Docket Nos: 50-315
U. S. Nuclear Regulatory Commission

ATTN: Document Control Desk
Mail Stop O-P1-17
Washington, DC 20555-0001
Donald C. Cook Nuclear Plant Units 1 and 2
NRC GENERIC LETTER (GL) 96-06
ASSURANCE OF EQUIPMENT OPERABILITY AND CONTAINMENT
INTEGRITY DURING DESIGN BASIS ACCIDENT CONDITIONS RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION (TAD NOS. M96801 AND M96802)

References: 1. Letter from A. C. Bakken III, Indiana Michigan Power Company to Nuclear Regulatory Commission Document Control Desk, "NRC Generic Letter (GL) 96-06, Assurance of Equipment Operability and Containment Integrity During Design Basis Accident Conditions, (TAC Nos. M96801 and M96802)," submittal C0800-10, dated August 15, 2000.
2. Letter from M. W. Rencheck, Indiana Michigan Power Company, to Nuclear Regulatory Commission Document Control Desk, "Donald C. Cook Nuclear Plant Unit 1, NRC Generic Letter (GL) 96-06, Assurance of Equipment Operability and Containment Integrity During Design Basis Accident Conditions, (TAC Nos. M96801 and M96802)," submittal C1100-01, dated November 7, 2000.
3. Letter from John F. Stang, Nuclear Regulatory Commission, to Robert P. Powers, Indiana Michigan Power Company, "Donald C. Cook Nuclear Plant, Units 1 and 2 - Request for Additional Information, 'Responses to Generic Letter (GL) 96-06 Assurance of Equipment Operability and Containment Integrity During Design-Basis Accident Conditions,' (TAC Nos. M96801 and M96802)," dated June 6, 2001.

In GL 96-06, the Nuclear Regulatory Commission (NRC) requested licensees to review their plant designs to determine if isolated piping sections inside of containment could be subjected to overpressurization following a design-basis accident. Additionally, the NRC requested licensees to determine if piping inside of containment could be subjected to either two-phase flow or waterhammer following a design-basis accident. Indiana Michigan Power Company responded to the GL in References 1 and 2, stating that there were piping sections inside containment that could be subjected to overpressurization and waterhammer following a design-basis accident.

In Reference 3, the NRC requested additional information regarding the evaluations that were performed in responding to the GL. This letter provides a response to the request for additional information.

This letter contains no new commitments. Should you have any questions, please contact Mr. Ronald W. Gaston, Manager of Regulatory Affairs, at (616) 697-5020.

Sincerely,

M. W. Rencheck

Vice President Nuclear Engineering
/dmb
c: J. E. Dyer
MDEQ - DW \& RPD, w/o attachments
NRC Resident Inspector
R. Whale, w/o attachments

AFFIRMATION

I, Michael W. Rencheck, being duly sworn, state that I am Vice President of Indiana Michigan Power Company (I\&M), that I am authorized to sign and file this request with the Nuclear Regulatory Commission on behalf of I\&M, and that the statements made and the matters set forth herein pertaining to I\&M are true and correct to the best of my knowledge, information, and belief.

Indiana Michigan Power Company

M. W. Rencheck

Vice President Nuclear Engineering

SWORN TO AND SUBSCRIBED BEFORE ME

My Commission Expires \qquad

JMNUFRR L KEHRNOSEY
Notety Public, Berrian Cournty, Michigan My Commissian Expires May 20, 200 .

ATTACHMENT 1 TO C0801-05

RESPONSE TO GENERIC LETTER (GL) 96-06
 REQUEST FOR ADDITIONAL INFORMATION

In GL 96-06, the Nuclear Regulatory Commission (NRC) requested licensees to review their plant designs and determine if piping inside of containment would be subject to overpressurization, waterhammer, or two-phase flow following a design basis accident. Indiana Michigan Power Company (I\&M) responded to the GL in letters from A. C. Bakken III, I\&M, to NRC Document Control Desk, dated August 15, 2000, and M. W. Rencheck, I\&M, to NRC Document Control Desk, dated November 7, 2000. The NRC in a letter from J. F. Stang, Jr. to Robert P. Powers, I\&M, dated June 6, 2001, requested additional information. The following responds to the NRC's request for additional information.

NRC Question 1

"If a methodology other than that discussed in NUREG/CR-05220, 'Diagnosis of Condensationinduced Waterhammer,' was used in evaluating the effects of waterhammer, describe this alternate methodology in detail. Also, explain why this methodology is applicable and gives conservative results (typically accomplished through rigorous plant-specific modeling, testing, and analysis)."

I\&M Response

NUREG/CR-05220 describes an approach for waterhammer analysis that is based on several primary steps. These are: (1) determine what type of waterhammer is possible, (2) perform analysis to determine the water velocity at collapse of the void or impact of two water slugs, (3) determine the waterhammer pressures using the impact velocity and the speed of sound, and (4) using the waterhammer pressure, determine the waterhammer loads and evaluate the impact of the loads on the system. These steps were followed in the non-essential service water (NESW) system evaluation.

Waterhammer was analyzed using a transient hydraulic computer code that includes the thermodynamic equations of state for water (both liquid and vapor); therefore, the code identifies the locations of voids and water slugs in the piping system, including their transient behavior. This is consistent with the methodology discussed in NUREG/CR-05220. For the NESW system, the primary waterhammer events are trapped void collapse and saturated water slug acceleration. The impact velocity and waterhammer pressure are calculated by the analysis code. Stress analyses were performed to evaluate the impact of the waterhammer loads on the piping and pipe supports. The stress analyses are discussed in the response to Question 2(d).

Additional details on the methodology used, its applicability, and its conservatisms, are described in detail in the Question 2 response.

NRC Question 2

"For both the waterhammer and two-phase flow analyses, provide the following information:

NRC Question 2(a)

Identify any computer codes that were used in the waterhammer and two-phase flow analyses and describe the methods used to benchmark the codes for the specific loading conditions involved (see Standard Review Plan Section 3.9.1)."

I\&M Response

The transient hydraulic computer code SYSFLOW, which was developed by MPR Associates, Incorporated, was used to analyze the waterhammer events. The transient thermal hydraulic analysis computer program uses a fully implicit numerical technique to solve the integrated mass, energy, and momentum conservation equations over a set of control volumes connected by fluid connectors. The piping is divided into control volumes that contain mass and energy. Mass and energy are transferred between the control volumes via connections between the centroid of one control volume and the centroid of another control volume. The transient flow rate in the connector is determined by the integrated momentum conservation equation, and the transient behavior of the mass and energy in the control volumes is determined by the integrated mass and energy conservation equations. The pressure, temperature, enthalpy, density, and void fraction are all determined from the mass and energy in a control volume.

Since the analytic approach described above is based on the conservation of mass, energy, and momentum and includes the complete thermodynamic equations of state of steam/water, acoustic phenomena are included implicitly in the solution of the conservation equations. For example, the velocity at which sound propagates can be determined from the properties of steam/water from the partial derivative of pressure with respect to density at constant entropy and the wave equation which controls the propagation of sound waves can be derived directly from the conservation equations.

The computer code was verified by using it to analyze piping configurations for which the answers are known, including problems involving pressure waves traveling through the piping at the speed of sound.

In addition, the results of the computer code were compared with the steady state results calculated with a Proto-Flo steady state computer model of the NESW system. The results of these comparisons show that the calculated results of the transient computer code are acceptable.

The two-phase flow analysis was limited to hand calculations to demonstrate that boiling does not occur in the containment ventilation coolers. A transient analysis computer code was not used for this evaluation.

NRC Question 2(b)

"Describe and justify all assumptions and input parameters (including those used in any computer codes) such as amplifications due to fluid structure interaction, speed of sound, force reductions, and mesh sizes, and explain why the values selected give conservative results. Also, provide justification for omitting any effects that may be relevant to the analysis (e.g., fluid structure interaction, flow induced-vibration, erosion)."

I\&M Response

A number of assumptions were made in developing the analysis model and performing the hydraulic and stress analyses. The key assumptions made in the analyses and modeling included:

Waterhammer Analysis - Several key assumptions are built into the analysis methodology and computer code. The most important are:

- No credit is taken for the cushioning effect of any entrained air in the NESW system. This maximizes the magnitude of any resulting pressure pulses.
- The computer code and model neglect fluid structure interaction and the reduction in speed of sound due to pipe expansion. This overestimates the calculated waterhammer pressures.
- The analytic technique overestimates waterhammer pressures. When a void collapses and becomes water solid in the model, the computer code overestimates the mass in the control volume and overestimates the resulting pressure.

Other assumptions made in performing the waterhammer hydraulic analyses included:

- The geometrically similar piping inside containment was modeled as a single line with flow properties of the combined lines as the response would be similar to the response of the two lines individually.
- Several turbine building flow loads were modeled as a single flow connector and resistance. This approach has negligible impact on the analysis results.

Two-Phase Flow

- The containment ventilation coolers are assumed to have zero fouling. This increases the heat transfer rate from the containment atmosphere to the NESW system and increases the possibility of two-phase flow.

Stress Analysis

- A model of a single upper containment ventilation unit line was constructed. It was assumed that this line would provide results comparable to other lines because of the low loads, the ample margin, and the similarity in the piping designs.

NRC Question 2(c)

"Provide a detailed description of the 'worst case' scenarios for waterhammer and two-phase flow (i.e., scenarios that lead to most severe consequences when considering design-basis assumptions such as single-failure, loss of offsite power, etc.), taking into consideration the complete range of event possibilities, system configurations, and parameters. For example, all waterhammer types and water slug scenarios should be considered, as well as temperatures, pressures, flow rates, load combinations, and potential component failures. Additional examples include:

- the effect of void fraction on flow balance and heat transfer;
- the consequences of steam formation, transport, and accumulation;
- cavitation, resonance, and fatigue effects; and
- erosion consideration."

I\&M Response

The most severe two-phase conditions that develop in the system result from column separation effects as pumping power is lost during loss-of-offsite power (LOOP) events. Thus, the waterhammer events associated with collapse or compression of steam pockets are not considered. The worst case scenarios for waterhammer in the NESW containment piping were determined by a failure modes and effects analysis (FMEA). These scenarios are:

A dual unit LOOP waterhammer event occurring in the upper-containment-ventilation unit's piping without a loss-of-coolant accident (LOCA). This event results in the maximum voiding in the NESW system, with the containment isolation valves remaining open. This is a classic column separation waterhammer scenario. The worst case pressures result from assuming the void collapses without air present (to cushion the impact) and with cold water in the system. The largest voids are in the upper containment ventilation unit piping. The FMEA determined that the limiting case is a LOOP with a lower containment ventilation unit isolation valve failing closed. This would direct more flow towards the upper containment ventilation units and increase the impact velocity.

A dual unit LOOP waterhammer event occurring in the lower-containment-ventilation unit's piping with a small break LOCA. Although the voids in the lower ventilation unit piping would not be as large as in the upper ventilation unit piping, it is possible that the refill velocity could
be higher, since the system will preferentially fill the lower unit's piping before filling the upper unit's piping. This is also a classic column separation waterhammer scenario, with the same assumptions as the previous case (no air cushioning, cold water, etc.). The FMEA determined that the limiting case is a LOOP with a lower containment ventilation unit isolation valve failing closed. This would direct more flow towards the open lower containment ventilation units and increase the impact velocity.

In summary, the worst case scenarios are classic column separation configurations, using traditional limiting assumptions.

The containment ventilation units are not used for accident mitigation. Thus, the effect on the heat transfer coefficients is not a concern, as the ventilation units are not credited with removing heat from containment following an accident.

NRC Question 2(d)

"Please provide the limiting piping loads for the bounding waterhammer and provide comparisons to the allowable limits for these loads. Please include results demonstrating integrity of the non-essential-service water (NESW) system inside containment and the results demonstrating the integrity of the system outside of the containment. Include consideration of containment isolation valves and penetrations."

I\&M Response

The maximum piping stress due to the waterhammer loads was calculated to be 10 ksi . The calculated support loads varied, but were typically very small. The maximum support load due to the waterhammer loads was 570 lb .

Full design stress analyses were not performed for the NESW piping for the waterhammer loads. This was because of the very low calculated stresses and support loads. Additionally, the system is not required to remain operational (there are no safe-shutdown required functions). The only requirement is that any failures will not adversely affect safety-related equipment or prevent containment isolation. The appropriate acceptance criteria for this loading are those defined in the Appendix F to Section III of the American Society of Mechanical Engineers (ASME) Code. These criteria provide ample margin, and a qualitative evaluation was performed to determine that the calculated loads and stresses, even when combined with gravity and other applicable loads, would still be considerably less than the code acceptance criteria.

The calculated pipe stresses were determined assuming no pipe supports were present. The maximum stress of 10 ksi is not a concern for significant piping damage or detrimental impact on isolation valve performance as this stress is well below the ASME Code, Appendix F limits. The NESW system is not safety related, so detailed design analyses of all piping segments and pipe supports were not performed. However, the maximum pipe support load of 570 lbs . is
comparable to the available normal design loads. These loads were considered acceptable even if some support damage occurred, particularly since the piping is acceptable even without the supports.

NRC Question 2(e)

"Confirm that the analyses included a complete failure modes and effects analysis (FMEA) for all components (including electrical and pneumatic failures) that could impact performance of the cooling water system and confirm that the FMEA is documented and available for review, or explain why a complete and fully documented FMEA was not performed."

I\&M Response

A FMEA has been performed. The FMEA considered all postulated failures, including electrical, pneumatic and mechanical. The results of the FMEA are summarized in Table 1.

NRC Question 2(f)
"Explain and justify all uses of 'engineering judgement""

I\&M Response

Engineering judgement was used in several instances in performing the hydraulic analysis and the piping stress analysis. The most significant use of judgement was in the selection of the basic analysis approach. It was judged that a full, detailed design analysis of all NESW piping inside containment for waterhammer loads is not required. Rather, an analysis of a single containment cooler and its associated piping is adequate. The analysis approach used, and key judgements made, are as follows:

- The hydraulic modeling was performed using two models. A coarse model of the piping inside and outside containment was used to calculate the magnitude and duration of the waterhammer pressure pulse. The profile of this pulse was used as input to a detailed model of a containment cooler and its associated piping to calculate the time history response of the pressure pulse traveling through the cooler's piping. This approach was judged to provide sufficiently accurate results for the NESW system analysis. This conclusion is based on the large margin that exists between the calculated stresses and the applicable acceptance criteria (ASME Code, Appendix F).
- Stress analyses using the hydraulic loads as inputs were performed for a single containment cooler piping segment. A typical cooler line was selected for detailed modeling. This was judged to be acceptable because of the common design approach used for all NESW piping inside containment (e.g., span lengths between supports, routing through the containment, etc.). The stress analyses were performed for two
conditions of pipe support stiffness ($1 \times 10^{6} \mathrm{lb} / \mathrm{ft}$, and supports not active). These two conditions were judged to sufficiently represent the expected piping stresses and pipe support loads. This conclusion is based on the large margin that exists between the calculated stresses and the applicable acceptance criteria (ASME Code, Appendix F). The calculated support loads and piping stresses were judged sufficiently low that additional, detailed analyses considering all postulated design loads is not required.
- Judgement was used in several instances in developing the details of the hydraulic models and the stress analysis models previously discussed. These uses of judgement are typically used by the vendor who performed the analysis. The modeling techniques were implemented under a 10 CFR 50, Appendix B program and have been used in previous applications.

Overall, the use of engineering judgement as described above is considered acceptable for the NESW piping evaluation. The results of the analysis support the judgement. The calculated maximum waterhammer pressure pulses are very low, between 50 and 150 psi , and the associated piping loads are low. The calculated piping stresses were much less than the ASME Section III, Appendix F allowable limits. The postulated waterhammer events would be fairly benign events for the NESW system, and the use of the selected evaluation approach is acceptable.

NRC Question 3

"Was condensation induced waterhammer (CIWH) analyzed? Are there any long horizontal piping runs in the NESW system where CIWH could occur during system drain down following a loss of offsite power or during the refill after power was reestablished?"

I\&M Response

CIWH is caused when water slugs are trapped between two steam pockets, with incoming cold water on one side and high-pressure steam on the other side. The presence of the cold water causes a sudden collapse (condensation) of the steam pocket, creating a situation with low pressure on one side of the slug (due to the rapid condensation), and high pressure on the other side. The water slug accelerates through the low-pressure pocket into the incoming water. This condition does not occur in the NESW piping. Although water slugs and steam pockets may form in the piping during drain down, there is always very low pressure on the downstream side of the water slugs (the NESW system is an open loop system). It is impractical to consider that significant CIWH events could occur in these situations. Any CIWH events in the horizontal piping are considered bounded by the column separation waterhammer analysis.

NRC Question 4

"Determine the uncertainty in the waterhammer and two-phase flow analyses, explain how the uncertainty was determined, and how it was accounted for in the analyses to assure conservative results."

I\&M Response

The analyses of waterhammer and two-phase flow do not include a formal uncertainty analysis. The results are based on bounding scenarios and conservative modeling approaches; therefore, the calculated results for waterhammer pressures, pipe stresses, and pipe supports are considered conservative. The overall conclusion of the evaluation was that the waterhammer loads are very small and would not cause gross failure of the piping and pipe supports. This conclusion was based on comparisons of calculated pipe stresses and pipe support loads to applicable acceptance criteria (ASME Code, Appendix F). The margins between calculated stresses and allowable stresses were sufficiently large to allow judgement to be used in place of a detailed design analysis of the entire system. Any expected uncertainties in the analysis methodology and results would not change this conclusion.

NRC Question 5

"Confirm that the waterhammer and two-phase flow loading conditions do not exceed any design specifications or recommended service conditions for the piping system and components, including those stated by equipment vendors; and confirm that the system will continue to perform its design-isolation functions as assumed in the safety analysis report for the facility."

I\&M Response

The NESW system is a non-safety-related system, and its only safety-related function is to isolate the NESW piping following an accident signal. The NESW system is not required to operate to reach safe shutdown following an accident. Direct comparisons to design specifications, code acceptance criteria, etc., were not performed. Sufficient analyses were performed to provide support for the conclusion that the waterhammer loading is small and would not significantly damage or affect the NESW piping and pipe supports. The potential waterhammer events do not jeopardize the integrity of the containment isolation valves or safety related equipment installed inside containment, nor do they have a detrimental impact on isolation valve performance.

NRC Question 6

"With respect to the waterhammer and two-phase flow issue, provide a simplified diagram of the systems analyzed, showing major components, active components, relative elevations, lengths of piping runs, and the location of any orifices and flow restrictions."

I\&M Response

Flow diagrams and isometric drawings of the NESW system are provided in Attachment 2.

NRC Question 7

"Describe in detail any plant modifications or procedural changes that have been made or are planned to be made to resolve the waterhammer and two-phase flow issues. Consider the circumstance by which the NESW would be isolated following a loss-of-coolant accident or steamline break, voided within the containment as the result of internal steam formation and subsequent opening of the isolations valves by operators for post accident containment cooldown. Would waterhammer occur under such a scenario? What procedural safeguards are provided?"

I\&M Response

No plant modifications or procedural changes have been made, and none are planned. The NESW system is not used (or required) for post-accident containment cooldown.

NRC Question 8

"In the submittal of November 7, 2000, you identified 21 lines installed in Unit 1 that have no relief valves and are susceptible to thermally-induced pressurization. You classified three lines under category E1 and the remaining 18 lines under category E2 depending on the method you used for calculating peak pressure inside the affected line. You also stated that the 21 lines have been analyzed based on the inelastic analysis criteria in Appendix F to Section III of the American Society of Mechanical Engineers (ASME) Code."

NRC Question 8(a)

"Provide the maximum-calculated temperature and pressure for the pipe run. Describe in detail, the method used to calculate temperature and pressure values for the affected lines. This should include a discussion on the heat transfer model and the basis for the heat transfer coefficients used in the analysis."

I\&M Response

Table 2 lists the maximum temperature and pressure for each Category E1 pipe, and the maximum pressure in each Category E2 pipe line.

For lines classified as Category E1, the temperature increase for the water inside the pipe and the associated pressure were determined. The water temperature is calculated by considering either forced convection or condensation heat transfer on the pipe's outer surface, conduction through
the pipe walls, and natural convection heat transfer on the pipe's inner surface. The calculation uses standard correlations for heat transfer coefficients. A sample calculation, whose methodology is applicable to both Unit 1 and Unit 2, is provided in Attachment 3.

The calculated water temperature is used as an input to a stress analysis in which the system pressure is calculated. The stress analysis evaluates system expansion, calculates a specific volume for the water inside the pipe and determines the pressure based on the water's equation of state. A sample calculation, whose methodology is applicable to both Unit 1 and Unit 2, is provided in Attachment 4.

For lines classified as Category E2, the pressure at which certain diaphragm valves in the pipe system would lift off their seats to provide a momentary relief path was calculated. The calculation determines the system pressure required to open the valve a distance equal to 10% of its full-stroke length. Factors considered in this calculation are the diaphragm area exposed to the pressure in the isolated section and the valve's spring constant. The system pressure at which the valve is considered to open is the value at which the pressure force equals the spring force when the valve has opened a distance equal to 10% of it full-stroke length. Details of the calculation are provided in Attachment 5.

NRC Question 8(b)

"Describe the applicable design criteria for the piping and the valves. Include the required load combinations and the methodology for calculating primary membrane stress intensity for combined loads. Identify the licensing basis code edition of Appendix F to Section III of the ASME Code. Provide the maximum calculated and allowable stress and stain in the carbon steel and/or stainless steel penetrations."

I\&M Response

The code of record for the valves is USAS B31.1.0-1967, which references USA Standards B16.1, B16.5 and B16.1. Where these acceptance criteria were exceeded, the 1989 version of the ASME Code, Section III, Appendix F was used.

Load combinations analyzed include overpressure, deadweight, and seismic induced loads. The methodology is fully described in Attachment 6.

The code of record for the piping systems is USAS B31.1.0-1967. Table 126.1 of this code references the ASME Boiler and Pressure Vessel Code, although Appendix F was not yet a part of Section III of the ASME Code at that time.

Where B31.1 code criteria were exceeded, piping segments were evaluated to Appendix F to Section III of the 1989 ASME Code. Use of Appendix F is consistent with the recommendations in Supplement 1 to Generic Letter 96-06. As a check, design stress intensity and yield strength
values from the 1989 ASME Code were compared to the values from the 1968 version, as shown in Attachment 6. This comparison showed that the 1989 edition material properties are comparable to the 1968 edition properties. Accordingly, the 1989 ASME Code version is appropriate to use for this evaluation.
The maximum stresses and strains in the piping are listed in Table 3. All lines are acceptable for overpressurization based on Appendix F criteria.

NRC Question 8(c)

"Based on the results of inelastic analysis of the 21 lines, provide the calculation for the line that has the maximum calculated stress/strain. The calculation should clearly indicate all design input parameters including material stress-strain curve and justification thereof, and the methodology for inelastic analysis including the analysis results. Provide the detailed calculation of maximum primary membrane stress intensity, membrane hoop strain, and the peak strain at local discontinuity. Acceptance criteria for stress and strain limits and its justification should also be provided along with the reference to specific articles of Appendix F to Section III of the ASME Code."

I\&M Response

The reactor coolant pump (RCP) Seal Bypass line has the highest stress. The manner in which the stress and strain was calculated during overpressurization conditions is described in detail in Attachment 7 (which includes the calculation of peak pressure and shows the stress strain curves) and Attachment 6 (which includes stress and strain calculations and acceptance criteria).

NRC Question 8(d)

"For piping in E2 category, you indicated that credit for the momentary lifting of diaphragm valves was taken in the calculation of peak pressure that are listed in the submittal. Describe the method used to estimate the valve lift off pressure. Discuss any source of uncertainty associated with the calculation of the valve lift off pressure."

I\&M Response

The method used to estimate the valve lift off pressure is discussed in the Question 8(a) response. The calculation to determine the valve lift off pressure did not credit leakage that would occur prior to the valve's opening by 10% of its full stroke. This conservatism was used to bound any uncertainty in the vendor supplied values used to calculate the opening pressure as the valves would begin to leak once the trapped water pressure was sufficient to just start lifting the valve.

NRC Question 9

"In the submittal of August 15, 2000, you identified four lines installed in Unit 2 that have no relief valves and are susceptible to thermally-induced pressurization. You stated that the four lines were analyzed based on the inelastic analysis criteria in Appendix F to Section III of the ASME Code."

NRC Question 9(a)

"Provide the maximum calculated temperature and pressure values for the pipe run. Describe in detail, the method to calculate temperature and pressure, if different from that provided in response to question 8(a)."

I\&M Response

The maximum pressures and temperatures for each Unit 2-pipe segment are listed in Table 4. The methodology was previously discussed in the Question 8(a) response.

NRC Question 9(b)

"Provide the maximum calculated stress and strain in the carbon steel and/or stainless steel penetrations. Describe the design criteria, if different from that provided in response to question 8(b)."

I\&M Response

The maximum stresses and strains in the piping are listed in Table 5. All lines are acceptable for overpressurization based on Appendix F criteria.

Unit 2 segments were evaluated to the requirements of ASME Code Section III Appendix F. Load combinations analyzed include hoop stresses due to overpressure, and longitudinal stresses due to pressure, deadweight and seismic induced loads. Longitudinal stresses were conservatively assumed to be equal to the allowable material stress to simplify the analysis. The methodology is fully described in Attachment 8.

NRC Question 9(c)

"Provide the calculation for the line with the maximum calculated stress/strain, if the maximum calculated stress/strain are not enveloped by and/or the calculation process is different from the sample calculation provided in response to question 8(c)."

I\&M Response

The RCP Seal Bypass line has the highest stress. The manner in which the stress and strain was calculated during overpressurization conditions is described in detail in Attachment 8.

Table 1

Limiting Configurations of Donald C. Cook Nuclear Plant NESW System

 During Scenarios Considered for GL 96-06| Parameter | Scenario | | |
| :---: | :---: | :---: | :---: |
| | Max Potential for Column Separation in Upper Containment Ventilation Units | Max Potential for Column Separation in Lower Containment Ventilation Units | Max Potential for Two-Phase Flow |
| Plant Condition | $\begin{aligned} & \text { LOOP without } \\ & \text { LOCA } \end{aligned}$ | LOOP with Small Break LOCA | LOOP with Small Break LOCA |
| Number of NESW Pumps Running | All four pumps are assumed to operate to maximize flow (2 pumps per unit) | All four pumps are assumed to operate to maximize flow (2 pumps per unit) | Only the two pumps in the other unit are assumed to operate to minimize flow |
| Status of NESW Discharge Header Cross-Tie | Open | Open | Open |
| Number of NESW Flow Paths Open in Containment | | | |
| --Upper Containment Ventilation Units (4 total) | 4 | 0 | 4 |
| --Lower Containment Ventilation Units (4 total) | 3 | 3 | 4 |
| --Instrument Room | 2 | 0 | 2 |
| --RCP Coolers | 0 | 0 | 4 |
| Status of Other NESW Loads Outside of Containment | | | |
| -- Air Compressors
 -- Other Loads | Open Closed | Open Closed | Closed Open |

Table 2

Donald C. Cook Nuclear Plant Unit 1 Piping Segments Maximum-Calculated Temperature and Pressure

Segment	Description	Maximum Temperature (${ }^{\circ}$ F)	Maximum Pressure (psig)
NESW Cooling for Instrumentation Room Ventilation Units (2 segments)	Piping between NESW supply and return isolation valves located outside of containment.	NA*	325
NESW Cooling for Upper Containment Ventilation Units (4 segments)	Piping between NESW supply and return isolation valves located outside of containment.	NA*	711
NESW Cooling for RCP Motor Air Coolers (4 segments)	Piping between NESW supply and return isolation valves located outside of containment.	NA*	711
NESW Cooling for Lower Containment Ventilation Units (4 segments)	Piping between NESW supply and return isolation valves located outside of containment.	NA*	215
Primary Water Supply to RCPs and pressurizer relief tank (PRT) (CPN 33)	Piping between Primary Water Supply line isolation valve outside containment to RCP and PRT isolation valves inside containment.	NA*	212
Demineralized Water Supply to Refueling Cavity Scrub Down Hose Connections (CPN 36)	Piping between Demineralized Water Supply line isolation valves outside containment to manual isolation valves for hose connections inside containment.	NA*	325
Reactor Coolant Drain Tank Pump Suction (CPN 40)	Piping from PRT drain line isolation valve and reactor coolant drain tank (RCDT) drain line check valve inside containment to isolation valves outside containment.	NA*	262
Containment Sump Pump Discharge (CPN 41)	Piping between sump pump discharge check valves inside containment and discharge isolation valves outside containment.	NA*	212
Safety Injection Test Line and Accumulator Fill Line (CPN 32)	Piping between accumulator isolation valves and fill line isolation valves.	235	15,310
RCP Seal Bypass Line	Piping between RCP seal bypass check valves and RCP seal bypass isolation valve, all inside containment.	235	16,940
RCP Seal Leakoff Return Line (CPN 37)	Piping between isolation valves located inside and outside of containment.	240	1,800

* No temperature was calculated for these lines since they have diaphragm valves that will open under overpressure conditions.

Table 3

Donald C. Cook Nuclear Plant Unit 1 Piping Segments Maximum-Calculated Pipe Stress and Strain

	Per Appendix F		
Segment	Stress Intensity (SI) / Allowable Stress (0.7 S ${ }_{\mathrm{u}}$) (psi)	$\left.\begin{array}{\|c\|}\text { Maximum Stress } \\ \text { Index } \\ \text { (equal to } \mathbf{S I} / \mathbf{0 . 7 S} \\ \mathbf{u}\end{array}\right)$	Maximum Strain (in/in) (5\% Permitted)
NESW Cooling for Instrumentation Room Ventilation Units (2 segments)	27,902 / 42,000	0.66	0.0081\%
NESW Cooling for Upper Containment Ventilation Units (4 segments)	29,466 / 42,000	0.70	0.0185\%
NESW Cooling for RCP Motor Air Coolers (4 segments)	29,466 / 42,000	0.70	0.0185\%
NESW Cooling for Lower Containment Ventilation Units (4 segments)	27,625 / 42,000	0.66	0.0085\%
Primary Water Supply to RCPs and PRT (CPN 33)	29,545 / 47,950	0.62	0.011\%
Demineralized Water Supply to Refueling Cavity Scrub Down Hose Connections (CPN 36)	30,238 / 47,950	0.63	0.016\%
Reactor Coolant Drain Tank Pump Suction (CPN 40)	30,483 / 47,950	0.64	0.017\%
Containment Sump Pump Discharge (CPN 41)	30,043 / 47,950	0.63	0.011\%
Safety Injection Test Line and Accumulator Fill Line (CPN 32)	45,825 / 47,950	0.96	0.371\%
RCP Seal Bypass Line	47,354/47,950	0.99	0.996\%
RCP Seal Leakoff Return Line (CPN 37)	44,470/47,950	0.93	2.016\%

Table 4

Donald C. Cook Nuclear Plant Unit 2 Piping Segments Maximum Calculated Temperatures and Pressures

Segment	Description	Maximum Temperature ($\left.{ }^{\circ} \mathbf{F}\right)$	Maximum Pressure (psig)
RCP Seal Leak-off Return Line (CPN 37)	Penetration piping between inside and outside containment isolation valves, including test connections.	250	15,300
Accumulator Fill Lines (CPN 32)	Piping from outside containment isolation valve to normally closed "inlet" valves at each accumulator and, the normally closed valves in the flow paths to the low head SI hot leg loops.	240	1,890
RCP Seal Bypass Lines	Piping from the seal bypass line check valves to the normally closed QRV-150 valve in the common discharge header.	250	1,890
PRT and RCDT Drain Piping	Piping from the normally closed PRT drain line and the RCDT drain line check valve inside containment (to the normally closed isolation valves outside containment.	250	17,100

Table 5

Donald C. Cook Nuclear Plant Unit 2 Piping Segments Maximum Calculated Pipe Stresses and Strains

	Per Appendix F		
Segment	Stress Intensity (SI)/ Allowable Stress $\left(0.7 \mathbf{S}_{\mathrm{u}}\right.$ (psi)	$\left.\begin{array}{c}\text { Maximum Stress } \\ \text { Index (equal to } \\ \text { SL/0.7S }\end{array}\right)$	Maximum Strain (in/in) (5\% Permitted)
RCP Seal Leak-off Return Line (CPN 37)	$38,200 / 47,950$	0.80	2.614%
Accumulator Fill Lines (CPN 32)	$40,200 / 47,950$	0.84	0.422%
RCP Seal Bypass Lines	$42,643 / 47,950$	0.89	1.147%
PRT and RCDT Drain	$38,200 / 47,950$	0.80	2.629%
Piping (CPN 40)			

ATTACHMENT 2 TO C0801-05
NON-ESSENTIAL-SERVICE WATER SYSTEM DRAWINGS

The following drawings provide an overview of the non-essential-service water (NESW) system and the details of the NESW piping for components located inside the containment that were modeled in the waterhammer analysis.

Unit 1 Drawings

Inside Containment
OP-1-5114-82 Flow Diagram Non-Essential Service Water Unit 1
OP-1-5114A-25 Flow Diagram Non-Essential Service Water
1-NSW-65 Upper Containment Ventilation Unit 4 Supply Line
1-NSW-66 Upper Containment Ventilation Unit 3 Supply Line
1-NSW-67
1-NSW-68
1-NSW-69
1-NSW-70
1-NSW-71
1-NSW-72
1-NSW-174
1-NSW-175
1-NSW-176
1-NSW-177
1-NSW-178
1-NSW-179
1-NSW-180
1-NSW-181
1-NSW-182
1-NSW-183
1-NSW-184
1-NSW-185
Upper Containment Ventilation Unit 2 Supply Line
Upper Containment Ventilation Unit 1 Supply Line
Upper Containment Ventilation Unit 4 Return Line
Upper Containment Ventilation Unit 3 Return Line
Upper Containment Ventilation Unit 2 Return Line
Upper Containment Ventilation Unit 1 Return Line
Instrument Room Ventilation Unit 3 Supply Line
Instrument Room Ventilation Unit 4 Supply Line
Instrument Room Ventilation Unit 3 Return Line
Instrument Room Ventilation Unit 4 Return Line
Lower Containment Ventilation Unit 1 Supply Line
Lower Containment Ventilation Unit 2 Supply Line
Lower Containment Ventilation Unit 3 Supply Line
Lower Containment Ventilation Unit 4 Supply Line
Lower Containment Ventilation Unit 1 Return Line
Lower Containment Ventilation Unit 2 Return Line
Lower Containment Ventilation Unit 3 Return Line
Lower Containment Ventilation Unit 4 Return Line
Outside Containment
1-NSW-37
1-NSW-38
1-NSW-39
1-NSW-42
1-NSW-44
1-NSW-45
1-NSW-46
1-NSW-47
1-NSW-49
1-NSW-50
Lower Containment Ventilation Unit 2 Supply Line
Lower Containment Ventilation Unit 3 Supply Line
Upper Containment Ventilation Unit 2 Supply Line
Upper Containment Ventilation Unit 3 Supply Line
Upper Containment Ventilation Unit 2 Return Line
Lower Containment Ventilation Unit 2 Return Line
Lower Containment Ventilation Unit 3 Return Line
Upper Containment Ventilation Unit 3 Return Line Instrument Room Ventilation Unit 3 Supply Line Instrument Room Ventilation Unit 4 Return Line

1-NSW-51	Instrument Room Ventilation Unit 3 Return Line
1-NSW-52	Instrument Room Ventilation Unit 4 Supply Line
1-NSW-54	Upper Containment Ventilation Unit 1 Supply Line
1-NSW-55	Lower Containment Ventilation Unit 1 Supply Line
1-NSW-57	Upper Containment Ventilation Unit 4 Supply Line
1-NSW-58	Lower Containment Ventilation Unit 4 Supply Line
1-NSW-59	Lower Containment Ventilation Unit 1 Return Line
1-NSW-60	Upper Containment Ventilation Unit 1 Return Line
1-NSW-62	Lower Containment Ventilation Unit 4 Return Line
1-NSW-63	Upper Containment Ventilation Unit 4 Return Line

Unit 2 Drawings
Inside Containment
OP-2-5114-50 Flow Diagram Non-Essential Service Water Unit No. 2
OP-2-5114A-29
2-NSW-130
2-NSW-131
2-NSW-132
2-NSW-133
2-NSW-138
2-NSW-139
2-NSW-140
2-NSW-141
2-NSW-186
2-NSW-187
2-NSW-188
2-NSW-189
2-NSW-192
2-NSW-193
2-NSW-194
2-NSW-195
2-NSW-196
2-NSW-197
2-NSW-198
2-NSW-199

Flow Diagram Non-Essential Service Water Upper Containment Ventilation Unit 1 Supply Line Upper Containment Ventilation Unit 2 Supply Line Upper Containment Ventilation Unit 3 Supply Line Upper Containment Ventilation Unit 4 Supply Line Upper Containment Ventilation Unit 1 Return Line Upper Containment Ventilation Unit 2 Return Line Upper Containment Ventilation Unit 3 Return Line Upper Containment Ventilation Unit 4 Return Line Instrument Room Ventilation Unit 3 Supply Line Instrument Room Ventilation Unit 4 Supply Line Instrument Room Ventilation Unit 3 Return Line Instrument Room Ventilation Unit 4 Return Line Lower Containment Ventilation Unit 1 Supply Line Lower Containment Ventilation Unit 2 Supply Line Lower Containment Ventilation Unit 3 Supply Line Lower Containment Ventilation Unit 4 Supply Line Lower Containment Ventilation Unit 1 Return Line Lower Containment Ventilation Unit 2 Return Line Lower Containment Ventilation Unit 3 Return Line Lower Containment Ventilation Unit 4 Return Line

Outside Containment

2-NSW-100	Lower Containment Ventilation Unit 2 Supply Line
2-NSW-101	Lower Containment Ventilation Unit 3 Supply Line
2-NSW-102	Upper Containment Ventilation Unit 2 Supply Line

2-NSW-105	Upper Containment Ventilation Unit 3 Supply Line
2-NSW-106	Instrument Room Ventilation Unit 3 Supply Line
2-NSW-107	Instrument Room Ventilation Unit 4 Supply Line
2-NSW-108	Upper Containment Ventilation Unit 4 Supply Line
2-NSW-111	Upper Containment Ventilation Unit 1 Supply Line
2-NSW-112	Lower Containment Ventilation Unit 1 Supply Line
2-NSW-114	Upper Containment Ventilation Unit 2 Return Line
2-NSW-115	Lower Containment Ventilation Unit 3 Return Line
2-NSW-116	Lower Containment Ventilation Unit 1 Return Line
2-NSW-117	Upper Containment Ventilation Unit 3 Return Line
2-NSW-119	Instrument Room Ventilation Unit 3 Return Line
2-NSW-120	Instrument Room Ventilation Unit 4 Return Line
2-NSW-122	Upper Containment Ventilation Unit 4 Return Line
2-NSW-123	Lower Containment Ventilation Unit 2 Return Line
2-NSW-124	Lower Containment Ventilation Unit 4 Return Line
2-NSW-125	Upper Containment Ventilation Unit 1 Return Line
2-NSW-146	Lower Containment Ventilation Unit 4 Supply Line

In accordance with the restrictions stated on drawings OP-1-5114-82, OP-1-5114A-25, OP-25114-50 and OP-2-5114A-29, Indiana Michigan Power Company (I\&M) hereby releases these documents to the Nuclear Regulatory Commission (NRC) for its information and use in connection with the review of I\&M's submittal. I\&M also permits the NRC to reproduce the drawings as necessary to facilitate the review and distribution of the submittal to meet NRC requirements.

ATTACHMENT 3 TO C0801-05

MPR CALCULATION 025-065-04

"DETERMINATION OF WATER TEMPERATURE IN
 D. C. COOK UNIT 1 RCP SEAL WATER LINE (CPN-37)"

	MPR-2169 Appendix A. 4		MPR Associates, Inc 320 King Street Alexandria, VA 22314	
CALCULATION TITLE PAGE				
Client American Electric Power			Page 1 of 22	
Project Evaluation of D.C. Cook Unit 1 Piping Segments for Potential Thermal Overpressurization			Task No. 025-0013-065-0	
Determination of Water Temperature in D.C. Cook Unit 1 RCP Seal Water Line (CPN-37)			Calculation No.$025-065-04$	
Preparer/Date	Checker/Date	Reviewer/Approver/Date		Rev. No.
ΔR Harp 917100	RC fanders a/7/00	RC Landes $9 / 2 / 00$		0
QUALITY ASSURANCE DOCUMENT This document has been prepared, checked and reviewed/approved in accordance with the Quality Assurance requirements of 10CFR50, Appendix B, as specified in the MPR Quality Assurance Manual.				

	MPR-2169 Appendix A. 4		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. $025-065-04$	Prepared By $A R$ thays	$\mathrm{Rc} \mathrm{~S}_{\mathrm{a}}^{\text {Chec }}$	$\begin{aligned} & \text { d By } \\ & \text { Lesz } \end{aligned}$	Page 3
CONTENTS				
SECTION	PAGE			
1.0	PURPOSE		4	
2.0	SUMMARY		4	
3.0	CALCULATION		5	
3.1	Temperature Transients		5	
3.2	Pipe Sizes		7	
3.3	Problem Set-up and Solution Procedure		8	
3.4	Overall Heat Transfer Coefficients		10	
3.5	Forced Convection Heat Transfer Coefficient		11	
3.6	Steam Jet Velocity		13	
3.7	Condensation Heat Transfer Coefficient		16	
-3.8	Natural Convection Heat Transfer Coefficient		17	\cdots
3.9	Material Properties		19	
3.10	Results- Transient Water Temperature		19	
4.0	REFERENCES		22	

	MPR-2169 Appendix A. 4	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-04	Prepared By ΔR Houp	Checked By RC Lamder	Page 4

1.0 $\operatorname{PURPOSE}$

The purpose of this calculation is to predict the water temperatures reached in the CPN-37 piping system following pipe break accidents inside containment at DC Cook Unit 1. Two cases are considered. In the first, a steam jet from a hole in the nearest steam pipe directly impinges on the CPN-37 piping system. In the second, the steam jet does not directly impinge on the CPN-37 pipe system. Instead, the compartment containing the CPN-37 system is assumed to be passively filled with steam that condenses on the pipe. The containment temperatures during the accidents are those predicted for steam line break and loss of coolant accidents, as provided in Reference 3.

2.0 SUMMARY

One-dimensional, transient thermal analyses for the pipes in CPN-37 were performed to determine the temperature of water trapped in the segment during accident conditions. The water in the piping system was assumed to be initially $160^{\circ} \mathrm{F}$ and the containment temperatures were obtained as a function of time from Reference 3. The steam line break transients, AFW runout and MSIV failure, are considered to be significant for three minutes. The LOCA containment temperature transient remains significant for 15 hours.

Maximum water temperatures were calculated for the case of a steam jet directly impinging on the pipe and for the case of steam condensation on the OD. The maximum water temperature in the piping system for each transient is listed in Table 1. All of the temperatures are bounded by $240^{\circ} \mathrm{F}$.

Table 1. Maximum Water Temperatures (${ }^{\circ} \mathrm{F}$)

Transient Considered		4" Schedule 10S	4" Schedule 40S
Steam Jet	AFW	235	235
	MSIV	235	235
	LOCA	207	207
	MSIV	213	213
	AFW	213	213
	LOCA	237	237

	MPR-2169 Appendix A. 4	MPR Associates, inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-04	Prepared By $A R$ Hacp	Checked By RC Lamlea	Page 5

3.0 CALCULATION

3.1 Temperature Transients

The containment temperatures for the lower containment are plotted for the AFW Runout and MSIV failure steam line break scenarios (hereinafter referred to as "AFW" and "MSIV") in Figure 1 and the LOCA in Figure 2. These temperatures are taken from Reference 3.

These containment temperature profiles are used as the steam jet temperatures when considering direct impingement. They are not used when considering condensation since the vapor saturation pressure determines the temperature at which condensation will occur. In this study, the containment pressure is assumed to be 9 psig, the maximum pressure during an MSIV accident (Reference 3). The saturation temperature at 9 psig is $237^{\circ} \mathrm{F}$.

Note that the LOCA transient is much longer than the steam line break transients and that its compartment temperatures are much lower. As a result, the forced convection heat transfer during the LOCA will be much less than the convective heat transfer during the steam line break accidents. However, the LOCA is included in this study because condensation heat transfer will be more significant during a LOCA than during AFW and MSIV accidents. This is because the compartment pressure during a LOCA (Reference 3) stays consistently higher ($6 \mathrm{psig}+$) for a longer period of time than in the steam line breaks and therefore the saturation temperature of the vapor surrounding the pipe will remain higher for a longer period of time in a LOCA accident than in the other accidents.

Figure 1. AFW and MSIV Lower Containment Temperatures

Figure 2. LOCA Lower Containment Temperatures

	$\begin{array}{ll} & \text { MPR Associates, Inc. } \\ \text { MPR-2169 Appendix A. } 4 & 320 \text { King Street }\end{array}$		
Calculation No. 025-065-04	Prepared By ΔK Hayp	Checked By RC Landera	Page 7

3.2 Pipe Sizes

CPN-37 consists of three different combinations of pipe sizes and schedules as listed in Table 2. Lengths are from Reference 1. Sizes, schedules, and materials are from References 12 and 13.

Table 2. Pipe Sizes and Schedules

Pipe Size (in.)	Schedule	OD (in.)	Thickness (in.)	ID (in.)	Length $^{(\mathbf{1})}$ (ft) (Ref. 1)	Material
1	40 S	1.315	0.133	1.05	3	A-312 GR TP 304
4	10 S	4.5	0.12	4.26	14	A-312 GR TP 304
4	40 S	4.5	0.237	4.026	10	A-312 GR TP 304

Note: 1. Only piping inside containment is considered since the piping outside containment is not heated during the accidents.

Since the length of the 1 " pipe is short compared to the 4 " pipe, heating of the 1 " pipe will not significantly contribute to the bulk temperature of the piping system and it is therefore neglected. Insulation is also conservatively neglected as it could be blown off the pipe during the accidents.

	MPR-2169 Appendix A. 4	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-04	Prepared By $D R$ houp	Checked By RCNeres	Page 8

3.3 Problem Set-up and Solution Procedure

The nomenclature used in this calculation is depicted in Figure 3.

Figure 3. Depiction of the System to be Modeled

When a steam jet directly impinges on the pipe, heat is transferred to the pipe OD by forced convection (heat transfer coefficient h_{f}). If instead the steam reaches the pipe passively, heat is transferred to the pipe OD by condensation (heat transfer coefficient h_{c}).

Heat is transferred by conduction from the pipe OD to the pipe D . At the pipe-water interface, heat is transferred to the water by natural convection (heat transfer coefficient $h_{n, I D}$).

The temperature of the water is found by equating the heat transfer rate per unit pipe length to the rate of energy storage in the water per unit pipe length. This conservatively over estimates the water temperature because the energy stored in the pipe is neglected.

$$
\begin{equation*}
\frac{\mathrm{dE}^{\prime}}{\mathrm{dt}}=\mathrm{q}^{\prime \prime} \pi \mathrm{OD}_{\mathrm{pipe}} \tag{1}
\end{equation*}
$$

The right hand side of Equation (1), the rate of heat transfer per unit length, depends on whether a steam jet is impacting the pipe or, instead, the containment is passively filled with steam,

	MPR-2169 Appendix A. 4		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. 025-065-04	Prepared By ΔR Harp	Checked By RC Lambles	Page 9

$$
\begin{align*}
& \mathrm{q}_{\mathrm{f}}^{\prime \prime}=\mathrm{U}_{\mathrm{f}}\left(\mathrm{~T}_{\text {comp }}-T_{\text {water }}\right) \quad \text { for an impinging steam jet } \tag{2a}\\
& \mathrm{q}_{\mathrm{c}}{ }^{\prime}=\mathrm{U}_{\mathrm{c}}\left(\mathrm{~T}_{\mathrm{v}}-\mathrm{T}_{\text {water }}\right) \quad \text { for a containment passively filled with steam } \tag{2b}
\end{align*}
$$

where:
$\mathrm{q}_{\mathrm{f}}{ }^{\prime}$ "=heat transfer rate per unit area for forced convection (steam jet)
$\mathrm{U}_{\mathrm{f}}=$ overall heat transfer coefficient for forced convection (steam jet)
$\mathrm{T}_{\text {comp }}=$ temperature of the containment compartment as a function of time (Figures 1 and 2)
$\mathrm{T}_{\text {water }}=$ temperature of water in the pipe
$\mathrm{q}_{\mathrm{c}}{ }^{\prime \prime}=$ heat transfer rate per unit area for condensation
$\mathrm{U}_{\mathrm{c}}=$ overall heat transfer coefficient for condensation
$\mathrm{T}_{\mathrm{v}}=$ saturation vapor temperature at $9 \mathrm{psig}\left(237^{\circ} \mathrm{F}\right)$
Each overall heat transfer coefficient is a combination of the materials' thermal conductivities and the heat transfer coefficients at the pipe's $O D$ and \mathbb{D} as described in section 3.4.

