Unit 1 Piping Segments Maximum-Calculated Pipe Stress and Strain

		Per Appendix F	
Segment	Stress Intensity (SI) / Allowable Stress (0.7 S _u) (psi)	Maximum Stress Index (equal to SI/0.7S _u)	Maximum Strain (in/in) (5% Permitted)
NESW Cooling for Instrumentation Room Ventilation Units (2 segments)	27,902 / 42,000	0.66	0.0081%
NESW Cooling for Upper Containment Ventilation Units (4 segments)	29,466 / 42,000	0.70	0.0185%
NESW Cooling for RCP Motor Air Coolers (4 segments)	29,466 / 42,000	0.70	0.0185%
NESW Cooling for Lower Containment Ventilation Units (4 segments)	27,625 / 42,000	0.66	0.0085%
Primary Water Supply to RCPs and PRT (CPN 33)	29,545 / 47,950	0.62	0.011%
Demineralized Water Supply to Refueling Cavity Scrub Down Hose Connections (CPN 36)	30,238 / 47,950	0.63	0.016%
Reactor Coolant Drain Tank Pump Suction (CPN 40)	30,483 / 47,950	0.64	0.017%
Containment Sump Pump Discharge (CPN 41)	30,043 / 47,950	0.63	0.011%
Safety Injection Test Line and Accumulator Fill Line (CPN 32)	45,825 / 47,950	0.96	0.371%
RCP Seal Bypass Line	47,354 / 47,950	0.99	0.996%
RCP Seal Leakoff Return Line (CPN 37)	44,470 / 47,950	0.93	2.016%

Donald C. Cook Nuclear Plant Unit 2 Piping Segments Maximum Calculated Temperatures and Pressures

Segment	Description	Maximum Temperature (°F)	Maximum Pressure (psig)
RCP Seal Leak-off Return Line (CPN 37)	Penetration piping between inside and outside containment isolation valves, including test connections.	250	15,300
Accumulator Fill Lines (CPN 32)	Piping from outside containment isolation valve to normally closed "inlet" valves at each accumulator and, the normally closed valves in the flow paths to the low head SI hot leg loops.	240	1,890
RCP Seal Bypass Lines	Piping from the seal bypass line check valves to the normally closed QRV-150 valve in the common discharge header.	250	1,890
PRT and RCDT Drain Piping (CPN 40)	Piping from the normally closed PRT drain line and the RCDT drain line check valve inside containment to the normally closed isolation valves outside containment.	250	17,100

Donald C. Cook Nuclear Plant Unit 2 Piping Segments	
Maximum Calculated Pipe Stresses and Strains	

		Per Appendix F	
Segment	Stress Intensity (SI) / Allowable Stress (0.7 S _u) (psi)	Maximum Stress Index (equal to SI/0.7S _u)	Maximum Strain (in/in) (5% Permitted)
RCP Seal Leak-off Return Line (CPN 37)	38,200 / 47,950	0.80	2.614%
Accumulator Fill Lines (CPN 32)	40,200 / 47,950	0.84	0.422%
RCP Seal Bypass Lines	42,643 / 47,950	0.89	1.147%
PRT and RCDT Drain Piping (CPN 40)	38,200 / 47,950	0.80	2.629%

ATTACHMENT 2 TO C0801-05

NON-ESSENTIAL-SERVICE WATER SYSTEM DRAWINGS

The following drawings provide an overview of the non-essential-service water (NESW) system and the details of the NESW piping for components located inside the containment that were modeled in the waterhammer analysis.

Unit 1 Drawings

Inside Containment

OP-1-5114-82 OP-1-5114A-25 1-NSW-65 1-NSW-66 1-NSW-67 1-NSW-68 1-NSW-69	Flow Diagram Non-Essential Service Water Unit 1 Flow Diagram Non-Essential Service Water Upper Containment Ventilation Unit 4 Supply Line Upper Containment Ventilation Unit 3 Supply Line Upper Containment Ventilation Unit 2 Supply Line Upper Containment Ventilation Unit 1 Supply Line Upper Containment Ventilation Unit 1 Supply Line Upper Containment Ventilation Unit 4 Return Line
1-NSW-70	Upper Containment Ventilation Unit 3 Return Line
1-NSW-71	Upper Containment Ventilation Unit 2 Return Line
1-NSW-72	Upper Containment Ventilation Unit 1 Return Line
1-NSW-174	Instrument Room Ventilation Unit 3 Supply Line
1-NSW-175	Instrument Room Ventilation Unit 4 Supply Line
1-NSW-176	Instrument Room Ventilation Unit 3 Return Line
1-NSW-177	Instrument Room Ventilation Unit 4 Return Line
1-NSW-178	Lower Containment Ventilation Unit 1 Supply Line
1-NSW-179	Lower Containment Ventilation Unit 2 Supply Line
1-NSW-180	Lower Containment Ventilation Unit 3 Supply Line
1-NSW-181	Lower Containment Ventilation Unit 4 Supply Line
1-NSW-182	Lower Containment Ventilation Unit 1 Return Line
1-NSW-183	Lower Containment Ventilation Unit 2 Return Line
1-NSW-184	Lower Containment Ventilation Unit 3 Return Line
1-NSW-185	Lower Containment Ventilation Unit 4 Return Line

Outside Containment

1-NSW-37	Lower Containment Ventilation Unit 2 Supply Line
1-NSW-38	Lower Containment Ventilation Unit 3 Supply Line
1-NSW-39	Upper Containment Ventilation Unit 2 Supply Line
1-NSW-42	Upper Containment Ventilation Unit 3 Supply Line
1-NSW-44	Upper Containment Ventilation Unit 2 Return Line
1-NSW-45	Lower Containment Ventilation Unit 2 Return Line
1-NSW-46	Lower Containment Ventilation Unit 3 Return Line
1-NSW-47	Upper Containment Ventilation Unit 3 Return Line
1-NSW-49	Instrument Room Ventilation Unit 3 Supply Line
1-NSW-50	Instrument Room Ventilation Unit 4 Return Line

1-NSW-51	Instrument Room Ventilation Unit 3 Return Line
1-NSW-52	Instrument Room Ventilation Unit 4 Supply Line
1-NSW-54	Upper Containment Ventilation Unit 1 Supply Line
1-NSW-55	Lower Containment Ventilation Unit 1 Supply Line
1-NSW-57	Upper Containment Ventilation Unit 4 Supply Line
1-NSW-58	Lower Containment Ventilation Unit 4 Supply Line
1-NSW-59	Lower Containment Ventilation Unit 1 Return Line
1-NSW-60	Upper Containment Ventilation Unit 1 Return Line
1-NSW-62	Lower Containment Ventilation Unit 4 Return Line
1-NSW-63	Upper Containment Ventilation Unit 4 Return Line

Unit 2 Drawings

Inside Containment

OP-2-5114-50	Flow Diagram Non-Essential Service Water Unit No. 2
OP-2-5114A-29	Flow Diagram Non-Essential Service Water
2-NSW-130	Upper Containment Ventilation Unit 1 Supply Line
2-NSW-131	Upper Containment Ventilation Unit 2 Supply Line
2-NSW-132	Upper Containment Ventilation Unit 3 Supply Line
2-NSW-133	Upper Containment Ventilation Unit 4 Supply Line
2-NSW-138	Upper Containment Ventilation Unit 1 Return Line
2-NSW-139	Upper Containment Ventilation Unit 2 Return Line
2-NSW-140	Upper Containment Ventilation Unit 3 Return Line
2-NSW-141	Upper Containment Ventilation Unit 4 Return Line
2-NSW-186	Instrument Room Ventilation Unit 3 Supply Line
2-NSW-187	Instrument Room Ventilation Unit 4 Supply Line
2-NSW-188	Instrument Room Ventilation Unit 3 Return Line
2-NSW-189	Instrument Room Ventilation Unit 4 Return Line
2-NSW-192	Lower Containment Ventilation Unit 1 Supply Line
2-NSW-193	Lower Containment Ventilation Unit 2 Supply Line
2-NSW-194	Lower Containment Ventilation Unit 3 Supply Line
2-NSW-195	Lower Containment Ventilation Unit 4 Supply Line
2-NSW-196	Lower Containment Ventilation Unit 1 Return Line
2-NSW-197	Lower Containment Ventilation Unit 2 Return Line
2-NSW-198	Lower Containment Ventilation Unit 3 Return Line
2-NSW-199	Lower Containment Ventilation Unit 4 Return Line

Outside Containment

2-NSW-100	Lower Containment Ventilation Unit 2 Supply Line
2-NSW-101	Lower Containment Ventilation Unit 3 Supply Line
2-NSW-102	Upper Containment Ventilation Unit 2 Supply Line

In accordance with the restrictions stated on drawings OP-1-5114-82, OP-1-5114A-25, OP-25114-50 and OP-2-5114A-29, Indiana Michigan Power Company (I&M) hereby releases these documents to the Nuclear Regulatory Commission (NRC) for its information and use in connection with the review of I&M's submittal. I&M also permits the NRC to reproduce the drawings as necessary to facilitate the review and distribution of the submittal to meet NRC requirements.

ATTACHMENT 3 TO C0801-05

MPR CALCULATION 025-065-04

"DETERMINATION OF WATER TEMPERATURE IN D. C. COOK UNIT 1 RCP SEAL WATER LINE (CPN-37)"

ZMPR	MPR-2169 Appendix	A.4	MPR Associa 320 King Stre Alexandria, V	et
	CALCULATION TITI	_E PAGE		
Client American Electric Po	Page	e 1 of 22		
Project Evaluation of D.C. C Thermal Overpressu	ook Unit 1 Piping Segments rization	for Potential		sk No. 013-065-
Title Determination of Wa RCP Seal Water Line	ter Temperature in D.C. Coc e (CPN-37)	ok Unit 1		lation No -065-04
Preparer/Date	Checker/Date	Reviewer/Appro	ver/Date	Rev. I
SR Harp 917100	A C Landers 9/7/00	RC dand 9/7/00	e.e 0	0
	QUALITY ASSURANCE	DOCUMENT		

	IPR	MPR-2169 Appendix	A.4	MPR Associa 320 King Stre Alexandria, V	et	
RECORD OF REVISIONS						
	ation No. ´ 065-04	D. Prepared By Checked By Page 2				
Revision		Description				
0	Original Issue.					
	÷		-			

ZMPR	MPR-2169 Appendix A.4 320 King Street Alexandria, VA 223			
Calculation No.	Prepared By	Checked By		
025-065-04	JR Harp	Checked By Richardenz, P	age 3	
	CONTENTS			
SECTION		PAGE		
1.0	PURPOSE	4		
2.0	SUMMARY	4		
3.0	CALCULATION	5		
3.1	Temperature Transients	5		
3.2	Pipe Sizes	7		
3.3	Problem Set-up and Solution Pr	ocedure 8		
3.4	Overall Heat Transfer Coefficie	nts 10		
3.5	Forced Convection Heat Transfe	er Coefficient 11		
3.6	Steam Jet Velocity	13		
3.7	Condensation Heat Transfer Co			
_3.8	Natural Convection Heat Transf	er Coefficient 17	··· .	
3.9	Material Properties	19		
3.10	Results- Transient Water Tempe	erature 19		
4.0	REFERENCES	22		

_

.

ZMPR	MPR Associates, Inc. MPR-2169 Appendix A.4 320 King Street Alexandria, VA 22314		Street
Calculation No.	Prepared By	Checked By	Page 4
025-065-04	SR Horp	RC Landers	·

1.0 PURPOSE

The purpose of this calculation is to predict the water temperatures reached in the CPN-37 piping system following pipe break accidents inside containment at DC Cook Unit 1. Two cases are considered. In the first, a steam jet from a hole in the nearest steam pipe directly impinges on the CPN-37 piping system. In the second, the steam jet does not directly impinge on the CPN-37 pipe system. Instead, the compartment containing the CPN-37 system is assumed to be passively filled with steam that condenses on the pipe. The containment temperatures during the accidents are those predicted for steam line break and loss of coolant accidents, as provided in Reference 3.

2.0 SUMMARY

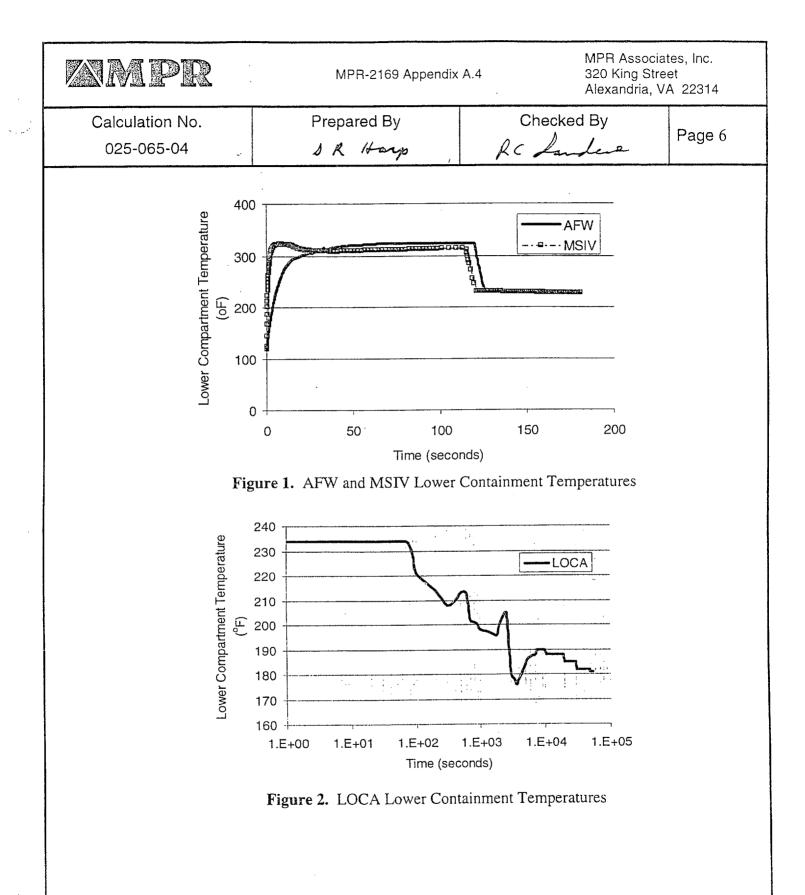
One-dimensional, transient thermal analyses for the pipes in CPN-37 were performed to determine the temperature of water trapped in the segment during accident conditions. The water in the piping system was assumed to be initially 160°F and the containment temperatures were obtained as a function of time from Reference 3. The steam line break transients, AFW runout and MSIV failure, are considered to be significant for three minutes. The LOCA containment temperature transient remains significant for 15 hours.

Maximum water temperatures were calculated for the case of a steam jet directly impinging on the pipe and for the case of steam condensation on the OD. The maximum water temperature in the piping system for each transient is listed in Table 1. All of the temperatures are bounded by 240 °F.

Transient Considered		4" Schedule 10S	4" Schedule 40S
	AFW	235	235
Steam Jet	MSIV	235	235
	LOCA	207	207
	AFW	213	213
Condensation	MSIV	213	213
	LOCA	237	237

Table 1. Maximum Wa	ter Temperatures (°F)
---------------------	-----------------------

MPR-2169 Appendix A.4 320 King St		MPR Associates, MPR-2169 Appendix A.4 320 King Street Alexandria, VA 23		Street
Prepared By J. R. Harp	Checked By RC Sanders	Page 5		
	Prepared By	MPR-2169 Appendix A.4 320 King Alexandri Prepared By Checked By		


3.0 CALCULATION

3.1 <u>Temperature Transients</u>

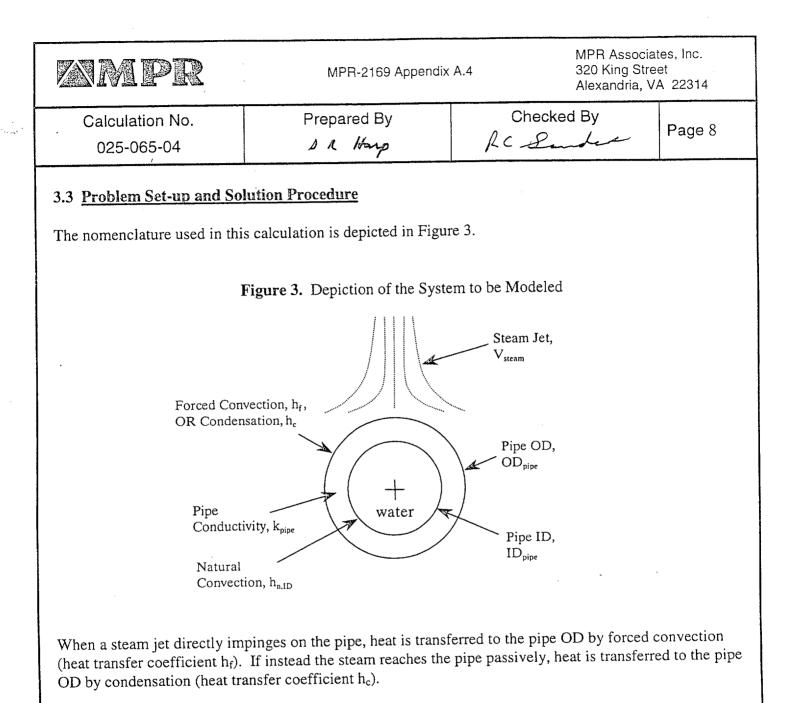
The containment temperatures for the lower containment are plotted for the AFW Runout and MSIV failure steam line break scenarios (hereinafter referred to as "AFW" and "MSIV") in Figure 1 and the LOCA in Figure 2. These temperatures are taken from Reference 3.

These containment temperature profiles are used as the steam jet temperatures when considering direct impingement. They are not used when considering condensation since the vapor saturation pressure determines the temperature at which condensation will occur. In this study, the containment pressure is assumed to be 9 psig, the maximum pressure during an MSIV accident (Reference 3). The saturation temperature at 9 psig is 237 °F.

Note that the LOCA transient is much longer than the steam line break transients and that its compartment temperatures are much lower. As a result, the forced convection heat transfer during the LOCA will be much less than the convective heat transfer during the steam line break accidents. However, the LOCA is included in this study because condensation heat transfer will be more significant during a LOCA than during AFW and MSIV accidents. This is because the compartment pressure during a LOCA (Reference 3) stays consistently higher (6 psig+) for a longer period of time than in the steam line breaks and therefore the saturation temperature of the vapor surrounding the pipe will remain higher for a longer period of time in a LOCA accident than in the other accidents.

ZMPR	MPR Associat MPR-2169 Appendix A.4 320 King Stree Alexandria, VA		Street
Calculation No. 025-065-04	Prepared By J. R. Harp	Checked By RC Landers	Page 7

3.2 Pipe Sizes


CPN-37 consists of three different combinations of pipe sizes and schedules as listed in Table 2. Lengths are from Reference 1. Sizes, schedules, and materials are from References 12 and 13.

Pipe Size (in.)	Schedule	OD (in.)	Thickness (in.)	ID (in.)	Length ⁽¹⁾ (ft) (Ref. 1)	Material
1	40S	1.315	0.133	1.05	3	A-312 GR TP 304
4	10S	4.5	0.12	4.26	14	A-312 GR TP 304
4	40S	4.5	0.237	4.026	10	A-312 GR TP 304

Table 2. Pipe Sizes and Schedules

Note: 1. Only piping inside containment is considered since the piping outside containment is not heated during the accidents.

Since the length of the 1" pipe is short compared to the 4" pipe, heating of the 1" pipe will not significantly contribute to the bulk temperature of the piping system and it is therefore neglected. Insulation is also conservatively neglected as it could be blown off the pipe during the accidents.

Heat is transferred by conduction from the pipe OD to the pipe ID. At the pipe-water interface, heat is transferred to the water by natural convection (heat transfer coefficient $h_{n,ID}$).

The temperature of the water is found by equating the heat transfer rate per unit pipe length to the rate of energy storage in the water per unit pipe length. This conservatively over estimates the water temperature because the energy stored in the pipe is neglected.

$$\frac{dE'}{dt} = q'' \pi OD_{pipe}$$
(1)

The right hand side of Equation (1), the rate of heat transfer per unit length, depends on whether a steam jet is impacting the pipe or, instead, the containment is passively filled with steam,

ZMPR	A.4 320 King S	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No.	Prepared By	Checked By	
025-065-04	SR Hanp	RC Junders	Page 9
q_{f} "= U_{f} (T_{comp} - T_{water}) q_{c} "= U_{c} (T_{v} - T_{water}) where:	for an impinging steam jet for a containment passively fille		(2a) (2b)
U_{f} = overall heat trans T_{comp} =temperature of T_{water} = temperature of q_{c} "= heat transfer rate U_{c} = overall heat trans	per unit area for forced convection fer coefficient for forced convection the containment compartment as a water in the pipe a per unit area for condensation fer coefficient for condensation emperature at 9 psig (237°F)	ion (steam jet)	and 2)
	efficient is a combination of the r be's OD and ID as described in se		ties and the heat
	ered to occur in water since the s pipe, the rate of energy storage v		ch less than that
$\frac{\mathrm{dE'}}{\mathrm{dt}} = \frac{\pi}{4} \left[\rho_{\mathrm{water}} \mathrm{ID}_{\mathrm{pipe}} \right]$	$\int_{0}^{2} C_{p,water} \left[\frac{dT_{water}}{dt} \right]$		(3)
where $C_{p, water} = hea$	t capacity of water, 1BTU/(lbm I	?)	
Equating Equations (2a) and ((3) for the case of a steam jet imp	binging on the pipe	
	J.C.		

$$\frac{\pi}{4} \left[\rho_{\text{water}} \text{ID}_{\text{pipe}}^2 \text{C}_{\text{p,water}} \right] \frac{d\text{T}_{\text{water}}}{dt} = \text{U}_f (\text{T}_{\text{cont}} - \text{T}_{\text{water}}) \pi \text{ OD}_{\text{pipe}}$$
(4)

Using a forward discretization approach, Equation (4) becomes,

,

$$\frac{\pi}{4} \left[\rho_{\text{water}} \mathrm{ID}_{\text{pipe}}^{2} C_{\text{p,water}} \right] \frac{\left(T_{\text{water}}^{j+1} - T_{\text{water}}^{j} \right)}{t^{j+1} - t^{j}} = U_{\text{f}} \left(T_{\text{cont}}^{j} - T_{\text{water}}^{j} \right) \pi \operatorname{OD}_{\text{pipe}}$$
(5)

where the superscript j refers to the current time and the superscript j+1 refers to the next point in time that is considered.

MPR-2169 Appendix A.4MPR Associates, Inc.
320 King Street
Alexandria, VA 22314Calculation No.
025-065-04Prepared By
A R HarpChecked By
R < AndreasPage 10Solving for the temperature at the future time
$$t^{j+1}$$
,
 $T_{water}^{j+1} = T_{water}^{j} + \frac{4U_f (T^j cont - T^j water)OD_{pipe}(t^{j+1} - t^j)}{[\rho_{water} D_{pipe}^2 C_{p,water}]}$ (6)(6)In the case of vapor condensation on a pipe instead of a steam jet,
 $T_{water}^{j+1} = T_{water}^{j} + \frac{4U_c (T_v - T^j water)OD_{pipe}(t^{j+1} - t^j)}{[\rho_{water} ID_{pipe}^2 C_{p,water}]}$ (7)(7)These equations are solved given the water in the pipe is originally at 160 °F. The containment(6)

temperatures change as shown in Figures 1 and 2 and the saturation vapor temperature is 237°F at 9 psig.

3.4 Overall Heat Transfer Coefficients

The combined resistance of the convection coefficients and the pipe's conductivity is found with a circuit analogy. From Equation 2.44 in Reference 10, the universal heat transfer coefficient for the circuit in Figure 3 is,

$$U = \frac{1}{\frac{1}{h_{n,ID}} \frac{OD_{pipe}}{ID_{pipe}} + \frac{OD_{pipe}}{2 k_{pipe}} \ln \frac{OD_{pipe}}{ID_{pipe}} + \frac{1}{h_{OD}}}$$
(8)

In the case of an impinging steam jet, the heat transfer coefficient at the outer diameter is the forced convection heat transfer coefficient

$$h_{OD} = h_f$$

and the universal heat transfer coefficient is,

$$U_{f} = \frac{1}{\frac{1}{h_{n,ID}} \frac{OD_{pipe}}{ID_{pipe}} + \frac{OD_{pipe}}{2 k_{pipe}} \ln \frac{OD_{pipe}}{ID_{pipe}} + \frac{1}{h_{f}}}$$
(9)

MPR-2169 Appendix A.4MPR Associates, Inc.
320 King Street
Alexandria, VA 22314Calculation No.
025-065-04Prepared By
S K HarpChecked By
R Checked By
Page 11When the jet does not impinge directly on the pipe, but the pipe is surrounded by steam,
$$h_{0D}=h_c$$

and the heat transfer coefficient is equal to the condensation heat transfer coefficient.Page 11 $U_c = \frac{1}{\frac{1}{h_{n,ID}} \frac{OD_{pipe}}{D_{pipe}} + \frac{OD_{pipe}}{2 k_{pipe}} \ln \frac{OD_{pipe}}{D_{pipe}} + \frac{1}{h_c}}$ (10)

The formulas for calculation of the forced heat transfer coefficient, h_f , are in Sections 3.5 and 3.6. The calculation description for the condensation heat transfer coefficient is in Section 3.7. The natural convection heat transfer coefficient at the pipe OD is found by the formula in Section 3.8. Properties of the pipe and water, including thermal conductivities, are in Section 3.9.

3.5 Forced Convection Heat Transfer Coefficient

The following heat transfer coefficient relation describes forced convection over a cylinder (Reference 7).

$$h_{f} = \frac{k_{steam}}{OD_{pipe}} \left[0.3 + \frac{0.62 \operatorname{Re}^{\frac{1}{2}} \operatorname{Pr}^{\frac{1}{3}}}{\left[1 + \left(\frac{0.4}{\operatorname{Pr}}\right)^{\frac{2}{3}}\right]^{\frac{1}{4}}} \left[1 + \left(\frac{\operatorname{Re}}{282000}\right)^{\frac{5}{8}} \right]^{\frac{4}{5}} \right]$$
(11)
where:
$$\operatorname{Re} = \frac{\rho_{steam} \overline{\nabla} \operatorname{OD}_{pipe}}{\mu_{steam}} \qquad \operatorname{Pr} = \frac{C_{p,steam} \mu_{steam}}{k_{steam}}$$

ZMPR	MPR-2169 Appendix	A.4	MPR Associa 320 King Stre Alexandria, V	et
Calculation No. 025-065-04	Prepared By S R Hanp	Checker R C La	d By undere	Page 12
$\rho_{steam} = dens$ $\mu_{steam} = visco$ $k_{steam} = therr$ $C_{p_steam} = spec$ $\overline{V} = avera$ $OD_{pipe} = outer$	ed convection heat transfer coefficient ity of the steam jet osity of the steam jet nal conductivity of the steam jet ific heat of the steam jet age velocity of the steam jet 40 feet of diameter of the pipe in the lower containment is 325°F	from the break (s		
$\mu_{\text{steam}} = 9.7E$ $k_{\text{steam}} = 0.015$	74 lbm/ft ³ -6 lbm / (ft s) 89 BTU/(hr ft F) 9 BTU/(lbm F)			
The average jet velocity fro $\overline{V} = 444 \text{ f}$				
For a 4 inch pipe schedule				
OD _{ins} =4.5 in.				
With these values,				
Re=3.73E6	Pr=1.07 h _f =234 BTU/ (h	ft ² F)		
The heat transfer rate at the	outer surface of the pipe is descri	oed in these calculated	ations as	
$q'' = h_f (T_{cont} - T_O)$	D,pipe)			(12)
$h_f = force$ $T_{cont} = conti$	transfer rate per unit surface area ed convection heat transfer coeffic ainment temperature OD temperature	ent		

MMPR	MPR-2169 Appendix	A.4 MPR Assoc A.4 320 King St Alexandria,	reet
Calculation No. 025-065-04	Prepared By	Checked By RC Sanders	Page 13

3.6 Steam Jet Velocity

In order to calculate the forced convection coefficient associated with the steam jet in Section 3.5, the velocity at which the steam jet impinges on the pipe must be determined.

From References 1 and 2, the closest a Cook Unit 1 steam pipe comes to the pipe associated with CPN-37 is about 40 feet.

L = 40 ft

For an AFW runout steam line break, Figure 6 of Reference 3 indicates the steam pipe break area is,

A=0.86 ft²

The corresponding break radius is,

$$r_j = \sqrt{\frac{A}{\pi}} = 6.3 \text{ in.}$$

Reference 4 provides the steam jet centerline velocity as a function of distance from the break given sonic conditions at the break and the value of a dimensionless constant φ ,

(13)

$$\varphi = 0.074 x_c \sqrt{\rho_c}$$

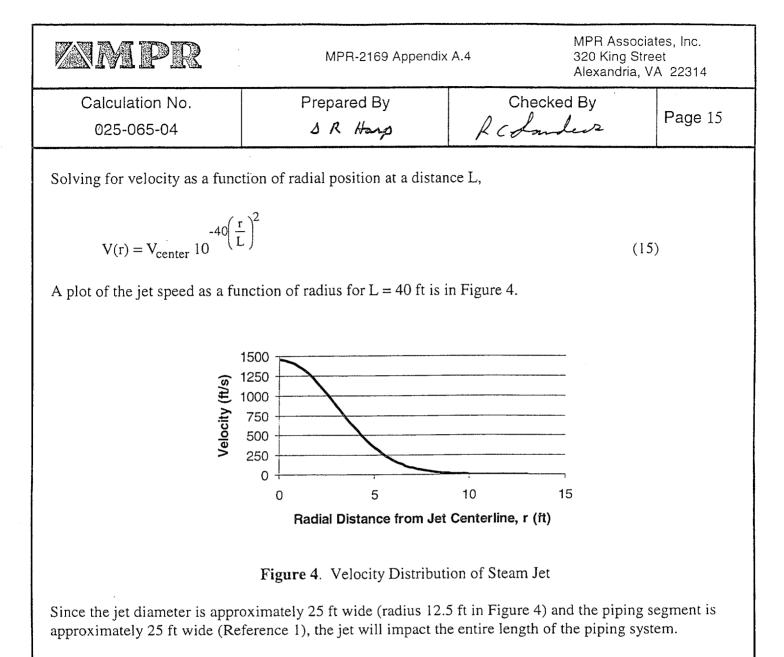
where:

 x_c = dimensionless axial distance, L/r_j

L = axial distance from the pipe break

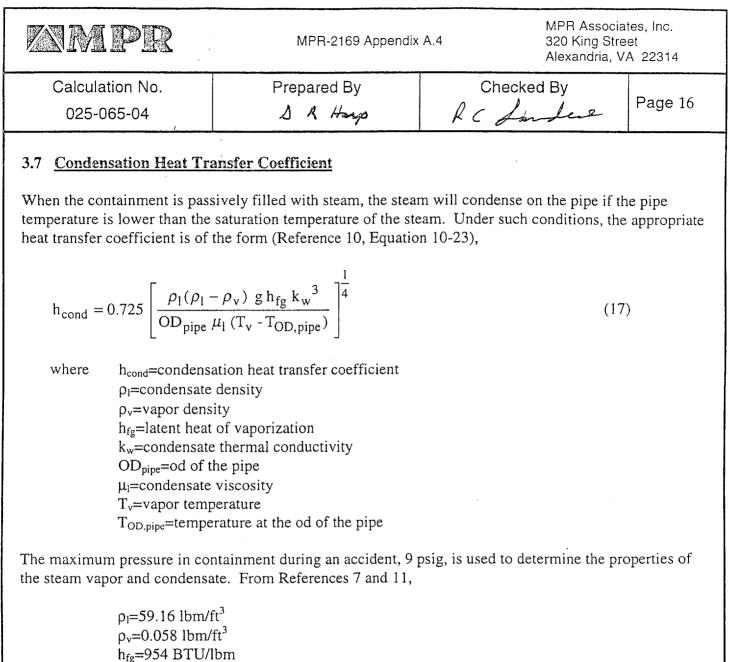
 r_j = radius of the hole in the steam pipe

 ρ_c = dimensionless density, ρ_e/ρ_j


 ρ_i = density of the steam jet exiting the hole

 ρ_e = density of the jet steam at impact

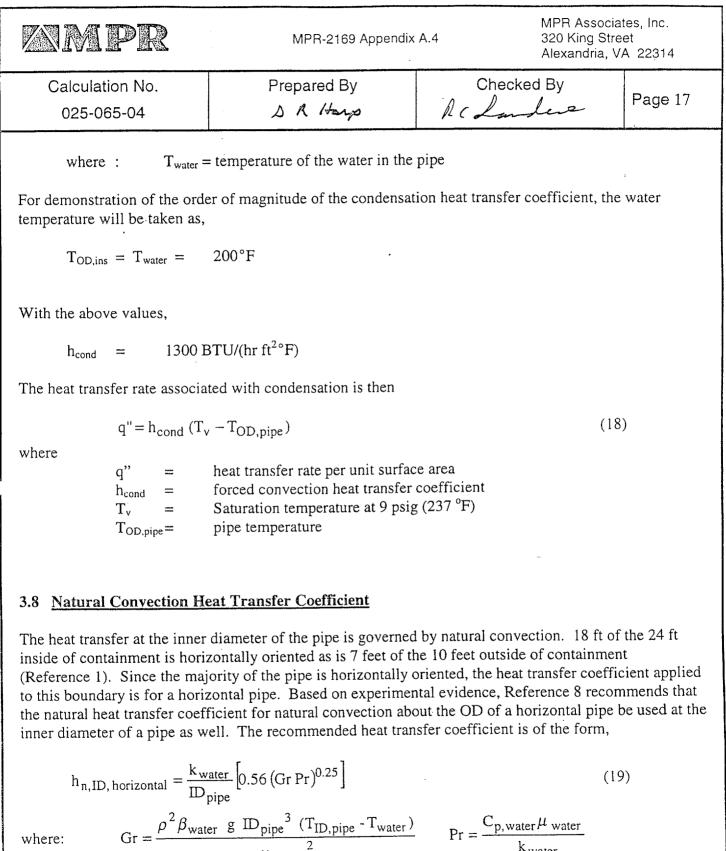
The density of steam exiting the pipe is taken at 1025 psig and 550°F. From Reference 9 at those conditions,


$$\rho_{j} = \frac{1}{0.43084} \frac{lb}{ft^{3}}$$

MPR Associates. Inc. ZMPR MPR-2169 Appendix A.4 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By RC Lander Page 14 S & Harp 025-065-04 The density of the jet when it impacts the wall is taken at 9 psig and 325 °F, the peak containment pressure and temperatures during an accident. From Reference 9 at those conditions, $\rho_{e} = \frac{1}{19.481} \frac{\text{lb}}{\text{ft}^{3}}$ With the above properties and dimensions, $\phi = 0.84$ Figure 2 of Reference 4 indicates that the centerline speed of a jet at this value of φ is 100% of its choke flow velocity, $V_{center} = V_{choke}$ where V_{center}= centerline velocity of jet 40 ft from steam pipe break V_{choke} = choke flow velocity From Figure 12 of Reference 5, the choke flow velocity of the steam exiting the hole is, V_{choke}=1455 ft/s This is assuming the jet pressure is equal to the 9 psig containment pressure. The centerline velocity is then $V_{center} = 1455 \text{ ft/s}$ The radial velocity of a steam jet from Reference 6, Table 5.5 is, $\log\left(\frac{V_{cent}}{V_{r}}\right) = 40\left(\frac{r}{L}\right)^{2}$ (14)where: V_r = velocity at distance r from centerline r = radial distance from jet centerline

An average of the jet velocity when it impacts the CPN-37 piping, at a distance of 40 ft from the steam line break, is used to calculate the forced convection heat transfer coefficient. The average velocity is used so that the heat transfer coefficient is in its average form. The average of the velocity at which the steam jet impacts the pipe is found by averaging the curve in Figure 4 over the radius of the steam jet, 12.5 ft,

$$\overline{V} = \frac{1}{12.5 \,\text{ft}} \int_{0 \,\text{ft}}^{12.5 \,\text{ft}} V(r) \,dr = 444 \,\frac{\text{ft}}{\text{s}}$$
(16)


 h_{fg} =954 BTU/lbm k_w =0.394 BTU/(hr ft F) μ_l =1.65E-4 lbm/(ft s) T_v =237 F

For a 4 inch schedule 10S pipe

OD_{pipe}=4.5 in.

The temperature of the pipe is not explicitly evaluated in this study. Instead, the following conservative estimate is used,

 $T_{OD,pipe} = T_{water}$

for 10<GrPr<10⁹

ZMPR	MPR-2169 Appendix	< A.4	MPR Associa 320 King Stre Alexandria, V	eet
Calculation No. 025-065-04	Prepared By	Checke R.C.	cked By Page	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	hal conductivity of the water sity of the water ty of the water fic heat of the water netric expansion coefficient of the diameter of the pipe erature at the pipe id erature of the water	e water		
$\mu_{water} = 2.05E$ $\rho_{water} = 60.11$	BTU/(hr ft F) E-4 lbm /(ft s) bm / ft ³ BTU/(lbm F)			
The temperature at the pipe at the pipe ID is conservativ $T_{ID,pipe} = T_{comp}$	ID, $T_{ID,pipe}$, is not explicitly evaluely assumed to be the containmer	ated in this model at temperature	I. Instead, the	temperature

For a 4" schedule 10S pipe,

 $ID_{pipe}=4.26$ in.

and the temperatures,

 $\begin{array}{rcl} T_{1D,pipe} = T_{comp} = & 237^{\circ}F \\ T_{water} = & 170^{\circ}F \end{array}$

the dimensionless numbers are,

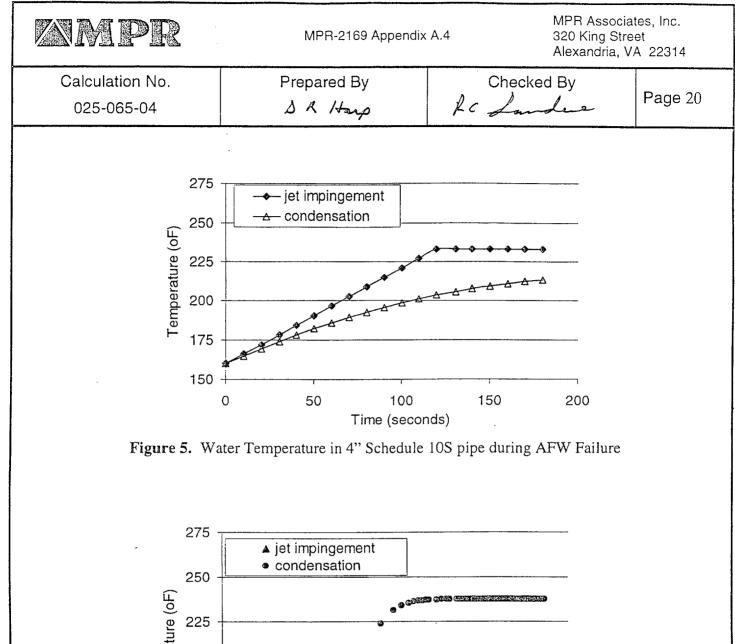
Gr=4.0 E9 Pr=1.9 Gr Pr=7.6 E10

GrPr is still of the order of 1E9, so the natural convection coefficient of Equation 19 should be valid. The heat transfer coefficient is,

 $h_{n,ID,horizontal}$ =182 BTU/(hr ft²°F)

ZMPR	MPR-2169 Appendi		
Calculation No. 025-065-04	Prepared By	Checked By Rc Sandere	Page 19
			·····

3.9 Material Properties


The material properties of the pipe and water are evaluated at 200°F (References 7, 10, 12, 13) and are listed in Table 3.

Property	Water	Pipe 304 SS
k Btu/(hr ft °F)	0.391	10.7
Cp Btu/ (lbm °F)	1.005	na
ρ lbm/ft ³	60.1	na
β 1/ °F	4.8e-4	na
μ lbm/(ft s)	2.05e-4	na

Table 3. Material Properties of Pipe, and Water at 200°F

3.10 Results- Transient Water Temperature

The temperature of the water in the 4" schedule 10S piping is shown in Figure 5 for the AFW accident and in Figure 6 for the LOCA accident. The AFW and MSIV results are within 2 percent of each other, so only a curve for the more limiting AFW accident results are shown (Figure 5). The results for the 4" schedule 40S pipe are within 2 percent of results for the 4" schedule 10S pipe shown in Figures 5 and 6, and so plots of the less limiting 4" schedule 40S pipe results are not included either.

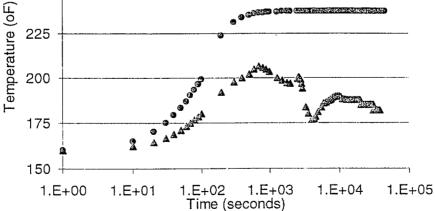


Figure 6. Water Temperature in 4" Schedule 10S pipe during LOCA

ZMPR	MPR-2169 Appendix	A.4 MPR Assoc A.4 320 King S Alexandria,	treet
Calculation No. , 025-065-04	Prepared By	Checked By A C Lander	Page 21

The results of Figure 5 indicate that the maximum water temperature during AFW (and MSIV), 235 °F, is produced by forced convection. This is the maximum temperature reached due to forced convection during the entire accident because the containment temperature never rises above 235 °F beyond the 3 minutes considered in this study for MSIV or AFW accidents (Reference 3).

The maximum condensation temperature is 213 °F at 3 minutes for AFW (and MSIV) (Figure 5). The temperature due to condensation may increase further over the next few minutes because the saturation temperature will remain above 213 °F for at least the first ten minutes of the MSIV and AFW accidents (based on the saturation temperatures of the compartment pressures shown in Reference 3). However, the water temperature after ten minutes will be less than 235 °F since the compartment temperature is less than 235 °F and the compartment pressure is less than 7 psig (T_{sat} =235 °F) for the remainder of the transients shown in Reference 5. As a result, 235 °F bounds the temperature of the water in the pipes during MSIV and AFW accidents.

In contrast to the MSIV and AFW accidents, condensation produces the highest water temperature, 237 °F, for the LOCA (Figure 6). This is because the convective heat transfer is lower for the LOCA than it is for the MSIV or AFW. In addition, the LOCA transient is much longer than the MSIV and AFW accident, and therefor the water in the pipe has time to reach the saturation temperature (237 °F at 9 psig) during the LOCA when condensation is the primary heat transfer mechanism.

The predicted water temperatures in the CPN-37 piping system during MSIV, AFW, or LOCA accidents are summarized in Table 4. Based on these results, the maximum temperature during an AFW, MSIV, or LOCA accident should be no higher than 240 °F

Transie Consider		4" Schedule 10S	4" Schedule 40S
	AFW	235	235
Steam Jet	MSIV	235	235
	LOCA	207	207
	AFW	213	213
Condensation	MSIV	213	213
	LOCA	237	237

Table 1.	Maximum	Water	Temperatures	$(^{\mathbf{O}}\mathbf{F})$
----------	---------	-------	--------------	-----------------------------

ZMPR	MPR-2169 Appendix	A.4 320 King \$	ociates, Inc. Street a, VA 22314
Calculation No.	Prepared By	Checked By	Page 22
025-065-04	S R Harp	R C fondere	
 4.0 REFERENCES 1. Drawings of Containment D.C. Cook Drawing N D.C. Cook Drawing N 2. Drawings of Main Steam I D.C. Cook Drawing N D.C. Cook Drawing N D.C. Cook Drawing N D.C. Cook Drawing N 3. "Containment Pressure ar 99-408, November 10, 19 4. P. Witze, "Centerline Vel 417-418. 5. "ASME Steam Tables," A 6. Perry and Chilton, "Cherr 7. F.P. Incropera and D.P. D Edition. 8. EPRI Report TR-103581, Westinghouse Electric Co 9. "Properties of Steam and 10. F. Kreith and M. Bohn, " 11. G.J. Van Wylen and R.E Sons, 3rd Edition 	Penetration CPN-37 Jumber 1-CS-93, Revision 7. Jumber 1-CS-42, Revision 12. Pipe Penetrations CPN 2-5 Jumber 1-MS-14, Revision 16 (C Jumber 1-MS-1, Revision 17 (C Jumber 1-MS-6, Revision 13 (C Jumber 1-MS-10, Revision 14 (C Jumber 1-MS-10, Revision 17 (C Jumber 1-MS-10, Revision 17 (C Jumber 1-MS-6, Revision 17 (C Jumber 1-M	PN 2). PN 3 or 4) (Closest to CPN-3 CPN 3 or 4). ular Data for UFSAR Limitin ee Jets," AIAA Journal, Vol. Graw-Hill, 6 th Edition. nd Mass Transfer," John Wil g, and Striping (TASCS)," pr n Tables, 1992. WS Publishing Company, 5 th assical Thermodynamics," J	37 pipe) ng Cases," AEP- 12:4 (4/74) p. ey and Sons, 3 rd epared by ¹ Edition. ohn Wiley and
13. "Pipe Material Specifica	tion," AEP Specification No. E	5-Pipe-1000-wCS, Revision	1.
1			

ATTACHMENT 4 TO C0801-05

MPR CALCULATION 025-065-05

"DETERMINATION OF PEAK PRESSURE IN D. C. COOK UNIT 1 RCP SEAL WATER LINE (CPN-37)" MPR

MPR-2169 Appendix A.5

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

	<u></u>	CALCULATION TITL	E PAGE	~~	
Client	American Electric Pov	ver		Page	e 1 of 14
Projec	et Evaluation of D.C. Co Thermal Overpressur	ock Unit 1 Piping Segments f ization	or Potential		sk No. 013-065-0
Title	Determination of Pea Water Line (CPN-37)	k Pressure in D.C. Cook Uni	t 1 RCP Seal		lation No. -065-05
	Preparer/Date	Checker/Date	Reviewer/Approv	/er/Date	Rev. No.
	S. R. Harp 9/7/00	A c Tanal 9/7/2000	M cTruch 9/7/2000		0
	This document has been	QUALITY ASSURANCE prepared, checked and reviewe	DOCUMENT	Jance with t	he Quality
		Assurance R50, Appendix B, as specified			

MPR	MPR-2169 Appendix A.5	
	RECORD OF REVISIONS	
Calculation No. 025-065-05	Prepared By C S A Hamp R U	hecked By Page 2
Revision	Description	· · · · · · · · · · · · · · · · · · ·
0 Original Issue		

MMPI	MPR-2	169 Appendix A.5	MPR Asso 320 King S Alexandria	
Calculation No 025-065-05	. Prepare ム, ペ ル		Checked By R. T. m.L.	Page 3
		CONTENTS		
ECTION	TITLE			PAGE
1.0	PURPOSE			4
2.0	RESULTS			4
3.0	CALCULATION	•••••••••••••••••••••••••••••••••••••••		4
3.1	Approach			4
3.2	Geometry and Mate	rial Data		5
3.3	Fluid Properties			6
3.4	Solution Method an	d Results		7
4.0	REFERENCES			8
Attachment A	Pressure in CPN-37			9

ZMPR	MPR-2169 Appendix A.	MPR Associates, Inc. 320 King Street Alexandria, VA 22314		
Calculation No.	Prepared By	Checked By	Page 4	
025-065-05	S. R. Hanp	McTum		

1.0 PURPOSE

The purpose of this calculation is to determine the pressure in the CPN-37 piping segment at D. C. Cook Nuclear Power Station, Unit 1 during accident conditions. The evaluation addresses the concern identified in NRC Generic Letter 96-06, which states that during a design basis accident, isolated piping segments within containment may become over-pressurized by the thermal expansion of the contained water. CPN-37 is the RCP seal leak-off return line.

2.0 RESULTS

The maximum pressure reached in the CPN-37 line is 1795 psig.

This result will be used in separate evaluations for the pipe and valves in this segment.

3.0 CALCULATION

3.1 Approach

This pressure calculation assumes the piping segment is initially at 165 psia and 150°F prior to the LOCA or steam-line break. 165 psia is the pipe design pressure per the piping specification (Reference 1). 150°F is a conservative estimate of the pipe temperature since the design temperature is 200°F.

Reference 2 determined the maximum temperature of the water in the CPN-37 pipes during loss-of-coolant and steam line break accidents. The bounding water temperature is 240°F for all accidents.

The pressure calculation method used in MPR Calculation 025-065-02 (Reference 3) will be used here to determine the pressure increase as the water heats from 150°F to 240°F. Parameters used in the analysis are described in the following sections.

ZMPR	MPR-2169 Appendix A.5	MPR Associates, Inc. 320 King Street Alexandria, VA 22314		
Calculation No. 025-065-05	Prepared By	Checked By Mr iTuml	Page 5	

3.2 Geometry and Material Data

In this calculation, the CPN-37 piping is divided into three different segments corresponding to the three different sizes of pipe that make up this pipe segment. The data required for each cross section are the pipe diameter, wall thickness and material properties. The piping geometry is found in Reference 4 and the pipe dimensions are from Reference 5. The material data includes: material class and material type (References 1 and 4), design stress intensity (S_m), yield stress (S_y), ultimate strength (S_u), elastic modulus (E), and plastic modulus (E_p). The plastic modulus is found in Reference 6 and the associated stress-strain curve is shown in Figure 1. The remaining material properties are obtained from the 1989 ASME Code (Reference 7). Material properties are evaluated at 240°F, the bounding water temperature calculated in Reference 2. The geometry and material data for the piping segments is listed in Table 1. Nominal pipe wall thickness was used for the evaluations. The lengths of each pipe cross section in the segment are listed in Table 2 (from Reference 4).

Γ			Geometry Data		Material Data						
	Pipe Size	Sched.	OD (in)	Wall (in)	Class	Туре	S _m (ksi)	S _y (ksi)	S _u (ksi)	E (10 ⁶ psi)	E p (10 ⁶ psi)
	4 in	10S	4.500	0.120	B-14	SA312 TP304	20.0	24.0	69.0	27.4	0.425
	4 in	40S	4.500	0.237	B-14	SA312 TP304	20.0	24.0	69.0	27.4	0.425
	1 in	40S	1.315	0.133	B-14	SA312 TP304	20.0	24.0	69.0	27.4	0.425

Table 1: Geometry and Material Properties, CPN-37, 240°F

Table 2: Piping Segment Lengths

Segment	T	Length*		
begintent	4 in	SCH 10S	SA312 TP304	14 ft
CPN-37	4 in	SCH 40S	SA312 TP304	10 ft
	1 in	SCH 40S	SA312 TP304	3 ft

* Note: Only piping in containment is considered for conservatism.

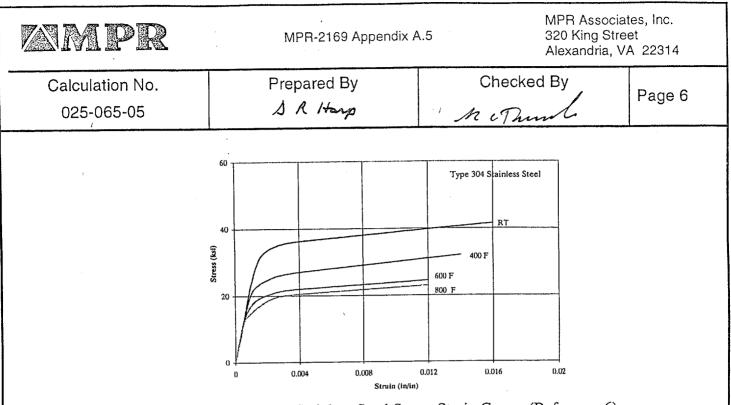
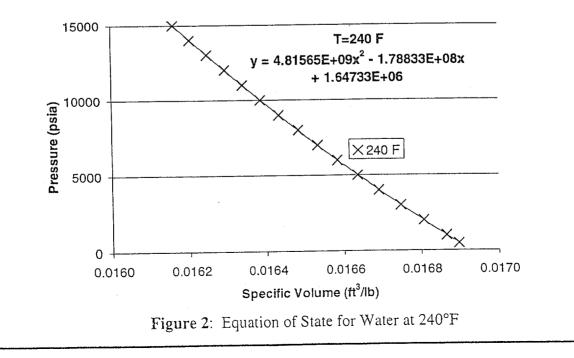
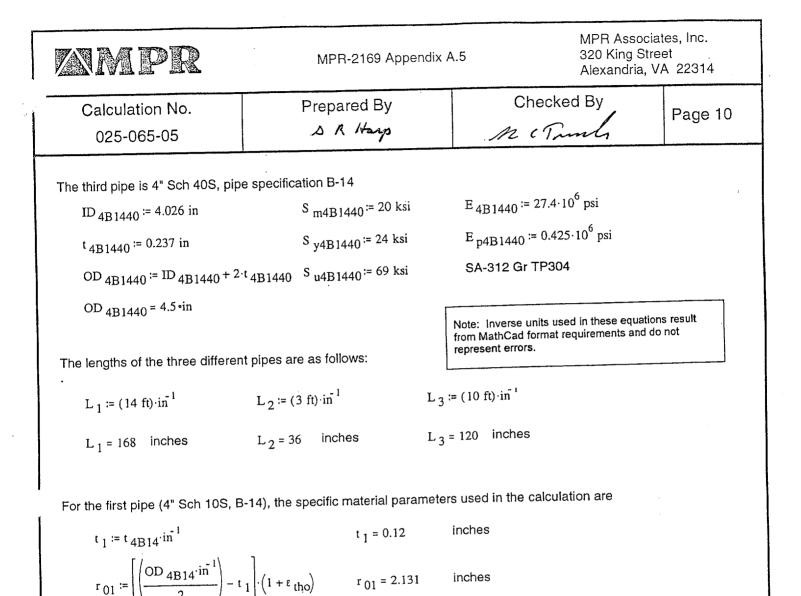



Figure 1: Type 304 Stainless Steel Stress-Strain Curve. (Reference 6)

3.3 Fluid Properties

Figure 2 shows the relationship between pressure and specific volume at a temperature of 240°F (from Reference 8). A polynomial curve fit, which represent the equations of state for the fluid, is also shown. This equation will be used in the determination of fluid pressure during the heat up. The specific volume for the initial conditions (165 psia, 150°F) is v = 0.0163343 ft³/lb.



MPR	MPR-2169 Appendix A.5	MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. 025-065-05	Prepared By	Checked By Page 7
Attachment A contains a Mat	esults used to calculate pressure given the i hCAD program printout showing the essure reached in CPN-37 at 240°F is	equations used and the results. The
	•	
1		

ZMPR	MPR-2169 Appendix A	5	MPR Associat 320 King Stree Alexandria, V/	et				
Calculation No. 025-065-05 '	Prepared By A Harp	Checker	1	Page 8				
4.0 REFERENCES	4.0 REFERENCES							
 D.C. Cook Piping Specification ES-PIPE-1013-QCN-CS3, Revision 1, "Pipe Material Specification: Safety Related." 								
2. MPR Calculation 025-06 Revision 0.	 MPR Calculation 025-065-04, "Determination of Water Temperature in D.C. Cook Unit 1 CPN-37," Revision 0. 							
 MPR Calculation 025-06 Isolated by Air Operated 	5-02, "Determination of Peak Pr Globe Valves," Revision 0.	ressures in D.C. Co	ook Unit 1 Pip	bing Segments				
D.C. Cook Draw:	nt Penetration CPN-37: ing No. OP-1-5129A, Revision 2 ing No. 1-CS-93, Revision 7. ing No. 1-CS-42, Revision 12.	8, "CVCS – React	or Letdown &	t Charging."				
5. Crane Technical Paper N	Io. 410, "Flow of Fluids," 1986.							
6. Aerospace Structural Me Stainless Steel.	etals Handbook, Volume 2, 1990	, Code 1303, Figur	e 3.03112, Ty	ype 304				
7. 1989 ASME Code, Sect	ion III Division 1 Appendices– F	roperties.						
8. ASME Steam Tables, 6 ^t	^h Edition.							
				•				

.