Energy storage is only considered to occur in water since the specific heat of the pipe is much less than that of water. For a unit length of pipe, the rate of energy storage with changing temperature is

$$
\begin{equation*}
\frac{\mathrm{dE}^{\prime}}{\mathrm{dt}}=\frac{\pi}{4}\left[\rho_{\text {water }} \mathrm{ID}_{\text {pipe }}{ }^{2} \mathrm{C}_{\mathrm{p}, \text { water }}\right] \frac{\mathrm{dT}_{\text {water }}}{\mathrm{dt}} \tag{3}
\end{equation*}
$$

where

$$
C_{p, \text { water }}=\text { heat capacity of water, } \mathrm{IBTU} /(\mathrm{lbm} \mathrm{~F})
$$

Equating Equations (2a) and (3) for the case of a steam jet impinging on the pipe

$$
\begin{equation*}
\frac{\pi}{4}\left[\rho_{\text {water }} \mathrm{ID}_{\text {pipe }}{ }^{2} \mathrm{C}_{\mathrm{p}, \text { water }}\right] \frac{\mathrm{dT}}{\text { water }} \mathrm{dt}=\mathrm{U}_{\mathrm{f}}\left(\mathrm{~T}_{\text {cont }}-\mathrm{T}_{\text {water }}\right) \pi \mathrm{OD}_{\text {pipe }} \tag{4}
\end{equation*}
$$

Using a forward discretization approach, Equation (4) becomes,

$$
\begin{equation*}
\frac{\pi}{4}\left[\rho_{\text {water }} \mathrm{ID}_{\text {pipe }}^{2} C_{p, \text { water }}\right] \frac{\left(T_{\text {water }}^{j+1}-T_{\text {water }}^{j}\right)}{t^{j+1}-t^{j}}=U_{f}\left(T_{\text {cont }}^{j}-T^{j}{ }_{\text {water }}\right) \pi O_{\text {pipe }} \tag{5}
\end{equation*}
$$

where the superscript j refers to the current time and the superscript $\mathrm{j}+1$ refers to the next point in time that is considered.

	MPR-2169 Appendix A. 4	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-04	Prepared By ΔR Hamp	Checked By $R<\text { Lunderes }$	Page 10

Solving for the temperature at the future time $\mathrm{t}^{\mathrm{j}+1}$,

$$
\begin{equation*}
T_{\text {water }}^{j+1}=T_{\text {water }}^{j}+\frac{4 \mathrm{U}_{f}\left(T^{j}{ }_{\text {cont }}-T_{\text {water }}^{j}\right) O D_{\text {pipe }}\left(t^{j+1}-t^{j}\right)}{\left[\rho_{\text {water }} \mathrm{D}_{\text {pipe }}{ }^{2} C_{p, \text { water }}\right]} \tag{6}
\end{equation*}
$$

In the case of vapor condensation on a pipe instead of a steam jet,

$$
\begin{equation*}
T_{\text {water }}^{j+1}=T_{\text {water }}^{j}+\frac{4 U_{c}\left(T_{v}-T^{j}{ }_{\text {water }}\right) O D_{\text {pipe }}\left(t^{j+1}-t^{j}\right)}{\left[\rho_{\text {water }} D_{\text {pipe }}{ }^{2} C_{p, \text { water }}\right]} \tag{7}
\end{equation*}
$$

These equations are solved given the water in the pipe is originally at $160^{\circ} \mathrm{F}$. The containment temperatures change as shown in Figures 1 and 2 and the saturation vapor temperature is $237^{\circ} \mathrm{F}$ at 9 psig .

3.4 Overall Heat Transfer Coefficients

The combined resistance of the convection coefficients and the pipe's conductivity is found with a circuit analogy. From Equation 2.44 in Reference 10, the universal heat transfer coefficient for the circuit in Figure 3 is,

$$
\begin{equation*}
U=\frac{1}{\frac{1}{h_{n, I D}} \frac{O D_{\text {pipe }}}{\mathrm{D}_{\text {pipe }}}+\frac{O D_{\text {pipe }}}{2 k_{\text {pipe }}} \ln \frac{O D_{\text {pipe }}}{\mathrm{D}_{\text {pipe }}}+\frac{1}{h_{O D}}} \tag{8}
\end{equation*}
$$

In the case of an impinging steam jet, the heat transfer coefficient at the outer diameter is the forced convection heat transfer coefficient

$$
h_{O D}=h_{f}
$$

and the universal heat transfer coefficient is,

$$
\begin{equation*}
\mathrm{U}_{\mathrm{f}}=\frac{1}{\frac{1}{\mathrm{~h}_{\mathrm{n}, \mathrm{ID}}} \frac{O D_{\text {pipe }}}{\mathrm{D}_{\text {pipe }}}+\frac{O D_{\text {pipe }}}{2 \mathrm{k}_{\text {pipe }}} \ln \frac{O D_{\text {pipe }}}{\mathrm{D}_{\text {pipe }}}+\frac{1}{h_{\mathrm{f}}}} \tag{9}
\end{equation*}
$$

Calculation No. 025-065-04	Prepared By $A R$ thoup	Checked By	Page 11

When the jet does not impinge directly on the pipe, but the pipe is surrounded by steam,

$$
h_{O D}=h_{c}
$$

and the heat transfer coefficient is equal to the condensation heat transfer coefficient.

$$
\begin{equation*}
\mathrm{U}_{\mathrm{c}}=\frac{1}{\frac{1}{\mathrm{~h}_{\mathrm{n}, \mathrm{ID}}} \frac{\mathrm{OD}_{\text {pipe }}}{\mathrm{D}_{\text {pipe }}}+\frac{\mathrm{OD}_{\text {pipe }}}{2 \mathrm{k}_{\text {pipe }}} \ln \frac{\mathrm{OD}_{\text {pipe }}}{\mathrm{D}_{\text {pipe }}}+\frac{1}{\mathrm{~h}_{\mathrm{c}}}} \tag{10}
\end{equation*}
$$

The formulas for calculation of the forced heat transfer coefficient, hf_{f}, are in Sections 3.5 and 3.6. The calculation description for the condensation heat transfer coefficient is in Section 3.7. The natural convection heat transfer coefficient at the pipe OD is found by the formula in Section 3.8. Properties of the pipe and water, including thermal conductivities, are in Section 3.9.

3.5 Forced Convection Heat Transfer Coefficient

The following heat transfer coefficient relation describes forced convection over a cylinder (Reference 7).

$$
\begin{align*}
& \mathrm{h}_{\mathrm{f}}=\frac{\mathrm{k}_{\text {steam }}}{\mathrm{OD}_{\text {pipe }}}\left[0.3+\frac{0.62 \mathrm{Re}^{\frac{1}{2}} \mathrm{Pr}^{\frac{1}{3}}}{\left[1+\left(\frac{0.4}{\mathrm{Pr}}\right)^{\frac{2}{3}}\right]^{\frac{1}{4}}}\left[1+\left(\frac{\mathrm{Re}}{282000}\right)^{\frac{5}{8}}\right]^{\frac{4}{5}}\right] \tag{11}\\
& \text { where: } \quad \operatorname{Re}=\frac{\rho_{\text {steam }} \overline{\mathrm{V}} \mathrm{OD}}{\mu_{\text {pipe }}} \\
& \mu_{\text {steam }}
\end{align*} \operatorname{Pr}=\frac{C_{p, \text { steam }} \mu_{\text {steam }}}{\mathrm{k}_{\text {steam }}} .
$$

	MPR-2169 Appendix A. 4	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-04	Prepared By ΔR ftozp	Checked By RC Lamben	Page 12

and where

$\mathrm{h}_{\mathrm{f}}=$	forced convection heat transfer coefficient
$\rho_{\text {steam }}=$	density of the steam jet
$\mu_{\text {steam }}=$	viscosity of the steam jet
$\mathrm{k}_{\text {steam }}=$	thermal conductivity of the steam jet
$\mathrm{C}_{p_{\text {steam }}}=$	specific heat of the steam jet
$\overline{\mathrm{V}}=$	average velocity of the steam jet 40 feet from the break (see Section 3.6)
$\mathrm{OD}_{\text {pipe }}=$	outer diameter of the pipe

The maximum temperature in the lower containment is $325^{\circ} \mathrm{F}$. Steam properties at this temperature are Reference (5),

$$
\begin{array}{ll}
\rho_{\text {steam }} & =0.2174 \mathrm{lbm} / \mathrm{ft}^{3} \\
\mu_{\text {steam }} & =9.7 \mathrm{E}-6 \mathrm{lbm} /(\mathrm{ft} \mathrm{~s}) \\
\mathrm{k}_{\text {steam }} & =0.0189 \mathrm{BTU} /(\mathrm{hr} \mathrm{ft} \mathrm{~F}) \\
\mathrm{C}_{\mathrm{p} _ \text {steam }} & =0.579 \mathrm{BTU} /(\mathrm{lbm} \mathrm{~F})
\end{array}
$$

The average jet velocity from Section 3.6 is,

$$
\overline{\mathrm{V}} \quad=\quad 444 \mathrm{ft} / \mathrm{s} \quad \text { (from Section 3.6) }
$$

For a 4 inch pipe schedule 10 S

$$
\mathrm{OD}_{\mathrm{ins}}=4.5 \mathrm{in}
$$

With these values,

$$
\operatorname{Re}=3.73 \mathrm{E} 6 \quad \operatorname{Pr}=1.07 \quad \mathrm{~h}_{\mathrm{f}}=234 \mathrm{BTU} /\left(\mathrm{hr} \mathrm{ft}^{2} \mathrm{~F}\right)
$$

The heat transfer rate at the outer surface of the pipe is described in these calculations as

$$
\begin{equation*}
\mathrm{q}^{\prime \prime}=\mathrm{h}_{\mathrm{f}}\left(\mathrm{~T}_{\text {cont }}-\mathrm{T}_{\text {OD, pipe }}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\mathrm{q}^{\prime \prime} & = \\
\text { heat transfer rate per unit surface area } \\
\mathrm{h}_{\mathrm{f}} & = \\
\mathrm{T}_{\text {cont }} & = \\
\mathrm{T}_{\mathrm{OD} . \mathrm{pipe}} & = \\
\mathrm{T}_{\text {containment convection heat transfer coefficient }} & \text { pipe OD temperature }
\end{array}
$$

MPR-2169 Appendix A. 4
MPR Associates, Inc.
320 King Street
Alexandria, VA 22314

Calculation No. $025-065-04$	Prepared By Δ A ltand	Checked By RC Rander	Page 13

3.6 Steam Jet Velocity

In order to calculate the forced convection coefficient associated with the steam jet in Section 3.5, the velocity at which the steam jet impinges on the pipe must be determined.

From References 1 and 2, the closest a Cook Unit 1 steam pipe comes to the pipe associated with CPN-37 is about 40 feet.

$$
\mathrm{L}=40 \mathrm{ft}
$$

For an AFW runout steam line break, Figure 6 of Reference 3 indicates the steam pipe break area is,

$$
\mathrm{A}=0.86 \mathrm{ft}^{2}
$$

The corresponding break radius is,

$$
r_{j}=\sqrt{\frac{\mathrm{A}}{\pi}}=6.3 \mathrm{in}
$$

Reference 4 provides the steam jet centerline velocity as a function of distance from the break given sonic conditions at the break and the value of a dimensionless constant φ,

$$
\begin{equation*}
\varphi=0.074 \mathrm{x}_{\mathrm{c}} \sqrt{\rho_{\mathrm{c}}} \tag{13}
\end{equation*}
$$

where: $\quad x_{c}=$ dimensionless axial distance, L / r_{j}
$\mathrm{L}=$ axial distance from the pipe break
$\mathrm{r}_{\mathrm{j}}=$ radius of the hole in the steam pipe
$\rho_{\mathrm{c}}=$ dimensionless density, $\rho_{\mathrm{e}} / \rho_{\mathrm{j}}$
$\rho_{j}=$ density of the steam jet exiting the hole
$\rho_{\mathrm{e}}=$ density of the jet steam at impact

The density of steam exiting the pipe is taken at 1025 psig and $550^{\circ} \mathrm{F}$. From Reference 9 at those conditions,

$$
\rho_{\mathrm{j}}=\frac{1}{0.43084} \frac{\mathrm{lb}}{\mathrm{ft}^{3}}
$$

	MPR-2169 Appendix A. 4		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. 025-065-04	Prepared By D \& Hamp	Checked By $R \subset$ Lenden	Page 14

The density of the jet when it impacts the wall is taken at 9 psig and $325^{\circ} \mathrm{F}$, the peak containment pressure and temperatures during an accident. From Reference 9 at those conditions,

$$
\rho_{\mathrm{e}}=\frac{1}{19.481} \frac{\mathrm{lb}}{\mathrm{ft}^{3}}
$$

With the above properties and dimensions,

$$
\varphi=0.84
$$

Figure 2 of Reference 4 indicates that the centerline speed of a jet at this value of φ is 100% of its choke flow velocity,

$$
V_{\text {center }}=V_{\text {choke }}
$$

where $\quad \mathrm{V}_{\text {center }}=$ centerline velocity of jet 40 ft from steam pipe break

$$
\mathrm{V}_{\mathrm{choke}}=\text { choke flow velocity }
$$

From Figure 12 of Reference 5, the choke flow velocity of the steam exiting the hole is,

$$
\mathrm{V}_{\text {choke }}=1455 \mathrm{ft} / \mathrm{s}
$$

This is assuming the jet pressure is equal to the 9 psig containment pressure.
The centerline velocity is then

$$
V_{\text {center }}=1455 \mathrm{ft} / \mathrm{s}
$$

The radial velocity of a steam jet from Reference 6 , Table 5.5 is,

$$
\begin{equation*}
\log \left(\frac{V_{\text {cent }}}{V_{r}}\right)=40\left(\frac{r}{L}\right)^{2} \tag{14}
\end{equation*}
$$

where: $V_{r}=$ velocity at distance r from centerline $r=$ radial distance from jet centerline

Solving for velocity as a function of radial position at a distance L,

$$
\begin{equation*}
V(r)=V_{\text {center }} 10^{-40\left(\frac{\mathrm{r}}{\mathrm{~L}}\right)^{2}} \tag{15}
\end{equation*}
$$

A plot of the jet speed as a function of radius for $L=40 \mathrm{ft}$ is in Figure 4.

Figure 4. Velocity Distribution of Steam Jet
Since the jet diameter is approximately 25 ft wide (radius 12.5 ft in Figure 4) and the piping segment is approximately 25 ft wide (Reference 1), the jet will impact the entire length of the piping system.

An average of the jet velocity when it impacts the CPN-37 piping, at a distance of 40 ft from the steam line break, is used to calculate the forced convection heat transfer coefficient. The average velocity is used so that the heat transfer coefficient is in its average form. The average of the velocity at which the steam jet impacts the pipe is found by averaging the curve in Figure 4 over the radius of the steam jet, 12.5 ft ,

$$
\begin{equation*}
\overline{\mathrm{V}}=\frac{1}{12.5 \mathrm{ft}} \int_{0 \mathrm{ft}}^{12.5 \mathrm{ft}} \quad V(\mathrm{r}) \mathrm{dr}=444 \frac{\mathrm{ft}}{\mathrm{~s}} \tag{16}
\end{equation*}
$$

NAMPR	MPR-2169 Appendix A. 4	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-04	Prepared By ΔR Haspo	Checked By $R C$ finder	Page 16

3.7 Condensation Heat Transfer Coefficient

When the containment is passively filled with steam, the steam will condense on the pipe if the pipe temperature is lower than the saturation temperature of the steam. Under such conditions, the appropriate heat transfer coefficient is of the form (Reference 10, Equation 10-23),
$\mathrm{h}_{\text {cond }}=0.725\left[\frac{\rho_{1}\left(\rho_{1}-\rho_{\mathrm{v}}\right) \mathrm{g} \mathrm{h}_{\mathrm{fg}} \mathrm{k}_{\mathrm{w}}{ }^{3}}{\mathrm{OD}_{\text {pipe }} \mu_{\mathrm{i}}\left(\mathrm{T}_{\mathrm{v}}-\mathrm{T}_{\mathrm{OD}, \text { pipe }}\right)}\right]^{\frac{1}{4}}$
where $\quad h_{\text {cond }}=$ condensation heat transfer coefficient
$\rho_{\mathrm{I}}=$ condensate density
$\rho_{\mathrm{v}}=$ vapor density
$\mathrm{h}_{\mathrm{fg}}=$ latent heat of vaporization
$\mathrm{k}_{\mathrm{w}}=$ condensate thermal conductivity
$\mathrm{OD}_{\text {pipe }}=$ od of the pipe
$\mu_{\mathrm{l}}=$ condensate viscosity
$\mathrm{T}_{\mathrm{v}}=$ =vapor temperature
$T_{\mathrm{OD}, \mathrm{pipe}}=$ temperature at the od of the pipe
The maximum pressure in containment during an accident, 9 psig , is used to determine the properties of the steam vapor and condensate. From References 7 and 11,

$$
\begin{aligned}
& \rho_{\mathrm{l}}=59.16 \mathrm{lbm} / \mathrm{ft}^{3} \\
& \rho_{\mathrm{v}}=0.058 \mathrm{lbm} / \mathrm{ft}^{3} \\
& \mathrm{~h}_{\mathrm{fg}}=954 \mathrm{BTU} / \mathrm{bm} \\
& \mathrm{k}_{\mathrm{w}}=0.394 \mathrm{BTU} /(\mathrm{hr} \mathrm{ft} \mathrm{~F}) \\
& \mu_{\mathrm{l}}=1.65 \mathrm{E}-4 \mathrm{lbm} /(\mathrm{ft} \mathrm{~s}) \\
& \mathrm{T}_{\mathrm{v}}=237 \mathrm{~F}
\end{aligned}
$$

For a 4 inch schedule 10 S pipe

$$
\mathrm{OD}_{\text {pipe }}=4.5 \mathrm{in}
$$

The temperature of the pipe is not explicitly evaluated in this study. Instead, the following conservative estimate is used,

$$
\mathrm{T}_{\text {OD.pipe }}=\quad \mathrm{T}_{\text {water }}
$$

Calculation No.
025-065-04
Prepared By
Ac\&one Checked By
where : $\quad T_{\text {water }}=$ temperature of the water in the pipe
For demonstration of the order of magnitude of the condensation heat transfer coefficient, the water temperature will be taken as,

$$
\mathrm{T}_{\text {OD, ins }}=\mathrm{T}_{\text {water }}=200^{\circ} \mathrm{F}
$$

With the above values,

$$
\mathrm{h}_{\text {cond }}=1300 \mathrm{BTU} /\left(\mathrm{hrft}^{2}{ }^{\circ} \mathrm{F}\right)
$$

The heat transfer rate associated with condensation is then

$$
\begin{equation*}
q^{\prime \prime}=h_{\text {cond }}\left(T_{v}-T_{\text {OD,pipe }}\right) \tag{18}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\mathrm{q}^{\prime \prime} & =\text { heat transfer rate per unit surface area } \\
\mathrm{h}_{\mathrm{cond}}= & \text { forced convection heat transfer coefficient } \\
\mathrm{T}_{\mathrm{v}}= & \text { Saturation temperature at } 9 \mathrm{psig}\left(237^{\circ} \mathrm{F}\right) \\
\mathrm{T}_{\text {OD.pipe }}= & \text { pipe temperature }
\end{array}
$$

3.8 Natural Convection Heat Transfer Coefficient

The heat transfer at the inner diameter of the pipe is governed by natural convection. 18 ft of the 24 ft inside of containment is horizontally oriented as is 7 feet of the 10 feet outside of containment (Reference 1). Since the majority of the pipe is horizontally oriented, the heat transfer coefficient applied to this boundary is for a horizontal pipe. Based on experimental evidence, Reference 8 recommends that the natural heat transfer coefficient for natural convection about the OD of a horizontal pipe be used at the inner diameter of a pipe as well. The recommended heat transfer coefficient is of the form,

$$
\begin{equation*}
\mathrm{h}_{\mathrm{n}, \mathrm{ID}, \text { horizontal }}=\frac{\mathrm{k}_{\text {water }}}{\mathrm{D}_{\text {pipe }}}\left[0.56(\mathrm{Gr} \operatorname{Pr})^{0.25}\right] \tag{19}
\end{equation*}
$$

where: $\quad \mathrm{Gr}=\frac{\rho^{2} \beta_{\text {water }} \mathrm{g} \mathrm{ID}_{\text {pipe }}{ }^{3}\left(\mathrm{~T}_{\mathrm{ID}, \text { pipe }}-\mathrm{T}_{\text {water }}\right)}{\mu_{\text {water }}{ }^{2}} \quad \operatorname{Pr}=\frac{\mathrm{C}_{\mathrm{p}, \text { water }} \mu_{\text {water }}}{\mathrm{k}_{\text {water }}}$
for $10<\operatorname{GrPr}<10^{9}$

	$\begin{array}{ll} & \text { MPR Associates, Inc. } \\ \text { MPR-2169 Appendix A. } 4 & 320 \text { King Street } \\ & \text { Alexandria, VA } 22314\end{array}$		
Calculation No. 025-065-04	Prepared By Δx Hanp	Checked By Rc. Sondens	Page 18

where:

$\mathrm{k}_{\text {water }}=$	thermal conductivity of the water
$\mu_{\text {water }}=$	viscosity of the water
$\rho_{\text {water }}=$	density of the water
$\mathrm{C}_{\mathrm{p} \text { water }}=$	specific heat of the water
$\beta_{\text {water }}=$	volumetric expansion coefficient of the water
$\mathrm{D}_{\text {pipe }}=$	inner diameter of the pipe
$\mathrm{T}_{\mathrm{ID}, \text { pipe }}=$	temperature at the pipe id
$\mathrm{T}_{\text {water }}=$	temperature of the water

For water at $200^{\circ} \mathrm{F}$ (References 7 and 10):

$$
\begin{aligned}
& \mathrm{k}_{\text {water }}=0.39 \mathrm{BTU} /(\mathrm{hrft} \mathrm{~F}) \\
& \mu_{\text {water }}=2.05 \mathrm{E}-4 \mathrm{bm} /(\mathrm{ft} \mathrm{~s}) \\
& \rho_{\text {water }}=60.1 \mathrm{lbm} / \mathrm{ft}^{3} \\
& \mathrm{C}_{\text {p.water }}= \\
& \beta_{\text {water }}= \\
& 1.005 \mathrm{BTU} /(\mathrm{lbm} \mathrm{~F}) \\
& 4.8 \mathrm{E}-41 / \mathrm{F}
\end{aligned}
$$

The temperature at the pipe $\mathrm{ID}, \mathrm{T}_{\mathrm{ID}, \mathrm{pipe}}$, is not explicitly evaluated in this model. Instead, the temperature at the pipe D is conservatively assumed to be the containment temperature

$$
\mathrm{T}_{\mathrm{ID}, \mathrm{pipe}}=\mathrm{T}_{\text {comp }}
$$

For a 4" schedule 10 S pipe,

$$
\mathrm{D}_{\text {pipe }}=4.26 \mathrm{in} .
$$

and the temperatures,

$$
\begin{aligned}
& \mathrm{T}_{\text {ID,pipe }}=\mathrm{T}_{\text {comp }}=237^{\circ} \mathrm{F} \\
& \mathrm{~T}_{\text {water }}=170^{\circ} \mathrm{F}
\end{aligned}
$$

the dimensionless numbers are,

$$
\mathrm{Gr}=4.0 \mathrm{E} 9 \quad \operatorname{Pr}=1.9 \quad \mathrm{Gr} \operatorname{Pr}=7.6 \mathrm{E} 10
$$

GrPr is still of the order of 1E9, so the natural convection coefficient of Equation 19 should be valid. The heat transfer coefficient is,

$$
h_{\text {n.ID.horizontal }}=182 \mathrm{BTU} /\left(\mathrm{hr} \mathrm{ft}^{2 \circ} \mathrm{~F}\right)
$$

M6MEM	MPR-2169 Appendix A. 4		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. $025-065-04$	Prepared By ΔR Hasp	Checked By Rc Landere	Page 19

3.9 Material Properties

The material properties of the pipe and water are evaluated at $200^{\circ} \mathrm{F}$ (References $7,10,12,13$) and are listed in Table 3.

Table 3. Material Properties of Pipe, and Water at $200^{\circ} \mathrm{F}$

Property	Water	Pipe 304 SS
$\left.\begin{array}{c}\mathrm{k} \\ \mathrm{Btu} /(\mathrm{hr} \mathrm{ft}\end{array}{ }^{\circ} \mathrm{F}\right)$	0.391	10.7
Cp $\mathrm{Btu} /\left(\mathrm{lbm}{ }^{\circ} \mathrm{F}\right)$	1.005	na
ρ $\mathrm{lbm} / \mathrm{ft}^{3}$	60.1	na
β $1 /{ }^{\circ} \mathrm{F}$	$4.8 \mathrm{e}-4$	na
μ $\mathrm{lbm} /(\mathrm{ft} \mathrm{s})$	$2.05 \mathrm{e}-4$	na

3.10 Results-Transient Water Temperature

The temperature of the water in the 4 " schedule 10 Siping is shown in Figure 5 for the AFW accident and in Figure 6 for the LOCA accident. The AFW and MSIV results are within 2 percent of each other, so only a curve for the more limiting AFW accident results are shown (Figure 5). The results for the 4" schedule 40S pipe are within 2 percent of results for the 4 " schedule 10S pipe shown in Figures 5 and 6, and so plots of the less limiting 4" schedule 40S pipe results are not included either.

Figure 5. Water Temperature in 4" Schedule 10S pipe during AFW Failure

Figure 6. Water Temperature in 4" Schedule 10S pipe during LOCA

	MPR-2169 Appendix A. 4	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-04	Prepared By Δ R Hap	Checked By RC Landen	Page 21

The results of Figure 5 indicate that the maximum water temperature during AFW (and MSIV), $235^{\circ} \mathrm{F}$, is produced by forced convection. This is the maximum temperature reached due to forced convection during the entire accident because the containment temperature never rises above $235^{\circ} \mathrm{F}$ beyond the 3 minutes considered in this study for MSIV or AFW accidents (Reference 3).

The maximum condensation temperature is $213^{\circ} \mathrm{F}$ at 3 minutes for AFW (and MSIV) (Figure 5). The temperature due to condensation may increase further over the next few minutes because the saturation temperature will remain above $213^{\circ} \mathrm{F}$ for at least the first ten minutes of the MSIV and AFW accidents (based on the saturation temperatures of the compartment pressures shown in Reference 3). However, the water temperature after ten minutes will be less than $235^{\circ} \mathrm{F}$ since the compartment temperature is less than $235^{\circ} \mathrm{F}$ and the compartment pressure is less than $7 \mathrm{psig}\left(\mathrm{T}_{\text {sat }}=235^{\circ} \mathrm{F}\right)$ for the remainder of the transients shown in Reference 5 . As a result, $235^{\circ} \mathrm{F}$ bounds the temperature of the water in the pipes during MSIV and AFW accidents.

In contrast to the MSIV and AFW accidents, condensation produces the highest water temperature, $237{ }^{\circ} \mathrm{F}$, for the LOCA (Figure 6). This is because the convective heat transfer is lower for the LOCA than it is for the MSIV or AFW. In addition, the LOCA transient is much longer than the MSIV and AFW accident, and therefor the water in the pipe has time to reach the saturation temperature ($237{ }^{\circ} \mathrm{F}$ at 9 psig) during the LOCA when condensation is the primary heat transfer mechanism.

The predicted water temperatures in the CPN-37 piping system during MSIV, AFW, or LOCA accidents are summarized in Table 4. Based on these results, the maximum temperature during an AFW, MSIV, or LOCA accident should be no higher than $240^{\circ} \mathrm{F}$

Table 1. Maximum Water Temperatures $\left({ }^{\circ} \mathrm{F}\right)$

Transient Considered		$4 "$ Schedule 10S	$4 "$ Schedule 40S
Steam Jet	AFW	235	235
	MSIV	235	235
	LOCA	207	207
	MSW	213	213
	MSI	213	213
	LOCA	237	237

	MPR-2169 Appendix A. 4	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-04	Prepared By ΔR Hasp	Checked By $R \subset \text { Limblee }$	Page 22

4.0 REFERENCES

1. Drawings of Containment Penetration CPN-37
D.C. Cook Drawing Number 1-CS-93, Revision 7.
D.C. Cook Drawing Number 1-CS-42, Revision 12.
2. Drawings of Main Steam Pipe Penetrations CPN 2-5
D.C. Cook Drawing Number 1-MS-14, Revision 16 (CPN 1).
D.C. Cook Drawing Number 1-MS-1, Revision 17 (CPN 2).
D.C. Cook Drawing Number 1-MS-6, Revision 13 (CPN 3 or 4) (Closest to CPN-37 pipe)
D.C. Cook Drawing Number 1-MS-10, Revision 14 (CPN 3 or 4).
3. "Containment Pressure and Temperature Figures and Tabular Data for UFSAR Limiting Cases," AEP-99-408, November 10, 1999.
4. P. Witze, "Centerline Velocity Decay of Compressivle Free Jets," AlAA Journal, Vol. 12:4 (4/74) p. 417-418.
5. "ASME Steam Tables," ASME, 6 th Edition.
6. Perry and Chilton, "Chemical Engineers' Handbook," McGraw-Hill, $6^{\text {th }}$ Edition,
7. F.P. Incropera and D.P. DeWitt, "Fundamentals of Heat and Mass Transfer," John Wiley and Sons, $3^{\text {rd }}$ Edition.
8. EPRI Report TR-103581, "Thermal Stratification, Cycling, and Striping (TASCS)," prepared by Westinghouse Electric Corp., March 1994.
9. "Properties of Steam and Water," ASME Electronic Steam Tables, 1992.
10. F. Kreith and M. Bohn, "Principles of Heat Transfer," PWS Publishing Company, $5^{\text {th }}$ Edition.
11. G.J. Van Wylen and R.E. Sonntag, "Fundamentals of Classical Thermodynamics," John Wiley and Sons, $3^{\text {rd }}$ Edition
12. "Pipe Material Specification," AEP Specification No. ES-Pipe-1013-QCN-CS3, Revision 1.
13. "Pipe Material Specification," AEP Specification No. ES-Pipe-1000-WCS, Revision 1.

ATTACHMENT 4 TO C0801-05
MPR CALCULATION 025-065-05
"DETERMINATION OF PEAK PRESSURE IN
D. C. COOK UNIT 1

RCP SEAL WATER LINE (CPN-37)"

RECORD OF REVISIONS

SECTIONTITLEPAGE
1.0 PURPOSE 4
2.0 RESULTS 4
3.0 CALCULATION 4
3.1 Approach 4
3.2 Geometry and Material Data 5
3.3Fluid Properties6
Solution Method and Results 7
3.4
4.0REFERENCES8
Attachment A Pressure in CPN-37 9

	MPR-2169 Appendix A. 5	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. $025-065-05$	Prepared By ΔR Hamp	Checked By M c.Trual	Page 4

1.0 PURPOSE

The purpose of this calculation is to determine the pressure in the CPN-37 piping segment at D . C . Cook Nuclear Power Station, Unit 1 during accident conditions. The evaluation addresses the concern identified in NRC Generic Letter 96-06, which states that during a design basis accident, isolated piping segments within containment may become over-pressurized by the thermal expansion of the contained water. CPN-37 is the RCP seal leak-off return line.

2.0 RESULTS

The maximum pressure reached in the CPN-37 line is 1795 psig.
This result will be used in separate evaluations for the pipe and valves in this segment.

3.0 CALCULATION

3.1 Approach

This pressure calculation assumes the piping segment is initially at 165 psia and $150^{\circ} \mathrm{F}$ prior to the LOCA or steam-line break. 165 psia is the pipe design pressure per the piping specification (Reference 1). $150^{\circ} \mathrm{F}$ is a conservative estimate of the pipe temperature since the design temperature is $200^{\circ} \mathrm{F}$.

Reference 2 determined the maximum temperature of the water in the CPN-37 pipes during loss-of-coolant and steam line break accidents. The bounding water temperature is $240^{\circ} \mathrm{F}$ for all accidents.

The pressure calculation method used in MPR Calculation 025-065-02 (Reference 3) will be used here to determine the pressure increase as the water heats from $150^{\circ} \mathrm{F}$ to $240^{\circ} \mathrm{F}$. Parameters used in the analysis are described in the following sections.

320 King Street Alexandria, VA 22314

Calculation No. 025-065-05

Prepared By $A R$ tham

Checked By

3.2 Geometry and Material Data

In this calculation, the CPN-37 piping is divided into three different segments corresponding to the three different sizes of pipe that make up this pipe segment. The data required for each cross section are the pipe diameter, wall thickness and material properties. The piping geometry is found in Reference 4 and the pipe dimensions are from Reference 5. The material data includes: material class and material type (References 1 and 4), design stress intensity (S_{m}), yield stress (S_{y}), ultimate strength (S_{u}), elastic modulus (E), and plastic modulus (E_{p}). The plastic modulus is found in Reference 6 and the associated stress-strain curve is shown in Figure 1. The remaining material properties are obtained from the 1989 ASME Code (Reference 7). Material properties are evaluated at $240^{\circ} \mathrm{F}$, the bounding water temperature calculated in Reference 2. The geometry and material data for the piping segments is listed in Table 1. Nominal pipe wall thickness was used for the evaluations. The lengths of each pipe cross section in the segment are listed in Table 2 (from Reference 4).

Table 1: Geometry and Material Properties, CPN-37, $240^{\circ} \mathrm{F}$

Pipe Size	Sched.	Geometry Data		Material Data						
		$\begin{aligned} & \text { OD } \\ & \text { (in) } \end{aligned}$	Wall (in)	Class	Type	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{ksi}) \end{gathered}$	$\begin{gathered} \mathbf{S}_{\mathrm{y}} \\ (\mathrm{ksi}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{ksi}) \end{gathered}$	$\begin{gathered} \mathbf{E} \\ \left(10^{6} \mathrm{psi}\right) \end{gathered}$	$\begin{gathered} \mathbf{E}_{\mathrm{p}} \\ \left(\mathbf{1 0 ^ { 6 }} \mathrm{psi}\right) \end{gathered}$
4 in	10S	4.500	0.120	B-14	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	20.0	24.0	69.0	27.4	0.425
4 in	40S	4.500	0.237	B-14	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	20.0	24.0	69.0	27.4	0.425
1 in	40S	1.315	0.133	B-14	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	20.0	24.0	69.0	27.4	0.425

Table 2: Piping Segment Lengths

Segment	Pipe Geometry			Length*
CPN-37	4 in	SCH 10S	SA312 TP304	14 ft
	4 in	SCH 40S	SA312 TP304	10 ft
	1 in	SCH 40S	SA312 TP304	3 ft

* Note: Only piping in containment is considered for conservatism.

Figure 1: Type 304 Stainless Steel Stress-Strain Curye. (Reference 6)

3.3 Fluid Properties

Figure 2 shows the relationship between pressure and specific volume at a temperature of $240^{\circ} \mathrm{F}$ (from Reference 8). A polynomial curve fit, which represent the equations of state for the fluid, is also shown. This equation will be used in the determination of fluid pressure during the heat up. The specific volume for the initial conditions ($165 \mathrm{psia}, 150^{\circ} \mathrm{F}$) is $v=0.0163343 \mathrm{ft}^{3} / \mathrm{lb}$.

Figure 2: Equation of State for Water at $240^{\circ} \mathrm{F}$

	MPR-2169 Appendix A. 5	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-05	Prepared By ΔR thayp	Checked By Rctunl	Page 7

3.4 Solution Method and Results

The method of Reference 2 is used to calculate pressure given the inputs in sections 3.2 and 3.3. Attachment A contains a MathCAD program printout showing the equations used and the results. The calculation shows that the pressure reached in CPN-37 at $240^{\circ} \mathrm{F}$ is 1810 psia (1795 psig).

	MPR-2169 Appendix A. 5	MPR Associates, Inc 320 King Street Alexandria, VA 22314	
$\begin{gathered} \text { Calculation No. } \\ 025-065-05 \end{gathered}$	Prepared By $A R$ Harp	Checked By	Page 8

4.0 REFERENCES

1. D.C. Cook Piping Specification ES-PIPE-1013-QCN-CS3, Revision 1, "Pipe Material Specification: Safety Related."
2. MPR Calculation 025-065-04, "Determination of Water Temperature in D.C. Cook Unit 1 CPN-37," Revision 0.
3. MPR Calculation 025-065-02, "Determination of Peak Pressures in D.C. Cook Unit 1 Piping Segments Isolated by Air Operated Globe Valves," Revision 0.
4. Drawings for Containment Penetration CPN-37:

- D.C. Cook Drawing No. OP-1-5129A, Revision 28, "CVCS - Reactor Letdown \& Charging."
- D.C. Cook Drawing No. 1-CS-93, Revision 7.
- D.C. Cook Drawing No. 1-CS-42, Revision 12.

5. Crane Technical Paper No. 410, "Flow of Fluids," 1986.
6. Aerospace Structural Metals Handbook, Volume 2, 1990, Code 1303, Figure 3.03112, Type 304 Stainless Steel.
7. 1989 ASME Code, Section III Division 1 Appendices- Properties.
8. ASME Steam Tables, $6^{\text {th }}$ Edition.

| Calculation No. | Prepared By |
| :---: | :---: | :---: | :---: |
| $025-065-05$ | ,$~ C h e c k e d ~ B y ~$ |

Atachment A Pressure in CPN-37

PURPOSE:

The purpose of this calculation is to determine the pressure reached in CPN-37 at D.C. Cook, Unit 1 when the pipe heats to 240 F .

CALCULATION:

The expected temperature of the water during a LOCA and the ambient temperature are

$$
\mathrm{T}_{\mathrm{LOCA}}:=240 \quad \mathrm{~T}_{\mathrm{amb}}:=150 \quad \mathrm{~T}_{\mathrm{ambo}}:=70
$$

The mean coefficient of thermal expansion for SA-312 Gr TP304 from 70 to 150 F (Reference 8) is

$$
\alpha_{\mathrm{TO}_{0}}:=8.67 \cdot 10^{-6}
$$

And the initial strain due to thermal expansion from 70 F to 150 F is

$$
\varepsilon_{\text {tho }}:=\alpha_{\mathrm{To}} \cdot\left(\mathrm{~T}_{\mathrm{amb}}-\mathrm{T}_{\text {ambo }}\right) \quad \varepsilon_{\text {tho }}=6.94 \cdot 10^{-4} \mathrm{in} / \mathrm{in}
$$

The conversion for psi to ksi is

$$
\mathrm{ksi}:=1000 \mathrm{psi}
$$

For penetration CPN-37, there are three different types of pipes in the system. Geometry and material properties are listed below. Note that the diameters are the cold diameters at 70F. These diameters will be adjusted for thermal expansion to 150 F in the next section.
The first pipe is $4^{\prime \prime}$ Sch 10 , pipe specification B-14
$\mathrm{ID}_{4 \mathrm{~B} 14}:=4.260 \mathrm{in}$.
$S_{m 4 B 14}:=20 \mathrm{ksi}$
$\mathrm{E}_{4 \mathrm{~B} 14}:=27.4 \cdot 10^{6} \mathrm{psi}$
$t_{4 B 14}:=0.120 \mathrm{in}$
$S_{y 4 B 14}:=24 \mathrm{ksi}$
$\mathrm{E}_{\mathrm{p} 4 \mathrm{~B} 14}:=0.425 \cdot 10^{6} \mathrm{psi}$
$\mathrm{OD}_{4 \mathrm{~B} 14}:=\mathrm{ID}_{4 \mathrm{~B} 14}+2 \cdot \mathrm{t}_{4 \mathrm{~B} 14}$
$S_{u 4 B 14}:=69 \mathrm{ksi}$
SA-312 Gr TP304
$\mathrm{OD}_{4 \mathrm{~B} 14}=4.5 \cdot \mathrm{in}$

The second pipe is $1 "$ Sch 40S, pipe specification B-14
$\mathrm{ID}_{1 \mathrm{~B} 14}:=1.049 \mathrm{in}$
$t_{1 B 14}:=0.133 \mathrm{in}$
$S_{\text {m1B14 }}:=20 \mathrm{ksi}$
$\mathrm{E}_{1 \mathrm{~B} 14}:=27.4 \cdot 10^{6} \mathrm{psi}$
$S_{y 1 B 14}:=24 \mathrm{ksi}$
$\mathrm{E}_{\mathrm{p} 1 \mathrm{~B} 14}:=0.425 \cdot 10^{6} \mathrm{psi}$
$\mathrm{OD}_{1 \mathrm{~B} 14}:=\mathrm{ID}_{1 \mathrm{~B} 14}+2 \cdot \mathrm{t}_{1 \mathrm{~B} 14}$
$S_{u 1 B 14}:=69 \mathrm{ksi}$
SA-312 Gr TP304
$\mathrm{OD}_{1 \mathrm{B14}}=1.315 \cdot \mathrm{in}$

MPR Associates, Inc.
320 King Street Alexandria, VA 22314

Calculation No. 025-065-05

The third pipe is $4^{\prime \prime}$ Sch 40S, pipe specification B-14
$\mathrm{ID}_{4 \mathrm{~B} 1440}:=4.026$ in
$S_{\text {m4B1440 }}:=20 \mathrm{ksi}$
$\mathrm{E}_{4 \mathrm{~B} 1440}:=27.4 \cdot 10^{6} \mathrm{psi}$
$t_{4 B 1440}:=0.237$ in
$S_{y 4 B 1440}:=24 \mathrm{ksi}$
$E_{p 4 B 1440}:=0.425 \cdot 10^{6} \mathrm{psi}$
$\mathrm{OD}_{4 \mathrm{~B} 1440}:=\mathrm{ID}_{4 \mathrm{~B} 1440}+2 \cdot \mathrm{t} 4 \mathrm{~B} 1440 \quad \mathrm{~S}_{\mathrm{u} 4 \mathrm{~B} 1440}:=69 \mathrm{ksi}$
SA-312 Gr TP304
$O D_{4 B 1440}=4.5 \cdot \mathrm{in}$
The lengths of the three different pipes are as follows:

Note: Inverse units used in these equations result from MathCad format requirements and do not represent errors.
$L_{1}:=(14 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{2}:=(3 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{3}:=(10 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$\mathrm{L}_{1}=168$ inches
$L_{2}=36$ inches
$L_{3}=120$ inches

For the first pipe ($4^{\prime \prime}$ Sch 10S, B-14), the specific material parameters used in the calculation are

$$
\begin{aligned}
& \mathrm{t}_{1}:=\mathrm{t}_{4 \mathrm{~B} 14} \cdot \mathrm{in}^{-1} \quad \mathrm{t}_{1}=0.12 \quad \text { inches } \\
& r_{01}:=\left[\left(\frac{O D_{4 B 14} \cdot \mathrm{in}^{-1}}{2}\right)-\mathrm{t}_{1}\right] \cdot\left(1+\varepsilon_{\text {tho }}\right) \quad r_{01}=2.131 \quad \text { inches } \\
& r_{01 _i n i}:=\left[\left(\frac{O D_{4 B 14 \cdot n^{-1}}^{2}}{2}\right)-t_{1}\right] \quad r_{01 _i n i}=2.130 \quad \text { inches } \\
& S_{y 1}:=S_{y 4 B 14} \cdot \mathrm{psi}^{-1} \\
& \mathrm{E}_{1}:=\mathrm{E}_{4 \mathrm{~B} 14} \cdot \mathrm{psi}^{-1} \\
& E_{p 1}:=E_{p 4 B 14} \cdot p s^{-1} \quad E_{p 1}=4.25 \cdot 10^{5} \mathrm{psi} \\
& \varepsilon_{y 1}:=\frac{S_{y 1}}{E_{1}} \\
& \varepsilon_{y 1}=8.759 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
& \mathrm{~S}_{\mathrm{ml}}:=\mathrm{S}_{\mathrm{m} 4 \mathrm{~B} 14} \\
& \mathrm{~S}_{\mathrm{m} 1}=2 \cdot 10^{4} \circ \mathrm{psi} \\
& S_{u 1}:=S_{u 4 B 14} \\
& \mathrm{~S}_{\mathrm{y} 1}=2.4 \cdot 10^{4} \quad \mathrm{psi} \\
& E_{1}=2.74 \cdot 10^{7} \quad \mathrm{psi} \\
& S_{u 1}=6.9 \cdot 10^{4} \cdot p s i
\end{aligned}
$$

Calculation No. 025-065-05

Prepared By
ARINay
Checked By
nermonh

Page 11

For the second pipe ($1^{\prime \prime}$ Sch $40 \mathrm{~S}, \mathrm{~B}-14$), the specific material parameters for the calculation are

$$
\begin{aligned}
& \mathrm{t}_{2}:=\mathrm{t}_{1 \mathrm{B1} 4} \mathrm{in}^{-1} \quad \mathrm{t}_{2}=0.133 \text { inches } \\
& r_{02}:=\left[\left(\frac{O D_{1 B 14^{-\mathrm{in}^{-1}}}^{2}}{2}\right)-\mathrm{t}_{2}\right] \cdot\left(1+\varepsilon_{\text {tho }}\right) \quad r_{02}=0.525 \quad \text { inches } \\
& r_{02 _i n i}:=\left[\left(\frac{O D_{1 B 14^{\cdot i n}}^{-1}}{2}\right)-t_{2}\right] \quad r_{02 \text { _ini }}=0.524 \quad \text { inches } \\
& \mathrm{S}_{\mathrm{y} 2}:=\mathrm{S}_{\mathrm{y} 1 \mathrm{~B} 14 \cdot} \cdot \mathrm{psi}^{-1} \quad \mathrm{~S}_{\mathrm{y} 2}=2.4 \cdot 10^{4} \quad \mathrm{psi} \\
& \mathrm{E}_{2}:=\mathrm{E}_{1 \mathrm{~B} 14} \cdot \mathrm{psi}^{-1} \quad \mathrm{E}_{2}=2.74 \cdot 10^{7} \quad \mathrm{psi} \\
& \mathrm{E}_{\mathrm{p} 2}:=\mathrm{E}_{\mathrm{p} 1 \mathrm{~B} 14} \cdot \mathrm{psi}^{-1} \quad \mathrm{E}_{\mathrm{p} 2}=4.25 \cdot 10^{5} \quad \mathrm{psi} \\
& \varepsilon_{y 2}:=\frac{S_{y 2}}{E_{2}} \quad \quad \varepsilon_{y 2}=8.759 \cdot 10^{-4} \quad \mathrm{in} / \mathrm{in} \\
& \mathrm{~S}_{\mathrm{m} 2}:=\mathrm{S}_{\mathrm{m} 1 \mathrm{~B} 14} \quad \mathrm{~S}_{\mathrm{m} 2}=2 \cdot 10^{4} \mathrm{psi} \\
& S_{u 2}:=S_{u 1 B 14} \\
& \mathrm{~S}_{\mathrm{u} 2}=6.9 \cdot 10^{4} \mathrm{psi}
\end{aligned}
$$

For the third pipe (4 " Sch 40S, B-14), the specific material parameters used in the calculation are

$$
\begin{aligned}
& t_{3}:=t_{4 B 1440} \mathrm{in}^{-1} \quad \mathrm{t}_{3}=0.237 \text { inches } \\
& r_{03}:=\left[\left(\frac{O_{4 B 1440 \cdot i n^{-1}}}{2}\right)-t_{3}\right] \cdot\left(1+\varepsilon_{\text {tho }}\right) \quad r_{03}=2.014 \quad \text { inches } \\
& r_{\text {03_ini }}:=\left[\left(\frac{O D_{4 B 1440 \cdot i n}}{2}\right)-t_{3}\right] \quad r_{03 _i n i}=2.013 \text { inches } \\
& S_{y 3}:=\mathrm{S}_{\mathrm{y} 4 \mathrm{~B} 1440^{\circ} \mathrm{psi}^{-1} \quad \mathrm{~S}_{\mathrm{y} 3}=2.4 \cdot 10^{4} \mathrm{psi}} \\
& E_{3}:=E_{4 B 1440} \cdot{ }^{p s i} \quad \quad E_{3}=2.7 \cdot 10^{7} \quad \mathrm{psi} \\
& E_{p 3}:=E_{p 4 B 1440^{\circ}} \cdot \text { si }^{-1} \quad E_{p 3}=4.25 \cdot 10^{5} \mathrm{psi} \\
& \varepsilon_{y 3}:=\frac{S_{y 3}}{E_{3}} \quad \varepsilon_{y 3}=8.759 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
& S_{m 3}:=S_{m 4 B 1440} \\
& S_{u 3}:=S_{u 4 B 14} \\
& S_{m 3}=2 \cdot 10^{4} \text { opsi } \\
& S_{u 3}=6.9 \cdot 10^{4} \text { opsi }
\end{aligned}
$$

	MPR-2169 Appendix A. 5	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. $025-065-05$	Prepared By $\triangle A$ thap	Checked By nctimel	Page 12

At 150 F 165 psia, the water has a specific volume

$$
v_{\text {initial }}=0.0163343 \mathrm{ft}^{3} \cdot 1 \mathrm{~b}^{-1}
$$

Therefore, the mass of water in a unit length (1 inch) of pipe is

$$
\begin{aligned}
& m_{w 1 i}:=\frac{\pi \cdot r_{01}{ }^{2} \cdot 1}{\left(v_{\text {initial }} \cdot{ }^{l b} \cdot n^{-3}\right)} \\
& m_{w 1 i}=0.506 \quad \text { lb per unit length (} 4 \text { " Sch 10S) } \\
& m_{w 2 i}:=\frac{\pi \cdot r_{02}^{2} \cdot 1}{\left(v_{\text {initial } \left.^{2} \cdot i n^{-3}\right)}\right.} \\
& m_{w 2 i}=0.031 \quad \text { ib per unit length (1"Sch 40S) } \\
& m_{w 3 i}:=\frac{\pi \cdot r_{03}{ }^{2} \cdot 1}{\left({ }^{\left.{ }_{\text {initiai }} \mathrm{bb} \cdot \mathrm{in}^{-3}\right)}\right.} \\
& m_{w 3 i}=0.452 \quad \text { lb per unit length (} 4 \text { " Sch 40S) }
\end{aligned}
$$

The mean coefficient of thermal expansion for SA-312 Gr TP304 from 70 to 240 F is

$$
\alpha_{T}:=8.88 \cdot 10^{-6}
$$

And the strain due to thermal expansion is

$$
\varepsilon_{\mathrm{th}}:=\alpha_{\mathrm{T}}\left(\mathrm{~T}_{\mathrm{LOCA}}-\mathrm{T}_{\mathrm{ambo}}\right) \quad \varepsilon_{\mathrm{th}}=1.51 \cdot 10^{-3} \quad \mathrm{in} / \mathrm{in}
$$

The total mass of the water in the piping, assuming that the pipe is filled, is

$$
\mathrm{m}_{\mathrm{tot}}:=\left(\mathrm{m}_{\mathrm{w} 1 \mathrm{i}} \mathrm{~L}_{1}+\mathrm{m}_{\mathrm{w} 2 \mathrm{i}} \mathrm{~L}_{2}+\mathrm{m}_{\mathrm{w} 3 \mathrm{i}} \mathrm{~L}_{3}\right) \cdot\left(1+\varepsilon_{\mathrm{tho}}\right) \quad \mathrm{m}_{\mathrm{tot}}=140 \quad \text { ib }
$$

To solve the equations for the system with both pipe sizes, we must guess initial values for the variables.

$$
\begin{array}{lll}
\mathrm{P}:=3000 & \varepsilon_{\mathrm{p} 1}:=0.01 & \mathrm{vol}_{1}:=1 \\
\mathrm{v}:=0.016 & \varepsilon_{\mathrm{p} 2}:=0.01 & \mathrm{vol}_{2}:=1 \\
& \varepsilon_{\mathrm{p} 3}:=0.01 & \mathrm{vol}_{3}:=1 \\
\sigma_{\mathrm{h} 1}:=100 & \mathrm{r}_{1}:=1.0 & \mathrm{~m}_{\mathrm{w} 1}:=1 \\
\sigma_{\mathrm{h} 2}:=100 & \mathrm{r}_{2}:=1.0 & \mathrm{~m}_{\mathrm{w} 2}:=1 \\
\sigma_{\mathrm{h} 3}:=100 & \mathrm{r}_{3}:=1.0 & \mathrm{~m}_{\mathrm{w} 3}:=1
\end{array}
$$

Calculation No.