MPR	MPR-2169 Appendix	A.5	WPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. 025-065-05	Prepared By S. R. Harpo	Checked Mc C From	
PURPOSE:	Attachment A Pressure in CPN-37		
The purpose of this calculation is to the pipe heats to 240F.	determine the pressure reac	hed in CPN-37 at D.C.	Cook, Unit 1 when
CALCULATION:			
The expected temperature of the wa	ter during a LOCA and the a	ambient temperature are	9
$T_{LOCA} \approx 240$	T _{amb} := 150 T	ambo ^{:= 70}	
The mean coefficient of thermal exp	ansion for SA-312 Gr TP304	from 70 to 150 F (Refe	erence 8) is
$\alpha_{\text{To}} \approx 8.67 \cdot 10^{-6}$			
And the initial strain due to thermal	•		
$\epsilon_{\text{tho}} \coloneqq \alpha_{\text{To}} (T_{\text{amb}} - T_{\text{ambo}})$	$\varepsilon_{\text{tho}} = 6.94 \cdot 10^{-4}$ in/in		
The conversion for psi to ksi is ksi := 1000 psi			
For penetration CPN-37, there are the properties are listed below. Note that be adjusted for thermal expansion to	t the diameters are the cold		
The first pipe is 4" Sch 10S, pipe sp	-		
ID _{4B14} := 4.260 in .	S _{m4B14} := 20 ksi	$E_{4B14} = 27.4 \cdot 10$	⁶ psi
t _{4B14} := 0.120 in	S y4B14 := 24 ksi	E _{p4B14} := 0.425	10 ⁶ psi
$OD_{4B14} = ID_{4B14} + 2 \cdot t_{4B14}$	S _{u4B14} := 69 ksi	SA-312 Gr TP30)4
OD _{4B14} = 4.5 •in			
The second pipe is 1" Sch 40S, pipe	e specification B-14		
	S _{m1B14} := 20 ksi	$E_{1B14} = 27.4 \cdot 10$) ⁶ psi
ID _{1B14} := 1.049 in		E _{p1B14} := 0.425	10 ⁶ psi
$t_{1B14} = 1.049 \text{ m}$ $t_{1B14} = 0.133 \text{ in}$	S _{y1B14} := 24 ksi		
	S _{y1B14} := 24 ksi S _{u1B14} := 69 ksi	SA-312 Gr TP30	
t _{1B14} := 0.133 in	• •	SA-312 Gr TP30	

r_{01_ini}= 2.130 inches

psi

psi

 $S_{y1} = 2.4 \cdot 10^4$

 $E_1 = 2.74 \cdot 10^7$

 $E_{p1} = 4.25 \cdot 10^5$ psi

 $\epsilon_{v1} = 8.759 \cdot 10^{-4}$ in/in

 $S_{m1} = 2.10^4 \text{ opsi}$

 $S_{u1} = 6.9 \cdot 10^4 \cdot psi$

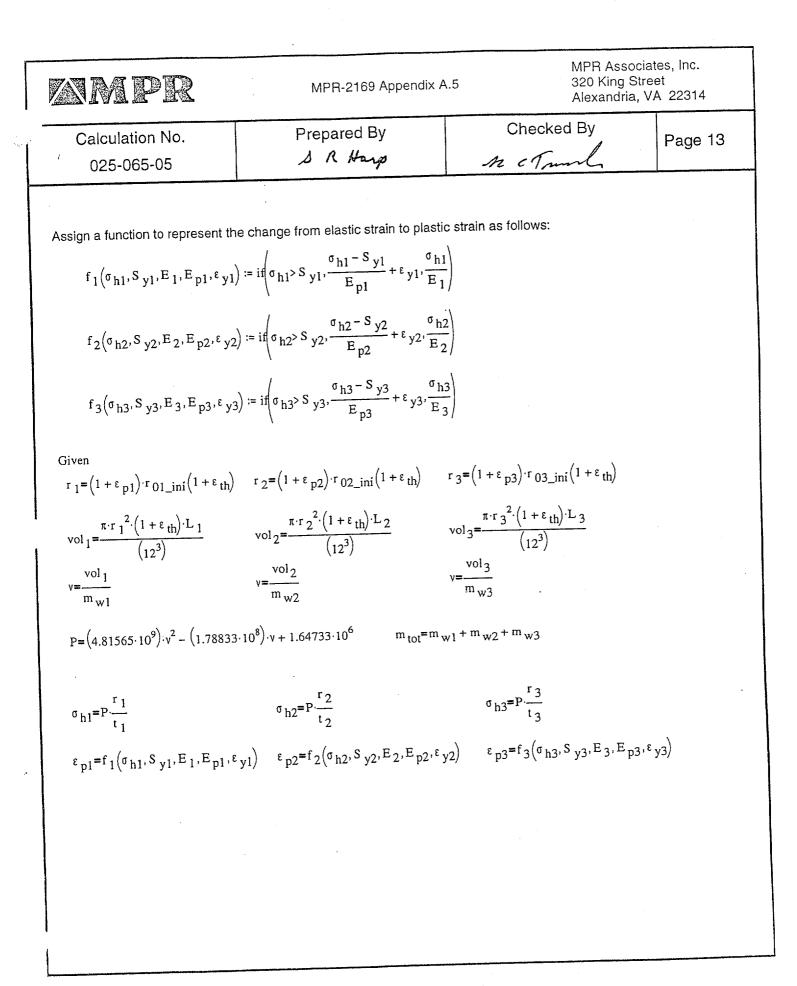
 $\mathbf{r}_{01_ini} \coloneqq \left[\left(\frac{OD_{4B14} \cdot in^{-1}}{2} \right) - t_1 \right]$

 $S_{v1} = S_{v4B14} \cdot psi^{-1}$

 $E_1 := E_{4B14} \cdot psi^{-1}$

 $\varepsilon_{y1} \coloneqq \frac{S_{y1}}{E_1}$

 $E_{p1} = E_{p4B14} \cdot psi^{-1}$


 $S_{m1} = S_{m4B14}$

 $S_{u1} = S_{u4B14}$

MMPR	MPR-2169 Appendix A.5	MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No.	Prepared By	Checked By McTrunk Page 11
025-065-05	S R Harp	McTrut
	3-14), the specific material parameters	for the calculation are
For the second pipe (1" Sch 40S, E $t_2 = t_{1B14} \cdot in^{-1}$	$t_2 = 0.133$ inche	
$r_{02} := \left[\left(\frac{OD_{1B14} \cdot in^{-1}}{2} \right) - t_{2} \right]$	$(1 + \varepsilon_{\text{tho}})$ $r_{02} = 0.525$ inche	25
$r_{02_{ini}} = \left[\left(\frac{OD_{1B14} \cdot in^{-1}}{2} \right) - t \right]$	2 r _{02_ini} = 0.524 inche	es
$S_{y2} := S_{y1B14} \cdot psi^{-1}$	$S_{y2} = 2.4 \cdot 10^4$ psi	
$E_2 := E_{1B14} \cdot psi^{-1}$	E ₂ = 2.74·10 ⁷ psi	
E _{p2} := E _{p1B14} .psi ⁻¹	E _{p2} = 4.25·10 ⁵ psi	
$\varepsilon_{y2} \coloneqq \frac{S_{y2}}{E_{2}}$	$\epsilon_{y2} = 8.759 \cdot 10^{-4}$ in/in	
$S_{m2} = S_{m1B14}$	S _{m2} = 2·10 ⁴ •psi	
S _{u2} := S _{u1B14}	S _{u2} = 6.9·10 ⁴ •psi	
For the third pipe (4" Sch 40S, B-	14), the specific material parameters us	ed in the calculation are
$t_3 := t_{4B1440} \cdot in^{-1}$	t ₃ = 0.237 inches	S
$r_{03} := \left[\left(\frac{OD_{4B1440} \cdot in^{-1}}{2} \right) - t \right]$	$_{3}$ $\left \cdot \left(1 + \varepsilon_{\text{tho}} \right) - r_{03} = 2.014 \text{inches} \right $	
$r_{03_{ini}} = \left[\left(\frac{OD_{4B1440} \cdot in^{-1}}{2} \right) \right]$	5	s
S y3 := S y4B1440 psi ⁻¹	S _{y3} = 2.4·10 ⁴ psi	
$E_3 := E_{4B1440} \cdot psi^{-1}$	E ₃ = 2.7·10 ⁷ psi	
$E_{p3} := E_{p4B1440} \cdot psi^{-1}$	E _{p3} = 4.25·10 ⁵ psi	
$\epsilon_{y3} := \frac{S_{y3}}{E_3}$	$\epsilon_{y3} = 8.759 \cdot 10^{-4}$ in/in	
S _{m3} := S _{m4B1440}	S m3 = $2 \cdot 10^4 \cdot \text{psi}$	
$S_{u3} = S_{u4B14}$	$S_{u3} = 6.9 \cdot 10^4 \cdot psi$	

ZMPR	MPR-2169 Appendix	A.5 320 King	sociates, Inc. g Street Iria, VA 22314
Calculation No. 025-065-05	Prepared By	Checked By M. C. Taul	Page 12
At 150 F 165 psia, the water has a s v _{initial} = 0.0163343 ft ³ ·lb ⁻¹	pecific volume		
Therefore, the mass of water in a un	it length (1 inch) of pipe is		
$m_{w1i} := \frac{\pi \cdot r_{01}^2 \cdot 1}{\left(\nu_{\text{initial}} b \cdot in^{-3}\right)}$		t length (4" Sch 10S)	
$m_{w2i} \coloneqq \frac{\pi \cdot r_{02}^{2} \cdot 1}{\left(\nu_{\text{initial}} l \cdot i \bar{n}^{3}\right)}$	m _{w2i} = 0.031 Ib per uni	t length (1" Sch 40S)	
$m_{w3i} \coloneqq \frac{\pi \cdot r_{03}^{2} \cdot 1}{\left(\nu_{\text{initial}} b \cdot in^{-3}\right)}$	m _{w3i} = 0.452 Ib per uni	it length (4" Sch 40S)	
The mean coefficient of thermal exp	pansion for SA-312 Gr TP304 fro	om 70 to 240 F is	
$\alpha_{\rm T} := 8.88 \cdot 10^{-6}$			
And the strain due to thermal expar			
$\epsilon_{\text{th}} \coloneqq \alpha_{\text{T}} (\text{T}_{\text{LOCA}} - \text{T}_{\text{ambo}})$	$\epsilon_{\rm th} = 1.51 \cdot 10^{-3}$ in/in	-	
The total mass of the water in the p	iping, assuming that the pipe is	filled, is	
$m_{tot} := (m_{w1i}L_1 + m_{w2i}L_2)$	$+ m_{w3i}L_3 \cdot (1 + \varepsilon_{tho}) m$	$h_{tot} = 140$ ib	
To solve the equations for the system variables.	em with both pipe sizes, we mus	t guess initial values for the	

P := 3000	ε _{p1} := 0.01	vol ₁ := 1
v := 0.016	ε _{p2} := 0.01	vol ₂ := 1
	ε _{p3} := 0.01	vol ₃ := 1
σ _{h1} := 100	r ₁ := 1.0	m _{w1} := 1
σ _{h2} := 100	r ₂ := 1.0	m _{w2} = 1
σ _{h3} := 100	r ₃ := 1.0	m _{w3} = 1

MPR	MPR-2169 Appendix A.5	MPR Assoc 320 King S Alexandria	ciates, Inc. treet , VA 22314
Calculation No. 025-065-05	Prepared By D R Harp	Checked By	Page 14
Solving the equations. AA := Find(r ₁ ,r ₂ ,r ₃ ,ε _{p1} ,ε	p2 ^{, ε} p3, vol ₁ , vol ₂ , vol ₃ , v, P, σ _{h1} , ^σ h	$2^{,\sigma}_{h3}, m_{w1}, m_{w2}, m_{w3})$	
$r_{1} := AA_{0,0} \cdot in$ $r_{2} := AA_{1,0} \cdot in$ $r_{3} := AA_{2,0} \cdot in$ $\epsilon_{p1} := AA_{3,0}$ $\epsilon_{p2} := AA_{4,0}$ $\epsilon_{p3} := AA_{5,0}$ $vol_{1} := AA_{6,0} \cdot ft^{3}$ $vol_{2} := AA_{7,0} \cdot ft^{3}$ $vol_{3} := AA_{8,0} \cdot ft^{3}$ $v := AA_{9,0} \cdot ft^{3} \cdot lb^{-1}$ $P := AA_{10,0} \cdot psi$ $\sigma_{h1} := A\overline{A_{11,0}} \cdot psi$	r $_{1} = 2.18 \cdot in$ r $_{2} = 0.53 \cdot in$ r $_{3} = 2.02 \cdot in$ $\epsilon_{p1} = 2.1741 \cdot \%$ $\epsilon_{p2} = 0.02609 \cdot \%$ $\epsilon_{p3} = 0.05621 \cdot \%$ vol $_{1} = 1.45 \cdot ft^{3}$ vol $_{2} = 0.02 \cdot ft^{3}$ vol $_{3} = 0.89 \cdot ft^{3}$ v = 0.016817 $\cdot ft^{3} \cdot lb^{-1}$ P = 1.81 $\cdot 10^{3} \cdot psi$ (psize of the second	$AA = \begin{bmatrix} 0 & 2.18 \\ 1 & 0.53 \\ 2 & 2.02 \\ 3 & 0.02 \\ 4 & 0 \\ 5 & 0 \\ 6 & 1.45 \\ 7 & 0.02 \\ 8 & 0.89 \\ 9 & 0.02 \\ 10 & 1809.57 \\ 11 & 32867.64 \\ 12 & 7148.86 \\ 13 & 15401.71 \\ 14 & 86.41 \\ 15 & 1.08 \\ \end{bmatrix}$	-
σ _{h2} := AA _{12,0} .psi σ _{h3} := AA _{13,0} .psi	σ _{h2} = 7•ksi σ _{h3} = 15•ksi		
$m_{w1} := AA_{14,0}$ lb $m_{w2} := AA_{15,0}$ lb	m _{w1} = 86 •lb m _{w2} = 1 •lb m _{w3} = 53 •lb		

ATTACHMENT 5 TO C0801-05

MPR CALCULATION 025-065-01

"DETERMINATION OF PEAK PRESSURES IN D. C. COOK UNIT 1 PIPING SEGMENTS ISOLATED BY AIR OPERATED DIAPHRAGM VALVES"

MPR-2169 Appendix A.1

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

	CALCULATION	NTITLE	PAGE		
Client American Electric I	Power			Page	1 of 20
Project Evaluation of D.C. Thermal Overpres	Cook Unit 1 Piping Seg surization	ments for	Potential		sk No.)13-065-0
Title Determination of F Segments Isolated	Peak Pressures in D.C. 0 I by Air Operated Diaphi	Cook Unit ragm Valv	1 Piping es	ation No. -065-01	
Preparer/Date	Checker/Date		Reviewer/Approv	ver/Date	Rev. No.
A CTurk 8/6/2000	Josty	916/2000) fure 2n 9-8-00	C-7	0
			-		
This document has bee requirements	QUALITY ASSU n prepared, checked and revi of 10CFR50, Appendix B, as	awed/approv	ved in accordance v	vith the Quali surance Man	ty Assurance ual.

MPR-2169 Appendix A.1

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

RECORD OF REVISIONS					
	ition No. 065-01	Prepared By		Checked By	Page 2
Revision			Descr	ption	
0	Original Issue.				
			·		•
	·				
- -					
		: · · ·			

	M	PR	MPR-2169		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
	culatior 25-065-		Prepared By In Arrand	Checked By	Page 3
			m c pumo		
			CONT	ENTS	
SECT	TION				PAGE
1.0	PURP	OSE			4
2.0	SUMI	MARY			4
3.0	CALO	CULATION			5
	3.1	Diaphragn	1 Valves Installed in Piping	Segments at Cook Unit 1	
	3.2	Calculatio	n of Segment Pressure Requ	ired to Open Diaphragm Val	ves
	3.3	Ability of	Diaphragm to Withstand Pro	essure	•
4.0	REFE	ERENCES			19

MMPR	MPR-2169 A	Appendix A.1	ng Street Idria, VA 22314
025.065.01	Prepared By Tumb	Checked By	Page 4

1.0 PURPOSE

The purpose of this calculation is to determine the peak pressures that can be obtained in piping segments susceptible to thermal overpressurization that are isolated by air operated diaphragm valves at the D. C. Cook Nuclear Power Station, Unit 1. The pressures determined in this calculation are used in a separate stress analysis of the piping segments. The piping segments isolated by diaphragm valves are listed in Table 1 of Section 2 of this calculation.

The maximum pressure is taken as the pressure at which the air operated diaphragm valves installed in the segments will open. This calculation also demonstrates that the diaphragm integrity is maintained up to this opening pressure.

2.0 SUMMARY

The segment pressures required to begin to open the diaphragm valves in each system are in Table 1.

System		NESW		PW	DEMIN	WDS	SDCON
CPN	Multiple	Multiple	Multiple	33	36	40	41
Valve Size	2"	3"	6"	3"	2"	4"	3"
Line Pressure to Begin to Open (psig), p _{segment,o}	325	711	215	212	325	262	212

Table 1. Segment Pressures Required to Open Air Operated Diaphragm

The EPDM diaphragms will remain intact at these pressures. The diaphragm elongation is limited to 90% by the compressor and finger plate. EPDM will not rupture until it reaches 500% elongation.

These pressure results will be used in separate evaluations for the pipe and valves in these segments.

MMPR	MPR-2169 A	Appendix A.1	320	Associates, Inc. King Street andria, VA 22314
Calculation No. 025-065-01	Prepared By Mc Tunk	Checked By		Page 5
	· · · · · · · · · · · · · · · · · · ·	,		

3.0 CALCULATION

This calculation will be performed in the following steps:

- Determination of the types and configuration of valves installed in Cook Unit 1 piping segments of interest (Section 3.1).
- Calculation of the water pressure inside the piping segments that would be required to force open a closed diaphragm valve (Section 3.2).
- Demonstration that diaphragms can withstand the calculated segment pressure (Section 3).

3.1 <u>Diaphragm Valves Installed in Piping Segments at Cook Unit 1</u>

Each of the segments considered in this calculation is isolated using air operated diaphragm valves. These valves are air to open, spring to close valves provided by Grinnell (now ITT Engineered Valves).

The valves installed in each segment are listed in Table 2, along with configuration information. Configuration information was assumed based on information available from plant records. To verify this information, a walkdown was performed for these valves, and data obtained was compared to data from plant records and from the vendor. Walkdown data was documented in Reference 10. The discussion below shows how diaphragm valve model information was validated by results of the walkdown.

NESW Instrument Room CVU Valves 1-WCR-960 through 1-WCR-967

Plant records indicate that ITT Grinnell Valve Company Drawing SD-C-109700 applies to these valves. Key information from this drawing includes the following:

Valves are 2" Actuator = 3250L Air Motor Actuator diameter = 14.5" at outer edge Spring number 97 is installed

This corresponds to a Series 3253 valve in the ITT Industries, Dia-Flo valve catalog (Reference 6). Dimensional information for that catalog item matches data recorded during the walkdown (specifically actuator circumference, actuator housing height, and presence of tie rods holding the actuator housing to upper cover). Further, these valves are operated off the 50 psi control air header per control air header drawing OP-1-5120J (Reference 11); per the ITT catalog, the air pressure required to operate the 3253 series valve is 30 psi.

MMPR	MPR-2169 A	ppendix A.1	MPR Associates, Inc. 320 King Street Alexandria, VA 22314		
Calculation No. 025-065-01	Prepared By AcTum	Checked By	Page 6		
Accordingly, the walkdow SD-C-109700 and therefore	vn information confirmed that bre have the #97 spring installe	these valves are as shown i d.	in drawing		
	ves 1-WCR-920 through 1-W				
Plant records indicate tha Key information from thi	t ITT Grinnell Valve Company s drawing includes the followi	v Drawing SD-C-109701 a ng:	pplies to these valves.		
Valves are 3" Actuator = 32101 Actuator diameter Spring number 13	r = 17-1/8" at outer edge				
Series 32108 valve in the	that each valve has a Grinnell A e ITT Industries, Dia-Flo valve ches data recorded during the v Further, only the Series 3210	valkdown (specifically act	uator circumference and		
Accordingly, the walkdown information confirmed that these valves are as shown in drawing SD-C-109701 and therefore have the #130 spring installed.					
	r Cooler CVU Valves 1-WCR				
Same as above. Valves	are as shown in drawing SD-C	-109701 and have the #130	0 spring installed.		

NESW Lower CVU Valves 1-WCR-900 through 1-WCR-915

Plant records indicate that ITT Grinnell Valve Company Drawing SD-C-109702 applies to these valves. Key information from this drawing includes the following:

Valves are 6" Actuator = 32130 Air Motor Actuator diameter = 19" at outer edge Spring number 130 is installed

Walkdown data showed that each valve has a Grinnell Air Motor Number 130. This corresponds to a Series 32138 valve in the ITT Industries, Dia-Flo valve catalog (Reference 6). Dimensional information for that catalog item matches data recorded during the walkdown (specifically actuator circumference and

MMPR	MPR-2169 A	Appendix A.1	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-01	Prepared By Manual	Checked By	Page 7	

actuator housing height). Further, only the Series 32138 with 130 air motor has a housing height on the order of 24".

Accordingly, the walkdown information confirmed that these values are as shown in drawing SD-C-109702 and therefore have the #130 spring installed.

Valves 1-NRV-251, 1-DCR-600 and 1-DCR-601

Plant records indicate that Drawing WAPD-CV-SS-8R Revision 3 applies to these valves. Key information from this drawing includes the following:

Valves are 3", Item Number 3DA42R Actuator = 3250 Air Motor Actuator diameter = 14.5" at outer edge Spring number 96 and 97 are installed

This corresponds to a Series 3255 valve in the ITT Industries, Dia-Flo valve catalog (Reference 6). Dimensional information for that catalog item matches data recorded during the walkdown (specifically actuator circumference and actuator housing height). Further, the walkdown found tags on each valve that indicated the valves are model 3DA42R and contain springs #96 and #97, with spring rates of 236 and 135 pounds per inch, respectively.

Accordingly, the walkdown information confirmed that these valves are as shown in drawing WAPD-CV-SS-8R and therefore have the #96 and #97 springs installed.

Valves 1-QCR-919 and 1-QCR-920

Walkdown data showed that these valves have the same dimensions as the valves shown in ITT Grinnell Valve Company Drawing SD-C-109700. Key information from this drawing includes the following:

Valves are 2" Actuator = 3250L Air Motor Actuator diameter = 14.5" at outer edge Spring number 97 is installed Air pressure to open = 35 psig

This corresponds to a Series 3253 valve in the ITT Industries, Dia-Flo valve catalog (Reference 6). Dimensional information for that catalog item matches data recorded during the walkdown (specifically actuator circumference, actuator housing height, and presence of tie rods holding the actuator housing to upper cover). Further, the drawing shows that the air pressure to open these is 35 psig, which is

MMPR	MPR-2169	Appendix A.1	MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. 025-065-01	Prepared By Mohumb	Checked By	Page 8
025-065-01		253 series valve of 30 psi	i, per the Reference 6

comparable to the air pressure required to operate the 5255 series valve of 50 pcs, per laborator vendor catalog. Further, it is noted that these valves are operated off the 50 psi control air header per control air header drawing 1-OP-5120J (Reference 11).

Accordingly, the walkdown information concluded that these valves are as shown in drawing SD-C-109700 and therefore have the #97 spring installed.

Valves 1-DCR-205, 1-DCR-206 and 1-DRV-001

Plant records indicate that Drawing WAPD-CV-SS-9R Revision 3 applies to these valves. Key information from this drawing includes the following:

Valves are 4", Item Number 4DA42R Actuator = 32100 Air Motor Actuator diameter = 16-11/16" at outer edge Spring number 96 and 98 are installed

During the walkdown tags were found on the valves indicating these were item 4DA42R. In addition, the spring rates for these valves were found by inspection of stamped markings on the actuator housings. Specifically, the spring rates stamped were 236 pounds per inch for the #96 spring and 342 pounds per inch for the #98 spring.

Accordingly, the walkdown information confirmed that these valves are as shown in drawing WAPD-CV-SS-9R and therefore have the #96 and #98 springs installed.

Calculation No.Prepared ByChecked ByPrepared By025-065-01AdminutAdminut	Page 9

3.2 Calculation of Segment Pressure Required to Open Diaphragm Valves

During thermal overpressurization incidents (such as might occur when segments are isolated during pipe breaks in containment), water pressure will build in the isolated segment until the force on the diaphragm overcomes the spring force holding the valve closed. At this point the valve will begin to open, and relieve the trapped water.

This calculation will determine the segment water pressure which would be required to overcome the spring force and hence permit the trapped water to escape through the opened valve. To ensure the trapped water can escape the volume, the calculation will determine the system pressure needed to open the valve 10 percent of its full stroke. A check will be made to ensure that pressure can be relieved at this opening position. The method used is as follows:

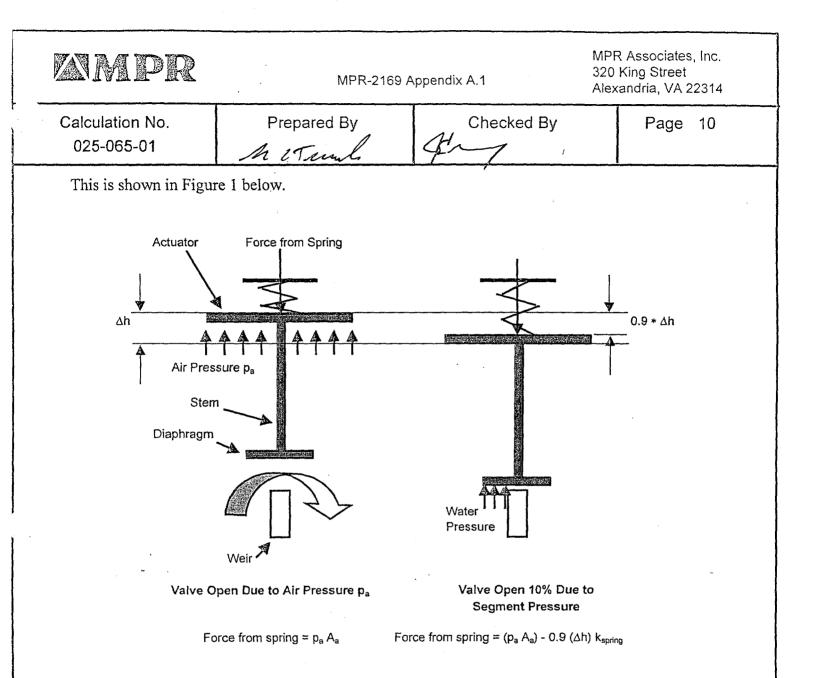
 During normal operation, air pressure acting on the actuator plate is sufficient to compress the spring and force the actuator plate up. The actuator pulls the stem and diaphragm up, thus permitting flow of water through the valve. The force required to fully open the valve (F_{open,full}) is equal to the air pressure required to fully open the valve (p_a) times the effective actuator area (A_a):

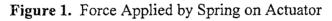
 $F_{open,full} = p_a A_a$

2) Opening the value to its full open position requires compressing the actuator spring(s) by an amount equal to the value stroke. The spring force required to fully open the value ($\Delta F_{spring,full}$) is calculated by multiplying the spring constant (k_{spring}) by the stem travel (Δh_{stem}) as follows:

$$\Delta F_{\text{spring, full}} = k_{\text{spring}} \Delta h_{\text{stem}}$$

3) The spring force required to begin to open a valve (F_o) is the force required to fully open the valve minus the change in the spring force from closed to full stroke,


 $F_o = F_{open, full} - \Delta F_{spring, full}$


4) The spring force required to open the valve an additional 10 percent is equal to the opening force plus the force required to compress the spring by 10 percent of the valve stroke:

 $F_{10\%} = F_{o} + (0.1) k \Delta h_{stem}$

Combining the above equations gives:

 $F_{10\%} = (p_a A_a) - 0.9 \Delta h_{stem} k_{spring}$

5) The segment water pressure required to open the valve by 10% when there is no air supplied to the motor (p_{segment}) is:

$$p_{segment} = \frac{F_{10\%}}{A_{segment}}$$

where $A_{segment}$ is the effective area of the diaphragm that the water acts upon, equal to one half of the diaphragm area minus half the area in contact with the weir,

$$A_{\text{segment}} = \frac{1}{2} \left[\frac{\pi}{4} d_d^2 - W_w d_w \right]$$

MMPR	MPR-2169	Appendix A.1	320	R Associates, Inc. King Street andria, VA 22314
Calculation No. 025-065-01	Prepared By Month	Checked By		Page 11
where d _d = diaphragm d	iameter, w _w = weir width ar	d d _w = weir length.		· · · · · · · · · · · · · · · · · · ·

6) Table 3 lists this information for the valves installed in the piping segments considered in this calculation.

Using the information in Table 3 and the equations listed previously, opening pressure can be calculated for each valve. Results of this calculation are shown in Table 4.

Note that in every case the segment pressure required to open the valves by 10 percent is in excess of 200 psig. Reference 6, page 70 shows that the flow coefficient Cv for 2" to 6" ITT weir valves ranges from 12 to 105. Assuming the minimum Cv value, the flow through these valves at 200 psig pressure differential is calculated using the method of Reference 6:

Actual flow = $Cv * (\Delta P/sg)^{1/2} = 12 * (200 / 1.0)^{1/2} = 170 \text{ gpm}$

where "sg" = the specific gravity of water (1.0).

Since only a small volume of water (on the order of several gallons maximum) must be discharged to reduce the pressure in the trapped piping segments, this flow rate is sufficient to relieve the pressure in the segment.

ZAR	APR	2	MPR-2	169 Appendix A	4.1	320 King	sociates, Inc. g Street ria, VA 22314		
∵ Calcula 025-0	tion No. 065-01		Prepared By Checked By			/	Page 12		
	Table 2	. List of Air Ope	erated Diap	hragm Valve	es in Segmen	nts Considere	ed		
Segment		NESW		PW	DEMIN	WDS	SDCON		
CPN	Multiple	Multiple	Multiple	33	36	40	41		
Valve Size	2"	3"	6"	3"	2"	4"	3"		
Diaphragm Valve Tag Numbers	1-WCR- 960 to 1-WCR- 967	1-WCR-920 to 1-WCR-935 1-WCR-941 to 1-WCR-948 1-WCR-951 to 1-WCR-958	1-WCR- 900 to 1-WCR- 915	1-NRV- 251	1-QCR- 919 1-QCR- 920	1-DCR-205 1-DCR-206 1-DRV- 001	600 1-DCR- 601		
Vendor Drawing	SD-C- 109700	SD-C-109701	SD-C- 109702	WAPD- CV-SS-8R	SD-C- 109700	WAPD- CV-SS-9R	WAPD- CV-SS- 8R		
Type of Actuator	3250L	32101	32130	3250	3250L	32100 (Note 2)	3250		
Jpring(s) Installed	#97	#130	#130	#96 & #97	#97	#96 & #98	#96 & #97		

1. Valve drawing numbers and springs were determined based on walkdown data as described in Section 4 of this calculation. Drawings are listed in Reference 1.

2. Drawing indicates a "32100" motor, with a 16-11/16" diameter actuator flange. The ITT model 32101 has a slightly larger actuator of 17.12" (see Reference 6, pages 96-97), with an effective actuator area of 100 square inches. This calculation assumes that the effective actuator area for the 32100 actuator is the same as the 32101 actuator.

mmp	R			MPR-2169 Ap	opendix A.1		MPR Associat 320 King Stree Alexandria, VA	et	
Calculation No. 025-065-01		A	Prepared	Ву	Chec	ked By	Page	ə 13	
	Tal				liculate Oper	ing Pressure	9	ł	
System			NESW		PW	DEMIN	WDS	SDCON	
CPN	Multip	ole	Multiple	Multiple	33	36	40	41	
Valve Size	2"		3"	6"	3"	2"	4"	3"	
Actuator	3250	L	32101	32130	3250		32100		
Air Required at Full Stroke (psig), p _a ⁽¹⁾	35		90	75	58		55		
$\begin{array}{c} (1-3), T_{a} \\ \hline \\ Effective \\ Actuator Area \\ (in.), A_{a}^{(2)} \end{array}$	50		100	130	50		100		
Springs ⁽³⁾	#9′	7	#130	#130	#96 & #97.		#96 & #98		
Total Spring Rate (lbf/in.), k _{spring} ⁽⁴⁾	13:	5	740	740	371	Same as 2" NESW valve.	578	Same as 3 PW valve	
Full Stroke Stem Travel (in.), $\Delta h_{stem}^{(2)}$	1.12	25	1.625	3.125	1.625	-	2.125	-	
Diaphragm Diameter (in.), d _d ⁽⁵⁾	3.68	575	5.5	9.812	5.5		6.81	_	
Weir Width at Peak (in.), w _w ⁽⁶⁾	0.2	25	0.31	0.50	0.31		0.50	-	
Weir Depth (in.), $d_w^{(6)}$	3.	0	4.76	8.5	4.76		5.76		

References are as follows:

Air required – Reference 1 drawings. Note that these values are maximum pressures which the (1)vendor recommended will be needed to fully open the valves; valves will begin opening at lower pressures and be fully open at this (or lower) pressure.

Actuator area and full stroke - Reference 2, pages 9 and 6, respectively (2)

Springs – See Table 2 (3)

- Total Spring Rate From Section 4 for CPN-33 and CPN-40; Reference 3 for others (4) (sum if more than one spring)
- Diaphragm diameter Reference 4 drawings (5)
- Weir width and depth Reference 5 drawings (6)

MMP	R		MPR-2169 /	Appendix A.1		MPR Assoc 320 King Sti Alexandria,	reet
Calculation No 025-065-01). 	Prepa A Cha	red By	Che	ecked By	Pa	ge 14
			Calculated C		£		
System	···	NESW	7	PW	DEMIN	WDS	SDCON
CPN	Multip	le Multipl	e Multiple	33	36	40	41
Valve Size	2"	3"	6"	3"	2"	4".	3"
Force to Open Fully (lbf), F _{open,full}	1,750	9,000	9,750	2,900		5,500	
Spring Force (lbf), $\Delta F_{spring, full}$	152	1,203	2,313	603		1,228	
Force to Begin to Open (lbf), F _o	1,598	7,798	7,438	2,297	Same as 2"	4,272	- Same as 3"
Force to Open by 10% (lbf), $F_{10\%}$	1,613	7,918	7,669	2,357	NESW valve.	4,395	PW valve.
Effective Area of Diaphragm (in ²), A _{segment}	4.96	11.14	35.68	11.14		16.77	
Line Pressure to Open by 10% (psig), p _{segment,o}	325	711	215	212		262	

MPR	MPR-2169 A	Appendix A.1	320	R Associates, Inc. King Street andria, VA 22314
Calculation No. 025-065-01	Prepared By McTrunh	Checked By		Page 15

3.3 Ability of Diaphragm to Withstand Pressure

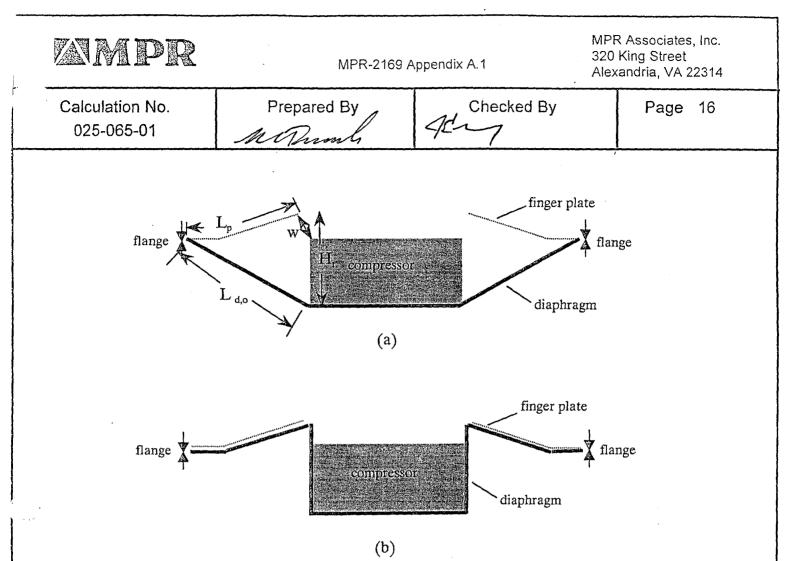
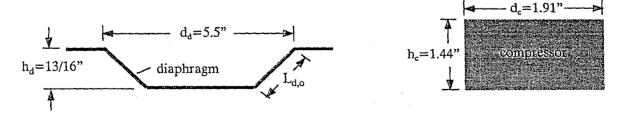
For each valve the diaphragm is supported by a compressor. This section will consider the ability of the diaphragm in a closed valve to withstand the calculated pressures.

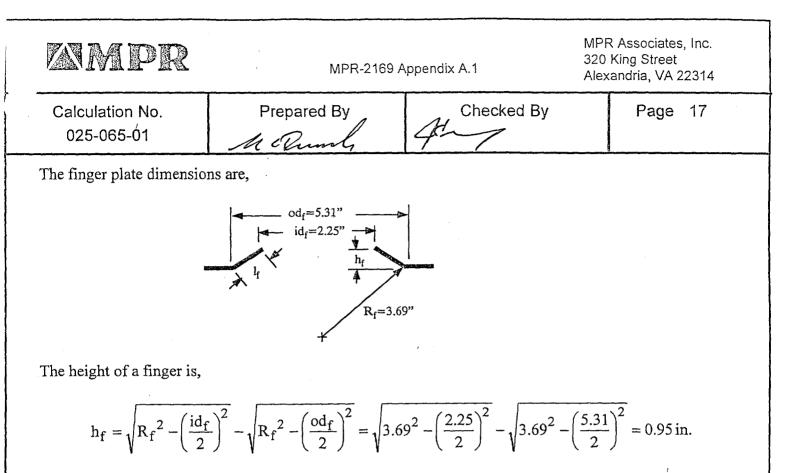
Based on the results in Section 3.2, the three inch valve experiences the highest pressure. This calculation will address the ability of this size valve to withstand pressure. Larger valves experience lower pressures and so will not be limiting.

When the value is closed the diaphragm is supported in part by the compressor. The portion of the diaphragm not supported will stretch under pressure at most until it lays along the boundary created by the compressor and the finger plate.

The elongation of the diaphragm is evaluated by looking at the length of a diaphragm before and after pressure loading. Prior to loading, the 3" diaphragm is in an unstretched state since the distance along the diaphragm between the flange and the lower portion of the compressor is very nearly equal to the distance between the flange and the top of the weir (see Figure 2 below; valve and diaphragm dimensions from References 4 and 5). In addition, the radius of curvature of the diaphragm is larger than the radius of curvature of the compressor finger (compare references 4 and 7). Figure 2a shows the original shape of a cross section of the diaphragm, compressor and finger plate in the unloaded condition.

Figure 2b shows the maximum possible deformation of the diaphragm under pressure. The diaphragm will not protrude between the small 0.36" gap between the compressor and the finger plate since the diaphragm thickness is 0.3" (more than half the gap width). A calculation of the diaphragm length before and after deformation is provided below.


Figure 2. Diaphragm Geometry, (a) undeformed (b) deformed

The original depths and heights of the diaphragm and compressor are,

The original length of the diaphragm prior to deformation is,

$$L_{d,o} = \sqrt{\left(\frac{d_d}{2} - \frac{d_c}{2}\right)^2 + (h_d)^2} = \sqrt{\left(\frac{5.5}{2} - \frac{1.91}{2}\right)^2 + \left(\frac{13}{16}\right)^2} = 1.97 \text{ in.}$$

The total height from the bottom of the compressor to the fingers, H, in Figure 1a, is,

$$H_t = h_d + h_f = 1.76$$
"

The diameter of the finger plate is less than the diameter of the diaphragm. The length of the finger plate that extends over the diaphragm is the length of the horizontal extension, $l_{p,h}$, plus the length of a finger, l_{f} . The horizontal length of the finger plate that extends over the diaphragm is

$$l_{p,h} = 0.5 (d_d - od_f) = 0.1$$
"

The length of a finger is,

$$l_{f} = \sqrt{\left(\frac{\mathrm{od}_{f}}{2} - \frac{\mathrm{id}_{f}}{2}\right)^{2} + {h_{f}}^{2}} = \sqrt{\left(\frac{5.31}{2} - \frac{2.25}{2}\right)^{2} + 0.95^{2}} = 1.8 \text{ in}.$$

Thus, the total length of the finger plate that will contact the diaphragm is

$$L_p = l_{p,h} + l_f = 1.9$$
"

The final deformed length of the diaphragm chord, $L_{d,f}$, is equal to the sum of the length of the finger plate and the height to the finger plate,

$$L_{df} = L_p + H_c = 3.66$$
"

MPR	MPR-2169 A	Appendix A.1	320	R Associates, Inc. King Street andria, VA 22314
Calculation No. 025-065-01	Prepared By A Questo	Checked By	1	Page 18

A summary of the original length of the diaphragm, the length of the finger plate, the height to the finger plate and the deformed diaphragm length is presented in Table 5. Based on these dimensions, the elongation of the diaphragm chord is

Elongation = $(L_{d,f} - L_{d,o}) / L_{d,o} * 100\% = 86\%$

The diaphragm material in the three-inch diaphragm valve is EPDM. According to Reference 9, the elongation of reinforced EPDM at break is 500%. Since the diaphragm only elongates 86%, the diaphragm should not rupture even at high pressures.

Table 5. Diaphragm Elongation

Parameter	Value
Original Length of Diaphragm Chord, Ld.o, in.	1.97
Length of Finger Plate, L _D , in.	1.90
Height to Finger Plate, H _c , in.	1.76
Deformed Length of Diaphragm Chord, Ld, f, in.	3.66
Percent Chord Elongation	86%

Note that there is a small gap, w, between the top of the finger plate and the top of the compressor. The length of the gap, w, between the top of the compressor and the top of the finger plate is,

w =
$$\sqrt{\left(\frac{\mathrm{id}_{\mathrm{f}} - \mathrm{d}_{\mathrm{c}}}{2}\right)^{2} + (\mathrm{H}_{\mathrm{t}} - \mathrm{h}_{\mathrm{c}})^{2}} = \sqrt{\left(\frac{2.25 - 1.91}{2}\right)^{2} + (1.76 - 1.44)^{2}} = 0.36 \mathrm{in}.$$

The diaphragm is not expected to protrude through this gap since the diaphragm thickness is 0.36".

	MPR	MPR-2169 A	ppendix A.1	MPR Associates, Inc. 320 King Street Alexandria, VA 22314
	ulation No. 5-065-01	Prepared By A Durch	Checked By	Page 19
4.0 RE	EFERENCES			
G •	Drawing Number Drawing Number Drawing Number Drawing Number	SD-C-109700, 2" Nuclear Dia SD-C-109701, 3" Nuclear Dia SD-C-109702, 6" Nuclear Dia WAPD-CV-SS-8R Rev. 3, 3" WAPD-CV-SS-9R Rev. 3, 4"	phragm Valve w/ 32101 phragm Valve w/ 32130 Grinnell Air Motor Diap Grinnell Air Motor Diap	Air Motor phragm Valve 3250 phragm Valve 32100
2.		Manual VTM-ITEV-0002, V		
3.	ITT Industries Dr	awing 117346, Revision B, Sp	oring Specification Sheet	•
4. * *	Drawing Number Drawing Number Drawing Number	awings for Diaphragms: 3958 Rev. L, Diaphragm Wei 3072 Rev. L, Diaphragm Wei 3073 Rev. L, Diaphragm Wei 5 Drawing (undated)	r 3.000	:
5. ø	Drawing Number	rawings for Weirs: : 103567 Rev. F, Body, Weir (r 100730 Rev. G, Body, Weir (
•		r 1014177 Rev. C, Body, Wein		
9		r 106666 Rev. E, Body, Weir		
6.	"DIA FLO [®] Indu 1999.	ustrial Diaphragm Valves, Tec	hnical Manual and Servi	ce Guide" ITT Industries,
7.	ITT Industries I • Drawing Nu	Drawing for Compressor: mber 139 Rev. F, Compressor	Weir 03.00	
8.	ITT Industries I • Drawing Nu	Drawing for Finger Plate: Imber 101034 Rev. G, Plate-Fi	inger Weir 03.00	
9.	Freakley, P.K. a	and A.R. Payne, "Theory and l hers, London, 1978.		vith Rubber," Applied
			01518.00	

10. AEP Design Input Transmittal Number DIT B-01518-00.

.

	MPR	MPR-2169 A	Appendix A.1	MPR Associates, Inc. 320 King Street Alexandria, VA 22314
	Calculation No. 025-065-01	Prepared By AcTurnel	Checked By	Page 20
:	11. AEP Drawing OP System Plan View	-1-5120J, Rev. 0, "Flow Diagr , Unit #1."	am, 50# Control Air Sys	tem Header, Auxiliary
		·		

ATTACHMENT 6 TO C0801-05

MPR CALCULATION 025-065-06

"PIPING STRESS SUMMARY CALCULATION FOR OVERPRESSURIZATION IN D. C. COOK UNIT 1 PIPING SEGMENTS"

ØMPR	MPR-2169 Appendix A	۸.6	MPR Associa 320 King Stre Alexandria, V	eet
/	CALCULATION TIT	LE PAGE	******	
Client American Electric Po	ower		Page	e 1 of 38
Project Evaluation of D.C. C Thermal Overpressu	ook Unit 1 Piping Segments rization	for Potential		sk No. 013-065-0
itle Piping Stress Summ Cook Unit 1 Piping S	ary Calculation for Overpres Segments	ssurization in D.C.		lation No. -065-06
Preparer/Date	Checker/Date	Reviewer/Appr	over/Date	Rev. No.
R C Trenh 9/8/00	ADEN 9/keloo	a /8/200		0
	x			-
This document has been prep requirements of 10C	QUALITY ASSURANCE ared, checked and reviewed/ap FR50, Appendix B, as specified	proved in accordance	with the Qua	ality Assurance inual.

......

		RECORD OF REVISIONS							
	Calculation No. 025-065-06		d By	Checked By	Page				
Revision		h cTurn	Description	n					
0	Original Issue								
				•					

• • • • • • • • • • • • • • • • • • •		
	MPR-2169 Appendix A.6	MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation N 025-065-06		Checked By Page 3
	CONTENTS	
SECTION	TITLE	PAGE
1.0	PURPOSE	4
2.0	RESULTS	4
3.0	CALCULATION	б
4.0	REFERENCES	
Attachment A	Spreadsheets For Piping Stress Evaluation	

- -

MPR	MPR-2169 Appendi	x A.6 32	PR Associates, Inc. 0 King Street exandria, VA 22314
Calculation No.	Prepared By	Checked B	у
025-065-06	n cramb	gen	Page 4
1.0 PURPOSE	•		
	Generic Letter 96-06 thermal ov artially or completely within the ction 2.		-
2.0 RESULTS			
Table 1 on the next page sum	marizes the results of this calcul	ation. In brief, the res	sults are as follows:
	ing stresses in the following seg vould occur during thermal over		e per the plant design
 NESW Cooling for U 	pper Containment Ventilation U	nits (4 segments)	Multiple CPNs
	CP Motor air Coolers (4 segmen		Multiple CPNs
 NESW Cooling for In 	strumentation Room Ventilatior	Units (2 segments)	Multiple CPNs
 NESW Cooling for Lo 	ower Containment Ventilation U	nits (4 segments)	Multiple CPNs
	owing segments <u>are acceptable</u> litions that would occur during t		
- Primary Water Supply	to RCPs and PRT		CPN-33
• • • • • • • • • • • • • • • • • • • •	Supply to Hose Connections		CPN-36
 Reactor Coolant Drain 			CPN-40
 Containment Sump Pu 	-		CPN-41
-	Line and Accumulator Fill Line		CPN-32
	Excess Letdown Heat Exchange	•	CPN-37
 RCP Seal Bypass Line 			(No CPN)
• Piping stresses in the follo	owing segments are not accepta	ible per the original	code criteria nor the

 Piping stresses in the following segments are not acceptable per the original code criteria nor the criteria of Appendix F of the ASME Code, Section III. These segments require further evaluation or provision of a means to relieve thermal overpressurization.

_	Pressurizer Liquid Space Sample Line	CPN-66
	Hot Leg Sample Line	CPN-66
	Accumulator Sample Line	CPN-81

Calculation No. 025-065-06		MPR-216	9 Appendix /	A. 6	320 Kin	ssociates, Inc. g Street dria, VA 22314
		Prepared By		Checked By		Page {
	Ś	Ta Summary of Pip	ble 1 e Stress Ev	aluation		
SegmentContainmentPeakPiping Stress IndexStrainLimit						Strain Limit
		Penetrations	(psi)	Per B31.1	Per App. F	(≤5% OK)
Non-Essential	Instr. Rm	Multiple	325	0.93	0.66	<0.1%
Service Water	RCP&CUV	Multiple	711	0.98	0.70	<0.1%
System	CLV	Multiple	215	0.93	0.66	<0.1%
Safety Injection and Accumulate	or Fill Line	32	15,310	1.40	0.96	0.4%
Primary Water S PRT		33	212	N/A	0.62	<0.1%
Demineralized V Supply		36	325	N/A	0. <u>6</u> 3	<0.1%
RCP Seal Water Letdown Heat E	xchanger	37	1,800	1.57	0.93	2.0%
Reactor Coolant Pump Suction		40	262	N/A	0.64	<0.1%
Containment Su Discharge to Wa	aste Disposal	41	212	N/A	0.63	<0.1%
Sample Line fro Hot Legs		66	17,800	2.75	1.15	5.9%
Sample Line from Pressurizer Liquid Space		66	17,800	2.75	1.15	5.9%
Sample Line from Accumulators		81	17,400	2.69	1.16	5.6%
RCP Seal Bypas	S	N/A	16,940	1.55	0.988	1.0%

Entries which are not acceptable are shown in bold.

1.4

ZMPR	MPR-2169 Append	ix A.6 320	R Associates, Inc. King Street andria, VA 22314
Calculation No. / 025-065-06	Prepared By MoTrumh	Checked By	Page 6

3.0 CALCULATION

Reference 1 of this calculation lists MPR calculations prepared to determine the maximum pressure in piping segments at Cook Unit 1 that would occur during the thermal overpressurization concern addressed by Generic Letter 96-06. This calculation will evaluate whether the pressures and resulting piping stresses in these segments are acceptable at these pressures. This will be performed as follows:

- Given the maximum pressure, the first check is for compliance of the piping itself with the code of record, which, per the piping specifications (References 2 and 3), is USAS B31.1.0-1967 (Reference 4) for all 24 segments. See Section 3.1 for the method used to make this determination.
- For those segments where the piping stresses exceed the original code acceptance criteria, an evaluation is performed to determine if the segment would meet the acceptance criteria of Appendix F of ASME Code, Section III (Reference 5). Generic Letter 96-06, Supplement 1 (Reference 6) states that use of this code appendix is acceptable for justifying short-term operability until a permanent solution is implemented. See Section 3.2 for the method used to make this determination.

ZMPR	MPR-2169 Append	ix A.6	MPR Associates, 320 King Street Alexandria, VA_22	
Calculation No.	Prepared By	Checked	I By	
025-065-06	Matunk	400mg		Page 7

3.1 Check of Piping Compliance with Original Code Acceptance Criteria

Pressures calculated for each pipe from Reference 1 are listed in Table 1. These are the maximum pressures that each segment could reach. These maximum pressures exceed the design pressures listed for each system in the piping design specifications. Pressures, and piping stresses resulting from these pressures, will be evaluated for acceptability with regard to the original design code in this section.

Calculation Method

Per the piping specifications, the code of record for these segments is USAS B31.1.0-1967. This code has two requirements for pressure: first, that the calculated stress due to internal pressure not exceed the allowable stress (Section 102.3.2(a)); and second, that the sum of longitudinal stresses due to pressure, weight, and other sustained loads shall not exceed the allowable stress in the hot condition (Section 102.3.2 (d)). The Cook USFAR (Reference 7), Tables 2.9-1 and 2.9-2, summarize the stress limits in pressure piping required for analysis for pressure-induced loads as follows:

For Normal Conditions (Deadweight Plus Pressure Loads),

(a) $P_m \leq S_h$

(b)
$$P_L + P_B \le S_h$$

For Upset Conditions (Deadweight Plus Pressure Plus Operating Basis Earthquake Loads),

(a)
$$P_m \le 1.2 S_h$$

b)
$$P_{\rm L} + P_{\rm B} \le 1.2 \, \rm S_{\rm b}$$

For Emergency Conditions (Deadweight Plus Pressure Plus Design Basis Earthquake Loads),

- (a) $P_m \leq 1.2 S_h$
- (b) $P_{L} + P_{B} \le 1.8 S_{h}$

where

 P_m = primary hoop membrane stress due to pressure

 P_L = primary longitudinal membrane stress due to pressure

 P_B = primary longitudinal bending stress due to deadweight and seismic loads

 S_h = allowable stress at 70°F from USAS B31.1 Code for Pressure Piping, 1967

Accordingly, both hoop stress and longitudinal stress due to overpressurization must be analyzed. Further, the longitudinal stress analysis must consider the combined effects of overpressurization, deadweight and seismic loads.

To check acceptability of primary hoop membrane stress (P_m) due to overpressurization, the hoop stress is calculated using the following formula:

 $P_m = (Pressure) (Inside Diameter) / (2 * Thickness) \le 1.2 S_h$

ZMPR	MPR-2169 Appendi	x A.6	MPR Associa 320 King Stre Alexandria, V	et	
Calculation No. 025-065-06	Prepared By McTrumb	Checke Jost	d By	Page 8	
A stress index for hoop stress follows:	s can be calculated by dividing th	e hoop stress by t	he allowable s	tress as	
Stress Index for Hoop	$P Stress = P_m / 1.2 S_h$				
In addition, for internal press allowable pressure (P, psig) f	ure considerations, B31.1 Section for piping:	n 104.1.2 provides	s the following	g equation for	
Allowable Pressure P	= $[2(1.2)SE(t_m - A)] / [D_o - 2y]$	$(t_m - A)]$			
where					
t_m = minimum wall th A = additional thicknes For 3.5" and st For 4"and larg For tubing in N D _o = outside diameter y = 0.4 (for nonferrou	ess, inches. maller diameter pipe, $A = 0.065$ " er diameter pipe, $A = 0.0$ " NESW heat exchangers, $A = 0.0$ "	, d ferritic materials	s less than 900		
(1) $P_m \leq 1.2$ (2) Overpres	S_h sure \leq Allowable Pressure				
Checking the acceptability of longitudinal stresses requires consideration of longitudinal bending stresses due to seismic and deadweight loads. These stresses are dependent on the support arrangement for the piping segments. Many of the piping segments at Cook were designed using span criteria developed in Reference 8. These criteria were intended to ensure that the piping was adequately supported so as to meet the stress limits of the code. For simplicity, the span criteria considered that the longitudinal pressure stress in all segments was bounded by 3,000 psi. Accordingly, for all segments designed using these span criteria, if the longitudinal pressure stress is less than or equal to 3,000 psi during overpressure, then the segment meets the original code requirements for combined longitudinal stress for combined overpressure, seismic and deadweight loads.					
	cified seismic classes, pipe sizes of the piping segments subject to ations:	•			

ZMPR	MPR-2169 Append	ix A.6	MPR Associa 320 King Stre Alexandria, V	et
Calculation No. 025-065-06	Prepared By	Checke Arr	ed By	Page 9
NESW segments (14 Safety Injection Test RCP Seal Bypass Lin	Line and Accumulator Fill Line	,		
combined overpressure seism	nts are acceptable per the code r nic and deadweight loads if the loads are stress due to	ongitudinal pressu	ire stress due t	0
$\sigma_{\rm L, \ overpressure} = ($	Overpressure) $(d^2) / (D_o^2 - d^2)$			
where $D_o = nominal outside of the second $	diameter of pipe and d = nomina	l inside diameter	of pipe.	
	or these segments by dividing th o seismic and deadweight) by th	, -	· ·	ressure plus
Stress Index for Long	itudinal Stress = $[(1.8 S_h) - 3,00]$	$0 + \sigma_{L, \text{ overpressure}}$] /	[1.8 S _h]	
criteria document. Since long known, acceptability of comb	tain sections with Schedule 10 p gitudinal stresses in these segme ined overpressure, seismic and o ents will be considered to be un	nts due to earthqu leadweight stresse	ake and deadw es cannot be de	veight are not etermined.
Inputs				
From the above, the following	g inputs are used in this calculat	ion:		
• Pressures used are from R	eference 1 and are listed in Tab	le 1.		
References 9-11 and the p	hedule are obtained for most seg piping specifications. For the same pe specification (Reference 3).		-	
• Allowable stress values a	re listed in Table 2 at the end of	Section 3 of this of	calculation.	

ZMPR	MPR-2169 Appendix A.6		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-06	Prepared By M IT unit	Gen	ecked By	Page 10

Results

Attachment A, Table A-1 is a spreadsheet that calculates the allowable pressure for each segment. Table A-2 calculates the longitudinal stress for each segment and compares that stress to the limit of 3,000 psi for those segments which meet the span criteria document specifications.

Key results are summarized in Table 1 and presented below.

- The 14 NESW segments and CPN-33, 36, 40 and 41 are acceptable for hoop stress and allowable pressure. One or more piping sections in the other segments exceed the permitted hoop stress or pressure; hence, these segments do not meet the code acceptance criteria.
- The 14 NESW segments are acceptable for longitudinal stress due to combined overpressure, seismic and deadweight stresses. CPN-32, CPN-37, the RCP Seal Bypass Line and the sampling lines do not meet the longitudinal stress limit.
- Longitudinal stresses due to seismic and deadweight loads have not been determined for CPN-33, 36, 40 and 41. For conservatism, longitudinal stresses in these segments are considered unacceptable for the combined overpressure, seismic and deadweight case.

ZMPR	MPR-2169 Appendix A.6		MPR Associa MPR-2169 Appendix A.6 320 King Stre Alexandria, V			
Calculation No. 025-065-06	Prepared By M2 1 Turnl	Checke	d By	Page 11		
3.2 <u>Check of Pipe Compliance with Appendix F Criteria</u> This section checks for compliance with the stress acceptance criteria of ASME Code, Section III, Appendix F (Reference 5) for inelastic analysis. Results are compared to Level D service limits to determine acceptability. The analysis method and results are provided below.						
Applicability of Appendix F to Cook Thermal Overpressurization Analyses Use of Appendix F is consistent with the recommendations in Supplement 1 to Generic Letter 96-06. Note that the design code for the evaluated segments is USAS B31.1.0-1967. Table 126.1 of this code references the ASME Boiler and Pressure Vessel Code, although Appendix F was not yet a part of Section III of the ASME Code at that time. The evaluations in this calculation are therefore performed using the 1989 version of the ASME Code, which has been accepted by the USNRC. In addition, material						

properties from the 1989 version of the ASME Code are used. Design stress intensity and yield strength values from the 1989 ASME Code are compared to the values from the 1968 version (Reference 12) below. Values are selected for 250°F from each code for consistency.

Material	Design Stress	Design Stress Intensity (ksi)		Yield Strength (ksi)		
	1968 Code	1989 Code	1968 Code	1989 Code		
A106 Grade B	20.0	20.0	31.45	31.45		
SA376 Type 304	19.9	20.0	23.8	23.75		
SA312 Type 304	19.9	20.0	23.8	23.75		
SA213 Type 316	20.0	20.0	24.6	24.55		

This comparison shows that the 1989 edition material properties are comparable to the 1968 edition properties. Accordingly, the 1989 ASME Code version is appropriate to use for this evaluation.

Appendix F Stress Calculation Method

Pressures in the segments cause stresses in the hoop, longitudinal and radial directions. The piping could also be subjected to loads from deadweight, thermal expansion and seismic events, which could result in longitudinal pipe stresses that would either add or subtract from the pressure-induced longitudinal stresses. For Appendix F evaluations (that is, ASME Code Service Level D evaluations), only the primary loads due to deadweight and seismic events need to be considered in addition to the pressure loads. For this analysis, it is conservatively assumed that the longitudinal stresses (S_L) from both deadweight and seismic loads are equivalent to the following:

 $S_L = 1.8 (S_h) - \sigma_{L, \text{ design pressure}}$

This is a simplification and a conservatism for those segments designed per the span criteria; for those segments, 3,000 psi could be used in the above equation instead of $\sigma_{L, design pressure}$.

ZMPR	MPR-2169 Append	MPR Associa 320 King Stre Alexandria, V	eet			
Calculation No. 025-065-06	Prepared By McTumh	Checke	ed By	Page 12		
where						
$\sigma_{L, \text{ design pressure}} = (\text{Design pressure}) (d^2) / (D_0^2 - d^2)$						
There is also a longitudinal st	oad stresses are longitudinal str ress due to pressure, which is or ing stresses, acting in tension or	ne-half the hoop s	tress. Since th	e deadweight		
$S_1 = Pr/t$ $S_2 = Pr/2t \pm S_L \text{ where } S_3 = -P/2$	$S_{L} = 1.8 (S_{h}) - \sigma_{L, design pressure}$					
The second principal stress ha	as two variations:					
$S_{2+} = Pr/2t + S_L$ $S_{2-} = Pr/2t - S_L$						
The stress intensity is calculat (in accordance with the ASM)	ed as the maximum of the absol E Code):	ute values of the r	following stres	ss differences		
$SI = Maximum of (S_1 - S_1) $	$ S_{2+} , (S_1 - S_{2-}) , (S_{2+} - S_{3-}) , $	$(S_2 - S_3)$, and $ (S_3) $	3 - S ₁)			
The acceptance criterion in Se	ction III, Appendix F, paragrap	h F-1341.2 of the	ASME is:			
$\rm SI < 0.7 \ S_u$						
where SI is the calculated general primary membrane stress intensity. A stress index is defined as the ratio of the calculated general primary membrane stress intensity to allowable stress, as follows:						
Stress Index for Append	ix $F = SI / (0.7 S_u)$					

It should be noted that the plastic analysis method of Appendix F-1340 only requires consideration of primary membrane stresses. The secondary stresses that would be present at branch connections, elbows and valves are not evaluated.

In addition to the stress limit specified in the ASME Code, this analysis places a limit on the calculated strain. Article F-1322.5 of Appendix F states that:

"...in addition to the limits given in this Appendix, the strain or deformation limits (if any) provided in the Design Specification shall be satisfied."

ZMPR	MPR-2169 Appen	dix A.6 320 K	MPR Associates, Inc. 320 King Street Alexandria, VA 22314		
Calculation No. 025-065-06	Prepared By M Mansh	Checked By	Page 13		

While none of the applicable Design Specifications identify a material strain limit, it is important that calculated strain remains low enough to ensure that failure will not occur. For this analysis, a limit of 5% strain is applied. Based on engineering judgment, none of the piping materials will fail at strains of less than 10%; so the limit of 5% provides a safety factor of two. It should be noted, however, that the primary acceptance criterion used in this analysis is the stress limit specified in Appendix F. The specified strain limit is included only for completeness.

Strain is calculated from the following relationships:

€p	$= \sigma_h / E$	for $\sigma_h \leq S_y$
€,	$= (\sigma_h - S_y) / E_p + \varepsilon_y$	for $\sigma_h > S_y$

where

 σ_h = hoop stress, psi S_y = yield strength, psi E = elastic modulus, psi E_p = plastic modulus, psi e_p = plastic strain, in/in e_y = Pipe yield strain, in/in (= S_y / E)

Calculation of stress intensity is performed for all pipe segments, not just those that exceed original design code pipe stress acceptance criteria, since this information may be useful in evaluating acceptability of valves for the overpressure conditions.

Inputs

From the above, the following inputs are used in this evaluation:

- Pressures used are listed in Table 1.
- Pipe material, size and schedule are obtained for each segment by review of the drawings listed in References 9-11 and from the piping specification.
- Material property values used are listed in Table 2.

ZMPR	MPR-2169 Append	dix A.6 320 Kii	MPR Associates, Inc. 320 King Street Alexandria, VA 22314			
Calculation No. 025-065-06	Prepared By	Checked By	Page 14			
	M Trush					

<u>Results</u>

Attachment A, Tables A-3 and A-4 contain spreadsheets that calculate the stress index and strain for the peak segment pressure for all segments. Key results are summarized in Table 1. In brief, the calculation shows the following:

- Stresses in the all piping segments meet Appendix F piping stress acceptance criteria with the exception of the sample lines from pressurizer liquid space, hot legs, and accumulators (CPN-66 and 81).
- Strains are less than the 5% acceptance criterion for all segments with the exception of the sample lines from pressurizer liquid space, hot legs, and accumulators (CPN-66 and 81).

Accordingly, with the exception of the sample lines, all segments meet Appendix F criteria.

ZIMPR	MPR-	2169 Appendix	320 King S	MPR Associates, Inc. 320 King Street Alexandria, VA 22314							
Calculation No. 025-065-06	Prepared		ked By	Page 15							
Table 2 Material Properties Used in Pipe Stress Evaluation Material											
Material Property	A 106 Grade B	SA312 Type 304	SA376 Type 304	SA213 Type 316	ASTM B75						
B31.1 Allowable Stress (ksi)	15.0(1)	16.05 ⁽²⁾	14.88 ⁽²⁾	15.35 ⁽²⁾	5.125(1)						
Yield Strength, S _y (ksi)	31.45 ⁽³⁾	23.75 ⁽³⁾	23.75 ⁽³⁾	24.55 ⁽³⁾	Not Used						
Tensile Strength, S _u (ksi)	60.0 ⁽³⁾	68.5 ⁽³⁾	68.5 ⁽³⁾	74.2 ⁽³⁾	Not Used						

All material properties are for 250°F, which is judged to be the maximum metal temperature reached at high pressure conditions. References for material properties are as follows:

27.3E6⁽³⁾

425,000⁽⁴⁾

27.3E6⁽³⁾

425,000(4)

27.3E6⁽³⁾

450,000⁽⁵⁾

Not Used

Not Used

28.55E6⁽³⁾

Not Used

(1) From USAS B31.1-1967, Tables A-1 and A-2.

Elastic Modulus, psi

Plastic Modulus, psi

- (2) Per USAS B31.1-1967, Table A-1, General Note d, value obtained from Section I of ASME code. Table PG-23 values used from 1968 version of Section I (Reference 13).
- (3) Values obtained from 1989 version of ASME Code, Section III Appendices Tables I-2.1, I-2.2, I-3.1, I-3.2, and I-6.0.
- (4) From Reference 1, Calculation 025-065-02.
- (5) From Reference 1, Calculation 025-065-03.

ZMPR	MPR-2169 Append	ix A.6	MPR Associa 320 King Stre Alexandria, V	et
Calculation No. 025-065-06	Prepared By M. T.m.s.	Checke	ed By	Page 16
4.0 REFERENCES	· ·			
 Segments Isolated MPR Calculation Segments Isolated MPR Calculation Sampling Lines," 	025-065-01, "Determination of by Air Operated Diaphragm Va 025-065-02, "Determination of by Air Operated Globe Valves, 025-065-03, "Determination of Revision 0. 025-065-05, "Determination of	alves," Revision 0 Peak Pressures in " Revision 0. "Peak Pressures in	D.C. Cook Uni D.C. Cook Un	it 1 Piping hit 1 Nuclear
 D.C. Cook Piping Specifi Related." 	cation ES-PIPE-1000-QCS, Rev	/ 1, "Pipe Materia	l Specification:	Non-Safety
 D.C. Cook Piping Specific Related." 	cation ES-PIPE-1013-QCN-CS3	8, Rev 1, "Pipe Ma	aterial Specifica	ation: Safety
4. USAS B31.1.0-1967, Pow	ver Piping.			
5. 1989 ASME Code, Sectio	n III, Division 1 – Appendix F.	× . ·		
	plement 1 "Assurance of Equip dent Conditions," November 13		and Containmer	nt Integrity
7. Donald C. Cook Nuclear I	Plant Updated FSAR, Section 2,	Revision 16.		
 Alternate Piping Analysis Plant, Indiana and Michig September 1971. 	Criteria for Earthquake and Gra an Electric Company, American	vity Loads for Do Electric Power S	onald C. Cook I ystem, New Yo	Nuclear ork,
9. Drawings of Piping Segm	ents used in Calculation:			
NESW Segments OP-1-5114A-24 OP-12-5152M-6				
NESW UPPER 1 1-NSW-54, Sheet 2, R 1-NSW-68, Sheet 2, R 1-NSW-72, Sheet 2, R	evision 6 1-NSW-72, Shee	et 1, Revision 4		

.

·. .

ZMPR		MPR-2169 Appendi	ix A.6	320 King Str	sociates, Inc. g Street ria, VA 22314		
Calculation No.	Pre	epared By	Checke	ed By			
025-065-06	ho.	romh	Any		Page 17		
	• .						
NESW - UPPER 2 1-NSW-39, Sheet 2, R	evision 7	1-NSW-67, She	et 1 Revision 3				
1-NSW-67, Sheet 2, R		1-NSW-71, She					
1-NSW-71, Sheet 2, R		1-NSW-44, Rev					
NESW - UPPER 3							
1-NSW-42, Sheet 2, R	evision 8	1-NSW-66, She	et 1. Revision 4				
1-NSW-66, Sheet 2, R		1-NSW-70, She	•				
1-NSW-70, Sheet 2, R		1-NSW-47, Rev					
NESW - UPPER 4							
1-NSW-57, Sheet 2, R	evision 6	1-NSW-65, Shee	et 1, Revision 3				
1-NSW-65, Sheet 2, R		1-NSW-69, Shee	et 1, Revision 4				
1-NSW-69, Sheet 2, R	evision 6	1-NSW-63, Shee	et 1, Revision 1				
1-NSW-63, Sheet 2, R	evision 3						
NESW - LOWER 1							
1-NSW-55, Sheet 2, R		1-NSW-178, Re					
1-NSW-182, Revision	4	1-NSW-59, Shee	et 1, Revision 4				
NESW - LOWER 2							
1-NSW-37, Sheet 2, F		1-NSW-179, Re					
1-NSW-183, Revision	4	1-NSW-45, Rev	ision 5				
NESW - LOWER 3							
1-NSW-38, Sheet 2, R		1-NSW-180, Re					
1-NSW-184, Revision	5	1-NSW-46, Rev	ision 6				
NESW - LOWER 4							
1-NSW-58, Sheet 2, R		1-NSW-181, Re					
1-NSW-185, Revision	4	1-NSW-62, She	et 1, Kevision 4				
NESW - RCP1							
1-NSW-53, Sheet 2, R		1-NSW-76, She	-				
1-NSW-76, Sheet 2, R		1-NSW-80, She					
1-NSW-80, Sheet 2, R	evision 1	1-NSW-61, She	el 1, Revision 2				
NESW - RCP 2	• •						
1-NSW-40, Sheet 2, R		1-NSW-75, She					
1-NSW-75, Sheet 2, R	evision 2	1-NSW-79, She	el I, REVISION I				

MPR		MPR-2169 Append	ix A.6	320 King Str	Associates, Inc. ng Street idria, VA 22314			
Calculation No.	Pre	pared By	Checke	ed By				
025-065-06	M th	sach	4ry	<u></u>	Page 18			
1-NSW-79, Sheet 2, Re	evision 2	1-NSW-43, Rev	vision 3		1			
NESW - RCP 3		1						
1-NSW-41, Revision 5		1-NSW-74, She	et 1, Revision 5					
1-NSW-74, Sheet 2, Re	evision 5	1-NSW-78, She	et 1, Revision 5					
1-NSW-78, Sheet 2, Re	evision 4	1-NSW-48, Rev	vision 2					
NESW -RCP 4								
1-NSW-56, Sheet 2, Re	evision 3	1-NSW-73, She	et 1, Revision 3					
1-NSW-73, Sheet 2, Re	evision 3	1-NSW-77, She	et 1, Revision 2					
1-NSW-77, Sheet 2, Re	evision 2	1-NSW-64, Rev	vision 3					
NESW - INST. RM 3								
1-NSW-49, Revision 6		1-NSW-174, Re						
1-NSW-176, Revision	2	1-NSW-50, Revision 5						
1-NSW-49, Revision 5								
NESW - INST RM 4								
1-NSW-52, Revision 7		1-NSW-175, Re						
1-NSW-177, Revision	1	1-NSW-51, Rev	vision 5					
CPN-32, Accumulator Fill Lin	e.							
OP-1-5143A-4		OP-1-5142-35						
1-SI-507L1.6, Revision		1-SI-508L1.3A,						
1-SI-508L4.6, Revision		1-SI-537-L1.4,						
1-SI-537-L5, Revision		1-SI537-L6.8, F						
1-SI-537-L9.11, Revisi		1-SI-537-L12.1 1-SI-537-L20.2	•					
1-SI-537-L16.19, Revi		1-SI-539.L1, R						
1-SI-538-L1.4, Revisio 1-SI-539.L2.3, Revisio		1-SI-559.L1, K						
1-SI-539.L2.3, Revisio 1-SI-540-L4.5, Revisio		1-SI-540-L1.5, 1-SI-541-L1, R						
1-SI-452.L1, Revision		1-SI-542.L2.3,						
1-SI-543-L1.3, Revision		1-SI-543-L4.6,						
1-SI-544.L1, Revision		1-SI-544.L2.3,						
1-SI-547-L1.4, Revisio		1-SI-547-L5.8,						
1-SI-547.L9.11, Revisi		1-SI-601L1, Re						
CPN-33, Primary Water Supp	lv							
OP-1-5128A-42	- 2	1-PW-12, Shee	t 2, Revision 3					
1-PW-17, Revision 5		1-PW-556-L1.						
1-PW-556-L4.8, Revis	sion 1	1-PW-556-L9.						

ZMPR	MPR-2169 Appe	ndix A.6	MPR Associa 320 King Stra Alexandria, \	eet
Calculation No.	Prepared By	Check	ked By	
025-065-06	h manh	aper		Page 19
1-PW-557-L1.2, Revi	sion 1 1-PW-557-L3	5, Revision 1		,
1-PW-557-L6.7, Revi 1-PW-559-L1.7, Revi		•		
1110 000 111.1,1001	12-1 W-T, ICV	131011 5		
CPN-36, Demin Water Suppl OP-12-5115D-22		4. Dervision 2		
1-DW-541L1.4, Revis	0-DW-500L1. ion 1 1-DW-541L5.			
1-DW-541L8.10, Rev		.15, Revision 3		
CPN-37, RCP Seal Water Sup OP-1-5129A-28		sion 12		
1-CS-93, Revision 7	1-CS-42, Revi	SION 12		
CPN-40, RX Coolent Drain T	ank Pump Suction			
OP-12-5137A-18	OP-1-5128A-4			
1-WD-36, Revision 2	1-WD-37, Rev			
1-WD-661L1.7, Revis 1-WD-807.L1.2, Revis				
CPN-41, Containment Sump 1	ump Discharge			
OP-1-5124-22	OP-12-5123B-			
1-DR-193, Revision 3	1-DR-224, Rev			
1-DR-519-L-1.3, Revi 1-DR-521-L1, Revisio	-			
1-DR-523-L1, Revisio	•			
1-DR-523-L5.8, Revis				
1-DR-523-L12, Revisi	on 0 1-DR-524-L1,	Revision 1		
CPN-66 and 81, Sampling Lin 1-5141-37	es			
Drawings of RCP Seal Bypas				
OP-1-5128A-42	1-CS-766-L1,			
1-CS-766-L2, Revisio 1-CS-766L5.7, Revisio		•		
1-CS-760L5.7, Revisio 1-CS-771-L1, Revisio		•		
1-CS-771-L5.6, Revis		-		
1-CS-773L1, Revision	-			
1-CS-773-L5.11, Revi		.1B, Revision 1		
1-CS-775L1.5, Revision 1-CS-775L11.12B, Revision 1-CS-775L1.12B, Revision 1-CS-775L10.12B, Revision 1-CS-775L10.12B, Revision 1-CS-775L10.12B, Revision 1-CS-775L10.12B, Revision 1-CS-775L10.12B, Revision 1		•		
$1-0.5-775\pm11.12D$, Kt	1-00-770110,	1009151011 1		

ZMPR	MPR-2169 Appendix A.	MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. 025-065-06	Prepared By Montand C,	Checked By Page 20
1-CS-775L14.15, Revi	sion 1 1-CS-775L16.21, Re	evision 1
10. Containment Penetration I 1-5336-5, "Containmen 1-5337-14, "Containmen	Drawings: nt Unit 1 Piping Penetration Schedu ent Unit 1 Piping Penetration Sched	le Containment Wall" lule Containment Wall"
American Air Filter Co	ompany Drawing MC-129-492F, "4 ompany Drawing MC-129-493F, "4	
12. 1968 ASME Code, Section	III.	
13. 1968 ASME Code, Section	I.	
14. Crane Technical Paper 410	, 1991.	
		<u>.</u>

ZMPR	MPR-2169 Append	MPR Associates, Inc. 320 King Street Alexandria, VA 22314										
Calculation No. 025-065-06	Prepared By	Checke	d By	Page 21								
	Attachment A											
	Spreadsheets for Piping Str	ess Evaluation										

MPR-2169 Appendix A.6 Calculation 025-065-06 Attachment A

Prepared by: <u>Reference</u> Checked by: <u>Any</u>

Table A-1: Allowable Pressure and Hoop Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Design Temperature (°F)	A (inch)	Allowable Pressure (psig)	Allowable Pressure Greater than Maximum Pressure?	Primary Hoop Stress Due to Over Pressure (psi)	Stress Index for Hoop Stress							
See Note:		1	2	2	2	3	4	5	6	7	6	8	8		8	8							
		215	A106 Gr B_	6	40	0.280	6.625	6.065	125	15,000	150	0.000	1,575	YES	2,329	0.13							
		215	A106 Gr B	4	40	0.237	4.5	4.026	125	15,000	150	0.000	1,979	YES	1,826	0.10							
NESW Cooling		215	A106 Gr B	2.5	40	0.203	2.875	2.469	125	15,000	150	0.065	1,797	YES	1,307	0.07							
for Lower Containment	Multiple	Multiple	Multiple	Multiple	Multiple	Multiple	215	A106 Gr B	1	80	0.179	1.315	0.957	125	15,000	150	0.065	3,353	YES	575	0,03		
Ventilation Units		215	A106 Gr B	0.5	80	0.147	0.84	0.546	125	15,000	150	0.065	3,812	YES	399	0.02							
(4 segments)		215	SA312 TP304	6	40S	0.280	6.625	6.065	125	16,050	150	0.000	1,685	YES	2,329	0.12							
		215	SA312 TP304	0.5	40S	0.109	0.84	0.622	125	16,050	150	0.065	2,106	YES	613	0.03							
										215	ASTM B75	0.625		0.035	0.625	0.555	125	5,125	150	0.000	721	YES	1,705
		711	A106 Gr B	3	40	0.216	3.5	3.068	125	15,000	150	0.065	1,609	YES	5,049	0.28							
			711	A106 Gr B	2	80	0.218	2.375	1.939	125	15,000	150	0.065	2,445	YES	3,162	0.18						
		711	A106 Gr B	1.5	80	0.200	1.9	1.500	125	15,000	150	0.065	2,712	YES	2,666	0.15							
NESW Cooling for Upper					711	A106 Gr B	1	80	0.179	1.315	0.957	125	15,000	150	0.065	3,353	YES	1,901	0.11				
Containment Ventilation Units	Multiple	711	A106 Gr B	0.5	80	0.147	0.84	0.546	125	15,000	150	0.065	3,812	YES	1,320	0.07							
(4 segments)		711	SA312 TP304	3	40S	0.216	3.5	3,068	125	16,050	150	0.065	1,721	YES	5,049	0.26							
		711	SA312 TP304	0.5	40S	0.109	0.84	0.622	125	16,050	150	0.065	2,106	YES	2,029	0.11							
		711	ASTM B75	0.625		0.035	0.625	0.555	125	5,125	150	0.000	721	YES	5,637	0.92							

.

MPR-2, 39 Appendix A.6 Calculation 025-065-06 Attachment A

Prepared by: <u>*M. M.*</u> Checked by: <u><u>An</u></u>

Table A-1:

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	(inch)	Pipe Schedule		Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Design Temperature (°F)	A (inch)	Allowable Pressure (psig)	Allowable Pressure Greater than Maximum Pressure?	Primary Hoop Stress Due to Over Pressure (psi)	Stress Index for Hoop Stress
See Note:		1	2	2	2	3	4	5	6	7	6	8	8		8	8
		711	A106 Gr B	3	40	0.216	3.5	3.068	125	15,000	150	0.065	1,609	YES	5,049	0.28
		711	A106 Gr B	2.5	40	0.203	2.875	2.469	125	15,000	150	0.065	1,797	YES	4,324	0.24
NESW Cooling		711	A106 Gr B	1	80	0.179	1.315	0.957	125	15,000	150	0.065	3,353	YES	1,901	0.11
for RCP Motor Air Coolers (4	Multiple	711	A106 Gr B	0.5	80	0.147	0.84	0.546	125	15,000	150	0.065	3,812	YES	1,320	0.07
segments)		711	SA312 TP304	3	40S	0.216	3.5	3.068	125	16,050	150	0.065	1,721	YES	5,049	0.26
		711	SA312 TP304	0.5	40S	0.109	0.84	0.622	125	16,050	150	0.065	2,106	YES	2,029	0.11
		711	ASTM B75	0.625		0.035	0.625	0.555	125	5,125	150	0.000	721	YES	5,637	0.92
		325	A106 Gr B	3	40	0.216	3.5	3.068	125	15,000	150	0.065	1,609	YES	2,308	0.13
		325	A106 Gr B	2.5	40	0.203	2.875	2.469	125	15,000	150	0.065	1,797	YES	1,976	0.11
		325	A106 Gr B	2	80	0.218	2.375	1.939	125	15,000	150	0.065	2,445	YES	1,445	0.08
NESW Cooling for		325	A106 Gr B	1.5	80	0.200	1.9	1.500	125	15,000	150	0.065	2,712	YES	1,219	0.07
Room	Multiple	325	A106 Gr B	1	80	0.179	1.315	0.957	125	15,000	150	0.065	3,353	YES	869	0.05
Ventilation Units (2 segments)		325	A106 Gr B	0.5	80	0.147	0.84	0.546	125	15,000	150	0.065	3,812	YES	604	0.03
		325	SA312 TP304	2	40	0.154	2.375	2.067	125	16,050	150	0.065	1,488	YES	2,181	0.11
		325	SA312 TP304	0.5	80	0.147	0.84	0.546	125	16,050	150	0.065	4,079	YES	604	0.03
		325	ASTM B75	0.625		0.035	0.625	0.555	125	5,125	150	0.000	721	YES	2,577	0.42

Allowable Pressure and Hoop Stress Evaluation

Prepared by: <u>Frank</u> Checked by: <u>Frank</u>

Table A-1:	
Allowable Pressure and Hoop Stress Evaluation	ation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Design Temperature (°F)	A (inch)	Pressure	Allowable Pressure Greater than Maximum Pressure?	Due to Over	
See Note:		1	2	2	2	3	4	5	6	7	6	8	8		8	8
Accumulator Fill	32	15,310	SA376 TP304	1	160 [,]	0.250	1.315	0.815	1750	14,880	120	0.065	5,661	NO	24,955	
Line	52	15,310	SA376 TP304.	0.75	160	0.219	1.05	0.612	1750	14,880	120	0.065	5,934	NO	21,392	1.20
		212	SA312 TP304	3. •	10S -	0.120	3.5	3.260	136	16,050	100	0.065	613	YES	2,880	0.15
Primary Water		212	SA312 TP304	2.5	10S	0.120	2.875	2.635	136	16,050	100	0.065	748	YES	2,328	0.12
Supply to RCPs and PRT	33	212	SA312 TP304	1,	40S `	0.133	1.315	1.049	136	16,050	100	0.065	2,078	YES	836	0.04
and PRT		212	SA312 TP304	0.75	40S	0.113	1.05	0.824	136	16,050	100	0.065	1,828	YES	773	0.04
		212	SA312 TP304	0.5 <u>:</u>	40S	0.109	0.84	0.622	100	16,050	340	0.065	2,106	YES	605	0.03
Demineralized Water Supply to		325	SA312 TP304	3.	10S [.]	0.120	3.5	3.260	156	16,050	100	0.065	613	YES	4,415	0.23
Refueling Cavity Scrub	36	325	SA312 TP304	2	40S:	0.154	2.375	2.067	156	16,050	100	0.065	1,488	YES	2,181	0.11
Down Hose Connections		325	SA312 TP304	1 '	40S .	0.133	1.315	1.049	156	16,050	100	0.065	2,078	YES	1,282	0.07

~

Prepared by: Re Trend

Table A-1:Allowable Pressure and Hoop Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Design Temperature (°F)	A (inch)	Allowable Pressure (psig)	Allowable Pressure Greater than Maximum Pressure?	Due to Over	Stress Index for Hoop Stress
See Note:		1	2	2	2	3	4	5	6	7	6	8	8		8	8
RCP Seal	37	1,800	SA312 TP304	4.	10S -	0.120	4.5	4.260	150	16,050	200	0.000	1,050	NO	31,950	1.66
Water Line		1,800	SA312 TP304	1	40S .	0.133	1.315	1.049	150	16,050	200	0.065	2,078	YES	7,098	0.37
		262	SA312 TP304	4…	10S ·	0.120	4.5	4.260	100	16,050	340	0.000	1,050	YES	4,651	0.24
Reacor Coolant Drain Tank	40	262	SA312 TP304	21.	40S ·	0.154	2.375	2.067	100	16,050	340	0.065	1,488	YES	1,758	e0.0
Pump Suction	40	262	SA312 TP304	1.	40 <u>Ş</u> -	0.133	1.315	1.049	100	16,050	340	0.065	2,078	YES	1,033	0.05
		262	SA312 TP304	0.75	40S	0.113	1.05	0.824	100	16,050	340	0.065	1,828	YES	955	0.05
Containment		212	SA312 TP304	3	10S	0.120	3.5	3.260	60	16,050	160	0.065	613	YES	2,880	0.15
Sump Pump Discharge	41	212	SA312 TP304	2 ·	40S	0.154	2.375	2.067	60	16,050	160	0.065	1,488	YES	1,423	0.07
Discharge		212	SA312 TP304	11	40S	0.133	1.315	1.049	60	16,050	160	0.065	2,078	YES	836	0.04
Sample Line From Pressurizer Liquid Space	66	17,800	SA213 TP316	0.5		0.065	0.5	0.370	2485	15,350	680 .	0.000	5,345	NO	50,662	2.75
Sample Line From Accumulators	81	17,400	SA213 TP316	0.5		0.065	0.5	0.370	600	15,350	400	0.000	5,345	NO	49,523	2.69
Sample Line From Hot Legs	66	17,800	SA213 TP316	0.5		0.065	0.5	0.370	2485	15,350	650	0.000	5,345	NO	50,662	2.75
RCP Seal	N/A	16,940	SA376 TP304	1	160	0.250	1.315	0,815	2735	14,880	200	0.065	5,661	NO	27,612	1.55
Bypass Line		16,940	SA376 TP304	0.75	160	0.219	1.05	0.612	2735	14,880	200	0.065	5,934	NO	23,670	1.33

٤

Prepared by: <u>Romany</u> Checked by: <u>Ru</u>

Longitudinal Stress Evaluation

Table A-2:

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diamèter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Design Pressure Longitudinal Stress (psi)	Over- Pressure Longitudinal Stress (psi)	Max Permitted Longitudinal Stresses (psi)	Stress Index for Longitudinal Stress
See Note:		1	2	2	2	3	4	5	6	7	8	8	8	8
		215	A106 Gr B	6、	<u>4</u> 0	0.280	6.625	6.065	125	15,000	647	1,113	3,000	0.93
		215	A106 Gr B	4	40	0.237	4.5	4.026	125	15,000	501	862	3,000	0.92
NESW Cooling		215	A106 Gr B	2.5 .	40	0,203	2.875	2.469	125	15,000	351	604	3,000	0.91
for Lower Containment Multip /entilation Units	Multiple	215	A106 Gr B	1	80	0.179	1.315	0.957	125	15,000	141	242	· 3,000	0.90
	wumpie	215	A106 Gr B	0.5	80	0.147	0.84	0.546	125	15,000	91	157	3,000	0.89
		215	SA312 TP304	6	40S	0.280	6.625	6.065	125	16,050	647	1,113	3,000	0.93
		215	SA312 TP304	0.5	40S	0.109	0.84	0.622	125	16,050	152	261	3,000	0.91
		215	ASTM B75	0.625	-	0.035	0.625	0.555	125	5,125	466	802	-	N/A
		711	A106 Gr B	ş	40 ·	0.216	3.5	3.068	125	15,000	415	2,359	3,000	0.98
		711	A106 Gr B	2	80-	0.218	2.375	1.939	125	15,000	250	1,421	3,000	0.94
		711	A106 Gr B	1.5	80 ·	0.200	1.9	1.500	125	15,000	207	1,176	3,000	0.93
NESW Cooling for Upper	Multiple	711	A106 Gr B	1	80 ·	0.179	1.315	0.957	125	15,000	141	801	3,000	0.92
Containment M Ventilation Units	Multiple	711	A106 Gr B	0.5	80 、	0.147	0.84	0.546	125	15,000	91	520	3,000	0.91
(4 segments)		711	SA312 TP304	3.	40S .	0.216	3.5	3.068	125	16,050	415	2,359	3,000	0.98
		711	SA312 TP304	0.5	40S	0.109	0.84	0.622	125	16,050	152	863	3,000	0.93
		711	ASTM B75	0.625		0.035	0.625	0.555	125	5,125	466	2,651	-	N/A

Prepared by: <u>Prepared</u> Checked by: <u>Checked</u>

Table A-2: Longitudinal Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Design Pressure Longitudinal Stress (psi)	Over- Pressure Longitudinal Stress (psi)	Max Permitted Longitudinal Stresses (psi)	Stress Index for Longitudinal Stress
See Note:		1	2	2	2	3	4	5	6	7	8	8	8	8
		711	A106 Gr B	3	40	0.216	3.5	3.068	125	15,000	415	2,359	3,000	0.98
		711	A106 Gr B	2.5	40 -	0.203	2.875	2.469	125	15,000	351	1,998	3,000	0.96
NESW Cooling		711	A106 Gr B	1	80 -	0.179	1.315	0.957	125	15,000	141	801	3,000	0.92
for RCP Motor Air Coolers (4 segments)	Multiple	711	A106 Gr B	0.5	80 -	0.147	0.84	0.546	125	15,000	91	520	3,000	0.91
		711	SA312 TP304	3	40S-	0.216	3.5	3.068	125	16,050	415	2,359	3,000	0.98
		711	SA312 TP304	0.5	40S	0.109	0.84	0.622	125	16,050	152	863	3,000	0.93
		711	ASTM B75	0.625		0.035	0.625	0.555	125	5,125	466	2,651	-	N/A
		325	A106 Gr B	3 ·	40	0.216	3.5	3.068	125	15,000	415	1,078	3,000	0.93
		325	A106 Gr B	2.5	40	0.203	2.875	2.469	125	15,000	351	913	3,000	0.92
		325	A106 Gr B	2	80	0.218	2.375	1.939	125	15,000	250	650	3,000	0.91
NESW Cooling for		325	A106 Gr B	1.5	80	0.200	1.9	1.500	125	15,000	207	538	3,000	0.91
Instrumentation Room	Multiple	325	A106 Gr B	1	80	0.179	1.315	0.957	125	15,000	141	366	3,000	0.90
Room /entilation Units (2 segments)		325	A106 Gr B	0.5	80	0.147	0.84	0.546	125	15,000	91	238	3,000	0.90
(2 segments)		325	SA312 TP304	2	40	0.154	2.375	2.067	125	16,050	390	1,015	3,000	0.93
		325	SA312 TP304	0.5	80	0.147	0.84	0.546	125	16,050	91	238	3,000	0.90
		325	ASTM B75	0.625		0.035	0.625	0.555	125	5,125	466	1,212	-	N/A

9/8/00

Prepared by: <u>A Russol</u> Checked by: <u>A</u>

τ.

- /

Longitudinal Stress Evaluation

Table A-2:

										And in case of the local division of the loc				
Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Design Pressure Longitudinal Stress (psi)	Over- Pressure Longitudinal Stress (psi)	Max Permitted Longitudinal Stresses (psi)	Stress Index for Longitudinal Stress
See Note:		1	2	2	2	3	4	5	6	7	8	8	8	8
Accumulator Fill	32	15,310	SA376 TP304	1	160	0.250	1.315	0.815	1750	14,880	1,091	9,549	3,000	1.24
Line		15,310	SA376 TP304	0.75	160	0.219	1.05	0.612	1750	14,880	900	7,877	3,000	1.18
		212	SA312 TP304	3	10S	0.120	3.5	3.260	136	16,050	891	1,389	-	N/A
Primary Water		212	SA312 TP304	2.5	10S	0.120	2.875	2.635	136 ⁻	16,050	714	1,113	-	N/A
Supply to RCPs and PRT	33	212	SA312 TP304	1	40S	0.133	1.315	1.049	136	16,050	238	371	-	N/A
		212	SA312 TP304	0.75	40S	0.113	1.05	0.824	136	16,050	218	340	-	N/A
		212	SA312 TP304	0.5	40S	0.109	0.84	0.622	100	16,050	121	257	-	N/A
Demineralized Water Supply to		325	SA312 TP304	3	10S	0.120	3.5	3.260	156	16,050	1,022	2,129	-	N/A
Refueling Cavity Scrub	36	325	SA312 TP304	2	40S	0.154	2.375	2.067	156	16,050	487	1,015	-	N/A
Down Hose Connections		325	SA312 TP304	1	40S	0.133	1.315	1.049	156	16,050	273	569	-	N/A

i

Prepared by: <u>A Mush</u> Checked by: <u>An</u>

Table A-2: Longitudinal Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Design Pressure Longitudinal Stress (psi)	Over- Pressure Longitudinal Stress (psi)	Max Permitted Longitudinal Stresses (psi)	Stress Index for Longitudinal Stress
See Note:		1	2	2	2	3	4	5	6	7	8	8	8	8
RCP Seal	37	1,800	SA312 TP304	4	10S	0.120	4.5	4.260	150	16,050	1,295	15,537	-	N/A
Water Line	37	1,800	SA312 TP304	1	40S	0.133	1.315	1.049	150	16,050	262	3,150		N/A
		262	SA312 TP304	4	10S	0.120	4.5	4.260	100	16,050	863	2,262	-	N/A
Reacor Coolant Drain Tank	40	262	SA312 TP304	2	40S	0.154	2.375	2.067	100	16,050	312	818	-	N/A
Pump Suction	40	262	SA312 TP304	1	40S	0.133	1.315	1.049	100	16,050	175	458	-	N/A
		262	SA312 TP304	0.75	40S	0.113	1.05	0.824	100	16,050	160	420	-	N/A
		212	SA312 TP304	3	10S	0.120	3.5	3.260	60	16,050	393	1,389	-	N/A
Containment Sump Pump	41	212	SA312 TP304	2	40S	0.154	2.375	2.067	60	16,050	187	662	-	N/A
Discharge		212	SA312 TP304	1	40S	0.133	1.315	1.049	60	16,050	105	371	-	N/A
Sample Line From Pressurizer Liquid Space	66	17,800	SA213 TP316	0.5		0.065	0.5	0.370	2485	15,350	3,008	21,546	-	N/A
Sample Line From Accumulators	81	17,400	SA213 TP316	0.5	-	0.065	0.5	0.370	600	15,350	726	21,062	-	N/A
Sample Line From Hot Legs	66	17,800	1P316	0.5		0.065	0.5	0.370	2485	15,350	3,008	21,546	-	N/A
RCP Seal	N/A	16,940	1P304	1	160	0.250	1.315	0.815	2735	14,880	1,706	10,565	3,000	1.28
Bypass Line		16,940	SA376 TP304	0.75	160	0.219	1.05	0.612	2735	14,880	1,407	8,716	3,000	1.21

۰,

Prepared by: <u>Prepared by:</u> Checked by:

Table A-3: Appendix F Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Max Bending Stress Due to DW + Seismic, Pb (psi)	Su (psi)	S1 (psi)	S2+ (psi)	S2- (psi)	S3 (psi)	SI (psi)	0.7 Su (psi)	Apendix F Stress Index
See Note:		1	2	2	2	3	4	5	6	7	9	7	9	9	9	9	9	9	9
		215	A106 Gr B	6	40	0.280	6.625	6.065	125	15,000	26,353	60,000	2,329	27,517	-25,189	-108	27,625	42,000	0.66
		215	A106 Gr B	4	40	0.237	4.5	4.026	125	15,000	26,499	60,000	1,826	27,412	-25,586	-108	27,519	42,000	0.66
NESW Cooling		215	A106 Gr B	2.5	40	0.203	2.875	2.469	125	15,000	26,396	60,000	1,307	27,050	-25,742	-108	27,157	42,000	0.65
for Lower Containment	Multiple	215	A106 Gr B	1	80	0.179	1.315	0.957	125	15,000	26,859	60,000	575	27,147	-26,572	-108	27,254	42,000	0.65
Ventilation Units (4 segments)	Montple	215	A106 Gr B	0.5	80	0.147	0.84	0.546	125	15,000	26,909	60,000	399	27,108	-26,709	-108	27,215	42,000	0.65
(4 segments)		215	SA312 TP304	6	40S	0.280	6.625	6.065	125	16,050	28,243	68,500	2,329	29,407	-27,079	-108	29,515	47,950	0.62
		215	SA312 TP304	0.5	40S	0.109	0.84	0.622	125	16,050	28,738	68,500	613	29,045	-28,432	-108	29,152	47,950	0.61
		215	ASTM B75	0.625		0.035	0.625	0.555	125	5,125	8,759								
		711	A106 Gr B	3	40	0.216	3.5	3,068	125	15,000	26,585	60,000	5,049	29,110	-24,061	-356	29,466	42,000	0.70
		711	A106 Gr B	2	80	0.218	2.375	1,939	125	15,000	26,750	60,000	3,162	28,331	-25,169	-356	28,687	42,000	0.68
		711	A106 Gr B	1.5	80	0.200	1.9	1.500	125	15,000	26,793	60,000	2,666	28,126	-25,460	-356	28,482	42,000	0.68
NESW Cooling for Upper		711	A106 Gr B	1	80	0.179	1.315	0,957	125	15,000	26,859	60,000	1,901	27,810	-25,909	-356	28,165	42,000	0.67
Containment Ventilation Units	Multiple	711	A106 Gr B	0.5	80	0.147	0.84	0.546	125	15,000	26,909	60,000	1,320	27,569	-26,248	-356	27,924	42,000	0.66
(4 segments)		711	SA312 TP304	3	40S	0.216	3.5	3.068	125	16,050	28,475	68,500	5,049	31,000	-25,951	-356	31,356	47,950	0.65
		711	SA312 TP304	0.5	40S	0.109	0.84	0.622	125	16,050	28,738	68,500	2,029	29,753	-27,724	-356	30,108	47,950	0.63
		711	ASTM B75	0.625		0.035	0.625	0.555	125	5,125	8,759				-				

Prepared by: <u>A.C. Thresh</u> Checked by: <u>Checked</u>

Table A-3: Appendix F Stress Evaluation

P																			•
Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Max Bending Stress Due to DW + Seismic, Pb (psi)	Su (psi)	S1 (psi)	S2+ (psi)	S2- (psi)	S3 (psi)	SI (psi)	0.7 Su (psi)	Apendix F Stress Index
See Note:		1	2	2	2	3	4	5	6	7	9	7	9	9	9	9	9	9	9
		711	A106 Gr B	3	40	0.216	3.5	3.068	125	15,000	26,585	60,000	5,049	29,110	-24,061	-356	29,466	42,000	0.70
		711	A106 Gr B	2.5 .	40	0.203	2.875	2.469	125	15,000	26,649	60,000	4,324	28,811	-24,487	-356	29,166	42,000	0.69
NESW Cooling		711	A106 Gr B	1	80	0.179	1.315	0.957	125	15,000	26,859	60,000	1,901	27,810	-25,909	-356	28,165	42,000	0.67
for RCP Motor Air Coolers (4	Multiple	711	A106 Gr B	0.5	80	0.147	0.84	0.546	125	15,000	26,909	60,000	1,320	27,569	-26,248	-356	27,924	42,000	0.66
segments)		711	SA312 TP304	3	40S	0.216	3.5	3.068	125	16,050	28,475	68,500	5,049	31,000	-25,951	-356	31,356	47,950	0.65
		711	SA312 TP304	0.5	40S	0.109	0.84	0.622	125	16,050	28,738	68,500	2,029	29,753	-27,724	-356	30,108	47,950	0.63
		711	ASTM B75	0.625		0.035	0.625	0.555	125	5,125	8,759		·						
		325	A106 Gr B	3	40	0.216	3.5	3.068	125	15,000	26,585	60,000	2,308	27,739	-25,431	-163	27,902	42,000	0.66
		325	A106 Gr B	2.5	40	0.203	2.875	2.469	125	15,000	26,649	60,000	1,976	27,637	-25,661	-163	27,800	42,000	0.66
		325	A106 Gr B	2	80	0.218	2.375	1.939	125	15,000	26,750	60,000	1,445	27,473	-26,027	-163	27,635	42,000	0.66
NESW Cooling for		325	A106 Gr B	1.5	80	0.200	1.9	1.500	125	15,000	26,793	60,000	1,219	27,403	-26,184	-163	27,565	42,000	0.66
Instrumentation Room	Multiple	325	A106 Gr B	1	80	0.179	1.315	0.957	125	15,000	26,859	60,000	869	27,294	-26,425	-163	27,456	42,000	0.65
Ventilation Units (2 segments)		325	A106 Gr B	0.5	80	0.147	0.84	0.546	125	15,000	26,909	60,000	604	27,210	-26,607	-163	27,373	42,000	0.65
		325	SA312 TP304	2	40	0.154	2.375	2.067	125	16,050	28,500	68,500	2,181	29,590	-27,409	-163	29,753	47,950	0.62
		325	SA312 TP304	0.5	80	0.147	0.84	0.546	125	16,050	28,799	68,500	604	29,100	-28,497	-163	29,263	47,950	0.61
		325	ASTM B75	0.625	-	0.035	0.625	0.555	125	5,125	8,759	-		-					

Prepared by: 2 CTurnly Checked by: An

Table A-3: Appendix F Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Max Bending Stress Due to DW + Seismic, Pb (psi)	Su (psi)	S1 (psi)	S2+ (psi)	S2- (psi)	S3 (psi)	SI (psi)	0.7 Su (psi)	Apendix F Stress Index
See Note:		1	2	2	2	3	4	5	6	7	9	7	9	9	9	9	9	9	9
Accumulator Fill	32	15,310	TP304	1	160	0.250	1.315	0.815	1750	14,880	25,693	68,500	24,955	38,170	-13,215	-7,655	45,825	47,950	0.96
Line	UL.	15,310	SA376 TP304	0.75	160	0.219	1.05	0.612	1750	14,880	25,884	68,500	21,392	36,580	-15,188	-7,655	44,235	47,950	0.92
		212	SA312 TP304	3	10S	0.120	3.5	3.260	136	16,050	27,999	68,500	2,880	29,439	-26,559	-106	29,545	47,950	0.62
Primary Water		212	SA312 TP304	2.5	10S	0.120	2.875	2.635	136	16,050	28,176	68,500	2,328	29,340	-27,012	-106	29,446	47,950	0.61
Supply to RCPs and PRT	33	212	SA312 TP304	1	40S	0.133	1.315	1.049	136	16,050	28,652	68,500	836	29,070	-28,234	-106	29,176	47,950	0.61
andPRI		212	SA312 TP304	0.75	40S	0.113	1.05	0.824	136	16,050	28,672	68,500	773	29,058	-28,285	-106	29,164	47,950	0.61
		212	SA312 TP304	0.5	40S	0.109	0.84	0.622	100	16,050	28,769	68,500	605	29,071	-28,466	-106	29,177	47,950	0.61
Demineralized Water Supply to		325	SA312 TP304	3	10S	0.120	3.5	3.260	156	16,050	27,868	68,500	4,415	30,075	-25,661	-163	30,238	47,950	0.63
Refueling Cavity Scrub	36	325	SA312 TP304	2	40S	0.154	2.375	2.067	156	16,050	28,403	68,500	2,181	29,493	-27,312	-163	29,656	47,950	0.62
Down Hose Connections		325	SA312 TP304	1	40S	0.133	1.315	1.049	156	16,050	28,617	68,500	1,282	29,258	-27,976	-163	29,420	47,950	0.61

Prepared by: <u>Refrance</u> Checked by: <u>A</u>

Table A-3: Appendix F Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Max Bending Stress Due to DW + Seismic, Pb (psi)	Su (psi)	S1 (psi)	S2+ (psi)	S2- (psi)	S3 (psi)	SI (psi)	0.7 Su (psi)	Apendix F Stress Index
See Note:		1	2	2	2	3	4	5	6	7	9	7	9	9	9	9	9	9	9
RCP Seal Water Line	37	1,800 1,800	SA312 TP304 SA312	4	105 40S	0.120 0.133	4.5 1.315	4.260 1.049	150 150	16,050 16,050	27,595 28,628	68,500 68,500	31,950 7,098	43,570 32,177	-11,620 -25,078	-900 -900	44,470 33,077	47,950 47,950	0.93 0.69
		262	TP304 SA312 TP304	4	10S	0.120	4.5	4.260	100	16,050	28,027	68,500	4,651	30,352	-25,702	-131	30,483	47,950	0.64
Reacor Coolant	40	262	SA312 TP304	2	40S	0.154	2.375	2.067	100	16,050	28,578	68,500	1,758	29,457	-27,699	-131	29,588	47,950	0.62
Drain Tank Pump Suction	40	262	SA312 TP304	1	40S	0.133	1.315	1.049	100	16,050	28,715	68,500	1,033	29,232	-28,198	-131	29,363	47,950	0.61
		262	SA312 TP304	0.75	40S	0.113	1.05	0.824	100	16,050	28,730	68,500	955	29,207	-28,252	-131	29,338	47,950	0.61
Containment		212	SA312 TP304	3	10S	0.120	3.5	3.260	60	16,050	28,497	68,500	2,880	29,937	-27,057	-106	30,043	47,950	0.63
Sump Pump Discharge	41	212	SA312 TP304	2	40S	0.154	2.375	2.067	60	16,050	28,703	68,500	1,423	29,414	-27,991	-106	29,520	47,950	0.62
Discharge		212	SA312 TP304	1	40S	0.133	1.315	1.049	60	16,050	28,785	68,500	836	29,203	-28,367	-106	29,309	47,950	0.61
Sample Line From Pressurizer Liguid Space	66	17,800	SA213 TP316	0.5		0.065	0.5	0.370	2485	15,350	24,622	74,200	50,662	49,953	709	-8,900	59,562	51,940	1.15
Sample Line From Accumulators	81	17,400	SA213 TP316	0.5		0.065	0.5	0.370	600	15,350	26,904	74,200	49,523	51,665	-2,142	-8,700	60,365	51,940	1.16
Sample Line From Hot Legs	66	17,800	1P316	0.5	-	0.065	0.5	0.370	2485	15,350	24,622	74,200	50,662	49,953	709	-8,900	59,562	51,940	1.15
RCP Seal	N/A	16,940	1P304	1	160	0.250	1.315	0.815	2735	14,880	25,078	68,500	27,612	38,884	-11,272	-8,470	47,354	·	0.988
Bypass Line		16,940	SA376 TP304	0.75	160	0.219	1.05	0.612	2735	14,880	25,377	68,500	23,670	37,212	-13,542	-8,470	45,682	47,950	0.95

ł

Prepared by: <u>A. Yum</u> Checked by: <u>A. L</u>

Table A-4: Strain Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe	Nominat Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diamèter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Hoop Stress (psi)	Yield Strength (psi)	Elastic Modulus (psi)	Plastic Modulus (psi)	Yield Strain (in/in)	Total Strain (in/in)	Permitted Strain (in/in)
See Note:		1	2	2	2	3	4	5	6	7	10	7	7	7	11	12	13
		215	A106 Gr B	6	40	0.280	6.625	6.065	125	15,000	2,329	31,450	28.6E+6	Not Used	1.10E-03	0.0082%	5.0%
		215	A106 Gr B	4	40	0.237	4.5	4.026	125	15,000	1,826	31,450	28.6E+6	Not Used	1.10E-03	0.0064%	5.0%
NESW Cooling		215	A106 Gr B	2.5	40	0.203	2.875	2.469	125	15,000	1,307	31,450	28.6E+6	Not Used	1.10E-03	0.0046%	5.0%
for Lower	Multiple	215	A106 Gr B	1	80	0.179	1.315	0.957	125	15,000	575	31,450	28.6E+6	Not Used	1.10E-03	0.0020%	5.0%
Containment Multi /entilation Units (4 segments)		215	A106 Gr B	0.5	80	0.147	0.84	0.546	125	15,000	399	31,450	28.6E+6	Not Used	1.10E-03	0.0014%	5.0%
(4 segments)		215	SA312 TP304	6	40S	0.280	6.625	6.065	125	16,050	2,329	23,750	27.3E+6	425,000	8.70E-04	0.0085%	5.0%
		215	SA312 TP304	0.5	40S	0.109	0.84	0.622	125	16,050	613	23,750	27.3E+6	425,000	8.70E-04	0.0022%	5.0%
	t	215	ASTM B75	0.625		0.035	0.625	0.555	125	5,125						-	
		711	A106 Gr B	3	40	0.216	3.5	3.068	125	15,000	5,049	31,450	28.6E+6	Not Used	1.10E-03	0.0177%	5.0%
		711	A106 Gr B	2	80	0.218	2.375	1.939	125	15,000	3,162	31,450	28.6E+6	Not Used	1.10E-03	0.0111%	5.0%
NESW Cooling		711	A106 Gr B	1.5	80	0.200	1.9	1.500	125	15,000	2,666	31,450	28.6E+6	Not Used	1.10E-03	0.0093%	5.0%
for Upper	N. Wala	711	A106 Gr B	1	80	0.179	1.315	0.957	125	15,000	1,901	31,450	28.6E+6	Not Used	1.10E-03	0.0067%	5.0%
Containment Ventilation Units	Multiple	711	A106 Gr B	0.5	80	0.147	0.84	0.546	125	15,000	1,320	31,450	28.6E+6	Not Used	1.10E-03	0.0046%	5.0%
(4 segments)		711	SA312 TP304	3	40S	0.216	3.5	3.068	125	16,050	5,049	23,750	27.3E+6	425,000	8.70E-04	0.0185%	5.0%
		711	SA312 TP304	0.5	40S	0.109	0.84	0.622	125	16,050	2,029	23,750	27.3E+6	425,000	8.70E-04	0.0074%	5.0%
		711	ASTM B75	0.625		0.035	0.625	0.555	125	5,125							

Prepared by: <u>Rectanged</u>

Table A-4: Strain Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	(inch)	Pipe Schedule		Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Hoop Stress (psi)	Yield Strength (psi)	Elastic Modulus (psi)	Plastic Modulus (psi)	Yield Strain (in/in)	Total Strain (in/in)	Permitted Strain (in/in)
See Note:		1	2	2	2	3	4	5	6	7	10	7	7	7	11	12	13
		711	A106 Gr B	3	40	0.216	3.5	3.068	125	15,000	5,049	31,450	28.6E+6	Not Used	1.10E-03	0.0177%	5.0%
		711	A106 Gr B	2.5	40	0.203	2.875	2.469	125	15,000	4,324	31,450	28.6E+6	Not Used	1.10E-03	· 0.0151%	5.0%
NESW Cooling		711	A106 Gr B	1	80	0.179	1.315	0.957	125	15,000	1,901	31,450	28.6E+6	Not Used	1.10E-03	0.0067%	5.0%
for RCP Motor Air Coolers (4	Multiple	711	A106 Gr B	0.5	80	0.147	0.84	0.546	125	15,000	1,320	31,450	28.6E+6	Not Used	1.10E-03	0.0046%	5.0%
segments)		711	SA312 TP304	3	40S	0.216	3.5	3.068	125	16,050	5,049	23,750	27.3E+6	425,000	8.70E-04	0.0185%	5.0%
		711	SA312 TP304	0.5	40S	0.109	0.84	0.622	125	16,050	2,029	23,750	27.3E+6	425,000	8.70E-04	0.0074%	5.0%
		711	ASTM B75	0.625		0.035	0.625	0.555	125	5,125							
		325	A106 Gr B	3	40	0.216	3.5	3.068	125	15,000	2,308	31,450	28.6E+6	Not Used	1.10E-03	0.0081%	5.0%
		325	A106 Gr B	2.5	40	0.203	2.875	2.469	125	15,000	1,976	31,450	28.6E+6	Not Used	1.10E-03	0.0069%	5.0%
		325	A106 Gr B	2	80	0.218	2.375	1.939	125	15,000	1,445	31,450	28.6E+6	Not Used	1.10E-03	0.0051%	5.0%
NESW Cooling for		325	A106 Gr B	1.5	80	0.200	1.9	1.500	125	15,000	1,219	31,450	28.6E+6	Not Used	1.10E-03	0.0043%	5.0%
Instrumentation Room	Multiple	325	A106 Gr B	1	80	0.179	1.315	0.957	125	15,000	869	31,450	28.6E+6	Not Used	1.10E-03	0.0030%	5.0%
Ventilation Units (2 segments)		325	A106 Gr B	0.5	80	0.147	0.84	0.546	125	15,000	604	31,450	28.6E+6	Not Used	1.10E-03	0.0021%	5.0%
		325	SA312 TP304	2	40	0.154	2.375	2.067	125	16,050	2,181	23,750	27.3E+6	425,000	8.70E-04	0.0080%	5.0%
		325	SA312 TP304	0.5	80	0.147	0.84	0.546	125	16,050	604	23,750	27.3E+6	425,000	8.70E-04	0.0022%	5.0%
		325	ASTM B75	0.625		0.035	0.625	0.555	125	5,125						-	

Prepared by: <u>A Grand</u> Checked by: <u>Checked by:</u>

Table A-4:

Strain	Evaluation
--------	------------

															[
Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Hoop Stress (psi)	Yield Strength (psi)	Elastic Modulus (psi)	Plastic Modulus (psi)	Yield Strain (in/in)	Total Strain (in/in)	Permitted Strain (in/in)
See Note:		1	2	2	2	3	4	5	6	7	10	7	7	7	11	12	13
Accumulator Fill	32	15,310	1P304	1	160	0.250	1.315	0.815	1750	14,880		23,750	27.3E+6	425,000	8.70E-04	0.3706%	5.0%
Line		15,310	TP304	0.75	160	0.219	1.05	0.612	1750	14,880	21,392	23,750	27.3E+6	425,000	8.70E-04	0.0784%	5.0%
		212	SA312 TP304	3	10S	0.120	3.5	3.260	136	16,050	2,880	23,750	27.3E+6	425,000	8.70E-04	0.0105%	5.0%
Primary Water		212	SA312 TP304	2.5	10S	0.120	2.875	2.635	136	16,050	2,328	23,750	27.3E+6	425,000	8.70E-04	0.0085%	5.0%
Supply to RCPs and PRT	33	212	SA312 TP304	1	40S	0.133	1.315	1.049	136	16,050	836	23,750	27.3E+6	425,000	8.70E-04	0.0031%	5.0%
and Fill		212	SA312 TP304	0.75	40S	0.113	1.05	0.824	136	16,050	773	23,750	27.3E+6	425,000	8.70E-04	0.0028%	5.0%
		212	SA312 TP304	0.5	40S	0.109	0.84	0.622	100	16,050	605	23,750	27.3E+6	425,000	8.70E-04	0.0022%	5.0%
Demineralized Water Supply to		325	SA312 TP304	3	10S	0.120	3.5	3.260	156	16,050	4,415	23,750	27.3E+6	425,000	8.70E-04	0.0162%	5.0%
Refueling Cavity Scrub	36	325	SA312 TP304	2	40S	0.154	2.375	2.067	156	16,050	2,181	23,750	27.3E+6	425,000	8.70E-04	0.0080%	5.0%
Down Hose Connections		325	SA312 TP304	1	40S	0.133	1.315	1.049	156	16,050	1,282	23,750	27.3E+6	425,000	8.70E-04	0.0047%	5.0%

1

Prepared by: <u>A Church</u> Checked by:

Table A-4: Strain Evaluation

		()	[]		· · · · · · · · · · · · · · · · · · ·	1	[]								[
Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Hoop Stress (psi)	Yield Strength (psi)	Elastic Modulus (psi)	Plastic Modulus (psi)	Yield Strain (in/in)	Total Strain (in/in)	Permitted Strain (in/in)
See Note:		1	2	2	2	3	4	5	6	7	10	7	7	7	11	- 12	13
RCP Seal	37	1,800	SA312 TP304	4	10S	0.120	4.5	4.260	150	16,050	31,950	23,750	27.3E+6	425,000	8.70E-04	2.0164%	5.0%
Water Line		1,800	SA312 TP304	1	40S	0.133	1.315	1.049	150	16,050	7,098	23,750	27.3E+6	425,000	8.70E-04	0.0260%	5.0%
		262	SA312 TP304	4	10S	0.120	4.5	4.260	100	16,050	4,651	23,750	27.3E+6	425,000	8.70E-04	0.0170%	5.0%
Reacor Coolant Drain Tank	40	262	SA312 TP304	2	40S	0.154	2.375	2.067	100	16,050	1,758	23,750	27.3E+6	425,000	8.70E-04	0.0064%	5.0%
Pump Suction	40	262	SA312 TP304	1	40S	0,133	1.315	1.049	100	16,050	1,033	23,750	27.3E+6	425,000	8.70E-04	0.0038%	5.0%
	262	SA312 TP304	0.75	40S	0.113	1.05	0.824	100	16,050	955	23,750	27.3E+6	425,000	8.70E-04	0.0035%	5.0%	
		212	SA312 TP304	3	10S	0.120	3.5	3.260	60	16,050	2,880	23,750	27.3E+6	425,000	8.70E-04	0.0105%	5.0%
Containment Sump Pump	41	212	SA312 TP304	2	40S	0.154	2.375	2.067	60	16,050	1,423	23,750	27.3E+6	425,000	8.70E-04	0.0052%	5.0%
Discharge		212	SA312 TP304	1	40S	0.133	1.315	1.049	60	16,050	836	23,750	27.3E+6	425,000	8.70E-04	0.0031%	5.0%
Sample Line From Pressurizer Liquid Space	66	17,800	SA213 TP316	0.5		0.065	0.5	0.370	2485	15,350	50,662	24,550	27.3E+6	450,000	8.99E-04	5.8925%	5.0%
Sample Line From Accumulators	81	17,400	SA213 TP316	0.5	-	0.065	0.5	0.370	600	15,350	49,523	24,550	27.3E+6	450,000	8.99E-04	5.6395%	5.0%
Sample Line From Hot Legs	66	17,800	SA213 TP316	0.5		0.065	0.5	0.370	2485	15,350	50,662	24,550	27.3E+6	450,000	8.99E-04	5.8925%	5.0%
RCP Seal	N/A	16,940	1P304	1	160	0.250	1.315	0.815	2735	14,880	27,612	23,750	27.3E+6	425,000	8.70E-04	0.9957%	5.0%
Bypass Line		16,940	SA376 TP304	0.75	160	0.219	1.05	0.612	2735	14,880	23,670	23,750	27.3E+6	425,000	8.70E-04	0.0867%	5.0%

Prepared by: <u>2 CTrunci</u> Checked by: <u>A</u>

Notes to Tables:

- 1. Max pressures are from Reference 1 calculations.
- 2. Pipe materials, sizes and schedules are from drawings in References 9-11. Where multiple schedules are installed, only the thinner schedule is considered.
- 3. Thicknesses for pipe are from Crane (Reference 14) for corresponding pipe schedules. Thickness for NESW heat exchanger tubing is from Reference 11 (same for all coils). Thickness for sample line tubing is from Reference 3 for Class O-14 tube.
- 4. Actual pipe sizes are from Crane.
- 5. ID = Actual OD 2*thickness.
- 6. Pipe design pressures and temperatures from References 2 and 3.
- 7. From Table 2 of calculation.
- 8. From equations in Section 3.1.
- 9. From equations in Section 3.2.
- 10. Hoop stress = S1 from Table A-2.
- 11. Yield strain = yield stress / elastic modulus.
- 12. If S1 < yield strength, strain = S1 / elastic modulus.
- If S1 > yield strength, strain = (S1 yield strength) / plastic modulus + yield strain.
- 13. Permitted strain from Section 3.2 of calculation.