 025-065-05
Prepared By ΔR Hanp

Checked By

Assign a function to represent the change from elastic strain to plastic strain as follows:

$$
\begin{aligned}
& f_{1}\left(\sigma_{h 1}, S_{y 1}, E_{1}, E_{p 1}, \varepsilon_{y 1}\right):=i f\left(\sigma_{h 1}>S_{y 1}, \frac{\sigma_{h 1}-S_{y 1}}{E_{p 1}}+\varepsilon_{y 1}, \frac{\sigma_{h 1}}{E_{1}}\right) \\
& f_{2}\left(\sigma_{h 2}, S_{y 2}, E_{2}, E_{p 2}, \varepsilon_{y 2}\right):=i f\left(\sigma_{h 2}>S_{y 2}, \frac{\sigma_{h 2}-S_{y 2}}{E_{p 2}}+\varepsilon_{y 2}, \frac{\sigma_{h 2}}{E_{2}}\right) \\
& f_{3}\left(\sigma_{h 3}, S_{y 3}, E_{3}, E_{p 3}, \varepsilon y 3\right):=i f\left(\sigma_{h 3}>S_{y 3}, \frac{\sigma_{h 3}-S_{y 3}}{E_{p 3}}+\varepsilon_{y 3}, \frac{\sigma_{h 3}}{E_{3}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Given } \\
& r_{1}=\left(1+\varepsilon_{p 1}\right) \cdot r_{01 _ \text {ini }}\left(1+\varepsilon_{\text {th }}\right) \quad r_{2}=\left(1+\varepsilon_{p 2}\right) \cdot r_{02 \text { _ini }}\left(1+\varepsilon_{t h}\right) \quad r_{3}=\left(1+\varepsilon_{p 3}\right) \cdot r_{03 \text { ini }}\left(1+\varepsilon_{\mathrm{th}}\right) \\
& \mathrm{vol}_{1}=\frac{\pi \cdot \mathrm{r}_{1}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{1}}{\left(12^{3}\right)} \quad \operatorname{vol}_{2}=\frac{\pi \cdot \mathrm{r}_{2}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{2}}{\left(12^{3}\right)} \quad \operatorname{vol}_{3}=\frac{\pi \cdot \mathrm{r}_{3}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{3}}{\left(12^{3}\right)} \\
& \mathrm{v}=\frac{\mathrm{vol}_{1}}{\mathrm{~m}_{\mathrm{w} 1}} \\
& \mathrm{v}=\frac{\mathrm{vol}_{2}}{\mathrm{~m}_{\mathrm{w} 2}} \\
& \mathrm{v}=\frac{\mathrm{vol}_{3}}{\mathrm{~m}_{\mathrm{w} 3}} \\
& P=\left(4.81565 \cdot 10^{9}\right) \cdot v^{2}-\left(1.78833 \cdot 10^{8}\right) \cdot v+1.64733 \cdot 10^{6} \quad m_{t 01}=m_{w 1}+m_{w 2}+m_{w} 3 \\
& \sigma_{h 1}=P \cdot \frac{r_{1}}{t_{1}} \\
& \sigma_{h 2}=P \cdot \frac{r_{2}}{t_{2}} \\
& \sigma_{\mathrm{h} 3}=\mathrm{P} \cdot \frac{\mathrm{r}_{3}}{\mathrm{t}_{3}} \\
& \varepsilon_{p 1}=f_{1}\left(\sigma_{h 1}, S_{y 1}, E_{1}, E_{p 1}, \varepsilon_{y 1}\right) \quad \varepsilon_{p 2}=f{ }_{2}\left(\sigma_{h 2}, S_{y 2}, E_{2}, E_{p 2}, \varepsilon_{y 2}\right) \quad \varepsilon_{p 3}=f_{3}\left(\sigma_{h 3}, S_{y 3}, E_{3}, E_{p 3}, \varepsilon_{y 3}\right)
\end{aligned}
$$

Calculation No. 025-065-05

Prepared By $\triangle R$ Hanp

Solving the equations.

$$
A A:=\operatorname{Find}\left(r_{1}, r_{2}, r_{3}, \varepsilon_{p 1}, \varepsilon_{p 2}, \varepsilon_{p}, v o l_{1}, v o l_{2}, v o l_{3}, v, P_{,} \sigma_{h 1}, \sigma_{h 2}, \sigma_{h 3}, m_{w 1}, m_{w 2}, m_{w}\right)
$$

$r_{1}:=A A_{0,0} \cdot$ in
$\mathrm{r}_{2}:=\mathrm{AA}_{1,0} \cdot \mathrm{in}$
$r_{3}:=\mathrm{AA}_{2,0}$.in
$\varepsilon_{\mathrm{pl}}:=\mathrm{AA}_{3,0}$
$\varepsilon_{p 2}:=\mathrm{AA}_{4,0}$
$\varepsilon_{p 3}:=A_{5,0}$
$\mathrm{vol}_{1}:=\mathrm{AA}_{6,0} \cdot \mathrm{ft}^{3}$
$\mathrm{vol}_{2}:=\mathrm{AA}_{7,0}{ }^{-\mathrm{ft}^{3}}$
$\mathrm{vol}_{3}:=\mathrm{AA}_{8,0} \cdot \mathrm{ft}^{3}$
$v:=A A_{9,0} \cdot \mathrm{fl}^{3} \cdot 1 \mathrm{~b}^{-1}$
$P:=\mathrm{AA}_{10,0} \cdot \mathrm{psi}$
$\sigma_{h 1}:=\mathrm{AA}_{11,0} . \mathrm{psi}$
$\sigma_{h 2}:={A A_{12,0}} \cdot \mathrm{psi}$
$\sigma_{\mathrm{h} 3}:=\mathrm{AA}_{13,0} \cdot \mathrm{psi}$
$\mathrm{m}_{\mathrm{w} 1}:=\mathrm{AA}_{14,} \cdot \cdot \mathrm{lb}$
$\mathrm{m}_{\mathrm{w} 2}:=\mathrm{AA}_{15,0^{\circ}} \cdot \mathrm{bb}$
$\mathrm{m}_{\mathrm{w} 3}:=\mathrm{AA}_{16,0} \cdot \mathrm{lb}$
$r_{1}=2.18$ in
$\mathrm{r}_{2}=0.53 \cdot \mathrm{in}$
$r_{3}=2.02 \cdot \mathrm{in}$
$\varepsilon_{\mathrm{p} 1}=2.1741 \circ \%$
${ }^{\varepsilon} \mathrm{p} 2=0.02609 . \%$
$\varepsilon_{p 3}=0.05621 \%$
$\mathrm{vol}_{1}=1.45 \cdot \mathrm{ft}^{3}$
$\mathrm{vol}_{2}=0.02 \cdot \mathrm{ft}^{3}$
$\mathrm{vol}_{3}=0.89 \cdot \mathrm{ft}^{3}$
$v=0.016817 \cdot \mathrm{ft}^{3} \cdot \mathrm{bb}^{-1}$

$\mathrm{AA}=$| | 0 |
| ---: | ---: |
| | 0 |
| 1 | 2.18 |
| 2 | 0.53 |
| 3 | 2.02 |
| 4 | 0.02 |
| 5 | 0 |
| 6 | 1.45 |
| 7 | 0.02 |
| 8 | 0.89 |
| 9 | 0.02 |
| 10 | 1809.57 |
| 11 | 32867.64 |
| 12 | 7148.86 |
| 13 | 15401.71 |
| 14 | 86.41 |
| 15 | 1.08 |

$$
P=1.81 \cdot 10^{3} \cdot p s i \quad(p s i a)
$$

$\sigma_{\mathrm{h} 1}=33 \cdot \mathrm{ksi}$
$\sigma_{\mathrm{h} 2}=7 \cdot \mathrm{ksi}$
$\sigma_{\mathrm{h} 3}=15 \mathrm{ksi}$
$\mathrm{m}_{\mathrm{w} 1}=86 \cdot \mathrm{lb}$
$\mathrm{m}_{\mathrm{w} 2}=1 \mathrm{lb}$
$\mathrm{m}_{\mathrm{w} 3}=53 \cdot \mathrm{lb}$

ATTACHMENT 5 TO C0801-05

MPR CALCULATION 025-065-01

"DETERMINATION OF PEAK PRESSURES IN
D. C. COOK UNIT 1 PIPING SEGMENTS

ISOLATED BY AIR OPERATED DIAPHRAGM VALVES"

	.MPR-2169 Appendix A. 1	MPR Associates, Inc. 320 King Street Alexandria, VA 22314

CALCULATION TITLE PAGE

		MPR-2169 Appendix A. 1		s, Inc. 22314
RECORD OF REVISIONS				
Calculation No.$025-065-01$		$\begin{aligned} & \text { Prepared By } \\ & \text { he?Ranh } \end{aligned}$	Checked By	Page 2
Revision	Description			
0	Original Issue.			

Calculation No. 025-065-01
Mrepared By
Checked By

Page 4

1.0 PURPOSE

The purpose of this calculation is to determine the peak pressures that can be obtained in piping segments susceptible to thermal overpressurization that are isolated by air operated diaphragm valves at the D. C. Cook Nuclear Power Station, Unit 1. The pressures determined in this calculation are used in a separate stress analysis of the piping segments. The piping segments isolated by diaphragm valves are listed in Table 1 of Section 2 of this calculation.

The maximum pressure is taken as the pressure at which the air operated diaphragm valves installed in the segments will open. This calculation also demonstrates that the diaphragm integrity is maintained up to this opening pressure.

2.0 SUMMARY

The segment pressures required to begin to open the diaphragm valves in each system are in Table 1.
Table 1. Segment Pressures Required to Open Air Operated Diaphragm

System	NESW			PW	DEMIN	WDS	SDCON
CPN	Multiple	Multiple	Multiple	33	36	40	41
Valve Size	$2 "$	$3 "$	$6 "$	$3 "$	$2 "$	$4 "$	$3 "$
Line Pressure to Begin to Open (psig), $p_{\text {segment, } 0}$	325	711	215	212	325	262	212

The EPDM diaphragms will remain intact at these pressures. The diaphragm elongation is limited to 90% by the compressor and finger plate. EPDM will not rupture until it reaches 500% elongation.

These pressure results will be used in separate evaluations for the pipe and valves in these segments.

	MPR-2169 Appendix A. 1		MPR Associates, Inc. 320 King Street Alexandria, VA 2231
Calculation No. $025-065-01$	Prepared By隹 T Tund	Checked By 4 H	Page 5

3.0 CALCULATION

This calculation will be performed in the following steps:

- Determination of the types and configuration of valves installed in Cook Unit 1 piping segments of interest (Section 3.1).
- Calculation of the water pressure inside the piping segments that would be required to force open a closed diaphragm valve (Section 3.2).
- Demonstration that diaphragms can withstand the calculated segment pressure (Section 3).

3.1 Diaphragm Valves Installed in Piping Segments at Cook Unit 1

Each of the segments considered in this calculation is isolated using air operated diaphragm valves. These valves are air to open, spring to close valves provided by Grinnell (now ITT Engineered Valves).

The valves installed in each segment are listed in Table 2, along with configuration information. Configuration information was assumed based on information available from plant records. To verify this information, a walkdown was performed for these valves, and data obtained was compared to data from plant records and from the vendor. Walkdown data was documented in Reference 10. The discussion below shows how diaphragm valve model information was validated by results of the walkdown.

NESW Instrument Room CVU Valves 1-WCR-960 through 1-WCR-967

Plant records indicate that ITT Grinnell Valve Company Drawing SD-C-109700 applies to these valves. Key information from this drawing includes the following:

Valves are 2"
Actuator $=3250 \mathrm{~L}$ Air Motor
Actuator diameter $=14.5$ " at outer edge
Spring number 97 is installed
This corresponds to a Series 3253 valve in the ITT Industries, Dia-Flo valve catalog (Reference 6). Dimensional information for that catalog item matches data recorded during the walkdown (specifically actuator circumference, actuator housing height, and presence of tie rods holding the actuator housing to upper cover). Further, these valves are operated off the 50 psi control air header per control air header drawing OP-1-5120J (Reference 11); per the ITT catalog, the air pressure required to operate the 3253 series valve is 30 psi .

Accordingly, the walkdown information confirmed that these valves are as shown in drawing SD-C-109700 and therefore have the \#97 spring installed.

NESW Upper CVU Valves 1-WCR-920 through 1-WCR-935

Plant records indicate that ITT Grinnell Valve Company Drawing SD-C-109701 applies to these valves. Key information from this drawing includes the following:

Valves are 3"
Actuator $=32101$ Air Motor
Actuator diameter $=17-1 / 8^{\prime \prime}$ at outer edge
Spring number 130 is installed
Walkdown data showed that each valve has a Grinnell Air Motor Number 101. This corresponds to a Series 32108 valve in the ITT Industries, Dia-Flo valve catalog (Reference 6). Dimensional information for that catalog item matches data recorded during the walkdown (specifically actuator circumference and actuator housing height). Further, only the Series 32108 with 101 air motor has a housing height on the order of 24 ".

Accordingly, the walkdown information confirmed that these valves are as shown in drawing SD-C-109701 and therefore have the \#130 spring installed.

NESW RCP Air Motor Cooler CVU Valves 1-WCR-941 through 1-WCR-958

Same as above. Valves are as shown in drawing SD-C-109701 and have the \#130 spring installed.

NESW Lower CVU Valves 1-WCR-900 through 1-WCR-915

Plant records indicate that ITT Grinnell Valve Company Drawing SD-C-109702 applies to these valves. Key information from this drawing includes the following:

Valves are 6"
Actuator $=32130$ Air Motor
Actuator diameter $=19$ " at outer edge
Spring number 130 is installed
Walkdown data showed that each valve has a Grinnell Air Motor Number 130. This corresponds to a Series 32138 valve in the ITT Industries, Dia-Flo valve catalog (Reference 6). Dimensional information for that catalog item matches data recorded during the walkdown (specifically actuator circumference and

actuator housing height). Further, only the Series 32138 with 130 air motor has a housing height on the order of $24^{\prime \prime}$.

Accordingly, the walkdown information confirmed that these valves are as shown in drawing SD-C-109702 and therefore have the \#130 spring installed.

Valves 1-NRV-251, 1-DCR-600 and 1-DCR-601

Plant records indicate that Drawing WAPD-CV-SS-8R Revision 3 applies to these valves. Key information from this drawing includes the following:

Valves are 3", Item Number 3DA42R
Actuator $=3250$ Air Motor
Actuator diameter $=14.5$ " at outer edge
Spring number 96 and 97 are installed
This corresponds to a Series 3255 valve in the ITT Industries, Dia-Flo valve catalog (Reference 6). Dimensional information for that catalog item matches data recorded during the walkdown (specifically actuator circumference and actuator housing height). Further, the walkdown found tags on each valve that indicated the valves are model 3DA42R and contain springs \#96 and \#97, with spring rates of 236 and 135 pounds per inch, respectively.

Accordingly, the walkdown information confirmed that these valves are as shown in drawing WAPD-CV-SS-8R and therefore have the \#96 and \#97 springs installed.

Valves 1-OCR-919 and 1-OCR-920

Walkdown data showed that these valves have the same dimensions as the valves shown in ITT Grinnell Valve Company Drawing SD-C-109700. Key information from this drawing includes the following:

Valves are 2"
Actuator $=3250 \mathrm{~L}$ Air Motor
Actuator diameter $=14.5^{\prime \prime}$ at outer edge
Spring number 97 is installed
Air pressure to open $=35 \mathrm{psig}$
This corresponds to a Series 3253 valve in the ITT Industries, Dia-Flo valve catalog (Reference 6). Dimensional information for that catalog item matches data recorded during the walkdown (specifically actuator circumference, actuator housing height, and presence of tie rods holding the actuator housing to upper cover). Futher, the drawing shows that the air pressure to open these is 35 psig, which is

MPR Associates, Inc. 320 King Street
MPR-2169 Appendix A. 1 Alexandria, VA 22314

Calculation No. 025-065-01

comparable to the air pressure required to operate the 3253 series valve of 30 psi, per the Reference 6 vendor catalog. Further, it is noted that these valves are operated off the 50 psi control air header per control air header drawing 1-OP-5120J (Reference 11).

Accordingly, the walkdown information concluded that these valves are as shown in drawing SD-C-109700 and therefore have the \#97 spring installed.

Valves 1-DCR-205, 1-DCR-206 and 1-DRV-001

Plant records indicate that Drawing WAPD-CV-SS-9R Revision 3 applies to these valves. Key information from this drawing includes the following:

Valves are 4", Item Number 4DA42R
Actuator $=32100$ Air Motor
Actuator diameter $=16-11 / 16^{\prime \prime}$ at outer edge
Spring number 96 and 98 are installed
During the walkdown tags were found on the valves indicating these were item 4DA42R. In addition, the spring rates for these valves were found by inspection of stamped markings on the actuator housings. Specifically, the spring rates stamped were 236 pounds per inch for the $\# 96$ spring and 342 pounds per inch for the \#98 spring.
Accordingly, the walkdown information confirmed that these valves are as shown in drawing WAPD-CV-SS-9R and therefore have the \#96 and \#98 springs installed.

Calculation No. 025-065-01

Page 9

3.2 Calculation of Segment Pressure Required to Open Diaphragm Valves

During thermal overpressurization incidents (such as might occur when segments are isolated during pipe breaks in containment), water pressure will build in the isolated segment until the force on the diaphragm overcomes the spring force holding the valve closed. At this point the valve will begin to open, and relieve the trapped water.

This calculation will determine the segment water pressure which would be required to overcome the spring force and hence permit the trapped water to escape through the opened valve. To ensure the trapped water can escape the volume, the calculation will determine the system pressure needed to open the valve 10 percent of its full stroke. A check will be made to ensure that pressure can be relieved at this opening position. The method used is as follows:
1). During normal operation, air pressure acting on the actuator plate is sufficient to compress the spring and force the actuator plate up. The actuator pulls the stem and diaphragm up, thus permitting flow of water through the valve. The force required to fully open the valve ($\mathrm{F}_{\text {open.ful }}$) is equal to the air pressure required to fully open the valve $\left(\mathrm{p}_{2}\right)$ times the effective actuator area $\left(\mathrm{A}_{2}\right)$:

$$
\mathrm{F}_{\text {open,full }}=\mathrm{p}_{\mathrm{a}} \mathrm{~A}_{\mathrm{a}}
$$

2) Opening the valve to its full open position requires compressing the actuator spring(s) by an amount equal to the valve stroke. The spring force required to fully open the valve $\left(\Delta \mathrm{F}_{\text {sping, full }}\right)$ is calculated by multiplying the spring constant $\left(\mathrm{k}_{\text {sping }}\right)$ by the stem travel ($\left.\Delta \mathrm{h}_{\text {sem }}\right)$ as follows:

$$
\Delta \mathrm{F}_{\text {spring,full }}=\mathrm{k}_{\text {spring }} \Delta \mathrm{h}_{\text {stem }}
$$

3) The spring force required to begin to open a valve (F_{o}) is the force required to fully open the valve minus the change in the spring force from closed to full stroke,

$$
F_{o}=F_{\text {open,full }}-\Delta F_{\text {spring, full }}
$$

4) The spring force required to open the valve an additional 10 percent is equal to the opening force plus the force required to compress the spring by 10 percent of the valve stroke:

$$
\mathrm{F}_{10 \%}=\mathrm{F}_{\mathrm{o}}+(0.1) \mathrm{k} \Delta \mathrm{~h}_{\mathrm{stem}}
$$

Combining the above equations gives:

$$
F_{10 \%}=\left(p_{a} A_{a}\right)-0.9 \Delta h_{\text {sem }} k_{\text {sping }}
$$

	MPR-2169 Appendix A. 1		MPR Associates, Inc 320 King Street Alexandria, VA 22314
$\begin{gathered} \text { Calculation No. } \\ 025-065-01 \end{gathered}$	Prepared By he Trecull	Aln Checked By	Page 10

This is shown in Figure 1 below.

Valve Open Due to Air Pressure p_{a}

Force from spring $=p_{a} A_{a}$

Valve Open 10\% Due to Segment Pressure

Force from spring $=\left(p_{a} A_{a}\right)-0.9(\Delta h) k_{\text {spring }}$

Figure 1. Force Applied by Spring on Actuator
5) The segment water pressure required to open the valve by 10% when there is no air supplied to the motor $\left(\mathrm{p}_{\text {segmen }}\right)$ is:

$$
p_{\text {segment }}=\frac{F_{10 \%}}{A_{\text {segment }}}
$$

where $A_{\text {seement }}$ is the effective area of the diaphragm that the water acts upon, equal to one half of the diaphragm area minus half the area in contact with the weir,

$$
\mathrm{A}_{\text {segment }}=\frac{1}{2}\left[\frac{\pi}{4} \mathrm{~d}_{\mathrm{d}}{ }^{2}-\mathrm{w}_{\mathrm{w}} \mathrm{~d}_{\mathrm{w}}\right]
$$

where $d_{d}=$ diaphragm diameter, $\mathrm{w}_{\mathrm{w}}=$ weir width and $d_{w}=$ weir length.
6) Table 3 lists this information for the valves installed in the piping segments considered in this calculation.

Using the information in Table 3 and the equations listed previously, opening pressure can be calculated for each valve. Results of this calculation are shown in Table 4.

Note that in every case the segment pressure required to open the valves by 10 percent is in excess of 200 psig. Reference 6 , page 70 shows that the flow coefficient Cv for 2 " to 6 "ITT weir valves ranges from 12 to 105 . Assuming the minimum Cv value, the flow through these valves at 200 psig pressure differential is calculated using the method of Reference 6:

$$
\text { Actual flow }=\mathrm{Cv} *(\Delta \mathrm{P} / \mathrm{sg})^{1 / 2}=12 *(200 / 1.0)^{1 / 2}=170 \mathrm{gpm}
$$

where "sg" = the specific gravity of water (1.0).
Since only a small volume of water (on the order of several gallons maximum) must be discharged to reduce the pressure in the trapped piping segments, this flow rate is sufficient to relieve the pressure in the segment.

Table 2. List of Air Operated Diaphragm Valves in Segments Considered

Segment	NESW			PW	DEMIN	WDS	SDCON
CPN	Multiple	Multiple	Multiple	33	36	40	41
Valve Size	2"	3"	$6 "$	3"	2"	4"	3"
Diaphragm Valve Tag Numbers	$\begin{gathered} \text { 1-WCR- } \\ 960 \text { to } \\ \text { 1-WCR- } \\ 967 \end{gathered}$	$\begin{gathered} 1 \text { 1-WCR-920 to } \\ 1-W C R-935 \\ 1-W C R-941 \text { to } \\ 1-W C R-948 \\ 1-W C R-951 \text { to } \\ 1-W C R-958 \end{gathered}$	$\begin{gathered} \text { 1-WCR- } \\ 900 \text { to } \\ \text { 1-WCR- } \\ 915 \end{gathered}$	$\begin{aligned} & \text { 1-NRV- } \\ & 251 \end{aligned}$	$\begin{gathered} \text { 1-QCR- } \\ 919 \\ \text { 1-QCR- } \\ 920 \end{gathered}$	$\begin{gathered} \text { 1-DCR-205 } \\ \text { 1-DCR-206 } \\ \text { 1-DRV- } \\ 001 \end{gathered}$	$\begin{gathered} 1-D C R- \\ 600 \\ 1-D C R- \\ 601 \end{gathered}$
Vendor Drawing	$\begin{aligned} & \text { SD-C- } \\ & 109700 \end{aligned}$	SD-C-109701	$\begin{aligned} & \text { SD-C- } \\ & 109702 \end{aligned}$	$\begin{aligned} & \text { WAPD- } \\ & \text { CV-SS-8R } \end{aligned}$	$\begin{gathered} \text { SD-C- } \\ 109700 \end{gathered}$	$\begin{aligned} & \text { WAPD- } \\ & \text { CV-SS-9R } \end{aligned}$	WAPD-CV-SS8R
Type of Actuator	3250L	32101	32130	3250	3250L	$\begin{gathered} 32100 \\ \text { (Note 2) } \end{gathered}$	3250
$\begin{aligned} & \text { Insting(s) } \\ & \text { Installed } \end{aligned}$	\#97	\#130	\#130	\#96 \& \#97	\#97	\#96 \& \#98	$\begin{gathered} \# 96 \& \\ \# 97 \end{gathered}$

1. Valve drawing numbers and springs were determined based on walkdown data as described in Section 4 of this calculation. Drawings are listed in Reference 1.
2. Drawing indicates a " 32100 " motor, with a $16-11 / 16$ " diameter actuator flange. The ITT model 32101 has a slightly larger actuator of 17.12 " (see Reference 6, pages 96-97), with an effective actuator area of 100 square inches. This calculation assumes that the effective actuator area for the 32100 actuator is the same as the 32101 actuator.

References are as follows:
(1) Air required - Reference 1 drawings. Note that these values are maximum pressures which the vendor recommended will be needed to fully open the valves; valves will begin opening at lower pressures and be fully open at this (or lower) pressure.
(2) Actuator area and full stroke - Reference 2, pages 9 and 6, respectively
(3) Springs - See Table 2
(4) Total Spring Rate - From Section 4 for CPN-33 and CPN-40; Reference 3 for others
(5) Diaphragm diameter - Reference 4 drawings
(6) Weir width and depth - Reference 5 drawings

Table 4. Calculated Opening Pressures

System	NESW			PW	DEMIN	WDS	SDCON
CPN	Multiple	Multiple	Multiple	33	36	40	41
Valve Size	2 "	3"	$6 "$	3"	$2 "$	4".	$3 "$
Force to Open Fully (lbf), $\mathrm{F}_{\text {open.full }}$	1,750	9,000	9,750	2,900	Same as 2" NESW valve.	5,500	Same as 3" PW valve.
Spring Force (lbf), $\Delta \mathrm{F}_{\text {spring.full }}$	152	1,203	2,313	603		1,228	
Force to Begin to Open (lbf), F_{0}	1,598	7,798	7,438	2,297		4,272	
Force to Open by 10% (lbf), $\mathrm{F}_{10 \%}$	1,613	7,918	7,669	2,357		4,395	
Effective Area of Diaphragm $\left(\mathrm{in}^{2}\right), \mathrm{A}_{\text {segment }}$	4.96	11.14	35.68	11.14		16.77	
Line Pressure to Open by 10\% (psig), $\mathrm{p}_{\text {segnent,o }}$	325	711	215	212		262	

Calculation No. 025-065-01

3.3 Ability of Diaphragm to Withstand Pressure

For each valve the diaphragm is supported by a compressor. This section will consider the ability of the diaphragm in a closed valve to withstand the calculated pressures.

Based on the results in Section 3.2, the three inch valve experiences the highest pressure. This calculation will address the ability of this size valve to withstand pressure. Larger valves experience lower pressures and so will not be limiting.

When the valve is closed the diaphragm is supported in part by the compressor. The portion of the diaphragm not supported will stretch under pressure at most until it lays along the boundary created by the compressor and the finger plate.

The elongation of the diaphragm is evaluated by looking at the length of a diaphragm before and after pressure loading. Prior to loading, the 3 " diaphragm is in an unstretched state since the distance along the diaphragm between the flange and the lower portion of the compressor is very nearly equal to the distance between the flange and the top of the weir (see Figure 2 below; valve and diaphragm dimensions from References 4 and 5). In addition, the radius of curvature of the diaphragm is larger than the radius of curvature of the compressor finger (compare references 4 and 7). Figure 2a shows the original shape of a cross section of the diaphragm, compressor and finger plate in the unloaded condition.

Figure $2 b$ shows the maximum possible deformation of the diaphragm under pressure. The diaphragm will not protrude between the small $0.36^{\prime \prime}$ gap between the compressor and the finger plate since the diaphragm thickness is $0.3^{\prime \prime}$ (more than half the gap width). A calculation of the diaphragm length before and after deformation is provided below.

Calculation No. 025-065-01	Prepared By	Checked By	Page 16

(b)

Figure 2. Diaphragm Geometry, (a) undeformed (b) deformed

The original depths and heights of the diaphragm and compressor are,

The original length of the diaphragm prior to deformation is,

$$
\mathrm{L}_{\mathrm{d}, \mathrm{o}}=\sqrt{\left(\frac{\mathrm{d}_{\mathrm{d}}}{2}-\frac{\mathrm{d}_{\mathrm{c}}}{2}\right)^{2}+\left(\mathrm{h}_{\mathrm{d}}\right)^{2}}=\sqrt{\left(\frac{5.5}{2}-\frac{1.91}{2}\right)^{2}+\left(\frac{13}{16}\right)^{2}}=1.97 \mathrm{in} .
$$

	MPR-2169 Appendix A. 1		MPR Associates, Inc. 320 King Street Alexandria, VA 2231
Calculation No. 025-065-0́1	Prepared By he ctuonl	Checked By	Page 17

The finger plate dimensions are,

The height of a finger is,

$$
\mathrm{h}_{\mathrm{f}}=\sqrt{\mathrm{R}_{\mathrm{f}}^{2}-\left(\frac{\mathrm{id}_{\mathrm{f}}}{2}\right)^{2}}-\sqrt{\mathrm{R}_{\mathrm{f}}^{2}-\left(\frac{\mathrm{od}_{\mathrm{f}}}{2}\right)^{2}}=\sqrt{3.69^{2}-\left(\frac{2.25}{2}\right)^{2}}-\sqrt{3.69^{2}-\left(\frac{5.31}{2}\right)^{2}}=0.95 \mathrm{in} .
$$

The total height from the bottom of the compressor to the fingers, H_{t} in Figure 1a, is,

$$
H_{t}=h_{d}+h_{f}=1.76^{\prime \prime}
$$

The diameter of the finger plate is less than the diameter of the diaphragm. The length of the finger plate that extends over the diaphragm is the length of the horizontal extension, $l_{p, h}$ plus the length of a finger, l_{f}. The horizontal length of the finger plate that extends over the diaphragm is

$$
\mathrm{l}_{\mathrm{p}, \mathrm{~h}}=0.5\left(\mathrm{~d}_{\mathrm{d}}-\mathrm{od}_{\mathrm{f}}\right)=0.1 "
$$

The length of a finger is,

$$
\mathrm{I}_{\mathrm{f}}=\sqrt{\left(\frac{\mathrm{od}_{\mathrm{f}}}{2}-\frac{\mathrm{id}_{\mathrm{f}}}{2}\right)^{2}+\mathrm{h}_{\mathrm{f}}^{2}}=\sqrt{\left(\frac{5.31}{2}-\frac{2.25}{2}\right)^{2}+0.95^{2}}=1.8 \mathrm{in} .
$$

Thus, the total length of the finger plate that will contact the diaphragm is

$$
L_{p}=l_{p, h}+l_{f}=1.9^{\prime \prime}
$$

The final deformed length of the diaphragm chord, $\mathrm{L}_{\mathrm{d}, \mathrm{f}}$ is equal to the sum of the length of the finger plate and the height to the finger plate,

$$
L_{d, f}=L_{p}+H_{c}=3.66^{\prime \prime}
$$

A summary of the original length of the diaphragm, the length of the finger plate, the height to the finger plate and the deformed diaphragm length is presented in Table 5. Based on these dimensions, the elongation of the diaphragm chord is

$$
\text { Elongation }=\left(\mathrm{L}_{\mathrm{d}, \mathrm{f}}-\mathrm{L}_{\mathrm{d}, 0}\right) / \mathrm{L}_{\mathrm{d}, \mathrm{o}} * 100 \%=86 \%
$$

The diaphragm material in the three-inch diaphragm valve is EPDM. According to Reference 9 , the elongation of reinforced EPDM at break is 500%. Since the diaphragm only elongates 86%, the diaphragm should not rupture even at high pressures.

Table 5. Diaphragm Elongation

Parameter	Value
Original Length of Diaphragm Chord, $\mathrm{L}_{\mathrm{d}, \mathrm{o},}$ in.	1.97
Length of Finger Plate, L_{p}, in.	1.90
Height to Finger Plate, H_{c}, in.	1.76
Deformed Length of Diaphragm Chord, $\mathrm{L}_{\mathrm{d}, \mathrm{f},}$ in.	3.66
Percent Chord Elongation	86%

Note that there is a small gap, w, between the top of the finger plate and the top of the compressor. The length of the gap, w, between the top of the compressor and the top of the finger plate is,

$$
\mathrm{w}=\sqrt{\left(\frac{\mathrm{id}_{\mathrm{f}}-\mathrm{d}_{\mathrm{c}}}{2}\right)^{2}+\left(\mathrm{H}_{\mathrm{t}}-\mathrm{h}_{\mathrm{c}}\right)^{2}}=\sqrt{\left(\frac{2.25-1.91}{2}\right)^{2}+(1.76-1.44)^{2}}=0.36 \mathrm{in} .
$$

The diaphragm is not expected to protrude through this gap since the diaphragm thickness is $0.36^{\prime \prime}$.

	MPR-2169 Appendix A. 1		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. 025-065-01	Prepared By Mepoush	Checked By	Page 19

4.0 REFERENCES

1. ITT Engineered Valves Drawings

- Drawing Number SD-C-109700, 2" Nuclear Diaphragm Valve w/ 3250L Air Motor
- Drawing Number SD-C-109701, 3" Nuclear Diaphragm Valve w/ 32101 Air Motor
- Drawing Number SD-C-109702, 6" Nuclear Diaphragm Valve w/ 32130 Air Motor
- Drawing Number WAPD-CV-SS-8R Rev. 3, 3" Grinnell Air Motor Diaphragm Valve 3250
- Drawing Number WAPD-CV-SS-9R Rev. 3, 4" Grinnell Air Motor Diaphragm Valve 32100

2. Vendor Technical Manual VTM-ITEV-0002, VTD-ITEV-0009, Revision 1.
3. ITT Industries Drawing 117346, Revision B, Spring Specification Sheet.
4. ITT Industries Drawings for Diaphragms:

- Drawing Number 3958 Rev. L, Diaphragm Weir 2.000
- Drawing Number 3072 Rev. L, Diaphragm Weir 3.000
- Drawing Number 3073 Rev. L, Diaphragm Weir 4.000
- Diaphragm Weirs Drawing (undated)

5. ITT Industries Drawings for Weirs:

- Drawing Number 103567 Rev. F, Body, Weir 02.00 Butt Weld End (pipe) Code, Non Code and Commercial
- Drawing Number 100730 Rev. G, Body, Weir 03.00 Butt Weld End (pipe) Code, Non Code and Commercial
- Drawing Number 1014177 Rev. C, Body, Weir 04.00 Butt Weld End (pipe) Code, Non Code and Commercial
- Drawing Number 106666 Rev. E, Body, Weir 06.00 Butt Weld End (pipe) Code, Non Code and Commercial

6. "DIA FLO ${ }^{\circledR}$ Industrial Diaphragm Valves, Technical Manual and Service Guide" ITT Industries, 1999.
7. ITT Industries Drawing for Compressor:

- Drawing Number 139 Rev. F, Compressor Weir 03.00

8. ITT Industries Drawing for Finger Plate:

- Drawing Number 101034 Rev. G, Plate-Finger Weir 03.00

9. Freakley, P.K. and A.R. Payne, "Theory and Practice of Engineering with Rubber," Applied Science Publishers, London, 1978.
10. AEP Design Input Transmittal Number DIT B-01518-00.

11. AEP Drawing OP-1-5120J, Rev. 0, "Flow Diagram, 50\# Control Air System Header, Auxiliary System Plan View, Unit \#1."

ATTACHMENT 6 TO C0801-05
MPR CALCULATION 025-065-06
"PIPING STRESS SUMMARY CALCULATION FOR OVERPRESSURIZATION IN D. C. COOK UNIT 1 PIPING SEGMENTS"

	MPR-2169 Appendix A. 6	MPR Associates, Inc. 320 King Street Alexandria, VA 22314

RECORD OF REVISIONS

Calculation No. $025-065-06$	Prepared By Revision	Phecked By	Page 2
0	Original Issue.		
Description			

	MPR-2169 Appendix A. 6		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. $025-065-06$	Prepared By metamh	Checked By adr	Page 4
PURPOSE			

This calculation summarizes Generic Letter 96-06 thermal overpressurization piping stress evaluations for 24 piping segments located partially or completely within the containment building at D. C. Cook Unit 1. The segments are listed in Section 2.

2.0 RESULTS

Table 1 on the next page summarizes the results of this calculation. In brief, the results are as follows:

- Internal pressures and piping stresses in the following segments are acceptable per the plant design basis for conditions that would occur during thermal overpressurization:
- NESW Cooling for Upper Containment Ventilation Units (4 segments) Multiple CPNs
- NESW Cooling for RCP Motor air Coolers (4 segments) Multiple CPNs
- NESW Cooling for Instrumentation Room Ventilation Units (2 segments) Multiple CPNs
- NESW Cooling for Lower Containment Ventilation Units (4 segments) Multiple CPNs
- Piping stresses in the following segments are acceptable per criteria of Appendix F of the ASME Code, Section III for conditions that would occur during thermal overpressurization:
- Primary Water Supply to RCPs and PRT

CPN-33

- Demineralized Water Supply to Hose Connections

CPN-36

- Reactor Coolant Drain Tank Pump Suction

CPN-40

- Containment Sump Pump Discharge

CPN-41

- Safety Injection Test Line and Accumulator Fill Line

CPN-32

- RCP Seal Water and Excess Letdown Heat Exchanger

CPN-37

- RCP Seal Bypass Line
(No CPN)
- Piping stresses in the following segments are not acceptable per the original code criteria nor the criteria of Appendix F of the ASME Code, Section III. These segments require further evaluation or provision of a means to relieve thermal overpressurization.
- Pressurizer Liquid Space Sample Line

CPN-66

- Hot Leg Sample Line

CPN-66

- Accumulator Sample Line

CPN-81

		MPR-2169 Appendix A. 6			MPR Associates, Inc. 320 King Street Alexandria, VA 22314		
Calculation No.025-065-06		$\begin{gathered} \text { Prepared By } \\ 2 c \text { Teacshh } \end{gathered}$		Checked ByCoorn		Page 5	
Table 1 Summary of Pipe Stress Evaluation							
Segment		Containment Penetrations	Peak Pressure (psi)	$\begin{array}{r} \text { Piping S } \\ (\leq 1 . \end{array}$	ss Index OK)	StrainLimit$(\leq 5 \% \mathrm{OK})$	
		Per B31.1		$\begin{gathered} \text { Per } \\ \text { App. } F \end{gathered}$			
Non-Essential Service Water System	Instr. Rm		Multiple	325	0.93	0.66	$<0.1 \%$
	RCP\&CUV	Multiple	711	0.98	0.70	<0.1\%	
	CLV	Multiple	215	0.93	0.66	<0.1\%	
Safety Injection Test Line and Accumulator Fill Line		32	15,310	1.40	0.96	0.4\%	
Primary Water Supply to the PRT		33	212	N/A	0.62	<0.1\%	
Demineralized Water Supply		36	325	N/A	0.63	<0.1\%	
RCP Seal Water and Excess Letdown Heat Exchanger		37	1,800	1.57	0.93	2.0\%	
Reactor Coolant Drain Tank Pump Suction		40	262	N/A	0.64	<0.1\%	
Containment Sump Pump Discharge to Waste Disposal		41	212	N/A	0.63	<0.1\%	
Sample Line from Hot Legs		66	17,800	2.75	1.15	5.9\%	
Sample Line from Pressurizer Liquid Space		66	17,800	2.75	1.15	5.9\%	
Sample Line from Accumulators		81	17,400	2.69	1.16	5.6\%	
RCP Seal Bypass		N/A	16,940	1.55	0.988	1.0\%	

Entries which are not acceptable are shown in bold.

3.0 CALCULATTION

Reference 1 of this calculation lists MPR calculations prepared to determine the maximum pressure in piping segments at Cook Unit 1 that would occur during the thermal overpressurization concern addressed by Generic Letter 96-06. This calculation will evaluate whether the pressures and resulting piping stresses in these segments are acceptable at these pressures. This will be performed as follows:

- Given the maximum pressure, the first check is for compliance of the piping itself with the code of record, which, per the piping specifications (References 2 and 3), is USAS B31.1.0-1967 (Reference 4) for all 24 segments. See Section 3.1 for the method used to make this determination.
- For those segments where the piping stresses exceed the original code acceptance criteria, an evaluation is performed to determine if the segment would meet the acceptance criteria of Appendix F of ASME Code, Section III (Reference 5). Generic Letter 96-06, Supplement 1 (Reference 6) states that use of this code appendix is acceptable for justifying short-term operability until a permanent solution is implemented. See Section 3.2 for the method used to make this determination.

	MPR-2169 Appendix A. 6		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
$\begin{gathered} \text { Calculation No. } \\ 025-065-06 \end{gathered}$	$\begin{aligned} & \text { Prepared By } \\ & \text { neTenohl } \end{aligned}$	Checked By Acore	Page 7

3.1 Check of Piping Compliance with Original Code Acceptance Criteria

Pressures calculated for each pipe from Reference 1 are listed in Table 1. These are the maximum pressures that each segment could reach. These maximum pressures exceed the design pressures listed for each system in the piping design specifications. Pressures, and piping stresses resulting from these pressures, will be evaluated for acceptability with regard to the original design code in this section.

Calculation Method

Per the piping specifications, the code of record for these segments is USAS B31.1.0-1967. This code has two requirements for pressure: first, that the calculated stress due to internal pressure not exceed the allowable stress (Section 102.3.2(a)); and second, that the sum of longitudinal stresses due to pressure, weight, and other sustained loads shall not exceed the allowable stress in the hot condition (Section 102.3.2 (d)). The Cook USFAR (Reference 7), Tables 2.9-1 and 2.9-2, summarize the stress limits in pressure piping required for analysis for pressure-induced loads as follows:

For Normal Conditions (Deadweight Plus Pressure Loads),
(a) $\mathrm{P}_{\mathrm{m}} \leq \mathrm{S}_{\mathrm{h}}$
(b) $P_{L}+P_{B} \leq S_{h}$

For Upset Conditions (Deadweight Plus Pressure Plus Operating Basis Earthquake Loads),
(a) $\mathrm{P}_{\mathrm{m}} \leq 1.2 \mathrm{~S}_{\mathrm{h}}$
(b) $\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{B}} \leq 1.2 \mathrm{~S}_{\mathrm{h}}$

For Emergency Conditions (Deadweight Plus Pressure Plus Design Basis Earthquake Loads),
(a) $\mathrm{P}_{\mathrm{m}} \leq 1.2 \mathrm{~S}_{\mathrm{h}}$
(b) $\mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{B}} \leq 1.8 \mathrm{~S}_{\mathrm{h}}$
where
$\mathrm{P}_{\mathrm{m}}=$ primary hoop membrane stress due to pressure
$\mathrm{P}_{\mathrm{L}}=$ primary longitudinal membrane stress due to pressure
$\mathrm{P}_{\mathrm{B}}=$ primary longitudinal bending stress due to deadweight and seismic loads
$\mathrm{S}_{\mathrm{h}}=$ allowable stress at $70^{\circ} \mathrm{F}$ from USAS B31.1 Code for Pressure Piping, 1967
Accordingly, both hoop stress and longitudinal stress due to overpressurization must be analyzed. Further, the longitudinal stress analysis must consider the combined effects of overpressurization, deadweight and seismic loads.

To check acceptability of primary hoop membrane stress $\left(\mathrm{P}_{\mathrm{m}}\right)$ due to overpressurization, the hoop stress is calculated using the following formula:

$$
\mathrm{P}_{\mathrm{m}}=\text { (Pressure) } \text { (Inside Diameter) } /(2 * \text { Thickness }) \leq 1.2 \mathrm{~S}_{\mathrm{h}}
$$

	MPR-2169 Appendix A. $6 \times \begin{aligned} & \text { M } \\ & \\ & \\ & \end{aligned}$		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
$\begin{gathered} \text { Calculation No. } \\ 025-065-06 \end{gathered}$	Prepared By Neitunat	Checked By Morn	Page 8

A stress index for hoop stress can be calculated by dividing the hoop stress by the allowable stress as follows:

Stress Index for Hoop Stress $=\mathrm{P}_{\mathrm{m}} / 1.2 \mathrm{~S}_{\mathrm{h}}$
In addition, for internal pressure considerations, B31.1 Section 104.1.2 provides the following equation for allowable pressure ($\mathrm{P}, \mathrm{psig}$) for piping:

$$
\text { Allowable Pressure } P=\left[2(1.2) S E\left(t_{m}-A\right)\right] /\left[\mathrm{D}_{0}-2 \mathrm{y}\left(\mathrm{t}_{\mathrm{m}}-\mathrm{A}\right)\right]
$$

where
1.2 $\mathrm{SE}=$ maximum allowable stress for upset and emergency conditions, psi
$\mathrm{t}_{\mathrm{m}}=$ minimum wall thickness, inches
$\mathrm{A}=$ additional thickness, inches.
For $3.5 "$ and smaller diameter pipe, $\mathrm{A}=0.065 "$
For 4 "and larger diameter pipe, $A=0.0$ "
For tubing in NESW heat exchangers, $\mathrm{A}=0.0^{\prime \prime}$
$D_{0}=$ outside diameter of pipe, inches
$y=0.4$ (for nonferrous materials, and for austenitic and ferritic materials less than $900^{\circ} \mathrm{F}$)
Accordingly, for overpressure to be acceptable per the hoop stress criteria, two criteria must be satisfied:
(1) $\mathrm{P}_{\mathrm{m}} \leq 1.2 \mathrm{~S}_{\mathrm{h}}$
(2) Overpressure \leq Allowable Pressure

Checking the acceptability of longitudinal stresses requires consideration of longitudinal bending stresses due to seismic and deadweight loads. These stresses are dependent on the support arrangement for the piping segments. Many of the piping segments at Cook were designed using span criteria developed in Reference 8. These criteria were intended to ensure that the piping was adequately supported so as to meet the stress limits of the code. For simplicity, the span criteria considered that the longitudinal pressure stress in all segments was bounded by 3,000 psi. Accordingly, for all segments designed using these span criteria, if the longitudinal pressure stress is less than or equal to 3,000 psi during overpressure, then the segment meets the original code requirements for combined longitudinal stress for combined overpressure, seismic and deadweight loads.