9/8/00

ATTACHMENT 7 TO C0801-05

MPR CALCULATION 025-065-02

"DETERMINATION OF PEAK PRESSURES IN D. C. COOK UNIT 1 PIPING SEGMENTS ISOLATED BY AIR OPERATED GLOBE VALVES"

MPR-2169 Appendix A.2

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

CALCULATION TITLE PAGE											
Client American Electric Por	Page	e 1 of 49									
	oject Evaluation of D.C. Cook Unit 1 Piping Segments for Potential Thermal Overpressurization										
	le Determination of Peak Pressures in D.C. Cook Unit 1 Piping Segments Isolated by Air Operated Globe Valves										
Preparer/Date	Checker/Date	Reviewer/Approv	ver/Date	Rev. No.							
N CTural 9/8/00	n crul SR Harp Huild										
This document has been prep requirements of 10C	QUALITY ASSURANCE ared, checked and reviewed/app FR50, Appendix B, as specified	proved in accordance	with the Qua ssurance Ma	ality Assurance anual.							

	PR	. MPF	R-2169 Appendix A.2		MPR Associ 320 King Str Alexandria, '	reet	
	b <u>aaa</u> kaan attii aan ayaayaa aan ayaayaa aan ah	REC		SIONS			
	ation No. 065-02	Pre M 17	epared By	Checke JRJ	Checked By S. R. Harp		
Revision			Descri	iption			
0	Original Issue).			- - -		
			-		-		
					•		

ZMP	R	MPR-2169 Appendix	MPR Associates, Inc. 320 King Street Alexandria, VA 22314				
Calculation N 025-065-02		Prepared By AcTumb	Checke J R	•	Page 3		
		CONTENTS		÷			
SECTION	TITLE			<u>PA</u>	GE		
1.0	Purpos	e	•••••		4		
2.0	Results	·			5		
3.0	Calcula	ntion			6		
4.0	Inputs	Requiring Verification			.16		
5.0	Referen	nces			. 17		
Attachment A		Calculation of Maximum Temperature Achieved in Piping During Steam Line Break19					
Attachment B	Peak P	ressure in CPN-32		. 42			
Attachment C	Peak P	ressure in RCP Seal Bypass Lir	1e		.46		

ZMPR	MPR-2169 Appendi	+=+ 1 m ig 4	
Calculation No.	Prepared By	Checked By	Page 4
025-065-02	McTuml	S R Harp	

1.0 PURPOSE

The purpose of this calculation is to determine the peak pressures that can be obtained in piping segments susceptible to thermal overpressurization that are isolated by air operated globe valves at the D. C. Cook Nuclear Power Station, Unit 1. The pressures determined in this calculation are to be used in a separate stress analysis of the piping segments. The lines that contain globe valves are the accumulator fill line (CPN 32) and the RCP seal bypass line.

Two separate calculations of peak pressure will be made, as follows:

- The peak pressure is taken as the pressure at which valves installed in the segments will open. This is the maximum pressure that can be achieved in the line for the case where the valves are installed such that system pressure is applied under the valve plug during overpressurization.
- The peak pressure is also calculated assuming no leakage through the valves.

ZMPR	MPR-2169 Appendix A	MPR Assoc .2 320 King S Alexandria,	treet
Calculation No. 025-065-02	Prepared By	Checked By S R Hanp'	Page 5
2.0 RESULTS The pressures listed below w	ill force the valves open.	1	
	Table 1. Results Summa	a r -v	

Segment	Case 1: Maximum Line Pressure to Open Valves (psig)	Case 2: Line Pressure With No Valve Leakage (psig)
RCP Seal Bypass Line	12,310	16,940
Accumulator Fill Line	6,930	15,310

For Case 1:

Segment pressures equal to those shown will cause one or more valves to open. The forces generated by these pressures are equivalent to the opening force applied by the air operator at the nominal control air header supply pressure. This is a conservative calculation because the valves will begin to open at pressures lower than those above.

These results are based on inputs that require verification; specifically, the plug area exposed to segment pressure for the accumulator fill line, and the valve flow direction for both lines. Refer to Section 4.0 for the information that requires verification.

For Case 2:

Segment pressures are calculated assuming no leakage through the isolation valves.

These results will be used in separate evaluations for the pipe and valves in these segments.

ZMPR	MPR-2169 Appendix	KA.2 320 King 3	MPR Associates, Inc. 320 King Street Alexandria, VA 22314		
Calculation No.	Prepared By	Checked By			
025-065-02	Manh	DR Karp	Page 6		
3.0 CALCULATION					
3.1 <u>Globe Valves Installe</u>	d in Piping Segments at Cook	<u>Unit 1</u>			
Each of the segments consider These valves are air to open, s	red in this calculation is isolated pring to close valves.	l using one or more air opera	ted globe valve.		

The valves installed in each segment are listed in Table 2, along with configuration information obtained from various plant sources. Each of these valves is shut during isolation and each is subject to the segment internal pressure.

Table 2.	List of Air Operation	ated Globe Valves	s in Segments	Considered

Segment	CPN	Globe Valve Tag Numbers	Valve Size	Drawing
RCP Seal Bypass Line	N/A	1-QRV-150	3/4"	Copes Vulcan Inc. Model D100-100 Operator ³ /4"-1500 LB U.S.A STD DWG. No. L-137857 (Ref. 1)
		1-IRV-050, 1-IRV-060 1-IRV-111, 1-IRV-121 1-IRV-131, 1-IRV-141	1"	Copes Vulcan Inc. Model D100-100 Operator 1"-1500 LB U.S.A STD DWG. No. L-137968 (Ref. 2)
Accumulator Fill Line	32	1-IRV-115, 1-IRV-116 1-IRV-125, 1-IRV-126 1-IRV-135, 1-IRV-136 1-IRV-145, 1-IRV-146 1-IRV-147, 1-IRV-148	3/4"	Copes Vulcan Inc. Model D100-100 Operator ¾"-1500 LB U.S.A STD DWG. No. L-140209 (Ref. 3)
		1-IRV-149, 1-IRV-150	3/4"	2-AEP-MASN-CP1-18-55 (Ref. 4)

ZMPR	MPR-2169 Appendix	A.2 MPR Associ A.2 320 King Str Alexandria, Y	reet
Calculation No. 025-065-02	Prepared By MoTrum	Checked By A R Harp	Page 7
		/	

3.2 <u>Case 1: Segment Pressure Acts to Open System Valves</u>

During thermal overpressurization incidents (such as might occur when segments are isolated during pipe breaks in containment), water pressure will build in the isolated segment until the force on the valve plug overcomes the forces holding the valve closed – provided the valve is installed such that this pressure acts on the plug in a direction that would cause the plug to lift off the seat. At this point the valve will begin to open, and relieve the trapped water.

This calculation will determine the segment water pressure which would be required to overcome the spring force and hence permit the trapped water to escape through the opened valve. Separate calculations are provided for each segment.

ZMPR	MPR-2169 Appendix	A.2 320 King	ociates, Inc. Street a, VA 22314
Calculation No. 025-065-02	Prepared By	Checked By A R Hanp	Page 8

3.2.1 <u>RCP Seal Bypass Line</u>

To determine the required system pressure under this plug to overcome the spring force keeping the valve closed, the following steps are taken.

1. First, calculate the force needed to open the valve (F_{open}) . To simplify this analysis, this force will be determined by multiplying the nominal control air header pressure supplied to the valve (p_a) by the actuator area (A_a) :

 $F_{open} = p_a A_a$

This is conservative because the valve will begin to open at a lower air actuator pressure than the full control air header nominal pressure. The control air header flow diagrams listed in Reference 5 show that the nominal control air header pressure supplied to this valve is 85 psig. The actuator area for this type of valve is 100 square inches as shown in Reference 6. Accordingly, the maximum force that the air can apply to the actuator to open the valve is 8500 pounds. Since based on plant experience it is known that the valve will open when this 85 psig air pressure is applied, this pressure must be sufficient to overcome the actuator spring, stem friction, and the effects of system pressure on the other side of the plug.

2. Calculate the plug area subject to system pressure acting to open the valve, A_{plug}.

$$A_{plug} = d_{seat opening}^2 \pi/4$$

Per Reference 11, the cage inside diameter for valve 1-QRV-150 is 15/16". The corresponding plug area subject to pressure is then 0.69 in².

3. For globe valves with flow up from under the seat, the segment pressure required to open the valve, without the aid of the actuator, is the opening force divided by the area of the plug,

$$p_{open} = F_{open} / A_{plug} = 8500 \text{ lbs} / 0.69 \text{ in}^2 = 12,310 \text{ psig}$$

ZMPR	MPR-2169 Appendix A	J	•
Calculation No.	Prepared By	Checked By	Dege 0
025-065-02	Monul	S R Horp	Page 9

3.2.2 Accumulator Fill Line

As shown in Table 2, there are three types of valves installed in this system. The drawing for the ³/₄" valve types show a small seat opening dimension, so these valves will not be likely to open during pressurization. Accordingly, only the 1" Copes Vulcan valve type will be considered.

The 1" valves shown on L-137968 are shown with a wide plug and valve seat. The plug fits over the stem. Per valve packing calculations for valve 1-IRV-111 (Reference 8) the stem diameter is 0.75". Per the vendor drawing the plug is significantly larger than the stem; in this calculation the assumed plug diameter is 1.25", which must be verified (see Section 4). The plug area is therefore 1.23 in² for these valves. Per the control air header flow diagrams (References 5 and 9), these valves are supplied with 85 psig air to open. Since the valves have 100 in² actuators, an opening force of 8500 pounds is considered in this calculation. The system pressure required to open the valve is then

 $p_{open} = F_{open} / A_{plug} = 8500 \text{ lb} / 1.23 \text{ in}^2 = 6,930 \text{ psig}$

ZMPR	MPR-2169 Appendix A	A.2 MPR Assoc A.2 320 King Si Alexandria,	treet
Calculation No. 025-065-02	Prepared By M. T.m.L	Checked By ' S R Harps	Page 10
	ressure Assuming No Valve Lea	каде:	

5.5

If the valves do not leak, the pressure inside the isolated pipe segment will increase as the pipe heats up in the hot containment atmosphere. The peak pressure reached will depend on the peak temperature achieved in the piping. This peak temperature is in turn a function of the heat transfer between the containment atmosphere and the water inside the piping.

Accordingly, calculation of peak temperature and the resulting pressure is described in the following sections.

3.3.1 Calculation of Peak Temperature

Review of lower compartment temperature data (from Reference 12) for the LOCA and main steam line break scenarios shows the following:

- For LOCAs, the temperature rises quickly to nearly 235°F initially, after which the temperature drops significantly. During the first part of the accident the containment pressure is 7-8 psig. Since saturation temperature at these pressures is about 235°F, it is conservative to assume that the steam will condense on the metal pipe surface. Since condensation heat transfer is very effective at transferring heat, this calculation will assume that the piping immediately reaches the peak temperature of 235°F during LOCA.
- For main steam line breaks, the lower compartment temperature peaks at about 325°F for a brief time following the break, during which time the containment pressure drops from a maximum of about 9 psig to about 7 psig. Since the 325°F temperature exceeds the saturation temperature of steam at this pressure (roughly 235°F), heat transfer during this time is by forced convection rather than condensation. Forced convection heat transfer rates are dependent on flow velocity and are less than condensation heat transfer rates. Attachment A to this calculation provides a conservative estimate of the heatup of the pipe under main steam line break conditions. Results show that under worst case conditions the bulk of the piping in these two segments will not reach 235°F while the temperature in the containment is 325°F; following that time, the containment temperature drops below 235°F. Accordingly, use of 235°F as the peak temperature of the piping conservatively bounds the temperature main steam line break scenario.

3.3.2 Calculation of Resulting Pressure

The analysis approach uses the maximum water temperature, the pipe stiffness and pipe material properties to calculate the resulting internal pressure and material stress-strain state for a postulated increase in temperature scenario. The specific steps in the analysis procedure are described below.

ZMPR	MPR-2169 Appendix	(A.2 320 King S	ociates, Inc. Street a, VA 22314		
Calculation No. 025-065-02	Prepared By M Tumb	Checked By A R Hango	Page 11		
 The isolated piping segment arrangement is reviewed to determine the pipe sections and materials. The information on each pipe is required to determine the pressure in the entire piping segment. A bi-linear stress-strain curve for the specific pipe material (Type 304 stainless steel) is developed. Both the elastic stretching of the pipe wall as well as the plastic deformation of the pipe with strain hardening is considered. 					
• An equation of state for the water in the isolated piping segments is developed, which relates pressure to specific volume at the given temperature. The equation of state is developed from the ASME Steam Tables (Reference 13).					
• A set of simultaneous equations relating pipe stress and strain to the water mass, specific volume and pressure is developed. The solution of the equations provides the final water pressure and piping segment pressure stress.					
Geometry and Material Data					

The data required for each piping segment are the pipe diameter, wall thickness and material properties for each cross section included in the isolated segment. The piping geometry is found in isometric drawings listed in References 18 and 19. The material data include: material class and material type (Reference 15), design stress intensity (S_m), yield stress (S_y), ultimate strength (S_u), elastic modulus (E), and plastic modulus (E_p). The plastic modulus is determined based on the stress-strain curve shown in Figure 1 (from Reference 16). The remaining material properties are extracted from the 1989 ASME Code (Reference 17). Material properties are evaluated at 235°F.

Review of isometric drawings (References 18 and 19) shows that the two segments of interest are constructed of ³/₄" and 1" schedule 160, SA376 type 304 stainless steel. The geometry and material data for these pipe materials are listed in Table 3. Nominal pipe wall thickness was used for the evaluations.

		Geome	Geometry Data				Material Data				
Pipe Size	Sched.	OD (in)	Wall (in)	Class	Туре	S _m (ksi)	S _y (ksi)	S _u (ksi)	E (10 ⁶ psi)	E _p (10 ⁶ psi)	
1 in	160	1.315	0.25	M-14	SA376 TP304	20.0	24.13	69.25	27.4	0.425	
3/4 in	160	1.050	0.219	M-14	SA376 TP304	20.0	24.13	69.25	27.4	0.425	

Table 3: Geometry and Material Properties, 235°F

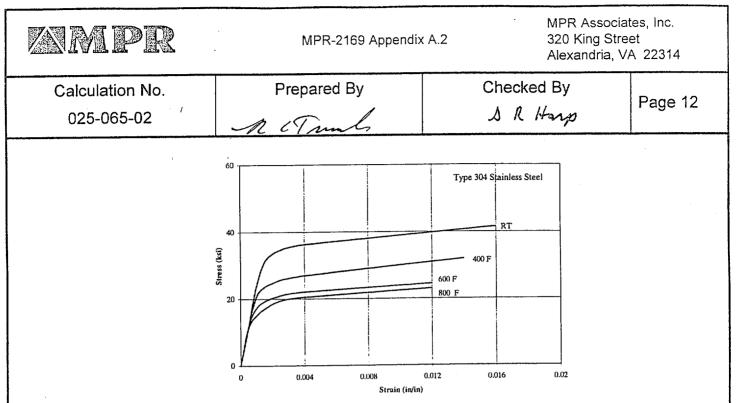
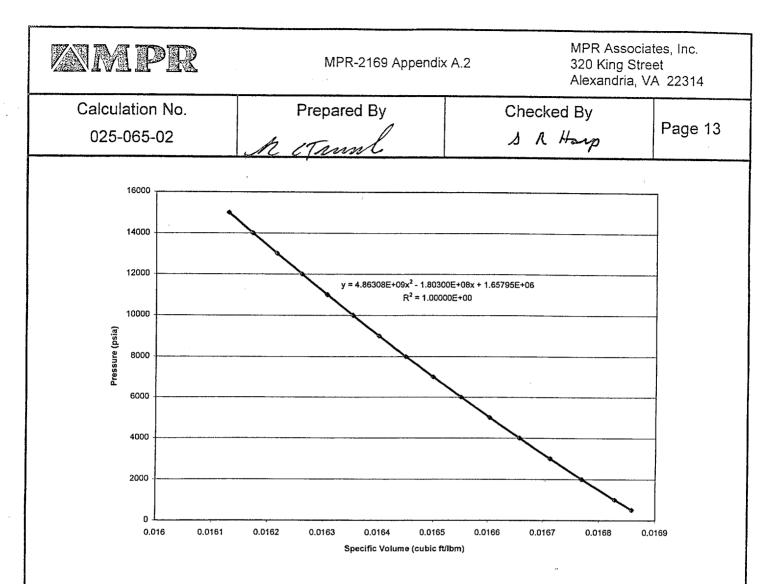
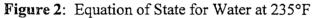


Figure 1: Type 304 Stainless Steel Stress-Strain Curve.

Note that the values from Table 3 are used in the calculation for yield strength.


Fluid Properties


The calculations to determine maximum internal pressure are performed for the maximum bounding piping segment water temperature of 235°F. These piping stress calculations assume the piping segments are initially at their maximum pressures and at minimum containment ambient conditions:

	70°F, 1750 psig, $v = 0.015963$ ft ³ /lbm
RCP Seal Bypass Line:	70°F, 2480 psig, $v = 0.015928$ ft ³ /lbm

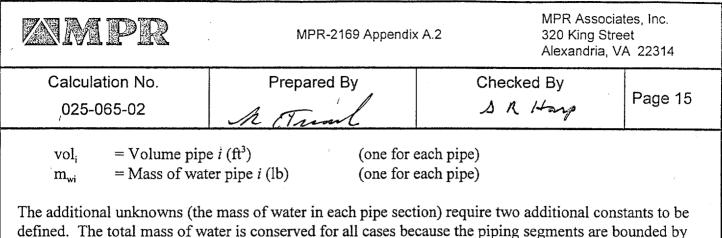
where specific volumes (ν) are obtained from the ASME Steam Tables. Maximum pressure for the accumulator fill line is the design pressure for the system per the piping specification; the RCP seal bypass pressure is the maximum operating pressure from the specification.

Figure 2 shows the relationship between pressure and specific volume at a temperature of 235°F (from the ASME Steam Tables). A polynomial curve fit is also shown of the equation of state for the fluid. This equation will be used in the determination of fluid pressure for the maximum temperature conditions.

Pressure Calculation

For the general case in which a piping segment has a single pipe size and material, the fluid pressure and piping stress-strain solution are determined by solving a set of six simultaneous equations with six unknowns. The six unknowns representing the pressurized condition in the isolated segment are:

Р	= Internal pressure (psia)	
ν	= Specific volume (ft ³ /lb)	r = Pipe inside radius (in)
$\sigma_{\rm h}$	= Pipe hoop stress (psi)	vol = Volume of water (ft^3)


The following constants are used to solve for the unknown variables:

t	= Pipe wall thickness (in)	r _o	= Initial pipe inside radius (inch)
m,,	= Mass of water (lb)	S _v	= Pipe yield stress (psi)
€ _y	= Pipe yield strain (in/in) (= S_y/E)	Ē	= Pipe elastic modulus (psi)
α_{T}	= Therm. expansion coeff. (in/in/°F)	E_{p}	= Pipe plastic modulus (psi)

MPR	MPR-21	69 Appendi	A.2		320 King S	ciates, Inc. Street a, VA 22314
Calculation No.	Prepared	Ву	Che	eck	ed By	
025-065-02	A Tris	-	Л	R	Hango	Page 14
The set of equations that defin			n state are:			
Membrane Stress:	$\sigma_{\rm h} =$	(P r)/(t)				
Volume (per unit length)		- π(r ²)				
Stress - Strain:		$S_{y} + (e_{p} - e_{p})$) E _p		for $\sigma_h > S_y$	
	$\sigma_{h} =$				for $\sigma_{\rm h} < S_{\rm y}$	
Specific Volume:	v = v	vol / m _w			•	
Equation of State (235°F	-		$10^9 v^2 - 1.80$	300	$10^{8} v + 1.6$	5795x10°
Radius:	$\mathbf{r} = (1)$	$(+\varepsilon_p) r_0$				
The strain due to thermal expa $e_{th} = \alpha_T(\Delta T)$ The equation for the pipe radiu		ornorate the	thermal exp	ansi	ion:	
•		orporate un	merma exp	uno.		
$\mathbf{r} = (1 + \boldsymbol{\varepsilon}_{p}) (1 + \boldsymbol{\varepsilon}_{th}) (\mathbf{r}_{0})$	•					
The set of equations listed abores section. For piping segments account for the potential expansion segment contains lengths of ³ / ₄ 1" pipe. Hence, as the fluid is	with multiple cross asion of fluid from of and 1" Schedule 1 heated and pressur	sections, the one section 60 piping. ized, the ³ /4"	e set of equat of pipe into a The ¾" pipe pipe would s	ions notl is s strai	s must be ext her. Specific tiffer and str n less than th	ended to cally, each onger than the he 1" pipe. As a
result, the fluid expansion in t net increase in volume in the section.	" pipe section must	include the	expansion o	f the	e fluid initial	ly in the ³ /4" pip
result, the fluid expansion in t net increase in volume in the l	" pipe section must	include the	expansion o	f the	e fluid initial	ly in the ¾" pip
result, the fluid expansion in t net increase in volume in the l section. In order to address multiple cr	" pipe section must ross sections, the ba nowns is:	include the sic equation (one pre	expansion o	f the led t	e fluid initial to include ea s)	ly in the ¾" pip

v= Specific volume (ft³/lb) σ_{hi} = Pipe i hoop stress (psi) e_{pi} = Pipe i hoop strain (in/in) r_i = Pipe i inside radius (in)

(one pressure for all pipes) (one specific volume for all pipes) (one for each pipe) (one for each pipe) (one for each pipe)

isolation valves.

L	= Length of pipe i (ft)	(one for each pipe)
m _{tot}	= Total mass of water (lb)	(total mass of all pipes)

Both the accumulator fill line and RCP seal bypass line are constructed of 1" and $\frac{3}{4}$ " schedule 160 pipe in the region of interest. The lengths of different cross section pipe are determined from the drawings listed in References 18 and 19 and are as follows:

Pipe Segment	Length of 1" Pipe	Length of ³ / ₄ " Pipe
Accumulator Fill Line	290 ft	20 ft
RCP Seal Bypass Line	170 ft	450 ft

Thus, the following set of equations is used to determine the conditions of a piping segment with multiple pipe cross sections.

Membrane Stress:	$\sigma_{\rm hi} = (P r_{\rm i})/(t_{\rm i})$	
Volume:	$vol_i = \pi(r_i^2)(L_i)$	
Stress - Strain:	$\sigma_{\rm hi} = S_{\rm yi} + (e_{\rm pi} - e_{\rm yi}) E_{\rm pi}$	for $\sigma_{hi} > S_{yi}$
	$\sigma_{\rm hi} = \epsilon_{\rm pi} E_{\rm i}$	for $\sigma_{hi} < S_{yi}$
Specific Volume:	$v = vol_i / m_{wi}$	
Equation of State:	$P(v) = 4.86308 \times 10^9 v^2 - 1.80$	$300 \times 10^8 v + 1.65795 \times 10^6$
Radius:	$\mathbf{r}_{i} = (1 + \boldsymbol{\varepsilon}_{p}) (\mathbf{r}_{0}) (\boldsymbol{\varepsilon}_{th} + 1)$	
Mass:	$m_{tot} = \sum m_{wi}$	

The equations and methods listed above are used to determine the fluid pressure and material stress-strain state for the segments isolated with air operated globe valves at D.C. Cook, Unit 1. The calculations are performed using MathCAD and the equations and results are shown in Attachment B. The results of these calculations are as follows:

Peak Pressure in Accumulator Fill Lin	e: 15,310 psig
Peak Pressure in RCP Seal Bypass Lir	ne: 16,940 psig

Note that values shown above have been converted to psig.

ZMPR	MPR-2169 Appendix	x A.2 320 King S	MPR Associates, Inc. 320 King Street Alexandria, VA 22314		
Calculation No.	Prepared By	Checked By	Page 16		
025-065-02	De Manuel	S. A. Harp			

In performing these calculations, several simplifying assumptions are made. These assumptions, which are conservative and are not considered to affect the calculation results, are as follows:

- The piping is bounded on each end by isolation valves. The isolation valve walls are thicker and stronger than the main piping. As a result, the strain in the valves will be less than the piping. The amount of water in the valves is assumed very small compared to the main piping. Thus, the expansion of this water (in the valve) and the possible strain of the valve body are neglected.
- The stronger valves will restrain the piping deflection at valve connections, preventing the piping from fully yielding and straining at that point (compared to the calculated values). The localized pipe strain at valve connections is neglected when calculating the pressure and stress/strain state of the piping.
- For conservatism, the expansion of the piping in the longitudinal direction due to pressure has been neglected.

4.0 INPUTS REQUIRING VERIFICATION

The calculation of valve opening pressure requires that the following information should be verified or determined:

For valve 1-QRV-150,

• Determine whether valve is installed such that trapped water would flow under the plug

For ONE of the 1" valves in the accumulator fill line (see table below),

- Determine whether valve is installed such that trapped water would flow under the plug
- Determine the area under the plug exposed to pressure

System	Model Number	Tag Numbers
Accumulator Fill Line	Copes Vulcan Inc. Model D100-100 Operator 1"-1500 LB U.S.A STD DWG. No. L-137968	1-IRV-050, 1-IRV-060 1-IRV-111, 1-IRV-121 1-IRV-131, 1-IRV-141

Until verification is provided, use the higher (more bounding) pressures calculated in Section 3.3 of this calculation, since those pressures are not dependent on information that requires verification.

ZMPR	MPR-2169 Appendix	(A.2 320 King	sociates, Inc. Street ria, VA 22314
Calculation No. 025-065-02	Prepared By Mc Trunk	Checked By A R Harry	Page 17
5.0 REFERENCES			
1. DWG. No. L-137857 Rev STD.	v. 2 ,Copes Vulcan Inc. , Model 1	D100-100 Operator, 3/4"-150	00 LB U.S.A
2. DWG. No. L-137968 Rev	v. 2, Copes Vulcan Inc., Model I	0100-100 Operator, 1"-1500) LB U.S.A STD.
 DWG. No. L-140209 Rev STD. 	v. 2, Copes Vulcan Inc., Model I	0100-100 Operator, 3/4"-15	00 LB U.S.A
4. DIT Number DIT-S-003	35-00, dated 3/2/2000.		
5. AEP Drawing OP-1-5120 Headers, Unit #1."	E, Rev. 12, "Flow Diagram, Cor	ntainment Control Air 85# a	nd 50# Ring
6. AEP Procedure 12 EHP 5	073.AOV.001, Revision 0.		
7. Not used.			
8. Valve Packing Configurat	ion Data Sheet (12-EHP 5043.V	LV.001) for valve 1-IRV-1	11, 3/14/2000.
9. AEP Drawing OP-1-5120 Headers, Unit #1."	D, Rev. 27, "Flow Diagram, Cor	ntainment Control Air 85# a	nd 50# Ring
10. Not used.			
11. AEP Design Input Transm	uittal Number DIT B-01518-00.		
12. "Containment Pressure an 99-408, November 10, 199	d Temperature Figures and Tabu 99.	ılar Data for UFSAR Limiti	ng Cases," AEP-
13. "ASME Steam Tables," A	SME, 6 th Edition.		
14. Not used.			
15. "Pipe Material Specificati	on," AEP Specification No. ES-	Pipe-1013-QCN-CS3, Revi	sion 1.
16. Aerospace Structural Meta Stainless Steel.	al Handbook, Volume 2, 1990, C	Code 1303, Figure 3.03112,	Туре 304

^{17. 1989} ASME Code, Section III, Division I - Appendices.

ZMPR	MPR-2169 Append	dix A.2 320 King	ociates, Inc. Street a, VA 22314
Calculation No.	Prepared By	Checked By	
025-065-02	h Dunt	D R Harp	Page 18
		•	
	t Penetration CPN-32, Accum	ulator Fill Line.	
OP-1-5143A-4	OP-1-5142-35		
1-SI-507L1.6, Revisio			
1-SI-508L4.6, Revisio			
1-SI-537-L5, Revision	,		
1-SI-537-L9.11, Revis			
1-SI-537-L16.19, Rev		•	
1-SI-538-L1.4, Revisi			
1-SI-539.L2.3, Revisi	,		
1-SI-540-L4.5, Revisi	,	evision 1	
1-SI-452.L1, Revision			
1-SI-543-L1.3, Revisi		Revision 3	
1-SI-544.L1, Revision	1 1-SI-544.L2.3,	Revision 0	
1-SI-547-L1.4, Revisi	on 2 1-SI-547-L5.8,	Revision 0	
1-SI-547.L9.11, Revis	ion 2 1-SI-601L1, Re	evision 0	
19. Drawings of RCP Seal By	pass		
OP-1-5128A-42	1-CS-766-L1, H	Revision 0	
1-CS-766-L2, Revision	n 1 1-CS-766-L3.4	, Revision 1	
1-CS-766L5.7, Revisio	on 0 1-CS-766-L8.1	1, Revision 1	
1-CS-771-L1, Revision	n 1 1-CS-771-L2.4	, Revision 2	
1-CS-771-L5.6, Revisi	on 0 1-CS-771-L7.1	0, Revision 1	
1-CS-773L1, Revision		, Revision 2	
1-CS-773-L5.11, Revi	sion 1 1-CS-775L1A.	B, Revision 1	
1-CS-775L1.5, Revisio	on 4 1-CS-775L6.10	, Revision 1	
1-CS-775L11.12B, Re	vision 1 1-CS-775L13, 1	Revision 1	
1-CS-775L14.15, Revi	sion 1 1-CS-775L16.2	1 Revision 1	

20. F.P. Incropera and D.P. De Witt, "Fundamentals of Heat and Mass Transfer," John Wiley and Sons, 3' Edition.

21. Cook UFSAR, Chapter 5.

22. AEP Drawing 12-5163-9, "Plant Arrangement Sections G-G, H-H, & K-K Units 1 & 2."

23. Crane Technical Paper No. 410, "Flow of Fluids," 1986.

ZMPR	MPR-2169 Appendix	A.2 320 King S	ociates, Inc. Street n, VA 22314
Calculation No.	Prepared By	Checked By	Page 19
025-065-02	A Tronol	S R Hanp	
	Attachment A		
Calculation of Ma	ximum Temperature Achieved i	n Piping During Steam Lin	e Break
PURPOSE			
The purpose of this attachm heat above 235°F during ma	ent is to document that the accumpain steam line break conditions in	llator fill and RCP bypass se containment.	eal lines do not
APPROACH			
Forced convection heat tran	sfer from the containment atmosp	nere to exposed piping is cal	culated as:
q_{f} " = h A ($T_{cont} - T_{pit}$,e)		
$h = convert T_{cont} = tempT_{pipe} = temp$	transfer rate ective heat transfer coefficient erature of the containment as a fur erature of water in the pipe		- Ci cicut i-
To determine the peak temp determined and used in the	perature during steam line break, the equation above.	e convective heat transfer co	befficient is
A.1 Calculation of Heat	Transfer Coefficient		
For a cylinder in cross flow 344):	the heat transfer coefficient is cal	culated as follows (from Ref	erence 20, page
$\mathbf{h} = (\mathbf{k} / \mathbf{D}) \mathbf{C} (\mathbf{Re})^{m} (\mathbf{k})$	Pr) ^{1/3}		
Pr = Fluid Pr $k = Fluid the$ $D = Outer discussions and the second s$	eynolds Number andtl Number ermal conductivity (Btu/hr-ft-°F) ameter of cylinder (ft) ion constants as follows:		

MMPR	MPR-2169 Appendix	(A.2	320 King \$	ociates, Inc. Street a, VA 22314
Calculation No.	Prepared By	Che	ecked By	
025-065-02	no Pund	۵	R Harp	Page 20
Re	<u> </u>	<u> </u>		
0.4-4	0.989	0.330		
4-40	0.911	0.385		
40-4,000	0.683	0.466		
4,000-40,000	0.193	0.618		
40,000-400,000	0.027	0.805		
The Reynolds Number is equal to	o:			
Re = (V D) / v'				
Where:				
V = Fluid velocity	(ft/sec)			
v' = Fluid kinemat	ic viscosity (ft ² /sec)			

over the cylinder. Conservative values calculation, as follows:

Cylinder Diameter

The heat transfer correlation shows that heat transfer coefficient varies inversely with the diameter. Accordingly, a small diameter will be assumed. The smallest pipe in these lines is ³/₄" nominal, equal to 1.05" actual outside diameter; this value will be used in this calculation.

Fluid Properties

- Prandtl Number. The equation shows that heat transfer coefficient varies with the cube root of Prandtl number. Review of Appendix A of Reference 20 shows that the Prandtl number for both air and saturated water vapor is less than 1.0 at the temperature range of interest for this calculation. For simplicity and conservatism, use $(Pr)^{1/3} = 1.0$.
- Thermal Conductivity. The equation shows that heat transfer coefficient varies linearly with thermal 9 conductivity. For conservatism, a high k value is used. From Appendix A of Reference 20, the peak value of k for air or water vapor over the temperature range of 70°F to 325°F is 0.037 W/m-K, which is equal to 0.021 BTU/hr-ft-°F.
- Kinematic Viscosity. The equation shows that heat transfer coefficient varies inversely with kinematic 0 viscosity, which in turn varies directly with temperature and inversely with pressure. For conservatism and simplicity, one value of kinematic viscosity will be assumed for the duration of the accident. The

ZAMPR	MPR-2169 Appendi	(A.2		MPR Assoc 320 King Sti Alexandria,	reet
Calculation No.	Prepared By	Ch	ecke	ed By	
025-065-02	sugard .	Л	R	Harp	Page 21
value chosen is the kinem dividing the viscosity of a	atic viscosity of air at 9 psig and ir from Reference 20, Appendix	l 200°F of 1. A by the der	47E- nsity	4 ft ² /sec (calc at these cond	culated by litions).
Velocity					
in the containment pipe tunned jet effects of the steam line but	s (References 18 and 19) shows el. This volume is located outsid reak by the floor at Elevation 612 in this volume will likely be sma	e of the crane 2' per plant a	e wa rrang	ll and is shield gement drawing	ded from the ngs (Reference
steam/air mass enters the volu	break may migrate to the pipe tu ime, it will flow around and ove be made of the flow velocity by e tunnel using Darcy's Law:	r these pipe s	egm	ents and trans	fer heat by
$\Delta P = (\rho/144) (f L / D)($	V ² / 2g _c)				
	rence across the leak path, psi; ρ e of the leak path; and V = flow y				
Mass flow rate (\underline{M}) is related	to velocity as follows:		-		
$\underline{M} = \rho V A$					
where $A = $ flow area of the lea	ak path. Rearranging and combi	ning,			
<u>M</u> = [(ρ ΔP) (288 A² D	$g_{c} / fL)]^{1/2}$				
	equation reflects the parameters a hole flow resistance coefficie	-	ath a	ind several co	nstants.
$\underline{\mathbf{M}} = \left[\left(\rho \; \Delta \mathbf{P} \right) / \mathbf{K} \; \right]^{1/2}$					
Here, K has the units of psi-(l	bm/ft³)/(lbm/sec) ² .				
Note the following:					
value), then the mass flow	he high pressure and low pressure rate will be high and the volum l initially be high and then rapid	es will quick			•

e,

	PR	MPR-2169 Appendix .	MPR Associates, Inc. 320 King Street Alexandria, VA 22314		
Calculat	ion No.	Prepared By McTumh		ked By	Bage 22
025-06	35-02	S R	Hanp	Page 22	
	w can be calcula	t pipe tunnel will flow around the ated as a function of time as follo umber of moles of gas in the pipe	ws: tunnel. For i	nitial conditic	ns, assume pipe
tunnel is at 12 which will pro		l 14.7 psia. This minimizes the r nt. Moles (n) are calculated fron			
tunnel is at 12 which will pro $n = P$ (where	olong the transie (Vol) / (R T)	nt. Moles (n) are calculated from			
tunnel is at 12 which will pro n = P (where P	olong the transie (Vol) / (R T) = pressure	nt. Moles (n) are calculated from			
tunnel is at 12 which will pro $n = P$ (where	olong the transies (Vol) / (R T) = pressure = contain	nt. Moles (n) are calculated from	the ideal gas		

The volume of the dead-ended lower containment space is 61,702 ft³ per Table 5.3-1 of the Cook UFSAR (Reference 22).

Step 2: Calculate the mass transferred over a time step into the volume from the higher pressure source. To do this, assume a hole flow resistance parameter K and use the following equation to find a mass flow rate:

 $\underline{\mathbf{M}} = \left[\left(\rho \; \Delta \mathbf{P} \right) / \mathbf{K} \right]^{1/2}$

using the upstream fluid density.

Step 3: Calculate the mass and pressure in the volume at the end of the time step. Use the ideal gas law to calculate pressure. For conservatism and simplicity, calculate this pressure assuming the temperature in the volume stays constant at the initial condition. (This is conservative because in reality the pressure would increase with temperature, slowing the flow rate into the volume.)

Step 4: Calculate the velocity in the pipe tunnel using the following equation:

 $V = \underline{M} / (\rho A_{cross})$

where A_{cross} = cross sectional flow area of the pipe tunnel. Since the volume is an annular region with an outer diameter of 115', the average cross sectional area (A_{cross}) of this space is calculated as shown below:

MPR	MPR-2169 Appendix A	A.2 MPR Assoc A.2 320 King St Alexandria,	reet
Calculation No. 025-065-02	Prepared By	Checked By S. R. Harp	Page 23
A _{cross} = Vol / (π Diam	eter) = 61,702 ft ³ / (π 115') = 171	ft^2	
For conservatism, assume the	at all flow entering the tunnel flow	s in one direction.	
These steps are repeated unti time the flow velocity will dr	l the pressure inside the tunnel equ op.	als the pressure outside the t	unnel, at which
values assumed so as to cove velocity for a long duration) show that after the first 2-3 so for all ranges of hole resistan	readsheets attached show the calcured readsheets attached show the calcured readsheets attached show the spectrum of flow resistances to small (high pressurization rate, leconds the flow velocities in the pice parameter. Hence, for conservation unnel. Further, to account for location doubled:	from large (slow pressurizati high velocity for a short dura pe tunnel are less than 20 fee atism, a value of 20 ft/sec wil	on rate, low tion). Results at per second l be assumed
$V_{local} = 40 \text{ ft/sec}$			
This velocity is judged to bou (natural circulation, ventilation	and the overall velocity through the on system discharge, etc.).	e pipe tunnel due to other effe	ects as well
Heat Transfer Coefficient Ca	lculation		
Using the velocity and other	parameters calculated above gives	the following value for Reyn	olds Number:
Re = (V D) / v' = (40)	ft/sec) (1.05")(1 ft/12 inches)/(1.4'	7E-4 ft^2 /sec) = 23,000	
Using this value for Reynold for heat transfer coefficient:	s Number and the corresponding v	alues for C and m gives the f	ollowing value
h = $(k / D) C (Re)^n$ = $[(0.021 BTU/h) = 23 BTU/hr-ft^2$ -	ur-ft-°F) (12 inch / 1 ft) / (1.05")] (0.193) (23,000) ^{0.618} (1.0)	
A.2 <u>Calculation of Tempe</u>	rature During Break Condition	<u>§</u>	
The heat transferred (Q, in B calculated as follows:	TU's) during a time step (dt) from	the containment atmosphere	to a pipe is
$Q = h A (T_{cont} - T_{pipe})$	(dt)		

.

ZMPR	MPR-2169 Appendix	(A.2	MPR Associat 320 King Stree Alexandria, V/	et
Calculation No.	Prepared By	Checke		Page 24
025-065-02	h imme	DRK	disp	
The heat transferred will hea	t up the pipe and water as follow	5:		
$\Delta T = Q / [(m_w C_{p,w}) +$	$(m_p C_{p,p})]$			
where				
∆T =	temperature increase (°F) due te	o transfer of Q BT	'U's	
$\begin{array}{ccc} m_{W}, m_{P} & = \\ C_{p,W}, C_{p,P} & = \end{array}$	mass of water and pipe, lbm specific heat of water and pipe,	BTU/lbm-°F		
⊂ _{p,W} , ⊂ _{p,P}	specific field of water and pipe,	Di Criomi i		
Per Crane (Reference 23), fo	r the $\frac{3}{4}$ " schedule 160 pipe:			
Mass of metal $= 1.94$				
Mass of water $= 0.12$ Surface area per foot	8 pounds/ft = 0.275 square feet per foot			
Also:				
Heat capacity of meta Heat capacity of wate	ul = 477 J/kg K = 0.11 BTU/lbm- er = 1.0 BTU/lbm-°F	°F (per Reference	20, Table A.1	for 304)
Therefore:				
$\Delta T = Q / [(m_w C_{p,V})]$ = Q / [(0.128)] = Q / (0.341) E	pounds/ft)(1.0 BTU/lbm-°F) + (1	.94 pounds/ft)(0.1	11 BTU/lbm-°)	F)]
Combining the above,				
$\triangle T$ per time step = Q	$/[(m_{w}C_{p,w}) + (m_{p}C_{p,p})] = [h A ('$	$\Gamma_{cont} - T_{pipe}) (dt)] /$	$[(m_{w}C_{p,w}) + (m_{w}C_{p,w})]$	$n_PC_{p,P})$
	readsheet calculates the peak tem ng over the 127 second interval v d simplicity:			
-	ature is assumed to be constant at is the temperature profiles for the			
		- 2 - 4		-

The heat transfer coefficient is conservatively set to 25 BTU/hr-ft²-°F. Note that this heat transfer coefficient is for cross flow across a cylinder. This value is conservative because it exceeds the heat transfer coefficient calculated for almost the entire accident scenario, and since it represents cross flow

MPR	MPR-2169 Appendix A.2	320 King \$	ociates, Inc. Street a, VA 22314
Calculation No.	Prepared By	Checked By	Page 25
025-065-02	McDuml	D R Harp	

• Only the ³/₄" pipe is considered, since it has a more limiting ratio of surface area to mass per unit length, and will therefore heat more quickly than larger pipes.

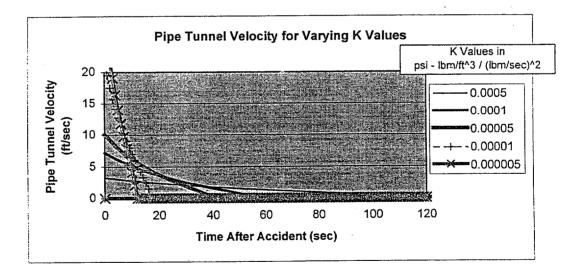
RESULTS

Results from the Attachment A, Part 2 spreadsheet indicate that the peak temperature achieved during steam line breaks is less than the 235°F assumed for LOCA events; accordingly, 235°F is the appropriate peak temperature in these segments.

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: <u>hopping</u> Checked by: <u>A R Hopp</u>

Constants Used in Calculation:


Total Volume of Pipe Tunnel:	61,702 ft^3
Mean Diameter of Pipe Tunnel:	115 ft
Cross Sectional Area of Pipe Tunnel:	171 ft^2 [= Volume / (pi * Diameter)]
Mole Weight of Upstream Gas (air):	29 lb/lbmole
Temperature of Upstream Gas:	325 deg F
Size of Time Step:	1 sec
Universal Gas Constant (R):	10.73 psia-ft^3/lbmole deg R

Calculation of Velocity versus Time:

See spreadsheets on following pages for various values of flow resistance parameter (K) for leakage path from the lower containment volume into the pipe tunnel.

Results:

The figure below shows velocity as a function of flow resistance parameter (K) over the course of the main steam line break transient.

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: ______ Checked by: ______ Hann

K = 0.0005 psi-lb/ft^3/(lbm/sec)^2

						100000					
	Initial	Initial	Initial					New	New	New	
	Annulus	Annulus	Annulus	Upstream	Upstream	Mass	Mass	Annulus	Annulus	Annulus	Annulus
Time	Pressure	Temp	Mass	Press	Density	Flow Rate	xferred	Mass	Press	Density	Velocity
sec 0.0	psia 14.7	deg F	Ibmoles	psia 23.7	lbm/ft^3 0.081598	lbm/sec	Ibmole	Ibmole	psia .	lbm/it^3	ft/sec
1.0	14.7	120 120	145.74 145.74	23.7		38.324	1.322	147.065	14.833	0.06912	3.25
2.0	14.833	120	147.06		0.081598	38.039	1.312	148.377	14.966	0.06974	3.19
3.0	14.966	120	148.38		0.081598	37.755	1.302	149.679	15.097	0.07035	3.14
4.0	15.097	120	149.68	23.7	0.081598	37.470	1.292	150.971	15.227	0.07096	3.09
5.0	15.227	120	150.97	23.7	0.081598	37,185	1.282	152.253	15.357	0.07156	3.04
6.0	15.357	120			0.081598	36,900		153.525		0.07216	2.99
7.0	15.485	120	153.53		0.081598		1.263	154.788		0.07275	2.95
8.0	15.612	120	154.79		0.081598		1.253	156.041	15.739	0.07334	2,90
9.0 10.0	15.739 15.864	120 120	156.04 157.28		0.081598	36.045	1.243 1.233		15.864 15,988	0.07392 0.07450	2.86 2.81
11.0	15.988	120	158.52		0.081598	35.475	1.223	159.740	16.112	0.07508	2.77
12.0	16.112	120	159.74		0.081598	35,190	1.213	160.953	16.234	0.07565	2.72
13.0	16.234	120	160.95		0.081598	34,906	1.204	162.157	16.356	0.07621	2.68
14.0	16.356	120	162.16	23.7	0.081598	34.621	1.194	163.351	16.476	0.07678	2.64
15.0	16.476	120	163.35		0.081598	34.336	1.184	164.535	16.595	0.07733	2.60
16.0	16.595	120	164.53		0.081598		1,174	165.709		0.07788	2.56
. 17.0	16.714	120	165.71		0.081598	33,766	1.164	166.873	16.831	0.07843	2.52
18.0	16.831	120	166.87		0.081598	33,481	1.155	168.028	16.948	0.07897	2.48
19.0	16.948 17,063	120 120	168.03		0.081598	33.196 32.911	1.145 1.135	169.172 170.307	17.063 17.178	0.07951 0.08004	2.44 2.41
20.0 21.0	17.063	120	169.17 170.31		0.081598	32.626	1.135	171,432	17.291	0.08057	2.37
21.0	17.291	120	171.43		0.081598	32.341	1.115	172.548	17.404	0.08110	2.34
23.0	17.404	120	172.55		0.081598	32.055	1.105	173.653	17.515	0.08162	2.30
24.0	17.515	120	173,65	23.7	0.081598	31.770	1.096	174.748	17.626	0.08213	2.26
25.0	17.626	120	174.75	23.7	0.081598	31.485	1.086	175.834	17.735	0.08264	2.23
26.0	17.735	120	175.83		0.081598	31,200	1.076	176.910	17.844	0.08315	2.20
27.0	17.844	120	176.91		0.081598	30.915	1.066	177.976	17.951	0.08365	2,16
28.0	17.951	120	177.98		0.081598		1.056 1.046	179.032 180.079	18.058 18.163	0.08415 0.08464	2.13 2.10
29.0	18.058	120 120	179.03 180.08		0.081598	30.345	1.048	181.115	18.268	0.08512	2.07
30.0 31.0	18,163 18,268	120	181.12		0.081598	29.775	1.027	182.142	18.371	0.08561	2.04
32.0	18.371	120	182.14		0.081598	29.489	1.017	183.159	18.474	0.08608	2.01
33.0	18.474	120	183.16		0.081598	29.204	1.007	184.166	18.575	0.08656	1.98
34.0	18.575	120	184.17	23.7	0.081598	28.919	0.997	185.163	18.676	0.08703	1.95
35.0	18.676	120	185.16		0.081598	28.634	0.987	186.150	18.776	0.08749	1.92
36.0	18.776	120	186.15		0.081598	28.349	0.978	187.128	18.874	0.08795	1.89
37.0	18.874	120	187.13	23.7		28.063	0.968 0.958	188.096 189.054	.18.972 19.068	0.08841 0.08886	1.86 1.83
38.0 39.0	18.972 19.068	120 120	188.10 189.05		0.081598 0.081598	27.778 27.493	0.938	190.002	19.164	0.08930	1.80
40.0	19,164	120	190.00		0.081598	27.208	0.938	190.940	19.259	0.08974	1.78
41.0	19.259	120	190.94		0.081598	26,922	0.928	191.868	19.352	0.09018	1.75
42.0	19.352	120	191.87	23.7	0.081598	26.637	0.919	192.787	19.445	0.09061	1.72
43.0	19.445	120	192.79		0.081598	26.352	0.909	193.695	19.537	0.09104	1.69
44.0	19.537	120	193.70		0.081598	26.066	0.899	194.594	19.627	0.09146	1.67
45.0	19.627	120	194.59		0.081598	25.781	0.889	195,483	19.717 19.806	0.09188 0.09229	1.64 1.62
46.0	19.717	120	195.48 196.36		0.081598 0.081598	25.496 25.210	0.879	196.362	19.806	0.09229	1.62
47.0	19.806 19.893	120	196.36		0.081598	24.925	0.859	198.091	19.980	0.09310	1.57
49.0	19.980	120	198.09		0.081598	24.639	0.850	198.941	20.066	0.09350	1.54
50.0	20.066	120	198.94		0.081598	24.354	0.840	199.781	20.150	0.09390	1.52
51.0	20.150	120	199.78		0.081598	24.068	0.830	200.610		0.09429	1.49
52.0	20.234	120	200.61		0.081598	23.783	0.820	201.431	20.317	0.09467	1.47
53.0	20.317	120	201.43		0.081598	23.497	0.810	202.241	20.398	0.09505	1.45
54.0	20.398	120	202.24		0.081598		0.800	203.041	20.479 20.559	0.09543 0.09580	1.42 1.40
55.0	20.479	120	203.04 203.83		0.081598		0.791 0.781	203.832 204.613		0.09580	1.40
56.0 57.0	20.559 20.638	120 120	203.85		0.081598		0.771			0.09653	1.36
58.0	20.038	120			0.081598		0.761	206.144		0.09689	1.33
59.0	20.792	120			0.081598		0.751	206.896			1.31
60.0	20.868	120			0.081598		0.741	207.637		0.09759	1.29
61.0	20.943	120	207.64		0.081598		0.731			0.09793	1.27
62.0	21.016	120	208.37		0.081598		0.722			0.09827	1.25
63.0		120			0.081598		0.712			0.09861	1.23
64.0	21.161	120			0.081598		0.702			0.09894	1.20
65.0	21.232	120			0.081598		0.692			0.09926 0.09958	1.18 1.16
66.0	21.302	120			0.081598		0.682 0.672			0.09958	1.16
67.0	21.370	120	211.88	23.1	0.001090	13.430	0.072	F15.JJU	21.400	0.00000	1.15

•...•

1

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: <u>A Massart</u> Checked by: <u>A R Massart</u>

K = 0.0005 psi-lb/ft^3/(lbm/sec)^2

					N =	10000 UND		,			
	Initial	Initial	Initial					New	New	New	
	Annulus	Annulus	Annulus/	Upstream	Upstream	Mass .	Mass	Annulus	Annulus	Annulus	Annulus
Time	Pressure	Temp	Mass	Press	Density	Flow Rate	xferred	Mass	Press	Density	Velocity
sec	psia	deg F	Ibmoles	psia	lbm/ft^3	lbm/sec	Ibmole	Ibmole	psia	lbm/ft^3	ft/sec
68,0	21,438	120	212.55	23.7			0.662	213.213	21.505	0.10021	1.12
69,0	21.505	120			0.081598	18,926	0.653	213.865	21.571	0.10052	1,10
70.0	21.571	120	213.87		0.081598	18.640	0.643 0.633	214.508 215.141	21.636 21.700	0.10082	1.08 1.06
71.0	21.636	120	214.51		0.081598	18.354 18.068	0.633	215.764	21.762	0.10112	1.03
72.0 73.0	21.700 21.762	120 120	215.14 215.76		0.081598	17.782	0.613	216.377	21.824	0.10170	1.02
73.0	21.824	120	216.38		0.081598	17.496	0.603	216.981	21.885	0.10198	1.00
75.0	21.885	120			0.081598	17.210	0,593	217.574	21.945	0.10226	0.99
76.0	21.945	120	217.57		0.081598	16.924	0,584	218.158	22.004	0.10253	0.97
77.0	22.004	120	218.16		0.081598	16.637	0.574	218.731	22.062	0.10280	0.95
78.0	22.062	120			0.081598	16.351	0.564	219.295	22.11 9	0.10307	0.93
79.0	22.119	120	219.30	23.7	0.081598	16.065	0.554	219.849	22.174	0.10333	0.91
80.0	22.174	120	219.85		0.081598	15.778	0.544	220.393	22.229	0.10358	0.89
81.0	22.229	120	220.39		0.081598	15.492	0.534	220.927	22.283	0.10384	0.87
82.0	22,283	120	220.93		0.081598	15.206	0.524	221.452	22.336 22.388	0.10408 0.10432	0.86 0.84
83.0	22.336	120	221.45		0.081598	14.919	0.514 0.505	221.966 222.471	22.300	0.10432	0.84
84.0	22.388	120	221.97 222.47		0.081598	14.633 14.346	0.505	222.965	22.439	0.10456	0.82
85.0	22.439	120 · 120 ·	222.47		0.081598	14.346	0.495	223.450	22.538	0.10502	0.78
86.0 87.0	22.489 22.538	120	222.97		0.081598	13.773	0.475	223.925	22.586	0.10525	0.77
88.0	22.536	120	223.93		0.081598	13,486	0.465	224.390	22.632	0.10546	0.75
89.0	22.632	120	224.39		0.081598	13.199	0.455	224.845	22.678	0.10568	0.73
90.0	22.678	120	224.85		0.081598	12.912	0.445	225.291	22.723	0.10589	0.71
91.0	22.723	120	225.29	23.7	0.081598	12.625	0.435	225.726	22.767	0.10609	0.70
92.0	22.767	120	225.73		0.081598	12.338	0.425	226.151	22.810	0.10629	0.68
93.0	22.810	120	226.15		0.081598	12.051	0.416	226.567	22.852	0.10649	0.66 0.65
94.0	22.852	120	226.57		0.081598	11.764	0.406 0.396	226.973 227.368	22.893 22.933	0.10668 0.10686	0.63
95.0	22.893	120	226.97		0.081598	11.476 11.189	0.390	227.300	22.972	0.10704	0.61
96.0	22.933	120 120	227.37 227.75		0.081598	10.901	0.376	228.130	23.010	0.10722	0.60
97.0 98.0	22.972 23.010	120	228.13		0.081598	10.614	0,366	228.496		0.10739	0.58
99.0	23.047	120	228.50		0.081598	10.326	0.356	228.852	23.083	0.10756	0.56
100.0	23.083	120	228.85		0.081598	10.038	0.346	229.198	23:117	0.10772	0.55
101.0	23,117	120	229.20	23.7	0.081598	9.750	0.336	229.534	23.151	0.10788	0.53
102.0	23.151	120	229.53	23.7	0.081598	9.462	0.326	229.861	23.184	0.10803	0.51
103.0	23.184	120	229.86		0.081598	9.174	0.316	230.177	23.216	0.10818	- 0.50
104.0	23.216	120	230.18		0.081598	8.886	0.306	230.483	23.247	0.10833	0.48 0.46
105.0	23.247	120	230.48		0.081598	8.597	0.296 0.287	230.780 231.066	23.277 23.306	0.10847 0.10860	0.46
106.0	23.277	120	230.78		0.081598 0.081598	8.309 8.020	0.287	231.343	23.334	0.10873	0.43
107.0	23.306	120 120	231.07 231.34		0.081598	7.731	0.267	231.610	23.361	0.10886	0.42
108.0 109.0	23.334 23.361	120	231.54		0.081598	7.442	0.257	231.866	23.387	0.10898	0.40
110.0	23.387	120	231.87		0.081598	7.152	0.247	232.113	23.411	0.10909	0.38
111.0	23.411	120	232.11		0.081598	6.863	0.237	232.349	23.435	0.10920	0.37
112.0	23.435	120	232.35	23.7	0.081598	6.573	0.227	232.576	23.458	0.10931	0.35
113.0	23.458	120	232.58		0.081598		0.217	232.793	23.480	0.10941	0.34
114.0	23.480	120	232.79		0.081598		0.207	232.999	23.501	0.10951	0.32
115.0	23.501	120	233.00		0.081598		0.197	233.196		0.10960	0.30 0.29
116.0	23.521	120	233.20		0.081598		0.187	233.383 233.559		0.10969 0.10977	0.29
117.0	23.539	120	233.38		0.081598		0.176	233.559 233.725		0.10977	0.27
118.0	23.557	120	233.56		0.081598		0.166	233.882		0.10992	0.24
119.0	23.574 23.590	120 120	233.73		0.081598		0.146	234.028		0.10999	0.23
120.0 121.0	23.590 23.605	120			0.081598		0.136	234.164		0.11006	0.21
121.0	23.618	120			0.081598		0.126	234.290	23.631	0.11012	0.19
123.0	23.631	120			0.081598		0.116	234.406		0.11017	0.18
124.0	23.643	120			0.081598		0.105			0.11022	0.16
125.0	23,653	120			0.081598	2.760	0.095			0.11027	0.15
126.0		120			. 0.081598		0.085			0.11031	0.13
127.0		120			0.081598		0.074			0.11034	0.11
128.0	23.679	120			0.081598					0.11037	
129.0		120			0.081598					0.11040 0.11041	
130.0		120		23.7	0.081598	3 1.227	0.042			0.11041 A	0.07
	4	4	4	۴.		/	Ť	Â	7	Т	Т
	•	1	1	Assumed	= 505	/ T(rho*dP/K)		=Initial Ma	iss	\ =₽(MW)	
	From Previous	Assumed Constant	,	Constan			1	+ Transfe		\ · '	= mass flo
	Time Step		=PV/RT	Constan	•	=(mass flo	w)*dt/MW			≍nRT/V	(rho*Are
	nine oreh	•				、	•				

.

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: Mc Charles Checked by: <u>A. Hanp</u>

i

K = 0:0001 psi-lb/ft^3/(lbm/sec)^2

	Initial	Initial	Initial			T		New	New	New	
	Annulus	Annulus	Annulus	Upstream	Upstream	Mass	Mass	Annulus	Annulus	Annulus	Annulus
Time	Pressure	Temp	Mass	Press	Density	Flow Rate	xterred	Mass	Press	Density	Velocity
sec ·	psia ·	deg F	Ibmoles	psia	lbm/ft^3	lbm/sec	Ibmole	Ibmole	psia	lbm/ft^3	fl/sec
0.0	14.7	120	145.74	23.7		AC 000	2 055	148.698	14.998	0.06989	7,18
1.0		120	145.74		0.081598	85.696 84.265	2.955 2.906	146.696	15.291	0.07125	6.92
2.0		120	148.70		0.081598 0.081598	82.834	2.856	154.460	15.579	0.07260	6.68
3.0		120 120	151.60 154.46		0.081598	81.402	2.807	157.267	15.862	0.07392	6.45
4.0 5.0		120	157.27	23.7		79.971	2.758	160.025	16.140	0.07521	6.23
6.0		120			0.081598		2.708	162.733	16.414	0.07648	6.01
7.0		120			0.081598		2,659	165.392	16.682	0.07773	5.81
8.0		120	· · ·	23.7	0.081598	75.675	2.609	168.002	16.945	0.07896	5.61
9.0		120	168.00		0.081598		2.560		17.203	0:08016	5.42 5.24
10.0	17.203	120	170.56		0.081598		2.511	173.072 175.534	17.456 17.705	0.08134	5.24
11.0		120	173.07		0.081598		2.461 2.412		17.948	0.08363	4.90
12.0		120	175.53		0.081598		2.362		18.186	0.08474	4.73
13.0		120	177.95 180.31		0.081598		2.313		18.420	0.08583	4.58
14.0		120 120			0.081598		2.263		18.648	0.08690	4.42
15.0 16.0		120			0.081598		2.214		18.871	0.08794	4.28
10.0		120			0.081598		2.165	189.263	19.089	0.08895	4.13
18.0		120			0.081598		2.115			0.08995	3.99
19.0		120			0.081598		2.066			0.09092	3.86
20.0		120	193.44		0.081598		2.016			0.09187	3.73 3.60
21.0	19.714	120			0.081598		1.966			0.09279 0.09369	3.47
22.0		120			0.081598		1.917 1.867			0.09457	3.35
23.0		120			0.081598		1.818			0.09542	3.23
24.0		120			0.081598		1.768			0.09625	3.12
25.0		120 120			0.081598		1.719			0.09706	3.01
26.0 27.0		120			0.081598		1.669			0.09785	2.90
28.0		120			0.081598		1.619			0.09861	2.79
29.0		120) 23.7	0.081598		1.569			0.09935	2.68 2.58
30.0		120			0.081598		1.520			0.10006	2.38
31.0) 21.473	120			0.081598		1.470 1.420			0.10142	2.38
32.0		120			0.081598		1.370			0.10206	2.28
33.0		120			7 0.081598 7 0.081598		1.32			0.10268	2.18
34.0		120 120			0.081598		1.27			0.10328	2.09
35.0 36.0					0.081598		1.22			0.10385	2.00
37.0					0.08159		1.17			0.10440	1.90
38.0					0.08159					0.10493	1.81
39.0					7 0.08159					0.10543 0.10591	1.72 1.64
40.0	22.626				7 0.08159		1.02 0.97			0.10637	
41.0					7 0.08159						
42.0					7 0.08159 7 0.08159						
43.0					7 0.08159						
44.0 45.0				-	7 0.08159						
45.			•	0 23.	7 0.08159	8 20.838	0.71	9 230.410			
47.				2 23.	7 0.08159						
48.		12	0 231.0	8 23.	7 0.08159						
49.	0 23.370			-	7 0.08159						
50.					7 0.08159						
51.					7 0.08159 7 0.08159		-				
52.					.7 0.08159						
53.					.7 0.08159					0.11013	
54. 55.					.7 0.08159			53 234.57			
55. 56.				_	.7 0.08159		5 0.19				
57.					.7 0.0815	98 4.07		41 . 234.91			
58.			234.9	1 23	.7 0.0815						
59			234.9		.7 0.0815		-		-		
60		2 12			.7 0.0815						
61					0.0815						
62					0.7 0.0815						
63					3.7 0.0815 3.7 0.0815						5 0.00
64			20 234.9 20 234.9		3.7 0.0813 3.7 0.0815						
65			20 234.3 20 234.9		3.7 0.0815						
66 67	5.0 23.70 7.0 23.70		20 234.		3.7 0.0815				90 23.70	0.1104	15 0.00
07	.0 20.70	- "									

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: <u>A Const</u> Checked by: <u>A R btrap</u>

K = ______psi-lb/ft^3/(lbm/sec)^2

						1000 000 000 000 000 000 000	,	,-			
	Initial	Initial	Initial			[New	New	New	
	Annulus	Annulus	Annulus	Upstream	Upstream	Mass	Mass	Annulus	Annulus	Annulus	Annulus
Time	Pressure	Temp	Mass	Press	Density	Flow Rate	xferred	Mass	Press	Density	Velocity
sec	psia	deg F	Ibmoles	osia	lbm/ft^3	lbm/sec	Ibmole	Ibmole	psia	lbm/ft^3	it/sec
68.0	23.702	120	234.99	23.7		0.000	0.000	234.990	23.702	0.11045	0.00
69.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234,990	23.702	0.11045	0.00
70.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
71.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234,990	23.702	0.11045	0.00
72.0	23,702	120	234.99	23.7		0.000	0.000	234.990	23.702	0.11045	0.00
73.0	23,702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
74.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234,990	23.702	0.11045	0.00
75.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
76.0	23,702	120	234.99	23.7	0.081598	0,000	0.000	234,990	23.702	0.11045	0.00
77.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234,990	23.702	0.11045	0.00
78.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
79.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234,990	23.702	0.11045	0.00
80.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
81.0	23,702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
82.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
83.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234,990	23.702	0.11045	0.00
84.0	23.702	120	234.99	23.7	0.081598	0,000	0.000	234.990	23.702	0.11045	0.00
85.0	23,702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
86.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
87.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
88.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23,702	0.11045	0.00
89.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
90.0	23.702	120	234.99	23,7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
91.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
92.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23,702	0.11045	0.00
93.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
94.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
95.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
96.0	23.702	120	234.99	23.7		0.000	0.000	234.990	23.702	0.11045	0.00
97.0	23.702	120	234.99	23.7		0.000	0.000	234.990	23.702	0.11045	0.00
98.0	23.702	120	234.99	23.7		0.000	0.000	234.990	23.702	0.11045	0.00
99.0	23,702	120	234.99		0.081598	0.000	0.000	234.990	23,702	0.11045	0.00
100.0	23,702	120	234.99		0.081598	0.000	0.000	234,990	23.702	0.11045	0.00
101.0	23.702	120	234.99	23.7		0.000	0.000	234.990	23.702	0.11045	0.00
102.0	23.702	120	234.9 9	23.7		0.000	0.000	234.990	23.702	0.11045	0.00
103.0	23.702	120	234.99	23.7		0.000	0.000	234.990	23.702	0.11045	0.00
104.0	23.702	120	234.99		0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
105.0	23.702	120	234.99		0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
106.0	23.702	120	234.99		0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
107.0	23.702	120	234.99		0.081598	0.000	0.000		23.702	0.11045	0.00
108.0	23.702	120	234.99	23.7		0.000	0.000	234.990	23.702	0.11045	0.00
109.0	23.702	120	234.99		0.081598	0.000	0.000	234.990	23.702	0.11045	0.00 0.00
110.0	23.702	120	234.99		0.081598	0.000	0.000	234.990 234.990	23.702 23.702	0.11045 0.11045	0.00
111.0	23.702	120	234.99	23.7		0.000	0.000 0.000	234.990	23.702	0.11045	0.00
112.0	23.702	120	234.99	23.7		0.000	0.000	234.990	23.702	0.11045	0.00
113.0	23.702	120	234.99 234.99	23.7	0.081598	0.000	0.000	234,990	23.702	0.11045	0.00
114.0 115.0	23.702	120 120	234.99		0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
	23.702	120	234.99		0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
116.0 117.0	23.702 23.702	120	234.99		0.081598		0.000	234.990	23.702	0.11045	0.00
118.0	23.702	120	234.99		0.081598		0.000	234.990	23.702	0.11045	0.00
118.0	23.702	120	234.99		0.081598		0.000	234.990	23.702	0.11045	0.00
120.0	23.702	120	234.99		0.081598		0.000	234,990	23.702	0.11045	0.00
120.0	23.702	120	234.99		0.081598		0.000	234,990	23.702	0.11045	0.00
121.0	23.702	120	234.99		0.081598		0.000	234.990	23.702	0.11045	0.00
122.0		120	234.99		0.081598		0.000	234.990	23.702	0.11045	0,00
123.0		120	234.99		0.081598		0.000	234.990	23.702	0.11045	0.00
124.0		120	234.99		0.081598		0.000	234.990		0.11045	0.00
125.0		120	234.99		0.081598		0.000	234.990	23.702	0.11045	0.00
120.0		120	234.99		0.081598		0.000	234.990	23.702	0.11045	0.00
127.0	23.702	120	234.99		0.081598		0.000	234,990	23.702	0.11045	0.00
120.0		120	234.99		0.081598		0.000	234.990	23.702	0.11045	0.00
129.0		120	234.99		0.081598		0.000			0.11045	0.00
150.0	20.702	120	204.00	20.7	0.001000	0.000	2,000				

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: <u>ACTional</u> Checked by: <u>A R. Haap</u>

							•	-			
·	Initial	Initial	Initial.					New	New	New	
1	Annulus	Annulus	Annulus	Upstream	Upstream	Mass	Mass	Annulus	Annulus	Annulus	Annulus
Time	Pressure	Temp	Mass	Press	Density	Flow Rate	xferred	Mass	Press	Density	Velocity
sec	psia	deg F	Ibmoles	psia	- lbm/ft^3	lbm/sec	Ibmole	ibmole	psia	lbm/ft^3	ft/sec
0.0	14.7	120	145.74	23.7					45 400	0.07046	10.07
1.0	14.7	120		23.7		121.192	4.179	149.922	15.122	0.07046	10.07 9.57
2.0	15,122	120		23.7		118.320	4.080	154.002	15.533 15.935	0.07238 0.07425	9.10
3.0	15.533	120		23.7		115.447	3.981	157.983 161.865	16.326	0.07423	8.66
4.0		120		23.7		112.574	3.882 3.783	165.648	16.708	0.07785	8.25
5.0		120		23.7	0.081598	109.699	3.684	169.332	17.079	0.07959	7.86
6.0		120			0.081598			172.916	17:441	0.08127	7.49
7.0		. 120			0.081598		3.485	176.401	17.792	0.08291	7.14
8.0		120 120			0.081598		3.386		18.134	0.08450	6.80
9,0 10.0		120			0.081598		3.287	183.073	.18.465	0.08604	6.49
11.0				•	0.081598	92.428	3.187	186.261	18.787	0.08754	6.18
12.0		120			0.081598	89,545	3.088		19.098	0.08899	5.89
13.0		120		23.7	0.081598	86.661	2.988		19.399	0.09040	5.61
14.		120	192.34	23.7	0.081598		2.889	-	19.691	0.09176	5.35
15.0	19.691	120) 195.23				2.789		19.972	0.09307	5.09 4.84
16.	0 19.972	120					2.690		20.243 20.505	0.09433	4.60
17.	0 20.243	120			0.081598		2.590			0.09672	4.37
18.0					0.081598					0.09784	4.15
19.					0.081598					0.09892	3.93
20.					0.081598					0.09995	3.72
21.								_		0.10093	3.52
22.									21.860	0.10187	3.32
· 23. 24.								218.624	22.051	0.10275	3.12
24. 25.							1.789	220.413		0.10359	2.93
25.						48.957	1.688				2.75
27.) 23.7	0.081598					0.10513	2.56 2.38
28.		120) 223.69		0.081598					0.10583	2.30
29.	0 22.712	120			0.081598				22.851	0.10709	
30.					0.081598					0.10764	1.86
31.					0.081598 0.081598					0.10815	1.69
32.					0.081598					0.10861	1.53
33. 34.								3 231.953	23.395	0.10902	1.36
34.							0.769			0.10938	1.19
36.					0.08159					0.10969	1.03 0.86
37			0 233.39							0.10995 0.11016	0.69
38.	.0 23.596									0.11032	0.52
39										0.11043	0.34
40										0.11046	
41										0.11046	0.00
42									9 23.705	0.11046	
43 44							0.00 0	0 235.01		0.11046	
45						8 0.00					
46				2 23.	7 0.08159						
47			0 235.0		7 0.08159			-			
48					7 0.08159						
49					7 0.08159						
	0.0 23.70				7 0.08159		-				
	.0 23.70				.7 0.08159 .7 0.08159		-				
	2.0 23.70				.7 0.0815						
	3.0 23.70		20 235.0 20 235.0		.7 0.0815					5 0.1104	
	1.0 23.70		20 235.0 20 235.0	_	.7 0.0815			0 235.01	9 23.70	5 0.1104	
	5.0 23.70 5.0 23.70		20 235.0		.7 0.0815		0.0				
	7.0 23.70		20 235.0		7 0.0815	98 0.00					
	3.0 23.70		20 235.0	22 23	.7 0.0815						
	9.0 23.70		20 235.		.7 0.0815						
	0.0 23.70		20 235.		.7 0.0815						
	1.0 23.70		20 235.0		0.0815						
	2.0 23.70		20 235.		0.0815						
6	3.0 23.70		20 235.		3.7 0.0815						
	4.0 23.7		20 235.		3.7 0.0815 7 0.0815						
	5.0 23.7		20 235.		3.7 0.0815 3.7 0.0815						
	6.0 23.7		20 235.		3.7 0.0815 3.7 0.0815						
6	7.0 23.7	UD 1	20 235.	UZ Z.	0.0010						

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: <u>Actions</u> Checked by: <u>DR Homo</u>

K = 0.00005 psi-lb/ft^3/(lbm/sec)^2

			1.191.1 1			F		New	New	New	1
·	Initial Annulus	Initial Annulus	Initial Annulus	Upstream	Upstream	Mass	Mass	Annulus	Annulus	Annulus	Annulus
Time	Pressure	Temp	Mass	Press	Density	Flow Rate	xferred	Mass	Press	Density	Velocity
- Sec	psia	deg F	Ibmoles .	psia	lbm/ft^3	lbm/sec	lbmole :	Ibmole	psia	Ibm/it^3	ft/sec
68.0	23.705		235.02		0.081598		0.000 0.000 0.000	235.019	23.705	0.11046	0.00
69.0	23.705	120 120	235.02 235.02		0.081598		0.000	235.019	23.705	0.11046	0.00
70.0 71.0	23.705	120	235.02	23.7			0.000	235.019	23,705	0.11046	0.00
72.0	23.705	120	235.02	23.7	0.081598		0.000	235.019	23.705	0.11046	0.00
73.0	23.705	120	235.02	23.7			0.000	235.019	23.705	0.11046	0.00 0.00
74.0	23.705	120	235.02		0.081598		0.000	235.019	23,705	0.11046	0.00
75.0	23.705	120 120	235.02 235.02	23.7	0.081598		0.000	235.019	23.705	0.11046	0.00
76.0 77.0	23.705 23.705	120			0.081598			235.019	23.705	0.11046	0.00
78.0		120	235.02	. 23.7			0.000	235.019		0.11046	0.00
79.0		120		23.7			0.000	235.019	23.705	0.11046 0.11046	0.00 0.00
80.0		120		23.7			0.000 0.000	235.019 235.019	23.705 23.705	0.11046	0.00
81.0		120 120		23.7 23.7			0.000		23.705	0.11046	0.00
82.0 83.0		120		23.7			0.000		23.705	0.11046	0.00
84.0		120		23.7	0.081598		0.000			0.11046	0.00
85.0	23.705	120			0.081598		0.000			0.11046 0.11046	0.00 0.00
86.0		120			0.081598		0.000 0.000			0.11046	0.00
87.0 88.0		120 120			0.081598		0.000			0.11046	0.00
89.0		120			0.081598		0.000	235.019		0.11046	0.00
90.0		120		23.7	0.081598		0.000			0.11046	0.00
91.0	23.705	120		23.7			0.000			0.11046 0.11046	0.00 0.00
92.0		120		23.7	0.081598		0.000 0.000			0.11046	0.00
93.0		120 120		23.7			0.000			0.11046	0.00
94.0 95.0		120			0.081598		0.000			0.11046	0.00
96.0		120					0.000			0.11046	0.00 0.00
97.0		120		23.7			0.000	•		0.11046	0.00
98.0		120 120									0.00
99.0 100.0		120			0.081598					0.11046	
101.0		120				0.000	0,000			0.11046	0.00
102.0		120		23.7			0.000			0.11046	0.00 0.00
103.0		120					0.000			0.11046	0.00
104.0		120 120					0.000				0.00
105.0 106.0		120					0.000		23.705	0.11046	0.00
100.0					0.08159						0.00
108.0											
109.0					0.08159						
110.0 111.0											0.00
112.0											
113.0			235.02								
114.0											
115.0					7 0.08159 7 0.08159						
116.0 117.0					7 0.08159						
118.				2 23.	7 0.08159	8 0.000	0.00				
119.					7 0.08159						
120.					7 0.08159						
121.					7 0.08159 7 0.08159						
122. 123.					7 0.08159			0 235.01	9 23.70	5 0.1104	
123.				2 23.	7 0.08159	8 0.00	0.00				
125.		5 12	0 235.0		7 0.08159						
126.					7 0.08159						
127,					7 0.08159 7 0.08159						
128. 129.					7 0.0815			0 235.01	9 23.70	5 0.1104	
125.					7 0.0815		0 0.00	0 235.01	9 23.70	5 0.1104	6 0.00

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: <u>Romanna</u> Checked by: <u>A Romanna</u>

K = #0.00001 psi-lb/ft^3/(lbm/sec)^2

[Initial	Initial	Initial					New	New	New	
	Annulus	Annulus	Annulus	Upstream	Upstream	Mass	Mass	Annulus	Annulus	Annulus	Annulus
Time	Pressure	Temp 🗄	Mass	Press	Density	Flow Rate	xferred	Mass	Press	Density	Velocity
Sec	psia	deg F	Ibmoles	psia 🛶	lbm/ft^3	- lbm/sec	Ibmole .	ibmole	psia	lbm/it^3	ft/sec
0.0		120	145.74	23.7	0.081598						
1.0		120	145.74	23.7		270.994	9.345	155.088	15.643	0.07289	21.77
2.0		120	155.09		0.081598	256.412	8.842 8.338	163.930 172.268	16.534 17.375	0.07705 0.08097	19.49 17.49
3.0		120	163.93		0.081598	241.806 227.173	7.834	172.200	18.165	0.08057	15.71
4.0 5.0		120 120	172.27 180.10		0.081598	212.510	7.328	187.429	18.905	0.08409	14.13
6.0		120			0.081598	197.812	6.821	194.251	19.593	0.09130	12.69
7.0		120	194.25		0.081598	183.073	6.313	200.563	20.229	0.09427	11.37
8.0		120	200.56		0.081598	168.286	5.803	206.366	20.815	0.09699	10.16
9.0		120	206,37	23.7	0.081598	153:442	5.291	211.658	21.348	0.09948	9.03
10.0	21.348	120	211.66	23.7	0.081598		4.777	216.434		0.10172	7.97
11.0	21.830	120	216.43	23.7		123.525	4.259	220.694	22.260	0.10373	6.97
12.0		120	220.69	23.7		108.410	3.738	224.432	22.637	0.10548	6.02
13.0		120	224.43	23.7	0.081598	93.146 77.670	3.212 2.678	227.644 230.322	22.961 23.231	0.10699 0.10825	5.10 4.20
14.0		120 120	227.64 230.32		0.081598	61.874	2.134	232.456	23.446	0.10925	3.32
15.0 16.0		120	232.46		0.081598	45.524	1.570	234.026	23.604	0.10999	2.42
10.0		120	234.03		0.081598		0.963	234.989	23.702	0.11045	1.48
18.0		120	234.99		0.081598		0.000	234.989	23.702	0.11045	0.00
19.0		120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
20.0		120	234.99	23.7	0.081598	0.000	0.000	234.989	23,702	0.11045	0.00
21.0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
22.0		120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
23.0		120	234.99		0.081598	0.000	0.000	234.989	23.702 23.702	0.11045	0.00 0.00
24.0		120	234.99		0.081598	0.000	0.000 0.000	234.989 234.989	23.702	0.11045 0.11045	0.00
25.0		120	234.99 234.99		0.081598 0.081598	0.000 0.000	0.000	234.989	23.702	0.11045	0.00
26.0 27.0		120 120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
27.0		120	234.99		0.081598	0.000	0.000	234,989	23.702	0.11045	0.00
29.0		120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
30.0		120	234.99	23.7	0.081598	0.000	0.000	 234.989	23.702	0.11045	0.00
31.0		120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
32,0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
33.0		120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
34.0		120	234.99		0.081598	0.000	0.000 0.000	234.989 234.989	23.702 23.702	0.11045 0.11045	0.00 0.00
35.0	23.702	120	234.99		0.081598	0.000 0.000	0.000	234.989	23.702	0.11045	0.00
36.0		120 120	234.99 234.99		0.081598	0.000	0.000	234.989	23,702	0.11045	0.00
37.0 38.0		120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
39.0		120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
40.0		120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
41.0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
42.0		120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
43.0		120	234.99		0.081598	, 0.000	0.000	234.989 234.989	23.702 23.702	0.11045 0.11045	0.00 0.00
44.0		120	234.99	23.7		0.000	0.000	234.969	23.702	0.11045	0.00
45.0 46.0		120 120	234.99 234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
46.0		120			0.081598				23.702	0.11045	0.00
48.0		120			0.081598		0.000		23.702	0.11045	0.00
49.0		120			0.081598					0.11045	0,00
50.0		120	234.99		0.081598		0.000			0.11045	0.00
51.0	23.702	120			0.081598		0.000			0.11045	0.00
52.0		120			0.081598					0.11045	0.00 0.00
53.0		120			0.081598					0.11045 0.11045	0.00
54.0		120			0.081598					0.11045	0.00
55.0		120 120			0.081598					0.11045	
56.0 57.0					0.081598						
58.0		120			0.081598					0.11045	
59.0		120			0.081598						
60.0		120			0.081598					0.11045	
61.0		120		23.7	0.081598					0.11045	
62.0		120			0.081598					0.11045	
63.0		120			0.081598					0.11045	
64.0		120			0.081598					0.11045 0.11045	
65.0		120			0.081598					0.11045	
66.0		120			0.081598						
67.0	23.702	120	234.99	23.7	0.001098	> 0.000	, 0.000	204.303	, 20.702	0.11040	0.00

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: <u>12 Dessed</u> Checked by: <u>A R Harp</u>

K = 0.00001 psi-lb/ft^3/(lbm/sec)^2

										·····	
	Initial	Initial	Initial				11	New	New	New	6
Time	Annulus Pressura	Annulus Temp ~	Annulus Mass	Upstream Press	Upstream Density	Mass Flow Rate	Mass xferred	Annulus Mass	Annulus Press	Annulus Density	Annulus Velocity
sec	psia	deg F	Ibmoles	psia	Ibm/ft^3	Ibm/sec	Ibmole	Ibmole	psia	Ibm/ft^3	ft/sec
68.0		120			0.081598		0.000	234.989	23.702		0.00
69.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
70.0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
71.0	23.702	120	234.99		0.081598	0.000	0.000	234,989	23.702	0.11045	0.00
72.0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
73.0	23.702	120	234.99		0.081598	0.000	0.000	234.989 234.989	23.702	0.11045	0.00
74.0 75.0	23.702 23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702 23.702	0.11045	0.00 0.00
76.0	23.702	120	234.99		0.081598	0.000	0.000	234,989	23.702	0.11045	0.00
77.0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
78.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
79.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
80.0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
81.0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
82.0	23.702	120	234.99		0.081598	0.000 0.000	0.000 0.000	234,989 234,989	23.702 23.702	0.11045 0.11045	0.00 0.00
83.0 84.0	23.702 23.702	120 120	234.99 234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
85.0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
86.0	23.702	120	234.99		0.081598	0.000	0.000	234.989		0.11045	0.00
87.0	23.702	120			0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
88.0	23.702	120	234.99	. 23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
89.0	23.702	120	234.99	23.7		0.000	0.000	234.989	23.702	0.11045	0.00
90.0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23,702	0.11045	0.00
91.0	23.702	120	234.99	23.7		0.000 0.000	0.000 0.000	234.989 234.989	23.702 23.702	0.11045	0.00 0.00
92.0 93.0	23.702 23.702	120 120	234.99 234.99	23.7	0.081598 0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
94.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23,702	0.11045	0.00
95.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
96.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23,702	0.11045	0.00
97.0	23.702	120	234.99	23.7			0.000	234.989	23.702	0.11045	0.00
98.0	23.702	120	234.99	23.7		0.000	0.000	234.989		0.11045	0.00
99.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989 234.989	23.702	0.11045	0.00 0.00
100.0 101.0	23.702 23.702	120 120	234.99 234.99	23.7	0.081598	0.000	0.000	234.989	23,702	0.11045	0.00
102.0	23.702	120	234.99	23.7		0.000	0.000	234,989	23,702	0.11045	0.00
103.0	23.702	120	234.99	23.7		0.000	0.000	234.989	23.702	0.11045-	0.00
104.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
105.0	23,702	120	234.99	23.7	0.081598	0.000	0.000	234,989	23.702	0.11045	0.00
106.0	23.702	120	234.99			0.000	0.000 0.000	234.989	23.702 23.702	0.11045	0.00 0.00
107.0 108.0	23.702 23.702	120 120	234.99 234.99	23.7	0.081598	0.000 0.000	0.000	234.989 234.989	23.702	0.11045 0.11045	0.00
109.0	23.702	120	234.99	23.7		0.000	0.000	234.989	23.702	0.11045	0.00
110.0	23.702	120	234.99	23.7		0.000	0.000	234.989	23.702	0.11045	0.00
111.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23,702	0.11045	0.00
112.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
113.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
114.0	23.702	120	234.99		0.081598	0.000	0.000	234.989 234.989	23.702 23.702	0.11045 0.11045	0.00 0.00
115.0 116.0	23.702 23.702	120 120	234.99 234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
117.0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702	0,11045	0.00
118.0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
119.0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
120.0	23.702	120	234.99		0.081598	0.000	0.000	234,989	23.702	0.11045	0.00
121.0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
122.0	23.702	120	234.99		0.081598	0.000	0.000	234.989	23.702	0.11045	0.00 0.00
123.0	23.702	120	234.99		0.081598	0.000 0.000	0.000 0.000	234.989 234.989	23.702 23.702	0.11045 0.11045	0.00
124.0 125.0	23.702 23.702	120 120	234.99 234.99		0.081598		0.000	234.989	23.702	0.11045	0.00
125.0	23.702	120			0.081598		0.000	234.989	23.702	0.11045	0.00
127.0		120	234.99		0.081598		0.000	234,989		0.11045	0.00
128.0	23.702	120	234.99		0.081598		0.000	234,989	23.702	0.11045	0.00
129.0	23.702	120			0.081598		0.000	234.989	23.702	0.11045	0.00
130.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R* <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R* <u>*R* <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R* <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R* <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R* <u>*R* <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R* <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u><u>*R* <u>*R*</u> <u>*R* <u>*R*</u> <u>*R* <u>*R*</u><u>*R* <u>*R*</u><u>*R* <u>*R*</u> <u>*R*<u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u>

K = #0.000005 psi-lb/ft^3/(lbm/sec)^2

					K =	0.000000	501 10/11 0/1				
				r		T		New	New	New	
	Initial	Initial	Initial	Unetroom	Upstream	Mass	Mass	Annulus	Annulus	Annulus	Annulus
	Annulus	Annulus	Annulus	Upstream Press	Density	Flow Rate	xterred	Mass	Press	Density	Velocity
Time	Pressure		Mass	Contraction of the second seco	lbm/ft^3	lbm/sec	Ibmole	Ibmole	psia	lbm/ft^3	fl/sec
SEC	psia	deg F	ibmoles	psia 23.7	0.081598				·		
0.0	14.7				0.081598	383.243	13.215	158.959	16.033	0.07471	30.04
1.0	14.7			_		353.727	12.197		17.263	0.08044	25.75
2.0	16.033						11.176			0.08570	22.14
3.0	17.263				0.081598		10,150			0.09047	19.05
4.0					0.081598	264.465	9.119			0.09475	16.34
5.0	19.414				0.001590	234.373				0.09855	13.92
6.0	20.334				0.081598	204.029				0.10186	11.73
7.0	21,149			· · · ·	0.081598		5.977			0.10467	9.70
8,0	21.859				0.081595					0,10697	7.78
9.0	22,462				0.081598		3.799			0.10876	5.93
10.0					0.081598		2.646			0.11000	4.08
11.0							1.349			0.11063	2.07
12.0) 23.606						0.00			0.11063	0.00
13.0	23.742				0.08159		0.00			0.11063	0.00
14.0	23.742									0.11063	0.00
15.0) 23.742				0.08159			-			0.00
16.0	23.742				0.08159	B 0.000		-			0.00
17.0					0.08159	-					0.00
18.0					0.08159						0.00
19.0	23.74				0.08159	-	-	-			0.00
20.0					0.08159	-			· · · · · · · · ·		0.00
21.0	0 23.74									0.11063	0.00
22.0	0 23.74				0.08159	-				0.11063	0.00
23.	0 23.74				0.08159	-				0.11063	0.00
24.	0 23.74			-	7 0.08159	-			3 23.742	0.11063	0.00
25.	0 23.74				7 0.08159	-				0.11063	0.00
26.	0 23.74			-	7 0.08159	-				0.11063	0.00
27.	0 23.74			-	7 0.08159					2 0.11063	0.00
28.	0 23.74				7 0.08159 7 0.08159	8 0.000				0.11063	
29.	0 23.74		20 235.3			-	-			z 0.11063	
30.	0 23:74		20 235.3		7 0.08159 7 0.08159		-			2 0.11063	
31.	.0 23.74		20 235.3			-	-			2 0.11063	
32.	.0 23.74		20 235.3		7 0.08159					2 0.11063	
33.	.0 23.74	-	20 235.3		7 0.08159 7 0.08159	-				2 0.11063	
34.	.0 23.74		20 235.3		7 0.0815		-			2 0.11063	
35.	.0 23.74		20 235.		7 0.0815		-		33 23.74	2 0.11063	
36	.0 23.74		20 235.		7 0.0815				93 23.74	2 0.11063	
37		·	20 235.		7 0.0815		-		93 23.74		
38			20 235.		7 0.0815	• -	-		93 23.74		
39			20 235.		7 0.0815				93 23.74		
40			20 235.		.7 0.0815			00 235.3	93 23.74		
41		· · · ·	20 235.	+ -	.7 0.0815			00 235.3			
	2.0 23.7		20 235.		7 0.0815			00 235.3			
	3.0 23.7		20 235. 20 235		0.0815						
	1.0 23.7				0.0815		0.0 0.0				
	5.0 23.7				.7 0.0815			00 235.3			
	5.0 23.7				0.081		0.0 0.0	00 235.3			
	7.0 23.7		120 235 120 235		3.7 0.081	598 0.0		00 235.3	_		
	B.O 23.7		120 235	.39 23	3.7 0.081	598 0.0		00 235.3			
	9.0 23.7		120 235		3.7 0.081	598 0.0		000 235.			
	0.0 23.7		120 235	.39 2	3.7 0.081	598 0.0		000 235.			
	1.0 23.7		120 235		3.7 0.081	598 0.0		000 235.			
	2.0 23.			.39 2	3.7 0.081	598 0.0		000 235.			
	3.0 23.				3.7 0.081			000 235.			
		=			3.7 0.081			000 235.			
				5.39 2 5.39 2	3.7 0.081	598 0.0		000 235			
			120 23		3.7 0.081	598 0.0		000 235			
			120 23		3.7 0.081	598 0.0				742 0.110	
		742			3.7 0.08					742 0.110	
		742		5.39	3.7 0.08	598 0.0				742 0.110	
		742.		5.39	23.7 0.08	1598 0.				742 0.110	
		742		5.39	23.7 0.08	1598 0.				742 0.110	
		.742		5.39	23.7 0.08	1598 0.				742 0.110	
		.742		5.39	23.7 0.08	1598 0.				742 0.110	
	-	.742			23.7 0.08					742 0.110	
		.742		5.39 5.39	23.7 0.08	1598 0	.000 0			.742 0.11	
		.742		5.39 35.39	23.7 0.08	1598 0		0.000 235	5.393 23	.742 0.11	063 0.00
4	67.0 23	.742	120 23								

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: <u>*R* (Truss</u> Checked by: <u>JR</u> Hap

K = 0.000005 psi-lb/ft^3/(lbm/sec)^2

					K =	- 0.0000000	Pariant of	10/19 000 J L			
	1-Hint	Initial	Initial		r	r		New	New	New	
	Initial	Initial	Annulus	Upstream	Upstream	Mass	Mass	Annulus	Annulus	Annutus	Annulus
Time	Annulus Pressure	Annulus Temp	Mass	Press	Density	Flow Rate	xferred	Mass	Press	Density	Velocity
Time	psia	deg F	Ibmoles	psia	lbm/it^3	lbm/sec	Ibmola	lbmole.	psia	lbm/ft^3	ft/sec
sec 68.0	23.742	120	235.39	23,7		0.000	0.000	235.393	23.742	0.11063	0.00
69.0	23.742	120	235.39		0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
70.0	23.742	120	235.39		0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
	23.742	120	235.39		0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
71.0	23.742	120	235.39		0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
72.0 73.0	23.742	120	235.39	23.7		0.000	0.000	235.393	23.742	0.11063	0.00
73.0		120	235.39		0.081598		0.000	235.393	23.742	0.11063	0.00
74.0		120			0.081598		0.000	235.393	23.742	0.11063	0.00
75.0		120	235.39		0.081598		0.000	235,393	23.742	0.11063	0.00
78.0		120	235.39		0.081598		0.000	235,393	23.742	0.11063	0.00
78.0		120			0.081598		0.000	235.393	23.742	0.11063	. 0.00
79.0		120	235.39		0.081598		0.000	235.393	23.742	0.11063	0.00
80.0		120			0.081598		0.000	235.393	23.742	0.11063	0.00
81.0		120			0.081598		0.000	235.393	23.742	0.11063	0.00
82.0		120			0.081598		0.000	235.393	23.742	0.11063	0.00
83.0		120			0.081598		0.000	235.393	23.742	0.11063	0.00
84.0		120			0.081598		0.000	235.393	23.742	0.11063	0.00
85.0		120			0.081598		0.000	235.393		0.11063	0.00
86.0		120			0.081598		0.000	235.393	23.742	0.11063	0.00
87.0		120			0.081598		0.000	235.393		0.11063	0.00
88.0		120		23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
89.0		120		23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
90.0		120		23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
91.0		120		23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
92.0		120	235.39		0.081598		0.000	235.393	23.742	0.11063	0.00
93.0		120	235.39	23.7	0.081598		0.000	235.393	23.742	0.11063	0.00
94.0		120	235.39		0.081598		0.000	235.393	23.742	0,11063	0.00
95.0		120	235.39		0.081598		0.000			0.11063	0.00 0.00
96.0		120	235.39		0.081598		0.000			0.11063	0.00
97.0		120	235.39		0.081598		0.000		23.742	0.11063	0.00
98.0	23.742	.120			0.081598		0.000			0.11063	0.00
99.0	23.742	120			0.081598		0.000			0.11063	0.00
100.0	23.742	120			0.081598		0.000			0.11063	0.00
101.0	23.742	120			0.081598		0.000 0.000			0.11063	0.00
102.0		120					0.000			0.11003	0.00
103.0		120					0.000			0.11063	0.00
104.0		120			0.081598		0.000			0.11063	0.00
105.0		120			0.081598 0.081598		0.000			0.11063	0.00
106.0		120			0.081598					0.11063	0.00
107.0		120			0.081598		•			0,11063	0.00
108.0		120			0.08159					0.11063	0.00
109.0					0.08159					0.11063	0.00
110.0										0.11063	0.00
111.0									23.742	0.11063	
112.0 113.0									23.742	0.11063	
113.0					7 0.08159						
114.0					7 0.08159			235.393	3 23.742		
115.0				9 23.	7 0.08159			235.393			
117.0					7 0.08159			235,393			
118.0					7 0.08159		0.00				
119.					7 0.08159		0.00				
120.					7 0.08159						
120.					7 0.08159						
121.					7 0.08159						
123.					7 0.08159						
123.					7 0.08159		0.00				
124.				÷	7 0.08159		0.00				
125.					7 0.08159	-	0.00				
120.		-	0 235.3	-	.7 0.08159						
128.					7 0.08159						
120.					.7 0.08159		0 0.00				
130.					.7 0.0815		0.00	0 235.39	3 23.74	2 0.1106	3 0.00
130.	.u <u>z</u> u.149.	_ ;2									

Pipe Heatup Calculation

Prepared by: <u>A R Haup</u>

New Pipe 1

1									
		iiii 0.219	Ineta			Маво	Heat Capacity		
	dt端规定是	國的制計	sacre			iv sibm avsa	BTU/lbm-dag 🔂		
					Mades	影明教生31:940	140 A 10 0.11	「注意業の:213	
					Water	· 128	1.0	2460,128	
							Total	0.341	1
									· · · ·
		Initial		Heat	Pipe	Heat		Pipe	1
		Pipe	Air	Transfer	Surface	Transfer	BTU's	Temp	F
	Time	Temp	Temp		Area (A)	Rate	Transferred	Increase	T
	sec	deg F	deg F	BTU/hr-ft^2-F	ft^2 per ft	BTU/hr per fl	BTU/ft	deg F	d
	0.0								
		120.000	325	25	0.275	1408.808	0.391	1.146	
		121.146	325	25	0.275	1400.931	0.389	1.140	
		122.286	325	25	0.275	1393.097	0.387	1.133	
	4.0	123.420	325	25	0.275	1385.308	0.385	1.127	
	5.0	124.547	325	25	0.275	1377.562	0.383		12
	6.0	125.668	325	25	0.275	1369.859	0.381	1.115	
	7.0	126.782	325	25	0.275	1362.199	0.378	1.108	
	8.0	127.891	325	25	0.275	1354.582	0.376	1.102	
	9.0	128.993	325	25	0.275	1347.008	0.374	1.096	
	10.0	130.089	325	25	0.275	1339.476	0.372	1.090	13
	11.0	131.179	325	25	0.275	1331.987	0.370	1.084	13
	12.0	132.262	325	25	0.275	1324.539	0.368	1.078	13
	13.0	133,340	325	25	0.275	1317.133	0.366	1.072	13
	14.0	134.412	325	25	0.275	1309.768	0.364	1.066	13
	15.0	135.477	325	25	0.275	1302.444	0.362	1.060	13
	16.0	136.537	325	25	0.275	1295,161	0.360	1.054	13
		137.591	325	25	0.275	1287.920	0.358	1.048	13
	18.0	138.639	325	25	0.275	1280.718	0.356	1.042	13
		139.681	325	25	0.275	1273.557	0.354	1.036	14
		140.717	325	25	0.275	1266,436	0.352	1.030	14
		141.747	325	25	0.275	1259.354	0.350	1.025	14
		142.772	325	25	0.275	1252.313	0.348	1.019	14
		143.791	325	25	0.275	1245,310	0.346	1.013	14
		144.804	325	25	0.275	1238.347	0.344	1,008	
	2-7.0		0.0	20	0.210				• •

	Pipe	Air	Transfer	Surface	Transfer	BTU's	Temp	Pipe
Time	Temp	Temp	Coefficient (h	Area (A)	Rate	Transferred	Increase	Temp
sec	deg F	deg F	BTU/hr-ft^2-F	ft^2 per ft	BTU/hr per ft	BTU/ft	deg F	deg F
0.0								
1.0	120.000	325	25	0.275	1408.808	0.391	1.146	121.146
2.0	121.146	325	25	0.275	1400.931	0.389	1.140	122.286
3.0	122.286	325	25	0.275	1393.097	0.387	1.133	123.420
4.0	123.420	325	25	0.275	1385.308	0.385	1.127	124.547
5.0	124.547	325	25	0.275	1377.562	0.383	1.121	125.668
	125.668	325	25	0.275	1369.859	0.381	1.115	126.782
	126.782	325	25	0.275	1362.199	0.378	1.108	127.891
	127.891	325	25	0.275	1354.582	0.376	1.102	128.993
9.0	128.993	325	25	0.275	1347.008	0.374	1.096	130.089
	130.089	325	25	0.275	1339.476	0.372	1.090	131.179
	131.179	325	25	0.275	1331.987	0.370	1.084	132.262
	132.262	325	25	0.275	1324.539	0.368	1.078	133.340
	133,340	325	25	0.275	1317.133	0.366	1.072	134.412
	134.412	325	25	0.275	1309.768	0.364		135.477
	135.477	325	25	0.275	1302.444	0.362	1.060	136.537
	136.537	325	25	0.275	1295.161	0,360		137.591
	137.591	325	25	0.275	1287.920	0.358		138.639
	138.639	325	25	0.275	1280.718	0.356		139.681
	139.681	325	25	0.275	1273.557	0.354		140.717
	140.717	325	25	0.275	1266.436	0.352		141.747
	141.747	325	25	0.275	1259.354	0.350		142.772
	142.772	325	25	0.275	1252.313	0.348		143.791
	143.791	325	25	0.275	1245.310	0.346		144.804
	144.804	325	25	0.275	1238.347	0.344		145.812
	145.812	325	25	0.275	1231.423	0.342		146.814
	146.814	325	25	0.275	1224.537	0.340		147.810
	147.810	325	25	0.275	1217.690	0.338	0.991	148.801
	148.801	325	25	0.275	1210.881	0.336	0.985	149.786
	149.786	325	25	0.275	1204.111	0.334	0.980	150.766
	150.766	325	25	0.275	1197.378	0.333	0.974	151.740
	151.740	325	25	0.275	1190.683	0.331	0.969	152.709 ~
	152.709	325	25	0.275	1184.025	0.329	0.963	153.672
	153.672	325	25	0.275	1177.404	0.327	0.958	154.630
	154.630	325	25	0.275	1170.821	0.325	0.953	155.583
35.0	155.583	325	25	0.275	1164.274	0.323	0.947	156.530
36.0	156.530	325	25	0.275	1157.764	0.322	0.942	157.472
37.0	157.472	325	25	0.275	1151.290	0.320	0.937	158.409
38.0	158.409	325	25	0.275	1144.853	0.318	0.932	159.340
39.0	159.340	325	25	0.275	1138.451	0.316	0.926	160.267
40.0	160.267	325	25	0.275	1132.086	0.314	0.921	161.188
41.0	161.188	325	25	0.275	1125.756	0.313		162.104
42.0	162.104	325	25	0.275	1119.461	0.311		163.015
43.0	163.015	325	25	0.275	1113.201	0,309		163.920
44.0	163.920	325	25	0.275	1106.977	0.307		164.821
45.0	164.821	325	25	0.275	1100.787	0.306		165.717
46.0	165.717	325	25	0.275	1094.632	0.304		166.607
47.0	166.607	325	25	0.275	1088.511	0.302		167.493
48.0	167.493	325	25	0.275	1082.425	0.301		168.374
49.0	168.374	325	25	0.275	1076.372	0.299		169.250
50.0	169.250	325	25	0.275	1070.354	0.297		170.120
51.0	170.120	325	25	0.275	1064.369	0.296		170.986
52.0	170.986	325	25	0.275	1058.417	0.294		171.848
53.0	171.848	325	25		1052.499	0.292		172.704
	172.704					0.291		173.556
	173.556					0.289		174.402
	174.402					0.287		175.244
	175.244					0.286		176.082
	176.082					0.284		176.914
	176.914					0.283		177.742
	177.742					0.281		178.566
	178.566					0.280		179.385
62.0	179.385	325	25	0.275	1000.703	0.278	0,814	180.199

Pipe Heatup Calculation

Prepared by: <u>A. A. Hann</u>

Attachment A, Part 2 Pipe OD: 51105 mere Pipe Walt + 0.219 mere dt

	Alaca	Capecity	mCo
	Best Ibmseite	BTU/Ibm-deg E	BTUF
Metel 20	south 1:940		0.21
15 toto set	D 128	Density Chickler 1 0	- O 12

							Dian	hlaur
	Initial		Heat	Pipe	Heat	BTU's	Pipe Temp	New Pipe
_	Pipe	Air	Transfer	Surface	Transfer Rate	Transferred	Increase	Temp
Time	Temp		Coefficient (h BTU/hr-ft^2-F	Area (A)		BTU/ft	deg F	deg F
sec	deg F 180.199	325	25	0.275	995.107	0.276		181.009
	181.009	325		0.275	989.543	0.275	0.805	181.814
	181.814	325		0.275	984.010	0.273	0.801	182.614
	182.614	325		0.275	978.508	0.272	0,796	183.410
	183.410	325		0.275	973.036	0.270		184.202
	184.202	325		0.275	967.596	0.269		184.989
	184.989	325	25	0.275	962.185	0.267		185.772
	185.772	325	25	0.275	956.805	0.266		186.551
71.0	186.551	325	25	0.275		0.264		187.325
72.0	187.325	325	25			0.263		188.095
73.0	188.095	325				0.261		188.860
	188.860	325				0.260		189.622 190.378
	189.622	325						190.378
	190.378	325						191.880
	191.131	325						192.624
	191.880	325						193.364
	192.624	325				0.251		194.100
	193.364	325 325						194.832
	194.100 194.832	325						195.560
	194.032					0.247		196.284
	196.284	325				0.246	0.720	197.004
	197.004	325						197.719
	197.719	325				0.243	0.712	198.431
	198.431	325		0.275	869.812	0.242		199.139
	199.139			0.275	i 864.948			199.842
	199.842		5 25	i 0.275				200.542
90.0	200.542	325	5 25					201.238
91.0	201.238	325						201.930
92.0	201.930				-			202.618
93.0	202.618							203.303
	203.303							204.660
	203.983							205.333
	204.660							206.002
	205.333							206.667
	206.002							207.329
	207.329						6 0.658	3 207.987
	207.987						3 0.654	208.641
	208.641		-					209.292
	209.292			5 0.27	5 795.174			7 209.939
	209.939		5 2	5 0.27	5 790.728		-	3 210.582
105.0	210.582	2 32	5 2	5 0.27				211.222
	211.222							5 211.858 3 212.491
	211.85							9 212.491 9 213.120
	212.49							6 213.720
	213.12							2 214.368
	0 213.74		-	5 0.27 5 0.27				9 214.986
	0 214.36							5 215.60
	0 214.98			5 0.27 5 0.27				2 216.21
	0 215.60			5 0.27				8 216.82
	0 216.21 0 216.82			5 0.27				5 217.42
	0 210.82			5 0.27			5 0.60	2 218.02
	0 218.02			5 0.27				8 218.62
	0 218.62			5 0.27		8 0.20		5 219.22
	0 219.22			25 0.27				01 219.81
	0 219.81			25 0.27				38 220.40
	0 220.40			25 0.27				35 220.98
				25 0.27		5 0.1		32 221.56
	0 220.98	5 32	25 4					
122.	0 220.98			25 0.21	75 710.81			78 222.14
122. 123.	0 220.98 0 221.56 0 222.14	57 33	25 2		75 710.8 75 706.84	13 0.1	96 0.5	75 222.72
122. 123. 124.	0 221.56	57 3: 15 3:	25 25 25 2	25 0.21	75 710.8 75 706.84	43 0.1 91 0.1	96 0.5 95 0.5	

Pipe Heatup Calculation

Prepared by: <u>*R* Mannel</u> Checked by: <u>*A* R</u> <u>Harp</u>

Pipé OD 2 105 in Pipe Wali 0.219 in di 502 1 502

1

	Maso	Heat Copacit	Ϋ́́,	mCp
	a libm 👘	BTU/Ibm-di	g F	BTU/FS R
Melal	id		0.11	3680.213
Water	0.128		1.0	建建0.128
Contraction of the local division of the loc			Fotal	0.341

						r	Dian	New
	Initial		Heat	Pipe	Heat	BTU's	Pipe Temp	New Pipe
~	Pipe	Air	Transfer	Surface Area (A)	Transfer Rate	Transferred	Increase	Temp
Time sec	Temp deg F	deg F	Coefficient (h BTU/hr-ft^2-F			BTU/ft	deg F	deg F
	223.861	230	25	0.275	42.190	0.012		223.895
	223.895	230	25	0.275	41.954	0.012	0.034	223.929
	223.929	230	25	0.275	41.720	0.012	0.034	223.963
	223.963	230	25	0.275	41.486			223.997
131.0	223.997	230	25	0.275	41.254	0.011		224.031
132.0	224.031	230	25	0.275	41.024			224.064
133.0	224.064	230		0.275	40.794			224.097
	224.097	230		0.275				224.130
	224.130	230		0.275				224.163 224.196
	224.163	230		0.275				224.198
	224.196	230		0.275				224.260
	224.228	230		0.275	-			224.292
	224.260	230						224.324
	224.292 224.324	230 230						224.356
	224.324	230						224.388
	224.38B	230					0.031	224.419
	224.419						0.031	224.450
	224,450						0.031	224.481
	224,481	230		0.275	37.927	0.011		224.512
	224.512	230	25	0.275				224.543
148.0	224.543	230	25					224.573
149.0	224.573	230						224.604
	224.604							224.634 224.664
	224.634							224.664
	224.664							224.034
	224.694							224.753
	224.723							224.782
	224.753							224.811
	224.782 224.811	230						224.840
	224.840							224.869
	224.869						0.029	224.898
	224.898					0.010	0.029	224.926
	224.926) 25	0.275	34.867			224.955
162.0	224.955	230						224,983
	224.983							225.011
	225.011							225.039
	225.039							225.094
	225.067							225.122
	225.094							225.149
) 225.122) 225.149							225.176
	225.148							225.203
	225.203						9 0.027	225.230
	225.230							225.257
	225.257							7 225.283
	225.283							3 225.309
	225.309							5 225.336
	225.336							3 225.362
	225.362							5 225.388 6 225.413
	225.388					-		6 225.413 6 225.439
	0 225.41							6 225.465
	0 225.43			5 0.27 5 0.27		-		5 225.490
	0 225.46			5 0.27 5 0.27				5 225.515
	0 225.49			5 0.27 5 0.27				5 225.540
	0 225.51 0 225.54			5 0.27				5 225.565
	0 225.54			5 0.27				5 225.590
	0 225.59			5 0.27				5 225.615
	0 225.55			5 0.27				5 225,639
	0 225.63			5 0.27	-			4 225.664
	0 225.66			5 0.27				4 225.688
	0 225.68			5 0.27			0.02	4 225.712
,								

39

Pipe Heatup Calculation

Prepared by: <u>*Roberts*</u> Checked by: <u>*R* Manage</u>

Pipe OO Pipe Wall 0.219 In dt

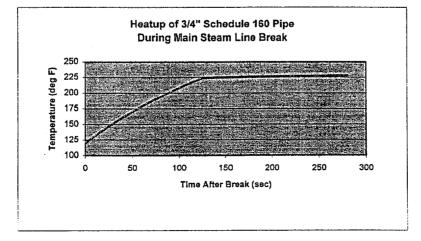
- VIII CONTRACTOR		and a state of the second	Total	0 341
Mater	0 128		# #4 0	0123
Maialing	1.940		10.91	20213
	ten 🖄	BTU/Ibm-	tog F.	日口川东学作
	Mass	Capac	ity 54	mCp