The span criteria apply to specified seismic classes, pipe sizes, schedules (40,80 and 160), and materials. Review of the characteristics of the piping segments subject to overpressurization shows that the following segments meet these specifications:

	MPR-2169 Appendix A. 6		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-06	Prepared By thewnc Truxel		dBy	Page 9
NESW segments (14 total) Safety Injection Test Line and Accumulator Fill Line RCP Seal Bypass Line				

Accordingly, these 16 segments are acceptable per the code requirements for longitudinal stresses for combined overpressure seismic and deadweight loads if the longitudinal pressure stress due to overpressure is less than $3,000 \mathrm{psi}$. Longitudinal stress due to overpressure is calculated as follows:

$$
\sigma_{\mathrm{L}, \text { overpressure }}=(\text { Overpressure })\left(\mathrm{d}^{2}\right) /\left(\mathrm{D}_{0}^{2}-\mathrm{d}^{2}\right)
$$

where $D_{0}=$ nominal outside diameter of pipe and $d=$ nominal inside diameter of pipe.
A stress index is calculated for these segments by dividing the total longitudinal stress (overpressure plus max permitted bending due to seismic and deadweight) by the permitted stress as follows:

Stress Index for Longitudinal Stress $=\left[\left(1.8 \mathrm{~S}_{\mathrm{h}}\right)-3,000+\sigma_{\mathrm{L}, \text { overpressure }}\right] /\left[1.8 \mathrm{~S}_{\mathrm{h}}\right]$
The other eight segments contain sections with Schedule 10 piping or materials not covered by the span criteria document. Since longitudinal stresses in these segments due to earthquake and deadweight are not known, acceptability of combined overpressure, seismic and deadweight stresses cannot be determined. For conservatism, these segments will be considered to be unacceptable per the original code for the overpressure load case.

Inputs

From the above, the following inputs are used in this calculation:

- Pressures used are from Reference 1 and are listed in Table 1.
- Pipe material, size and schedule are obtained for most segments by review of the drawings listed in References $9-11$ and the piping specifications. For the sampling lines, tubing geometry and material were obtained from the pipe specification (Reference 3).
- Allowable stress values are listed in Table 2 at the end of Section 3 of this calculation.

	MPR-2169 Appendix A. 6 M		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. 025-065-06	Prepared By M iTanosh		Page 10

Results

Attachment A, Table A-1 is a spreadsheet that calculates the allowable pressure for each segment. Table A-2 calculates the longitudinal stress for each segment and compares that stress to the limit of 3,000 psi for those segments which meet the span criteria document specifications.

Key results are summarized in Table 1 and presented below.

- The 14 NESW segments and CPN-33, 36, 40 and 41 are acceptable for hoop stress and allowable pressure. One or more piping sections in the other segments exceed the permitted hoop stress or pressure; hence, these segments do not meet the code acceptance criteria.
- The 14 NESW segments are acceptable for longitudinal stress due to combined overpressure, seismic and deadweight stresses. CPN-32, CPN-37, the RCP Seal Bypass Line and the sampling lines do not meet the longitudinal stress limit.
- Longitudinal stresses due to seismic and deadweight loads have not been determined for CPN-33, 36, 40 and 41. For conservatism, longitudinal stresses in these segments are considered unacceptable for the combined overpressure, seismic and deadweight case.

	MPR-2169 Appendix A. 6		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. $025-065-06$	Prepared By A ITwunl	s Checked By \qquad	Page 11

3.2 Check of Pipe Compliance with Appendix \mathbb{F} Criteria

This section checks for compliance with the stress acceptance criteria of ASME Code, Section III, Appendix F (Reference 5) for inelastic analysis. Results are compared to Level D service limits to determine acceptability. The analysis method and results are provided below.

Applicability of Appendix F to Cook Thermal Overpressurization Analyses

Use of Appendix F is consistent with the recommendations in Supplement 1 to Generic Letter 96-06. Note that the design code for the evaluated segments is USAS B31.1.0-1967. Table 126.1 of this code references the ASME Boiler and Pressure Vessel Code, although Appendix F was not yet a part of Section III of the ASME Code at that time. The evaluations in this calculation are therefore performed using the 1989 version of the ASME Code, which has been accepted by the USNRC. In addition, material properties from the 1989 version of the ASME Code are used. Design stress intensity and yield strength values from the 1989 ASME Code are compared to the values from the 1968 version (Reference 12) below. Values are selected for $250^{\circ} \mathrm{F}$ from each code for consistency.

Material	Design Stress Intensity (ksi)		Yield Strength (ksi)	
	1968 Code	$\mathbf{1 9 8 9}$ Code	$\mathbf{1 9 6 8}$ Code	1989 Code
A106 Grade B	20.0	20.0	31.45	31.45
SA376 Type 304	19.9	20.0	23.8	23.75
SA312 Type 304	19.9	20.0	23.8	23.75
SA213 Type 316	20.0	20.0	24.6	24.55

This comparison shows that the 1989 edition material properties are comparable to the 1968 edition properties. Accordingly, the 1989 ASME Code version is appropriate to use for this evaluation.

Appendix F Stress Calculation Method

Pressures in the segments cause stresses in the hoop, longitudinal and radial directions. The piping could also be subjected to loads from deadweight, thermal expansion and seismic events, which could result in longitudinal pipe stresses that would either add or subtract from the pressure-induced longitudinal stresses. For Appendix F evaluations (that is, ASME Code Service Level D evaluations), only the primary loads due to deadweight and seismic events need to be considered in addition to the pressure loads. For this analysis, it is conservatively assumed that the longitudinal stresses $\left(\mathrm{S}_{\mathrm{L}}\right)$ from both deadweight and seismic loads are equivalent to the following:

$$
\mathrm{S}_{\mathrm{L}}=1.8\left(\mathrm{~S}_{\mathrm{h}}\right)-\sigma_{\mathrm{L}, \text { design pressure }}
$$

This is a simplification and a conservatism for those segments designed per the span criteria; for those segments, 3,000 psi could be used in the above equation instead of $\sigma_{L \text {, design pressure }}$.

	MPR-2169 Appendix A. 6		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. 025-065-06	Prepared By BeTrush	Checked By Cill	Page 12

where

$$
\sigma_{\mathrm{L}, \text { design ressure }}=(\text { Design pressure })\left(\mathrm{d}^{2}\right) /\left(\mathrm{D}_{0}^{2}-\mathrm{d}^{2}\right)
$$

The deadweight and seismic load stresses are longitudinal stresses and they are also principal stresses. There is also a longitudinal stress due to pressure, which is one-half the hoop stress. Since the deadweight and seismic stresses are bending stresses, acting in tension on one side and compression on the other, the three principal stresses are:

$$
\begin{aligned}
& \mathrm{S}_{1}=\mathrm{Pr} / \mathrm{t} \\
& \mathrm{~S}_{2}=\mathrm{Pr} / 2 \mathrm{t} \pm \mathrm{S}_{\mathrm{L}} \quad \text { where } \mathrm{S}_{\mathrm{L}}=1.8\left(\mathrm{~S}_{\mathrm{h}}\right)-\sigma_{\mathrm{L}, \text { design pressure }} \\
& \mathrm{S}_{3}=-\mathrm{P} / 2
\end{aligned}
$$

The second principal stress has two variations:

$$
\begin{aligned}
& \mathrm{S}_{2+}=\operatorname{Pr} / 2 \mathrm{t}+\mathrm{S}_{\mathrm{L}} \\
& \mathrm{~S}_{2}=\operatorname{Pr} / 2 \mathrm{t}-\mathrm{S}_{\mathrm{L}}
\end{aligned}
$$

The stress intensity is calculated as the maximum of the absolute values of the following stress differences (in accordance with the ASME Code):

$$
\mathrm{SI}=\text { Maximum of } \mid\left(\mathrm{S}_{1}-\mathrm{S}_{2+}+\left|,\left|\left(\mathrm{S}_{1}-\mathrm{S}_{2}\right)\right|,\left|\left(\mathrm{S}_{2+}-\mathrm{S}_{3}\right)\right|,\left|\left(\mathrm{S}_{2-}-\mathrm{S}_{3}\right)\right| \text {, and }\right|\left(\mathrm{S}_{3}-\mathrm{S}_{1}\right) \mid\right.
$$

The acceptance criterion in Section III, Appendix F, paragraph F-1341.2 of the ASME is:

$$
\mathrm{SI}<0.7 \mathrm{~S}_{\mathrm{u}}
$$

where SI is the calculated general primary membrane stress intensity. A stress index is defined as the ratio of the calculated general primary membrane stress intensity to allowable stress, as follows:

Stress Index for Appendix F = SI / (0.7 Su $)$
It should be noted that the plastic analysis method of Appendix F-1340 only requires consideration of primary membrane stresses. The secondary stresses that would be present at branch connections, elbows and valves are not evaluated.

In addition to the stress limit specified in the ASME Code, this analysis places a limit on the calculated strain. Article F-1322.5 of Appendix F states that:
"...in addition to the limits given in this Appendix, the strain or deformation limits (if any) provided in the Design Specification shall be satisfied."

Calculation No. $025-065-06$	Prepared By	Checked By	Page 13

While none of the applicable Design Specifications identify a material strain limit, it is important that calculated strain remains low enough to ensure that failure will not occur. For this analysis, a limit of 5% strain is applied. Based on engineering judgment, none of the piping materials will fail at strains of less than 10%; so the limit of 5% provides a safety factor of two. It should be noted, however, that the primary acceptance criterion used in this analysis is the stress limit specified in Appendix F. The specified strain limit is included only for completeness.

Strain is calculated from the following relationships:

$$
\begin{array}{ll}
e_{p}=\sigma_{h} / E & \text { for } \sigma_{h} \leq S_{y} \\
e_{p}=\left(\sigma_{h}-S_{y}\right) / E_{p}+\epsilon_{y} & \text { for } \sigma_{h}>S_{y}
\end{array}
$$

where

$$
\begin{aligned}
& \sigma_{\mathrm{h}}=\text { hoop stress, } \mathrm{psi} \\
& \mathrm{~S}_{\mathrm{y}}=\text { yield strength, } \mathrm{psi} \\
& \mathrm{E}=\text { elastic modulus, } \mathrm{psi} \\
& \mathrm{E}_{\mathrm{p}}=\text { plastic modulus, psi } \\
& \epsilon_{\mathrm{p}}=\text { plastic strain, in } / \mathrm{in} \\
& \epsilon_{\mathrm{y}}=\text { Pipe yield strain, in } / \mathrm{in}\left(=\mathrm{S}_{\mathrm{y}} / \mathrm{E}\right)
\end{aligned}
$$

Calculation of stress intensity is performed for all pipe segments, not just those that exceed original design code pipe stress acceptance criteria, since this information may be useful in evaluating acceptability of valves for the overpressure conditions.

Inputs

From the above, the following inputs are used in this evaluation:

- Pressures used are listed in Table 1.
- Pipe material, size and schedule are obtained for each segment by review of the drawings listed in References 9-11 and from the piping specification.
- Material property values used are listed in Table 2.

	MPR-2169 Appendix A. $6 \quad$ M		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. 025-065-06	Prepared By M ITraosh		Page 14

Results

Attachment A, Tables A-3 and A-4 contain spreadsheets that calculate the stress index and strain for the peak segment pressure for all segments. Key results are summarized in Table 1. In brief, the calculation shows the following:

- Stresses in the all piping segments meet Appendix F piping stress acceptance criteria with the exception of the sample lines from pressurizer liquid space, hot legs, and accumulators (CPN-66 and 81).
- Strains are less than the 5% acceptance criterion for all segments with the exception of the sample lines from pressurizer liquid space, hot legs, and accumulators (CPN-66 and 81).

Accordingly, with the exception of the sample lines, all segments meet Appendix F criteria.

	MPR-2169 Appendix A. 6			MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-06	$\begin{aligned} & \text { Prepared By } \\ & \text { anowhts } \end{aligned}$				Page 15
Table 2 Material Properties Used in Pipe Stress Evaluation					
Material Property	Material				
	$\begin{gathered} \text { A } 106 \\ \text { Grade B } \end{gathered}$	$\begin{gathered} \text { SA312 } \\ \text { Type } 304 \end{gathered}$	$\begin{gathered} \text { SA376 } \\ \text { Type } 304 \end{gathered}$	SA213 Type 316	$\begin{gathered} \hline \text { ASTM } \\ \text { B75 } \end{gathered}$
B31.1 Allowable Stress (ksi)	$15.0^{(1)}$	$16.05^{(2)}$	$14.88^{(2)}$	$15.35^{(2)}$	$5.125^{(1)}$
Yield Strength, S_{y} (ksi)	$31.45^{(3)}$	$23.75{ }^{(3)}$	$23.75{ }^{(3)}$	$24.55^{(3)}$	Not Used
Tensile Strength, S_{u} (ksi)	$60.0{ }^{(3)}$	$68.5{ }^{(3)}$	$68.5{ }^{(3)}$	$74.2{ }^{(3)}$	Not Used
Elastic Modulus, psi	$28.55 \mathrm{E} 6^{(3)}$	$27.3 \mathrm{E} 6^{(3)}$	$27.3 \mathrm{E} 6^{(3)}$	$27.3 \mathrm{E} 6^{(3)}$	Not Used
Plastic Modulus, psi	Not Used	$425,000^{(4)}$	$425,000^{(4)}$	$450,000^{(5)}$	Not Used

All material properties are for $250^{\circ} \mathrm{F}$, which is judged to be the maximum metal temperature reached at high pressure conditions. References for material properties are as follows:
(1) From USAS B31.1-1967, Tables A-1 and A-2.
(2) Per USAS B31.1-1967, Table A-1, General Note d, value obtained from Section I of ASME code.

Table PG-23 values used from 1968 version of Section I (Reference 13).
(3) Values obtained from 1989 version of ASME Code, Section III Appendices Tables I-2.1, I-2.2, I-3.1, I-3.2, and I-6.0.
(4) From Reference 1, Calculation 025-065-02.
(5) From Reference 1, Calculation 025-065-03.

	MPR-2169 Appendix A.6		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. 025-065-06	Prepared By Ae Anewh	Checked By	Page 16

4.0 REIFERENCES

1. MPR Calculations for Segment Pressures

- MPR Calculation 025-065-01, "Determination of Peak Pressures in D.C. Cook Unit 1 Piping Segments Isolated by Air Operated Diaphragm Valves," Revision 0.
- MPR Calculation 025-065-02, "Determination of Peak Pressures in D.C. Cook Unit 1 Piping Segments Isolated by Air Operated Globe Valves," Revision 0.
- MPR Calculation 025-065-03, "Determination of Peak Pressures in D.C. Cook Unit 1 Nuclear Sampling Lines," Revision 0.
- MPR Calculation 025-065-05, "Determination of Peak Pressure in D.C. Cook Unit 1 RCP Seal Water Line (CPN-37)," Revision 0.

2. D.C. Cook Piping Specification ES-PIPE-1000-QCS, Rev 1, "Pipe Material Specification: Non-Safety Related."
3. D.C. Cook Piping Specification ES-PIPE-1013-QCN-CS3, Rev 1, "Pipe Material Specification: Safety Related."
4. USAS B31.1.0-1967, Power Piping.
5. 1989 ASME Code, Section III, Division 1 - Appendix F.
6. Generic Letter 96-06, Supplement 1 "Assurance of Equipment Operability and Containment Integrity During Design-Basis Accident Conditions," November 13, 1997.
7. Donald C. Cook Nuclear Plant Updated FSAR, Section 2, Revision 16.
8. Alternate Piping Analysis Criteria for Earthquake and Gravity Loads for Donald C. Cook Nuclear Plant, Indiana and Michigan Electric Company, American Electric Power System, New York, September 1971.
9. Drawings of Piping Segments used in Calculation:

NESW Segments
OP-1-5114A-24
OP-12-5152M-6.
NESW UPPER 1
1-NSW-54, Sheet 2, Revision 6
1-NSW-68, Sheet 2, Revision 6
1-NSW-68, Sheet 1, Revision 2
1-NSW-72, Sheet 2, Revision 6
1-NSW-72, Sheet 1, Revision 4
1-NSW-60, Revision 7

	MPR-2169 Appendix A. 6 M		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. 025-065-06	Prepared By M UIsomels		Page 17

NESW - UPPER 2
1-NSW-39, Sheet 2, Revision 7 1-NSW-67, Sheet 1, Revision 3
1-NSW-67, Sheet 2, Revision 6 1-NSW-71, Sheet 1, Revision 5
1-NSW-71, Sheet 2, Revision 4 1-NSW-44, Revision 6
NESW - UPPER 3
1-NSW-42, Sheet 2, Revision 8
1-NSW-66, Sheet 2, Revision 7
1-NSW-70, Sheet 2, Revision 5
1-NSW-66, Sheet 1, Revision 4 1-NSW-70, Sheet 1, Revision 5
1-NSW-47, Revision 4

NESW - UPPER 4
1-NSW-57, Sheet 2, Revision 6
1-NSW-65, Sheet 2, Revision 7
1-NSW-69, Sheet 2, Revision 6
1-NSW-63, Sheet 2, Revision 3
1-NSW-65, Sheet 1, Revision 3
1-NSW-69, Sheet 1, Revision 4
1-NSW-63, Sheet 1, Revision 1

NESW - LOWER 1
1-NSW-55, Sheet 2, Revision 5
1-NSW-182, Revision 4
1-NSW-178, Revision 4
1-NSW-59, Sheet 1, Revision 4

NESW - LOWER 2
1-NSW-37, Sheet 2, Revision 5
1-NSW-183, Revision 4
1-NSW-179, Revision 4
1-NSW-45, Revision 5
NESW - LOWER 3
1-NSW-38, Sheet 2, Revision 7
1-NSW-184, Revision 5
1-NSW-180, Revision 4
1-NSW-46, Revision 6
NESW - LOWER 4
1-NSW-58, Sheet 2, Revision 5
1-NSW-185, Revision 4
1-NSW-181, Revision 4
1-NSW-62, Sheet 1, Revision 4
NESW - RCP1
1-NSW-53, Sheet 2, Revision 6
1-NSW-76, Sheet 2, Revision 2
1-NSW-76, Sheet 1, Revision 3
1-NSW-80, Sheet 1, Revision 1
1-NSW-61, Sheet 1, Revision 2
NESW - RCP 2
1-NSW-40, Sheet 2, Revision 5 1-NSW-75, Sheet 1, Revision 4
1-NSW-75, Sheet 2, Revision 2 1-NSW-79, Sheet 1, Revision 1

	MPR-2169 Appendix A. 6			MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-06		Prepared By \qquad			Page 19
		1-PW-557-L3.5, Revision 1 1-PW-558-L1.5, Revision 0 12-PW-4, Revision 3			

CPN-36, Demin Water Supply
OP-12-5115D-22 0-DW-500L1.4a, Revision 3
1-DW-541L1.4, Revision 1 1-DW-541L5.7, Revision 2
1-DW-541L8.10, Revision 3 1-DW-541L11.15, Revision 3
CPN-37, RCP Seal Water Supply
OP-1-5129A-28 1-CS-42, Revision 12
1-CS-93, Revision 7
CPN-40, RX Coolent Drain Tank Pump Suction

OP-12-5137A-18
1-WD-36, Revision 2
1-WD-661L1.7, Revision 0
1-WD-807.L1.2, Revision 0

OP-1-5128A-42
1-WD-37, Revision 4
1-WD-66, Revision 1
12-WD-3, Revision 7

CPN-41, Containment Sump Pump Discharge

OP-1-5124-22
1-DR-193, Revision 3
1-DR-519-L-1.3, Revision 2
1-DR-521-L1, Revision 1
1-DR-523-L1, Revision 1
1-DR-523-L5.8, Revision 1
1-DR-523-L12, Revision 0

OP-12-5123B-21
-1-DR-224, Revision 2
1-DR-520-L1, Revision 1
1-DR-522-L1, Revision 1
1-DR-523-L2.4, Revision 0
1-DR-523-L9.11, Revision 0
1-DR-524-L1, Revision 1

CPN-66 and 81, Sampling Lines
1-5141-37
Drawings of RCP Seal Bypass
OP-1-5128A-42
1-CS-766-L2, Revision 1
1-CS-766L5.7, Revision 0
1-CS-771-L1, Revision 1
1-CS-771-L5.6, Revision 0
1-CS-773L1, Revision 1
1-CS-773-L5.11, Revision 1
1-CS-775L1.5, Revision 4
1-CS-775L11.12B, Revision 1
1-CS-766-L1, Revision 0
1-CS-766-L3.4, Revision 1
1-CS-766-L8.11, Revision 1
1-CS-771-L2.4, Revision 2
1-CS-771-L7.10, Revision 1
1-CS-73-L2.4, Revision 2
1-CS-775L1A.1B, Revision 1
1-CS-775L6.10, Revision 1
1-CS-775L13, Revision 1

	MPR-2169 Appendix A. 6		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
Calculation No. 025-065-06	Prepared By Norrumh	Checked By	Page 20
1-CS-775L14.15, Revision 1 1-CS-775L16.21, Revision 1			

10. Containment Penetration Drawings:

1-5336-5, "Containment Unit 1 Piping Penetration Schedule Containment Wall" 1-5337-14, "Containment Unit 1 Piping Penetration Schedule Containment Wall"
11. NESW Heat Exchanger Drawings

American Air Filter Company Drawing MC-129-492F, "4-Row Water Coil."
American Air Filter Company Drawing MC-129-493F, "4-Row Water Coil."
American Air Filter Company Drawing 910349, "Coil Assembly, Cooling (Donald C. Cook Nuclear Plant)."
12. 1968 ASME Code, Section III.
13. 1968 ASME Code, Section I.
14. Crane Technical Paper 410, 1991.

Spreadsheets for Piping Stress Evaluation

Table A-1:
Allowable Pressure and Hoop Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	$\begin{array}{\|c\|} \text { Nominal } \\ \text { Pipe } \\ \text { Size } \\ \text { (inch) } \end{array}$	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	\qquad	$\stackrel{A}{\text { (inch) }}$	Allowable Pressure (psig)	Allowable Pressure Greater than Maximum Pressure?	Primary Hoop Stress Due to Over Pressure (psi)	Stcess Index for Hoop Stress
See Note:		1	2	2	2	3	4	5	6	7	6	8	8		8	8
NESW Cooling for Lower Containment Ventilation Units (4 segments)	Multiple	215	$\begin{array}{c\|} \hline \text { A106 } \\ \text { Gr B__ } \end{array}$	6	40	0.280	6.625	6.065	125	15,000	150	0.000	1,575	YES	2,329	0.13
		215	$\begin{gathered} \text { A106 } \\ \text { Gr B } \end{gathered}$	4	40	0.237	4.5	4.026	125	15,000	150	0.000	1,979	YES	1,826	0.10
		215	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	2.5	40	0.203	2.875	2.469	125	15,000	150	0.065	1,797	YES	1.307	0.07
		215	$\begin{gathered} \mathrm{A} 106 \\ \mathrm{GrB} \end{gathered}$	1	80	0.179	1.315	0.957	125	15,000	150	0.065	3,353	YES	575	0.03
		215	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	15,000	150	0.065	3.812	YES	399	0.02
		215	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	6	405	0.280	6.625	6.065	125	16,050	150	0.000	1,685	YES	2.329	0.12
		215	$\begin{array}{l\|} \hline \text { SA312 } \\ \text { TP304 } \end{array}$	0.5	$40 S$	0.109	0.84	0.622	125	16,050	150	0.065	2,106	YES	613	0.03
		215	$\begin{gathered} \hline \text { ASTM } \\ \text { B75 } \end{gathered}$	0.625	--	0.035	0.625	0.555	125	5,125	150	0.000	721	YES	1,705	0.28
NESW Cooling for Upper Containment Ventilation Units (4 segments)	Multiple	711	$\begin{gathered} \text { A106 } \\ \text { GrB } \end{gathered}$	3	40	0.216	3.5	3.068	125	15,000	150	0.065	1,609	YES	5,049	0.28
		711	$\begin{aligned} & \text { A106 } \\ & \text { GrB } \end{aligned}$	2	80	0.218	2.375	1.939	125	15,000	150	0.065	2,445	YES	3,162	0.18
		711	$\begin{aligned} & \text { A106 } \\ & \text { GrB } \end{aligned}$	1.5	80	0.200	1.9	1.500	125	15,000	150	0.065	2,712	YES	2,666	0.15
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	1	80	0.179	1.315	0.957	125	15,000	150	0.065	3,353	YES	1,901	0.11
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	15,000	150	0.065	3,812	YES	1,320	0.07
		711	SA312 TP304	3	$40 S$	0.216	3.5	3.068	125	16,050	150	0.065	1,721	YES	5,049	0.26
		711	SA312 TP304	0.5	405	0.109	0.84	0.622	125	16,050	150	0.065	2,106	YES	2,029	0.11
		711	$\begin{gathered} \text { ASTM } \\ \text { B75 } \end{gathered}$	0.625	--	0.035	0.625	0.555	125	5,125	150	0.000	721	YES	5,637	0.92

Table A-1:
Allowable Pressure and Hoop Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Design Temperature $\left({ }^{\circ} \mathrm{F}\right)$	A (inch)	Allowable Pressure (psig)	Allowable Pressure Greater than Maximum Pressure?	Primary Hoop Stress Due to Over Pressure (psi)	Stress Index for Hoop Stress
See Note:		1	2	2	2	3	4	5	6	7	6	8	8		8	8
NESW Cooling for RCP Motor Air Coolers (4 segments)	Muitiple	711	$\begin{gathered} \text { A106 } \\ \text { Gr B } \end{gathered}$	3	40	0.216	3.5	3.068	125	15,000	150	0.065	1.609	YES	5,049	0.28
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	2.5	40	0.203	2.875	2.469	125	15,000	150	0.065	1,797	YES	4,324	0.24
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	1	80	0.179	1.315	0.957	125	15,000	150	0.065	3,353	YES	1,901	0.14
		711	$\begin{aligned} & \hline \text { A106 } \\ & \text { Gr B } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	15,000	150	0.065	3,812	YES	1,320	0.07
		711	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	3	40 S	0.216	3.5	3.068	125	16,050	150	0.065	1,721	YES	5,049	0.26
		711	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.5	40 S	0.109	0.84	0.622	125	16,050	150	0.065	2.106	YES	2,029	0.11
		711	$\begin{gathered} \text { ASTM } \\ \text { B75 } \end{gathered}$	0.625	-	0.035	0.625	0.555	125	5,125	150	0.000	721	YES	5,637	0.92
NESW Cooling for Instrumentation Room Ventilation Units (2 segments)	Multiple	325	$\begin{gathered} \text { A106 } \\ \text { Gr B } \end{gathered}$	3	40	0.216	3.5	3.068	125	15,000	150	0.065	1,609	YES	2,308	0.13
		325	$\begin{aligned} & \text { A106 } \\ & \text { GrB } \end{aligned}$	2.5	40	0.203	2.875	2.469	125	15,000	150	0.065	1.797	YES	1.976	0.11
		325	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	2	80	0.218	2.375	1.939	125	15,000	150	0.065	2,445	YES	1,445	0.08
		325	$\begin{aligned} & \text { A106 } \\ & \text { GrB } \end{aligned}$	1.5	80	0.200	1.9	1.500	125	15,000	150	0.065	2,712	YES	1.219	0.07
		325	$\begin{aligned} & \hline \text { A106 } \\ & \text { Gr B } \\ & \hline \end{aligned}$	1	80	0.179	1.315	0.957	125	15,000	150	0.065	3,353	YES	869	0.05
		325	$\begin{aligned} & \text { A108 } \\ & \text { Gr B } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	15,000	150	0.065	3,812	YES	604	0.03
		325	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \end{aligned}$	2	40	0.154	2.375	2.067	125	16,050	150	0.065	1,488	YES	2,181	0.11
		325	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	16,050	150	0.065	4,079	YES	604	0.03
		325	$\begin{gathered} \text { ASTM } \\ \text { B75 } \\ \hline \end{gathered}$	0.625	--	0.035	0.625	0.555	125	5,125	150	0.000	721	YES	2,577	0.42

Table A-1:
Allowable Pressure and Hoop Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	\qquad	A (inch)	Allowable Pressure (psig)	Allowable Pressure Greater than Maximum Pressure?	Primary Hoop Stress Due to Over Pressure (psi)	Stress Index for Hoop Stress
See Note:		1	2	2	2	3	4	5	6	7	6	8	8		8	8
Accumulator Fill Line	32	15,310	$\begin{aligned} & \hline \text { SA376 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	1	160	0.250	1.315	0.815	1750	14,880	120	0.065	5,661	NO	24,955	1.40
		15,310	$\begin{aligned} & \hline \text { SA376 } \\ & \text { TP304. } \\ & \hline \end{aligned}$	0.75	160.-	0.219	1.05	0.612	1750	14,880	120	0.065	5,934	NO	21,392	1.20
Primary Water Supply to RCPs and PRT	33	212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	3:	$10 S^{-}$	0.120	3.5	3.260	136	16,050	100	0.065	613	YES	2,880	0.15
		212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	2.5	10S	0.120	2.875	2.635	136	16,050	100	0.065	748	YES	2,328	0.12
		212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	1.	403 ${ }^{\text {- }}$	0.133	1.315	1.049	136	16,050	100	0.065	2,078	YES	836	0.04
		212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.75	$40 S$	0.113	1.05	0.824	136	16,050	100	0.065	1,828	YES	773	0.04
		212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.5:	40 S	0.109	0.84	0.622	100	16,050	340	0.065	2,106	YES	605	0.03
Demineralized Water Supply to Refueling Cavity Scrub Down Hose Connections	36	325	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	3	10S	0.120	3.5	3.260	156	16,050	100	0.065	613	YES	4.415	0.23
		325	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	2	40S:	0.154	2.375	2.067	156	16,050	100	0.065	1,488	YES	2,181	0.11
		325	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	1	405.	0.133	1.315	1.049	156	16,050	100	0.065	2,078	YES	1,282	0.07

Table A-1:
Allowable Pressure and Hoop Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	$\begin{gathered} \text { Inside } \\ \text { Diameter } \\ \text { (inch) } \end{gathered}$	Design Pressure (psig)	Design Allowable Stress (psi)	\qquad	$\begin{gathered} A \\ \text { (inch) } \end{gathered}$	Allowable Pressure (psig)	Allowable Pressure Greater than Maximum Pressure?	Primary Hoop Stress Due to Over Pressure (psi)	Stress Index for Hoop Stress
See Note:		1	2	2	2	3	4	5	6	7	6	8	8		8	8
RCP Seal Water Line	37	1,800	SA312 TP304	4.	10 S	0.120	4.5	4.260	150	16,050	200	0.000	1,050	NO	31,950	1.66
		1,800	SA312 TP304	1.	40 S	0.133	1.315	1.049	150	16,050	200	0.065	2,078	YES	7,098	0.37
Reacor Coolant Drain Tank Pump Suction	40	262	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	$4 \cdots$	10 S	0.120	4.5	4.260	100	16,050	340	0.000	1,050	YES	4,651	0.24
		262	SA312 TP304	$2{ }^{\prime}$	40 S	0.154	2.375	2.067	100	16,050	340	0.065	1,488	YES	1,758	0.09
		262	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	1.	40S -	0.133	1.315	1.049	100	16,050	340	0.065	2,078	YES	1,033	0.05
		262	SA312 TP304	0.75	40 S	0.113	1.05	0.824	100	16,050	340	0.065	1,828	YES	955	0.05
Containment Sump Pump Discharge	41	212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	3	10S	0.120	3.5	3.260	60	16,050	160	0.065	613	YES	2,880	0.15
		212	SA312 TP304	2	$40 S$	0.154	2.375	2.067	60	16,050	160	0.065	1,488	YES	1.423	0.07
		212	SA312 TP304	1 -	405	0.133	1.315	1.049	60	16,050	160	0.065	2,078	YES	836	0.04
Sample Line From Pressurizer Liquid Space	66	17,800	SA213 TP316	0.5	--	0.065	0.5	0.370	2485	15,350	680	0.000	5,345	NO	50,662	2.75
Sample Line From Accumulators	81	17,400	$\begin{aligned} & \text { SA213 } \\ & \text { TP316 } \end{aligned}$	0.5	-	0.065	0.5	0.370	600	15,350	400	0.000	5,345	NO	49,523	2.69
Sample Line From Hot Legs	66	17,800	$\begin{aligned} & \text { SA213 } \\ & \text { TP316 } \end{aligned}$	0.5	-	0.065	0.5	0.370	2485	15,350	650	0.000	5,345	NO	50,662	2.75
RCP Seal Bypass Line	N/A	16.940	$\begin{aligned} & \text { SA376 } \\ & \text { TP304 } \end{aligned}$	1	160	0.250	1.315	0.815	2735	14,880	200	0.065	5,661	NO	27,612	1.55
		16,940	$\begin{aligned} & \hline \text { SA376 } \\ & \text { TP304 } \end{aligned}$	0.75	160	0.219	1.05	0.612	2735	14,880	200	0.065	5,934	NO	23,670	1.33

Table A-2:
Longitudinal Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Design Pressure Longitudinal Stress (psi)	OverPressure Longitudinal Stress (psi)	Max Permitted Longitudinal Stresses (psi)	Stress Index for Longitudinal Stress
See Note:		1	2	2	2	3	4	5	6	7	8	8	8	8
NESW Cooling for Lower Containment Ventilation Units (4 segments)	Multiple	215	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	6	40	0.280	6.625	6.065	125	15,000	647	1,113	3,000	0.93
		215	$\begin{aligned} & \hline \text { A106 } \\ & \text { Gr B } \end{aligned}$	4	40	0.237	4.5	4.026	125	15,000	501	862	3,000	0.92
		215	$\begin{gathered} \text { A106 } \\ \text { Gr B } \end{gathered}$	2.5.	40.	0.203	2.875	2.469	125	15,000	351	604	3,000	0.91
		215	$\begin{gathered} \text { A106 } \\ \text { GrB } \end{gathered}$	1	80	0.179	1.315	0.957	125	15,000	141	242	3.000	0.90
		215	$\begin{gathered} \text { A106 } \\ \text { Gr B } \end{gathered}$	0.5	80	0.147	0.84	0.546	125	15,000	91	157	3,000	0.89
		215	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	6	$40 S$	0.280	6.625	6.065	125	16,050	647	1,113	3.000	0.93
		215	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	0.5	40 S	0.109	0.84	0.622	125	16,050	152	261	3,000	0.91
		215	$\begin{gathered} \hline \text { ASTM } \\ \text { B75 } \\ \hline \end{gathered}$	0.625	-	0.035	0.625	0.555	125	5,125	466	802	-	N/A
NESW Cooling for Upper Containment Ventilation Units (4 segments)	Multiple	711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \\ & \hline \end{aligned}$	3	$40 \cdot$	0.216	3.5	3.068	125	15,000	415	2,359	3.000	0.98
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	2	80.	0.218	2.375	1.939	125	15,000	250	1.421	3,000	0.94
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	1.5	80	0.200	1.9	1.500	125	15,000	207	1,176	3,000	0.93
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	1	80.	0.179	1.315	0.957	125	15,000	141	801	3,000	0.92
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	15,000	91	520	3,000	0.91
		711	SA312 TP304	3.	40 S	0.216	3.5	3.068	125	16,050	415	2,359	3,000	0.98
		711	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.5	40S	0.109	0.84	0.622	125	16,050	152	863	3,000	0.93
		711	$\begin{gathered} \text { ASTM } \\ \text { B75 } \\ \hline \end{gathered}$	0.625	-	0.035	0.625	0.555	125	5,125	466	2,651	-	N/A

Table A-2:
Longitudinal Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Design Pressure Longitudinal Stress (psi)	Over- Pressure Longitudinal Stress (psi)	Max Permitted Longitudinal Stresses (psi)	Stress Index for Longitudinal Stress
See Note:		1	2	2	2	3	4	5	6	7	8	8	8	8
NESW Cooling for RCP Motor Air Coolers (4 segments)	Multiple	711	$\begin{aligned} & \hline \text { A106 } \\ & \text { GrB. } \end{aligned}$	3	40	0.216	3.5	3.068	125	15,000	415	2,359	3,000	0.98
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	2.5	40 .	0.203	2.875	2.469	125	15,000	351	1,998	3,000	0.96
		711	$\begin{aligned} & \hline \text { A106 } \\ & \text { GrB } \end{aligned}$	1	$80 \cdot$	0.179	1.315	0.957	125	15,000	141	801	3,000	0.92
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	15,000	91	520	3,000	0.91
		711	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	3	40S-	0.216	3.5	$3.068{ }^{\circ}$	125	16,050	415	2,359	3,000	0.98
		711	SA312 TP304	0.5	405	0.109	0.84	0.622	125	16,050	152	863	3,000	0.93
		711	$\begin{gathered} \hline \text { ASTM } \\ \text { B75 } \end{gathered}$	0.625	\cdots	0.035	0.625	0.555	125	5,125	466	2,651	-	N/A
NESW Cooling for Instrumentation Room Ventilation Units (2 segments)	Multiple	325	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	3	40	0.216	3.5	3.068	125	15,000	415	1,078	3,000	0.93
		325	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	2.5	40	0.203	2.875	2.469	125	15,000	351	913	3,000	0.92
		325	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	2	80	0.218	2.375	1.939	125	15,000	250	650	3,000	0.91
		325	$\begin{aligned} & \text { A106 } \\ & \text { GrB } \end{aligned}$	1.5	80	0.200	1.9	1.500	125	15,000	207	538	3,000	0.91
		325	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	1	80	0.179	1.315	0.957	125	15,000	141	366	3,000	0.90
		325	$\begin{gathered} \text { A106 } \\ \text { Gr B } \\ \hline \end{gathered}$	0.5	80	0.147	0.84	0.546	125	15,000	91	238	3,000	0.90
		325	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	2	40	0.154	2.375	2.067	125	16,050	390	1,015	3,000	0.93
		325	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	16,050	91	238	3,000	0.90
		325	$\begin{gathered} \text { ASTM } \\ \text { B75 } \end{gathered}$	0.625	-	0.035	0.625	0.555	125	5,125	466	1,212	-	N/A

Table A-2:
Longitudinal Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	$\left\|\begin{array}{c} \text { Pipe } \\ \text { Schedule } \end{array}\right\|$	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Design Pressure Longitudinal Stress (psi)	OverPressure Longitudinal Stress (psi)	Max Permitted Longitudinal Stresses (psi)	Stress Index for Longitudinal Stress
See Note:		1	2	2	2	3	4	5	6	7	8	8	8	8
Accumulator Fill Line	32	15,310	$\begin{aligned} & \hline \text { SA376 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	1	160	0.250	1.315	0.815	1750	14,880	1.091	9,549	3,000	1.24
		15,310	$\begin{aligned} & \hline \text { SA376 } \\ & \text { TP304 } \end{aligned}$	0.75	160	0.219	1.05	0.612	1750	14,880	900	7,877	3,000	1.18
Primary WaterSupply to RCPs and PRT	33	212	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \end{aligned}$	3	10 S	0.120	3.5	3.260	136	16,050	891	1,389	-	N/A
		212	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	2.5	10S	0.120	2.875	2.635	136	16,050	714	1,113	-	N/A
		212	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \end{aligned}$	1	40 S	0.133	1.315	1.049	136	16,050	238	371	-	N/A
		212	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.75	$40 S$	0.113	1.05	0.824	136	16.050	218	340	-	N/A
		212	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.5	40 S	0.109	0.84	0.622	100	16,050	121	257	-	N/A
Demineralized Water Supply to	36	325	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \end{aligned}$	3	105	0.120	3.5	3.260	156	16,050	1,022	2,129	-	N/A
Refueling Cavity Scrub		325	$\begin{array}{\|l\|} \hline \text { SA312 } \\ \text { TP304 } \\ \hline \end{array}$	2	40 S	0.154	2.375	2.067	156	16,050	487	1,015	-	N/A
Down Hose Connections		325	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	1	405	0.133	1.315	1.049	156	16,050	273	569	-	N/A

Table A-2:
Longitudinal Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Design Pressure Longitudinal Stress (psi)	OverPressure Longitudinal Stress (psi)	Max Permitted Longitudinal Stresses (psi)	Stress Index for Longitudinal Stress
See Note:		1	2	2	2	3	4	5	6	7	8	8	8	8
RCP Seal Water Line	37	1,800	SA312 TP304	4	10 S	0.120	4.5	4.260	150	16,050	1,295	15,537	-	N/A
		1,800	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	1	403	0.133	1.315	1.049	150	16,050	262	3,150	. -	N/A
Reacor Coolant Drain Tank Pump Suction	40	262	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	4	10 S	0.120	4.5	4.260	100	16,050	863	2,262	-	N/A
		262	SA312 TP304	2	40 S	0.154	2.375	2.067	100	16,050	312	818	-	N/A
		262	SA312 TP304	1	40 S	0.133	1.315	1.049	100	16,050	175	458	-	N/A
		262	SA312 TP304	0.75	40 S	0.113	1.05	0.824	100	16,050	160	420	-	N/A
Containment Sump Pump Discharge	41	212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	3	10S	0.120	3.5	3.260	60	16,050	393	1,389	-	N/A
		212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	2	$40 S$	0.154	2.375	2.067	60	16,050	187	662	-	N/A
		212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	1	40S	0.133	1.315	1.049	60	16,050	105	371	-	N/A
Sample Line From Pressurizer Liquid Space	66	17,800	$\begin{aligned} & \text { SA213 } \\ & \text { TP316 } \end{aligned}$	0.5	--	0.065	0.5	0.370	2485	15,350	3,008	21,546	-	N/A
Sample Line From Accumulators	81	17,400	$\begin{aligned} & \text { SA213 } \\ & \text { TP316 } \end{aligned}$	0.5	--	0.065	0.5	0.370	600	15,350	726	21,062	-	N/A
Sample Line From Hot Legs	66	17,800	SA213 TP316	0.5	--	0.065	0.5	0.370	2485	15,350	3,008	21,546	-	N/A
RCP Seal Bypass Line	N/A	16,940	$\begin{aligned} & \text { SA376 } \\ & \text { TP304 } \end{aligned}$	1	160	0.250	1.315	0.815	2735	14,880	1,706	10,565	3,000	1.28
		16,940	$\begin{aligned} & \text { SA376 } \\ & \text { TP304 } \end{aligned}$	0.75	160	0.219	1.05	0.612	2735	14,880	1,407	8,716	3,000	1.21

MPR-2 $70 y$ Appendix A. 6
Calculation 025-065-06
Attachment A

Prepared by: R R Pecoselt
Checked by:
Table A-3:
Appendix F Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	$\left\lvert\, \begin{gathered} \text { Nominal } \\ \text { Pipe } \\ \text { Size } \\ \text { (inch) } \end{gathered}\right.$	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Max Bending Stress Due to DW + Seismic, Pb (psi)	$\begin{gathered} \mathrm{Su} \\ (\mathrm{psi}) \end{gathered}$	$\begin{gathered} \mathrm{S} 1 \\ (\mathrm{psi}) \end{gathered}$	$\begin{aligned} & \mathrm{S} 2+ \\ & \text { (psi) } \end{aligned}$	$\begin{aligned} & \text { S2- } \\ & \text { (psi) } \end{aligned}$	$\begin{gathered} \text { S3 } \\ \text { (psi) } \end{gathered}$	$\begin{gathered} \mathrm{Sl} \\ (\mathrm{psi}) \end{gathered}$	$\begin{aligned} & 0.7 \mathrm{Su} \\ & (\mathrm{psi}) \end{aligned}$	Apendix F Stress Index
See Note:		1	2	2	2	3	4	5	6	7	9	7	9	9	9	9	9	9	9
NESW Cooling for Lower Containment Ventilation Units (4 segments)	Multiple	215	$\begin{aligned} & \hline \text { A106 } \\ & \text { Gr B } \end{aligned}$	6	40	0.280	6.625	6.065	125	15,000	26,353	60,000	2,329	27,517	-25,189	-108	27,625	42,000	0.66
		215	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	4	40	0.237	4.5	4.026	125	15,000	26,499	60,000	1,826	27,412	-25,586	-108	27,519	42,000	0.66
		215	$\begin{gathered} \text { A106 } \\ \text { Gr B } \end{gathered}$	2.5	40	0.203	2.875	2.469	125	15,000	26,396	60,000	1,307	27,050	-25,742	-108	27,157	42,000	0.65
		215	$\begin{aligned} & \hline \text { A106 } \\ & \text { Gr B } \end{aligned}$	1	80	0.179	1.315	0.957	125	15,000	26,859	60,000	575	27,147	-26,572	-108	27,254	42,000	0.65
		215	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	15,000	26,909	60,000	399	27,108	-26,709	-108	27,216	42,000	0.65
		215	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	6	405	0.280	6.625	6.065	125	16,050	28,243	68,500	2,329	29,407	-27,079	-108	29,515	47,950	0.62
		215	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.5	405	0.109	0.84	0.622	125	16,050	28,738	68,500	613	29,045	-28,432	-108	29,152	47,950	0.61
		215	$\begin{gathered} \text { ASTM } \\ \text { B75 } \\ \hline \end{gathered}$	0.625	--	0.035	0.625	0.555	125	5,125	8,759	-	\cdots	--	-	--	--	--	--
NESW Cooling for Upper Containment Ventilation Units (4 segments)	Multiple	711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	3	40	0.216	3.5	3.068	125	15,000	26,585	60,000	5,049	29,110	-24,061	-356	29,466	42,000	0.70
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	2	80	0.218	2.375	1.939	125	15,000	26,750	60,000	3,162	28,331	-25,169	-356	28,687	42,000	0.68
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	1.5	80	0.200	1.9	1.500	125	15,000	26.793	60,000	2,666	28,126	-25,460	-356	28,482	42,000	0.68
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	1	80	0.179	1.315	0.957	125	15,000	26.859	60,000	1,901	27,810	-25.909	-356	28,165	42,000	0.67
		711	$\begin{gathered} \text { A106 } \\ \text { Gr B } \end{gathered}$	0.5	80	0.147	0.84	0.546	125	15,000	26,909	60,000	1,320	27.569	-26,248	-356	27,924	42,000	0.66
		711	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	3	40S	0.216	3.5	3.068	125	16,050	28,475	68,500	5,049	31,000	-25,951	-356	31,356	47,950	0.65
		711	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.5	$40 S$	0.109	0.84	0.622	125	16,050	28,738	68,500	2,029	29,753	-27,724	-356	30,108	47,950	0.63
		711	$\begin{gathered} \text { ASTM } \\ \text { B75 } \end{gathered}$	0.625	-	0.035	0.625	0.555.	125	5.125	8,759	-	--	--	-	--	--	-	--