Heat Pipe New Initial Pipe Heat BTU's Pipe Air Transfer Surface Transfer Temp Pipe Time Temp Coefficient (h Area (A) Rate Transferred Increase Temp Temp BTU/R deg F deg F BTU/hr-ft^2-F ft^2 per ft BTU/hr per ft deg F sec deg F 0.024 225.736 191.0 225.712 25 29.469 0.008 230 0.275 0.024 225.760 192.0 225.736 25 29.304 0.008 230 0.275 193.0 225.760 230 25 0.275 29,140 0.008 0.024 225 783 194.0 225.783 28.977 0.008 0.024 225.807 230 25 0.275 195.0 225.807 25 28.815 0.008 0.023 225.830 230 0.275 28.654 0.008 0.023 225.854 196.0 225.830 230 25 0.275 0.008 197.0 225.854 230 25 0.275 28.494 0.023 225 877 198.0 225.877 230 25 0.275 28.334 0.008 0.023 225,900 0.023 225.923 199.0 225.900 230 25 0.275 28.176 0.008 25 28.018 0.008 0.023 225,946 0.275 200.0 225.923 230 0.023 225.968 27 862 0.008 201.0 225.946 230 25 0.275 25 0.275 27.706 0.008 0.023 225.991 202.0 225.968 230 25 0.275 27.551 0.008 0.022 226.013 230 203.0 225.991 27.397 0.008 0.022 226.036 25 0.275 204.0 226.013 230 0.008 0.022 226.058 25 27 244 205.0 226.036 230 0.275 0.008 206.0 226.058 230 25 0.275 27.091 0.022 226.080 26.940 0.007 0.022 226,102 207.0 226.080 230 25 0.275 0.007 0.022 226.124 25 26.789 0.275 208.0 226.102 230 0.007 0.022 226.145 26.639 209.0 226.124 230 25 0.275 0.007 0.022 226 167 210.0 226.145 230 25 0.275 26.491 211.0 226.167 230 25 0.275 26.342 0.007 0.021 226.188 0.007 0.021 226.210 25 26.195 0.275 212.0 226.188 230 0.007 0.021 226.231 25 0.275 26.049 213.0 226.210 230 0.007 0.021 226.252 25 25,903 214.0 226.231 230 0.275 25.758 0.007 0.021 226.273 215.0 226.252 25 0.275 230 25 25.614 0.007 0.021 226 294 216.0 226.273 230 0.275 25.471 0.007 0.021 226.314 25 0.275 217.0 226.294 230 0.007 0.021 226.335 25 25.328 0.275 218.0 226.314 230 0.007 0.020 226.355 25 187 219.0 226.335 230 25 0.275 0.007 0.020 226.376 25 0.275 25.046 220.0 226.355 230 25 24.906 0.007 0.020 226.396 221.0 226.376 230 0.275 25 24.767 0.007 0.020 226.416 0.275 222.0.226.396 230 0.007 0.020 226.436 24.628 25 223.0 226.416 230 0 275 0.020 226.456 0.007 224.0 226.436 230 25 0.275 24.491 0.020 226.476 0.007 225.0 226.456 230 25 0.275 24.354 25 24.217 0.007 0.020 226,496 226.0 226.476 230 0.275 24.082 0.007 0.020 226.515 25 0.275 227.0 226.496 230 0.007 0.019 226.535 25 23.947 228.0. 226 515 230 0.275 0.007 0.019 226.554 23.813 229.0 226.535 230 25 0.275 0.007 0.019 226.573 230.0 226.554 230 25 0.275 23.680 0.019 226.593 25 0.275 23.548 0.007 231.0 226.573 230 25 0.275 23.416 0.007 0.019 226.612 232.0 226.593 230 0.019 226.631 23.285 0.006 25 0.275 233.0 226.612 230 23 155 0.006 0.019 226.649 234.0 226.631 230 25 0.275 0.006 0.019 226.668 25 0.275 23.026 235.0 226.649 230 25 22.897 0.006 0.019 226.687 236.0 226.668 230 0.275 0.006 0.019 226.705 25 0.275 22.769 237.0 226.687 230 22.642 0.006 0.018 226.724 25 0.275 238.0 226.705 230 0.006 0.018 226.742 22.515 239.0 226.724 230 25 0.275 0.018 226.760 0.006 25 0.275 22,389 240.0 226.742 230 241.0 226.760 230 25 0.275 22.264 0.006 0.018 226.778 25 0.275 22.139 0.006 0.018 226.796 242.0 226.778 230 0.018 226.814 0.006 22.016 243.0 226.796 230 25 0.275 0.018 226.832 0.006 244.0 226.814 230 25 0.275 21.892 245.0 226.832 230 ·25 0.275 21.770 0.006 0.018 226,850 21.648 0.006 0.018 226.868 25 0.275 246.0 226.850 230 0.018 226.885 25 21.527 0.006 0.275 247.0 226.868 230 0.006 0.017 226.902 248.0 226.885 230 25 0.275 21.407 0.017 226.920 25 0.275 21.287 0.006 249.0 226.902 230 21.168 0.006 0.017 226.937 25 0.275 250.0 226.920 230 25 0.275 21.050 0.006 0.017 226.954 251.0 226.937 230 0.006 0.017 226.971 20.932 252.0 226.954 230 25 0.275 0.006 0.017 226,988 25 0.275 20.815 253.0 226.971 230 0.006 0.017 227.005 25 0.275 20.699 254.0 226,988 230

1

Pipe Heatup Calculation

mCn 🖸


0.213

0.341

Prepared by: <u>A. R. Hann</u>

Pipe OD Pipe Wall 20219 in 20 dt Capacil Maco Below See BTU/Ibm-dog FileTU/Fein 0.11 Malo 0.128 Water 1.0 0.128 Total

	Initial	[`	Heat	Pipe	Heat		Pipe	New	
	Pipe	Air	Transfer	Surface	Transfer	BTU's	Temp	Pipe	
Time	Temp	Temp	Coefficient (h	Area (A)	Rate	Transferred	Increase	Temp	
sec	deg F		BTU/hr-ft^2-F		BTU/hr per ft	BTU/ft	deg F	deg F	
255.0	227.005	230	25	0.275	20.583	0.006	0.017	227.022	
256.0	227.022	230	25	0.275	20.468	0.006	0.017	227.038	
257.0	227.038	230	25	0.275	20.353	0.006	0.017	227.055	
258.0	227.055	230	25	0.275	20.240	0.006	0.016	227.071	
259.0	227.071	230	25	0.275	20.126	0,006	0.016	227.088	
260.0	227.088	230	25	0.275	20.014	0.006	0.016	227.104	
261.0	227.104	230	25	0.275	19.902	0.006	0.016	227.120	
262.0	227.120	230	25	0.275	19,791	0.005	0.016	227.136	
263.0	227.136	230	25	0.275	19.680	0.005	0.016	227.152	
264.0	227.152	230	25	0.275	19.570	0.005	0.016	227.168	
265.0	227.168	230	25	0.275	19.461	0.005	0.016	227.184	
266.0	227.184	230	25	0.275	19.352	0.005	0.016	227.200	
267.0	227.200	230	25	0.275	19.244	0.005	0.016	227.215	
268.0	227.215	230	25	0.275		0.005	0.016	227.231	
269.0	227.231	230	25	0.275	19.029	0.005	0.015	227.247	
270.0	227.247	230	25	0.275	18.923	0.005	0.015	227.262	
271.0	227.262	230	25	0.275	18.817	0.005	0.015	227.277	
272.0	227.277	230	25	0.275	18.712	0.005	0.015	227.292	
273.0	227.292	230	25	0.275	18.607	0.005	0.015	227.308	
274.0	227.308	230	25	0.275	18.503	0.005	0.015	227.323	
275.0	227.323	230	25	0.275	18.399	0.005	0.015	227.338	
276.0	227.338	230	25	0.275	18.297	0.005	0.015	227.353	
277.0	227.353	230	25	0.275	18.194	0.005	0.015	227.367	
278.0	227.367	230	25	0.275	18.092	0.005	0.015	227.382	
279.0	227.382	230	25	0.275	17.991	0.005	0.015	227.397	
280.0	227,397	230	25	0.275	17.891	0.005	0.015	227.411	
	4						Î		
	From Previous		h is assumed constant at this	•		Q = (q/3600)(dt)		Tnew = Tinit	ial +
	Time Step		value over the transient						
;	Varies wit 325 deg F drops to 2	at star	t. r 127 seconds		q ≃ hA (Tair - 1	pipe)	dT = Q/(Tol	tal mCp)	

ZMPR	MPR-2169 Appendix A	MPR Associate 320 King Street Alexandria, VA	
Calculation No. Pro 025-065-02 /2 //	epared By	Checked By J. R. Harp	Page 42
PURPOSE: The purpose of this attachment is to	Attachment B Peak Pressure in CPN	1-32	asis accident in
The purpose of this attachment is to the Cook Unit 1 accumulator fill line	connected to CPN-32.		
CALCULATION:			
The expected temperature of the wa	ter during a LOCA and the	ambient temperature are	
T _{LOCA} := 235	T amb := 70	·	
The conversion for psi to ksi is ksi := 1000 psi			
For penetration CPN-32, there are t	wo different types of pipes	in the system.	
The first pipe is 1" Sch 160, pipe sp		6	
ID $_{1M14} := 0.815$ in	S _{m1M14} := 20 ksi	$E_{1M14} := 27.4 \cdot 10^6 \text{ ps}$	
t _{1M14} := 0.250 in	S _{y1M14} := 24.13 ksi	$E_{p1M14} := 0.425 \cdot 10^6$	psi
OD $_{1M14} := ID _{1M14} + 2 \cdot t _{1M14}$	S u1M14 := 69.25 ksi	SA-376 Gr TP304	
OD _{1M14} = 1.315•in			
The second pipe is 3/4" Sch 160, p	ipe specification M-14		
ID 34M14 := 0.612 in	S _{m34M14} := 20 ksi	$E_{34M14} := 27.4 \cdot 10^6$	
t 34M14 := 0.219 in	S _{y34M14} := 24.13 ksi	E p34M14 := 0.425·10	⁶ psi
OD $_{34M14} := ID _{34M14} + 2 \cdot t _{34}$	M1 ² ^S u34M14 ^{:=} 69.25 ksi	SA-376 Gr TP304	
OD 34M14 = 1.05•in			
The lengths of the two different pip	bes are as follows:	Note: Inverse units used in thes	e equations result
$L_1 := (290 \text{ ft}) \cdot \text{in}^{-1}$	L ₂ :=(170 ft)·in ⁻¹	from MathCad format requireme represent errors.	nts and do not

 $L_2 = 2.04 \cdot 10^3$ inches $L_1 = 3.48 \cdot 10^3$ inches

Calculation No. 025-065-02	Prepared By	Checked By	
	aturn	S R Harp	Page 43
For the first pipe (1" Sch 160, M	-14), the specific material	parameters used in the calcu	lation are
$t_1 := t_{1M14} \cdot in^{-1}$	t ₁ = 0.25 ind	hes	
$r_{01} := \left(\frac{OD_{1M14} \cdot in^{-1}}{2}\right) - t_{1}$	r ₀₁ = 0.408 inc	hes	
$S_{y1} := S_{y1M14} \cdot psi^{-1}$	$S_{y1} = 2.413 \cdot 10^4 \text{ ps}$	i	
$E_1 := E_{1M14} \cdot psi^{-1}$	$E_1 = 2.74 \cdot 10^7$ ps	i	
$E_{p1} := E_{p1M14} \cdot psi^{-1}$	$E_{p1} = 4.25 \cdot 10^5$ ps	i	
$\epsilon_{y1} := \frac{S_{y1}}{E_1}$	ε _{y1} = 8.807·10 ⁻⁴ in/	in	
$s_{m1} := s_{m1M14}$	S _{m1} = 2·10 ⁴ •psi		
s _{u1} := s _{u1M14}	S _{u1} = 6.925·10 ⁴ •psi		
For the second pipe (3/4" Sch 10	60, M-14), the specific ma	terial parameters for the calc	ulation are
$t_2 := t_{34M14} \cdot in^{-1}$	t ₂ = 0.219 inc	ches	
$r_{02} := \left(\frac{OD_{34M14} \cdot in^{-1}}{2}\right) - t$	$r_{02} = 0.306$ in	ches	

 $S_{y2} := S_{y34M14} \cdot psi^{-1}$ $S_{y2} = 2.413 \cdot 10^4 psi$ $E_2 := E_{34M14} \cdot psi^{-1}$ $E_2 = 2.74 \cdot 10^7 psi$ $E_{p2} := E_{p34M14} \cdot psi^{-1}$ $E_{p2} = 4.25 \cdot 10^5 psi$ $\varepsilon_{y2} := \frac{S_{y2}}{E_2}$ $\varepsilon_{y2} = 8.807 \cdot 10^{-4} in/in$ $S_{m2} := S_{m34M14}$ $S_{m2} = 2 \cdot 10^4 \circ psi$ $S_{u2} := S_{u34M14}$ $S_{u2} = 6.925 \cdot 10^4 \circ psi$

At the initial conditions, the trapped water has a specific volume of

 $v_{initial} := 0.015963 \text{ ft}^3 \cdot \text{lb}^{-1}$

ZMPR	MPR-2169 Append	lix A.2 ,	MPR Associate 320 King Street Alexandria, VA		30
Calculation No. 025-065-02	Prepared By WThumh		cked By R Harp ,	Page	45
Given $r_1 = (1 + \varepsilon_{p1}) \cdot r_{01} \cdot (1 + \varepsilon_{p1})$	th) r	2 = (1 + ε _{p2})·	$r_{02} \cdot (1 + \varepsilon_{th})$		
$\operatorname{vol}_{1} = \frac{\pi \cdot r_{1}^{2} \cdot (1 + \varepsilon_{th}) \cdot L_{1}}{(12^{3})}$ $v = \frac{\operatorname{vol}_{1}}{m_{w1}}$		ol 2= $\frac{\pi \cdot r_2^2 \cdot (1)}{(m_{w2}^2)^2}$	$\frac{+\varepsilon_{\text{th}}\cdot L_2}{12^3}$		
$P=(4.86308 \cdot 10^{9}) \cdot v^{2} - (1.85)$ $\sigma_{h1}=P \cdot \frac{r_{1}}{t_{1}}$	30300.10 / 1 1.05795.10	$h^{T} tot^{m} w_{1} + h^{T}$ $h^{2} = P \cdot \frac{r^{2}}{t^{2}}$	m _{w2}		
$\epsilon_{p1} = f_1(\sigma_{h1}, S_{y1}, E_1, E_1)$ Solving the equations. AA := Find($r_1, r_2, \epsilon_{p1}, \epsilon_{p1}$	$p_{1}, \varepsilon_{y_{1}} $ $\varepsilon_{p_{2}}, vol_{1}, vol_{2}, v, P, \sigma_{h_{1}}, \sigma_{h_{2}}$	• , ,	S _{y2} , E ₂ , E _{p2} , ε _{y2})		
$r_{1} := AA_{0,0} \cdot in$ $r_{2} := AA_{1,0} \cdot in$ $\epsilon_{p1} := AA_{2,0}$ $\epsilon_{p2} := AA_{3,0}$ vol 1 := AA_{4,0} \cdot ft^{3} vol 2 := AA_{5,0} \cdot ft^{3} $v := AA_{6,0} \cdot ft^{3} \cdot lb^{-1}$ $P := AA_{7,0} \cdot psi$ $\sigma_{h1} := AA_{8,0} \cdot psi$ $\sigma_{h2} := AA_{9,0} \cdot psi$ $m_{w1} := AA_{10,0} \cdot lb$	r 1 = 0.409 oin r 2 = 0.307 oin $\epsilon_{p1} = 0.31$ $\epsilon_{p2} = 0.07$ vol 1 = 1.062 oft ³ vol 2 = 0.349 oft ³ v = 0.0161 P = 1.5324 $\sigma_{h1} = 25.092$ ok $\sigma_{h2} = 21.459$ ok m w1 = 65	5•% 78•% 15•ft ³ ·lb ⁻¹ 1·10 ⁴ •psi si si 5.892•lb	$AA = \frac{5}{2.3445}$ $AA = \frac{5}{6}$ C $AA = \frac{5}{6}$ C	0.409 0.307 10 ⁻³	
m _{w2} := AA _{11,0} ·lb	m _{w2} = 2	l.678∘ib			

.

. ·

ZMPR		MPR-2	169 Append	ix A.2	MPR Associate 320 King Street Alexandria, VA :	
Calculation No. 025-065-02	Pre	epared	By /		necked By OR Harp	Page 46
PURPOSE:		essure i	Attachme n RCP Se	al Bypa		
The purpose of this attach the Cook Unit 1 RCP seal	ment is to o bypass line	calculate the inside the	ne peak pres e containmer	sure attair nt.	ied during a design ba	isis accident in
CALCULATION:						
The expected temperature	of the wat	er during a	LOCA and I	the ambier	nt temperature are	
T _{LOCA} := 235		T _{amb} :=	70			
The conversion for psi to k	si is		·			
ksi,:= 1000 psi						
For penetration RCP Seal, relatively longer 3/4" pipe.	there are t For conse	wo differei rvatism, as	nt pipes in th ssumed a 1:′	e system - 100 length	very short lengths of ratio.	f 1" pipe and .
The first pipe is 1" Sch 160), pipe spec	cification N	1 -14			
ID $_{1M14} := 0.815$ in		S _{m1M14}	;=20 ksi		E 1M14 := 27.4 · 10 ⁶ psi	
t _{1M14} := 0.250 in		s _{y1M14}	:=24.13 ksi	1	^E p1M14 ^{:=} 0.425·10 ⁶ ps	si
OD 1M14 := ID 1M14 +	2·t 1M14	S _{u1M14}	:=69.25 ksi	S	5A-376 Gr TP304	
OD _{1M14} = 1.315•in						
The second pipe is 3/4" So	ch 160, pipe	e specifica	tion M-14			
ID $_{34M14} := 0.612$ in			₁₄ := 20 ksi]	^E 34M14 ^{:=} 27.4·10 ⁶ psi	i .
t 34M14 := 0.219 in		s _{y34M1}	4 := 24.13 ksi	1	$E_{p34M14} := 0.425 \cdot 10^6$	psi
OD _{34M14} := ID _{34M1}	4 + 2·t 34M	12 ^S u34M1	₄ := 69.25 ksi	5	SA-376 Gr TP304.	
OD _{34M14} = 1.05•in						
The lengths of the two diff	erent pipes	are conse	ervatively rep	resented a	as follows:	
$L_1 := (20 \text{ ft}) \cdot \text{in}^{-1}$	L ₂	:=(450 ft)	·in ⁻¹	· · · · · · · · · · · · · · · · · · ·		
L ₁ = 240 inches	L ₂	$= 5.4 \cdot 10^3$	inches		erse units used in these eq Cad format requirements a errors.	

ZMPR	MPR-2169 Append	MPR Associa 320 King Stre Alexandria, V	
Calculation No. 025-065-02	Prepared By Nopumb	Checked By S'R Harp	Page 47
For the first pipe (1" Sch 160,	M-14), the specific material p	arameters used in the calculat	ion are
$t_1 := t_{1M14} \cdot in^{-1}$	t ₁ = 0.25 inch	nes	
$r_{01} := \left(\frac{OD_{1M14} \cdot in^{-1}}{2}\right) - \frac{1}{2}$	t ₁ r ₀₁ = 0.408 inch	nes	
$S_{y1} := S_{y1M14} \cdot psi^{-1}$	S _{y1} = 2.413·10 ⁴ psi		
$E_1 := E_{1M14} \cdot psi^{-1}$	$E_1 = 2.74 \cdot 10^7$ psi		
$E_{p1} := E_{p1M14} \cdot psi^{-1}$	$E_{p1} = 4.25 \cdot 10^5$ psi		
$\varepsilon_{y1} := \frac{S_{y1}}{E_1}$	$\epsilon_{y1} = 8.807 \cdot 10^{-4}$ in/in)	
s _{m1} := s _{m1M14}	S _{m1} = 2·10 ⁴ •psi		
$S_{u1} := S_{u1M14}$	S _{u1} = 6.925 · 10 ⁴ •psi		
For the second pipe (3/4" Sch	160, M-14), the specific mate	rial parameters for the calculat	tion are
to =to or or win ⁻¹	$t_0 = 0.219$ inch		-

$$t_{2} := t_{34M14} \cdot in^{-1}$$

$$t_{2} = 0.219$$
inches
$$r_{02} := \left(\frac{OD_{34M14} \cdot in^{-1}}{2}\right) - t_{2}$$

$$r_{02} = 0.306$$
inches
$$S_{y2} := S_{y34M14} \cdot psi^{-1}$$

$$S_{y2} = 2.413 \cdot 10^{4} psi$$

$$E_{2} := E_{34M14} \cdot psi^{-1}$$

$$E_{2} = 2.74 \cdot 10^{7} psi$$

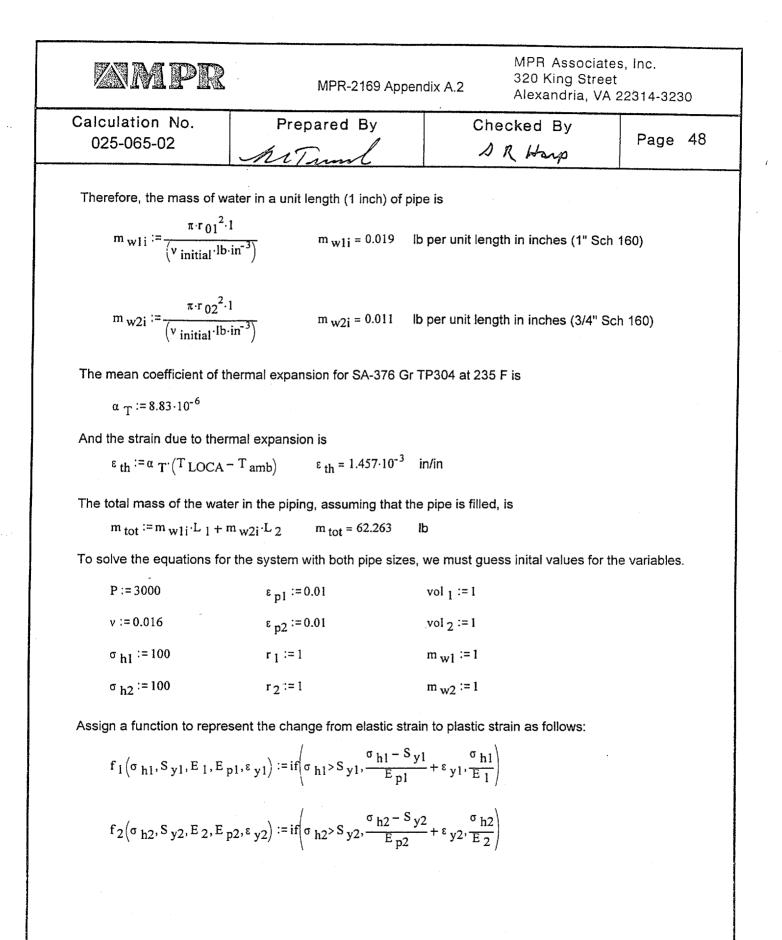
$$E_{2} := E_{34M14} \cdot psi^{-1}$$

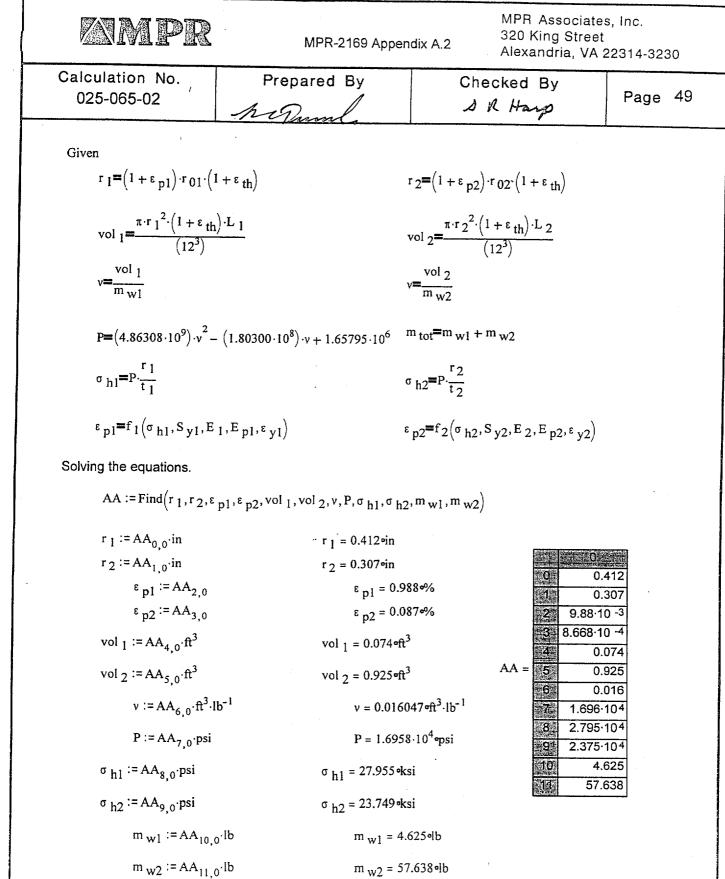
$$E_{2} = 4.25 \cdot 10^{5} psi$$

$$\varepsilon_{y2} := \frac{S_{y2}}{E_{2}}$$

$$\varepsilon_{y2} := \frac{S_{m34M14}}{E_{2}}$$

$$s_{m2} := S_{m34M14}$$


$$S_{m2} = 2 \cdot 10^{4} epsi$$


$$S_{u2} := S_{u34M14}$$

$$S_{u2} = 6.925 \cdot 10^{4} epsi$$

At the initial conditions, the trapped water has a specific volume of:

 $v_{\text{initial}} := 0.015928 \text{ ft}^3 \cdot \text{lb}^{-1}$

.

YV 44

ATTACHMENT 8 TO C0801-05

MPR CALCULATION 025-057-01

STRUCTURAL EVALUATION FOR SELECTED PIPING SEGMENTS, REVISION 3

MPR		3	IPR Associa 20 King Stre Nexandria, V	et
·	CALCULATION TITL	E PAGE	······	· · · · · · · · · · · · · · · · · · ·
Client American Electric Pov	ver			e 1 of 54 g attachments)
Project Generic Letter 96-06: Evaluation	Thermal Over-pressurizatio	n Operability		sk No. 004-0570
Fitle Structural Evaluation	for Selected Piping Segmen	ts		lation No. -057-01
Preparer/Date	Checker/Date	Reviewer/Approv	ver/Date	Rev. No.
Mark Gillespie 2/18/2000	Amol Limaye 2/18/2000	R. C. Trench 2/18/2000 R. C. Trench 2/29/2000		0
Ralph S. Paul 2/29/2000	Amol Limaye 2/29/2000			1
Ralph S. Paul 3/17/2000	Amol Limaye 3/17/2000	R. C. Tren 3/17/2000		2
Marte Jelespie (14136) 3/27/2000	Amol Limaye 3/27/2000	M CTurk 3/27/2000		3
This document has been pre	QUALITY ASSURANCE I pared, checked and reviewed/appr CFR50, Appendix B, as specified i	oved in accordance w	ith the Qual	ity Assurance nual.

. : .

. ۲۰۱۰ م

ZM	PR	5 8			320 King \$	ociates, Inc. Street a, VA 22314
		RECORD	OF REVISI	ONS		·
 Calculation No. 025-057-01 		Prepared MBG	Ву	Che Marine	cked By	Page 2
Revision			Descript	tion		
0) Original Issue					
1	that transmitt	corporate AEP com ed design input dat ther pages are still	a to MPR. O	update ref only pages 1	erences to inc , 2, 4, 5, 6, 14,	lude the DIT 15, and 16 we
2	Revised to inc Appendix E w Revision 0.	corporate DRB con vas added. Pages 4	nments. Only 1, 5, 14, 15 and	y pages 1, 2, 1 16 are Re	, 3, 6, and 12 w vision 1. All c	vere revised. other pages are
3	temperature f	corporate DRB cor for CPN-32. Reprin ndices D and E for	nted pages 1-1	17 to accom	pressure and imodate adde	final d text, and
·						
	_					
				-		

. . .

• • •

.

r d

•••

· · · · ·

9 -- 4 --- 2

XMP I		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No 025-057-01	. Prepared By MBC	Checked By Page 3
	CONTENTS	
SECTION	TITLE	PAGE
1.0	PURPOSE	
2.0	RESULTS	4
3.0	CALCULATION	
3.1	Approach	
3.2	Geometry and Material Data	6
3.3	Fluid Properties	
3.4	Pressure Stress	
3.5	ASME Code Stress Analysis	
4.0	REFERENCES	
APPENDIX A		
APPENDIX B		
APPENDIX C		
APPENDIX D		
APPENDIX E		

.

• 7 •

1

к»)

•

in the

; ; ; |- ; ;

. د....

<u> /</u>	MP	R				MPR Assoc 320 King St Alexandria,	reet
	Calculation	 No.	Prep	ared By	Che	ecked By	
	025-057-0)1	W	186	OF	<u></u>	Page 4
1.0	PURPOSE						
	located par Station, Un which states may becom	tially or co ait 2. The s that duri e over-pre	ompletely with evaluation add ing a design ba essurized by th	perform an eva in the containmed lresses the conce sis accident, isol e thermal expansion	ent building a ern identified ated piping se sion of the co	t D. C. Cook Nu in NRC Generic egments within o	iclear Powei c Letter 96-(
	The four co	ontainmen	t pipe segmen	ts are listed belo	W.		
	2. RO 3. CH	PN-40 CP Seal PN-37 PN-32	RCP Seal B	eak-off Return L	-		
2.0	RESULTS The results	from this	calculation, ir	cluding stress in	tensities and	material strains,	, are present
	pressure co of the mate Appendix I	ombined w erial ultim F of the 19	ith the bound ate strength, c 989 ASME Co	ensity is the prim ing longitudinal onsistent with th de (Reference 1)	stress. The all	lowable stress is criteria in Section	s taken as 70
	to be 5%. ' segments.	The calcu	lated stress int	ensities and stra	ins are less th	an the allowable st	rain is assur
		The calcu		ensities and stra	ins are less th	an the allowable	rain is assur
		The calcul Pipe Size	Fluid Pressure	Table 1: Results Material Strain	ins are less th Summary Stress Intensity	an the allowable Allowable Stress	rain is assur
	segments.	Pipe	Fluid	Table 1: Results Material	ins are less th Summary Stress	an the allowable Allowable Stress (ksi)	rain is assum e values for a Stress Index 0.80
	segments.	Pipe Size 4 in. 2 in.	Fluid Pressure	Table 1: ResultsMaterialStrain(%)2.630.05	ins are less th Summary Stress Intensity (ksi) 38.2 27.3	an the allowable Allowable Stress	rain is assum e values for a Stress Index 0.80 0.57
	segments. Segment	Pipe Size 4 in. 2 in. ³ / ₄ in.	Fluid Pressure (psia)	Table 1: ResultsMaterialStrain(%)2.630.050.02	ins are less th Summary Stress Intensity (ksi) 38.2 27.3 24.4	an the allowable Allowable Stress (ksi)	stress Stress Index 0.80 0.57 0.51
	segments. Segment	Pipe Size 4 in. 2 in. 3¼ in. 1 in.	Fluid Pressure (psia)	Material Strain (%) 2.63 0.05 0.02 1.15	ins are less th Summary Stress Intensity (ksi) 38.2 27.3 24.4 42.6	an the allowable Allowable Stress (ksi)	rain is assum e values for a Stress Index 0.80 0.57
	segments. Segment CPN-40 RCP Seal	Pipe Size 4 in. 2 in. 3⁄4 in. 1 in. 3⁄4 in.	Fluid Pressure (psia) 1,891 17,081	Table 1: ResultsMaterialStrain(%)2.630.050.02	ins are less th Summary Stress Intensity (ksi) 38.2 27.3 24.4	Allowable Stress (ksi) 47.95 47.95	Stress Index 0.80 0.57 0.51 0.89
	segments. Segment CPN-40	Pipe Size 4 in. 2 in. 3¼ in. 1 in.	Fluid Pressure (psia) 1,891	Material Strain (%) 2.63 0.05 0.02 1.15 0.14	ins are less th Summary Stress Intensity (ksi) 38.2 27.3 24.4 42.6 40.5	an the allowable Allowable Stress (ksi) 47.95	stress Stress Index 0.80 0.57 0.51 0.89 0.84
	segments. Segment CPN-40 RCP Seal	Pipe Size 4 in. 2 in. 3/4 in. 1 in. 3/4 in. 4 in.	Fluid Pressure (psia) 1,891 17,081	Material Strain (%) 2.63 0.05 0.02 1.15 0.14 2.61	ins are less th Summary Stress Intensity (ksi) 38.2 27.3 24.4 42.6 40.5 38.2	Allowable Stress (ksi) 47.95 47.95	stress Index 0.80 0.57 0.51 0.89 0.84 0.80

. . .

: :

: • ÷.,

-

ZMPR		320 King	ociates, Inc. Street a, VA 22314
Calculation No.	Prepared By	Checked By	Page 5
025-057-01	MBG	Official in the second	Page 5

3.0 CALCULATION

3.1 Approach

If a segment of piping containing water is heated, following a LOCA or steam-line break for example, the water will expand. Furthermore, if the piping segment is isolated (i.e. there is no leakage out of the piping), the constrained expansion will cause an increase in the internal pressure. Depending on the pipe geometry, pipe material and the increase in water temperature, the pressure rise could ultimately lead to an over-pressurization failure of the piping. This concern for a thermal over-pressurization failure is identified in NRC Generic Letter 96-06. The purpose of this calculation is to evaluate the possibility of failure of four potentially isolated segments of piping at D.C. Cook, Unit 2.

The analysis approach is based on the requirements and acceptance criteria for inelastic analyses in Section III, Appendix F of the 1989 ASME Code (Reference 1). In general, the analysis approach uses the maximum water temperature, the pipe stiffness and pipe material properties to calculate the resulting internal pressure and material stress-strain state for a postulated increase in temperature scenario. The specific steps in the analysis procedure are described below.

- 1. The isolated piping segment arrangement is reviewed to determine all of the pipe sections and materials. This review includes the main piping run as well as branch lines, vents and drains. The information on each pipe is required to determine the pressure and stresses in the entire piping segment.
- 2. The maximum piping segment temperature is based on conditions during a loss-of-coolant accident or steam line break. Under these conditions, Reference 2 calculates a maximum bounding piping segment water temperature of 250°F for penetrations CPN-40, the RCP Seal and CPN-37. The bounding water temperature for penetration CPN-32 is 240°F as defined in Reference 2.
- 3. A bi-linear stress-strain curve for the specific pipe material (Type 304 stainless steel) is developed. Both the elastic stretching of the pipe wall as well as the plastic deformation of the pipe with strain hardening is considered.
- 4. An equation of state for the water in the isolated piping segments is developed, which relates pressure to specific volume at a given temperature. The equation of state is developed from the ASME Steam Tables (Reference 11).

IMPR		MPR Associates, Inc. 320 King Street Alexandria, VA 22314		
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page 6	
volume and press	ous equations relating pipe str ure is developed. The solution ng segment pressure stress.	ess and strain and the wate of the equations provides t	r mass, speci he final wate	
6. The calculated pr deadweight and s	essure stresses are combined w eismic loads to determine the s	ith the longitudinal stresses tress intensity for each sect	s from ion of pipe.	
7. The calculated str (Reference 1) allo	ress intensity is compared to th wable stress.	e corresponding Section III	, Appendix	
8. Secondary stresse analysis does not	s at anchor points and transition require an evaluation of second	ons are not considered beca dary stresses.	use a Level 2	
attached. The va	ssumed to be at least as strong lve bodies are evaluated in MP assumed to be at least as stron	R Calculation 025-057-02 (vhich they an Reference 9	
3.2 Geometry and	Material Data			

The data required for each piping segment are the pipe diameter, wall thickness and material properties for each cross section included in the isolated segment between the isolation valves. The piping geometry is found in References 3-6 and 13. AEP DIT No. DIT-B-00842-00 (Reference 14) provides the list of references from which the design inputs were obtained. The material data include: Material Class and Material Type (References 7 and 8), design stress intensity (S_m), yield stress (S_y), ultimate strength (S_u), elastic modulus (E), and plastic modulus (E_p). The plastic modulus is found in Reference 10 and the associated stress-strain curve is shown on Figure 1. The remaining material properties are extracted from the 1989 ASME Code (Reference 12). All material properties are evaluated at 250°F, the highest piping segment are summarized below and listed in Table 2. Nominal pipe wall thickness was used for the evaluations. Appendix E presents a sensitivity analysis of the effect of pipe wall thickness variation on calculated piping pressure and stress.

CPN-40: PRT and RCDT Drain Piping

Containment penetration 40 (CPN-40) consists of piping from the normally closed Pressurizer Relief Tank (PRT) drain line and the Reactor Coolant Drain Tank (RCDT) drain line check valve to the normally closed isolation valves outside containment. The system includes SA-312 Type 304 stainless steel piping of three different sizes: 4-inch schedule 10, 2-inch schedule 40 and ³/₄-inch schedule 40 (Reference 3).

WITT	-	
ZAN	RA 200)
ZAN		

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

Checked By

Calculation No. 025-057-01

÷.,.÷

+

13.54

Prepared By	
MBG	

Page 7

RCP Seal Bypass Line

The Reactor Coolant Pump (RCP Seal) penetration consists of piping from the seal bypass line check valves to the normally closed QRV-150 valve in the common discharge header. The system includes SA-376 Type 304 stainless steel piping of two different sizes: 1-inch schedule 160 and 34-inch schedule 160 (Reference 4).

CPN-37: RCP Seal Leak-off Return Line

Containment penetration 37 (CPN-37) consists of piping between containment isolation valves, including test connections. The system includes SA-312 Type 304 stainless steel piping of two different sizes: 4-inch schedule 10 and 1-inch schedule 40 (Reference 5).

CPN-32: Accumulator Fill Lines

Containment penetration 32 (CPN-32) consists of piping from outside the containment isolation valves to the normally closed accumulator "inlet" valves and the normally closed valves in the flow paths to the low head Safety Injection (SI) hot leg loops. The system includes SA-376 Type 304 stainless steel piping of two different sizes: 1-inch schedule 160 and 3/4-inch schedule 160 (Reference 6).

Table 2: Geometry and Material Properties										
	Geometry Data				Material Data					
ID	Pipe Size	OD (in)	Wall (in)	Class	Туре	S _m (ksi)	S _y (ksi)	S _u (ksi)	E (10 ⁶ psi)	E _p (10 ⁶ psi)
	4 in	4.500	0.120	B-23	SA312 TP304	20.0	23.75	68.5	27.3	0.425
	2 in	2.375	0.154	B-23	SA312 TP304	20.0	23.75	68.5	27.3	0.425
CPN-40	3⁄4 in	1.050	0.113	B-23	SA312 TP304	20.0	23.75	68.5	27.3	0.425
	4 in	4.500	0.120	B-14	SA312 TP304	20.0	23.75	68.5	27.3	0.425
RCP	1 in	1.315	0.250	M-14	SA376 TP304	20.0	23.75	68.5	27.3	0.425
Seal	3⁄4 in	1.050	0.219	M-14	SA376 TP304	20.0	23.75	68.5	27.3	0.425
	4 in	4.500	0.120	B-14	SA312 TP304	20.0	23.75	68.5	27.3	0.425
CPN-37	1 in	1.315	0.133	B-14	SA312 TP304	20.0	23.75	68.5	27.3	0.425
	1 in	1.315	0.250	M-14	SA376 TP304	20.0	23.75	68.5	27.3	0.425
CPN-32	³ ⁄4 in	1.050	0.219	M-14	SA376 TP304	20.0	23.75	68.5	27.3	0.425

Material Properties

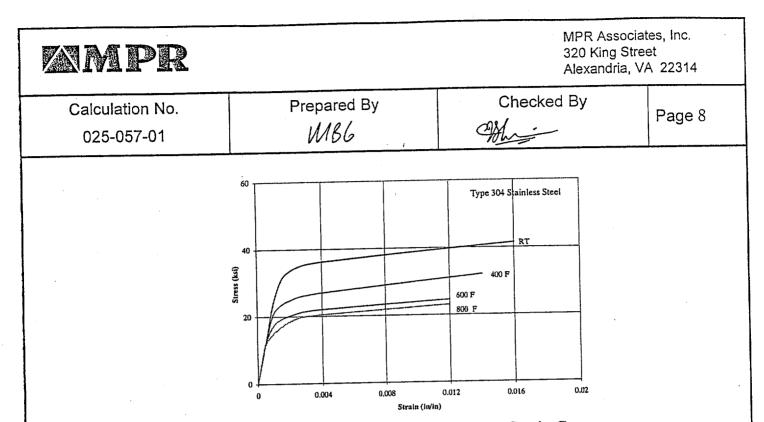


Figure 1: Type 304 Stainless Steel Stress-Strain Curve.

3.3 Fluid Properties

. Х The calculations to determine maximum internal pressure and corresponding pipe stresses for CPN-40, the RCP Seal line and CPN-37 are performed for the maximum bounding piping segment water temperature of 250°F. These piping stress calculations assume the piping segments are initially at 15 psia and 70°F prior to the LOCA or steam-line break. This initial temperature is considered conservative since the containment temperature would likely be higher. If valve leakage resulted in a higher initial pressure and temperature, the valve leakage would preclude pressurization due to thermal expansion of the contained fluid.

Figure 2 shows the relationship between pressure and specific volume at a temperature of 250°F (from Reference 11); Table 3 provides the data for the graph. A polynomial curve fit is also shown which represents the equation of state for the fluid. This equation will be used in the determination of fluid pressure for the maximum temperature conditions. The specific volume for the initial conditions (15 psia, 70°F) is v = 0.01605 ft³/lb.

	Pressure (psia)	Specific Volume (ft ³ /lb)	Pressure (psia)	Specific Volume (ft ³ /lb)
-	1000	0.016944	6000	0.016655
	2000	0.016883	7000	0.016602
	3000	0.016823	8000	0.016550
	4000	0.016766	9000	0.016500
	5000	0.016710	10000	0.016451

Table 3:	Specific Volume	versus Pressure	at 250°F
----------	-----------------	-----------------	----------

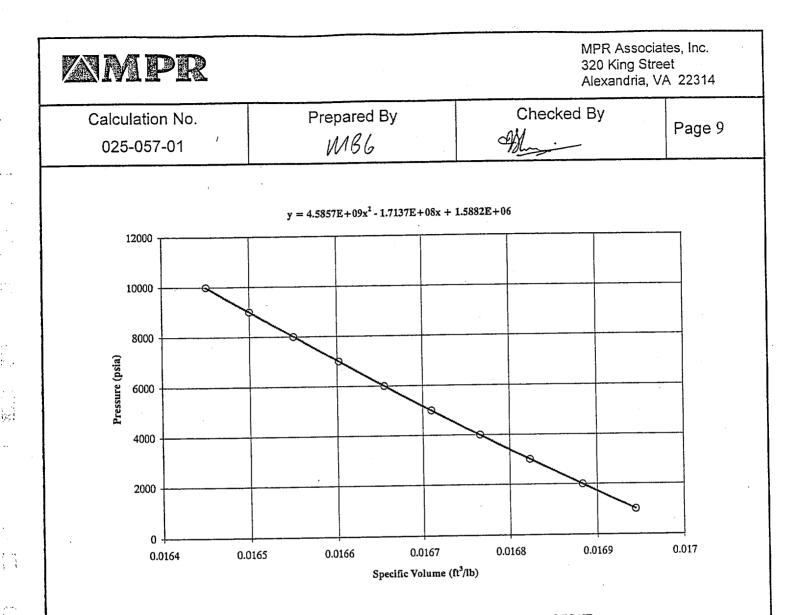
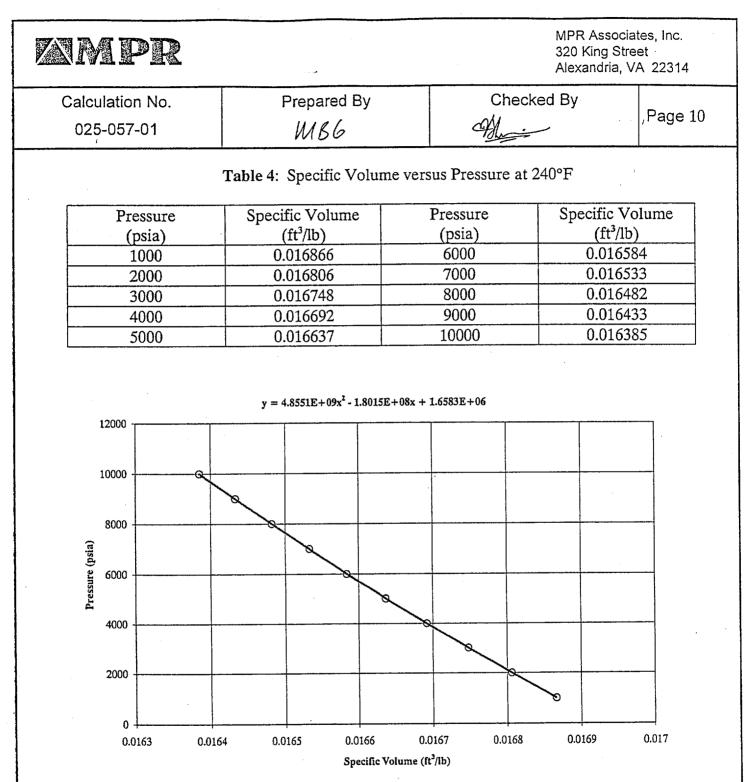



Figure 2: Equation of State for Water at 250°F.

The calculations to determine maximum internal pressure and corresponding pipe stresses for CPN-32 are performed for a maximum bounding piping segment water temperature of 240°F. These piping stress calculations assume the piping segments are initially at 1800 psia and 70°F prior to the LOCA or steam-line break. This pressure is significantly higher than for the other penetrations because the accumulator fill line has the potential of being pressurized with the maximum head of 3790 feet, or 1650 psia (Reference 15). The total line pressure used in this calculation is 1800 psia, which bounds the maximum head plus the inlet suction pressure of the pump.

Figure 3 shows the relationship between pressure and specific volume at a temperature of 240°F (from Reference 11); Table 4 provides the data for the graph. The polynomial curve fit represents the equation of state for the fluid and will be used in the determination of fluid pressure for the maximum temperature conditions. The specific volume for the initial conditions (1800 psia, 70°F) is v = 0.015961 ft³/lb.

3.4 Pressure Stress

For the general case in which a piping segment has a single pipe size and material, the fluid pressure and piping stress-strain solution are determined by solving a set of six simultaneous equations with six unknowns. The stress-state resulting from pressure loads is then combined with other stresses in Section 3.5 below as part of the ASME Code evaluation.

MMPR		MPR Associates, Inc. 320 King Street Alexandria, VA 22314		
Calculation No. 025-057-01	Prepared By MBG		Checked By	Page 11
The six unknowns repr		d condition in t	the isolated segmen	nt are:
The six unknowns repr	esenting the pressure			
P = Internal pres			op strain (in/in)	
v = Specific volum		r = Pipe inside vol = Volume	e of water (ft^3)	
$\sigma_h \equiv$ Pipe hoop st				
The following constan	ts are used to solve for	the unknown v	ariables:	
t = Pipe wall thic	kness (in)	$r_0 \equiv Initial place$	pe inside radius (in	nch)
$m_w = Mass of wa$			ld stress (psi)	
	$ain (in/in) (= S_y/E)$	-	stic modulus (psi)	
	ansion coeff. (in/in/°F)		astic modulus (psi)	
The set of equations t	hat define the fluid stat	e and stress-str	ain state are:	
Membrane Stres				
Volume (per uni	t length): $vol = \pi$	• •	for $\sigma_{\rm h} > S$	2
Stress - Strain:		$+ (\epsilon_p - \epsilon_y) E_p$	for $\sigma_h < S$	
	$\begin{array}{l} \sigma_{h}=\epsilon_{p}\\ \nu=\mathrm{vol} \end{array}$	L / m	IOI Oh (у у
Specific Volume Equation of Stat		$4.5857 \times 10^9 v^2$ -	$1.7137 \times 10^8 v + 1.5$	882x10 ⁶
Radius:	$r = (1 - 1)^{-1}$			
directions is consider (SA-312 TP304 and S from 70°F to 250°F (nt of thermal e to calculate the	material expansion	n due to heat
Then, using $\alpha_{\rm T} = 8.90$)x10 ⁻⁶ in/in/°F (Referen	ce 12), the stra	in due to thermal e	expansion is
$\epsilon_{th} = \alpha_T(\Delta T) = 1$	8.90x10 ⁻⁶ in/in/°F (180°	F) = 0.001602	in/in	
The equation for the	pipe radius is modified	l to incorporate	the thermal expan	nsion:
$\mathbf{r} = (1 + \boldsymbol{\varepsilon}_{p}) \left(\mathbf{r}_{0} \right)$	$(\epsilon_{th}+1)$			
The set of equations pipe cross section. F	listed above can be sol- or piping segments wit	h multiple cros	s sections, the set c	or equations i

÷.,

1. 1. 2.2

÷.,

27-24 177 177

5-19-1 3-19-1 3-1

be extended to account for the potential expansion of fluid from one section of pipe into another. For example, if a segment includes a length of 1-inch pipe and a length of 4-inch pipe

MPR		320 King -	ociates, Inc. Street a, VA_22314
Calculation No. 025-057-01	Prepared By MB6	Checked By	Page 12

(same pipe schedule), the 1-inch pipe is stiffer and stronger than the 4-inch pipe. Hence, as the fluid is heated and pressurized, the 1-inch pipe would likely remain elastic and yield very little while the 4-inch pipe would yield and "balloon" to allow the fluid to expand. As a result, the fluid expansion in the 1-inch pipe would result in a net flow into the 4-inch pipe. In other words, the net increase in volume in the 4-inch pipe section must include the expansion of the fluid initially in the 1-inch pipe section.

In order to address multiple cross sections, the basic equation set is extended to include each section of pipe. The resulting set of unknowns is:

P = Internal pressure (psia)	(one pressure for all pipes)
v = Specific volume (ft ³ /lb)	(one specific volume for all pipes)
$\sigma_{\rm hi} = {\rm Pipe} i {\rm hoop stress} ({\rm psi})$	(one for each pipe)
$\varepsilon_{pi} = \text{Pipe } i \text{ hoop strain (in/in)}$	(one for each pipe)
$r_i = Pipe i$ inside radius (in)	(one for each pipe)
$vol_i = Volume pipe i (ft^3)$	(one for each pipe)
$m_{wi} \equiv Mass of water pipe i$ (lb)	(one for each pipe)

The additional unknowns (the mass of water in each pipe section) require two additional constants to be defined. The total mass of water is conserved for all cases because the piping segments are bounded by isolation valves.

$L_i = Length of pipe i$ (ft)	(one for each pipe)
$m_{tot} = Total mass of water (lb)$	(total mass of all pipes)

17

For the containment penetrations at D.C. Cook Unit 2, the lengths of different cross section pipe for each piping segment are shown in Table 4.

Segment	T	Length		
	4 in	SCH 10S	SA312 TP304	159 ft
CPN-40	2 in	SCH 40	SA312 TP304	4 ft
OTT TO	³ / ₄ in	SCH 40	SA312 TP304	24 ft
RCP Seal	1 in	SCH 160	SA376 TP304	20 ft
	³ / ₄ in	SCH 160	SA376 TP304	450 ft
·	4 in	SCH 10S	SA312 TP304	34 ft
CPN-37	1 in	SCH 40	SA312 TP304	3 ft
CPN-32	1 in	SCH 160	SA376 TP304	270 ft
	³ / ₄ in	SCH 160	SA376 TP304	138 ft

Table 5: Piping Segment Lengths

ZMPR		320 King \$	ociates, Inc. Street a, VA 22314
Calculation No. 025-057-01	Prepared By	Checked By	Page 13

Thus, the following set of equations is used to determine the conditions of a piping segment with multiple pipe cross sections.

Membrane Stress:	$\sigma_{\rm hi} = ({\rm P} r_{\rm i})/(t_{\rm i})$
Volume:	$\operatorname{vol}_{i} = \pi(r_{i}^{2})(L_{i})$
Stress - Strain:	$\sigma_{hi} = S_{vi} + (\varepsilon_{pi} - \varepsilon_{vi}) E_{pi}$ for $\sigma_{hi} > S_{vi}$
	$\sigma_{hi} = \epsilon_{pi} E_i \qquad \qquad \text{for } \sigma_{hi} < S_{yi}$
Specific Volume:	$v = vol_i / m_{wi}$
Equation of State:	$P(v) = 4.5857 \times 10^9 v^2 - 1.7137 \times 10^8 v + 1.5882 \times 10^6$
Radius:	$\mathbf{r}_{i} = (1 + \varepsilon_{pi}) \mathbf{r}_{0i}$
Mass:	$m_{tot} = \sum m_{wi}$

The equations and methods listed above are used to determine the fluid pressure and material stress-strain state for the four piping segments at D.C. Cook, Unit 2. The calculations are performed using MathCAD and the equations and results are shown in Appendices A-D. The results of these calculations are shown in Table 5.

In performing the calculations shown in Table 5, several simplifying assumptions are made. These assumptions, which are conservative and are not considered to affect the calculation results, are as follows:

- The piping is bounded on each end by isolation valves. The isolation valve walls are thicker and stronger than the main piping. As a result, the strain in the valves will be less than the piping. The amount of water in the valves is assumed very small compared to the main piping. Thus, the expansion of this water (in the valve) and the possible strain of the valve body are neglected.
- The stronger valves will restrain the piping deflection at valve connections, preventing the piping from fully yielding and straining at that point (compared to the calculated values). The localized pipe strain at valve connections is neglected when calculating the pressure and stress/strain state of the piping.
- Absolute pressure is used to calculate piping pressure stress rather than gauge pressure for simplicity and conservatism.
- For conservatism, the expansion of the piping in the longitudinal direction due to pressure has been neglected.

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

Calculation No.	Prepared By	Checked By	Dere 14
[′] 025-057-01	MB6	appl	Page 14

 Table 6: Pressure and Stress Results

Segment	Pipe	Р	ν	σ_{h}	ερ	vol	r	m _w
-	Size	(psia)	(ft³/lb)	(ksi)	(in/in)	(ft^3)	(in)	(lb)
	4 in			34.5	0.02629	16.66	2.19	981.1
CPN-40	2 in	1,891	0.016977	12.7	0.00047	0.094	1.04	5.522
	³ / ₄ in			6.9	0.00025	0.089	0.41	5.263
	1 in	17.001	0.01(107	28.2	0.01147	0.074	0.41	4.599
RCP Seal	³ / ₄ in	17,081	0.016197	23.9	0.00143	0.926	0.31	57.19
ODNI 27	4 in	1 000	0.01(077	34.4	0.02614	3.561	2.19	209.7
CPN-37	1 in	1,888	0.016977	7.5	0.00027	0.018	0.52	1.066
CDNI 22	1 in	15 206	0.016144	25.1	0.00422	0.991	0.41	61.38
CPN-32	³ / ₄ in	15,326	0.016144	21.5	0.00079	0.284	0.31	17.57

3.5 ASME Code Stress Analysis

The pressure hoop stresses calculated in the previous section are just one load applied to the piping segment. The piping could also be subjected to loads from deadweight, thermal expansion and seismic events, which could result in longitudinal pipe stresses that would either add or subtract from the pressure-induced longitudinal stresses. For a Level D evaluation, only the primary loads due to deadweight and seismic events need to be considered in addition to the pressure loads. For this analysis, it is conservatively assumed that the longitudinal stresses (S_L) from both deadweight and seismic loads are equivalent to the material design stress intensity, S_m .

The acceptance criteria in Section III, Appendix F of the ASME Code are based on calculated stress intensity. The acceptance criterion is:

 $SI < 0.7 S_{u}$

where SI is the calculated stress intensity.

In addition to the stress limit specified in the ASME Code, this analysis places a limit on the calculated strain. Article F-1322.5 of Appendix F states that "in addition to the limits given in this Appendix, the strain or deformation limits (if any) provided in the Design Specification shall be satisfied." While none of the applicable Design Specifications identify a material strain limit, it is important that calculated strain remains low enough to ensure that failure will not occur. For this analysis, a limit of 5% strain is applied. Based on engineering judgment, none of the materials used in the pipe segments will fail at strains of less than 10%; so the limit of 5% provides a safety factor of two. It should be noted, however, that the primary acceptance

20MPR		320 King	ociates, Inc. Street a, VA_22314
Calculation No. 025-057-01	Prepared By <i>MBG</i>	Checked By	Page 15

criterion used in this analysis is the stress limit specified in Appendix F. The specified strain limit is included only for completeness.

The stresses calculated in Section 3.4 are in the hoop direction and they are principal stresses. The deadweight and seismic load stresses are longitudinal stresses and they are also principal stresses. There is also a longitudinal stress due to pressure, which is one-half the hoop stress. Since the deadweight and seismic stresses are bending stresses, acting in tension on one side and compression on the other, the three principal stresses are:

 $S_1 = Pr/t$ $S_2 = Pr/2t \pm S_L \text{ where } S_L = S_m$ $S_3 = -P/2$

The second principal stress has two variations:

 $S_{2+} = Pr/2t + S_L$ $S_{2-} = Pr/2t - S_L$

1

.

ی میں در در است The stress intensity is calculated as the maximum of the absolute values of the following stress differences (in accordance with the ASME Code):

SI = Maximum of $(S_1 - S_{2+})$, $(S_1 - S_{2-})$, $(S_{2+} - S_3)$, $(S_{2-} - S_3)$, or $(S_3 - S_1)$

The results of the calculations for principal stresses and stress intensity are summarized below.