Table A-3:
Appendix F Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Max Bending Stress Due to DW + Seismic. Pb (psi)	$\begin{gathered} \mathrm{Su} \\ (\mathrm{psi}) \end{gathered}$	$\begin{gathered} \mathrm{S} 1 \\ (\mathrm{psi}) \end{gathered}$	$\begin{aligned} & \mathrm{S} 2+ \\ & \text { (psi) } \end{aligned}$	$\begin{aligned} & \mathrm{S} 2- \\ & \text { (psi) } \end{aligned}$	$\begin{gathered} \text { S3 } \\ \text { (psi) } \end{gathered}$	$\underset{(\mathrm{psi})}{\mathrm{SI}}$	$\begin{aligned} & 0.7 \mathrm{Su} \\ & (\mathrm{psi}) \end{aligned}$	Apendix F Stress Index
See Note:		1	2	2	2	3	4	5	6	7	9	7	9	9	9	9	9	9	9
NESW Cooling for RCP Motor Air Coolers (4 segments)	Multiple	711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	3	40	0.216	3.5	3.068	125	15,000	26,585	60,000	5,049	29,110	-24,061	-356	29.466	42,000	0.70
		711	$\begin{gathered} \hline \text { A106 } \\ \text { Gr B } \end{gathered}$	2.5	40	0.203	2.875	2.469	125	15,000	26,649	60,000	4,324	28,811	-24,487	-356	29,166	42,000	0.69
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	1	80	0.179	1.315	0.957	125	15,000	26,859	60,000	1,901	27.810	-25,909	-356	28,165	42,000	0.67
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	15,000	26,909	60,000	1,320	27,569	-26,248	-356	27,924	42,000	0.66
		711	$\begin{array}{\|l\|} \hline \text { SA312 } \\ \text { TP304 } \\ \hline \end{array}$	3	40S	0.216	3.5	3.068	125	16,050	28.475	68,500	5,049	31,000	-25,951	-356	31,356	47,950	0.65
		711	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	0.5	405	0.109	0.84	0.622	125	16,050	28,738	68,500	2,029	29,753	-27,724	-356	30,108	47,950	0.63
		711	$\begin{gathered} \text { ASTM } \\ \text { B75 } \end{gathered}$	0.625	-	0.035	0.625	0.555	125	5,125	8,759	--	-	--	\cdots	--	-	-	--
NESW Cooling for Instrumentation Room Ventilation Units (2 segments)	Multiple	325	$\begin{gathered} \text { A106 } \\ \text { Gr B } \end{gathered}$	3	40	0.216	3.5	3.068	125	15.000	26,585	60,000	2.308	27.739	-25,431	-163	27,902	42,000	0.66
		325	$\begin{aligned} & \hline \text { A106 } \\ & \text { Gr B } \\ & \hline \end{aligned}$	2.5	40	0.203	2.875	2.469	125	15,000	26,649	60,000	1,976	27,637	-25,661	-163	27,800	42,000	0.66
		325	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	2	80	0.218	2.375	1.939	125	15,000	26,750	60,000	1.445	27.473	-26,027	-163	27,635	42,000	0.66
		325	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	1.5	80	0.200	1.9	1.500	125	15,000	26,793	60,000	1,219	27,403	-26,184	-163	27.565	42,000	0.66
		325	$\begin{aligned} & \text { A106 } \\ & \text { GrB } \end{aligned}$	1	80	0.179	1.315	0.957	125	15,000	26,859	60,000	869	27,294	-26,425	-163	27,456	42,000	0.65
		325	$\begin{aligned} & \text { A106 } \\ & \text { GrB } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	15,000	26,909	60,000	604	27,210	-26,607	-163	27,373	42,000	0.65
		325	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	2	40	0.154	2.375	2.067	125	16,050	28,500	68,500	2,181	29,590	-27,409	-163	29,753	47,950	0.62
		325	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	16,050	28.799	68,500	604	29,100	-28,497	-163	29,263	47,950	0.61
		325	$\begin{gathered} \text { ASTM } \\ \text { B75 } \end{gathered}$	0.625	-	0.035	0.625	0.555	125	5,125	8,759	-	-	-	--	--	--	--	--

Table A-3:
Appendix F Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	$\left\|\begin{array}{c} \text { Pipe } \\ \text { Material } \end{array}\right\|$	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Max Bending Stress Due to DW + Seismic, Pb (psi)	$\begin{gathered} \mathrm{Su} \\ (\mathrm{psi}) \end{gathered}$	$\begin{gathered} \mathrm{S} 1 \\ (\mathrm{psi}) \end{gathered}$	$\begin{aligned} & \mathrm{S} 2+ \\ & (\mathrm{psi}) \end{aligned}$	$\begin{aligned} & \text { S2- } \\ & \text { (psi) } \end{aligned}$	$\begin{gathered} \text { S3 } \\ (\mathrm{psi}) \end{gathered}$	$\begin{gathered} \mathrm{Sl} \\ (\mathrm{psi}) \end{gathered}$	$\begin{aligned} & 0.7 \mathrm{Su} \\ & \text { (psi) } \end{aligned}$	Apendix F Stress Index
See Note:		1	2	2	2	3	4	5	6	7	9	7	9	9	9	9	9	9	9
Accumulator Fill Line	32	15,310	$\begin{aligned} & \hline \text { SA376 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	1	160	0.250	1.315	0.815	1750	14,880	25,693	68,500	24,955	38,170	-13,215	-7,655	45,825	47,950	0.96
		15,310	$\begin{aligned} & \hline \text { SA376 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	0.75	160	0.219	1.05	0.612	1750	14,880	25,884	68,500	21,392	36,580	-15,188	-7,655	44,235	47.950	0.92
Primary Water Supply to RCPs and PRT	33	212	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	3	10 S	0.120	3.5	3.260	136	16,050	27,999	68,500	2,880	29,439	-26,559	-106	29,545	47,950	0.62
		212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	2.5	10 S	0.120	2.875	2.635	136	16,050	28,176	68,500	2,328	29,340	-27,012	-106	29.446	47,950	0.61
		212	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	1	40 S	0.133	1.315	1.049	136	16,050	28,652	68,500	836	29,070	-28,234	-106	29,176	47,950	0.61
		212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	0.75	40 S	0.113	1.05	0.824	136	16,050	28,672	68,500	773	29,058	-28,285	-106	29,164	47,950	0.61
		212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	0.5	405	0.109	0.84	0.622	100	16,050	28,769	68,500	605	29,071	-28,466	-106	29,177	47.950	0.61
Demineralized Water Supply to	36	325	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	3	10 S	0.120	3.5	3.260	156	16,050	27,868	68,500	4,415	30,075	-25,661	-163	30,238	47,950	0.63
Refueling Cavity Scrub		325	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	2	40S	0.154	2.375	2.067	156	16,050	28,403	68,500	2,181	29,493	-27,312	-163	29,656	47,950	0.62
Down Hose Connections		325	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	1	40S	0.133	1.315	1.049	156	16,050	28,617	68,500	1,282	29,258	-27,976	-963	29,420	47,950	0.61

Table A-3:
Appendix F Stress Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	$\left\|\begin{array}{c} \text { Nominal } \\ \text { Pipe } \\ \text { Size } \\ \text { (inch) } \end{array}\right\|$	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Insidé Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Max Bending Stress Due to DW + Seismic, Pb (psi)	$\begin{gathered} \mathrm{Su} \\ (\mathrm{psi}) \end{gathered}$	$\begin{gathered} \mathrm{S} 1 \\ \text { (psi) } \end{gathered}$	$\begin{aligned} & \text { S2+ } \\ & \text { (psi) } \end{aligned}$	$\begin{gathered} \text { S2- } \\ \text { (psi) } \end{gathered}$	$\begin{gathered} \text { S3 } \\ (\mathrm{psi}) \end{gathered}$	$\underset{(\mathrm{psi})}{\mathrm{SI}}$	$\begin{aligned} & 0.7 \mathrm{Su} \\ & \text { (psi) } \end{aligned}$	Apendix F Stress Index
See Note:		1	2	2	2	3	4	5	6	7	9	7	9	9	9	9	9	9	9
RCP Seal Water Line	37	1,800	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	4	105	0.120	4.5	4.260	150	16,050	27,595	68,500	31,950	43,570	-14,620	-900	44,470	47,950	0.93
		1,800	SA312 TP304	1	40 S	0.133	1.315	1.049	150	16,050	28,628	68,500	7,098	32,177	-25,078	-900	33,077	47.950	0.69
Reacor Coolant Drain Tank Pump Suction	40	262	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	4	10 S	0.120	4.5	4.260	100	16,050	28,027	68,500	4,651	30,352	-25,702	-131	30,483	47,950	0.64
		262	SA312 TP304	2	403	0.154	2.375	2.067	100	16,050	28.578	68,500	1.758	29,457	-27,699	-131	29,588	47.950	0.62
		262	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	1	40S	0.133	1.315	1.049	100	16,050	28.715	68,500	1,033	29,232	-28,198	-131	29,363	47,950	0.61
		262	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.75	$40 S$	0.113	1.05	0.824	100	16,050	28,730	68,500	955	29,207	-28,252	-131	29,338	47,950	0.61
Containment Sump Pump Discharge	41	212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	3	10 S	0.120	3.5	3.260	60	16,050	28.497	68,500	2,880	29,937	-27,057	-106	30,043	47,950	0.63
		212	SA312 TP304	2	405	0.154	2.375	2.067	60	16,050	28,703	68,500	1,423	29,414	-27.991	-106	29,520	47,950	0.62
		212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	1	40 S	0.133	1.315	1.049	60	16,050	28,785	68,500	836	29,203	-28,367	-106	29.309	47,950	0.61
Sample Line From Pressurizer Liquid Space	66	17,800	$\begin{aligned} & \text { SA213 } \\ & \text { TP316 } \end{aligned}$	0.5	-	0.065	0.5	0.370	2485	15,350	24,622	74,200	50,662	49,953	709	-8,900	59,562	51,940	1.15
Sample Line From Accumulators	81	17.400	$\begin{aligned} & \text { SA213 } \\ & \text { TP316 } \end{aligned}$	0.5	--	0.065	0.5	0.370	600	15,350	26,904	74,200	49,523	51,665	-2,142	-8,700	60,365	51,940	1.16
Sample Line From Hot Legs	66	17,800	$\begin{aligned} & \text { SA213 } \\ & \text { TP316 } \end{aligned}$	0.5	-	0.065	0.5	0.370	2485	15,350	24,622	74,200	50,662	49,953	709	-8,900	59,562	51,940	1.15
RCP Seal Bypass Line	N/A	16,940	SA376 TP304	1	160	0.250	1.315	0.815	2735	14,880	25,078	68,500	27.612	38,884	-11,272	-8,470	47.354	47,950	0.988
		16,940	$\begin{aligned} & \hline \text { SA376 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	0.75	160	0.219	1.05	0.612	2735	14,880	25.377	68,500	23,670	37.212	-13,542	-8,470	45,682	47,950	0.95

Table A-4:
Strain Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actua! Pipe Size (inch)	Inside Diaméter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Hoop Stress (psi)	Yield Strength (psi)	Elastic Modulus (psi)	Plastic Modulus (psi)	Yield Strain (in/in)	Total Strain (in/in)	Permitted Strain (in/in)
See Note:		1	2	2	2	3	4	5	6	7	10	7	7	7	11	12	13
NESW Cooling for Lower Containment Ventilation Units (4 segments)	Multiple	215	$\begin{gathered} \text { A106 } \\ \text { Gr B } \end{gathered}$	6	40	0.280	6.625	6.065	125	15,000	2,329	31,450	28.6E+6	Not Used	1.10E-03	0.0082\%	5.0\%
		215	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	4	40	0.237	4.5	4.026	125	15,000	1,826	31,450	28.6E+6	Not Used	1.10E-03	0.0064\%	5.0\%
		215	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	2.5	40	0.203	2.875	2.469	125	15,000	1,307	31,450	$28.6 \mathrm{E}+6$	Not Used	1.10E-03	0.0046\%	5.0\%
		215	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	1	80	0.179	1.315	0.957	125	15,000	575	31,450	$28.6 \mathrm{E}+6$	Not Used	1.10E-03	0.0020\%	5.0\%
		215	$\begin{gathered} \text { A106 } \\ \text { GrB } \end{gathered}$	0.5	80	0.147	0.84	0.546	125	15,000	399	31,450	28.6E+6	Not Used	1.10E-03	0.0014\%	5.0\%
		215	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	6	40 S	0.280	6.625	6.065	125	16,050	2,329	23,750	$27.3 \mathrm{E}+6$	425,000	8.70E-04	0.0085\%	5.0\%
		215	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.5	$40 S$	0.109	0.84	0.622	125	16,050	613	23,750	$27.3 \mathrm{E}+6$	425,000	8.70E-04	0.0022\%	5.0\%
		215	$\begin{gathered} \text { ASTM } \\ \text { B75 } \\ \hline \end{gathered}$	0.625	--	0.035	0.625	0.555	125	5,125	--	--	--	--	--	-	--
NESW Cooling for Upper Containment Ventilation Units (4 segments)	Multiple	711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	3	40	0.216	3.5	3.068	125	15,000	5,049	31.450	28.6E+6	Not Used	1.10E-03	0.0177\%	5.0\%
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	2	80	0.218	2.375	1.939	125	15,000	3,162	31,450	$28.6 \mathrm{E}+6$	Not Used	1.10E-03	0.0111\%	5.0\%
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	1.5	80	0.200	1.9	1.500	125	15,000	2,666	31,450	28.6E+6	Not Used	1.10E-03	0.0093\%	5.0\%
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \\ & \hline \end{aligned}$	1	80	0.179	1.315	0.957	125	15,000	1,901	31,450	28.6E+6	Not Used	1.10E-03	0.0067\%	5.0\%
		711	$\begin{aligned} & \hline \text { A106 } \\ & \text { Gr B } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	15,000	1.320	31,450	28.6E+6	Not Used	9.10E-03	0.0046\%	5.0\%
		711	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	3	40S	0.216	3.5	3.068	125	16,050	5,049	23,750	27.3E+6	425,000	8.70E-04	0.0185\%	5.0\%
		711	SA312 TP304	0.5	$40 S$	0.109	0.84	0.622	125	16,050	2,029	23,750	27.3E+6	425,000	8.70E-04	0.0074\%	5.0\%
		711	$\begin{gathered} \text { ASTM } \\ \text { B75 } \\ \hline \end{gathered}$	0.625	--	0.035	0.625	0.555	125	5.125	--	--	--	-	--	--	--

MPR-<109 Appendix A. 6
Calculation 025-065-06
Attachment A

Prepared by:
Checked by:
Table A-4:
Strain Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	$\left\|\begin{array}{c} \text { Pipe } \\ \text { Material } \end{array}\right\|$	Nominal Pipe Size (inch)	$\left\lvert\, \begin{gathered} \text { Pipe } \\ \text { Schedule } \end{gathered}\right.$	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Hoop Stress (psi)	Yield Strength (psi)	Elastic Modulus (psi)	Plastic Modulus (psi)	Yield Strain (in/in)	Total Strain (in/in)	Permitted Strain (in/in)
See Note:		1	2	2	2	3	4	5	6	7	10	7	7	7	11	12	13
NESW Cooling for RCP Motor Air Coolers (4 segments)	Multiple	711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	3	40	0.216	3.5	3.068	125	15,000	5,049	31.450	$28.6 \mathrm{E}+6$	Not Used	1.10E-03	0.0177\%	5.0\%
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	2.5	40	0.203	2.875	2.469	125	15,000	4,324	31,450	$28.6 \mathrm{E}+6$	Not Used	1.10E-03	0.0151\%	5.0\%
		711	$\begin{aligned} & \text { A106 } \\ & \text { GrB } \end{aligned}$	1	80	0.179	1.315	0.957	125	15,000	1.901	31,450	28.6E+6	Not Used	1.10E-03	0.0067\%	5.0\%
		711	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	15,000	1,320	31,450	28.6E+6	Not Used	1.10E-03	0.0046\%	5.0\%
		711	$\begin{array}{l\|} \hline \text { SA312 } \\ \text { TP304 } \\ \hline \end{array}$	3	40S	0.216	3.5	3.068	125	16,050	5.049	23,750	27.3E+6	425,000	8.70E-04	0.0185\%	5.0\%
		711	$\begin{array}{\|l\|} \hline \text { SA312 } \\ \text { TP304 } \\ \hline \end{array}$	0.5	40 S	0.109	0.84	0.622	125	16,050	2,029	23,750	27.3E+6	425,000	8.70E-04	0.0074\%	5.0\%
		711	$\begin{array}{\|c\|} \hline \text { ASTM } \\ \text { B75 } \\ \hline \end{array}$	0.625	-	0.035	0.625	0.55 .5	125	5,125	--	-	--	--	--	\cdots	--
NESW Cooling for Instrumentation Room Ventilation Units (2 segments)	Multiple	325	A106 GrB	3	40	0.216	3.5	3.068	125	15,000	2,308	31,450	28.6E+6	Not Used	1.10E-03	0.0081\%	5.0\%
		325	$\begin{aligned} & \text { A106 } \\ & \text { GrB } \end{aligned}$	2.5	40	0.203	2.875	2.469	125	15,000	1,976	31,450	28.6E+6	Not Used	1.10E-03	0.0069\%	5.0\%
		325	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	2	80	0.218	2.375	1.939	125	15,000	1,445	31,450	28.6E+6	Not Used	1.10E-03	0.0051\%	5.0\%
		325	$\begin{aligned} & \text { A106 } \\ & \text { GrB } \end{aligned}$	1.5	80	0.200	1.9	1.500	125	15,000	1,219	31,450	28.6E+6	Not Used	1.10E-03	0.0043\%	5.0\%
		325	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	1	80	0.179	1.315	0.957	125	15,000	869	31.450	28.6E+6	Not Used	1.10E-03	0.0030\%	5.0\%
		325	$\begin{aligned} & \text { A106 } \\ & \text { Gr B } \end{aligned}$	0.5	80	0.147	0.84	0.546	125	15,000	604	31.450	28.6E+6	Not Used	1.10E-03	0.0021\%	5.0\%
		325	$\begin{array}{l\|} \hline \text { SA312 } \\ \text { TP304 } \\ \hline \end{array}$	2	40	0.154	2.375	2.067	125	16,050	2,181	23,750	$27.3 \mathrm{E}+6$	425,000	8.70E-04	0.0080\%	5.0\%
		325	$\begin{array}{\|l\|} \hline \text { SA312 } \\ \text { TP304 } \end{array}$	0.5	80	0.147	0.84	0.546	125	16,050	604	23,750	$27.3 \mathrm{E}+6$	425,000	8.70E-04	0.0022\%	5.0\%
		325	$\begin{array}{c\|} \hline \text { ASTM } \\ \text { B75 } \\ \hline \end{array}$	0.625	-	0.035	0.625	0.555	125	5,125	.-	-	--	--	--	--	--

Table A-4:
Strain Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actuat Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Hoop Stress (psi)	Yield Strength (psi)	Elastic Modulus (psi)	Plastic Modulus (psi)	Yield Strain (in/in)	Total Strain (in/in)	Permitted Strain (in/in)
See Note:		1	2	2	2	3	4	5	6	7	10	7	7	7	11	12	
Accumulator FillLine	32	15,310	$\begin{aligned} & \text { SA376 } \\ & \text { TP304 } \end{aligned}$	1	160	0.250	1.315	0.815	1750	14,880	24,955	23,750	27.3E+6	425,000	8.70E-04	$\frac{12}{0.3706 \%}$	5.0\%
		15,310	$\begin{aligned} & \text { SA376 } \\ & \text { TP304 } \end{aligned}$	0.75	160	0.219	1.05	0.612	1750	14,880	21,392	23,750	27.3E+6	425,000	8.70E-04	0.0784\%	5.0\%
Primary Water Supply to RCPs and PRT	33	212	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	3	10S	0.120	3.5	3.260	136	16,050	2,880	23,750	27.3E+6	425,000	8.70E-04	0.0105\%	5.0\%
		212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	2.5	10 S	0.120	2.875	2.635	136	16,050	2,328	23,750	27.3E+6	425,000	8.70E-04	0.0085\%	5.0\%
		212	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	1	40 S	0.133	1.315	1.049	136	16,050	836	23,750	27.3E+6	425,000	8.70E-04	0.0031\%	5.0\%
		212	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.75	40S	0.113	1.05	0.824	136	16,050	773	23.750	27.3E+6	425,000	8.70E-04	0.0028\%	5.0\%
		212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	0.5	405	0.109	0.84	0.622	100	16,050	605	23,750	27.3E+6	425,000	8.70E-04	0.0022\%	5.0\%
Demineralized Water Supply to	36	325	$\begin{array}{\|l\|} \hline \text { SA312 } \\ \text { TP304 } \\ \hline \end{array}$	3	10 S	0.120	3.5	3.260	156	16,050	4,415	23,750	27.3E+6	425,000	8.70E-04	0.0162\%	5.0\%
Refueling Cavity Scrub		325	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	2	40 S	0.154	2.375	2.067	156	16,050	2,181	23,750	27.3E+6	425,000	8.70E-04	0.0080\%	5.0\%
Down Hose Connections		325	$\begin{array}{\|l\|} \hline \text { SA312 } \\ \text { TP304 } \\ \hline \end{array}$	1	40 S	0.133	1.315	1.049	156	16,050	1,282	23,750	$27.3 \mathrm{E}+6$	425,000	8.70E-04	0.0047\%	5.0\%

Table A-4:
Strain Evaluation

Pipe Segment	CPN	Maximum Pipe Pressure (psi)	Pipe Material	Nominal Pipe Size (inch)	Pipe Schedule	Thickness (inch)	Actual Pipe Size (inch)	Inside Diameter (inch)	Design Pressure (psig)	Design Allowable Stress (psi)	Hoop Stress (psi)	Yield Strength (psi)	Elastic Modulus (psi)	Plastic Modulus (psi)	Yield Strain (in/in)	Total Strain (in/in)	Permitted Strain (in/in)
See Note:		1	2	2	2	3	4	5	6	7	10	7	7	7	11	12	13
RCP Seal Water Line	37	1,800	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	4	10 S	0.120	4.5	4.260	150	16,050	31,950	23,750	27.3E+6	425,000	8.70E-04	2.0164\%	5.0\%
		1,800	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \end{aligned}$	1	40S	0.133	1.315	1.049	150	16,050	7,098	23,750	27.3E+6	425,000	8.70E-04	0.0260\%	5.0\%
Reacor Coolant Drain Tank Pump Suction	40	262	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	4	10 S	0.120	4.5	4.260	100	16,050	4,651	23,750	27.3E+6	425,000	8.70E-04	0.0170\%	5.0\%
		262	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	2	405	0.154	2.375	2.067	100	16,050	1,758	23,750	27.3E+6	425,000	8.70E-04	0.0064\%	5.0\%
		262	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	1	$40 S$	0.133	1.315	1.049	100	16,050	1,033	23,750	27.3E+6	425,000	8.70E-04	0.0038\%	5.0\%
		262	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \end{aligned}$	0.75	40 S	0.113	1.05	0.824	100	16,050	955	23,750	27.3E+6	425,000	8.70E-04	0.0035\%	5.0\%
Containment Sump Pump Discharge	41	212	SA312 TP304	3	10 S	0.120	3.5	3.260	60	16,050	2,880	23.750	27.3E+6	425,000	8.70E-04	0.0105\%	5.0\%
		212	SA312 TP304	2	40 S	0.154	2.375	2.067	60	16,050	1,423	23,750	27.3E+6	425.000	8.70E-04	0.0052\%	5.0\%
		212	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	1	40S	0.133	1.315	1.049	60	16,050	836	23,750	27.3E+6	425,000	8.70E-04	0.0031\%	5.0\%
Sampie Line From Pressurizer Liquid Space	66	17,800	$\begin{aligned} & \text { SA213 } \\ & \text { TP316 } \end{aligned}$	0.5	--	0.065	0.5	0.370	2485	15,350	50,662	24,550	27.3E+6	450,000	8.99E-04	5.8925\%	5.0\%
Sample Line From Accumulators	81	17.400	$\begin{aligned} & \text { SA213 } \\ & \text { TP316 } \end{aligned}$	0.5	-	0.065	0.5	0.370	600	15.350	49.523	24,550	27.3E+6	450,000	8.99E-04	5.6395\%	5.0\%
Sample Line From Hot Legs	66	17,800	$\begin{aligned} & \text { SA213 } \\ & \text { TP316 } \end{aligned}$	0.5	--	0.065	0.5	0.370	2485	15,350	50,662	24,550	27.3E+6	450,000	8.99E-04	5.8925\%	5.0\%
RCP Seal Bypass Line	N/A	16,940	$\begin{aligned} & \hline \text { SA376 } \\ & \text { TP304 } \end{aligned}$	1	160	0.250	1.315	0.815	2735	14,880	27,612	23,750	27.3E+6	425,000	8.70E-04	0.9957\%	5.0\%
		16,940	SA376 TP304	0.75	160	0.219	1.05	0.612	2735	14,880	23,670	23,750	27.3E+6	425,000	8.70E-04	0.0867\%	5.0\%

MPR-2169 Appendix A. 6
Calculation 025-065-06
Attachment A

Prepared by: $12 \frac{1}{1-2} 1$ Checked by

Notes to Tables:

1. Max pressures are from Reference 1 calculations.
2. Pipe materials, sizes and schedules are from drawings in References 9-11.

Where multiple schedules are installed, only the thinner schedule is considered.
3. Thicknesses for pipe are from Crane (Reference 14) for corresponding pipe schedules.

Thickness for NESW heat exchanger tubing is from Reference 11 (same for all coils).
Thickness for sample line tubing is from Reference 3 for Class O-14 tube.
4. Actual pipe sizes are from Crane.
5. $I D=$ Actual $O D-2^{*}$ thickness.
6. Pipe design pressures and temperatures from References 2 and 3.
7. From Table 2 of calculation.
8. From equations in Section 3.1.
9. From equations in Section 3.2.
10. Hoop stress = S1 from Table A-2.
11. Yield strain $=$ yield stress $/$ elastic modulus.
12. If $\mathrm{S} 1<$ yield strength, strain $=\mathrm{S} 1 /$ elastic modulus.

If S1 $>$ yield strength, strain $=(S 1-$ yield strength $) /$ plastic modulus + yield strain.
13. Permitted strain from Section 3.2 of calculation.

ATTACHMENT 7 TO C0801-05
MPR CALCULATION 025-065-02
"DETERMINATION OF PEAK PRESSURES IN D. C. COOK UNIT 1 PIPING SEGMENTS ISOLATED BY AIR OPERATED GLOBE VALVES"

		MPR-2169 Appendix A. 2		MPR Associates, Inc. 320 King Street Alexandria, VA 22314
RECORD OF REVISIONS				
Calc 025	tion No. $165-02$	Prepared By MrTunh	Checked By $J R$ Harep	Page 2
Revision	Description			
0	Original Issue.			

		MPR-2169 Appendix A. 2		MPR Associates, Inc 320 King Street Alexandria, VA 223
Calculation No. 025-065-02		$\begin{aligned} & \text { Prepared By } \\ & \text { MrTronch } \end{aligned}$	Checked By I R Hamp	Page
CONTENTS				
SECTION	TITLE			PAGE
1.0	Purpose	\cdots 4
2.0	Results. 5
3.0	Calculat	ion 6
4.0	Inputs R	equiring Verification. 16
5.0	Referenc	ces......................... 17
Attachment A	Calculat Piping	tion of Maximum Tem During Steam Line Bre	ed in	$.19$
Attachment B	Peak Pre	essure in CPN-32 42
Attachment C	Peak Pre	essure in RCP Seal By 46

	$\begin{array}{ll} & \text { MPR Associates, Inc. } \\ \text { MPR-2169 Appendix A. } 2 & 320 \text { King Street }\end{array}$		
Calculation No. $025-065-02$	Prepared By Nctrume	Checked By $A R$ Hamp	Page 4
1.0 PURPOSE			
The purpose of this calculation is to determine the peak pressures that can be obtained in piping segments susceptible to thermal overpressurization that are isolated by air operated globe valves at the D. C. Cook Nuclear Power Station, Unit 1. The pressures determined in this calculation are to be used in a separate stress analysis of the piping segments. The lines that contain globe valves are the accumulator fill line (CPN 32) and the RCP seal bypass line.			

Two separate calculations of peak pressure will be made, as follows:

- The peak pressure is taken as the pressure at which valves installed in the segments will open. This is the maximum pressure that can be achieved in the line for the case where the valves are installed such that system pressure is applied under the valve plug during overpressurization.
- The peak pressure is also calculated assuming no leakage through the valves.

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-02	Prepared By	Checked By ΔR Hasp	Page 5
2.0 RESULTS			

The pressures listed below will force the valves open.
Table 1: Results Summary

Segment	Case 1: Maximum Line Pressure to Open Valves (psig)	Case 2: Line Pressure With No Valve Leakage (psig)
RCP Seal Bypass Line	12,310	16,940
Accumulator Fill Line	6,930	15,310

For Case 1:

Segment pressures equal to those shown will cause one or more valves to open. The forces generated by these pressures are equivalent to the opening force applied by the air operator at the nominal control air header supply pressure. This is a conservative calculation because the valves will begin to open at pressures lower than those above.

These results are based on inputs that require verification; specifically, the plug area exposed to segment pressure for the accumulator fill line, and the valve flow direction for both lines. Refer to Section 4.0 for the information that requires verification.

For Case 2:
Segment pressures are calculated assuming no leakage through the isolation valves.
These results will be used in separate evaluations for the pipe and valves in these segments.

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. $025-065-02$	Prepared By	Checked By ΔR Hasp	Page 6
3.0 CALCULATION			

3.1 Globe Valves Installed in Piping Segments at Cook Unit 1

Each of the segments considered in this calculation is isolated using one or more air operated globe valve. These valves are air to open, spring to close valves.

The valves installed in each segment are listed in Table 2, along with configuration information obtained from various plant sources. Each of these valves is shut during isolation and each is subject to the segment internal pressure.

Table 2. List of Air Operated Globe Valves in Segments Considered

Segment	CPN	Globe Valve Tag Numbers	Valve Size	Drawing
RCP Seal Bypass Line	N/A	1-QRV-150	$3 / 4$ "	Copes Vulcan Inc. Model D100-100 Operator 3/4"-1500 LB U.S.A STD DWG. No. L-137857 (Ref. 1)
Accumulator Fill Line	32	$\begin{aligned} & \text { 1-IRV-050, 1-IRV-060 } \\ & \text { 1-IRV-111, 1-IRV-121 } \\ & \text { 1-IRV-131, 1-IRV-141 } \end{aligned}$	$1 "$	Copes Vulcan Inc. Model D100-100 Operator 1"-1500 LB U.S.A STD DWG. No. L-137968 (Ref. 2)
		$\begin{aligned} & \text { 1-IRV-115, 1-IRV-116 } \\ & \text { 1-IRV-125, 1-IRV-126 } \\ & \text { 1-IRV-135, 1-IRV-136 } \\ & \text { 1-IRV-145, 1-IRV-146 } \\ & \text { 1-IRV-147, 1-IRV-148 } \end{aligned}$	$3 / 4$ "	Copes Vulcan Inc. Model D100-100 Operator 3/4"-1500 LB U.S.A STD DWG. No. L-140209 (Ref. 3)
		1-IRV-149, 1-IRV-150	$3 / 4 "$	$\begin{aligned} & \text { 2-AEP-MASN-CP1-18-55 } \\ & \text { (Ref. 4) } \end{aligned}$

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-02	Prepared By Notrush	Checked By ΔR Himp	Page 7
3.2 Case 1: Segment Pressure Acts to Oper System Valves			

During thermal overpressurization incidents (such as might occur when segments are isolated during pipe breaks in containment), water pressure will build in the isolated segment until the force on the valve plug overcomes the forces holding the valve closed - provided the valve is installed such that this pressure acts on the plug in a direction that would cause the plug to lift off the seat. At this point the valve will begin to open, and relieve the trapped water.

This calculation will determine the segment water pressure which would be required to overcome the spring force and hence permit the trapped water to escape through the opened valve. Separate calculations are provided for each segment.

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
$\begin{gathered} \text { Calculation No. } \\ 025-065-02 \end{gathered}$	Prepared By n CTrumal	Checked By ΔR Hamp	Page 8

3.2.1 \quad RCP Seal Bypass Line

To determine the required system pressure under this plug to overcome the spring force keeping the valve closed, the following steps are taken.

1. First, calculate the force needed to open the valve $\left(\mathrm{F}_{\text {open }}\right)$. To simplify this analysis, this force will be determined by multiplying the nominal control air header pressure supplied to the valve $\left(p_{a}\right)$ by the actuator area $\left(\mathrm{A}_{2}\right)$:

$$
\mathrm{F}_{\mathrm{open}}=\mathrm{p}_{\mathrm{a}} \mathrm{~A}_{\mathrm{a}}
$$

This is conservative because the valve will begin to open at a lower air actuator pressure than the full control air header nominal pressure. The control air header flow diagrams listed in Reference 5 show that the nominal control air header pressure supplied to this valve is 85 psig . The actuator area for this type of valve is 100 square inches as shown in Reference 6. Accordingly, the maximum force that the air can apply to the actuator to open the valve is 8500 pounds. Since based on plant experience it is known that the valve will open when this 85 psig air pressure is applied, this pressure must be sufficient to overcome the actuator spring, stem friction, and the effects of system pressure on the other side of the plug.
2. Calculate the plug area subject to system pressure acting to open the valve, $\mathrm{A}_{\text {plus }}$.

$$
\mathrm{A}_{\text {plug }}=\mathrm{d}_{\text {seat opening }}{ }^{2} \pi / 4
$$

Per Reference 11, the cage inside diameter for valve 1 -QRV-150 is $15 / 16^{\prime \prime}$. The corresponding plug area subject to pressure is then $0.69 \mathrm{in}^{2}$.
3. For globe valves with flow up from under the seat, the segment pressure required to open the valve, without the aid of the actuator, is the opening force divided by the area of the plug,

$$
\mathrm{p}_{\text {open }}=\mathrm{F}_{\text {open }} / \mathrm{A}_{\text {plug }}=8500 \mathrm{lbs} / 0.69 \mathrm{in}^{2}=12,3 \cdot 10 \mathrm{psig}
$$

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-02	Prepared By NeTrunh	Checked By ΔR Marp	Page 9

3.2.2 Accumulator Fill Line

As shown in Table 2, there are three types of valves installed in this system. The drawing for the $3 / 4$ " valve types show a small seat opening dimension, so these valves will not be likely to open during pressurization. Accordingly, only the 1" Copes Vulcan valve type will be considered.

The 1 " valves shown on L-137968 are shown with a wide plug and valve seat. The plug fits over the stem. Per valve packing calculations for valve 1-IRV-111 (Reference 8) the stem diameter is 0.75 ". Per the vendor drawing the plug is significantly larger than the stem; in this calculation the assumed plug diameter is 1.25 ", which must be verified (see Section 4). The plug area is therefore $1.23 \mathrm{in}^{2}$ for these valves. Per the control air header flow diagrams (References 5 and 9), these valves are supplied with 85 psig air to open. Since the valves have $100 \mathrm{in}^{2}$ actuators, an opening force of 8500 pounds is considered in this calculation. The system pressure required to open the valve is then

$$
\mathrm{p}_{\text {open }}=\mathrm{F}_{\text {open }} / \mathrm{A}_{\text {plug }}=8500 \mathrm{lb} / 1.23 \mathrm{in}^{2}=6,930 \mathrm{psig}
$$

Calculation No. $025-065-02$	$\begin{array}{r} \text { Prepared By } \\ N \in T \text { manh } \end{array}$	Checked By - Δ R Hasp	Page 10

3.3 Case 2: Segment Pressure Assuming No Valve Leakage

If the valves do not leak, the pressure inside the isolated pipe segment will increase as the pipe heats up in the hot containment atmosphere. The peak pressure reached will depend on the peak temperature achieved in the piping. This peak temperature is in turn a function of the heat transfer between the containment atmosphere and the water inside the piping.

Accordingly, calculation of peak temperature and the resulting pressure is described in the following sections.

3.3.1 Calculation of Peak Temperature

Review of lower compartment temperature data (from Reference 12) for the LOCA and main steam line break scenarios shows the following:

- For LOCAs, the temperature rises quickly to nearly $235^{\circ} \mathrm{F}$ initially, after which the temperature drops significantly. During the first part of the accident the containment pressure is $7-8 \mathrm{psig}$. Since saturation temperature at these pressures is about $235^{\circ} \mathrm{F}$, it is conservative to assume that the steam will condense on the metal pipe surface. Since condensation heat transfer is very effective at transferring heat, this calculation will assume that the piping immediately reaches the peak temperature of $235^{\circ} \mathrm{F}$ during LOCA.
- For main steam line breaks, the lower compartment temperature peaks at about $325^{\circ} \mathrm{F}$ for a brief time following the break, during which time the containment pressure drops from a maximum of about 9 psig to about 7 psig . Since the $325^{\circ} \mathrm{F}$ temperature exceeds the saturation temperature of steam at this pressure (roughly $235^{\circ} \mathrm{F}$), heat transfer during this time is by forced convection rather than condensation. Forced convection heat transfer rates are dependent on flow velocity and are less than condensation heat transfer rates. Attachment A to this calculation provides a conservative estimate of the heatup of the pipe under main steam line break conditions. Results show that under worst case conditions the bulk of the piping in these two segments will not reach $235^{\circ} \mathrm{F}$ while the temperature in the containment is $325^{\circ} \mathrm{F}$; following that time, the containment temperature drops below $235^{\circ} \mathrm{F}$. Accordingly, use of $235^{\circ} \mathrm{F}$ as the peak temperature of the piping conservatively bounds the temperature main steam line break scenario.

3.3.2 Calculation of Resulting Pressure

The analysis approach uses the maximum water temperature, the pipe stiffness and pipe material properties to calculate the resulting internal pressure and material stress-strain state for a postulated increase in temperature scenario. The specific steps in the analysis procedure are described below.

Calculation No. 025-065-02

Checked By ΔR Hasp

Page 11

- The isolated piping segment arrangement is reviewed to determine the pipe sections and materials. The information on each pipe is required to determine the pressure in the entire piping segment.
- A bi-linear stress-strain curve for the specific pipe material (Type 304 stainless steel) is developed. Both the elastic stretching of the pipe wall as well as the plastic deformation of the pipe with strain hardening is considered.
- An equation of state for the water in the isolated piping segments is developed, which relates pressure to specific volume at the given temperature. The equation of state is developed from the ASME Steam Tables (Reference 13).
- A set of simultaneous equations relating pipe stress and strain to the water mass, specific volume and pressure is developed. The solution of the equations provides the final water pressure and piping segment pressure stress.

Geometry and Material Data

The data required for each piping segment are the pipe diameter, wall thickness and material properties for each cross section included in the isolated segment. The piping geometry is found in isometric drawings listed in References 18 and 19. The material data include: material class and material type (Reference 15), design stress intensity $\left(\mathrm{S}_{\mathrm{m}}\right)$, yield stress $\left(\mathrm{S}_{\mathrm{y}}\right)$, ultimate strength $\left(\mathrm{S}_{\mathrm{u}}\right)$, elastic modulus (E), and plastic modulus (E_{p}). The plastic modulus is determined based on the stress-strain curve shown in Figure 1 (from Reference 16). The remaining material properties are extracted from the 1989 ASME Code (Reference 17). Material properties are evaluated at $235^{\circ} \mathrm{F}$.

Review of isometric drawings (References 18 and 19) shows that the two segments of interest are constructed of $3 / 4$ " and 1 " schedule 160 , SA376 type 304 stainless steel. The geometry and material data for these pipe materials are listed in Table 3. Nominal pipe wall thickness was used for the evaluations.

Table 3: Geometry and Material Properties, $235^{\circ} \mathrm{F}$

Pipe Size	Sched.	Geometry Data		Material Data						
		$\begin{aligned} & \mathrm{OD} \\ & \text { (in) } \end{aligned}$	Wall (in)	Class	Type	$\begin{gathered} \mathbf{S}_{m} \\ (\mathrm{ksi}) \end{gathered}$	$\underset{(\mathrm{ksi})}{\mathbf{S}_{\mathrm{y}}}$	$\begin{gathered} \mathbf{S}_{u} \\ (\mathrm{ksi}) \end{gathered}$	$\begin{gathered} E \\ \left(10^{6} \mathrm{psi}\right) \end{gathered}$	$\begin{gathered} \mathbb{E}_{p} \\ \left(10^{6} \mathrm{psi}\right) \end{gathered}$
1 in	160	1.315	0.25	M-14	SA376 TP304	20.0	24.13	69.25	27.4	0.425
$3 / 4 \mathrm{in}$	160	1.050	0.219	M-14	$\begin{aligned} & \text { SA376 } \\ & \text { TP304 } \end{aligned}$	20.0	24.13	69.25	27.4	0.425

| Calculation No. Prepared By
 $025-065-02$ | Checked By
 O TManh Hass | Page 12 |
| :---: | :---: | :---: | :--- |

Figure 1: Type 304 Stainless Steel Stress-Strain Curve.
Note that the values from Table 3 are used in the calculation for yield strength.

Fluid Properties

The calculations to determine maximum internal pressure are performed for the maximum bounding piping segment water temperature of $235^{\circ} \mathrm{F}$. These piping stress calculations assume the piping segments are initially at their maximum pressures and at minimum containment ambient conditions:

$$
\begin{array}{ll}
\text { Accumulator Fill Line: } & 70^{\circ} \mathrm{F}, 1750 \mathrm{psig}, v=0.015963 \mathrm{ft}^{3} / \mathrm{lbm} \\
\text { RCP Seal Bypass Line: } & 70^{\circ} \mathrm{F}, 2480 \mathrm{psig}, v=0.015928 \mathrm{ft}^{3} / \mathrm{lbm}
\end{array}
$$

where specific volumes (ν) are obtained from the ASME Steam Tables. Maximum pressure for the accumulator fill line is the design pressure for the system per the piping specification; the RCP seal bypass pressure is the maximum operating pressure from the specification.

Figure 2 shows the relationship between pressure and specific volume at a temperature of $235^{\circ} \mathrm{F}$ (from the ASME Steam Tables). A polynomial curve fit is also shown of the equation of state for the fluid. This equation will be used in the determination of fluid pressure for the maximum temperature conditions.

Figure 2: Equation of State for Water at $235^{\circ} \mathrm{F}$

Pressure Calculation

For the general case in which a piping segment has a single pipe size and material, the fluid pressure and piping stress-strain solution are determined by solving a set of six simultaneous equations with six unknowns. The six unknowns representing the pressurized condition in the isolated segment are:

P	$=$ Internal pressure (psia)	$\epsilon_{\mathrm{p}}=$ Pipe hoop strain (in/in)
ν	$=$ Specific volume $\left(\mathrm{ft}^{3} / \mathrm{lb}\right)$	$\mathrm{r}=$ Pipe inside radius (in)
σ_{h}	$=$ Pipe hoop stress (psi)	$\mathrm{vol}=$ Volume of water $\left(\mathrm{ft}^{3}\right)$

The following constants are used to solve for the unknown variables:
$\mathrm{t} \quad=$ Pipe wall thickness (in)
$\mathrm{m}_{\mathrm{w}}=$ Mass of water (lb)
$e_{y} \quad=$ Pipe yield strain (in/in) $\left(=S_{\mathrm{y}} / \mathrm{E}\right)$
$\alpha_{T}=$ Therm. expansion coeff. (in $/ \mathrm{in} /{ }^{\circ} \mathrm{F}$)
$\mathrm{r}_{0}=$ Initial pipe inside radius (inch)
$\mathrm{S}_{\mathrm{y}}=$ Pipe yield stress (psi)
$E=$ Pipe elastic modulus (psi)
$\mathrm{E}_{\mathrm{p}}=$ Pipe plastic modulus (psi)

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-02	Prepared By N CThesin	Checked By $\Delta R \operatorname{Han} 2 \theta$	Page 14

The set of equations that define the fluid state and stress-strain state are:

Membrane Stress:
Volume (per unit length):
Stress - Strain:
Specific Volume:
Equation of State $\left(235^{\circ} \mathrm{F}\right)$:
Radius:
$\sigma_{\mathrm{h}}=(\mathrm{Pr}) /(\mathrm{t})$
$\mathrm{vol}=\Pi\left(\mathrm{r}^{2}\right)$
$\sigma_{h}=S_{y}+\left(e_{p}-e_{y}\right) E_{p} \quad$ for $\sigma_{h}>S_{y}$
$\sigma_{\mathrm{h}}=\epsilon_{\mathrm{p}} \mathrm{E}$
$\nu=\mathrm{vol} / \mathrm{m}_{\mathrm{w}}$
$\mathrm{P}(\nu)=4.86308 \times 10^{9} \nu^{2}-1.80300 \times 10^{8} v+1.65795 \times 10^{6}$
$\mathrm{r}=\left(1+\epsilon_{\mathrm{p}}\right) \mathrm{r}_{\mathrm{o}}$

In addition, the thermal expansion of the material in the circumferential and longitudinal directions is considered. The mean coefficient of thermal expansion for the piping material (SA-376 TP304) is used to calculate the material expansion due to heat up from $70^{\circ} \mathrm{F}$ to $235^{\circ} \mathrm{F}$. The value for this heatup is $8.83 \mathrm{E}-6$ in $/$ in- ${ }^{\circ} \mathrm{F}$ per Reference 17 , Table I-5.0.

The strain due to thermal expansion is

$$
\epsilon_{\mathrm{th}}=\alpha_{\mathrm{T}}(\Delta \mathrm{~T})
$$

The equation for the pipe radius is modified to incorporate the thermal expansion:

$$
\mathrm{r}=\left(1+e_{\mathrm{p}}\right)\left(1+\epsilon_{\mathrm{th}}\right)\left(\mathrm{r}_{0}\right)
$$

The set of equations listed above can be solved for a segment with a single material and single pipe cross section. For piping segments with multiple cross sections, the set of equations must be extended to account for the potential expansion of fluid from one section of pipe into another. Specifically, each segment contains lengths of $3 / 4$ " and 1 " Schedule 160 piping. The $3 / 4$ " pipe is stiffer and stronger than the 1 " pipe. Hence, as the fluid is heated and pressurized, the $3 / 4$ " pipe would strain less than the 1 " pipe. As a result, the fluid expansion in the $3 / 4$ " pipe would result in a net flow into the 1 " pipe. In other words, the net increase in volume in the 1 " pipe section must include the expansion of the fluid initially in the $3 / 4$ " pipe section.

In order to address multiple cross sections, the basic equation set is extended to include each section of pipe. The resulting set of unknowns is:

```
P = Internal pressure (psia)
v = Specific volume (ft }\mp@subsup{}{}{3}/\textrm{lb}
\sigma
\epsilon
r
(one pressure for all pipes)
(one specific volume for all pipes)
(one for each pipe)
(one for each pipe)
(one for each pipe)
```

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. ,025-065-02	Prepared By M	Checked By Δx lamp	Page 15
$\mathrm{vol}_{\mathrm{i}}$ $=$ Volume pipe $\dot{i}\left(\mathrm{ft}^{3}\right)$ (one for each pipe) m_{wi} $=$ Mass of water pipe $i(\mathrm{lb})$ (one for each pipe)			

The additional unknowns (the mass of water in each pipe section) require two additional constants to be defined. The total mass of water is conserved for all cases because the piping segments are bounded by isolation valves.

```
L
m
```

Both the accumulator fill line and RCP seal bypass line are constructed of 1 " and $3 / 4$ " schedule 160 pipe in the region of interest. The lengths of different cross section pipe are determined from the drawings listed in References 18 and 19 and are as follows:

Pipe Segment	Length of 1" Pipe	Length of $3 / 4$ " Pipe
Accumulator Fill Line	290 ft	20 ft
RCP Seal Bypass Line	170 ft	450 ft

Thus, the following set of equations is used to determine the conditions of a piping segment with multiple pipe cross sections.

$$
\begin{aligned}
& \text { Membrane Stress: } \quad \sigma_{h i}=\left(\mathrm{Pr}_{\mathrm{i}}\right) /\left(\mathrm{t}_{\mathrm{i}}\right) \\
& \text { Volume: } \\
& \mathrm{vol}_{\mathrm{i}}=\pi\left(\mathrm{r}_{\mathrm{i}}{ }^{2}\right)\left(\mathrm{L}_{\mathrm{i}}\right) \\
& \text { Stress - Strain: } \quad \sigma_{h i}=S_{y i}+\left(\epsilon_{p i}-\epsilon_{y i}\right) E_{p i} \quad \text { for } \sigma_{h i}>S_{y i} \\
& \sigma_{\mathrm{hi}}=\mathrm{E}_{\mathrm{pi}} \mathrm{E}_{\mathrm{i}} \\
& \text { for } \sigma_{h i}<S_{y i} \\
& \text { Specific Volume: } \\
& \nu=\mathrm{vol}_{\mathrm{i}} / \mathrm{m}_{\mathrm{wi}} \\
& P(\nu)=4.86308 \times 10^{9} \nu^{2}-1.80300 \times 10^{8} \nu+1.65795 \times 10^{6} \\
& \text { Radius: } \\
& \mathrm{r}_{\mathrm{i}}=\left(1+e_{\mathrm{p}}\right)\left(\mathrm{r}_{0}\right)\left(\epsilon_{\mathrm{th}}+1\right) \\
& \text { Mass: } \\
& \mathrm{m}_{\mathrm{tot}}=\sum \mathrm{m}_{\mathrm{wi}}
\end{aligned}
$$

The equations and methods listed above are used to determine the fluid pressure and material stress-strain state for the segments isolated with air operated globe valves at D.C. Cook, Unit 1. The calculations are performed using MathCAD and the equations and results are shown in Attachment B . The results of these calculations are as follows:

$$
\begin{array}{ll}
\text { Peak Pressure in Accumulator Fill Line: } & 15,310 \mathrm{psig} \\
\text { Peak Pressure in RCP Seal Bypass Line: } & 16,940 \mathrm{psig}
\end{array}
$$

Note that values shown above have been converted to psig.

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-02	Prepared By	Checked By A R Ataryo	Page 16

In performing these calculations, several simplifying assumptions are made. These assumptions, which are conservative and are not considered to affect the calculation results, are as follows:

- The piping is bounded on each end by isolation valves. The isolation valve walls are thicker and stronger than the main piping. As a result, the strain in the valves will be less than the piping. The amount of water in the valves is assumed very small compared to the main piping. Thus, the expansion of this water (in the valve) and the possible strain of the valve body are neglected.
- The stronger valves will restrain the piping deflection at valve connections, preventing the piping from fully yielding and straining at that point (compared to the calculated values). The localized pipe strain at valve connections is neglected when calculating the pressure and stress/strain state of the piping.
- For conservatism, the expansion of the piping in the longitudinal direction due to pressure has been neglected.

4.0 INPUTS REQUIRING VERIFICATION

The calculation of valve opening pressure requires that the following information should be verified or determined:

For valve 1-QRV-150,

- Determine whether valve is installed such that trapped water would flow under the plug

For ONE of the 1 " valves in the accumulator fill line (ses, table below),

- Determine whether valve is installed such that trapped water would flow under the plug
- Determine the area under the plug exposed to pressure

System	Model Number	Tag Numbers
Accumulator Fill Line	Copes Vulcan Inc.	1-IRV-050, 1-IRV-060
	Model D100-100 Operator	1-IRV-111,1-IRV-121
	DWG. No. L-137968	1-IRV-131,1-IRV-141

Until verification is provided, use the higher (more bounding) pressures calculated in Section 3.3 of this calculation, since those pressures are not dependent on information that requires verification.

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-02		Checked By Δ K Hasp	Page 17

5.0 REFERENCES

1. DWG. No. L-137857 Rev. 2 ,Copes Vulcan Inc., Model D100-100 Operator, $3 / 4 "-1500$ LB U.S.A STD.
2. DWG. No. L-137968 Rev. 2, Copes Vulcan Inc., Model D100-100 Operator, 1"-1500 LB U.S.A STD.
3. DWG. No. L-140209 Rev. 2, Copes Vulcan Inc., Model D100-100 Operator, 3/4"-1500 LB U.S.A STD.
4. DIT Number DIT-S-00335-00, dated 3/2/2000.
5. AEP Drawing OP-1-5120E, Rev. 12, "Flow Diagram, Containment Control Air $85 \#$ and $50 \#$ Ring Headers, Unit \#1."
6. AEP Procedure 12 EHP 5073.AOV.001, Revision 0.
7. Not used.
8. Valve Packing Configuration Data Sheet (12-EHP 5043.VLV.001) for valve 1 -IRV-111, 3/14/2000.
9. AEP Drawing OP-1-5120D, Rev. 27, "Flow Diagram, Containment Control Air 85\# and 50\# Ring Headers, Unit \#1."
10. Not used.
11. AEP Design Input Transmittal Number DIT B-01518-00.
12. "Containment Pressure and Temperature Figures and Tabular Data for UFSAR Limiting Cases," AEP-99-408, November 10, 1999.
13. "ASME Steam Tables," ASME, $6^{\text {th }}$ Edition.
14. Not used.
15. "Pipe Material Specification," AEP Specification No. ES-Pipe-1013-QCN-CS3, Revision 1.
16. Aerospace Structural Metal Handbook, Volume 2, 1990, Code 1303, Figure 3.03112, Type 304 Stainless Steel.
17. 1989 ASME Code, Section III, Division I - Appendices.

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. $025-065-02$	$\begin{gathered} \text { Prepared By } \\ \text { R CRossh } \\ \hline \end{gathered}$	Checked By A 1 Hap	Page 18

18. Drawings of Containment Penetration CPN-32, Accumulator Fill Line.

OP-1-5143A-4
1-SI-507L1.6, Revision 2
1-SI-508L4.6, Revision 1
1-SI-537-L5, Revision 1
1-SI-537-L9.11, Revision 2
1-SI-537-L16.19, Revision 1
1-SI-538-L1.4, Revision 5
1-SI-539.L2.3, Revision 0
1-SI-540-L4.5, Revision 2
1-SI-452.L1, Revision 0
1-SI-543-L1.3, Revision 3
1-SI-544.L1, Revision 1
1-SI-547-L1.4, Revision 2
1-SI-547.L9.11, Revision 2
19. Drawings of RCP Seal Bypass

OP-1-5128A-42
1-CS-766-L2, Revision 1
1-CS-766L5.7, Revision 0
1-CS-771-L1, Revision 1
1-CS-771-L5.6, Revision 0
1-CS-773L1, Revision 1
1-CS-773-L5.11, Revision 1
1-CS-775L1.5, Revision 4
1-CS-775L11.12B, Revision 1
1-CS-775L14.15, Revision 1

OP-1-5142-35
1-SI-508L1.3A, Revision 6
1-SI-537-L1.4, Revision 2
1-SI537-L6.8, Revision 2
1-SI-537-L12.15, Revision 2
1-SI-537-L20.21, Revision 0
1-SI-539.L1, Revision 0
1-SI-540-L1.3, Revision 3
1-SI-541-L1, Revision 1
1-SI-542.L2.3, Revision 1
1-SI-543-L4.6, Revision 3
1-SI-544.L2.3, Revision 0
1-SI-547-L5.8, Revision 0
1-SI-601L1, Revision 0

1-CS-766-L1, Revision 0
1-CS-766-L3.4, Revision 1
1-CS-766-L8.11, Revision 1
1-CS-771-L2.4, Revision 2
1-CS-771-L7.10, Revision 1
1-CS-773-L2.4, Revision 2
1-CS-775L1A.1B, Revision 1
1-CS-775L6.10, Revision 1
1-CS-775L13, Revision 1
1-CS-775L16.21, Revision 1
20. F.P. Incropera and D.P. DeWitt, "Fundamentals of Heat and Mass Transfer," John Wiley and Sons, $3^{\text {rd }}$ Edition.
21. Cook UFSAR, Chapter 5.
22. AEP Drawing 12-5163-9, "Plant Arrangement Sections G-G, H-H, \& K-K Units 1 \& 2."
23. Crane Technical Paper No. 410, "Flow of Fluids," 1986.

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. $025-065-02$	Prepared By R URamosh	Checked By Δn thanp	Page 19
Attachment A			

PURPOSE

The purpose of this attachment is to document that the accumulator fill and RCP bypass seal lines do not heat above $235^{\circ} \mathrm{F}$ during main steam line break conditions in containment.

APPROACH

Forced convection heat transfer from the containment atmosphere to exposed piping is calculated as:

$$
\mathrm{q}_{\mathrm{f}}^{\prime \prime}=\mathrm{h} \mathrm{~A}\left(\mathrm{~T}_{\mathrm{cont}}-\mathrm{T}_{\mathrm{pipe}}\right)
$$

where:

$\mathrm{q}_{\mathrm{f}}^{\prime \prime}$	$=$ heat transfer rate
h	$=$ convective heat transfer coefficient
$\mathrm{T}_{\text {cont }}=$	temperature of the containment as a function of time
$\mathrm{T}_{\text {pipe }}=$	temperature of water in the pipe

To determine the peak temperature during steam line break, the convective heat transfer coefficient is determined and used in the equation above.

A. 1 Calculation of Heat Tramsfer Coefficient

For a cylinder in cross flow the heat transfer coefficient is calculated as follows (from Reference 20, page 344):

$$
h=(k / D) C(R e)^{m}(P r)^{1 / 3}
$$

Where:
Re $=$ Fluid Reynolds Number
$\operatorname{Pr}=$ Fluid Prandtl Number
$\mathrm{k}=$ Fluid thermal conductivity ($\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$)
$\mathrm{D}=$ Outer diameter of cylinder (ft)
C, $m=$ Correlation constants as follows:

	$\begin{array}{ll} & \text { MPR Associates, Inc. } \\ \text { MPR-2169 Appendix A. } 2 & 320 \text { King Street } \\ & \text { Alexandria, VA } 22314\end{array}$		
Calculation No. 025-065-02	Prepared By	Checked By S 1 Hasp	Page 20
$\underline{\mathrm{Re}}$	C	m	
0.4-4	0.989	0.330	
4-40	0.911	0.385	
40-4,000	0.683	0.466	
4,000-40,000	0.193	0.618	
40,000-400,000	0.027	0.805	

The Reynolds Number is equal to:

$$
\operatorname{Re}=(V \mathrm{D}) / \nu^{\prime}
$$

Where:

$$
\begin{aligned}
& \mathrm{V}=\text { Fluid velocity }(\mathrm{ft} / \mathrm{sec}) \\
& \mathrm{v}^{\prime}=\text { Fluid kinematic viscosity }\left(\mathrm{ft}^{2} / \mathrm{sec}\right)
\end{aligned}
$$

From the above the heat transfer coefficient is dependent on the cylinder diameter, the fluid properties, and the velocity of flow over the cylinder. Conservative values for these parameters are used in this calculation, as follows:

Cylinder Diameter

The heat transfer correlation shows that heat transfer coefficient varies inversely with the diameter. Accordingly, a small diameter will be assumed. The smallest pipe in these lines is $3 / 4$ " nominal, equal to $1.05^{\prime \prime}$ actual outside diameter; this value will be used in this calculation.

Fluid Properties

- Prandtl Number. The equation shows that heat transfer coefficient varies with the cube root of Prandtl number. Review of Appendix A of Reference 20 shows that the Prandtl number for both air and saturated water vapor is less than 1.0 at the temperature range of interest for this calculation. For simplicity and conservatism, use $(\operatorname{Pr})^{1 / 3}=1.0$.
- Thermal Conductivity. The equation shows that heat transfer coefficient varies linearly with thermal conductivity. For conservatism, a high k value is used. From Appendix A of Reference 20, the peak value of k for air or water vapor over the temperature range of $70^{\circ} \mathrm{F}$ to $325^{\circ} \mathrm{F}$ is $0.037 \mathrm{~W} / \mathrm{m}-\mathrm{K}$, which is equal to $0.021 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$.
- Kinematic Viscosity. The equation shows that heat transfer coefficient varies inversely with kinematic viscosity, which in turn varies directly with temperature and inversely with pressure. For conservatism and simplicity, one value of kinematic viscosity will be assumed for the duration of the accident. The

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-02	Prepared By	Checked By ΔR Anep	Page 21

value chosen is the kinematic viscosity of air at 9 psig and $200^{\circ} \mathrm{F}$ of $1.47 \mathrm{E}-4 \mathrm{ft}^{2} / \mathrm{sec}$ (calculated by dividing the viscosity of air from Reference 20, Appendix A by the density at these conditions).

Velocity

Review of isometric drawings (References 18 and 19) shows that almost all piping in both lines is located in the containment pipe tunnel. This volume is located outside of the crane wall and is shielded from the jet effects of the steam line break by the floor at Elevation 612' per plant arrangement drawings (Reference 21). Accordingly, velocities in this volume will likely be small relative to velocities near a postulated steam line break location.

However, steam/air from the break may migrate to the pipe tunnel through leaks and penetrations. As the steam/air mass enters the volume, it will flow around and over these pipe segments and transfer heat by convection. An estimate may be made of the flow velocity by assuming a leak rate from adjacent higher pressure volumes into the pipe tunnel using Darcy's Law:

$$
\Delta \mathrm{P}=(\rho / 144)(\mathrm{fL} / \mathrm{D})\left(\mathrm{V}^{2} / 2 \mathrm{~g}_{\mathrm{c}}\right)
$$

where $\Delta \mathrm{P}=$ the pressure difference across the leak path, $\mathrm{psi} ; \rho=$ density of flowing fluid, $\mathrm{lbm} / \mathrm{ft}^{3} ; \mathrm{f}, \mathrm{L}$ and D describe the flow resistance of the leak path; and $V=$ flow velocity through the leak path, $\mathrm{ft} / \mathrm{sec}$.

Mass flow rate (\underline{M}) is related to velocity as follows:

$$
\underline{\mathbf{M}}=\rho \mathrm{VA}
$$

where $A=$ flow area of the leak path. Rearranging and combining,

$$
\underline{M}=\left[(\rho \Delta \mathrm{P})\left(288 \mathrm{~A}^{2} \mathrm{D} \mathrm{~g}_{\mathrm{c}} / \mathrm{fL}\right)\right]^{1 / 2}
$$

The second term in the above equation reflects the parameters of the leak path and several constants. Replacing this parameter with a hole flow resistance coefficient K gives:

$$
\underline{M}=[(\rho \Delta \mathrm{P}) / \mathrm{K}]^{1 / 2}
$$

Here, K has the units of $\mathrm{psi}-\left(\mathrm{lbm} / \mathrm{ft}^{3}\right) /(\mathrm{lbm} / \mathrm{sec})^{2}$.
Note the following:

- If the flow path between the high pressure and low pressure volumes has a low flow resistance (K value), then the mass flow rate will be high and the volumes will quickly reach equal pressures. In this case the flow velocity will initially be high and then rapidly drop off.

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-065-02	Prepared By	Checked By D R Hango	Page 22

- Conversely, if the flow resistance is high, then the mass flow rates will be lower and the time required to equilibrate in pressure will increase.

Mass entering the containment pipe tunnel will flow around the annulus and over the pipe segments. The velocity of flow can be calculated as a function of time as follows:

Step 1: Calculate the initial number of moles of gas in the pipe tunnel. For initial conditions, assume pipe tunnel is at $120^{\circ} \mathrm{F}$ initially and 14.7 psia . This minimizes the number of moles of air in containment, which will prolong the transient. Moles (n) are calculated from the ideal gas law as follows:

$$
\mathrm{n}=\mathrm{P}(\mathrm{Vol}) /(\mathrm{RT})
$$

where

$$
\begin{array}{ll}
\mathrm{P} & =\text { pressure in the volume, } \mathrm{psia} \\
\mathrm{Vol}=\text { containment volume, } \mathrm{ft}^{3} \\
\mathrm{R} & =\text { universal gas constant, } 10.73 \mathrm{psia}-\mathrm{ft}^{3} / \mathrm{lbmole}-{ }^{\circ} \mathrm{R} \\
\mathrm{~T} & =\text { absolute temperature, }{ }^{\circ} \mathrm{R}
\end{array}
$$

The volume of the dead-ended lower containment space is $61,702 \mathrm{ft}^{3}$ per Table 5.3-1 of the Cook UFSAR (Reference 22).

Step 2: Calculate the mass transferred over a time step into the volume from the higher pressure source. To do this, assume a hole flow resistance parameter K and use the following equation to find a mass flow rate:

$$
\underline{\mathrm{M}}=[(\rho \Delta \mathrm{P}) / \mathrm{K}]^{1 / 2}
$$

using the upstream fluid density.
Step 3: Calculate the mass and pressure in the volume at the end of the time step. Use the ideal gas law to calculate pressure. For conservatism and simplicity, calculate this pressure assuming the temperature in the volume stays constant at the initial condition. (This is conservative because in reality the pressure would increase with temperature, slowing the flow rate into the volume.)

Step 4: Calculate the velocity in the pipe tunnel using the following equation:

$$
\mathrm{V}=\underline{\mathrm{M}} /\left(\rho \mathrm{A}_{\text {cross }}\right)
$$

where $A_{\text {cross }}=$ cross sectional flow area of the pipe tunnel. Since the volume is an annular region with an outer diameter of 115^{\prime}, the average cross sectional area ($A_{\text {cross }}$) of this space is calculated as shown below:

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. $025-0,65-02$	Prepared By netrual	Checked By ΔR Karpo	Page 23

$$
\mathrm{A}_{\text {cross }}=\mathrm{Vol} /(\Pi \text { Diameter })=61,702 \mathrm{ft}^{3} /\left(\Pi 115^{\prime}\right)=171 \mathrm{ft}^{2}
$$

For conservatism, assume that all flow entering the tunnel flows in one direction.
These steps are repeated until the pressure inside the tunnel equals the pressure outside the tunnel, at which time the flow velocity will drop.

The Attachment A, Part 1 spreadsheets attached show the calculation of flow velocity for a range of K values assumed so as to cover the spectrum of flow resistances from large (slow pressurization rate, low velocity for a long duration) to small (high pressurization rate, high velocity for a short duration). Results show that after the first 2-3 seconds the flow velocities in the pipe tunnel are less than 20 feet per second for all ranges of hole resistance parameter. Hence, for conservatism, a value of $20 \mathrm{ft} / \mathrm{sec}$ will be assumed for bulk velocity in the pipe tunnel. Further, to account for local variations and the presence of flow obstructions, this value will be doubled:

$$
\mathrm{V}_{\text {local }}=40 \mathrm{ft} / \mathrm{sec}
$$

This velocity is judged to bound the overall velocity through the pipe tunnel due to other effects as well (natural circulation, ventilation system discharge, etc.).

Heat Transfer Coefficient Calculation

Using the velocity and other parameters calculated above gives the following value for Reynolds Number:

$$
\operatorname{Re}=(\mathrm{V} \mathrm{D}) / v^{\prime}=(40 \mathrm{ft} / \mathrm{sec})\left(1.05^{\prime \prime}\right)(1 \mathrm{ft} / 12 \text { inches }) /\left(1.47 \mathrm{E}-4 \mathrm{ft}^{2} / \mathrm{sec}\right)=23,000
$$

Using this value for Reynolds Number and the corresponding values for C and m gives the following value for heat transfer coefficient:

$$
\begin{aligned}
\mathrm{h} & =(\mathrm{k} / \mathrm{D}) \mathrm{C}(\mathrm{Re})^{\mathrm{m}}(\operatorname{Pr})^{1 / 3} \\
& =\left[\left(0.021 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}\right)(12 \text { inch } / 1 \mathrm{ft}) /\left(1.05^{\prime \prime}\right)\right](0.193)(23,000)^{0.618}(1.0) \\
& =23 \mathrm{BTU} / \mathrm{hr}^{-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}}
\end{aligned}
$$

A. 2 Calculation of Temperature During Break Conditions

The heat transferred (Q , in BTU's) during a time step (dt) from the containment atmosphere to a pipe is calculated as follows:

$$
\mathrm{Q}=\mathrm{h} \mathrm{~A}\left(\mathrm{~T}_{\text {cont }}-\mathrm{T}_{\text {pipe }}\right)(\mathrm{dt})
$$

	$\begin{array}{ll} & \text { MPR Associates, Inc. } \\ \text { MPR-2169 Appendix A. } 2 & 320 \text { King Street }\end{array}$		
Calculation No. 025-065-02	Prepared By $\beta<\sqrt{1 N e o s h}$	Checked By ΔN Hapo	Page 24

The heat transferred will heat up the pipe and water as follows:

$$
\Delta T=Q /\left[\left(m_{W} C_{p, W}\right)+\left(m_{P} C_{p, p}\right)\right]
$$

where

$\Delta \mathrm{T}$	$=$	temperature increase $\left({ }^{\circ} \mathrm{F}\right)$ due to transfer of Q BTU's
$\mathrm{m}_{\mathrm{W},}, \mathrm{m}_{\mathrm{P}}$	$=$	mass of water and pipe, lbm
$\mathrm{C}_{\mathrm{p}, \mathrm{W}}, \mathrm{C}_{\mathrm{p}, \mathrm{P}}$	$=$	specific heat of water and pipe, $\mathrm{BTU} / \mathrm{lbm}-{ }^{\circ} \mathrm{F}$

Per Crane (Reference 23), for the $3 / 4$ " schedule 160 pipe:
Mass of metal $=1.94$ pounds $/ \mathrm{ft}$
Mass of water $=0.128$ pounds $/ \mathrm{ft}$
Surface area per foot $=0.275$ square feet per foot
Also:

Heat capacity of metal $=477 \mathrm{~J} / \mathrm{kg} \mathrm{K}=0.11 \mathrm{BTU} / \mathrm{lbm}-{ }^{\circ} \mathrm{F}$ (per Reference 20, Table A. 1 for 304)
Heat capacity of water $=1.0 \mathrm{BTU} / \mathrm{lbm}-{ }^{\circ} \mathrm{F}$
Therefore:

$$
\begin{aligned}
\Delta \mathrm{T} & =\mathrm{Q} /\left[\left(\mathrm{m}_{\mathrm{W}} \mathrm{C}_{\mathrm{p}, \mathrm{~W}}\right)+\left(\mathrm{m}_{\mathrm{p}} \mathrm{C}_{\mathrm{p}, \mathrm{P}}\right)\right] \\
& =\mathrm{Q} /\left[(0.128 \text { pounds } / \mathrm{ft})\left(1.0 \mathrm{BTU} / \mathrm{lbm}-{ }^{\circ} \mathrm{F}\right)+(1.94 \text { pounds } / \mathrm{ft})\left(0.11 \mathrm{BTU} / \mathrm{lbm}-{ }^{\circ} \mathrm{F}\right)\right] \\
& =\mathrm{Q} /\left(0.341 \mathrm{BTU} /{ }^{\circ} \mathrm{F}-\mathrm{ft}\right)
\end{aligned}
$$

Combining the above,

$$
\Delta \mathrm{T} \text { per time step }=\mathrm{Q} /\left[\left(\mathrm{m}_{\mathrm{w}} \mathrm{C}_{\mathrm{p}, \mathrm{~W}}\right)+\left(\mathrm{m}_{\mathrm{p}} \mathrm{C}_{\mathrm{p}, \mathrm{p}}\right)\right]=\left[\mathrm{hA}\left(\mathrm{~T}_{\text {cont }}-\mathrm{T}_{\mathrm{pipe}}\right)(\mathrm{dt})\right] /\left[\left(\mathrm{m}_{\mathrm{w}} \mathrm{C}_{\mathrm{p}, \mathrm{~W}}\right)+\left(\mathrm{m}_{\mathrm{p}} \mathrm{C}_{\mathrm{p}, \mathrm{P}}\right)\right]
$$

The Attachment A, Part 2 spreadsheet calculates the peak temperature for the main steam line break using this equation and incrementing over the 127 second interval when the containment temperature is above $235^{\circ} \mathrm{F}$. For conservatism and simplicity:

- The containment temperature is assumed to be constant at $325^{\circ} \mathrm{F}$ for the first 127 seconds following the accident. This bounds the temperature profiles for the two main steam line breaks considered in Reference 12.
- The heat transfer coefficient is conservatively set to $25 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$. Note that this heat transfer coefficient is for cross flow across a cylinder. This value is conservative because it exceeds the heat transfer coefficient calculated for almost the entire accident scenario, and since it represents cross flow

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. $025-065-02$		Checked By $D R$ Hayp	Page 25

heat transfer (whereas most piping in these two segments runs parallel to the flow in the annulus, and thus experiences less effective heat transfer).

- Only the $3 / 4$ " pipe is considered, since it has a more limiting ratio of surface area to mass per unit length, and will therefore heat more quickly than larger pipes.

RESULTS

Results from the Attachment A, Part 2 spreadsheet indicate that the peak temperature achieved during steam line breaks is less than the $235^{\circ} \mathrm{F}$ assumed for LOCA events; accordingly, $235^{\circ} \mathrm{F}$ is the appropriate peak temperature in these segments.

MPR-2169 Appendix A. 2
Calculation 025-065-02
Attachment A, Part 1

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by:
 Checked by: \qquad

Constants Used in Calculation:

Total Volume of Pipe Tunnel:	$61,702 \mathrm{ft}^{\wedge} 3$
Mean Diameter of Pipe Tunnel:	115 ft
Cross Sectional Area of Pipe Tunnel:	$171 \mathrm{ft}^{\wedge} 2[$ = Volume $/$ (pi * Diameter)]
Mole Weight of Upstream Gas (air):	$29 \mathrm{lb} / \mathrm{bmole}$
Temperature of Upstream Gas:	325 deg F
Size of Time Step:	1 sec
Universal Gas Constant (R):	$10.73 \mathrm{psia}-\mathrm{ft}^{\wedge} 3 / \mathrm{lbmole} \mathrm{deg} \mathrm{R}$

Calculation of Velocity versus Time:

See spreadsheets on following pages for various values of flow resistance parameter (K) for leakage path from the lower containment volume into the pipe tunnel.

Results:
The figure below shows velocity as a function of flow resistance parameter (K) over the course of the main steam line break transient.

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: Th Fusel Checked by: A \& Kayo

Time	Initial Annulus Pressure	Initial Annulus Temp	Initial Annulus Mass	Upstream Press	Upstream Density	Mass Flow Rate	Mass xferred	$\begin{aligned} & \text { New } \\ & \text { Annulus } \\ & \text { Mass } \end{aligned}$	New Annulus Press		Annulus Velocity
sec	psia	deg F	Ibmoles	psia	$1 \mathrm{bm} \mathrm{Ha}^{\wedge} 3$	Ibmisec	limole	bmole	psia	$\mathrm{lbm} / \mathrm{A}^{\text {N }}$ 3	fusec
0.0	14.7	120	145.74	23.7	0.081598						
1.0	14.7	120	145.74	23.7	0.081598	38.324	1.322	147.065	14.833	0.06912	3.25
2.0	14.833	120	147.06	23.7	0.081598	38.039	1.312	148.377	14.966	0.06974	3.19
3.0	14.966	120	148.38	23.7	0.081598	37.755	1.302	149.679	15.097	0.07035	3.14
4.0	15.097	120	149.68	23.7	0.081598	37.470	1.292	150.971	15.227	0.07096	3.09
5.0	15.227	120	150.97	23.7	0.081598	37.185	1.282	152.253	15.357	0.07156	3.04
6.0	15.357.	120	152.25	23.7	0.081598	36.900	1.272	153.525	15.485	0.07216	2.99
7.0	15.485	120.	153.53	23.7	0.081598.	36,615	1.263	154.788	15.612	0.07275	2.95
8.0	15.612	120	154.79	23.7	0.081598	36.330	1.253	156.044	15.739.	0.07334	2.90
9.0	15.739	120	156.04	23.7	0.081598	36.045	1.243.	157.284	15.864	0.07392	2.86
10.0	15.864	120	157.28	23.7	0.081598	35.760	1.233	158.517	15.988	0.07450	2.81
11.0	15.988	120	158.52	23.7	0.081598	35.475	1.223	159.740	16.112	0.07508	2.77
12.0	16.112	120	159.74	23.7	0.081598	35.190	1.213	160.953	16.234	0.07565	2.72
13.0	16.234	120	160.95	23.7	0.081598	34.906	1.204	162.157	16.356	0.07621	2.68
14.0	16.356	120	162.16	23.7	0.081598	34.621	1.194	163.351	16.476	0.07678	2.64
15.0	16.476	120	163.35	23.7	0.081598	34.336	1.184	164.535	16.595	0.07733	2.60
16.0	16.595	120	164.53	23.7	0.081598	34.051	1.174	165.709	16.714	0.07788	2.56
17.0	16.714	120	165.71	23.7	0.081598	33.766	1.164	166.873	16.834	0.07843	2.52
18.0	16.831	120	166.87	23.7	0.081598	33.481	1.155	168.028	16.948	0.07897	2.48
19.0	16.948	120	168.03	23.7	0.081598	33.196	1.145	169.172	17.063	0.07951	2.44
20.0	17.063	120	169.17	23.7	0.081598	32.911	1.135	170.307	17.178	0.08004	2.41
21.0	17.178	120	170.31	23.7	0.081598	32.626	1.125	171.432	17.291	0.08057	2.37
22.0	17.291	120	171.43	23.7	0.081598	32.341	1.115	172.548	17.404	0.08110	2.34
23.0	17.404	120	172.55	23.7	0.081598	32.055	1.105	173.653	17.515	0.08162	2.30
24.0	17.515	120	173.65	23.7	0.081598	31.770	1.096	174.748	17.626	0.08213	2.26
25.0	17.626	120	174.75	23.7	0.081598	31.485	1.086	175.834	17.735	0.08264	2.23
26.0	17.735	120	175.83	23.7	0.081598	31.200	1.076	176.910	17.844	0.08315	2.20
27.0	17.844	120	176.91	23.7	0.081598	30.915	1.086	177.976	17.951	0.08365	2.16
28.0	17.951	120	177.98	23.7	0.081598 .	30.630	1.056	179.032	18.058	0.08415	2.13
29.0	18.058	120	179.03	23.7	0.081598	30.345	1.046.	180.079	18.163	0.08464	2.10
30.0	18.163	120	180.08	23.7	0.081598	30.060	1.037	181.115	18.268	0.08512	2.07
31.0	18.268	120	181.12	23.7	0.081598	29.775	1.027	182.142	18.371	0.08561	2.04
32.0	18.371	120	182.14	23.7	0.081598	29.489	1.017	183.159	18.474	0.08608	2.01
33.0	18.474	120	183.16	23.7	0.081598	29.204	1.007	184.166	18.575	0.08656	1.98
34.0	18.575	120	184.17	23.7	0.081598	28.919	0.997	185.163	18.676	0.08703	1.95
35.0	18.676	120	185.16	23.7	0.081598	28.634	0.987	186.150	18.776	0.08749	1.92
36.0	18.776	120	186.15	23.7	0.081598	28.349	0.978	187.128	18.874	0.08795	1.89
37.0	18.874	120	187.13	23.7	0.081598	28.063	0.968	188.096	18.972	0.08841	1.86
38.0	18.972	120	188.10	23.7	0.081598	27.778	0.958	189.054	19.068	0.08886	1.83
39.0	19.068	120	189.05	23.7	0.081598	27.493	0.948	190.002	19.164	0.08930	1.80
40.0	19.164	120	190.00	23.7	0.081598	27.208	0.938	190.940	19.259	0.08974	1.78
41.0	19.259	120	190.94	23.7	0.081598	26.922	0.928	191.868	19.352	0.09018	1.75
42.0	19.352	120	191.87	23.7	0.081598	26.637	0.919	192.787	19.445	0.09061	1.72
43.0	19.445	120	192.79	23.7	0.081598	26.352	0.909	193.695	19.537	0.09104	1.69
44.0	19.537	120	193.70	23.7	0.081598	26.066	0.899	194.594	19.627	0.09146	1.67
45.0	19.627	120	194.59	23.7	0.081598	25.781	0.889 .	195.483	19.717	0.09188	1.64
46.0	19.717	120	195.48	23.7	0.081598	25.496	0.879	156.362	19.806	0.09229	1.62
47.0	19.806	120	196.36	23.7	0.081598	25.210	0.869	197.232	19.893	0.09270	1.59
48.0	19.893	120	197.23	23.7	0.081598	24.925	0.859	198.091	19.980	0.09310	1.57
49.0	19.980	120	198.09	23.7	0.081598	24.639	0.850	198.941	20.066	0.09350	1.54
50.0	20.066	120	198.94	23.7	0.081598	24.354	0.840	199.781	20.150	0.09390	1.52
51.0	20.150	120	199.78	23.7	0.081598	24.068	0.830	200.610	20.234	0.09429	1.49
52.0	20.234	120	200.61	23.7	0.081598	23.783	0.820	201.431	20.317	0.09467	1.47
53.0	20.317	120	201.43	23.7	0.081598	23.497	0.810	202.241	20.398	0.09505	1.45
54.0	20.398	120	202.24	23.7	0.081598	23.212	0.800	203.041	20.479	0.09543	1.42
55.0	20.479	120	203.04	23.7	0.081598	22.926	0.791	203.832	20.559	0.09580	1.40
56.0	20.559	120	203.83	23.7	0.081598	22.641	0.781	204.613	20.638	0.09617	1.38
57.0	20.638	120	204.61	23.7	0.081598	22.355	0.771	205.383	20.715	0.09653	1.36
58.0	20.715	120.	205.38 :	23.7	0.081598	22.070	0.761	206.144	20.792	0.09689	1.33
59.0	20.792	120	206.14	23.7	0.081598	21.784	0.751	206.896	20.868 .	0.09724	1.31
60.0	20.868	120	208.50	23.7	0.081598	21.498	0.741	207.637	20.943	0.09759	1.29
61.0	20.943	120	207.64	23.7	0.081598	21.213	0.731	208.368	21.016	0.09793	1.27
62.0	21.016	120	208.37	23.7	0.081598	20.927	0.722	209.090	21.089	0.09827	1.25
63.0	21.089	120	209.09	23.7	0.081598	20.641	0.712	209.802	21.161	0.09861	1.23
64.0	21.161	120	209.80	23.7	0.081598	20.355	0.702	210.504	21.232	0.09894	1.20
65.0	21.232	120	210.50	23.7	0.081598	20.070	0.692	211.196	21.302	0.09926	1.18
66.0	21.302	120	211.20	23.7	0.081598	19.784	0.682	211.878	21.370	0.09958	1.16
67.0	21.370	120	211.88	23.7	0.081598	19.498	0.672	212.550	21.438	0.09980	1.14

MPR-2169 Appendix A. 2
Calculation 025-065-02
Attachment A, Part 1

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: 3 uTheosh
Checked by: \& \&

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: 22 e Raxad
Checked by: $A B$ ARyy
$K=0$ Sidercol $p s i-1 \mathrm{~b} / \mathrm{t}^{\wedge} 3 /(\mathrm{lbm} / \mathrm{sec})^{\wedge} 2$

Time		Initial Annulus Temp	Initial Annulus Mass	$\begin{gathered} \text { Upstream } \\ \text { Press } \\ \hline \end{gathered}$	Upstream Densify F	Mass Flow Rata	Mass xderred	New Annulus Mass	New Annulus Press	New Annulus Density	Annulus Velocity
sec	psia	deg F	limmoles	psia	$1 \mathrm{bm} / \mathrm{fl}^{\text {® }}$	$\mathrm{Ibm} / \mathrm{sec}$	Itmole	Ibmola	psia	$\mathrm{lbm} / \mathrm{lf}^{\text {A }}$	fusec
0.0	14.7	120	145.74	23.7	0.081598						
1.0	14.7	120	145.74	23.7	0.081598	85.696	2.955	148.698	14.998	0.06989	7.18
2.0	14.998	120	148.70	23.7	0.081598	84.265	2.906	151.604	15.291	0.07125	6.92
3.0	15.291	120	151.60	23.7	0.081598	82.834	2.856	154.460	15.579	0.07260	6.68
4.0	15.579	120	154.46	23.7	0.081598	81.402	2.807	157.267	15.862	0.07392	6.45
5.0	15.962	120	157.27	23.7	0.081598	79.971	2.758	160.025	16.140	0.07521	6.23
6.0	16.140	120	160.03	23.7	0.081598	78.539	2.708	162.733	16.414	0.07648	6.01
7.0	16.414	120	162.73	23.7	0.084598.	77.107	2.659	165.392	16.682	0.07773	5.81
8.0	16.682	120	165.39	23.7	0.081598	75.675	2.609	168.002	16.945	0.07896	5.61
9.0	16.945	120	168.00	23.7	0.081598	74.242	2.560	170.562	17.203	0.08016	5.42
10.0	17.203	120	. 170.56	23.7	0.081598.	72.809	2.511	173.072	17.456	0.08134	5.24
11.0	17.456	120	173.07	23.7	0.081598	71.376	2.461	175.534	17.705	0.08250	5.07
12.0	17.705	120	175.53	23.7	0.081598	69.943	2.412	177.945	17.948	0.08363	4.90
13.0	17.948	120	177.95	23.7	0.081598	68.509	2.362	180.308	18.186	0.08474	4.73
14.0	18.186	120	180.31	23.7	0.081598	67.075	2.313	182.621	18.420	0.08583	4.58
15.0	18.420	120	182.62	23.7	0.081598	65.641	2.263	184.884	18.648	0.08690	4.42 4.28
16.0	18.648	120	184.88	23.7	0.081598	64.206	2.214	187.098	18.671	0.08794 0.08895	4.28 4.13
17.0	18.871	120	187.10	23.7	0.081598	62.771	2.165	189.26	19.089	0.08895	4.13 3.99
18.0	19.089	120	189.26	23.7	0.081598	61.336	2.115	191.378	19.303	0.08995	3.86
19.0	19.303	120	191.38	23.7	0.081598	59.900	2.066	33.4	19.511	0.09092	3.86 3.73
20.0	19.511	120	193.44	23.7	0.081598	58.464	2.016	195.459	19.714	0.09279	3.60
21.0	19.714	120	195.46	23.7	0.081598	57.027	1.966	197.426	19.913	0.09279	3.60 3.47
22.0	19.913	120	197.43	23.7	0.081598	55.590	1.917	199.343	20.100	0.09457	3.35
23.0	20.106	120	199.34	23.7	0.081598	54.153	1.867	01	20.294	0.09457	3.35 3.23
24.0	20.294	120	201.21	23.7	0.081598	52.714	1.818	203.028	20.478	0.09625	3.12
25.0	20.478	120	203.03	23.7	0.081598	51.276	1.768	204.796	20.656 20.829	0.09706	3.12 3.01
26.0	20.656	120	204.80	23.7	0.081598	49.837	1.719	208.514	20.998	0.09785	2.90
27.0	20.829	120	206.51	23.7	0.081598	48.397	1.669 1.619	209.802	21.161	0.09861	2.79
28.0	20.998	120	208.18	23.7	0.081598	46.956 45.515	1.619 1.569	214.372	21.319	0.09935	2.68
29.0	21.161	120	209.80	23.7	0.081598	45.515 44.074	1.520	212.892	21.473	0.10006	2.58
30.0	21.319	120	211.37	23.7	0.081598	44.074 42.631	1.470	214.362	21.621	0.10075	2.48
31.0	21.473	120	212.89	23.7	0.081598	42.631 41.188	1.420	215.782	21.764	0.10142	2.38
32.0	21.621	120	214.36	23.7	0.081598	41.188 39.743	1.370	217.152	21.902	0.10206	2.28
33.0	21.764	120	215.78	23.7	0.081598	39.743 38.298	1.321	218.473	22.036	0.10268	2.18
34.0	21.902	120	217.15	23.7	0.081598	38.298 36.852	1.271	219.744	22.164	0.10328	2.09
35.0	22.036	120	218.47	23.7	0.081598 0.081598	36.852 35.404	1.221	220.965	22.287	0.10385	2.00
36.0	22.164	120	219.74	23.7	0.081598 0.081598	35.404 33.956	1.171	222.136	22.405	0.10440	1.90
37.0	22.287	120	220.96	23.7	0.081598 0.081598	33.956 32.506	1.121	223.256	22.518	0.10493	1.81
38.0	22.405	120	222.14	23.7	0.081598 0.081598	32.506 31.054	1.071	224.327	22.626	0.10543	1.72
39.0	22.518	120.	223.26 224.33	23.7	0.081598 0.081598	31.054 29.601	1.021	225.348	22.729	0.10591	1.64
40.0	22.626	120 120	224.33 225.35	23.7	0.081598 0.081598	28.147	0.971	226.319	22.827	0.10637	1.55
41.0 42.0	22.729 22.827	120 120	225.35 226.32	23.7	0.081598	26.690	0.920	227.239	22.920	0.10680	1.46
43.0	22.920	120	227.24	23.7	0.081598	25.231	0.870	228.109	23.008	0.10721	1.38
44.0	23.008	120	228.11	23.7	0.081598	23.770	0.820	228.929	23.090	0.10760	1.29
45.0	23.090	120	228.93	23.7	0.081598	22.306	0.769	229.698	23.168	0.10796	1.21
46.0	23.168	120	229.70	23.7	0.081598	20.838	0.719	230.416	23.240	0.10861	1.04
47.0	23.240	120	230.42	23.7	0.081598	19.368	0.668	231.084 231.701	23.308 23.370	0.10890	0.96
48.0	23.308	120	231.08	23.7	0.081598	17.892	0.617 0.566	232.267	23.427	0.10917	0.88
49.0	23.370	120	231.70	23.7	0.081598	16.412	0.566	232.782	23.479	0.10941	0.80
50.0	23.427	120	232.27	23.7	0.081598	14.926 13.432	0.463	233.245	23.526	0.10963	0.72
51.0	23.479	120	232.78	23.7	0.081598	13.432 11.929	0.411	233.656	23.567	0.10982	0.64
52.0	23.526	120	233.24	23.7	0.081598	11.929 10.414	0.359	234.015	23.603	0.10999	0.55
53.0	23.567	120	233.66	23.7 23.7	0.081598 0.081598	10.414 8.882	0.306	234.322	23.634	0.11013	0.47
54.0	23.603	120	234.02	23.7	7-0.0815988	8.882 7.327	0.253	234.574	23.660	0.11025	0.39
55.0	23.634 23.660	120	234.32 234.57	- 23.7	0.081598	- 5.735	0.198	234.772	23.680	0.11034	0.30
56.0 57.0	23.660 23.680	120	234,77	723.7	0.081598	. 4.076	0.141	234.913	23.694	0.11041	0.22
58.0	- 23.694	120	234.91	1. 23.7	70.081598	- 2.247	: 0.077	234.990	23.702	0.11045	0.12
59.0	- 23.702	120	234.99	- 23.7	70.081598	- 0.000	0.000	234.990	23.702	0.11045	0.00
60.0	- 23.702	120	234.99	- 23.7	70.081598	- 0.000	0.000	234.990	23.702 23.702	0.11045	+ 0.00
61.0	- 23.702	120	234.99	$9 \quad 23.7$	70.081598	0.000	0.000	234.990	23.702 23.702	0.11045	- 0.00
62.0	- 23.702	120	234.99	$9 \quad 23.7$	70.081598	$8 \quad 0.000$	0.000	234.990 234.990	- 23.702	0.11045	50.00
63.0	- 23.702	120	234.99	923.7	$7 \quad 0.081598$	80.000			- 23.702	0.11045	-0.00
64.0	- 23.702	120	234.99	$9 \quad 23.7$	$7 \quad 0.081598$	80.000	0.000 0.000	-234.990	- 23.702	0.11045	50.00
65.0	- 23.702	120	234.99	$9 \quad 23.7$	$7{ }^{7} 0.081598$	$8 \quad 0.000$	0.000 0.000	- 234.990	- 23.702	0.11045	50.00
66.0	- 23.702	120	234.99 234.99	93.7	$\begin{array}{ll}7 & 0.081598 \\ 7 & 0.081598\end{array}$	$8 \quad 0.000$	- 0.000	234.990	- 23.702	0.11045	50.00

$\begin{array}{llllll}67.0 & 23.702 & 120 & 234.99 & 23.7 & 0.081598\end{array}$

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: Wh Chent
Checked by: $1 \quad R$ dotacos
$K=0.0007 \mathrm{psi} \mathrm{H} / \mathrm{ff} \mathrm{A}^{\wedge} 3 /(\mathrm{lbm} / \mathrm{sec})^{\wedge} 2$

Time	Initial Annutus Pressure	Initial Annulus Temp	Initial Annulus Mass	Upstream Press	Upstream Density	Mass Flow Rate	Mass xferted	Now Annulus Mass	New Annulus Prass		Annulus Velocity
sec	psia	deg F	Ibmoles	psia	$1 \mathrm{~mm} / \mathrm{ff}^{\text {/ }} 3$	$\mathrm{lbm} / \mathrm{sec}$	Ibmole	Ibmole	psia	lbmin ${ }^{\text {² }}$	Hisec
68.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
69.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
70.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.950	23.702	0.11045	0.00
71.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
72.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
73.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
74.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
75.0	23.702	120	234:99	23.7	0.081598	0.000	0.000	$234.990{ }^{\circ}$	23.702	0.11045	0.00
76.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
77.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
78.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
79.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
80.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
81.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
82.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
83.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
84.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
85.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
B6.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
87.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
88.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
89.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
90.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
91.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
92.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
93.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
94.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
95.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
96.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
97.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
98.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
99.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
100.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
101.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
102.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
103.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
104.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
105.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
106.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
107.0	23.702	120	234.99	23.7	0.081598	0.000	0.000 .	234.990	23.702	0.11045	0.00
108.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
109.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
110.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
111.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
112.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
113.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
114.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
115.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
116.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
117.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
118.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
119.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
120.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
121.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
122.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.950	23.702	0.11045	0.00
123.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
124.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
125.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
126.0	23.702	120	234.99 :	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
127.0	23.702	120	234.99 -	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
128.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
129.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.990	23.702	0.11045	0.00
130.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.950	23.702	0.11045	0.00

MPR-2169 Appendix A. 2
Calculation 025-065-02
Attachment A, Part 1

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: PCTrowh Checked by: \qquad
$K=0 . c e 005 \mathrm{psi}-\mathrm{H} / \mathrm{t}^{\wedge} 3 /(\mathrm{bm} / \mathrm{sec})^{\wedge} 2$

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: Actuenct
Checked by: $A R$ (1 eng
$K=0.00 c 05 \mathrm{psi}-1 \mathrm{~b} / \mathrm{m}^{\wedge} 3 /(\mathrm{lbm} / \mathrm{sec})^{\wedge} 2$

Time	Initial Annulus Pressure	Initial Annulus Temp	Initial Annulus Mass	Upstream Press	Upstraam Density	Mass Flow Rate	Mass xemed	New Annulus Mass	New Annulus Press	New Annulus Density	Annulus Velocity
sec	psia	degF	Ibmoles	psia	Pmma	$\mathrm{lbm} / \mathrm{sec}$	Ibmole:	Ibmole	psia	famita	fisec
68.0	23.705	120.	235.02	23.7	. 0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
69.0	23.705	-120	235.02	23.7.	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
70.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
71.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
72.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
73.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
74.0	23.705	120	235.02	23.7	0.081598:	0.000	0.000	235.019	23.705	0.11046	0.00
75.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
76.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
77.0	23.705	120	235.02	23.7	0.081598	0.000 .	0.000	235.019	23.705	0.11046	0.00
78.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
79.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
80.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
81.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
82.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
83.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
84.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
85.0	23.705	120	235.02 *	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
86.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
87.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	. 00
88.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
89.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
90.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
91.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
92.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
93.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
94.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
95.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
96.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
97.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.0	23.705	0.11046	0.00
98.0	23.705	120	235.02:	23.7	0.081598	0.000	0.000	235.019.	23.705	0.111046	0.00 0.00
99.0	23.705	120	235.02*	23.7	0.081598	0.000	0.000	235.019.	23.705	0.11046	0.00
100.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
101.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	. 00
102.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	. 00
103.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	. 000
104.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
105.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	. 00
106.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
107.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
108.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
109.0	23.705	120	235:02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
110.0	23.705	120	235.02	23.7	0.081598	0.000	0,000	235.019	23.705	0.11046	0.00 0.00
111.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
112.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
113.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
114.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
115.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705 23.705	0.11046	0.00
116.0	23.705	120	235.02	23.7	0.081598	0.000	0.000	235.019	23.705	0.11046	0.00
117.0	23.705	120	235.02	23.7	0.081598	- 0.000	0.000	235.019	23.705	0.11046	0.00
118.0	23.705	120	235.02	23.7	0.081598	. 0.000	0.000	235.019	23.705	0.11046	0.00
119.0	23.705	120	235.02	23.7	0.081598	3 0.000	0.000	235.019	23.705	0.11046	0.00
120.0	23.705	120	235.02	23.7	0.081598	- 0.000	0.000	235.019	23.705	0.11046	0.00
121.0	23.705	120	235.02	23.7	0.081598	- 0.000	0.000	235.019	23.705 23	0.11046 0.11046	0.00
122.0	23.705	120	235.02	23.7	0.081598	- 0.000	0.000	235.019	23.705	0.11046	0.00
123.0	23.705	120	235.02	23.7	0.081598	80.000	0.000	235.019	23.705	0.11046	0.00
124.0	23.705	120	235.02	233.7	0.081598	$8 \quad 0.000$	0.000	235.019	23.705		
125.0	23.705	120	235.02	23.7	0.081598	B 0.000	0.000	235.019	23.705	0.11046	0.00
126.0	23.705	120	235.02	233.7	0.081598	\% 0.000	0.000	235.019 235.019	23.705 23.705	0.11046 0.11046	0.00
127,0	23.705	120	235.02	$2 \quad 23.7$	0.081598	8.0 .000	0.000	235.019	23.705	0.11046	0.00
128.0	23.705	120	235.02	2. 23.7	0.081598	8 . 0.000	0.000	235.019	23.705	0.11046	0.00
129.0	23.705	120	235.02	233.7	0.081598	B 0.000	0.000	235.019	23.705	0.11046	0.00
130.0	23.705	120	235.02	23.7	70.081598	80.000	0.000	235.019	23.05	0.11046	