Company	Ding Cing	S1	S2	S3	SI
Segment	Pipe Size		1		(ksi)
		(ksi)	(ksi)	(ksi)	
	4 in	34.5	37.2 / -2.75	-0.95	38.2
CPN-40	2 in	12.7	26.4 / -13.6	-0.95	27.3
	³ /4 in	6.91	23.4 / -16.5	-0.95	24.4
DODOUT	1 in	28.2	34.1 / -5.90	-8.54	42.6
RCP Seal	³ /4 in	23.9	32.0 / -8.03	-8.54	40.5
ODNI 27	4 in	34.4	37.2 / -2.78	-0.94	38.2
CPN-37	1 in	7.46	23.7 / -16.3	-0.94	24.7
CDLCC	1 in	25.1	32.6 / -7.44	-7.66	40.2
CPN-32	³ /4 in	21.5	30.7 / -9.27	-7.66	38.4

Table 7: Principal Stresses and Stress Intensity

Calculation No. Prepared By Checked By Page 16 025-057-01 <i>MBb Mbb</i> Page 16 The calculated stress intensities are compared to the ASME Section III, Appendix F criteria of 0.7S ₄ (= 47.95 ksi). It should be noted that the plastic analysis method of Appendix F-1340 only requires consideration of primary membrane stresses. The secondary stresses that would be present at branch connections, elbows and valves are not evaluated. 4.0 REFERENCES 1 1989 ASME Code, Section III, Division 1 – Appendix F. 2. MPR Calculation 025-057-03, "Documentation of Isolated Piping Temperature for GL 96-06 Evaluation," Rev 1. 9. D.C. Cook Drawing No. 0P-12-5137A, Rev 18, "WDS Vents & Drains." 9. D.C. Cook Drawing No. 12-WD-30, Sh. 2 of 3, Rev 1. 9. D.C. Cook Drawing No. 2-WD-80, Sh. 3 of 3, Rev 1. 9. D.C. Cook Drawing No. 2-WD-80, Sh. 2 of 3, Rev 1. 9. D.C. Cook Drawing No. 2-WD-539, Rev 0. 9. D.C. Cook Drawing No. 2-WD-539, Rev 0. 9. D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. 9. D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. 9. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 2. 9. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. 9. D.C. Cook Drawing No. 2-CS-71	ZN	MPR			MPR Associates, Inc. 320 King Street Alexandria, VA 22314
 025-057-01 <i>MB 6</i> The calculated stress intensities are compared to the ASME Section III, Appendix F criteria of 0.7S_n (= 47.95 ksi). It should be noted that the plastic analysis method of Appendix F-1340 only requires consideration of primary membrane stresses. The secondary stresses that would be present at branch connections, elbows and valves are not evaluated. 40 REFERENCES 1989 ASME Code, Section III, Division 1 – Appendix F. MPR Calculation 025-057-03, "Documentation of Isolated Piping Temperature for GL 96-06 Evaluation," Rev 1. Drawings for Containment Penetration CPN-40: D.C. Cook Drawing No. 0P-12-5137A, Rev 18, "WDS Vents & Drains." D.C. Cook Drawing No. 12-WD-3, Rev 7. D.C. Cook Drawing No. 2-WD-30, Sh. 1 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 3 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 3 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 4. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 4. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 4. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 5. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 4. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 5. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 4. D.C. Cook Drawing No.	С	alculation No.	Prepared By	Checked	d By
 The calculated stress intensities are compared to the ASME Section III, Appendix F criteria of 0.7S_a (= 47.95 ksi). It should be noted that the plastic analysis method of Appendix F-1340 only requires consideration of primary membrane stresses. The secondary stresses that would be present at branch connections, elbows and valves are not evaluated. 4.0 REFERENCES 1989 ASME Code, Section III, Division 1 – Appendix F. MPR Calculation 025-057-03, "Documentation of Isolated Piping Temperature for GL 96-06 Evaluation," Rev 1. Drawings for Containment Penetration CPN-40: D.C. Cook Drawing No. 12-WD-3, Rev 18, "WDS Vents & Drains." D.C. Cook Drawing No. 2-WD-30, Sh. 2 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-30, Sh. 2 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-538, Rev 0. D.C. Cook Drawing No. 2-WD-538, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 7. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 45, "Reactor Coolant." D.C. Cook Drawing No. 2-WD-539, Rev 45. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No		025-057-01	ÚIB6	all.	Page 16
 only requires consideration of primary membrane stresses. The secondary stresses that would be present at branch connections, elbows and valves are not evaluated. 4.0 REFERENCES 1989 ASME Code, Section III, Division 1 – Appendix F. MPR Calculation 025-057-03, "Documentation of Isolated Piping Temperature for GL 96-06 Evaluation," Rev 1. Drawings for Containment Penetration CPN-40: D.C. Cook Drawing No. 0P-12-5137A, Rev 18, "WDS Vents & Drains." D.C. Cook Drawing No. 0P-12-5137A, Rev 18, "WDS Vents & Drains." D.C. Cook Drawing No. 2-WD-30, Sh. 1 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 2 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 3 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-538, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, R] (The calculated stress $75 (= 47.95 \text{ ksi})$	intensities are compared to t	he ASME Section II astic analysis method	II, Appendix F criteria o d of Appendix F-1340
 1989 ASME Code, Section III, Division 1 – Appendix F. MPR Calculation 025-057-03, "Documentation of Isolated Piping Temperature for GL 96-06 Evaluation," Rev 1. Drawings for Containment Penetration CPN-40: D.C. Cook Drawing No. 0P-12-5137A, Rev 18, "WDS Vents & Drains." D.C. Cook Drawing No. 12-WD-3, Rev 7. D.C. Cook Drawing No. 2-WD-80, Sh. 1 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 2 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 2 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 3 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-538, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 0P-2-5128A, Rev 45, "Reactor Coolant." D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Dr	C	only requires conside	ration of primary membrane	stresses. The secon	dary stresses that would
 MPR Calculation 025-057-03, "Documentation of Isolated Piping Temperature for GL 96-06 Evaluation," Rev 1. Drawings for Containment Penetration CPN-40: D.C. Cook Drawing No. 0P-12-5137A, Rev 18, "WDS Vents & Drains." D.C. Cook Drawing No. 12-WD-3, Rev 7. D.C. Cook Drawing No. 2-WD-80, Sh. 1 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 2 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 2 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 3 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-538, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 30, "	4.0 I	REFERENCES			
 MPR Calculation 025-057-03, "Documentation of Isolated Piping Temperature for GL 96-06 Evaluation," Rev 1. Drawings for Containment Penetration CPN-40: D.C. Cook Drawing No. 0P-12-5137A, Rev 18, "WDS Vents & Drains." D.C. Cook Drawing No. 12-WD-3, Rev 7. D.C. Cook Drawing No. 2-WD-80, Sh. 1 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 2 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 2 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 3 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-538, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 30, "	1	. 1989 ASME Co	de, Section III, Division 1 – A	Appendix F.	
 Drawings for Containment Penetration CPN-40: D.C. Cook Drawing No. OP-12-5137A, Rev 18, "WDS Vents & Drains." D.C. Cook Drawing No. 12-WD-3, Rev 7. D.C. Cook Drawing No. 2-WD-80, Sh. 1 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 2 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 3 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-538, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. Drawings for Containment Piping Segment RCP Seal: D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. Drawings for Containment Penetration CPN-37:	2	2. MPR Calculation	on 025-057-03, "Documentati	on of Isolated Pipin	g Temperature for GL
 D.C. Cook Drawing No. OP-12-5137A, Rev 18, "WDS Vents & Drains." D.C. Cook Drawing No. 12-WD-3, Rev 7. D.C. Cook Drawing No. 2-WD-80, Sh. 1 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 2 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-538, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. 4. Drawings for Containment Piping Segment RCP Seal: D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-714, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-714, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-714, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 				[/ 0•	
 D.C. Cook Drawing No. 12-WD-3, Rev 7. D.C. Cook Drawing No. 2-WD-80, Sh. 1 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 2 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 3 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-538, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. Prawings for Containment Piping Segment RCP Seal: D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 9. 		3. Drawings for Co	Ontainment Penetration CPN	ev 18 "WDS Vents	s & Drains."
 D.C. Cook Drawing No. 2-WD-80, Sh. 1 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 2 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 3 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-538, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. 4. Drawings for Containment Piping Segment RCP Seal: D.C. Cook Drawing No. OP-2-5128A, Rev 45, "Reactor Coolant." D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. 5. Drawings for Containment Penetration CPN-37: D.C. Cook Drawing No. 2-CS-714, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 9. 					C Diams.
 D.C. Cook Drawing No. 2-WD-80, Sh. 2 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-80, Sh. 3 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-538, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. 4. Drawings for Containment Piping Segment RCP Seal: D.C. Cook Drawing No. OP-2-5128A, Rev 45, "Reactor Coolant." D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9.					
 D.C. Cook Drawing No. 2-WD-80, Sh. 3 of 3, Rev 1. D.C. Cook Drawing No. 2-WD-538, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. 4. Drawings for Containment Piping Segment RCP Seal: D.C. Cook Drawing No. OP-2-5128A, Rev 45, "Reactor Coolant." D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 7 of 7, Rev 5. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-719, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-719, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-714, Rev 2. 		• D.C. COOK I	Drawing No. 2-WD-80, Sh. 1 Drawing No. 2-WD-80 Sh. 2	of 3 Rev 1	
 D.C. Cook Drawing No. 2-WD-538, Rev 0. D.C. Cook Drawing No. 2-WD-539, Rev 0. 4. Drawings for Containment Piping Segment RCP Seal: D.C. Cook Drawing No. OP-2-5128A, Rev 45, "Reactor Coolant." D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. 5. Drawings for Containment Penetration CPN-37: D.C. Cook Drawing No. OP-2-5129A, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 					
 D.C. Cook Drawing No. 2-WD-539, Rev 0. 4. Drawings for Containment Piping Segment RCP Seal: D.C. Cook Drawing No. OP-2-5128A, Rev 45, "Reactor Coolant." D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 7 of 7, Rev 5. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. 5. Drawings for Containment Penetration CPN-37: D.C. Cook Drawing No. 0P-2-5129A, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 9. 					
 4. Drawings for Containment Piping Segment RCP Seal: D.C. Cook Drawing No. OP-2-5128A, Rev 45, "Reactor Coolant." D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. 5. Drawings for Containment Penetration CPN-37: D.C. Cook Drawing No. OP-2-5129A, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 					
 D.C. Cook Drawing No. OP-2-5128A, Rev 45, "Reactor Coolant." D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 7 of 7, Rev 5. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 4. D.C. Cook Drawing No. 2-CS-714, Rev 5. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 4. D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 					
 D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-719, Sh. 1 of 2, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 		• D.C. Cook	Drawing No. OP-2-5128A, R	ev 45, "Reactor Coo	lant."
 D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 7 of 7, Rev 5. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 		 D.C. Cook] 	Drawing No. 2-CS-711, Sh. 1	of 7, Rev 2.	
 D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2. D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 7, Rev 5. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 		 D.C. Cook] 	Drawing No. 2-CS-711, Sh. 2	of 7, Rev 2.	
 D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 5. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 					
 D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 7 of 7, Rev 5. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 					
 D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1. D.C. Cook Drawing No. 2-CS-711, Sh. 7 of 7, Rev 5. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. Drawings for Containment Penetration CPN-37: D.C. Cook Drawing No. OP-2-5129A, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 					
 D.C. Cook Drawing No. 2-CS-711, Sh. 7 of 7, Rev 5. D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev 1. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. Drawings for Containment Penetration CPN-37: D.C. Cook Drawing No. OP-2-5129A, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 					
 D.C. Cook Drawing No. 2-CS-712, Sh. 2 of 2, Rev 3. D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. Drawings for Containment Penetration CPN-37: D.C. Cook Drawing No. OP-2-5129A, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 					
 D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. Drawings for Containment Penetration CPN-37: D.C. Cook Drawing No. OP-2-5129A, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 		• D.C. Cook	Drawing No. 2-CS-712, Sh. 1	of 2, Rev 1.	
 D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 2. D.C. Cook Drawing No. 2-CS-714, Rev 2. Drawings for Containment Penetration CPN-37: D.C. Cook Drawing No. OP-2-5129A, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 		• D.C. Cook	Drawing No. 2-CS-712, Sh. 2	of 2, Rev 3.	
 D.C. Cook Drawing No. 2-CS-714, Rev 2. Drawings for Containment Penetration CPN-37: D.C. Cook Drawing No. OP-2-5129A, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 					
 5. Drawings for Containment Penetration CPN-37: D.C. Cook Drawing No. OP-2-5129A, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 					
 D.C. Cook Drawing No. OP-2-5129A, Rev 30, "CVCS – Reactor Letdown & Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 					
 Charging." D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 		5. Drawings for C	Containment Penetration CP	N-37:	
 D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6. D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 		• D.C. Cook	Drawing No. OP-2-5129A, F	lev 30, "CVCS – Re	actor Letdown &
 D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9. 					
• D C Cook Drawing No 2-CS-122, Sh. 2 of 3, Rev 6.					

ł.,

11.1

a na Ion (

··· · • · • ·

: ':

D.C. Cook Drawing No. 2-CS-122, Sh. 2 of 3, Rev 6.
D.C. Cook Drawing No. 2-CS-122, Sh. 3 of 3, Rev 8.

ZMPR		APR	-	320 King	sociates, Inc. g Street ria, VA 22314
	Calc	ulation No.	Prepared By	Checked By	
	02	5-057-01	MB6	All	Page 17
	6. 7. 8. 9.	Drawings for Con D.C. Cook D: Accumulator D.C. Cook D: D	ntainment Penetration CPN-32 rawing No. OP-2-5143A, Rev 7 Piping." rawing No. 2-SI-532, Sh. 2, Rev rawing No. 2-SI-532, Sh. 2, Rev rawing No. 2-SI-570, Sh. 2, Rev rawing No. 2-SI-570, Sh. 1 of 6 rawing No. 2-SI-570, Sh. 2 of 6 rawing No. 2-SI-570, Sh. 3 of 6 rawing No. 2-SI-570, Sh. 4 of 6 rawing No. 2-SI-570, Sh. 4 of 6 rawing No. 2-SI-570, Sh. 5 of 6 rawing No. 2-SI-570, Sh. 5 of 6 rawing No. 2-SI-571, Rev 4. rawing No. 2-SI-572, Sh. 1 of 2 rawing No. 2-SI-573, Rev 2. rawing No. 2-SI-574, Sh. 1 of 2 rawing No. 2-SI-574, Sh. 1 of 2 rawing No. 2-SI-575, Sh. 2 of 2 rawing No. 2-SI-576, Rev 3. rawing No. 2-SI-577, Sh. 2 of 2 rawing No. 2-SI-577, Sh. 2 of 2 rawing No. 2-SI-577, Sh. 1 of 2 rawing No. 2-SI-577, Sh. 2 of 2 rawing No. 2-SI-577, Sh. 1 of 2 rawing No. 2-SI-577, Sh. 1 of 2 rawing No. 2-SI-577, Sh. 1 of 2 rawing No. 2-SI-578, Sh. 1 of 2 rawing No. 2-SI-578, Sh. 2 of 2 rawing No. 2-SI-579, Sh. 1 of 2 rawing No. 2-SI-579, Sh. 1 of 2 rawing No. 2-SI-579, Sh. 2 of 2 rawing	 "Emerg. Core Cooling of 41, "Emergency Core Cool v 1. Rev 1. Rev 1. Rev 1. Rev 1. Rev 0. Rev 0. Rev 2. Rev 2. Rev 1. Rev 0. Rev 1. Rev 0. Rev 1. Rev 0. Rev 1. Rev 0. Rev 1. QCS, Rev 1, "Pipe Mater QCN-CS3, Rev 1, "Pipe N 	oling (SIS)." ial Specificatio Material ," Rev 1.
	10.	Type 304 Stainles		e 2, 1990, Code 1903, Fig	uic <i>J.</i> (<i>J</i> 112,
	11.	ASME Steam Ta	•		
	12.		e, Section II: Part D – Propert		
	13.		Paper No. 410, "Flow of Fluid		
	14.		2-00, Input for MPR Report		
	15.	AEP DIT-B-0096	66-00, Input for MPR Report 1	No. MPR-2131.	

•

. Laño

[· · · · · · · ·

. ••

• •

Calculation No. Prepared B 025-057-01 MBG APPEN PURPOSE:	IDIX A	Checked By	Page 18 ⁷
APPEN			ı
PURPOSE:			
The purpose of this calculation is to perform an excontainment to determine the effect of thermal ov thermal expansion of the contained water. The re-	valuation of is er-pressurizat esults of this c	olated piping segments that pe tion during a design basis accio alculation represent piping seg	enetrate the dent by the gment
CPN-40 at D.C. Cook, Unit 2. CALCULATION: The expected temperature of the water during a l	OCA and the	ambient temperature are	
The expected temperature of the water during a T T _{LOCA} := 250 T_{amb} := 7			
The conversion for psi to ksi is ksi := 1000 psi For penetration CPN-40, there are three different pipe material propoerties and geometry were det	t pipes in the s termined.	system. Using References 3, ²	12 and 13, the
The first pipe is 4" Sch 10, pipe specification B-1	4/B-23		
ID $_{4B14} := 4.260$ in S $_{m4B14}$:=20 ksi	$E_{4B14} := 27.3 \cdot 10^6 \text{ psi}$	
$t_{4B14} := 0.120 \text{ in}$ $S_{y4B14} :=$	=23.7 ksi	$E_{p4B14} := 0.425 \cdot 10^6 \text{ ps}$	i
OD $_{4B14} := ID _{4B14} + 2 \cdot t _{4B14}$ S $_{u4B14} :$:=68.5 ksi	SA-312 Gr TP304	
OD _{4B14} = 4.5 °in			
The second pipe is 2" Sch 40, pipe specification $ID_{2B23} := 2.067 \text{ in}$ S $_{m2B23}$	n B-23 .:=20 ksi	E _{2B23} := 27.3 · 10 ⁶ psi	
t _{2B23} := 0.154 in S _{y2B23}	:=23.7 ksi	$E_{p2B23} := 0.425 \cdot 10^6 p$	si
OD $_{2B23} := ID _{2B23} + 2 \cdot t _{2B23}$ S $_{u2B23}$:=68.5 ksi	SA-312 Gr TP304	
OD _{2B23} = 2.375•in			
The third pipe is 3/4" Sch 40, pipe specification			:
ID $_{34B23} := 0.824$ in S $_{m34B2}$	₂₃ :=20 ksi	$E_{34B23} := 27.3 \cdot 10^6 \text{ ps}$	
t _{34B23} := 0.113 in S _{y34B2}	23 := 23.7 ksi	$E_{p34B23} := 0.425 \cdot 10^6$	psi
OD $_{34B23} := ID_{34B23} + 2 \cdot t_{34B23} S_{u34B2}$	₂₃ := 68.5 ksi	SA-312 Gr TP304	

OD _{34B23} = 1.05 • in

.- •

2.4

≸i ş te ş

.....

: • •*:: •::

. .

MPR		320 King	ciates, Inc. Street VA 22314
Calculation No. 025-057-01	Prepared By MB6	Checked By	Page 19
The lengths of the three diffe a total length of approximate pipe has a total length of app	ly 159 ft., the 2° pipe has a tor	n the drawings in Reference 3. al length of approximately 4 ft.,	The 4" pipe has and the 3/4"
$L_1 := (159 \text{ ft}) \cdot \text{in}^{-1}$	$L_2 := (4 \text{ ft}) \cdot \text{in}^{-1}$	$L_3 := (24 \text{ ft}) \cdot \text{in}^{-1}$	
$L_1 = 1.908 \cdot 10^3$ inches	$L_2 = 48$ inches	L ₃ = 288 inches	
For the first pipe (4" Sch 10,	B-14/B-23), the specific mate	rial parameters used in the cal	culation are
$t_1 := t_{4B14} \cdot in^{-1}$. t ₁ = 0.12 inc	ches	
$r_{01} := \left(\frac{OD_{4B14} \cdot in^{-1}}{2}\right)$	$-t_1$ $r_{01} = 2.13$ ind	ches	
S y1 := S y4B14 ·psī ⁻¹	$S_{y1} = 2.37 \cdot 10^4$ ps	i	
$E_1 := E_{4B14} \cdot pst^{-1}$	$E_1 = 2.73 \cdot 10^7$ ps	si	
E _{p1} := E _{p4B14} ·psi ⁻¹	$E_{p1} = 4.25 \cdot 10^5 \text{ ps}$	Si .	
$\epsilon_{y1} := \frac{S_{y1}}{E_1}$	$\epsilon_{y1} = 8.681 \cdot 10^{-4}$ in	/in	
s _{m1} := s _{m4B14}	S _{m1} = 2·10 ⁴ °psi		
$S_{u1} := S_{u4B14}$	S _{u1} = 6.85·10 ⁴ opsi		
For the second pipe (2" Sch	n 40, B-23), the specific mater	ial parameters for the calculation	on are
$t_2 := t_{2B23} \cdot in^{-1}$	t ₂ = 0.154 ir	nches	· · ·
$\mathbf{r}_{02} := \left(\frac{\text{OD}_{2\text{B23}} \cdot \text{in}^{-1}}{2}\right)$	$-t_2$ $r_{02} = 1.034$ ir	nches	
$s_{y2} := s_{y2B23} \cdot psi^{-1}$	$S_{y2} = 2.37 \cdot 10^4 \text{ p}$	si	
$E_2 := E_{2B23} \cdot pst^{-1}$	$E_2 = 2.73 \cdot 10^7$ p	osi	
$E_{p2} := E_{p2B23} \cdot ps \overline{r}^{1}$	$E_{p2} = 4.25 \cdot 10^5 \text{ g}$	osi	
$\varepsilon_{y2} := \frac{S_{y2}}{E_2}$	ε _{y2} = 8.681·10 ⁻⁴ i	n/in	•
	S _{m2} = 2·10 ⁴ opsi		

.

.

,

10-1

ţ.

025-057-01 For the third pipe (3/4" Sch 40, B-2: $t_3 := t_{34B23} \cdot in^{-1}$	t ₃ = 0.113 inche		Page ₂₀
t ₃ := t _{34B23} ·in ⁻¹	t ₃ = 0.113 inche		e
	- 5		
$r_{03} := \left(\frac{OD_{34B23} \cdot in^{-1}}{2}\right) - t_3$	r ₀₃ = 0.412 inche		
$s_{y3} := s_{y34B23} \cdot psi^{-1}$	$S_{y3} = 2.37 \cdot 10^4$ psi		
$E_3 := E_{34B23} \cdot psi^{-1}$	E ₃ = 2.73·10 ⁷ psi		
$E_{p3} := E_{p34B23} \cdot psi^{-1}$	$E_{p3} = 4.25 \cdot 10^5$ psi		
$\varepsilon_{y3} := \frac{S_{y3}}{E_3}$	ε _{y3} = 8.681·10 ⁻⁴ in/in		
S _{m3} := S _{m34B23}	$S_{m3} = 2 \cdot 10^4 \circ psi$		
S _{u3} := S _{u34B23}	S _{u3} = 6.85·10 ⁴ °psi		
At the ambient condition of 70 F, the second s	ne water has a specific vo	lume	
$v_{initial} := 0.01605 \text{ ft}^3 \cdot \text{lb}^{-1}$			
Therefore, the mass of water in a	unit length (1 inch) of pipe	e is	
$m_{w1i} := \frac{\pi \cdot r_{01}^2 \cdot 1}{\left(\frac{\nu_{initial} \cdot lb \cdot in^{-3}}{1} \right)}$	m _{w1i} = 0.514 lb	per unit length (4" Sch 10)	·

 $m_{w2i} := \frac{\pi \cdot r_{02}^{2} \cdot 1}{\left(\frac{v_{\text{ initial}} \cdot 1b \cdot in^{-3}}{\left(\frac{v_{\text{ initial}}}{\left(\frac{v_{\text{ initial}}}{v_{\text{ initial}}}\right)}}\right)}}}\right)} m_{w3i} = 0.019$ lb per unit length (3/4" Sch 40)

The mean coefficient of thermal expansion for SA-312 Gr TP304 at 250 F (Reference 12) is $\alpha T := 8.90 \cdot 10^{-6}$

And the strain due to thermal expansion is

5 1 1

•

....

 $\epsilon_{th} := \alpha_T \cdot (T_{LOCA} - T_{amb})$ $\epsilon_{th} = 1.602 \cdot 10^{-3}$ in/in

ZMPR		320 Kir	sociates, Inc. g Street ria, VA 22314
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page 21
	er in the piping, assuming	hat the pipe is filled, is	
$m_{tot} := m_{w1i} \cdot L_1 + i$	$m_{w2i} \cdot L_2 + m_{w3i} \cdot L_3$	m _{tot} = 991.893 lb	
To solve the equations fo	r the system with both pipe	sizes, we must guess inital value	s for the variables.
P:=3000	ε _{p1} :=0.01	vol 1 := 1	
v := 0.016	ε _{p2} :=0.01	vol 2 := 1	
σ _{h1} := 100	ε _{p3} :=0.01	vol 3 := 1	
σ _{h2} := 100	r 1 := 1	$m_{w1} := 1$	
σ _{h3} := 100	r ₂ := 1	$m_{w2} := 1$	
	r ₃ := 1	m _{w3} := 1	
Assign a function to repre	sent the change from elast	ic strain to plastic strain as follow	5:
	p_1, ε_{y_1} := if $\left(\sigma_{h_1} > S_{y_1}, \frac{\sigma_{h_2}}{2}\right)$,	
$f_{2}(\sigma_{h2}, S_{y2}, E_{2}, E_{1})$	$(\mathfrak{p}_2, \mathfrak{e}_{y2}) := if\left(\sigma_{h2} > S_{y2}, \frac{\sigma_h}{m}\right)$	$\frac{2-S_{y2}}{E_{p2}} + \varepsilon_{y2}, \frac{\sigma_{h2}}{E_{2}} \right)$	
f ₃ (σ _{h3} ,S _{y3} ,E ₃ ,E	p_3, ε_{y_3} := if $\left(\sigma_{h_3} > S_{y_3}, \frac{\sigma_{h_3}}{m_{h_3}}\right)$	$\frac{3-S_{y3}}{E_{p3}}+\varepsilon_{y3},\frac{\sigma_{h3}}{E_{3}}\right)$	

Given

; ; ;

÷ •

(* * 54

28-14 1

$$r_{1} = (1 + \varepsilon_{p1}) \cdot r_{01} \cdot (1 + \varepsilon_{th}) \qquad r_{2} = (1 + \varepsilon_{p2}) \cdot r_{02} \cdot (1 + \varepsilon_{th}) \qquad r_{3} = (1 + \varepsilon_{p3}) \cdot r_{03} \cdot (1 + \varepsilon_{th})$$

$$vol_{1} = \frac{\pi \cdot r_{1}^{2} \cdot (1 + \varepsilon_{th}) \cdot L_{1}}{(12^{3})} \qquad vol_{2} = \frac{\pi \cdot r_{2}^{2} \cdot (1 + \varepsilon_{th}) \cdot L_{2}}{(12^{3})} \qquad vol_{3} = \frac{\pi \cdot r_{3}^{2} \cdot (1 + \varepsilon_{th}) \cdot L_{3}}{(12^{3})}$$

$$v = \frac{vol_{1}}{m_{w1}} \qquad v = \frac{vol_{2}}{m_{w2}} \qquad v = \frac{vol_{3}}{m_{w3}} \qquad \sigma_{h1} = p \cdot \frac{r_{1}}{r_{1}} \qquad \sigma_{h2} = p \cdot \frac{r_{2}}{r_{2}} \qquad \sigma_{h3} = p \cdot \frac{r_{3}}{r_{3}}$$

$$P = (4.507 \cdot 10^{9}) \cdot v^{2} - (1.690 \cdot 10^{8}) \cdot v + 1.572 \cdot 10^{6} \qquad m_{tot} = m_{w1} + m_{w2} + m_{w3}$$

ZAMPR			MPR Associa 320 King Stre Alexandria, VA	et
	epared By MBC	Chec M	ked By	Page 22
ε _{p1} =f ₁ (σ _{h1} ,S _{y1} ,E ₁ ,E _{p1} ,ε _{y1}) ε _{p2} =f ₂	(σ _{h2} , S _{y2} , E ₂	, E _{p2} , ε _{y2})	
ε _{p3} =f ₃ (σ _{h3} , S _{y3} , E ₃ , E _{p3} , ε _{y3}	.)			
Solving the equations.				
AA := Find $(r_1, r_2, r_3, \varepsilon_{p1}, \varepsilon_{p2})$, ^e p3, vol 1, vol 2, vol 3, v	, Ρ, σ _{hl} , σ _{h2} ,	σ _{h3} , m _{w1} , m _{w2} , r	ⁿ w3)
$r_1 := AA_{0,0} \cdot in$	r _{1.} = 2.19°in			
$r_2 := AA_{1,0} \cdot in$	r ₂ = 1.036°in			
$r_3 := AA_{2,0} \cdot in$	r ₃ = 0.413•in).)
ε _{p1} := AA _{3,0}	ε _{p1} = 2.6	29%	0	2.19
ε _{p2} := AA _{4,0}	ε _{p2} = 0.0	47%	2	0.413
ε _{p3} := AA _{5,0}	ε _{p3} = 0.0	25%	3 4 4.659	0.026
vol 1 := $AA_{6,0} \cdot \hat{\mathbf{n}}^3$	vol ₁ = 16.656 m	3	365 TH 98 200	-10 -4 6.656
$\operatorname{vol}_2 := AA_{7,0} \cdot \mathrm{ft}^3$	vol 2 = 0.094eft^3		AA = 7	0.094
$\operatorname{vol}_{3} := \operatorname{AA}_{8,0} \operatorname{ft}^{3}$	vol 3 = 0.089eft^3		-8 -9-1	0.089
$v := AA_{9,0} \cdot ft^3 \cdot lb^{-1}$	v = 0.016	977•ft ³ ·lb ^{−1}	-3220 B 222	91-10 ³ 51-104
P := AA _{10,0} · psi	P = 1.891	·10 ³ opsi	12 1.27	′2·10 ⁴
σ _{hl} := AA _{11,0} .psi	σ _{h1} = 34.506•ks	i	14 98)8·10 ³ 31.108
$\sigma_{h2} := AA_{12,0}$ ·psi	σ _{h2} = 12.718 •ks	i	15	5.522
σ _{h3} := AA _{13,0} ·psi	^o _{h3} = 6.908∘ksi			
$m_{w1} := AA_{14,0}$ ·lb	m _{w1} = 9	981.108 •lb		
$m_{w2} := AA_{15,0} \cdot lb$	m _{w2} = 5	5.522 Ib		

•••

· ·

e. ...

. :

.

•

1

ZMPR	u d	320 Ki	ssociates, Inc. ng Street dria, VA 22314
Calculation No. 025-057-01	Prepared By MBG	Checked By	y Page 23
The principal stresses for th	e first pipe are calculated		
$S_{11} := \frac{P \cdot r_1}{t_1 \cdot in}$	S ₁₁ = 34.500	5•ksi	
$s_{2p1} := \frac{P \cdot r_1}{2 \cdot t_1 \cdot in} + S_n$	n1 S _{2p1} = 37.2	53 •ksi	
$s_{2m1} := \frac{P \cdot r_1}{2 \cdot t_1 \cdot in} - S_1$	m1 S _{2m1} = -2.7	47•ksi	
$s_{31} := \frac{-P}{2}$	S ₃₁ = -0.94	5•ksi	
$BB_{1} := \begin{bmatrix} S_{11} - S_{2p} \\ S_{11} - S_{2p} \\ S_{2p1} - S_{2p} \\ S_{2m1} - S_{2p} \\ S_{2m1} - S_{2p} \end{bmatrix}$	$\begin{bmatrix} 2.7\\ 31\\ 31\\ 1\\ 1 \end{bmatrix} \qquad BB_{1} = \begin{bmatrix} 2.7\\ 37.3\\ 38.\\ 1.8\\ 35. \end{bmatrix}$	198 •ksi 02	
The stress intensity SI := max(BB ₁)	SI = 38.198	•ksi	
The allowable stress is			
S _{allowable} := 0.7.S	ul Sallowable	= 47.95•ksi	
The stress index is			
Index := SI S allowab	Index = 0.7	97	
		·	

: '

:

17、11 林峰 秋峰 秋峰

.

MPR Associates, Inc. 320 King Street Alexandria, VA 22314				
Calculation No. 025-057-01	Prepared By MB6	Checked By	Page 24	
	•			
The principal stresses for the	second pipe are calculated	• •		
$S_{12} := \frac{P \cdot r_2}{t_2 \cdot in}$	S ₁₂ = 12.718 •ks	si		
$S_{2p2} := \frac{P \cdot r_2}{2 \cdot t_2 \cdot in} + S_{m2}$	S _{2p2} = 26.359•	ksi		
$S_{2m2} := \frac{P \cdot r_2}{2 \cdot t_2 \cdot in} - S_{m2}$	$S_{2m2} = -13.64$	1 •ksi		
$S_{32} := \frac{-P}{2}$	S ₃₂ = -0.946 •k:	si		
$BB_{2} := \begin{bmatrix} S_{12} - S_{2p2} \\ S_{12} - S_{2m2} \\ S_{2p2} - S_{32} \\ S_{2m2} - S_{32} \\ S_{32} - S_{12} \end{bmatrix}$	BB ₂ = 27.304	∘ksi		
The stress intensity				
$SI := max(BB_2)$	SI = 27.304 •ksi			
The allowable stress is	~	a 05-1:		
$S_{allowable} := 0.7 \cdot S_{u}$	2 S allowable = 4	·/.∀⊃ ºKS1	·	
The stress index is Index := $\frac{SI}{S \text{ allowable}}$	Index = 0.569			

. : :

. .

• • •

MMPR		MPR Assoc 320 King S Alexandria,	treet
Calculation No. 025-057-01	Prepared By MB6	Checked By	Page 25
The principal stresses for the $S_{13} := \frac{P \cdot r_3}{t_3 \cdot in}$ $S_{2p3} := \frac{P \cdot r_3}{2 \cdot t_3 \cdot in} + S_m$ $S_{2m3} := \frac{P \cdot r_3}{2 \cdot t_3 \cdot in} - S_m$ $S_{33} := \frac{-P}{2}$ $BB_3 := \begin{vmatrix} S_{13} - S_{2p3} \\ S_{13} - S_{2m} \\ S_{2m3} - S_{33} \\ S_{33} - S_{13} \end{vmatrix}$	S $_{13} = 6.908$ ks S $_{2p3} = 23.454$ S $_{2m3} = -16.54$ S $_{33} = -0.946$ k BB $_{2} = \begin{bmatrix} 16.546\\ 23.454\\ 24.4 \end{bmatrix}$	₽ksi 6 •ksi si	
The stress intensity SI := max(BB ₃) The allowable stress is] SI = 24.4•ksi		
S allowable := 0.7 S The stress index is Index := $\frac{SI}{S \text{ allowable}}$	Index = 0.509		
	· · ·		

•

••••

2

· .

ZAMPR		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No.	Prepared By	Checked By	Page26
025-057-01	MBG	alle	
	APPENDIX B		
PURPOSE:			
The purpose of this calculati containment to determine the thermal expansion of the con at D.C. Cook, Unit 2.	on is to perform an evaluation of is e effect of thermal over-pressurizat ntained water. The results of this o	olated piping segments that ion during a design basis acc alculation represent penetrat	cenetrate the cident by the ion RCP Seal
CALCULATION:			
The expected temperature of	of the water during a LOCA and the	ambient temperature are	
T _{LOCA} := 250	T amb := 70		
The conversion for psi to ks	i is		
ksi := 1000 psi			
For penetration RCP Seal, t the pipe material properties	here are two different pipes in the and geometry were determined, re	system. Using References 4 spectively.	, 12 and 13,
The first pipe is 1" Sch 160,	pipe specification M-14	6	
ID $_{1M14} := 0.815$ in	S m1M14 := 20 ksi	$E_{1M14} := 27.3 \cdot 10^6 \text{ psi}$	
t _{1M14} := 0.250 in	S _{y1M14} :=23.7 ksi	$E_{p1M14} := 0.425 \cdot 10^6$	psi
OD $_{1M14} := ID _{1M14} + 2$		SA-376 Gr TP304	
OD 1M14 = 1.315•in			
The second pipe is 3/4" Sc	h 160, pipe specification M-14	,	
ID $_{34M14} := 0.612$ in	S _{m34M14} := 20 ksi	$E_{34M14} := 27.3 \cdot 10^6 \text{ p}$	
t 34M14 := 0.219 in	S _{y34M14} := 23.7 ksi	E p34M14 := 0.425.10	⁶ psi
OD 34M14 := ID 34M14	$1 + 2 \cdot t_{34M14} S_{u34M14} = 68.5 \text{ ksi}$	SA-376 Gr TP304	
OD _{34M14} = 1.05∘in			
The lengths of the two diffe a total length of approxima	erent pipes are determined from the tely 20 ft. while the 3/4" pipe has a	e drawings in Reference 4. T total length of approximately	he 1" pipe has 450 ft.
$L_1 := (20 \text{ ft}) \cdot \text{in}^{-1}$	$L_2 := (450 \text{ ft}) \cdot \text{in}^{-1}$		
L ₁ = 240 inches	$L_2 = 5.4 \cdot 10^3$ inches		

• •

• .

. ...

2.54

.

ZMPR	· · ·	MPR Asso 320 King S Alexandria,	
Calculation No. 025-057-01	Prepared By MBC	Checked By	Page 27
For the first pipe (1" Sch 160), M-14), the specific material (parameters used in the calculat	tion are
$t_1 := t_{1M14} \cdot in^{-1}$	t ₁ = 0.25 inc	ches	
$r_{01} := \left(\frac{OD_{1M14} \cdot in^{-1}}{2}\right)$	- t ₁ r ₀₁ = 0.408 inc	ches	
$s_{y1} := s_{y1M14} \cdot ps1^{-1}$	S _{y1} = 2.37·10 ⁴ ps	i ·	
$E_1 := E_{1M14} \cdot psi^{-1}$	$E_1 = 2.73 \cdot 10^7$ ps	i .	
$E_{p1} := E_{p1M14} \cdot psi^{-1}$	$E_{p1} = 4.25 \cdot 10^5$ ps	i	
$\varepsilon_{y1} := \frac{S_{y1}}{E_1}$	ε _{y1} = 8.681·10 ⁻⁴ in/	in	
s _{m1} := s _{m1M14}	$S_{m1} = 2 \cdot 10^4 \circ psi$		
$S_{u1} := S_{u1M14}$	S _{u1} = 6.85 10 ⁴ opsi		
For the second pipe (3/4" So	ch 160, M-14), the specific ma	terial parameters for the calcula	ation are
t ₂ :=t _{34M14} ·in ⁻¹	t ₂ = 0.219 ind	ches	
$r_{02} := \left(\frac{OD_{34M14} \cdot in^{-1}}{2}\right)$	$-t_2$ $r_{02} = 0.306$ inc	ches	
$S_{y2} := S_{y34M14} \cdot psi^{-1}$	$S_{y2} = 2.37 \cdot 10^4$ ps	si	
$E_2 := E_{34M14} \cdot psi^{-1}$	$E_2 = 2.73 \cdot 10^7$ ps	ŝi	
E p2 := E p34M14 · psi ⁻¹	$E_{p2} = 4.25 \cdot 10^5$ ps	si .	

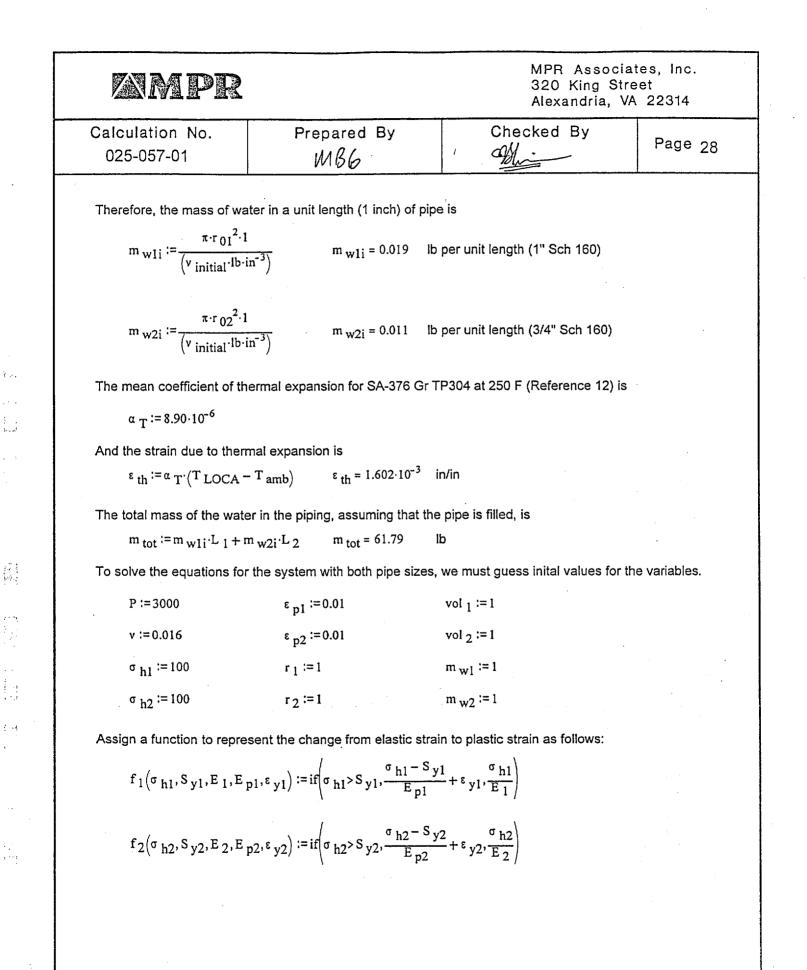
$$\epsilon_{y2} := \frac{S_{y2}}{E_2}$$

 $s_{y2} := 8.681 \cdot 10^{-4}$ in/in
 $S_{m2} := S_{m34M14}$
 $S_{u2} := S_{u34M14}$
 $S_{u2} = 6.85 \cdot 10^{4}$ opsi

.

: •

•


••• •

90.57 1995

•

At the ambient condition of 70 F, the water has a specific volume

 $\nu_{\text{initial}} := 0.01605 \text{ ft}^3 \cdot \text{lb}^{-1}$

MMPR		MPR Associates, 320 King Street Alexandria, VA 22	
Calculation No. 025-057-01	Prepared By MB6	Checked By	Page 29
Given $r_{1} = (1 + \varepsilon_{p1}) \cdot r_{01} \cdot \cdot r$	L <u>1</u> 590·10 ⁸)·v + 1.572·10 ⁶	$r_{2} = (1 + \varepsilon_{p2}) \cdot r_{02} \cdot (1 + \varepsilon_{th})$ $vol_{2} = \frac{\pi \cdot r_{2}^{2} \cdot (1 + \varepsilon_{th}) \cdot L_{2}}{(12^{3})}$ $v = \frac{vol_{2}}{m_{w2}}$ $m_{tot} = m_{w1} + m_{w2}$ $\sigma_{h2} = P \cdot \frac{r_{2}}{r_{2}}$ $\varepsilon_{p2} = f_{2} (\sigma_{h2}, S_{y2}, E_{2}, E_{p2}, \varepsilon_{y2})$ $2, m_{w1}, m_{w2})$	2)
$r_{1} := AA_{0,0} \cdot in$ $r_{2} := AA_{1,0} \cdot in$ $\epsilon_{p1} := AA_{2,0}$ $\epsilon_{p2} := AA_{3,0}$ $vol_{1} := AA_{4,0} \cdot ft^{3}$ $vol_{2} := AA_{5,0} \cdot ft^{3}$ $v := AA_{6,0} \cdot ft^{3} \cdot I$ $P := AA_{7,0} \cdot psi$ $\sigma_{h1} := AA_{8,0} \cdot psi$ $\sigma_{h2} := AA_{9,0} \cdot psi$ $m_{w1} := AA_{10},$	r 1 = 0.413 °in r 2 = 0.307 °in $\epsilon_{p1} = 1.$ $\epsilon_{p2} = 0.$ vol 1 = 0.074 °in vol 2 = 0.926 °in b ⁻¹ v = 0.01 P = 1.70 $\sigma_{h1} = 28.206$ $\sigma_{h2} = 23.939$	$147 \circ\%$ $143 \circ\%$ ft^{3} ft^{3} $6197 \circ ft^{3} \cdot 1b^{-1}$ $81 \cdot 10^{4} \circ psi$ $eksi$ 0 0 22 $33 1.4$ 44 55 166 66 $73 1.$ $88 2.3$ $97 2.$ $97 2.$ 101	0.413 0.307 0.011 43·10 -3 0.074 0.926 0.016 708·104 821·104 394·104 4.599 57.191

і (23)

.

.

MMPR		MPR Associates, Inc 320 King Street Alexandria, VA 22314		
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page 30	
The principal stresses for th	e first pipe are calculated			
$s_{11} := \frac{P \cdot r_1}{t_1 \cdot in}$	S ₁₁ = 28.206 •ksi			
$S_{2p1} := \frac{P \cdot r_1}{2 \cdot t_1 \cdot in} + S_m$	1 S _{2p1} = 34.103 •ksi			
$S_{2m1} := \frac{P \cdot r_1}{2 \cdot t_1 \cdot in} - S_n$	nl S _{2m1} = - 5.897•ksi			
$s_{31} := \frac{-P}{2}$	S ₃₁ = - 8.54 •ksi			
$BB_{1} := \begin{bmatrix} S_{11} - S_{2p} \\ S_{11} - S_{2m} \\ S_{2p1} - S_{3} \\ S_{2m1} - S_{3} \\ S_{31} - S_{11} \end{bmatrix}$	$BB_1 = 42.643 \text{ oks}$	i		
The stress intensity				
$SI := max(BB_1)$	SI = 42.643 •ksi			
The allowable stress is S allowable := 0.7 S u	I S allowable = 47.95	•ksi		
The stress index is Index := $\frac{SI}{S \text{ allowable}}$	Index = 0.889		· · · · ·	

e Kali

.

, 1 - - -

51 X

MMPR	. - 4	320	Associates King Street Indria, VA 2	
Calculation No. 025-057-01	Prepared By MB6	Checked	By ,	Page 31
The principal stresses for the	e second pipe are calculated		• •	
$S_{12} := \frac{P \cdot r_2}{t_2 \cdot in}$	S ₁₂ = 23.939∙k	si		
$S_{2p2} := \frac{P \cdot r_2}{2 \cdot t_2 \cdot in} + S_m$	2 S _{2p2} = 31.969•	ksi		
$S_{2m2} := \frac{P \cdot r_2}{2 \cdot t_2 \cdot in} - S_m$	2 S _{2m2} = - 8.031	Pksi		
$s_{32} := \frac{-P}{2}$	S ₃₂ = - 8.54 •ks	i		
$BB_{2} := \begin{bmatrix} S_{12} - S_{2p2} \\ S_{12} - S_{2m2} \\ S_{2p2} - S_{32} \\ S_{2m2} - S_{32} \\ S_{32} - S_{12} \end{bmatrix}$	$BB_{2} = \begin{bmatrix} 8.031\\ 31.969\\ 40.51\\ 0.51\\ 32.479 \end{bmatrix}$	∘ksi	· ·	
The stress intensity				
$SI := max(BB_2)$	SI = 40.51•ksi			
The allowable stress is $S_{allowable} := 0.7 \cdot S_{allowable}$	S allowable = 4	7.95•ksi		
The stress index is Index := $\frac{SI}{S \text{ allowable}}$	Index = 0.845		·	

-[] [] [] []

in Rei

. ? ** ? . . -

XMPR		MPR Associates, In 320 King Street Alexandria, VA 2231	
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page ₃₂
	APPENDIX C		
PURPOSE:			
The purpose of this calculation is containment to determine the effe thermal expansion of the containe D.C. Cook, Unit 2.	ct of thermal over-pressuriza	tion during a design pasis ac	cident dv trie
CALCULATION:			
The expected temperature of the		e ambient temperature are	
$T_{LOCA} \coloneqq 250$	T _{amb} := 70		
The conversion for psi to ksi is		· .	
For penetration CPN-37, there are	d geometry were determine	d respectively	1005 0, 12 010
13, the pipe material properties a The first pipe is 4" Sch 10, pipe s	nd geometry were determine pecification B-14	d, respectively.	
13, the pipe material properties an The first pipe is 4" Sch 10, pipe s _l ID _{4B14} :=4.260 in	nd geometry were determine pecification B-14 S _{m4B14} :=20 ksi	d, respectively. E $_{4B14}$:= 27.3 $\cdot 10^6$ psi	
13, the pipe material properties an The first pipe is 4" Sch 10, pipe sp ID _{4B14} := 4.260 in t _{4B14} := 0.120 in	nd geometry were determine becification B-14 S _{m4B14} := 20 ksi S _{y4B14} := 23.7 ksi	d, respectively. E $_{4B14} := 27.3 \cdot 10^6$ psi E $_{p4B14} := 0.425 \cdot 10^6$ p	
13, the pipe material properties an The first pipe is 4" Sch 10, pipe s _l ID _{4B14} :=4.260 in	nd geometry were determine becification B-14 S _{m4B14} := 20 ksi S _{y4B14} := 23.7 ksi	d, respectively. E $_{4B14}$:= 27.3 $\cdot 10^6$ psi	
13, the pipe material properties an The first pipe is 4" Sch 10, pipe sp ID _{4B14} := 4.260 in t _{4B14} := 0.120 in	nd geometry were determine becification B-14 S _{m4B14} := 20 ksi S _{y4B14} := 23.7 ksi	d, respectively. E $_{4B14} := 27.3 \cdot 10^6$ psi E $_{p4B14} := 0.425 \cdot 10^6$ p	
13, the pipe material properties an The first pipe is 4" Sch 10, pipe sp ID _{4B14} := 4.260 in t _{4B14} := 0.120 in OD _{4B14} := ID _{4B14} + 2 · t _{4B14} OD _{4B14} = 4.5 • in	nd geometry were determine becification B-14 S _{m4B14} := 20 ksi S _{y4B14} := 23.7 ksi 4 S _{u4B14} := 68.5 ksi be specification B-14	d, respectively. E _{4B14} := 27.3 · 10 ⁶ psi E _{p4B14} := 0.425 · 10 ⁶ p SA-312 Gr TP304	osi
13, the pipe material properties an The first pipe is 4" Sch 10, pipe sp ID _{4B14} := 4.260 in t _{4B14} := 0.120 in OD _{4B14} := ID _{4B14} + 2 · t _{4B14} OD _{4B14} = 4.5 • in	nd geometry were determine becification B-14 S _{m4B14} := 20 ksi S _{y4B14} := 23.7 ksi 4 S _{u4B14} := 68.5 ksi	d, respectively. $E_{4B14} := 27.3 \cdot 10^6$ psi $E_{p4B14} := 0.425 \cdot 10^6$ p SA-312 Gr TP304 $E_{1B14} := 27.3 \cdot 10^6$ psi	osi
13, the pipe material properties an The first pipe is 4" Sch 10, pipe sp ID $_{4B14}$:= 4.260 in t $_{4B14}$:= 0.120 in OD $_{4B14}$:= ID $_{4B14}$ + 2·t $_{4B14}$ OD $_{4B14}$ = 4.5 oin The second pipe is 1" Sch 40, pip	nd geometry were determine becification B-14 S _{m4B14} := 20 ksi S _{y4B14} := 23.7 ksi 4 S _{u4B14} := 68.5 ksi be specification B-14	d, respectively. E _{4B14} := 27.3 · 10 ⁶ psi E _{p4B14} := 0.425 · 10 ⁶ p SA-312 Gr TP304	osi
13, the pipe material properties at The first pipe is 4" Sch 10, pipe sp ID $_{4B14}$:= 4.260 in t $_{4B14}$:= 0.120 in OD $_{4B14}$:= ID $_{4B14}$ + 2.t $_{4B14}$ OD $_{4B14}$ = 4.5 oin The second pipe is 1" Sch 40, pip ID $_{1B14}$:= 1.049 in	nd geometry were determine becification B-14 S $_{m4B14}$:= 20 ksi S $_{y4B14}$:= 23.7 ksi 4 S $_{u4B14}$:= 68.5 ksi be specification B-14 S $_{m1B14}$:= 20 ksi S $_{y1B14}$:= 23.7 ksi	d, respectively. $E_{4B14} := 27.3 \cdot 10^6$ psi $E_{p4B14} := 0.425 \cdot 10^6$ p SA-312 Gr TP304 $E_{1B14} := 27.3 \cdot 10^6$ psi	osi
13, the pipe material properties an The first pipe is 4" Sch 10, pipe sp ID $_{4B14}$:= 4.260 in t $_{4B14}$:= 0.120 in OD $_{4B14}$:= ID $_{4B14}$ + 2.t $_{4B14}$ OD $_{4B14}$ = 4.5 oin The second pipe is 1" Sch 40, pip ID $_{1B14}$:= 1.049 in t $_{1B14}$:= 0.133 in	nd geometry were determine becification B-14 S m4B14 := 20 ksi S y4B14 := 23.7 ksi 4 S u4B14 := 68.5 ksi be specification B-14 S m1B14 := 20 ksi S y1B14 := 23.7 ksi	d, respectively. $E_{4B14} := 27.3 \cdot 10^6 \text{ psi}$ $E_{p4B14} := 0.425 \cdot 10^6 \text{ psi}$ SA-312 Gr TP304 $E_{1B14} := 27.3 \cdot 10^6 \text{ psi}$ $E_{p1B14} := 0.425 \cdot 10^6 \text{ psi}$	osi
13, the pipe material properties at The first pipe is 4" Sch 10, pipe sp ID $_{4B14}$:= 4.260 in t $_{4B14}$:= 0.120 in OD $_{4B14}$:= ID $_{4B14}$ + 2·t $_{4B14}$ OD $_{4B14}$ = 4.5 oin The second pipe is 1" Sch 40, pip ID $_{1B14}$:= 1.049 in t $_{1B14}$:= 0.133 in OD $_{1B14}$:= ID $_{1B14}$ + 2·t $_{1B1}$	nd geometry were determine becification B-14 S $_{m4B14}$:= 20 ksi S $_{y4B14}$:= 23.7 ksi 4 S $_{u4B14}$:= 68.5 ksi be specification B-14 S $_{m1B14}$:= 20 ksi S $_{y1B14}$:= 20 ksi 4 S $_{u1B14}$:= 68.5 ksi ipes are determined from the	d, respectively. $E_{4B14} := 27.3 \cdot 10^6 \text{ psi}$ $E_{p4B14} := 0.425 \cdot 10^6 \text{ psi}$ SA-312 Gr TP304 $E_{1B14} := 27.3 \cdot 10^6 \text{ psi}$ $E_{p1B14} := 0.425 \cdot 10^6 \text{ psi}$ SA-312 Gr TP304 e drawings in Reference 5. T	osi osi he 4" pipe has

L₂ = 36 inches

 $L_1 = 408$ inches

:

.

. . . .

: '\ !-:

•

MPR		320 King	ociates, Inc. Street , VA 22314
Calculation No. 025-057-01	Prepared By MB6	Checked By	Page 33
For the first pipe (4" Sch 4	0, B-14), the specific material pa	arameters used in the calculat	on are
$t_1 := t_{4B14} \cdot in^{-1}$	t ₁ = 0.12 inc	hes	
$r_{01} := \left(\frac{OD_{4B14} \cdot in^{-1}}{2}\right)$	$-t_1$ $r_{01} = 2.13$ inc	hes	
$s_{y1} := s_{y4B14} \cdot psi^{-1}$	S _{y1} = 2.37·10 ⁴ psi	i	
$E_1 := E_{4B14} \cdot psi^{-1}$	$E_1 = 2.73 \cdot 10^7$ psi	i	
E _{p1} := E _{p4B14} ·psī ⁻¹	$E_{p1} = 4.25 \cdot 10^5$ ps	i	
$\varepsilon_{y1} := \frac{S_{y1}}{E_1}$	ε _{y1} = 8.681·10 ⁻⁴ in/	ïn	
s _{m1} := s _{m4B14}	S _{m1} = 2·10 ⁴ •psi		
s _{u1} := s _{u4B14}	S _{u1} = 6.85·10 ⁴ •psi	•	
For the second pipe (1" So	ch 10, B-14), the specific materia	al parameters for the calculati	on are
t ₂ :=t _{1B14} ·in ⁻¹	t ₂ = 0.133 ind	ches	
$r_{02} := \left(\frac{OD_{1B14} \cdot in^{-1}}{2}\right)$	$ t_2$ $r_{02} = 0.524$ inc	ches	
S y2 := S y1B14 ·psi ⁻¹	$S_{y2} = 2.37 \cdot 10^4$ ps	si	

E _{p2} = 4.25·10⁵ psi $E_{p2} := E_{p1B14} \cdot psi^{-1}$ $\varepsilon_{y2} := \frac{S_{y2}}{E_2}$ ε _{y2} = 8.681·10⁻⁴ in/in $S_{m2} = 2 \cdot 10^4 \circ psi$ s_{m2} := s_{m1B14}

S _{u2} = 6.85·10⁴ °psi $s_{u2} := s_{u1B14}$

At the ambient condition of 70 F, the water has a specific volume v initial := 0.01605 ft³·lb⁻¹

1.2

· · · ·

XMPR		MPR Assoc 320 King S Alexandria,	treet
Calculation No. 025-057-01	Prepared By MBC	Checked By	Page 34
Therefore, the mass of w	ater in a unit length (1 inch) of pi	ipe is	
$m_{w1i} := \frac{\pi \cdot r_{01}^2}{\left(\nu_{\text{initial}} \cdot Ib \right)}$	$\frac{1}{(m^{-3})}$ m _{w1i} = 0.514	lb per unit length (4" Sch 40)	
$m_{w2i} := \frac{\pi \cdot r_{02}^2}{\left(\frac{v_{initial} \cdot lb}{2}\right)}$	$\frac{1}{(in^{-3})}$ m _{w2i} = 0.031	lb per unit length (1" Sch 10)	
The mean coefficient of t	hermal expansion for SA-312 Gr	TP304 at 250 F (Reference 12)	is
$\alpha_{\rm T} := 8.90 \cdot 10^{-6}$			
And the strain due to the	mal expansion is		
$\epsilon_{\text{th}} := \alpha_{\text{T}} \cdot (T \text{LOCA})$	$-T_{amb}$ $\epsilon_{th} = 1.602 \cdot 10^{-3}$	in/in	
The total mass of the wa	ter in the piping, assuming that t	he pipe is filled, is	
$m_{tot} := m_{w1i} \cdot L_1 +$	$m_{w2i} \cdot L_2$ $m_{tot} = 210.799$	lb	
To solve the equations for	or the system with both pipe size	s, we must guess inital values fo	r the variables.
P := 3000	ε _{p1} := 0.01	vol 1 := 1	
v :=0.016	ε _{p2} := 0.01	vol 2 := 1	
σ _{h1} := 100	r ₁ := 1	m w1 := 1	
$\sigma_{h2} := 100$	r ₂ :=1	m _{w2} := 1	
Assign a function to repr	esent the change from elastic sti	rain to plastic strain as follows:	
	p_1, ε_{y_1} := if $\left(\sigma_{h_1} > S_{y_1}, \frac{\sigma_{h_1} - S_{p_1}}{E_{p_1}}\right)$	1	
$f_2(\sigma_{h2}, S_{y2}, E_2, E_2)$	$(\mathfrak{p}_{2}, \mathfrak{e}_{y2}) := if \left(\sigma_{h2} > S_{y2}, \frac{\sigma_{h2} - S_{y2}}{E_{p2}} \right)$	$\frac{\sigma_{y2}}{\sigma_{h2}} + \varepsilon_{y2}, \frac{\sigma_{h2}}{E_2}$	
		1	

· · · · • · · ·

•

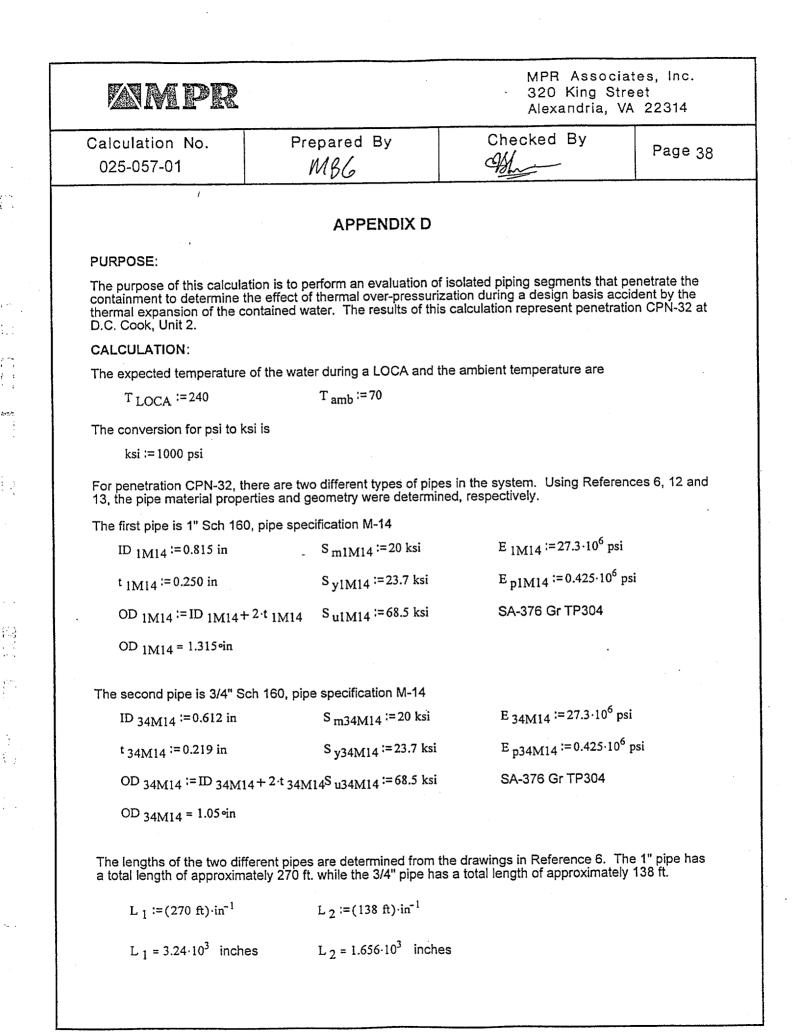
·. ..