Time	Initial Annulus Pressure	Initial Annulus Temp	$\begin{aligned} & \text { Initial } \\ & \text { Annulus } \\ & \text { Mass } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Upstream } \\ \text { Press } \\ \hline \end{array}$	Upstream Density	Mass Flow Rate	Mass xferred	\qquad	New Annulus Press		Annulus Velocity
sec	psia	$\operatorname{deg} F$	Ibmoles	psia	lbmit ${ }^{\text {d }}$	$\mathrm{lbm} / \mathrm{sec}$	libmole	lbmole	psia	Ibmin^3	fisec
0.0	14.7	120	145.74	23.7	0.081598						
1:0	14.7	120	145.74	23.7	0.081598	270.994	9.345	155.088	15.643	0.07289	21.77
2.0	15.643	120	155.09	23.7	0.081598	256.412	8.842	163.930	16.534	0.07705	19.49
3.0	16.534	120	163.93	23.7	0.081598	241.806	8.338	172.268	17.375	0.08097	17.49
4.0	17.375	120	172.27	23.7	0.081598	227.173	7.834	180.102	18.165	0.08465	15.71
5.0	18.165	120	180.10	23.7	0.081598	212.510	7.328	187.429	18.905	0.08809	14.13
6.0	18.905	120	187.43	23.7	0.081598	197.812	6.821	194.251	19.593	0.09130	12.69
7.0	19.593	120	194.25	23.7	0.081598	183.073	6.313	200.563	20.229	0.09427	11.37
8.0	20.229	120	200.56	23.7	0.081598	168.286	5.803	206.366	20.815	0.09699	10.16
9.0	20.815	120	206.37	23.7	0.081598	153:442.	5.291	211.658	21.348	0.09948	9.03
10.0	21.348	120	211.66	23.7	0.081598	138.527	4.777	216.434.	21.830	0.10172	7.97
11.0	21.830	120	216.43	23.7	0.081598	123.525	4.259	220.694	22.260	0.10373	6.97
12.0	22.260	120	220.69	23.7	0.081598	108.410	3.738	224.432	22.637	0.10548	6.02
13.0	22.637	120	224.43	23.7	0.081598	93.146	3.212	227.644	22.961	0.10699	5.10
14.0	22.961	120	227.64	23.7	0.081598	77.670	2.678	230.322	23.231	0.10825	4.20
15.0	23.231	120	230.32	23.7	0.081598	61.874	2.134	232.456	23.446	0.10925	3.32
16.0	23.446	120	232.48	23.7	0.081598	45.524	1.570	234.026	23,604	0.10999	2.42
17.0	23.604	120	234.03	23.7	0.081598	27.937	0.963	234.989	23.702	0.11045	1.48
18.0	23.702	120	234.99	23.7	0.081598 .	0.000	0.000	234.989	23.702 .	0.11045	0.00
19.0	23.702	120	234.99	23.7	0,081598	0.000	0.000	234.989	23.702	0.11045	0.00
20.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
21.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
22.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
23.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
24.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
25.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
26.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
27.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
28.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
29.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
30.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
31.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
32.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
33.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
34.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
35.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
36.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
37.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
38.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
39.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
40.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
41.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
42.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
43.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
44.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
45.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
46.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234:989	23.702.	0.11045	0.00
47.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
48.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
49.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
50.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234,989	23.702.	0.11045	0.00
51.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
52.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
53.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
54.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
55.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
56.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
57.0	23.702.	120	234.99:	- 23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
58.0	23.702	120	234,99.	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
59.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702.	0.11045	0.00
60.0	23.702	120	234.99 -	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
61.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
62.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
63.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
84.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
65.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
66.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
67.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: \$2 $072 \cos 2$ Checked by: AR stakp
$K=0,0,10001 \mathrm{psi}-\mathrm{B} / \mathrm{ft}^{\wedge} 3 /(\mathrm{bm} / \mathrm{sec})^{\wedge} 2$

Time	Initial Annulus Pressura	Initial Annulus Temp	Initial Annulas Mass	Upstream Press	Upstream Density	Mass Flow Rate	Mass xferred	Now Annulus Mass	New Annulus Press	New Annulus Density	Annulus Velocity
sec ..	psia	$\operatorname{deg} F$	Ibmoles	psia	1bm/t^3	1bm/sec	Ibmole	ibmole	Psia	Jbm/fin	ftsec
68.0	23.702	$\therefore 120$:234.39:	23.7 .	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
69.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
70.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
71.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
72.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
73.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
74.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
75.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
76.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
77.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
78.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
79.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
80.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
81.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
82.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
83.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
84.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
85.0	23.702	120.	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
88.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
87.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
88.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
89.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
90.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
91.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
92.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
93.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
94.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
95.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
96.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
97.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
98.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
99.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
100.0	23.702	120	234.99	23.7	0.081598	0.000	0.000 .	234.989	23.702	0.11045	0.00
101.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
102.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
103.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
104.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
105.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
106.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
107.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
108.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
109.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
110.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
111.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
112.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
113.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
114.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
115.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
116.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
117.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
118.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
119.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
120.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
121.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
122.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
123.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
124.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
125.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
126.0	23.702	120.	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
127.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
128.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
129.0	23.702	120	234.99	23.7	0.081598	0.000	0.000	234.989	23.702	0.11045	0.00
130.0	23.702	120	234.99	23.7	0.081598	0.600	0.000	234.989	23.702	0.11045	0.00

Velocity Calculation as a Function of Hole Resistance Parameter K

Prepared by: RrCoven 2
Checked by: $A R \quad 16 \arg$

Attachment A, Part 1
$K=0.003605] \mathrm{psi}-1 \mathrm{~b} / \mathrm{A}^{\wedge} 3 /(\mathrm{lbm} / \mathrm{sec})^{\wedge} 2$

Revision 0

Velocity Calculation as a Function of Hole Resistance Parameter K

Time	Initial Annulus Pressure	\|nitial Annulus Temp	Initial Annulus Mass	Upstream Press	Upstream Density	$\begin{gathered} \text { Mass } \\ \text { Flow Rate } \\ \hline \end{gathered}$	Mass x ferred	New Annulus Mass	New Annulus Press	New Annulus Density	Annulus Velocity
sec	psia	deg $\mathrm{F}^{\text {a }}$	Ibmoles	psia	Ibmifi ${ }^{\text {a }}$	$\mathrm{lmm} / \mathrm{sec}$	Ibmola	limola	psia	$1 \mathrm{bm} / \mathrm{t}^{\wedge} 3$	Atsec
68.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
69.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
70.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
71.0	23.342	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
72.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
73.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
74.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
75.0	23.742	120 -	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
76.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
77.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
78.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
79.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
80.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
81.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
82.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
83.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
84.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
85.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
86.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
87.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	742	0.11063	0.00
88.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
89.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	00
90.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
91.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
92.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
93.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
94.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	. 00
95.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
96.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
97.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
98.0	23.742	.120.	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00 0.00
99.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00 0.00
100.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742 23.742		
101.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742 23.742	0.11063	0.00
102.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742 23.742	0.11003	0.00
103.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742 23.742	0.11063	0.00
104.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742 23.742	0.11063	0.00
105.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393 235.393	23.742 23.742	0.11063	0.00
106.0	23.742	120	235.39	23.7	0.081598	0.000	0.000 0.000	235.393	23.742	0.11063	0.00
107.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
108.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
109.0	23.742	120	235.39	23.7 23.7	0.081598 0.081598	0.000 0.000	0.000	235.393	23.742	0.11063	0.00
110.0	23.742 23.742	120 120	235.39 235.39	23.7 23.7	0.081598 0.081598	0.000 0.000	0.000	235.393	23.742	0.11063	0.00
111.0 112.0	23.742 23.742	120 120	235.39 235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
113.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
114.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	. 00
115.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
116.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
117.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	O
118.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	. 0.0
119.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	. 00
120.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
121.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
122.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
123.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742 23.742	0.11063 0.11063	0.00
124.0	23.742	120	235.39	23.7	0.081598	0.000	0.000	235.393	23.742	0.11063	0.00
125.0	23.742	120	235.39	23.7	0.081598	- 0.000	0.000	235.393	23.742	0.11063	0.00
126.0	. 23.742	120	235.39	923.7	0.081598	- 0.000	0.000	235.393 $235: 393$	23.742 23.742	0.11083	0.00
127.0	- 23.742	120	235.39	- 23.7	0.081598	-0.000 0.000	0.000	235.393	23.742	0.11083	0.00
128.0	- 23.742	120	235.39	23.7 23.7	0.081598 0.081598	- $\begin{aligned} & 0.000 \\ & 0.000\end{aligned}$	0.000	235.393	23.742	0.11063	0.00
129.0	- 23.742	120	235.39 235.39	23.7 23.7	-0.081598	- 0.000	0.000	235.393	23.742	0.11063	0.00

	Pipe	New
s	Temp	Pipe
Increase	Temp	
ft	deg F	deg F

0.0
$\begin{array}{lllllllll}1.0 & 120.000 & 325 & 25 & 0.275 & 1408.808 & 0.391 & 1.146 & 121.146\end{array}$
$2.0 \quad 121.14$
3.0122 .28
4.0123 .42
5.0124 .547
6.0125 .66
$7.0 \quad 126.782$
$8.0 \quad 127.89$
$9.0 \quad 128.993$
$10.0 \quad 130.08$
$11.0 \quad 131.179$
120132.26
$13.0 \quad 133.340$
14.0134 .412
$15.0 \quad 135.477$
16.0136 .537
17.0137 .591
$18.0 \quad 138.639$
19.0139 .681
20.0140 .717
21.0141 .74
22.0142 .772
23.0143 .791
24.0144 .804
$25.0 \quad 145.812$
26.0146 .814
27.0147 .810
$28.0 \quad 148.801$ 29.0149 .786 30.0150 .766 31.0151 .740 $32.0 \quad 152.709$ 33.0153 .672 34.0154 .630 35.0155 .583 36.0156 .530 37.0157 .472 $38.0 \quad 158.409$ 39.0159 .340 $\begin{array}{ll}40.0 & 160.26 \\ 41.0 & 161.18\end{array}$ $42.0 \quad 162.10$ $43.0 \quad 163.015$ 44.0163 .920 $45.0 \quad 164.821$ 46.0165 .717 $47.0 \quad 166.607$ $49.0 \quad 168.37$ 50.0169 .250 52.0170 .986 $53.0 \quad 171.848$ $54.0 \quad 172.70$ $55.0 \quad 173.556$ $56.0 \quad 174.402$ $57.0 \quad 175.244$ 58.0176 .082 59.0176 .914 60.0177 .742 61.0178 .566 $62.0 \quad 179.385$

325
325
325
325

325

\square
\square 325 25 325 325 325 325
325 325
\square 325 325
\square 325
\square 5 325 325 25 325 325 325 325
325 325

325

\square N 325 325 325
325 325 325
325 325 325 325 . 325
5
325

25 25 25
25
25
25

25	0.275
25	0.275

1408.808

Pipe Surface Area (A)	
$\mathrm{ft}^{\wedge} 2$ per ft	BTU

63.0	180.199
64.0	181.009

65.0181 .814
67.0183 .410
68.0184 .202
69.0184 .989
70.0185 .772 71.0186 .551 72.0187 .325 73.0188 .095 74.0188 .860 75.0189 .622 76.0190 .378 77.0191 .131 78.0191 .880 79.0192 .624 800193.364325 81.0194 .160 82.0194 .832 $83.0 \quad 195.560 \quad 325$ $84.0196 .284 \quad 325$ $85.0197 .004 \quad 325$ $86.0197 .719 \quad 325$ $87.0198 .431 \quad 325$ $88.0199 .139 \quad 325$ 89.0199 .842325 90.0200 .542325 $\begin{array}{lll}91.0 & 201.238 & 325 \\ 92.0 & 201.930 & 325\end{array}$ $93.0202 .618 \quad 325$ $94.0203 .303 \quad 325$ $95.0203 .983 \quad 325$ $96.0 \quad 204.660 \quad 325$ $\begin{array}{lll}97.0 & 205.333 & 325 \\ 98.0 & 206.002 & 325\end{array}$ 99.0206 .667 100.0207 .329 101.0207 .987 102.0208 .641
103.0209 .292 104.0209 .939 105.0210 .582 106.0211 .222 107.0211 .858 108.0212 .491 109.0213 .120 110.0213 .745 111.0214 .368 112.0214 .986 113.0215 .601 $114.0216 .213 \quad 325$ $115.0216 .821 \quad 325$ 116.0217 .426325 $117.0218 .028 \quad 325$ 118.0218 .626 $119.0 \quad 219.221 \quad 325$. 120.0219 .812325 $121.0220 .400 \quad 325$ 122.0220 .985 123.0221 .557 $124.0222 .145 \quad 325$ $125.0222 .720 \quad 325$ 126.0223 .292 .325
25
25
25
0.275
0.275

995.107	0.27
989.543	0.27

Pipe
Surface
Area (A)
$\mathrm{ff}^{\wedge} 2$ per ft

Heat Transfer Rate	BTU's Transferred
BTURr	BTU

Pipe
Temp

			Embumit
Matardeet	535		
Waters	15x		
		Total	0.34

Pipeoco	3	138
Plozewall		
dxtisus	Exaxay	380

Time	Inítial Pipe Temp	$\begin{array}{\|l\|} \hline \text { Air } \\ \hline \text { Temp } \\ \hline \end{array}$	Heat Transfer Coefficient th	Pipe Surface Area (A)	Heat Transfer Rate	BrU's Transferred	Pipe Temp Increase	New Pipe Temp
sec	deg F	deg F	BTU/hr-ft^2-F	$\mathrm{ff}^{\wedge} 2$ per ft	BTUhr perft\|	BTLIft	$\operatorname{deg} F$	$\operatorname{deg} F$
191.0	225.712	230	25	0.275	29.469	0.008	0.024	225.736
192.0	225.736	230	25	0.275	29.304	0.008	0.024	225.760
193.0	225.760	230	25	0.275	29.140	0.008	0.024	225.783
194.0	225.783	230	25	0.275	28.977	0.008	0.024	225.807
195.0	225.807	230	25	0.275	28.815	0.008	0.023	225.830
196.0	225.830	230	25	0.275	28.654	0.008	0.023	225.854
197.0	225.854	230	25	0.275	28.494	0.008	0.023	225.877
198.0	225.877	230	25	0.275	28.334	0.008	0.023	225.900
199.0	225.900	230	25	0.275	28.176	0.008	0.023	225.923
200.0	225.923	230	25	0.275	28.018	0.008	0.023	225.946
201.0	225.946	230	25	0.275	27.862	0.008	0.023	225.968
202.0	225.968	230	25	0.275	27.706	0.008	0.023	225.991
203.0	225.991	230	25	0.275	27.551	0.008	0.022	226.013
204.0	226.013	230	25	0.275	27.397	0.008	0.022	226.036
205.0	226.036	230	25	0.275	27.244	0.008	0.022	226.058
206.0	226.058	230	25	0.275	27.091	0.008	0.022	226.080
207.0	226.080	230	25	0.275	26.940	0.007	0.022	226.102
208.0	226.102	230	25	0.275	26.789	0.007	0.022	226.124
209.0	226.124	230	25	0.275	26.639	0.007	0.022	226.145
210.0	226.145	230	25	0.275	26.491	0.007	0.022	226.167
211.0	226.167	230	25	0.275	26.342	0.007	0.021	226.188
212.0	226.188	230	25	0.275	26.195	0.007	0.021	226.210
213.0	226.210	230	25	0.275	26.049	0.007	0.021	226.231
214.0	226.231	230	25	0.275	25.903	0.007	0.021	226.252
215.0	226.252	230	25	0.275	25.758	0.007	0.021	226.273
216.0	226.273	230	25	0.275	25.614	0.007	0.021	226.294
217.0	226.294	230	25	0.275	25.471	0.007	0.021	226.314
218.0	226.314	230	25	0.275	25.328	0.007	0.021	226.335
219.0	226.335	230	25	0.275	25.187	0.007	0.020	226.355
220.0	226.355	230	25	0.275	25.046	0.007	0.020	226.376
221.0	226.376	230	25	0.275	24.906	0.007	0.020	226.396
222.0	226.396	230	25	0.275	24.767	0.007	0.020	226.416
223.0	226.416	230	25	0.275	24.628	0.007	0.020	226.436
224.0	226.436	230	25	0.275	24.491	0.007	0.020	226.456
225.0	226.456	230	25	0.275	24.354	0.007	0.020	226.476
226.0	226.476	230	25	0.275	24.217	0.007	0.020	226.496
227.0	226.496	230	25	0.275	24.082	0.007	0.020	226.515
228.0	226.515	230	25	0.275	23.947	0.007	0.019	226.535
229.0	226.535	230	25	0.275	23.813	0.007	0.019	226.554
230.0	226.554	230	25	0.275	23.680	0.007	0.019	226.573
231.0	226.573	230	25	0.275	23.548	0.007	0.019	226.593
232.0	226.593	230	25	0.275	23.416	0.007	0.019	226.612
233.0	226.612	230	25	0.275	23.285	0.006	0.019	226.631
234.0	226.631	230	25	0.275	23.155	0.006	0.019	226.649
235.0	226.649	230	25	0.275	23.026	0.006	0.019	226.668
236.0	226,668	230	25	0.275	22.897	0.006	0.019	226.687
237.0	226.687	230	25	0.275	22.769	0.006	0.019	226.705
238.0	226.705	230	25	0.275	22.642	0.006	0.018	226.724
239.0	226.724	230	25	0.275	22.515	0.006	0.018	226.742
240.0	226.742	230	25	0.275	22.389	0.006	0.018	226.760
241.0	226.760	230	25	0.275	22.264	0.006	0.018	226.778
242.0	226.778	230	25	0.275	22.139	0.006	0.018	226.796
243.0	226.796	230	25	0.275	22.016	0.006	0.018	226.814
244.0	226.814	230	25	0.275	21.852	0.006	0.018	226.832
245.0	226.832	230	- 25	0.275	21.770	0.006	0.018	226.850
246.0	226.850	230	25	0.275	21.648	0.006	0.018	226.868
247.0	226.868	230	25	0.275	21.527	0.006	0.018	226.885
248.0	226.885	230	25	0.275	21.407	0.006	0.017	226.902
249.0	226.902	230	25	0.275	21.287	0.006	0.017	226.920
250.0	226.920	230	25	0.275	21.168	0.006	0.017	226.937
251.0	226.937	230	25	0.275	21.050	0.006	0.017	226.954
252.0	226.954	230	25	0.275	20.932	0.006	0.017	226.971
253.0	225.971	230	25	0.275	20.815	0.006	0.017	226.988
254.0	226.988	230	25	0.275	20.699	0.006	0.017	227.005

Attachment A, Part 2

Prepared by: Rtinooorl Checked by: AR Hama

PURPOSE:
The purpose of this attachment is to calculate the peak pressure attained during a design basis accident in the Cook Unit 1 accumulator fill line connected to CPN-32.

CALCULATION:

The expected temperature of the water during a LOCA and the ambient temperature are

$$
T_{\text {LOCA }}:=235 \quad T_{\mathrm{amb}}:=70 .
$$

The conversion for psi to ksi is

$$
\mathrm{ksi}:=1000 \mathrm{psi}
$$

For penetration CPN-32, there are two different types of pipes in the system.
The first pipe is $1^{\prime \prime}$ Sch 160 , pipe specification $M-14$
ID $_{1 \mathrm{M} 14}:=0.815 \mathrm{in}$
$\mathrm{S}_{\text {mlM14 }}:=20 \mathrm{ksi}$
$\mathrm{E}_{1 \mathrm{M} 14}:=27.4 \cdot 10^{6} \mathrm{psi}$
${ }^{\mathrm{t}} \mathrm{IM}_{14}:=0.250 \mathrm{in}$
$\mathrm{S}_{\mathrm{y} 1 \mathrm{M} 14}:=24.13 \mathrm{ksi}$
$\mathrm{E}_{\mathrm{p} 1 \mathrm{M} 14}:=0.425 \cdot 10^{6} \mathrm{psi}$
$\mathrm{OD}_{1 \mathrm{M}_{14}}:=\mathrm{ID}_{1 \mathrm{M}_{14}+2 \cdot \mathrm{t}_{1 \mathrm{M} 14}}$
$\mathrm{S}_{\mathrm{ulM} 14}:=69.25 \mathrm{ksi}$
SA-376 Gr TP304
$\mathrm{OD}_{1 \mathrm{M} 14}=1.315^{\circ} \mathrm{in}$

The second pipe is $3 / 4^{\prime \prime}$ Sch 160 , pipe specification $\mathrm{M}-14$
ID $34 \mathrm{M} 14:=0.612 \mathrm{in}$
$\mathrm{S}_{\mathrm{m} 34 \mathrm{M} 14}:=20 \mathrm{ksi}$
$\mathrm{t}_{34 \mathrm{M14}}:=0.219 \mathrm{in}$
$\mathrm{S}_{\mathrm{y} 34 \mathrm{M} 14}:=24.13 \mathrm{ksi}$
$\mathrm{OD}_{34 \mathrm{M} 14}:=\mathrm{ID} 34 \mathrm{M} 14+2 \cdot \mathrm{t} 34 \mathrm{Ml}^{4} \mathrm{~S}_{\mathrm{u} 34 \mathrm{M} 14}:=69.25 \mathrm{ksi}$
$\mathrm{OD}_{34 \mathrm{M} 14}=1.05 \mathrm{on}$

The lengths of the two different pipes are as follows:
$\mathrm{L}_{1}:=(290 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{2}:=(170 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{1}=3.48 \cdot 10^{3}$ inches
$L_{2}=2.04 \cdot 10^{3}$ inches

Note: Inverse units used in these equations result from MathCad format requirements and do not represent errors.

For the first pipe (1 "Sch 160, M-14), the specific material parameters used in the calculation are

$$
\begin{aligned}
& \mathrm{t}_{1}:=\mathrm{t}_{1 \mathrm{M} 14} 4^{\cdot \mathrm{in}^{-1}} \quad \mathrm{t}_{1}=0.25 \quad \text { inches } \\
& r_{01}:=\left(\frac{O D_{1 \mathrm{M} 14} \cdot \mathrm{in}^{-1}}{2}\right)-\mathrm{t}_{1} \quad \mathrm{r}_{01}=0.403 \quad \text { inches } \\
& \mathrm{S}_{\mathrm{y} 1}:=\mathrm{S}_{\mathrm{ylM} 14} \cdot \mathrm{psi}^{-1} \quad \mathrm{~S}_{\mathrm{yl}}=2.413 \cdot 10^{4} \mathrm{psi} \\
& \mathrm{E}_{1}:=\mathrm{E}_{1 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} \quad \mathrm{E}_{1}=2.74 \cdot 10^{7} \mathrm{psi} \\
& \mathrm{E}_{\mathrm{pl}}:=\mathrm{E}_{\mathrm{plM} 14} \cdot \mathrm{psi}^{-1} \quad \quad \mathrm{E}_{\mathrm{pl}}=4.25 \cdot 10^{5} \mathrm{psi} \\
& \varepsilon_{y 1}:=\frac{S_{y 1}}{E_{1}} \quad \varepsilon_{y 1}=8.807 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
& \mathrm{~S}_{\mathrm{ml}}:=\mathrm{S}_{\mathrm{mlM} 14} \quad \mathrm{~S}_{\mathrm{ml}}=2 \cdot 10^{4} \text { opsi } \\
& \mathrm{S}_{\mathrm{ul}}:=\mathrm{S}_{\mathrm{u} 1 \mathrm{M} 14} \quad \mathrm{~S}_{\mathrm{ul}}=6.925 \cdot 10^{4} \mathrm{psi}
\end{aligned}
$$

For the second pipe ($3 / 4$ " Sch $160, \mathrm{M}-14$), the specific material parameters for the calculation are

$$
\begin{aligned}
& \mathrm{t}_{2}:=\mathrm{t}_{34 \mathrm{M} 14} \cdot \mathrm{in}^{-1} \quad \mathrm{t}_{2}=0.219 \quad \text { inches } \\
& r_{02}:\left(\frac{\mathrm{OD}_{34 \mathrm{M} 14 \cdot \mathrm{in}^{-1}}^{2}}{2}\right)-\mathrm{t}_{2} \quad \mathrm{r}_{02}=0.306 \quad \text { inches } \\
& \mathrm{S}_{\mathrm{y} 2}:=\mathrm{S}_{\mathrm{y} 34 \mathrm{M} 14 \cdot \mathrm{psi}^{-1} \quad \mathrm{~S}_{\mathrm{y} 2}=2.413 \cdot 10^{4} \mathrm{psi}, ~}^{\text {in }} \\
& \mathrm{E}_{2}:=\mathrm{E}_{34 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} \quad \mathrm{E}_{2}=2.74 \cdot 10^{7} \mathrm{psi} \\
& E_{p 2}:=E_{p 34 M 14} \cdot \mathrm{psi}^{-1} \quad E_{p 2}=4.25 \cdot 10^{5} \mathrm{psi} \\
& \varepsilon_{y 2}:=\frac{S_{y 2}}{E_{2}} \quad \varepsilon_{y 2}=8.807 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
& \mathrm{~S}_{\mathrm{m} 2}:=\mathrm{S}_{\mathrm{m} 34 \mathrm{M} 14} \quad \mathrm{~S}_{\mathrm{m} 2}=2 \cdot 10^{4} \mathrm{psi} \\
& \mathrm{~S}_{\mathrm{u} 2}:=\mathrm{S}_{\mathrm{u} 34 \mathrm{M} 14} \quad \mathrm{~S}_{\mathrm{u} 2}=6.925 \cdot 10^{4} \text { opsi }
\end{aligned}
$$

At the initial conditions, the trapped water has a specific volume of

$$
v_{\text {initial }}:=0.015963 \mathrm{ft}^{3} \cdot \mathrm{lb}^{-1}
$$

Therefore, the mass of water in a unit length (1 inch) of pipe is

$$
\begin{array}{ll}
\mathrm{m}_{\mathrm{w} 1 \mathrm{i}}:=\frac{\pi \cdot \mathrm{r} 01^{2} \cdot 1}{\left(v_{\text {initial }} \cdot \mathrm{lb} \cdot \mathrm{in}^{-3}\right)} & \mathrm{m}_{\mathrm{wli}}=0.019 \\
\mathrm{~m}_{\mathrm{w} 2 \mathrm{i}}:=\frac{\mathrm{lb} \text { per unit length in inches (1" Sch } 160)}{\left(v_{\text {initial }} \cdot \mathrm{lb} \cdot \mathrm{in}^{-3}\right)} & \mathrm{m}_{\mathrm{w} 2 \mathrm{i}}=0.011
\end{array}
$$

The mean coefficient of thermal expansion for SA-376 Gr TP304 at 235 F is

$$
\alpha_{\mathrm{T}}:=8.83 \cdot 10^{-6}
$$

And the strain due to thermal expansion is

$$
\varepsilon_{\mathrm{th}}:=\alpha_{\mathrm{T}} \cdot\left(\mathrm{~T}_{\mathrm{LOCA}}-\mathrm{T}_{\mathrm{amb}}\right) \quad \varepsilon_{\mathrm{th}}=1.457 \cdot 10^{-3} \quad \mathrm{in} / \mathrm{in}
$$

The total mass of the water in the piping, assuming that the pipe is filled, is

$$
\mathrm{m}_{\text {tot }}:=\mathrm{m}_{\mathrm{w} 1 \mathrm{i}} \cdot \mathrm{~L}_{1}+\mathrm{m}_{\mathrm{w} 2 \mathrm{i}} \cdot \mathrm{~L}_{2} \quad \mathrm{~m}_{\text {tot }}=87.57 \quad \mathrm{lb}
$$

To solve the equations for the system with both pipe sizes, we must guess inital values for the variables.

$$
\begin{array}{lll}
\mathrm{P}:=3000 & \varepsilon_{\mathrm{p} 1}:=0.01 & \operatorname{vol}_{1}:=1 \\
v:=0.016 & \varepsilon_{\mathrm{p} 2}:=0.01 & \operatorname{vol}_{2}:=1 \\
\sigma_{\mathrm{h} 1}:=100 & \mathrm{r}_{1}:=1 & \mathrm{~m}_{\mathrm{w} 1}:=1 \\
\sigma_{\mathrm{h} 2}:=100 & \mathrm{r}_{2}:=1 & \mathrm{~m}_{\mathrm{w} 2}:=1
\end{array}
$$

Assign a function to represent the change from elastic strain to plastic strain as follows:

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\sigma_{\mathrm{h} 1}, \mathrm{~S}_{\mathrm{y} 1}, \mathrm{E}_{1}, \mathrm{E}_{\mathrm{p} 1}, \varepsilon_{\mathrm{y} 1}\right):=\mathrm{if}\left(\sigma_{\mathrm{h} 1}>\mathrm{S}_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}-S_{\mathrm{y} 1}}{E_{\mathrm{p} 1}}+\varepsilon_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}}{E_{1}}\right) \\
& \mathrm{f}_{2}\left(\sigma_{\mathrm{h} 2}, \mathrm{~S}_{\mathrm{y} 2}, \mathrm{E}_{2}, \mathrm{E}_{\mathrm{p} 2}, \varepsilon_{\mathrm{y} 2}\right):=\mathrm{if}\left(\sigma_{\mathrm{h} 2}>\mathrm{S}_{\mathrm{y} 2}, \frac{\sigma_{\mathrm{h} 2}-S_{\mathrm{y} 2}}{E_{\mathrm{p} 2}}+\varepsilon_{y 2}, \frac{\sigma_{\mathrm{h} 2}}{E_{2}}\right)
\end{aligned}
$$

MPR Associates, Inc.
320 King Street
Alexandria, VA $22314-3230$
MPR-2169 Appendix A. 2

Calculation No.

 025-065-02
Checked By
ΔR Hacp,

Page 45

Given

$$
\begin{aligned}
& r_{1}=\left(1+\varepsilon_{\mathrm{pl}}\right) \cdot \mathrm{r}_{01} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \\
& \operatorname{vol}_{1}=\frac{\pi \cdot r_{1}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{1}}{\left(12^{3}\right)} \\
& v=\frac{\mathrm{vol}_{1}}{\mathrm{~m}_{\mathrm{wl}}} \\
& r_{2}=\left(1+\varepsilon_{\mathrm{p} 2}\right) \cdot \mathrm{r}_{02} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \\
& \operatorname{vol}_{2}=\frac{\pi \cdot r_{2}^{2} \cdot(1+\varepsilon t h) \cdot L_{2}}{\left(12^{3}\right)} \\
& v=\frac{\mathrm{vol}_{2}}{\mathrm{~m}_{\mathrm{w} 2}} \\
& P=\left(4.86308 \cdot 10^{9}\right) \cdot v^{2}-\left(1.80300 \cdot 10^{8}\right) \cdot v+1.65795 \cdot 10^{6} \quad \mathrm{~m}_{\text {tot }}=\mathrm{m}_{\mathrm{w} 1}+\mathrm{m}_{\mathrm{w} 2} \\
& \sigma_{\mathrm{h} 1}=\mathrm{P} \cdot \frac{\mathrm{r}_{1}}{\mathrm{t}_{1}} \\
& \sigma_{h 2}=P \cdot \frac{r_{2}}{t_{2}} \\
& \varepsilon_{p l}=f_{1}\left(\sigma_{h l}, S_{y l}, E_{1}, E_{p l}, \varepsilon_{y l}\right) \\
& \varepsilon_{p 2}=f_{2}\left(\sigma_{h 2}, S_{y 2}, E_{2}, E_{p 2}, \varepsilon_{y 2}\right)
\end{aligned}
$$

Solving the equations.

$$
\begin{aligned}
& A A:=\operatorname{Find}\left(r_{1}, r_{2}, \varepsilon_{p 1}, \varepsilon_{p 2}, \operatorname{vol}_{1}, \operatorname{vol}_{2}, v, P_{,} \sigma_{h 1}, \sigma_{h 2}, m_{w 1}, m_{w 2}\right) \\
& \mathrm{r}_{1}:=\mathrm{AA}_{0,0} \cdot \mathrm{in} \\
& r_{1}=0.409 \circ \mathrm{in} \\
& r_{2}:=\mathrm{AA}_{1,0} \cdot \mathrm{in} \\
& r_{2}=0.307 \text { } \mathrm{in} \\
& \varepsilon_{\mathrm{pl}}:=\mathrm{AA}_{2,0} \\
& \varepsilon_{\mathrm{p} 2}:=\mathrm{AA}_{3,0} \\
& \varepsilon_{\mathrm{p} 1}=0.315 \% \\
& { }^{\varepsilon} \mathrm{p} 2=0.0780 \% \\
& \operatorname{vol}_{1}:=\mathrm{AA}_{4,0} \cdot \mathrm{ft}^{3} \\
& \operatorname{vol}_{1}=1.062 \mathrm{oft}^{3} \\
& \operatorname{vol}_{2}:=\mathrm{AA}_{5,0} \cdot \mathrm{ft}^{3} \\
& \mathrm{vol}_{2}=0.349 \mathrm{oft}^{3} \\
& v:=\mathrm{AA}_{6,0} \cdot \mathrm{ft}^{3} \cdot 1 \mathrm{~b}^{-1} \\
& \mathrm{P}:=\mathrm{AA}_{7,0} \cdot \mathrm{psi} \\
& v=0.016115 \cdot \mathrm{ft}^{3} \cdot \mathrm{lb}^{-1} \\
& P=1.5324 \cdot 10^{4} \text { opsi } \\
& \sigma_{\mathrm{h} 1}:=\mathrm{AA}_{8,0} \cdot \mathrm{psi} \\
& \sigma_{\mathrm{hl}}=25.092 \mathrm{ksi} \\
& \sigma_{\mathrm{h} 2}=21.459 \mathrm{ksi} \\
& \mathrm{~m}_{\mathrm{wl}}=65.892 \mathrm{elb} \\
& \mathrm{~m}_{\mathrm{w} 2}:=\mathrm{AA}_{11,0} \cdot \mathrm{lb} \\
& \mathrm{~m}_{\mathrm{w} 2}=21.678 \mathrm{olb}
\end{aligned}
$$

MPR Associates, Inc.
MPR-2169 Appendix A. 2
320 King Street
Alexandria, VA 22314-3230

Calculation No. 025-065-02
Prepared By
Checked
Peak Pressure in RCP Seal Bypass Line

PURPOSE:
The purpose of this attachment is to calculate the peak pressure attained during a design basis accident in the Cook Unit 1 RCP seal bypass line inside the containment.

CALCULATION:

The expected temperature of the water during a LOCA and the ambient temperature are

$$
\mathrm{T}_{\text {LOCA }}:=235 \quad \mathrm{~T}_{\mathrm{amb}}:=70
$$

The conversion for psi to ksi is

$$
\mathrm{ksi},=1000 \mathrm{psi}
$$

For penetration RCP Seal, there are two different pipes in the system - very short lengths of 1 " pipe and . relatively longer $3 / 4^{\prime \prime}$ pipe. For conservatism, assumed a $1: 100$ length ratio.

The first pipe is $1^{\prime \prime}$ Sch 160 , pipe specification $\mathrm{M}-14$
ID 1 M14 $:=0.815 \mathrm{in}$
$\mathrm{S}_{\text {m1M14 }}:=20 \mathrm{ksi}$
$E_{1 M 14}:=27.4 \cdot 10^{6} \mathrm{psi}$
$t_{1 \mathrm{M14}}:=0.250 \mathrm{in}$
$\mathrm{S}_{\mathrm{ylM14}}:=24.13 \mathrm{ksi}$
$\mathrm{E}_{\mathrm{plM14}}:=0.425 \cdot 10^{6} \mathrm{psi}$
$\mathrm{OD}_{1 \mathrm{M} 14}:=\mathrm{ID}_{1 \mathrm{M} 14}+2 \cdot \mathrm{t}_{1 \mathrm{M} 14}$
$S_{\text {ulM14 }}:=69.25 \mathrm{ksi}$
SA-376 Gr TP304
$\mathrm{OD}_{1 \mathrm{Ml4}}=1.315 \mathrm{in}^{\circ}$

The second pipe is $3 / 4^{\prime \prime}$ Sch 160 , pipe specification M-14
ID $34 \mathrm{M} 14:=0.612 \mathrm{in}$
$\mathrm{S}_{\mathrm{m} 34 \mathrm{M} 14}:=20 \mathrm{ksi}$
$\mathrm{E}_{34 \mathrm{Ml4}}:=27.4 \cdot 10^{6} \mathrm{psi}$
${ }^{\mathrm{t}} 34 \mathrm{M14}:=0.219 \mathrm{in}$
$\mathrm{S}_{\mathrm{y} 34 \mathrm{M14}}:=24.13 \mathrm{ksi}$
$\mathrm{E}_{\mathrm{p} 34 \mathrm{M14}}:=0.425 \cdot 10^{6} \mathrm{psi}$
$\mathrm{OD}_{34 \mathrm{M14}}:=\mathrm{ID}_{34 \mathrm{M} 14}+2 \cdot \mathrm{t}_{34 \mathrm{Ml}^{4}} \mathrm{~S}_{\mathrm{u} 34 \mathrm{M} 14}:=69.25 \mathrm{ksi}$
SA-376 Gr TP304
$\mathrm{OD}_{34 \mathrm{M14}}=1.05 \mathrm{sin}$

The lengths of the two different pipes are conservatively represented as follows:

$$
\begin{array}{ll}
\mathrm{L}_{1}:=(20 \mathrm{ft}) \cdot \mathrm{in}^{-1} & \mathrm{~L}_{2}:=(450 \mathrm{ft}) \cdot \mathrm{in}^{-1} \\
\mathrm{~L}_{1}=240 \text { inches } & \mathrm{L}_{2}=5.4 \cdot 10^{3} \text { inches }
\end{array}
$$

Note: Inverse units used in these equations result from MathCad format requirements and do not represent errors.

Calculation No. 025-065-02

Checked By
S'R Hanp

For the first pipe (1 " Sch 160, M-14), the specific material parameters used in the calculation are

$$
\begin{array}{ll}
\mathrm{t}_{1}:=\mathrm{t}_{1 \mathrm{M} 14} \cdot \mathrm{in}^{-1} & \mathrm{t}_{1}=0.25 \quad \text { inches } \\
\mathrm{r}_{01}:=\left(\frac{\mathrm{OD} 1 \mathrm{M} 14 \cdot \mathrm{in}^{-1}}{2}\right)-\mathrm{t}_{1} & \mathrm{r}_{01}=0.408 \quad \text { inches } \\
\mathrm{S}_{\mathrm{y} 1}:=\mathrm{S}_{\mathrm{y} 1 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} & \mathrm{~S}_{\mathrm{yl}}=2.413 \cdot 10^{4} \mathrm{psi} \\
\mathrm{E}_{1}:=\mathrm{E}_{1 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} & \mathrm{E}_{1}=2.74 \cdot 10^{7} \mathrm{psi} \\
\mathrm{E}_{\mathrm{pl}}:=\mathrm{E}_{\mathrm{plM} 14} \cdot \mathrm{psi}^{-1} & \mathrm{E}_{\mathrm{pl}}=4.25 \cdot 10^{5} \mathrm{psi} \\
\varepsilon_{\mathrm{yl}}:=\frac{\mathrm{S}_{\mathrm{yl}}}{\mathrm{E}_{1}} & \varepsilon_{\mathrm{y} 1}=8.807 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
\mathrm{~S}_{\mathrm{ml}}:=\mathrm{S}_{\mathrm{mlM} 14} & \mathrm{~S}_{\mathrm{ml}}=2 \cdot 10^{4} \mathrm{psi} \\
\mathrm{~S}_{\mathrm{ul}}:=\mathrm{S}_{\mathrm{ulM} 14} & \mathrm{~S}_{\mathrm{ul}}=6.925 \cdot 10^{4} \mathrm{opsi}
\end{array}
$$

For the second pipe ($3 / 4^{\prime \prime}$ Sch $160, \mathrm{M}-14$), the specific material parameters for the calculation are

$$
\begin{array}{ll}
\mathrm{t}_{2}:=\mathrm{t}_{34 \mathrm{M} 14 \cdot \mathrm{n}^{-1}} & \mathrm{t}_{2}=0.219 \quad \text { inches } \\
\mathrm{r}_{02}:=\left(\frac{\mathrm{OD} 34 \mathrm{M} 14 \cdot \mathrm{in}^{-1}}{2}\right)-\mathrm{t}_{2} & \mathrm{r}_{02}=0.306 \quad \text { inches } \\
\mathrm{S}_{\mathrm{y} 2}:=\mathrm{S}_{\mathrm{y} 34 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} & \mathrm{~S}_{\mathrm{y} 2}=2.413 \cdot 10^{4} \mathrm{psi} \\
\mathrm{E}_{2}:=\mathrm{E}_{34 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} & \mathrm{E}_{2}=2.74 \cdot 10^{7} \mathrm{psi} \\
\mathrm{E}_{\mathrm{p} 2}:=\mathrm{E}_{\mathrm{p} 34 \mathrm{M} 14 \cdot \mathrm{psi}^{-1}} & \mathrm{E}_{\mathrm{p} 2}=4.25 \cdot 10^{5} \mathrm{psi} \\
\varepsilon_{\mathrm{y} 2}:=\frac{\mathrm{S}_{\mathrm{y} 2}}{\mathrm{E}_{2}} & \varepsilon_{\mathrm{y} 2}=8.807 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
\mathrm{~S}_{\mathrm{m} 2}:=\mathrm{S}_{\mathrm{m} 34 \mathrm{M} 14} & \mathrm{~S}_{\mathrm{m} 2}=2 \cdot 10^{4} \mathrm{psi} \\
\mathrm{~S}_{\mathrm{u} 2}:=\mathrm{S}_{\mathrm{u} 34 \mathrm{M} 14} & \mathrm{~S}_{\mathrm{u} 2}=6.925 \cdot 10^{4} \mathrm{ppsi}
\end{array}
$$

At the initial conditions, the trapped water has a specific volume of:

$$
v_{\text {initial }}:=0.015928 \mathrm{ft}^{3} \cdot 1 \mathrm{lb}^{-1}
$$

	MPR-2169 Appendix A. 2	MPR Associates, Inc. 320 King Street Alexandria, VA 22314-3230	
Calculation No. 025-065-02	Prepared By	Checked By A R Haxp	Page 48

Therefore, the mass of water in a unit length (1 inch) of pipe is

$$
\begin{array}{ll}
\mathrm{m}_{\mathrm{w} 1 \mathrm{i}}:=\frac{\pi \cdot \mathrm{r}_{01} 1^{2} \cdot 1}{\left(v_{\text {initial }} \cdot \mathrm{b} \cdot \mathrm{in}^{-3}\right)} & \mathrm{m}_{\mathrm{w} 1 \mathrm{i}}=0.019
\end{array} \quad \text { lb per unit length in inches }\left(1^{\prime \prime} \text { Sch } 160\right)
$$

The mean coefficient of thermal expansion for SA-376 Gr TP304 at 235 F is

$$
\alpha_{\mathrm{T}}:=8.83 \cdot 10^{-6}
$$

And the strain due to thermal expansion is

$$
\varepsilon_{\mathrm{th}}:=\alpha \mathrm{T}\left(\mathrm{~T}_{\mathrm{LOCA}}-\mathrm{T}_{\mathrm{amb}}\right) \quad \varepsilon_{\mathrm{th}}=1.457 \cdot 10^{-3} \quad \mathrm{in} / \mathrm{in}
$$

The total mass of the water in the piping, assuming that the pipe is filled, is

$$
\mathrm{m}_{\text {tot }}:=\mathrm{m}_{\mathrm{w} 1 \mathrm{i}} \cdot \mathrm{~L}_{1}+\mathrm{m}_{\mathrm{w} 2 \mathrm{i}} \cdot \mathrm{~L}_{2} \quad \mathrm{~m}_{\text {tot }}=62.263 \quad \mathrm{lb}
$$

To solve the equations for the system with both pipe sizes, we must guess inital values for the variables.

$$
\begin{array}{lll}
\mathrm{P}:=3000 & \varepsilon_{\mathrm{p} 1}:=0.01 & \mathrm{vol}_{1}:=1 \\
\mathrm{v}:=0.016 & \varepsilon_{\mathrm{p} 2}:=0.01 & \mathrm{vol}_{2}:=1 \\
\sigma_{\mathrm{h} 1}:=100 & \mathrm{r}_{1}:=1 & \mathrm{~m}_{\mathrm{w} 1}:=1 \\
\sigma_{\mathrm{h} 2}:=100 & \mathrm{r}_{2}:=1 & \mathrm{~m}_{\mathrm{w} 2}:=1
\end{array}
$$

Assign a function to represent the change from elastic strain to plastic strain as follows:

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\sigma_{\mathrm{h} 1}, \mathrm{~S}_{\mathrm{y} 1}, \mathrm{E}_{1}, \mathrm{E}_{\mathrm{p} 1}, \varepsilon_{\mathrm{y} 1}\right):=\mathrm{if}\left(\sigma_{\mathrm{h} 1}>\mathrm{S}_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}-\mathrm{S}_{\mathrm{y} 1}}{\mathrm{E}_{\mathrm{p} 1}}+\varepsilon_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}}{\mathrm{E}_{1}}\right) \\
& \mathrm{f}_{2}\left(\sigma_{\mathrm{h} 2}, \mathrm{~S}_{\mathrm{y} 2}, \mathrm{E}_{2}, \mathrm{E}_{\mathrm{p} 2}, \varepsilon_{\mathrm{y} 2}\right):=\mathrm{if}\left(\sigma_{\mathrm{h} 2}>\mathrm{S}_{\mathrm{y} 2}, \frac{\sigma_{\mathrm{h} 2}-\mathrm{S}_{\mathrm{y} 2}}{\mathrm{E}_{\mathrm{p} 2}}+\varepsilon_{\mathrm{y} 2}, \frac{\sigma_{\mathrm{h} 2}}{\mathrm{E}_{2}}\right)
\end{aligned}
$$

Solving the equations.

$$
\begin{aligned}
& \text { AA }:=\operatorname{Find}\left(r_{1}, r_{2}, \varepsilon_{p 1}, \varepsilon_{p 2}, \operatorname{vol}_{1}, \operatorname{vol}_{2}, v, P_{,} \sigma_{h 1}, \sigma_{h 2}, m_{w 1}, m_{w 2}\right) \\
& \mathrm{r}_{1}:=\mathrm{AA}_{0,0} \cdot \text { in } \\
& { }^{*} r_{1}=0.412 \text { oin } \\
& r_{2}:={A A_{1,0}} \cdot \mathrm{in} \\
& \varepsilon_{\mathrm{pl}}:=\mathrm{AA}_{2,0} \\
& \varepsilon_{\mathrm{p} 2}:=\mathrm{AA}_{3,0} \\
& \varepsilon_{\mathrm{p} 1}=0.9880 \% \\
& \varepsilon_{\mathrm{p} 2}=0.0870 \% \\
& \mathrm{vol}_{1}:=\mathrm{AA}_{4,0} \cdot \mathrm{ft}^{3} \\
& \mathrm{vol}_{1}=0.074 \mathrm{ft}^{3} \\
& \operatorname{vol}_{2}:=\mathrm{AA}_{5,0} \cdot \mathrm{ft}^{3} \\
& \mathrm{vol}_{2}=0.925 \mathrm{ot}^{3} \\
& v:=\mathrm{AA}_{6,0} \cdot \mathrm{ft}^{3} \cdot 1 \mathrm{~b}^{-1} \\
& \mathrm{P}:=\mathrm{AA}_{7,0} \cdot \mathrm{psi} \\
& v=0.016047 \sigma \mathrm{ft}^{3} \cdot \mathrm{lb}^{-1} \\
& \mathbf{P}=1.6958 \cdot 10^{4} \text { } \mathrm{opsi} \\
& \sigma_{h l}:=\mathrm{AA}_{8,0} \cdot \mathrm{psi} \\
& \sigma_{\mathrm{h} 1}=27.955 \mathrm{ksi} \\
& \sigma_{\mathrm{h} 2}:=\mathrm{AA}_{9,0} \cdot \mathrm{psi} \\
& \mathrm{~m}_{\mathrm{w} 1}:=\mathrm{AA}_{10,0} \cdot \mathrm{lb} \\
& \sigma_{\mathrm{h} 2}=23.749 \mathrm{ksi} \\
& \mathrm{~m}_{\mathrm{w} 1}=4.625 \mathrm{olb} \\
& \mathrm{~m}_{\mathrm{w} 2}:=\mathrm{AA}_{11,0} \cdot \mathrm{lb} \\
& \mathrm{~m}_{\mathrm{w} 2}=57.638 \mathrm{olb}
\end{aligned}
$$

ATTACHMENT 8 TO C0801-05
MPR CALCULATION 025-057-01
STRUCTURAL EVALUATION FOR SELECTED PIPING SEGMENTS, REVISION 3

			MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
RECORD OF REVISIONS				
Calcu 025	ion No. $57-01$	$\begin{aligned} & \text { Prepared By } \\ & M B G \end{aligned}$	Checked By ast	Page 2
Revision	Description			
0	Original Issue			
1	Revised to incorporate AEP comments and to update references to include the DIT that transmitted design input data to MPR. Only pages $1,2,4,5,6,14,15$, and 16 were revised. All other pages are still Revision 0.			
2	Revised to incorporate DRB comments. Only pages $1,2,3,6$, and 12 were revised. Appendix E was added. Pages $4,5,14,15$ and 16 are Revision 1. All other pages are Revision 0.			
3	Revised to incorporate DRB comments. Changed initial pressure and final temperature for CPN-32. Reprinted pages 1-17 to accommodate added text, and revised Appendices D and E for the new conditions.			