• .:-

1

MMPR			MPR Associat 320 King Stre Alexandria, VA	et
Calculation No. 025-057-01	Prepared By MBG	Chec Chec	sked By	Page 35
Given $r_1 = (1 + \varepsilon_{p1}) \cdot r_{01} \cdot (1 + \varepsilon_{p1}) \cdot (1 + \varepsilon_{p1}) \cdot r_{01} \cdot (1 + \varepsilon_{p1}) $		$r_2 = (1 + \varepsilon_{p2}) \cdot r_1$, <i>,</i> , , , , , , , , , , , , , , , , ,	
$vol_{1} = \frac{\pi \cdot r_{1}^{2} \cdot (1 + \varepsilon_{th})}{(12^{3})}$ $v = \frac{vol_{1}}{m_{wl}}$		$vol_{2} = \frac{\pi \cdot r_{2}^{2} \cdot (1 - r_{2})^{2}}{(1 - r_{2})^{2}}$ $v = \frac{vol_{2}}{m_{w2}}$	$+\varepsilon_{\text{th}})\cdot L_2$	
$P = (4.507 \cdot 10^9) \cdot v^2 - (1.00)$ $\sigma_{h1} = P \cdot \frac{r_1}{t_1}$	-	$m_{tot} = m_{w1} + m_{tot}$ $\sigma_{h2} = P \cdot \frac{r_2}{r_2}$	w2	
$\epsilon_{p1} = f_1(\sigma_{h1}, S_{y1}, E_1)$ Solving the equations. AA := Find(r_1, r_2, \epsilon_1)	, E_{p1} , ε_{y1}) p1, ε_{p2} , vol 1, vol 2, v, P, σ_{h1} , σ_{y1}	• •	y2, E 2, E p2, ε y2)	
$r_{1} := AA_{0,0} \cdot in$ $r_{2} := AA_{1,0} \cdot in$ $\epsilon_{p1} := AA_{2,0}$ $\epsilon_{p2} := AA_{3,0}$ $vol_{1} := AA_{4,0} \cdot ft^{3}$ $vol_{2} := AA_{5,0} \cdot ft^{3}$ $v := AA_{6,0} \cdot ft^{3} \cdot l$ $P := AA_{7,0} \cdot psi$ $\sigma_{h1} := AA_{8,0} \cdot psi$ $\sigma_{h2} := AA_{9,0} \cdot psi$	$r_{1} = 2.189 \text{ ein}$ $r_{2} = 0.525 \text{ ein}$ $\epsilon_{p1} = 2$ $\epsilon_{p2} = 0$ $vol_{1} = 3.561$ $vol_{2} = 0.018$ $v = 0.01$.614•% .027•% ft ³ •ft ³ .6977•ft ³ ·1b ⁻¹ 38·10 ³ psi	$AA = \begin{array}{c} 1 \\ 2 \\ 3 \\ 2.732 \\ 4 \\ 5 \\ 6 \\ 6 \\ 7 \\ 1.880 \\ 8 \\ 3.444 \\ 9 \\ 7.450 \\ 10 \\ 200 \end{array}$	3.561).018).017
$m_{w1} := AA_{10},$ $m_{w2} := AA_{11},$	₀ ·lb m _{w1} =	209.732 •lb 1.066 •lb		

::


.

MMPR	MPR Associates, Inc. 320 King Street Alexandria, VA 22314		Street
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page36
The principal stresses for the		1	· .
$S_{11} := \frac{P \cdot r_1}{t_1 \cdot in}$	S ₁₁ = 34.442 •ksi	а г ,	
$S_{2p1} := \frac{P \cdot r_1}{2 \cdot t_1 \cdot in} + S_{m1}$	S _{2p1} = 37.221 •k	si	
$S_{2m1} := \frac{P \cdot r_1}{2 \cdot t_1 \cdot in} - S_{m1}$	S _{2m1} = -2.779%	si	
$s_{31} := \frac{-P}{2}$	S ₃₁ = -0.944 •ks	i	
$BB_{1} := \begin{bmatrix} S_{11} - S_{2p1} \\ S_{11} - S_{2m1} \\ S_{2p1} - S_{31} \\ S_{2m1} - S_{31} \\ S_{31} - S_{11} \end{bmatrix}$	BB ₁ = [2.779] 37.221 38.165 1.835 35.386	•ksi	
The stress intensity SI := max(BB 1)	SI = 38.165 •ksi		
The allowable stress is S _{allowable} :=0.7·S _u	S allowable = 47	∕.95•ksi	
The stress index is Index := SI S allowable	Index = 0.796		· .

: . . • ; . • • . . ••• -

MMPR		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page ₃₇
The principal stresses for the	second nine are calculated		
$S_{12} := \frac{P \cdot r_2}{t_2 \cdot in}$	S 12 = 7.459•ksi		
$S_{2p2} := \frac{P \cdot r_2}{2 \cdot t_2 \cdot in} + S_{m2}$	S _{2p2} = 23.73 •ks	si	
$S_{2m2} := \frac{P \cdot r_2}{2 \cdot t_2 \cdot in} - S_{m2}$	S _{2m2} = - 16.27°	ksi	- -
$S_{32} := \frac{-P}{2}$	S ₃₂ = -0.944 •ks	si	
$BB_{2} := \begin{bmatrix} S_{12} - S_{2p2} \\ S_{12} - S_{2m2} \\ S_{2p2} - S_{32} \\ S_{2m2} - S_{32} \\ S_{32} - S_{12} \end{bmatrix}$	$BB_{2} = \begin{bmatrix} 16.27\\23.73\\24.674\\15.326\\8.403 \end{bmatrix}$	•ksi	•
The stress intensity			
$SI := max(BB_2)$	SI = 24.674•ksi		
The allowable stress is S allowable := 0.7·S u2	S allowable = 4	7.95°ksi	
The stress index is Index := SI S allowable	Index = 0.515		

(

ZNMPR		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page 39
	<u> </u>		1
or the first pipe (1" Sch 16), M-14), the specific material p	arameters used in the calcu	llation are
$t_1 := t_{1M14} \cdot in^{-1}$	t ₁ = 0.25 inch	les	ł
$r_{01} := \left(\frac{OD_{1M14} \cdot in^{-1}}{2}\right)$	$-t_1$ $r_{01} = 0.408$ incl	les	
$s_{y1} \coloneqq s_{y1M14} \cdot psi^{-1}$	S _{y1} = 2.37·10 ⁴ psi		
$E_1 := E_{1M14} \cdot psi^{-1}$	$E_1 = 2.73 \cdot 10^7$ psi		
E _{pl} := E _{plM14} ·psi ⁻¹	E _{p1} = 4.25·10 ⁵ psi		
$\varepsilon_{y1} := \frac{S_{y1}}{E_1}$	ε _{y1} = 8.681·10 ⁻⁴ in/i	n	
s _{m1} := s _{m1M14}	$S_{m1} = 2 \cdot 10^4 \text{ opsi}$		
s _{u1} := s _{u1M14}	S _{u1} = 6.85·10 ⁴ °psi		
or the second pipe (3/4" S	ch 160, M-14), the specific mat	erial parameters for the calc	ulation are
$t_2 := t_{34M14} \cdot in^{-1}$	t ₂ = 0.219 inc	hes	
$r_{02} := \left(\frac{OD_{34M14} \cdot in^{-1}}{2}\right)$	$ t_2 = 0.306$ inc	hes	
S y2 := S y34M14 · psi ⁻¹	$S_{y2} = 2.37 \cdot 10^4$ psi		
E ₂ := E _{34M14} ·psi ⁻¹	$E_2 = 2.73 \cdot 10^7$ psi		
E _{p2} :=E _{p34M14} ·psi ⁻¹	$E_{p2} = 4.25 \cdot 10^5$ psi		
$\varepsilon_{y2} := \frac{S_{y2}}{E_2}$	ε _{y2} = 8.681·10 ⁻⁴ in/	in	
s _{m2} := s _{m34M14}	S _{m2} = 2·10 ⁴ •psi		:

 $S_{u2} := S_{u34M14}$ $S_{u2} = 6.85 \cdot 10^4 \, \text{opsi}$

At the design conditions of 1800 psia and 70 F, the water has a specific volume

 $v_{initial} := 0.015961 \text{ ft}^3 \cdot \text{lb}^{-1}$

95 %. 1. - 3 1. - 1

t • • •

į.

.....

ZIMPR		320 King S	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-057-01	Prepared By MBC	Checked By	Page 40	
Therefore, the mass of wa m _{w1i} := $\frac{\pi \cdot r_{01}^2 \cdot 1}{(v_{\text{initial}} \cdot \text{Ib} \cdot i)}$	ter in a unit length (1 inch) $\overline{m_{w1i}} = 0.019$	of pipe is 9 Ib per unit length (1" Sch 160)		
$m_{w2i} := \frac{\pi \cdot r_{02}^{2} \cdot 1}{\left(\frac{\nu_{initial} \cdot lb \cdot i}{2} \right)^{2}}$	$(m_{w2i} = 0.01)$	1 Ib per unit length (3/4" Sch 160)		
The mean coefficient of th	ermal expansion for SA-37	6 Gr TP304 at 250 F (Reference 12)	is	
$\alpha_{\rm T} := 8.90 \cdot 10^{-6}$				
And the strain due to then	mal expansion is			
$\epsilon_{\text{th}} := \alpha_T \cdot (T \text{ LOCA})$	$\epsilon_{th} = 1.513 \cdot 1$	0 ⁻³ in/in		
The total mass of the wate	er in the piping, assuming t	hat the pipe is filled, is		
$m_{tot} := m_{w1i} \cdot L_1 + r$	$m_{w2i} \cdot L_2$ $m_{tot} = 78.94$	6 lb		
To solve the equations for	r the system with both pipe	sizes, we must guess inital values fo	or the variables.	
P := 3000	ε _{p1} :=0.01	vol 1 := 1		
v :=0.016	ε _{p2} :=0.01	vol 2 := 1		
σ _{h1} := 100	r ₁ := 1	m _{w1} := 1		
σ _{h2} := 100	r ₂ :=1	$m_{w2} := 1$		
Assign a function to repre	esent the change from elast	ic strain to plastic strain as follows:		
$f_1(\sigma_{h1}, S_{y1}, E_1, E$	p_1, ε_{y_1} := if $\left(\sigma_{h_1} > S_{y_1}, \frac{\sigma_{h_2}}{\dots}\right)$	$\frac{1-S_{y1}}{E_{p1}} + \varepsilon_{y1}, \frac{\sigma_{h1}}{E_{1}} \right)$		
f ₂ (σ _{h2} ,S _{y2} ,E ₂ ,E	p_2, ε_{y_2} := if $\left(\sigma_{h_2} > S_{y_2}, \frac{\sigma_{h_2}}{\dots}\right)$	$\frac{2-S_{y2}}{E_{p2}} + \varepsilon_{y2}, \frac{\sigma_{h2}}{E_{2}}$		
/				

िन्दु इन्द्रव र्यु

.

1¹¹

. •..

· . • _

MMPR		MPR Associates, Inc. 320 King Street Alexandria, VA 22314		eet
Calculation No. 025-057-01	Prepared By MBG	Check	ed By	Page 41
Given $r_1 = (1 + \varepsilon_{p1}) \cdot r_{01} \cdot (1 + \varepsilon_{p1})$	-ε _{th})	$r_2 = (1 + \varepsilon_{p2}) \cdot r_{02}.$	$(1 + \varepsilon_{th})$	
$vol_{1} = \frac{\pi \cdot r_{1}^{2} \cdot (1 + \varepsilon_{th})}{(12^{3})}$ $v = \frac{vol_{1}}{m_{w1}}$	L ₁	$vol_{2} = \frac{\pi \cdot r_{2}^{2} \cdot (1 + \varepsilon)}{(12^{3})}$ $v = \frac{vol_{2}}{m_{w2}}$	$(h)^{L_2}$	
$P = (4.8551 \cdot 10^{9}) \cdot v^{2} - (10^{9}) \cdot v^{2} $	1.8015·10 ⁸)·ν + 1.6583·10 ⁶	$m_{tot} = m_{w1} + m_{w2}$ $\sigma_{h2} = P \cdot \frac{r_2}{r_2}$	2	2
$\epsilon_{p1} = f_1(\sigma_{h1}, S_{y1}, E_1)$ Solving the equations.	, E _{p1} , ε _{y1})	$\epsilon_{p2}=f_2(\sigma_{h2},S_{y2})$	$E_2, E_{p2}, \varepsilon_{y2}$	
AA := Find(r_1, r_2, ϵ	$p_1, \epsilon_{p_2}, vol_1, vol_2, v, P, \sigma_{h_1}, \sigma_{p_2}$	m_{m2}, m_{w1}, m_{w2}		
$r_{1} := AA_{0,0} \cdot in$ $r_{2} := AA_{1,0} \cdot in$ $\epsilon_{p1} := AA_{2,0}$ $\epsilon_{p2} := AA_{3,0}$	$r_{1} = 0.41 \text{ oin}$ $r_{2} = 0.307 \text{ oin}$ $\epsilon_{p1} = 0$ $\epsilon_{p2} = 0$.422% .079%	2 4.22·	0.41 0.307 10 -3
$vol_1 := AA_{4,0} \cdot ft^3$	$vol_1 = 0.9916$ $vol_2 = 0.2846$		100000	0.991
$vol_{2} := AA_{5,0} \cdot ft^{3}$ $v := AA_{6,0} \cdot ft^{3} \cdot ft^{3}$	•	6144 oft ³ ·1b ⁻¹	6 (7 1.53	0.016 3·104
P := AA _{7,0} ·psi		326·10 ⁴ opsi	9 2.14	2·104 6·104
σ _{h1} := AA _{8,0} ·psi	σ _{h1} = 25.125		1620660e	1.378 7.569
σ _{h2} :=AA _{9,0} ·psi	$\sigma_{h2} = 21.464$	•ksi		

()

1 1

÷.

:, ,

m _{w1} = 61.378•lb $m_{w1} := AA_{10,0} \cdot lb$ $m_{w2} := AA_{11,0} \cdot lb$

m _{w2} = 17.569 •lb

ZMMPR		320 King \$	MPR Associates, Inc. 320 King Street Alexandria, VA 22314		
Calculation No.	Prepared By MBG	Checked By	Page ₄₂		
025-057-01	<i>MIDG</i>	TOL			
The principal stresses for the	first pipe are calculated				
$S_{11} := \frac{P \cdot r_1}{t_1 \cdot in}$	S ₁₁ = 25.125 •ksi				
$S_{2p1} := \frac{P \cdot r_1}{2 \cdot t_1 \cdot in} + S_{m1}$	S _{2p1} = 32.562 •ks	i			
$s_{2m1} := \frac{P \cdot r_1}{2 \cdot t_1 \cdot in} - s_{m1}$	S _{2m1} = -7.438•ks	si			
$S_{31} := \frac{-P}{2}$	S ₃₁ = -7.663 •ksi				
$BB_{1} := \begin{bmatrix} S_{11} - S_{2p1} \\ S_{11} - S_{2m1} \\ S_{2p1} - S_{31} \\ S_{2m1} - S_{31} \\ S_{31} - S_{11} \end{bmatrix}$	$BB_{1} = \begin{bmatrix} 7.438 \\ 32.562 \\ 40.225 \\ 0.225 \\ 32.788 \end{bmatrix}$	°ksi	•		
The stress intensity SI := max(BB ₁)	SI = 40.225•ksi				
The allowable stress is S _{allowable} := 0.7·S _u	S allowable = 47.	95∙ksi			
The stress index is					
Index := $\frac{SI}{S \text{ allowable}}$	Index = 0.839				
	. · · ·				

:

1

5-2-5 1-5 -

. .

.

....

MPR		MPR Associates, Inc. 320 King Street Alexandria, VA 22314		
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page ₄₃	
The principal stresses for the	second pipe are calculated			
$S_{12} := \frac{P \cdot r_2}{t_2 \cdot in}$	S ₁₂ = 21.464 •ks	i		
$S_{2p2} := \frac{P \cdot r_2}{2 \cdot t_2 \cdot in} + S_{m2}$	s _{2p2} = 30.732 •	csi		
$S_{2m2} := \frac{P \cdot r_2}{2 \cdot t_2 \cdot in} - S_m$	2 S _{2m2} = -9.268•	ksi		
$S_{32} := \frac{-P}{2}$	S ₃₂ = - 7.663•ks	i		
$BB_{2} := \begin{bmatrix} S_{12} - S_{2p2} \\ S_{12} - S_{2m2} \\ S_{2p2} - S_{32} \\ S_{2m2} - S_{32} \\ S_{32} - S_{12} \end{bmatrix}$	$BB_{2} = \begin{bmatrix} 9.268 \\ 30.732 \\ 38.395 \\ 1.605 \\ 29.127 \end{bmatrix}$		•	
The stress intensity				
$SI := max(BB_2)$	SI = 38.395•ksi			
The allowable stress is S allowable := $0.7 \cdot S_{10}$	S allowable = 4	7.95•ksi		
The stress index is		• •		
Index := <u>SI</u> S allowable	Index = 0.801			

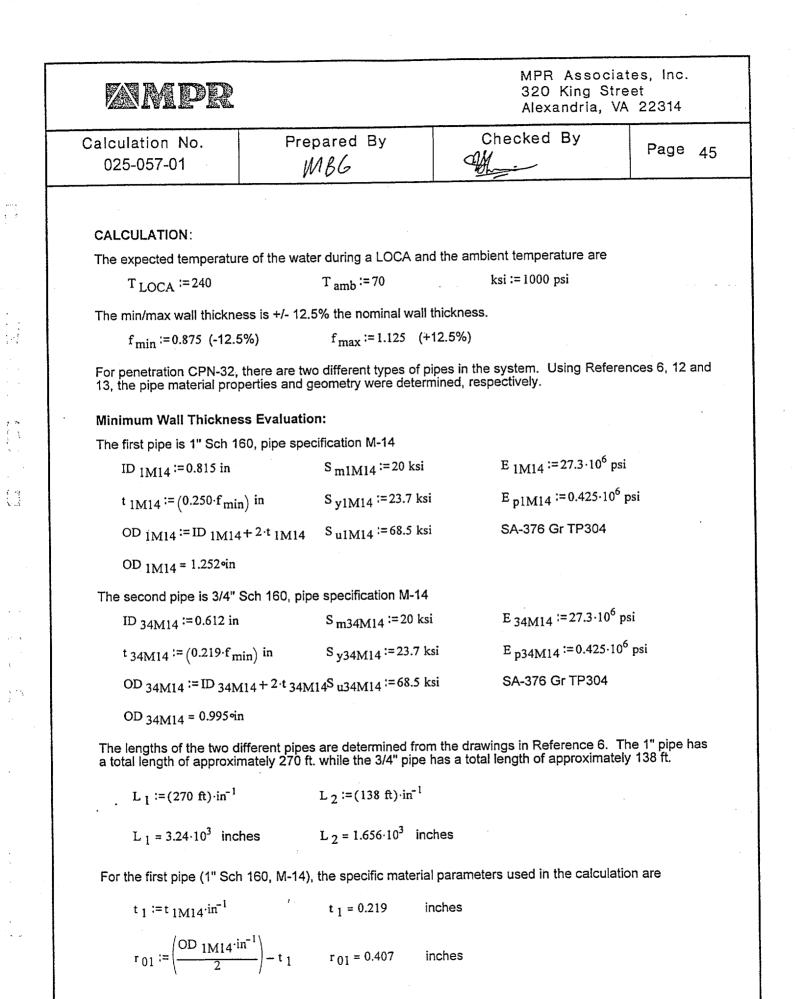
•

.....

s. ,

// MP	R					320 King Alexandri		
Calculation N 025-057-07			ared By h(j	appl	Checked	By	Pa	ge 44
	<u></u>		APPENDIX E		·1			
SEN	SITIVITY CAL	ANALYSIS: CULATED PI	EFFECT OF P PING PRESSU	IPE WALI JRE AND	L VARIA STRESS	TION O	N	
PURPOSE					·			
The purpose of the referenced in MP variations in pipe included herein for	R Calcula wall thick	tion 025-057-0 ness on the ca)1 for D.C. Coo lculated stress i	k, Unit 2 a ntensities	nd to de of the pij	termine ping. Th	the effe	ct of
RESULTS								
hicknesses that v Results (pressure	ary by ±12 , strain, ar	nd stress intens	sity) are summa	ness for th rized in T	e CPN-3: able 1. F	for comp	parison, [• .
thicknesses that v Results (pressure also presents com Table 1 illustrates either the maxim the pipe strain is using either the r	ary by ±12 , strain, an aparable re s that ther um or min well below	nd stress intens esults from Ap e is less than a imum wall thi v the five perce	sity) are summa opendix D for th one percent di ckness in comp ent allowable fo	ness for th rized in T ne nominal fference in arison to n r all cases.	e CPN-3 able 1. F wall thic stress ir cominal v . Accord	for comp ckness can tensities vall thick ingly, the	s when u ses. S when u sness. A e effect o	: Fable 1 sing lso,
thicknesses that v Results (pressure also presents con Table 1 illustrates either the maxim the pipe strain is using either the r	ary by ±12 , strain, an aparable re s that ther um or min well below	nd stress intens esults from Ap e is less than a imum wall thi v the five perce	sity) are summa opendix D for th one percent di ckness in comp ent allowable fo call thickness is	ness for th rized in T ne nominal fference in arison to n r all cases.	e CPN-3 able 1. F wall thic stress ir cominal v . Accord	for comp ckness can tensities vall thick ingly, the	s when u ses. S when u sness. A e effect o	: Fable : sing lso,
thicknesses that v Results (pressure also presents com Table 1 illustrates either the maxim the pipe strain is using either the r	ary by ±12 , strain, an parable re s that ther um or min well below ninimum o	nd stress intensi esults from Ap e is less than a imum wall thi v the five perce or maximum w Effect of Van	sity) are summa opendix D for th one percent di ckness in comp ent allowable fo	ness for th rized in T le nominal fference in arison to n r all cases negligible Wall Thick	e CPN-3 able 1. F wall thic stress in cominal v Accord for pipe	for comp ckness can tensities vall thick ingly, the	s when u ses. S when u sness. A e effect o	: Fable : sing lso,
The following pay thicknesses that v Results (pressure also presents com Table 1 illustrate either the maxim the pipe strain is using either the r evaluations.	ary by ±12 , strain, an parable re s that ther um or min well below ninimum o	nd stress intensi esults from Ap e is less than a imum wall thi v the five perce or maximum w Effect of Van on Piping Pres	sity) are summa opendix D for the one percent di ckness in comp ent allowable for vall thickness is Table E-1 riation in Pipe V sure, Strain and Strain (inch	ness for th rized in T le nominal fference in arison to n r all cases negligible Wall Thick Mall Thick Stress In <u>/inch)</u>	e CPN-3 able 1. F wall thic stress in cominal v Accord for pipe ness tensity	for comp ckness ca ntensities vall thick ingly, the stress an	arison, ase. s when u cness. A e effect o d strain	: Fable 1 sing lso,
thicknesses that v Results (pressure also presents con Table 1 illustrates either the maxim the pipe strain is using either the r	ary by ±12 , strain, an aparable re s that ther um or min well below ninimum of Pressa	nd stress intensi esults from Ap e is less than a imum wall thi v the five perce or maximum w Effect of Van on Piping Pres	sity) are summa opendix D for the one percent di ckness in comp ent allowable for vall thickness is Table E-1 riation in Pipe V sure, Strain and	hess for the rized in T arized in T ference in arison to n r all cases negligible Wall Thick Mall Thick Stress In <u>/inch</u> 0.0020	e CPN-3: able 1. F wall thich stress in cominal v Accord for pipe : mess tensity	for comp ckness ca ntensities vall thick ingly, the stress an	arison, ase. s when u cness. A e effect o d strain	sing lso, of
thicknesses that v Results (pressure also presents com Table 1 illustrates either the maxim the pipe strain is using either the r evaluations.	ary by ± 12 , strain, and parable rest s that ther um or mini- well below ninimum of <u>train</u> 13,925 1	hd stress intensi esults from Ap e is less than a imum wall thi y the five perce or maximum w Effect of Van on Piping Pres ure (psia) t_{nom} T _{max} 5,326 16,634 , $t_{max} = 112.5\%$	sity) are summa opendix D for the one percent di- ckness in comp- ent allowable for all thickness is Table E-1 riation in Pipe V sure, Strain and Strain (inch T_{min} t_{nom} 0.0066 0.0042 0.0008 0.0008 6 of t_{nom} and " Δ '	ness for th rized in T ne nominal fference in arison to n r all cases negligible Wall Thick Stress In /inch) t _{max} 0.0020 3 0.0008	e CPN-3 able 1. F wall thic n stress in nominal v Accord for pipe tensity Stres tensity Stres t _{min} 40,038 38,106	For comp ckness can tensities vall thick ingly, the stress an <u>thestress an</u> <u>thestress an</u> <u>40,225</u> <u>38,395</u>	arison, ase. s when u cness. A e effect o d strain <u>t_{max}</u> 40,410 38,671	L Fable f sing lso, of 0.5% 0.7%

• •


•••

an a Bread

Şard ş

, 7-7-7-2

16.14 16.14 1

MMPR		MPR Associat 320 King Stre Alexandria, VA	et
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page 46
······································			
$S_{y1} = S_{y1M14} \cdot psi^{-1}$	S _{y1} = 2.37·10 ⁴ psi		
$E_1 := E_{1M14} \cdot psi^{-1}$	$E_1 = 2.73 \cdot 10^7$ psi		
$E_{pl} := E_{plM14} \cdot psi^{-1}$	E _{p1} = 4.25·10 ⁵ psi		
$\epsilon_{y1} := \frac{S_{y1}}{E_1}$	$\epsilon_{y1} = 8.681 \cdot 10^{-4}$ in/i	n	
$S_{m1} = S_{m1M14}$	S _{m1} = 2·10 ⁴ opsi		
$S_{u1} \coloneqq S_{u1M14}$	$S_{u1} = 6.85 \cdot 10^4 \text{epsi}$		

For the second pipe (3/4" Sch 160, M-14), the specific material parameters for the calculation are

 $t_2 := t_{34M14} \cdot in^{-1}$ $t_2 = 0.192$ inches $r_{02} := \left(\frac{OD_{34M14} \cdot in^{-1}}{2}\right) - t_2$ $r_{02} = 0.306$ inches $S_{y2} := S_{y34M14} \cdot psi^{-1}$ $S_{y2} = 2.37 \cdot 10^4$ psi $E_2 := E_{34M14} \cdot psi^{-1}$ $E_2 = 2.73 \cdot 10^7$ psi $E_{p2} := E_{p34M14} \cdot psi^{-1}$ $E_{p2} = 4.25 \cdot 10^5$ psi $\varepsilon_{y2} := \frac{S_{y2}}{E_2}$ $\varepsilon_{y2} = 8.681 \cdot 10^{-4}$ in/in $S_{m2} := S_{m34M14}$ $S_{m2} = 2 \cdot 10^4 \circ psi$ $S_{u2} := S_{u34M14}$ $S_{u2} = 6.85 \cdot 10^4 \circ psi$

At the initial conditions of 1800 psia and 70 F, the water has a specific volume

 $v_{initial} := 0.015961 \text{ ft}^3 \cdot \text{lb}^{-1}$

1

. .

<u>{</u>

Therefore, the mass of water in a unit length (1 inch) of pipe is

$$m_{w1i} := \frac{\pi \cdot r_{01}^{2} \cdot 1}{\left(\nu_{initial} \cdot lb \cdot in^{-3}\right)} \qquad m_{w1i} = 0.019 \qquad \text{lb per unit length (1" Sch 160)}$$
$$m_{w2i} := \frac{\pi \cdot r_{02}^{2} \cdot 1}{\left(\nu_{initial} \cdot lb \cdot in^{-3}\right)} \qquad m_{w2i} = 0.011 \qquad \text{lb per unit length (3/4" Sch 160)}$$

MMPR		MPR Assoc 320 King St Alexandria,	reet
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page 47
		\sim TD204 at 250 E (Reference 12)	/
	thermal expansion for SA-370	Gr TP304 at 250 F (Reference 12)	:
$\alpha_{\rm T} := 8.90 \cdot 10^{-6}$			
And the strain due to the	ermal expansion is $A - T_{amb}$ $\epsilon_{th} = 1.513 \cdot 10^{-10}$	0 ⁻³ in/in	
	ater in the piping, assuming th + m _{w2i} ·L 2 m _{tot} = 78.94		. •
$m_{tot} := m_{w1i} \cdot L_1$	··	sizes, we must guess inital values fo	r the variables.
P := 3000		vol 1 := 1	
v := 0.016	$\epsilon_{p1} := 0.01$	$vol_2 := 1$	
	$\epsilon_{p2} := 0.01$	$m_{w1} := 1$	
σ _{h1} := 100	$r_1 := 1$	$m_{w1} = 1$ $m_{w2} := 1$	
σ _{h2} := 100	r ₂ := 1	mw2 ····	
		ic strain to plastic strain as follows:	
$f_1(\sigma_{h1}, S_{y1}, E_1,$	E_{p1}, ε_{y1} := if $\left(\sigma_{h1} > S_{y1}, \frac{\sigma_{h}}{\sigma_{h1}}\right)$	$\frac{1-S_{y1}}{E_{p1}} + \varepsilon_{y1}, \frac{\sigma_{h1}}{E_{1}}$	
$f_2(\sigma_{h2}, S_{y2}, E_2)$	E_{p2}, ε_{y2} := if $\left(\sigma_{h2} > S_{y2}, \frac{\sigma_{h}}{m}\right)$	$\frac{2-S_{y2}}{E_{p2}} + \varepsilon_{y2}, \frac{\sigma_{h2}}{E_{2}}$	
Given			
$r_1 = (1 + \varepsilon_{p1}) \cdot r_0$	$1 \cdot (1 + \varepsilon_{th})$	$r_2 = (1 + \varepsilon_{p2}) \cdot r_{02} \cdot (1 + \varepsilon_{th})$	
$\operatorname{vol}_{1} = \frac{\pi \cdot r_{1}^{2} \cdot (1 + 1)}{(12^{2})^{2}}$	$\left(\frac{\varepsilon_{\text{th}}}{2}\right) \cdot L_{1}$	$\operatorname{vol} 2^{=\frac{\pi \cdot r 2^{2} \cdot (1 + \varepsilon_{th}) \cdot L 2}{(12^{3})}}$	
$v = \frac{vol_1}{m w l}$		$v = \frac{\text{vol } 2}{m_{W2}}$	
$P=(4.8551\cdot 10^9)\cdot v$	2 - (1.8015 \cdot 10 ⁸) \cdot v + 1.6583 \cdot 10 ⁶	$m_{tot} = m_{w1} + m_{w2}$	
$\sigma_{h1} = P \cdot \frac{r_1}{t_1}$		$\sigma_{h2} = P \cdot \frac{r_2}{t_2}$	
$\varepsilon_{p_1} = f_1(\sigma_{b_1}, S_{v_1})$, E ₁ , E ₁ , E _{p1} , ε _{y1})	ε _{p2} =f ₂ (σ _{h2} , S _{y2} , E ₂ , E _{p2} , ε	y2)

,

: : :

• • •

100 A

• • 1

.

÷...)

i ---

MMPR		MPR Asso 320 King S Alexandria,	Street
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page 48
Solving the equations.			
AA := Find $(r_1, r_2, \epsilon_{p1})$, ε_{p2} , vol 1, vol 2, v, P, σ_{h1} , σ_{h}	(m_{w1}, m_{w1}, m_{w2})	
$r_1 := AA_{0,0} \cdot in$	r ₁ = 0.411°in		0
$r_2 := AA_{1,0} \cdot in$	r ₂ = 0.307•in	0	0.411
ε _{p1} := AA _{2,0}	$\epsilon_{p1} = 0.$	2004 (2004) 20	0.307
$\epsilon_{p2} := AA_{3,0}$	$\epsilon_{p2} = 0.$	3 8	536·10 -3 164·10 -4
vol 1 := $AA_{4,0}$ ·ft ³	vol 1 = 0.996 •	ft ³	0.996
vol 2 := $AA_{5,0} \cdot ft^3$	vol 2 = 0.284°	AA = 5	0.284
$v := AA_{6,0} \cdot ft^3 \cdot lb^{-1}$	$\nu = 0.01$	6205•ft ³ ·lb ⁻¹	.392.104
$P := AA_{7,0} \cdot psi$	P = 1.39		2.615·104 2.229-104
σ _{h1} := AA _{8,0} ·psi	σ _{h1} = 26.151	•ksi 10.	61.442 17.504
σ _{h2} := AA _{9,0} ·psi	$\sigma_{h2} = 22.288$	•ksi	· · · · · · · · · · · · · · · · · · ·
$m_{w1} := AA_{10,0}$	b m _{w1} =	61.442 •lb	
$m_{w2} := AA_{11,0}$	b m _{w2} =	17.504•lb	
The principal stresses for the	e first pipe are calculated		
$S_{11} := \frac{P \cdot r_1}{t_1 \cdot in}$	S ₁₁ = 26.151	•ksi	
$S_{2p1} := \frac{P \cdot r_1}{2 \cdot t_1 \cdot in} + S_m$	1 S _{2p1} = 33.07	'6∙ksi	
$S_{2m1} := \frac{P \cdot r_1}{2 \cdot t_1 \cdot in} - S_m$	$s_{2m1} = -6.92$	24•ksi	
$S_{31} := \frac{-P}{2}$	S ₃₁ = -6.962	eksi .	
$BB_{1} := \begin{bmatrix} S_{11} - S_{2p} \\ S_{11} - S_{2m} \\ S_{2p1} - S_{3} \\ S_{2m1} - S_{3} \\ S_{31} - S_{11} \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 6.92 \\ 33.0 \\ 40.0 \\ 0.03 \\ 33.1 \end{bmatrix}$	38 •ksi 38	

н 15 в 24 в 24

25 - 7 199-4 1

. .

ۇر. يۇ مىلىدۇ

• • •

ĩ. į

MMPR		MPR Assoc 320 King St Alexandria,	reet
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page 49
The stress intensity	7		
$SI := max(BB_1)$	SI = 40.038 •ks	si	
The allowable stress is			
S allowable := 0.7.S	ul S allowable =	47.95•ksi	
The stress index is			
Index := $\frac{SI}{S \text{ allowable}}$	Index = 0.835	•	
S allowable	;		
The principal stresses for t	he second pipe are calculated		
$S_{12} := \frac{P \cdot r_2}{t_2 \cdot in}$	S ₁₂ = 22.288	•ksi	
$S_{2p2} := \frac{P \cdot r_2}{2 \cdot t_2 \cdot in} + S$	m2 S _{2p2} = 31.14	4•ksi	
$s_{2m2} := \frac{P \cdot r_2}{2 \cdot t_2 \cdot in} - S$	m2 $S_{2m2} = -8.85$	56•ksi	
$S_{32} := \frac{-P}{2}$	S ₃₂ = - 6.962	•ksi	
$BB_{2} := \begin{bmatrix} S_{12} - S_{2} \\ S_{12} - S_{2} \\ S_{2p2} - S \\ S_{2m2} - S \\ S_{32} - S \end{bmatrix}$	$ \begin{array}{c c} p2 \\ m2 \\ 32 \\ 32 \\ 12 \\ \end{array} $ $ \begin{array}{c} BB_{2} = \begin{bmatrix} 8.85 \\ 31.1 \\ 38.1 \\ 1.85 \\ 29.2 \\ \end{array} $	66 44 06 oksi 04 25	
The stress intensity	ot 20.10/ J	ka:	
$SI := max(BB_2)$	SI = 38.106 •	K51	
The allowable stress is	-	47.05 d/coi	
S _{allowable} := 0.7.	S _{u2} S _{allowable}	= 41.73 °KSI	
The stress index is			
Index := SI S allowab	Index = 0.79	5	

•••

the second second

MMPR		MPR Associa 320 King Str Alexandria, V	eet
	epared By MBC	Checked By	Page 50
Maximum Wall Thickness Evaluat	ion:		
The first pipe is 1" Sch 160, pipe spe	ecification M-14		
ID $_{1M14} := 0.815$ in	S m1M14 := 20 ksi	$E_{1M14} := 27.3 \cdot 10^6 \text{ p}$	si
$t_{1M14} := (0.250 \cdot f_{max})$ in	S y1M14 := 23.7 ksi	$E_{p1M14} := 0.425 \cdot 10^6$	⁵ psi
OD $_{1M14} := ID _{1M14} + 2 \cdot t _{1M14}$	S _{u1M14} :=68.5 ksi	SA-376 Gr TP304	
OD _{1M14} = 1.377•in			
The second pipe is 3/4" Sch 160, pip	pe specification M-14		
ID $_{34M14} := 0.612$ in	S _{m34M14} := 20 ksi	$E_{34M14} := 27.3 \cdot 10^6$	psi
$t_{34M14} := (0.219 \cdot f_{max})$ in	S _{y34M14} := 23.7 ks	7 ksi $E_{p34M14} := 0.425 \cdot 10^6$ psi	
OD $_{34M14} := ID _{34M14} + 2 \cdot t _{34M14}$	M14 ^S u34M14 := 68.5 ks	si SA-376 Gr TP304	
OD _{34M14} = 1.105∘in			
The lengths of the two different pipe a total length of approximately 270 f	es are determined from ft. while the 3/4" pipe h	n the drawings in Reference 6. has a total length of approximate	The 1" pipe has ely 138 ft.
$L_1 := (270 \text{ ft}) \cdot \text{in}^{-1}$	$L_2 := (138 \text{ ft}) \cdot \text{in}^{-1}$		
$L_1 = 3.24 \cdot 10^3$ inches	$L_2 = 1.656 \cdot 10^3$ inc	hes	
For the first pipe (1" Sch 160, M-14)), the specific material	parameters used in the calculat	tion are
$t_1 := t_{1M14} in^{-1}$	t ₁ = 0.281 in	ches	
$r_{01} := \left(\frac{OD_{1M14} \cdot in^{-1}}{2}\right) - t_{1}$	r ₀₁ = 0.408 in	ches	
$S_{y1} := S_{y1M14} \cdot psi^{-1}$	$S_{y1} = 2.37 \cdot 10^4 p$	si	

 $E_{p1} := E_{p1M14} \cdot psi^{-1}$ $E_{p1} = 4.25 \cdot 10^5$ psi

. .

4 - . • :

1.

;

.

 $\epsilon_{y1} := \frac{S_{y1}}{E_1}$ $\epsilon_{y1} = 8.681 \cdot 10^{-4}$ in/in

 $S_{m1} := S_{m1M14}$ $S_{m1} = 2 \cdot 10^4 \text{ spsi}$

 $S_{u1} := S_{u1M14}$ $S_{u1} = 6.85 \cdot 10^4 \text{ opsi}$

XMP R	-	MPR Assoc 320 King Si Alexandria,	reet
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page 51
For the second pipe (3/4" S	ch 160, M-14), the specific	material parameters for the calcul	ation are
$t_2 := t_{34M14} \cdot in^{-1}$	t ₂ = 0.246	inches	
$r_{02} := \left(\frac{OD_{34M14} \cdot in^{-1}}{2}\right)$		inches	
$s_{y2} := s_{y34M14} \cdot psr^{-1}$	$S_{y2} = 2.37 \cdot 10^4$	psi	
$E_2 := E_{34M14} \cdot psi^{-1}$	$E_2 = 2.73 \cdot 10^7$	psi	. · ·
E _{p2} := E _{p34M14} ·psi ⁻¹	$E_{p2} = 4.25 \cdot 10^5$	psi	
$\epsilon_{y2} := \frac{S_{y2}}{E_2}$	ε _{y2} = 8.681·10 ⁻	⁴ in/in	
$s_{m2} := s_{m34M14}$	$S_{m2} = 2 \cdot 10^4 \text{eps}$	si	
s _{u2} := s _{u34M14}	$S_{u2} = 6.85 \cdot 10^4$	opsi	
At the ambient condition of $v_{initial} := 0.015961 \text{ ft}^3$		cific volume	
Therefore, the mass of wat	er in a unit length (1 inch) o	of pipe is	
$m_{w1i} := \frac{\pi \cdot r_{01}^{2} \cdot 1}{\left(\gamma_{\text{initial}} \cdot 1b \cdot in\right)}$	$m_{w1i} = 0.019$	b per unit length (1" Sch 160)	
$m_{w2i} := \frac{\pi \cdot r_{02}^2 \cdot 1}{\left(\nu_{\text{initial}} \cdot lb \cdot in\right)}$	$(m_{w2i} = 0.01)$	I Ib per unit length (3/4" Sch 160)
The mean coefficient of the	ermal expansion for SA-376	6 Gr TP304 at 250 F (Reference 12	2) is
$\alpha_{\rm T} := 8.90 \cdot 10^{-6}$			
And the strain due to them	nal expansion is		
ε th $:= \alpha T (T LOCA -$	T_{amb} $\epsilon_{th} = 1.513 \cdot 1$	0 ⁻³ in/in	
The total mass of the wate	r in the piping, assuming th	nat the pipe is filled, is	· .
$m_{tot} := m_{w1i} \cdot L_1 + n$	$m_{w2i} L_2 = m_{tot} = 78.94$	6 lb	

:

, ·

. . .

e e La g

. ··

. F......

MMPR		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page 52
To solve the equations for	the system with both pipe si	/ zes, we must guess inital values t	or the variables.
P:=3000	ε _{p1} :=0.01	vol 1 := 1	
v :=0.016	ε _{p2} := 0.01	vol 2 := 1	
σ _{h1} := 100	r ₁ := 1	m _{w1} := 1	
σ _{h2} := 100	r ₂ := 1	m _{w2} := 1	
Assign a function to repres	sent the change from elastic	strain to plastic strain as follows:	
f ₁ (σ _{h1} , S _{y1} , E ₁ , E _p	$(\sigma_{h1}, \varepsilon_{y1}) := if\left(\sigma_{h1} > S_{y1}, \frac{\sigma_{h1}}{E}\right)$	$\frac{-S_{y1}}{p1} + \varepsilon_{y1}, \frac{\sigma_{h1}}{E_1} \right)$	
f ₂ (σ _{h2} , S _{y2} , E ₂ , E ₁	$(\sigma_{h2}, \varepsilon_{y2}) := if\left(\sigma_{h2} > S_{y2}, \frac{\sigma_{h2}}{E}\right)$	$\frac{-S_{y2}}{p2} + \varepsilon_{y2}, \frac{\sigma_{h2}}{E_2}$	
Given	N		
$\mathbf{r}_{\mathbf{l}} = (1 + \varepsilon_{\mathbf{p}\mathbf{l}}) \cdot \mathbf{r}_{0\mathbf{l}} \cdot (1$	$+\varepsilon_{\rm th})$	$r_2 = (1 + \varepsilon_{p2}) \cdot r_{02} \cdot (1 + \varepsilon_{th})$	
$\operatorname{vol}_{1} = \frac{\pi \cdot r_{1}^{2} \cdot (1 + \varepsilon_{\text{th}})}{(12^{3})}$	$) \cdot L_1$	$\operatorname{vol} 2 = \frac{\pi \cdot r 2^2 \cdot (1 + \varepsilon th) \cdot L 2}{(12^3)}$	
$v = \frac{\text{vol } 1}{m_{w1}}$		$v = \frac{\text{vol } 2}{m_{W2}}$	
$P = (4.8551 \cdot 10^9) \cdot v^2 - $	$(1.8015 \cdot 10^8) \cdot v + 1.6583 \cdot 10^6$	$m_{tot} = m_{w1} + m_{w2}$	· ·
$\sigma_{hl} = P \cdot \frac{r_{l}}{t_{l}}$	· · ·	$\sigma_{h2} = P \cdot \frac{r_2}{r_2}$	
$\epsilon_{p1} = f_1(\sigma_{h1}, S_{y1}, E)$	1, E _{p1} , ε _{y1})	$\epsilon_{p2} = f_2(\sigma_{h2}, S_{y2}, E_2, E_{p2}, \epsilon_{p2})$	y2)
Solving the equations.			:
		•	
			,

, ... , ...

, ; . .

i. Ind

.

.**.**

ς...

MMPR	· · · · · · · · · · · · · · · · · · ·	320	R Associat King Stre andria, VA	et	
 Calculation No. 025-057-01	Prepared By MBG	Checked	Ву	Page 5	53
AA := Find $(r_1, r_2,$	ε _{p1} ,ε _{p2} , vol 1, vol 2, v, P,σ _{h1} ,σ	h_2, m_{w1}, m_{w2}		×	
$r_{1} := AA_{0,0} \cdot in$ $r_{2} := AA_{1,0} \cdot in$ $\epsilon_{p1} := AA_{2,0}$ $\epsilon_{p2} := AA_{3,0}$ $vol_{1} := AA_{4,0} \cdot ft^{3}$ $vol_{2} := AA_{5,0} \cdot ft^{3}$ $v := AA_{6,0} \cdot ft^{3}$ $P := AA_{7,0} \cdot ps$ $\sigma_{h1} := AA_{8,0} \cdot psi$ $\sigma_{h1} := AA_{8,0} \cdot psi$	$\epsilon_{p2} = 0$ vol 1 = 0.987 vol 2 = 0.284 3.1b ⁻¹ v = 0.0	1 0.201•% 0.076•% ¹ eft ³ A.4 16089•ft ³ ·lb ⁻¹ 6634·10 ⁴ •psi 6•ksi	$A = \begin{bmatrix} 0 \\ 2 \\ 2.013 \\ 3 \\ 7.585 \\ 4 \\ 5 \\ 6 \\ 7 \\ 1.66 \\ 8 \\ 2.41 \\ 9 \\ 2.07 \\ 10 \\ 6 \end{bmatrix}$		
$\sigma_{h2} := AA_{9,0} \cdot psi$ $m_{w1} := AA_1$ $m_{w2} := AA_1$	_{0,0} ·lb m _{w1} =	= 61.318 lb = 17.628 lb			
-	r the first pipe are calculated				
$S_{11} := \frac{P \cdot r_1}{t_1 \cdot in}$	S 11 = 24.18	6•ksi			
$S_{2p1} := \frac{P \cdot r_1}{2 \cdot t_1 \cdot in} +$	s _{m1} s _{2p1} = 32.0	93 •ksi			
$s_{2m1} := \frac{P \cdot r_1}{2 \cdot t_1 \cdot in} -$	S _{m1} S _{2m1} = -7.9	907•ksi			

 \sim

 $S_{2m1} := \frac{P \cdot r_1}{2 \cdot t_1 \cdot in} - S_{m1}$ $S_{31} := \frac{-P}{2}$ $S_{31} := -8.317 \circ ksi$

Ξ.

.

1	s ₁₁ - s _{2p1}]		7.907	
	$ S_{11} - S_{2m1} $		32.093	
BB 1 :=	S _{2p1} – S ₃₁	BB 1 =	40.41	∘ksi
	S _{2m1} - S ₃₁		0.41	
	S ₃₁ - S ₁₁		32.504	j

mpr		MPR Assoc 320 King S Alexandria,	
Calculation No. 025-057-01	Prepared By MBG	Checked By	Page 54
The stress intensity SI := max(BB ₁)	SI = 40.41%	si	
The allowable stress is			
S allowable := 0.7-	S _{ul} S _{allowable} =	= 47.95•ksi	
The stress index is			
Index := $\frac{SI}{S \text{ allowab}}$	Index = 0.84	3	
The principal stresses for	the second pipe are calculated	l in the second s	
$S_{12} := \frac{P \cdot r_2}{t_2 \cdot in}$	S ₁₂ = 20.70	7•ksi	
$S_{2p2} := \frac{P \cdot r_2}{2 \cdot t_2 \cdot in} + S_{2p2}$	S_{m2} $S_{2p2} = 30.3$	54•ksi	
$s_{2m2} := \frac{P r_2}{2 \cdot t_2 \cdot in} -$	s_{m2} $s_{2m2} = -9.6$	646•ksi	
$S_{32} := \frac{-P}{2}$	S ₃₂ = - 8.31	7•ksi	
$BB_{2} := \begin{bmatrix} S_{12} - S \\ S_{12} - S \\ S_{2p2} - S \\ S_{2m2} - S \\ S_{32} - S \end{bmatrix}$	$ \begin{array}{c c} 2p2 \\ 2m2 \\ 32 \\ 32 \\ 32 \\ 12 \\ \end{array} $ $ \begin{array}{c} 9.6 \\ 30.2 \\ 38.6 \\ 1.3 \\ 29.6 \\ \end{array} $	354 571 oksi	· · ·
The stress intensity			
$SI := max(BB_2)$	SI = 38.671 ·	ksi	
The allowable stress is			
S _{allowable} := 0.7	S _{u2} S _{allowable}	= 47.95•ksi	
The stress index is			
Index := $\frac{SI}{S_{allowall}}$	Index = 0.80	6	•

. .

· • ·: • ·

i., i

: : .

; :

. ۱۰.۰۰۰ ۲ · · · ·

THE FOLLOWING IS A LISTING OF OVERSIZED DRAWINGS CONTAINED WITHIN THIS DOCUMENT.

TO VIEW A DRAWING, REFERENCE THE DRAWING NUMBER SPECIFIC TO THE DESIRED DRAWING (NOTED ON THE LIST) AND LOCATE IT WITHIN THIS PACKAGE OR,

PERFORM A SEARCH USING THE DRAWING NUMBER

NOTE: Because of these page's large file size, it may be more convenient to copy the file to a local drive and use the Imaging (Wang) viewer, which can be accessed from the Programs/Accessories menu.

Attachment 2 to C0801-05

The following drawings provide an overview of the non-essential-service water (NESW) system and the details of the NESW piping for components located inside the containment that were modeled in the waterhammer analysis.

<u>Unit 1 Drawings</u>

Inside Containment

OP-1-5114-82	Flow Diagram Non-Essential Service Water Unit 1
OP-1-5114A-25	Flow Diagram Non-Essential Service Water
1-NSW-65	Upper Containment Ventilation Unit 4 Supply Line
1-NSW-66	Upper Containment Ventilation Unit 3 Supply Line
1-NSW-67	Upper Containment Ventilation Unit 2 Supply Line
1-NSW-68	Upper Containment Ventilation Unit 1 Supply Line
1-NSW-69	Upper Containment Ventilation Unit 4 Return Line
1-NSW-70	Upper Containment Ventilation Unit 3 Return Line
1-NSW-71	Upper Containment Ventilation Unit 2 Return Line
1-NSW-72	Upper Containment Ventilation Unit 1 Return Line
1-NSW-174	Instrument Room Ventilation Unit 3 Supply Line
1-NSW-175	Instrument Room Ventilation Unit 4 Supply Line
1-NSW-176	Instrument Room Ventilation Unit 3 Return Line
1-NSW-177	Instrument Room Ventilation Unit 4 Return Line
1-NSW-178	Lower Containment Ventilation Unit 1 Supply Line
1-NSW-179	Lower Containment Ventilation Unit 2 Supply Line
1-NSW-180	Lower Containment Ventilation Unit 3 Supply Line
1-NSW-181	Lower Containment Ventilation Unit 4 Supply Line
1-NSW-182	Lower Containment Ventilation Unit 1 Return Line
1-NSW-183	Lower Containment Ventilation Unit 2 Return Line
1-NSW-184	Lower Containment Ventilation Unit 3 Return Line
1-NSW-185	Lower Containment Ventilation Unit 4 Return Line

Outside Containment

1-NSW-37	Lower Containment Ventilation Unit 2 Supply Line
1-NSW-38	Lower Containment Ventilation Unit 3 Supply Line
1-NSW-39	Upper Containment Ventilation Unit 2 Supply Line
1-NSW-42	Upper Containment Ventilation Unit 3 Supply Line
1-NSW-44	Upper Containment Ventilation Unit 2 Return Line
1-NSW-45	Lower Containment Ventilation Unit 2 Return Line
1-NSW-46	Lower Containment Ventilation Unit 3 Return Line
1-NSW-47	Upper Containment Ventilation Unit 3 Return Line
1-NSW-49	Instrument Room Ventilation Unit 3 Supply Line
1-NSW-50	Instrument Room Ventilation Unit 4 Return Line

1-NSW-51 1-NSW-52 1-NSW-54 1-NSW-55 1-NSW-57 1-NSW-58 1-NSW-59 1-NSW-60	Instrument Room Ventilation Unit 3 Return Line Instrument Room Ventilation Unit 4 Supply Line Upper Containment Ventilation Unit 1 Supply Line Lower Containment Ventilation Unit 1 Supply Line Upper Containment Ventilation Unit 4 Supply Line Lower Containment Ventilation Unit 4 Supply Line Lower Containment Ventilation Unit 4 Supply Line Lower Containment Ventilation Unit 1 Return Line Upper Containment Ventilation Unit 1 Return Line
1-NSW-60	Upper Containment Ventilation Unit 1 Return Line
1-NSW-62	Lower Containment Ventilation Unit 4 Return Line
1-NSW-63	Upper Containment Ventilation Unit 4 Return Line

<u>Unit 2 Drawings</u>

Inside Containment

Outside Containment

2-NSW-100	Lower Containment Ventilation Unit 2 Supply Line
2-NSW-101	Lower Containment Ventilation Unit 3 Supply Line
2-NSW-102	Upper Containment Ventilation Unit 2 Supply Line

2-NSW-105	Upper Containment Ventilation Unit 3 Supply Line
2-NSW-106	Instrument Room Ventilation Unit 3 Supply Line
2-NSW-107	Instrument Room Ventilation Unit 4 Supply Line
2-NSW-108	Upper Containment Ventilation Unit 4 Supply Line
2-NSW-111	Upper Containment Ventilation Unit 1 Supply Line
2-NSW-112	Lower Containment Ventilation Unit 1 Supply Line
2-NSW-114	Upper Containment Ventilation Unit 2 Return Line
2-NSW-115	Lower Containment Ventilation Unit 3 Return Line
2-NSW-116	Lower Containment Ventilation Unit 1 Return Line
2-NSW-117	Upper Containment Ventilation Unit 3 Return Line
2-NSW-119	Instrument Room Ventilation Unit 3 Return Line
2-NSW-120	Instrument Room Ventilation Unit 4 Return Line
2-NSW-122	Upper Containment Ventilation Unit 4 Return Line
2-NSW-123	Lower Containment Ventilation Unit 2 Return Line
2-NSW-124	Lower Containment Ventilation Unit 4 Return Line
2-NSW-125	Upper Containment Ventilation Unit 1 Return Line
2-NSW-146	Lower Containment Ventilation Unit 4 Supply Line

In accordance with the restrictions stated on drawings OP-1-5114-82, OP-1-5114A-25, OP-25114-50 and OP-2-5114A-29, Indiana Michigan Power Company (I&M) hereby releases these documents to the Nuclear Regulatory Commission (NRC) for its information and use in connection with the review of I&M's submittal. I&M also permits the NRC to reproduce the drawings as necessary to facilitate the review and distribution of the submittal to meet NRC requirements.