		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-057-01	$\begin{gathered} \text { Prepared By } \\ M B 6 \end{gathered}$	Checked By A)	Page 4

1.0 PURPOSE

The purpose of this calculation is to perform an evaluation of four (4) piping segments that are located partially or completely within the containment building at D. C. Cook Nuclear Power Station, Unit 2. The evaluation addresses the concern identified in NRC Generic Letter 96-06, which states that during a design basis accident, isolated piping segments within containment may become over-pressurized by the thermal expansion of the contained water.

The four containment pipe segments are listed below.

1. CPN-40 PRT and RCDT Drain Piping
2. RCP Seal RCP Seal Bypass Lines
3. CPN-37 RCP Seal Leak-off Return Line
4. CPN-32 Accumulator Fill Lines

2.0 RESULTS

The results from this calculation, including stress intensities and material strains, are presented in Table 1. The reported stress intensity is the primary membrane stress intensity due to pressure combined with the bounding longitudinal stress. The allowable stress is taken as 70% of the material ultimate strength, consistent with the acceptance criteria in Section III, Appendix F of the 1989 ASME Code (Reference 1). The maximum allowable strain is assumed to be 5%. The calculated stress intensities and strains are less than the allowable values for all segments.

Table 1: Results Summary

Segment	Pipe Size	Fluid Pressure (psia)	Material Strain (\%)	Stress Intensity (ksi)	Allowable Stress (ksi)	Stress Index
CPN-40	4 in .	1,891	2.63	38.2	47.95	0.80
	2 in .		0.05	27.3		0.57
	$3 / 4 \mathrm{in}$.		0.02	24.4		0.51
RCP Seal	1 in .	17,081	1.15	42.6	47.95	0.89
	3/4in.		0.14	40.5		0.84
CPN-37	4 in .	1,888	2.61	38.2	47.95	0.80
	1 in .		0.03	24.7		0.52
CPN-32	1 in.	15,326	0.42	40.2	47.95	0.84
	3/4 in.		0.08	38.4		0.80

		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. $025-057-01$	$\begin{aligned} & \text { Prepared By } \\ & M B G \end{aligned}$	Checked By og ${ }^{2}$	Page 5

3.0 CALCULATION

3.1 Approach

If a segment of piping containing water is heated, following a LOCA or steam-line break for example, the water will expand. Furthermore, if the piping segment is isolated (i.e. there is no leakage out of the piping), the constrained expansion will cause an increase in the internal pressure. Depending on the pipe geometry, pipe material and the increase in water temperature, the pressure rise could ultimately lead to an over-pressurization failure of the piping. This concern for a thermal over-pressurization failure is identified in NRC Generic Letter 96-06. The purpose of this calculation is to evaluate the possibility of failure of four potentially isolated segments of piping at D.C. Cook, Unit 2.

The analysis approach is based on the requirements and acceptance criteria for inelastic analyses in Section III, Appendix F of the 1989 ASME Code (Reference 1). In general, the analysis approach uses the maximum water temperature, the pipe stiffness and pipe material properties to calculate the resulting internal pressure and material stress-strain state for a postulated increase in temperature scenario. The specific steps in the analysis procedure are described below.

1. The isolated piping segment arrangement is reviewed to determine all of the pipe sections and materials. This review includes the main piping run as well as branch lines, vents and drains. The information on each pipe is required to determine the pressure and stresses in the entire piping segment.
2. The maximum piping segment temperature is based on conditions during a loss-of-coolant accident or steam line break. Under these conditions, Reference 2 calculates a maximum bounding piping segment water temperature of $250^{\circ} \mathrm{F}$ for penetrations CPN-40, the RCP Seal and CPN-37. The bounding water temperature for penetration CPN-32 is $240^{\circ} \mathrm{F}$ as defined in Reference 2.
3. A bi-linear stress-strain curve for the specific pipe material (Type 304 stainless steel) is developed. Both the elastic stretching of the pipe wall as well as the plastic deformation of the pipe with strain hardening is considered.
4. An equation of state for the water in the isolated piping segments is developed, which relates pressure to specific volume at a given temperature. The equation of state is developed from the ASME Steam Tables (Reference 11).
5. A set of simultaneous equations relating pipe stress and strain and the water mass, specific volume and pressure is developed. The solution of the equations provides the final water pressure and piping segment pressure stress.
6. The calculated pressure stresses are combined with the longitudinal stresses from deadweight and seismic loads to determine the stress intensity for each section of pipe.
7. The calculated stress intensity is compared to the corresponding Section III, Appendix F (Reference 1) allowable stress.
8. Secondary stresses at anchor points and transitions are not considered because a Level D analysis does not require an evaluation of secondary stresses.
9. Pipe fittings are assumed to be at least as strong as the piping segments to which they are attached. The valve bodies are evaluated in MPR Calculation 025-057-02 (Reference 9) and they are also assumed to be at least as strong as the piping segments.

3.2 Geometry and Material Data

The data required for each piping segment are the pipe diameter, wall thickness and material properties for each cross section included in the isolated segment between the isolation valves. The piping geometry is found in References 3-6 and 13. AEP DIT No. DIT-B-00842-00 (Reference 14) provides the list of references from which the design inputs were obtained. The material data include: Material Class and Material Type (References 7 and 8), design stress intensity (S_{m}), yield stress $\left(\mathrm{S}_{\mathrm{y}}\right)$, ultimate strength $\left(\mathrm{S}_{u}\right)$, elastic modulus (E), and plastic modulus (E_{p}). The plastic modulus is found in Reference 10 and the associated stress-strain curve is shown on Figure 1. The remaining material properties are extracted from the 1989 ASME Code (Reference 12). All material properties are evaluated at $250^{\circ} \mathrm{F}$, the highest piping segment water temperature calculated in Reference 2. The geometry and material data for each piping segment are summarized below and listed in Table 2. Nominal pipe wall thickness was used for the evaluations. Appendix E presents a sensitivity analysis of the effect of pipe wall thickness variation on calculated piping pressure and stress.

CPN-40: PRT and RCDT Drain Piping

Containment penetration 40 (CPN-40) consists of piping from the normally closed Pressurizer Relief Tank (PRT) drain line and the Reactor Coolant Drain Tank (RCDT) drain line check valve to the normally closed isolation valves outside containment. The system includes SA-312 Type 304 stainless steel piping of three different sizes: 4-inch schedule 10,2 -inch schedule 40 and $3 / 4$-inch schedule 40 (Reference 3).

Calculation No.
025-057-01

Prepared By

Checked By

Page 7

RCP Seal Bypass Line

The Reactor Coolant Pump (RCP Seal) penetration consists of piping from the seal bypass line check valves to the normally closed QRV-150 valve in the common discharge header. The system includes SA-376 Type 304 stainless steel piping of two different sizes: 1 -inch schedule 160 and $3 / 4$-inch schedule 160 (Reference 4).
CPN-37: RCP Seal Leak-off Return Line
Containment penetration 37 (CPN-37) consists of piping between containment isolation valves, including test connections. The system includes SA-312 Type 304 stainless steel piping of two different sizes: 4 -inch schedule 10 and 1 -inch schedule 40 (Reference 5).
CPN-32: Accumulator Fill Lines
Containment penetration 32 (CPN-32) consists of piping from outside the containment isolation valves to the normally closed accumulator "inlet" valves and the normally closed valves in the flow paths to the low head Safety Injection (SI) hot leg loops. The system includes SA-376 Type 304 stainless steel piping of two different sizes: 1 -inch schedule 160 and $3 / 4$-inch schedule 160 (Reference 6).

Table 2: Geometry and Material Properties

ID	Pipe Size	Geometry Data		Material Data						
		$\begin{aligned} & \mathrm{OD} \\ & \text { (in) } \end{aligned}$	Wall (in)	Class	Type	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{kSi}) \end{gathered}$	$\begin{gathered} S_{y} \\ (\mathrm{ksi}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{u} \\ (\mathrm{ksi}) \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \left(10^{6} \mathrm{psi}\right) \end{gathered}$	$\begin{gathered} \mathrm{E}_{\mathrm{p}} \\ \left(10^{6} \mathrm{psi}\right) \end{gathered}$
CPN-40	4 in	4.500	0.120	B-23	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	20.0	23.75	68.5	27.3	0.425
	2 in	2.375	0.154	B-23	$\begin{aligned} & \text { SA312 } \\ & \text { TP304 } \end{aligned}$	20.0	23.75	68.5	27.3	0.425
	$3 / 4$ in	1.050	0.113	B-23	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	20.0	23.75	68.5	27.3	0.425
	4 in	4.500	0.120	B-14	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \end{aligned}$	20.0	23.75	68.5	27.3	0.425
$\begin{array}{\|l\|l} \text { RCP } \\ \text { Seal } \end{array}$	1 in	1.315	0.250	M-14	$\begin{aligned} & \hline \text { SA376 } \\ & \text { TP304 } \\ & \hline \end{aligned}$	20.0	23.75	68.5	27.3	0.425
	$3 / 4$ in	1.050	0.219	M-14	$\begin{array}{\|l\|} \hline 1 F 3046 \\ \hline \text { SA376 } \\ \hline \end{array}$	20.0	23.75	68.5	27.3	0.425
CPN-37	4 in	4.500	0.120	B-14	$\begin{array}{\|l\|} \hline \text { SA312 } \\ \text { TP304 } \\ \hline \end{array}$	20.0	23.75	68.5	27.3	0.425
	1 in	1.315	0.133	B-14	$\begin{aligned} & \hline \text { SA312 } \\ & \text { TP304 } \end{aligned}$	20.0	23.75	68.5	27.3	0.425
CPN-32	1 in	1.315	0.250	M-14	$\begin{aligned} & \text { SA376 } \\ & \text { TP304 } \end{aligned}$	20.0	23.75	68.5	27.3	0.425
	3/4 in	1.050	0.219	M-14	$\begin{aligned} & \text { SA376 } \\ & \text { TP304 } \end{aligned}$	20.0	23.75	68.5	27.3	0.425

Figure 1: Type 304 Stainless Steel Stress-Strain Curve.

3.3 Fluid Properties

The calculations to determine maximum internal pressure and corresponding pipe stresses for CPN-40, the RCP Seal line and CPN-37 are performed for the maximum bounding piping segment water temperature of $250^{\circ} \mathrm{F}$. These piping stress calculations assume the piping segments are initially at 15 psia and $70^{\circ} \mathrm{F}$ prior to the LOCA or steam-line break. This initial temperature is considered conservative since the containment temperature would likely be higher. If valve leakage resulted in a higher initial pressure and temperature, the valve leakage would preclude pressurization due to thermal expansion of the contained fluid.

Figure 2 shows the relationship between pressure and specific volume at a temperature of $250^{\circ} \mathrm{F}$ (from Reference 11); Table 3 provides the data for the graph. A polynomial curve fit is also shown which represents the equation of state for the fluid. This equation will be used in the determination of fluid pressure for the maximum temperature conditions. The specific volume for the initial conditions (15 psia, $70^{\circ} \mathrm{F}$) is $v=0.01605 \mathrm{ft}^{3} / \mathrm{b}$.

Table 3: Specific Volume versus Pressure at $250^{\circ} \mathrm{F}$

Pressure (psia)	Specific Volume $\left(\mathrm{ft}^{3} / \mathrm{b}\right)$	Pressure (psia)	Specific Volume $\left(\mathrm{ft}^{3} / \mathrm{lb}\right)$
1000	0.016944	6000	0.016655
2000	0.016883	7000	0.016602
3000	0.016823	8000	0.016550
4000	0.016766	9000	0.016500
5000	0.016710	10000	0.016451

Calculation No. 025-057-01

Checked By

Page 9

Figure 2: Equation of State for Water at $250^{\circ} \mathrm{F}$.
The calculations to determine maximum internal pressure and corresponding pipe stresses for CPN-32 are performed for a maximum bounding piping segment water temperature of $240^{\circ} \mathrm{F}$. These piping stress calculations assume the piping segments are initially at 1800 psia and $70^{\circ} \mathrm{F}$ prior to the LOCA or steam-line break. This pressure is significantly higher than for the other penetrations because the accumulator fill line has the potential of being pressurized with the maximum head of 3790 feet, or 1650 psia (Reference 15). The total line pressure used in this calculation is 1800 psia, which bounds the maximum head plus the inlet suction pressure of the pump.

Figure 3 shows the relationship between pressure and specific volume at a temperature of $240^{\circ} \mathrm{F}$ (from Reference 11); Table 4 provides the data for the graph. The polynomial curve fit represents the equation of state for the fluid and will be used in the determination of fluid pressure for the maximum temperature conditions. The specific volume for the initial conditions ($1800 \mathrm{psia}, 70^{\circ} \mathrm{F}$) is $v=0.015961 \mathrm{ft}^{3} / \mathrm{lb}$.

Figure 3: Equation of State for Water at $240^{\circ} \mathrm{F}$.

3.4 Pressure Stress

For the general case in which a piping segment has a single pipe size and material, the fluid pressure and piping stress-strain solution are determined by solving a set of six simultaneous equations with six unknowns. The stress-state resulting from pressure loads is then combined with other stresses in Section 3.5 below as part of the ASME Code evaluation.

MPR Associates, Inc.
320 King Street
Alexandria, VA 22314

Calculation No. $025-057-01$	Prepared By	Checked By	Page 11

The six unknowns representing the pressurized condition in the isolated segment are:

$$
\begin{aligned}
& \mathrm{P} \equiv \text { Internal pressure }(\mathrm{psia}) \\
& v \equiv \text { Specific volume }\left(\mathrm{ft}^{3} / \mathrm{b}\right) \\
& \sigma_{h} \equiv \text { Pipe hoop stress }(\mathrm{psi})
\end{aligned}
$$

$\epsilon_{\mathrm{p}} \equiv$ Pipe hoop strain (in/in)
$r \equiv$ Pipe inside radius (in)
$\mathrm{vol} \equiv$ Volume of water $\left(\mathrm{ft}^{3}\right)$

The following constants are used to solve for the unknown variables:

$$
\begin{array}{ll}
\mathrm{t} \equiv \text { Pipe wall thickness (in) } & \mathrm{r}_{0} \equiv \text { Initial pipe inside radius (inch) } \\
\mathrm{m}_{\mathrm{w}} \equiv \text { Mass of water }(\mathrm{lb}) & \mathrm{S}_{\mathrm{y}} \equiv \text { Pipe yield stress (psi) } \\
\varepsilon_{y} \equiv \text { Pipe yield strain (in/in) }\left(=\mathrm{S}_{\mathrm{y}} / \mathrm{E}\right) & \mathrm{E} \equiv \text { Pipe elastic modulus (psi) } \\
\alpha_{\mathrm{T}} \equiv \text { Therm. expansion coeff. }\left(\mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{F}\right) & \mathrm{E}_{\mathrm{p}} \equiv \text { Pipe plastic modulus (psi) }
\end{array}
$$

The set of equations that define the fluid state and stress-strain state are:
Membrane Stress:

$$
\begin{array}{ll}
\sigma_{h}=(\mathrm{Pr}) /(\mathrm{t}) & \\
\text { vol }=\pi\left(\mathrm{r}^{2}\right) & \\
\sigma_{\mathrm{h}}=\mathrm{S}_{\mathrm{y}}+\left(\epsilon_{\mathrm{p}}-\epsilon_{y}\right) E_{\mathrm{p}} & \text { for } \sigma_{\mathrm{h}}>S_{y} \\
\sigma_{\mathrm{h}}=\varepsilon_{\mathrm{p}} E & \text { for } \sigma_{\mathrm{h}}<S_{y}
\end{array}
$$

Volume (per unit length):
Stress - Strain:
Specific Volume:
Equation of State:
$\nu=\mathrm{vol} / \mathrm{m}_{\mathrm{w}}$
Radius:
$\mathrm{P}(v)=4.5857 \times 10^{9} v^{2}-1.7137 \times 10^{8} v+1.5882 \times 10^{6}$
$\mathrm{r}=\left(1+\varepsilon_{\mathrm{p}}\right) \mathrm{r}_{0}$
In addition, the thermal expansion of the material in the circumferential and longitudinal directions is considered. The mean coefficient of thermal expansion for the piping material (SA-312 TP304 and SA-376 TP304) is used to calculate the material expansion due to heat up from $70^{\circ} \mathrm{F}$ to $250^{\circ} \mathrm{F}\left(\Delta \mathrm{T}=180^{\circ} \mathrm{F}\right)$.

Then, using $\alpha_{T}=8.90 \times 10^{-6} \mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{F}$ (Reference 12), the strain due to thermal expansion is

$$
\varepsilon_{\mathrm{th}}=\alpha_{\mathrm{T}}(\Delta \mathrm{~T})=8.90 \times 10^{-6} \mathrm{in} / \mathrm{in} /{ }^{\circ} \mathrm{F}\left(180^{\circ} \mathrm{F}\right)=0.001602 \mathrm{in} / \mathrm{in}
$$

The equation for the pipe radius is modified to incorporate the thermal expansion:

$$
\mathrm{r}=\left(1+\epsilon_{\mathrm{p}}\right)\left(\mathrm{r}_{0}\right)\left(\varepsilon_{\mathrm{th}}+1\right)
$$

The set of equations listed above can be solved for a segment with a single material and single pipe cross section. For piping segments with multiple cross sections, the set of equations must be extended to account for the potential expansion of fluid from one section of pipe into another. For example, if a segment includes a length of 1 -inch pipe and a length of 4 -inch pipe

		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. $025-057-01$	$\begin{aligned} & \text { Prepared By } \\ & M B 6^{\prime} \end{aligned}$	Checked By ofth.	Page 12

(same pipe schedule), the 1 -inch pipe is stiffer and stronger than the 4 -inch pipe. Hence, as the fluid is heated and pressurized, the 1 -inch pipe would likely remain elastic and yield very little while the 4 -inch pipe would yield and "balloon" to allow the fluid to expand. As a result, the fluid expansion in the 1 -inch pipe would result in a net flow into the 4 -inch pipe. In other words, the net increase in volume in the 4 -inch pipe section must include the expansion of the fluid initially in the 1 -inch pipe section.

In order to address multiple cross sections, the basic equation set is extended to include each section of pipe. The resulting set of unknowns is:

$\mathrm{P} \equiv$ Internal pressure (psia)	(one pressure for all pipes)
$v \equiv$ Specific volume $\left(\mathrm{ft}^{3} / \mathrm{lb}\right)$	(one specific volume for all pipes)
$\sigma_{\mathrm{hi}} \equiv \operatorname{Pipe} i$ hoop stress (psi)	(one for each pipe)
$\varepsilon_{\mathrm{pi}} \equiv \operatorname{Pipe} i$ hoop strain (in/in)	(one for each pipe)
$\mathrm{r}_{\mathrm{i}} \equiv \operatorname{Pipe} i$ inside radius (in)	(one for each pipe)
$\mathrm{vol}_{\mathrm{i}} \equiv$ Volume pipe $i\left(\mathrm{ft}^{3}\right)$	(one for each pipe)
$\mathrm{m}_{\mathrm{wi}} \equiv$ Mass of water pipe $i(\mathrm{lb})$	(one for each pipe)

The additional unknowns (the mass of water in each pipe section) require two additional constants to be defined. The total mass of water is conserved for all cases because the piping segments are bounded by isolation valves.

$$
\begin{array}{ll}
\mathrm{L}_{\mathrm{i}}=\text { Length of pipe } i(\mathrm{ft}) & \text { (one for each pipe) } \\
\mathrm{m}_{\mathrm{tot}}=\text { Total mass of water (lb) } & \text { (total mass of all pipes) }
\end{array}
$$

For the containment penetrations at D.C. Cook Unit 2, the lengths of different cross section pipe for each piping segment are shown in Table 4.

Table 5: Piping Segment Lengths

Segment	Pipe Geometry			Length
	4 in	SCH 10S	SA312 TP304	159 ft
	2 in	SCH 40	SA312 TP304	4 ft
	$3 / 4 \mathrm{in}$	SCH 40	SA312 TP304	24 ft
RCP Seal	1 in	SCH 160	SA376 TP304	20 ft
	$3 / 4 \mathrm{in}$	SCH 160	SA376 TP304	450 ft
CPN-37	4 in	SCH 10S	SA312 TP304	34 ft
	1 in	SCH 40	SA312 TP304	3 ft
CPN-32	1 in	SCH 160	SA376 TP304	270 ft
	$3 / 4 \mathrm{in}$	SCH 160	SA376 TP304	138 ft

Calculation No. 025-057-01

Prepared By MBG

Page 13

Thus, the following set of equations is used to determine the conditions of a piping segment with multiple pipe cross sections.

$$
\begin{aligned}
& \text { Membrane Stress: } \quad \sigma_{\mathrm{hi}}=\left(\mathrm{Pr}_{\mathrm{i}}\right) /\left(\mathrm{t}_{\mathrm{i}}\right) \\
& \text { Volume: } \\
& \text { V. } \quad \operatorname{vol}_{i}=\pi\left(r_{i}^{2}\right)\left(\mathrm{L}_{i}\right) \\
& \text { Stress - Strain: } \quad \sigma_{h i}=S_{y i}+\left(\varepsilon_{\mathrm{pi}}-\varepsilon_{y i}\right) \mathrm{E}_{\mathrm{pi}} \quad \text { for } \sigma_{\mathrm{hi}}>\mathrm{S}_{\mathrm{yi}} \\
& \sigma_{\mathrm{hi}}=\varepsilon_{\mathrm{pi}} \mathrm{E}_{\mathrm{i}} \quad \text { for } \sigma_{\mathrm{hi}}<\mathrm{S}_{\mathrm{yi}} \\
& \text { Specific Volume: } \quad v=\mathrm{vol}_{\mathrm{i}} / \mathrm{m}_{\mathrm{wi}} \\
& \text { Equation of State: } \quad \mathrm{P}(v)=4.5857 \times 10^{9} v^{2}-1.7137 \times 10^{8} v+1.5882 \times 10^{6} \\
& \text { Radius: } \quad r_{i}=\left(1+\varepsilon_{\mathrm{pi}}\right) \mathrm{r}_{0 \mathrm{i}} \\
& \text { Mass: } \\
& \mathrm{m}_{\mathrm{tot}}=\sum \mathrm{m}_{\mathrm{wi}}
\end{aligned}
$$

The equations and methods listed above are used to determine the fluid pressure and material stress-strain state for the four piping segments at D.C. Cook, Unit 2. The calculations are performed using MathCAD and the equations and results are shown in Appendices A-D. The results of these calculations are shown in Table 5.

In performing the calculations shown in Table 5, several simplifying assumptions are made. These assumptions, which are conservative and are not considered to affect the calculation results, are as follows:

- The piping is bounded on each end by isolation valves. The isolation valve walls are thicker and stronger than the main piping. As a result, the strain in the valves will be less than the piping. The amount of water in the valves is assumed very small compared to the main piping. Thus, the expansion of this water (in the valve) and the possible strain of the valve body are neglected.
- The stronger valves will restrain the piping deflection at valve connections, preventing the piping from fully yielding and straining at that point (compared to the calculated values). The localized pipe strain at valve connections is neglected when calculating the pressure and stress/strain state of the piping.
- Absolute pressure is used to calculate piping pressure stress rather than gauge pressure for simplicity and conservatism.
- For conservatism, the expansion of the piping in the longitudinal direction due to pressure has been neglected.

		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
$\begin{aligned} & \text { Calculation No. } \\ & 025-057-01 \end{aligned}$	Prepared By MB6	Checked By old.	Page 14

Table 6: Pressure and Stress Results

Segment	Pipe	$\begin{gathered} \mathrm{P} \\ (\mathrm{psia}) \end{gathered}$	$\begin{gathered} v \\ \left(\mathrm{ft}^{2} / \mathrm{lb}\right) \end{gathered}$	$\begin{gathered} \sigma_{\mathrm{h}} \\ (\mathrm{ksi}) \end{gathered}$	$\begin{gathered} \varepsilon_{\mathrm{p}} \\ (\mathrm{in} / \mathrm{in}) \\ \hline \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { vol } \\ \left(\mathrm{ft}^{3}\right) \\ \hline \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{r} \\ \text { (in) } \end{gathered}$	$\begin{aligned} & \mathrm{m}_{\mathrm{w}} \\ & \text { (bb) } \end{aligned}$
CPN-40	4 in	1,891	0.016977	34.5	0.02629	16.66	2.19	981.1
	2 in			12.7	0.00047	0.094	1.04	5.522
	3/4 in			6.9	0.00025	0.089	0.41	5.263
RCP Seal	1 in	17,081	0.016197	28.2	0.01147	0.074	0.41	4.599
	3/4 in			23.9	0.00143	0.926	0.31	57.19
CPN-37	4 in	1,888	0.016977	34.4	0.02614	3.561	2.19	209.7
	1 in			7.5	0.00027	0.018	0.52	1.066
CPN-32	1 in	15,326	0.016144	25.1	0.00422	0.991	0.41	61.38
	$3 / 4 \mathrm{in}$			21.5	0.00079	0.284	0.31	17.57

3.5 ASME Code Stress Analysis

The pressure hoop stresses calculated in the previous section are just one load applied to the piping segment. The piping could also be subjected to loads from deadweight, thermal expansion and seismic events, which could result in longitudinal pipe stresses that would either add or subtract from the pressure-induced longitudinal stresses. For a Level D evaluation, only the primary loads due to deadweight and seismic events need to be considered in addition to the pressure loads. For this analysis, it is conservatively assumed that the longitudinal stresses $\left(\mathrm{S}_{\mathrm{L}}\right)$ from both deadweight and seismic loads are equivalent to the material design stress intensity, S_{m}.

The acceptance criteria in Section III, Appendix F of the ASME Code are based on calculated stress intensity. The acceptance criterion is:

$$
\mathrm{SI}<0.7 \mathrm{~S}_{\mathrm{u}}
$$

where $S I$ is the calculated stress intensity.
In addition to the stress limit specified in the ASME Code, this analysis places a limit on the calculated strain. Article F-1322.5 of Appendix F states that "in addition to the limits given in this Appendix, the strain or deformation limits (if any) provided in the Design Specification shall be satisfied." While none of the applicable Design Specifications identify a material strain limit, it is important that calculated strain remains low enough to ensure that failure will not occur. For this analysis, a limit of 5% strain is applied. Based on engineering judgment, none of the materials used in the pipe segments will fail at strains of less than 10%; so the limit of 5% provides a safety factor of two. It should be noted, however, that the primary acceptance

		MPR Assaciates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. $025-057-01$	$\begin{aligned} & \text { Prepared By } \\ & W B G \end{aligned}$	Checked By CASH \qquad	Page 15

criterion used in this analysis is the stress limit specified in Appendix F. The specified strain limit is included only for completeness.

The stresses calculated in Section 3.4 are in the hoop direction and they are principal stresses. The deadweight and seismic load stresses are longitudinal stresses and they are also principal stresses. There is also a longitudinal stress due to pressure, which is one-half the hoop stress. Since the deadweight and seismic stresses are bending stresses, acting in tension on one side and compression on the other, the three principal stresses are:

$$
\begin{aligned}
& S_{1}=\operatorname{Pr} / \mathrm{t} \\
& \mathrm{~S}_{2}=\operatorname{Pr} / 2 t \pm \mathrm{S}_{\mathrm{L}} \quad \text { where } \mathrm{S}_{\mathrm{L}}=\mathrm{S}_{\mathrm{m}} \\
& \mathrm{~S}_{3}=-\mathrm{P} / 2
\end{aligned}
$$

The second principal stress has two variations:

$$
\begin{aligned}
& \mathrm{S}_{2+}=\operatorname{Pr} / 2 \mathrm{t}+\mathrm{S}_{\mathrm{L}} \\
& \mathrm{~S}_{2 .}=\operatorname{Pr} / 2 \mathrm{t}-\mathrm{S}_{\mathrm{L}}
\end{aligned}
$$

The stress intensity is calculated as the maximum of the absolute values of the following stress differences (in accordance with the ASME Code):

$$
\mathrm{SI}=\text { Maximum of }\left(\mathrm{S}_{1}-\mathrm{S}_{2+}\right),\left(\mathrm{S}_{1}-\mathrm{S}_{2}\right),\left(\mathrm{S}_{2+}-\mathrm{S}_{3}\right),\left(\mathrm{S}_{2-}-\mathrm{S}_{3}\right), \text { or }\left(\mathrm{S}_{3}-\mathrm{S}_{1}\right)
$$

The results of the calculations for principal stresses and stress intensity are summarized below.
Table 7: Principal Stresses and Stress Intensity

Segment	Pipe Size	S1 (ksi)	S2 (ksi)	S3 (ksi)	SI (ksi)
CPN-40	4 in	34.5	$37.2 /-2.75$	-0.95	38.2
	2 in	12.7	$26.4 /-13.6$	-0.95	27.3
	$3 / 4$ in	6.91	$23.4 /-16.5$	-0.95	24.4
RCP Seal	1 in	28.2	$34.1 /-5.90$	-8.54	42.6
	$3 / 4$ in	23.9	$32.0 /-8.03$	-8.54	40.5
CPN-37	4 in	34.4	$37.2 /-2.78$	-0.94	38.2
	1 in	7.46	$23.7 /-16.3$	-0.94	24.7
CPN-32	1 in	25.1	$32.6 /-7.44$	-7.66	40.2
	$3 / 4$ in	21.5	$30.7 /-9.27$	-7.66	38.4

		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-057-01	$\begin{aligned} & \text { Prepared By } \\ & M B 6 \end{aligned}$	Checked By Q4)	Page 16
The calculated stress intensities are compared to the ASME Section III, Appendix F criteria of $0.7 \mathrm{~S}_{\mathrm{u}}(=47.95 \mathrm{ksi})$. It should be noted that the plastic analysis method of Appendix F-1340 only requires consideration of primary membrane stresses. The secondary stresses that would be present at branch connections, elbows and valves are not evaluated.			

4.0 REFERENCES

1. 1989 ASME Code, Section III, Division 1 - Appendix F.
2. MPR Calculation 025-057-03, "Documentation of Isolated Piping Temperature for GL 96-06 Evaluation," Rev 1.
3. Drawings for Containment Penetration CPN-40:

- D.C. Cook Drawing No. OP-12-5137A, Rev 18, "WDS Vents \& Drains."
- D.C. Cook Drawing No. 12-WD-3, Rev 7.
- D.C. Cook Drawing No. 2-WD-80, Sh. 1 of 3, Rev 1.
- D.C. Cook Drawing No. 2-WD-80, Sh. 2 of 3, Rev 1.
- D.C. Cook Drawing No. 2-WD-80, Sh. 3 of 3, Rev 1.
- D.C. Cook Drawing No. 2-WD-538, Rev 0.
- D.C. Cook Drawing No. 2-WD-539, Rev 0.

4. Drawings for Containment Piping Segment RCP Seal:

- D.C. Cook Drawing No. OP-2-5128A, Rev 45, "Reactor Coolant."
- D.C. Cook Drawing No. 2-CS-711, Sh. 1 of 7, Rev 2.
- D.C. Cook Drawing No. 2-CS-711, Sh. 2 of 7, Rev 2.
- D.C. Cook Drawing No. 2-CS-711, Sh. 3 of 7, Rev 2.
- D.C. Cook Drawing No. 2-CS-711, Sh. 4 of 7, Rev 1.
- D.C. Cook Drawing No. 2-CS-711, Sh. 5 of 7, Rev 1.
- D.C. Cook Drawing No. 2-CS-711, Sh. 6 of 7, Rev 1.
- D.C. Cook Drawing No. 2-CS-711, Sh. 7 of 7, Rev 5.
- D.C. Cook Drawing No. 2-CS-712, Sh. 1 of 2, Rev. 1.
- D.C. Cook Drawing No. 2-CS-712, Sh. 2 of 2, Rev 3.
- D.C. Cook Drawing No. 2-CS-713, Sh. 1 of 2, Rev 2.
- D.C. Cook Drawing No. 2-CS-713, Sh. 2 of 2, Rev 2.
- D.C. Cook Drawing No. 2-CS-714, Rev 2.

5. Drawings for Containment Penetration CPN-37:

- D.C. Cook Drawing No. OP-2-5129A, Rev 30, "CVCS - Reactor Letdown \& Charging."
- D.C. Cook Drawing No. 2-CS-90, Sh. 1 of 2, Rev 6.
- D.C. Cook Drawing No. 2-CS-90, Sh. 2 of 2, Rev 9.
- D.C. Cook Drawing No. 2-CS-122, Sh. 1 of 3, Rev 5.
- D.C. Cook Drawing No. 2-CS-122, Sh. 2 of 3, Rev 6.
- D.C. Cook Drawing No. 2-CS-122, Sh. 3 of 3, Rev 8.

	MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
	Checked By	Page 17
6. Drawings for Containment Penetration CPN-32: - D.C. Cook Drawing No. OP-2-5143A, Rev 1, "Emerg. Core Cooling (RHR) Accumulator Piping." - D.C. Cook Drawing No. OP-2-5142A, Rev 41, "Emergency Core Cooling (SIS)." - D.C. Cook Drawing No. 2-SI-532, Sh. 2, Rev 1. - D.C. Cook Drawing No. 2-SI-604, Rev 0. - D.C. Cook Drawing No. 2-SI-570, Sh. 1 of 6, Rev 1. - D.C. Cook Drawing No. 2-SI-570, Sh. 2 of 6, Rev 0. - D.C. Cook Drawing No. 2-SI-570, Sh. 3 of 6, Rev 1. - D.C. Cook Drawing No. 2-SI-570, Sh. 4 of 6, Rev 1. - D.C. Cook Drawing No. 2-SI-570, Sh. 5 of 6, Rev 0. - D.C. Cook Drawing No. 2-SI-570, Sh. 6 of 6, Rev 0. - D.C. Cook Drawing No. 2-SI-571, Rev 4. - D.C. Cook Drawing No. 2-SI-572, Sh. 1 of 2, Rev 3. - D.C. Cook Drawing No. 2-SI-572, Sh. 2 of 2, Rev 2. - D.C. Cook Drawing No. 2-SI-573, Rev 2. - D.C. Cook Drawing No. 2-SI-574, Sh. 1 of 2, Rev 2. - D.C. Cook Drawing No. 2-SI-574, Sh. 2 of 2, Rev 1. - D.C. Cook Drawing No. 2-SI-575, Sh. 1 of 2, Rev 0. - D.C. Cook Drawing No. 2-SI-575, Sh. 2 of 2, Rev 0. - D.C. Cook Drawing No. 2-SI-576, Rev 3. - D.C. Cook Drawing No. 2-SI-577, Sh. 1 of 2, Rev 0. - D.C. Cook Drawing No. 2-SI-577, Sh. 2 of 2, Rev 0. - D.C. Cook Drawing No. 2-SI-578, Sh. 1 of 2, Rev 4. - D.C. Cook Drawing No. 2-SI-578, Sh. 2 of 2, Rev 4. - D.C. Cook Drawing No. 2-SI-579, Sh. 1 of 2, Rev 0. - D.C. Cook Drawing No. 2-SI-579, Sh. 2 of 2, Rev 1. - D.C. Cook Drawing No. 2-SI-580, Rev 2. 7. D.C. Cook Piping Specification ES-PIPE-1000-QCS, Rev 1, "Pipe Material Specification: Non-Safety Related." 8. D.C. Cook Piping Specification ES-PIPE-1013-QCN-CS3, Rev 1, "Pipe Material Specification: Safety Related." 9. MPR Calculation 025-057-02, "Evaluation of Valve Structural Adequacy," Rev 1. 10. Aerospace Structural Metal Handbook, Volume 2, 1990, Code 1303, Figure 3.03112, Type 304 Stainless Steel. 11. ASME Steam Tables, $6^{\text {th }}$ Edition. 12. 1989 ASME Code, Section II: Part D - Properties. 13. Crane Technical Paper No. 410, "Flow of Fluids," 1986. 14. AEP DIT-B-00842-00, Input for MPR Report No. MPR-2131. 15. AEP DIT-B-00966-00, Input for MPR Report No. MPR-2131.		

	\cdots	MPR Associates, inc. 320 King Street Alexandria, VA 22314	
Calculation No. $025-057-01$	Prepared By MB6	Checked By ofl	Page $_{18}$

APPENDIX A

PURPOSE:

The purpose of this calculation is to perform an evaluation of isolated piping segments that penetrate the containment to determine the effect of thermal over-pressurization during a design basis accident by the thermal expansion of the contained water. The results of this calculation represent piping segment CPN-40 at D.C. Cook, Unit 2.

CALCULATION:

The expected temperature of the water during a LOCA and the ambient temperature are

$$
\mathrm{T}_{\text {LOCA }}:=250 \quad \mathrm{~T}_{\mathrm{amb}}:=70
$$

The conversion for psi to ksi is
ksi :=1000 psi

For penetration CPN-40, there are three different pipes in the system. Using References 3, 12 and 13 , the pipe material propoerties and geometry were determined.
The first pipe is $4^{\prime \prime}$ Sch 10 , pipe specification B-14/B-23
ID $_{4 B 14}:=4.260$ in
$\mathrm{S}_{\mathrm{m} 4 \mathrm{~B} 14}:=20 \mathrm{ksi}$
$\mathrm{E}_{4 \mathrm{~B} 14}:=27.3 \cdot 10^{6} \mathrm{psi}$
${ }^{\mathrm{t}} 4 \mathrm{~B} 14:=0.120 \mathrm{in}$
$\mathrm{S}_{\mathrm{y} 4 \mathrm{~B} 14}:=23.7 \mathrm{ksi}$
$\mathrm{E}_{\mathrm{p} 4 \mathrm{~B} 14}:=0.425 \cdot 10^{6} \mathrm{psi}$
$\mathrm{OD}_{4 \mathrm{~B} 14}:=\mathrm{ID} 4 \mathrm{~B} 14+2 \cdot \mathrm{t}_{4 \mathrm{~B} 14}$
$S_{u 4 B 14}:=68.5 \mathrm{ksi}$
$\mathrm{OD}_{4 \mathrm{~B} 14}=4.5$ in
SA-312 Gr TP304

The second pipe is $2^{\prime \prime}$ Sch 40 , pipe specification B-23
ID 2 B 23 : $=2.067 \mathrm{in}$
$\mathrm{S}_{\mathrm{m} 2 \mathrm{~B} 23}:=20 \mathrm{ksi}$
${ }^{\mathrm{t}}{ }_{2 \mathrm{~B} 23}:=0.154 \mathrm{in}$
$\mathrm{S}_{\mathrm{y} 2 \mathrm{~B} 23}:=23.7 \mathrm{ksi}$
$\mathrm{OD}_{2 \mathrm{~B} 23}:=\mathrm{ID} \mathrm{DB}_{23}+2 \cdot \mathrm{t}_{2 \mathrm{~B} 23}$
$S_{\text {u2B23 }}:=68.5 \mathrm{ksi}$
$\mathrm{OD}_{2 \mathrm{~B} 23}=2.375{ }^{\circ} \mathrm{in}$
$\mathrm{E}_{2 \mathrm{~B} 23}:=27.3 \cdot 10^{6} \mathrm{psi}$
$\mathrm{E}_{\mathrm{p} 2 \mathrm{~B} 23}:=0.425 \cdot 10^{6} \mathrm{psi}$
SA-312 Gr TP304

The third pipe is $3 / 4^{\prime \prime} \operatorname{Sch} 40$, pipe specification $\mathrm{B}-23$

$$
\begin{array}{lll}
\text { ID }_{34 \mathrm{~B} 23}:=0.824 \mathrm{in} & \mathrm{~S}_{\mathrm{m} 34 \mathrm{~B} 23}:=20 \mathrm{ksi} & \mathrm{E}_{34 \mathrm{~B} 23}:=27.3 \cdot 10^{6} \mathrm{psi} \\
\mathrm{t}_{34 \mathrm{~B} 23}:=0.113 \mathrm{in} & \mathrm{~S}_{\mathrm{y} 34 \mathrm{~B} 23}:=23.7 \mathrm{ksi} & \mathrm{E}_{\mathrm{p} 34 \mathrm{~B} 23}:=0.425 \cdot 10^{6} \mathrm{psi} \\
O D_{34 \mathrm{~B} 23}:=\mathrm{ID} 34 \mathrm{~B} 23+2 \cdot \mathrm{t}_{34 \mathrm{~B} 23} & \mathrm{~S}_{\mathrm{u} 34 \mathrm{~B} 23}:=68.5 \mathrm{ksi} & \mathrm{SA}_{3} 312 \mathrm{Gr} \text { TP } 304 \\
\mathrm{OD}_{34 \mathrm{~B} 23}=1.05 \text { oin } & &
\end{array}
$$

MPR Associates, Inc.
320 King Street
Alexandria, VA 22314
Calculation No. 025-057-01

Prepared By MB6

The lengths of the three different pipes are determined from the drawings in Reference 3. The 4" pipe has a total length of approximately 159 ft ., the $2^{\prime \prime}$ pipe has a total length of approximately 4 ft ., and the $3 / 4^{\prime \prime}$ pipe has a total length of approximately 24 ft .
$L_{1}:=(159 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{2}:=(4 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{3}:=(24 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{1}=1.908 \cdot 10^{3}$ inches
$\mathrm{L}_{2}=48$ inches
$\mathrm{L}_{3}=288$ inches

For the first pipe (4 " Sch 10, B-14/B-23), the specific material parameters used in the calculation are

$$
\begin{aligned}
& \mathrm{t}_{1}:=\mathrm{t}_{4 \mathrm{~B} 14} \cdot \mathrm{in}^{-1} \quad . \quad{ }^{\mathrm{t}} \mathrm{I}_{1}=0.12 \quad \text { inches } \\
& r_{01}:=\left(\frac{\left.\mathrm{OD}_{4 \mathrm{Bl} 4 \cdot \mathrm{in}^{-1}}^{2}\right)-\mathrm{t}_{1} \quad \mathrm{r}_{01}=2.13 \quad \text { inches }, ~}{2}\right. \\
& S_{y l}:=S_{y 4 B 14} \cdot \mathrm{psi}^{-1} \quad S_{y l}=2.37 \cdot 10^{4} \mathrm{psi} \\
& \mathrm{E}_{1}:=\mathrm{E}_{4 \mathrm{~B} 14} \cdot \mathrm{psi}^{-1} \quad \mathrm{E}_{1}=2.73 \cdot 10^{7} \mathrm{psi} \\
& E_{p l}:=E_{p 4 B 14} \cdot \mathrm{psi}^{-1} \quad \mathrm{E}_{\mathrm{pl}}=4.25 \cdot 10^{5} \mathrm{psi} \\
& \varepsilon_{y l}:=\frac{S_{y l}}{E_{1}} \quad \varepsilon_{y l}=8.681 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
& \mathrm{~S}_{\mathrm{ml}}:=\mathrm{S}_{\mathrm{m} 4 \mathrm{Bl} 14} \quad \mathrm{~S}_{\mathrm{ml}}=2 \cdot 10^{4} \mathrm{opsi} \\
& \mathrm{~S}_{\mathrm{ul}}:=\mathrm{S}_{\mathrm{u} 4 \mathrm{~B} 14} \quad \mathrm{~S}_{\mathrm{ul}}=6.85 \cdot 10^{4} \text { opsi }
\end{aligned}
$$

For the second pipe ($2^{\prime \prime}$ Sch 40, B-23), the specific material parameters for the calculation are

$$
\begin{array}{ll}
\mathrm{t}_{2}:=\mathrm{t}_{2 \mathrm{~B} 23} \cdot \mathrm{in}^{-1} & \mathrm{t}_{2}=0.154 \quad \text { inches } \\
\mathrm{r}_{02}:=\left(\frac{O D_{2 \mathrm{~B} 23} \cdot \mathrm{in}^{-1}}{2}\right)-\mathrm{t}_{2} & \mathrm{r}_{02}=1.034 \quad \text { inches } \\
\mathrm{S}_{\mathrm{y} 2}:=\mathrm{S}_{\mathrm{y} 2 \mathrm{~B} 23} \cdot \mathrm{psi}^{-1} & \mathrm{~S}_{\mathrm{y} 2}=2.37 \cdot 10^{4} \mathrm{psi} \\
\mathrm{E}_{2}:=\mathrm{E}_{2 \mathrm{~B} 23} \cdot \mathrm{psi}^{-1} & \mathrm{E}_{2}=2.73 \cdot 10^{7} \mathrm{psi} \\
\mathrm{E}_{\mathrm{p} 2}:=\mathrm{E}_{\mathrm{p} 2 \mathrm{~B} 23} \cdot \mathrm{psi}^{-1} & \mathrm{E}_{\mathrm{p} 2}=4.25 \cdot 10^{5} \mathrm{psi} \\
\varepsilon_{\mathrm{y} 2}:=\frac{\mathrm{S}_{\mathrm{y} 2}}{\mathrm{E}_{2}} & \varepsilon_{\mathrm{y} 2}=8.681 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
\mathrm{~S}_{\mathrm{m} 2}:=\mathrm{S}_{\mathrm{m} 2 \mathrm{~B} 23} & \mathrm{~S}_{\mathrm{m} 2}=2 \cdot 10^{4} \circ \mathrm{psi} \\
\mathrm{~S}_{\mathrm{u} 2}:=\mathrm{S}_{\mathrm{u} 2 \mathrm{~B} 23} & \mathrm{~S}_{\mathrm{u} 2}=6.85 \cdot 10^{4} \circ \mathrm{psi}
\end{array}
$$

Calculation No. 025-057-01

Prepared By

 MB
Checked By

ABL:-
Page 20

For the third pipe ($3 / 4^{\prime \prime}$ Sch $40, \mathrm{~B}-23$), the specific material parameters for the calculation are

$$
\begin{array}{ll}
\mathrm{t}_{3}:=\mathrm{t}_{34 \mathrm{~B} 23 \cdot} \cdot \mathrm{in}^{-1} & \mathrm{t}_{3}=0.113 \quad \text { inches } \\
\mathrm{r}_{03}:=\left(\frac{\mathrm{OD}_{34 \mathrm{~B} 23} \cdot \mathrm{in}^{-1}}{2}\right)-\mathrm{t}_{3} & \mathrm{r}_{03}=0.412 \quad \text { inches } \\
\mathrm{S}_{\mathrm{y} 3}:=\mathrm{S}_{\mathrm{y} 34 \mathrm{~B} 23} \cdot \mathrm{psi}^{-1} & \mathrm{~S}_{\mathrm{y} 3}=2.37 \cdot 10^{4} \mathrm{psi} \\
\mathrm{E}_{3}:=\mathrm{E}_{34 \mathrm{~B} 23} \cdot \mathrm{psi}^{-1} & \mathrm{E}_{3}=2.73 \cdot 10^{7} \mathrm{psi} \\
\mathrm{E}_{\mathrm{p} 3}:=\mathrm{E}_{\mathrm{p} 34 \mathrm{~B} 23} \cdot \mathrm{psi}^{-1} & \mathrm{E}_{\mathrm{p} 3}=4.25 \cdot 10^{5} \mathrm{psi} \\
\varepsilon_{\mathrm{y} 3}:=\frac{\mathrm{S}_{\mathrm{y} 3}}{\mathrm{E}_{3}} & \varepsilon_{\mathrm{y} 3}=8.681 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
\mathrm{~S}_{\mathrm{m} 3}:=\mathrm{S}_{\mathrm{m} 34 \mathrm{~B} 23} & \mathrm{~S}_{\mathrm{m} 3}=2 \cdot 10^{4} \mathrm{ppsi} \\
\mathrm{~S}_{\mathrm{u} 3}:=\mathrm{S}_{\mathrm{u} 34 \mathrm{~B} 23} & \mathrm{~S}_{\mathrm{u} 3}=6.85 \cdot 10^{4} \mathrm{psi}
\end{array}
$$

At the ambient condition of 70 F , the water has a specific volume

$$
v_{\text {initial }}:=0.01605 \mathrm{ft}^{3} \cdot \mathrm{lb}^{-1}
$$

Therefore, the mass of water in a unit length (1 inch) of pipe is

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{w} 1 \mathrm{i}}:=\frac{\pi \cdot \mathrm{r}_{01}{ }^{2} \cdot 1}{\left(\mathrm{v}_{\text {initial }} \cdot \mathrm{lb} \cdot \mathrm{in}^{-3}\right)} \\
& \mathrm{m}_{\mathrm{wli}}=0.514 \quad \text { ib per unit length (} 4^{\prime \prime} \operatorname{Sch} 10 \text {) } \\
& \mathfrak{m}_{\mathrm{w} 2 \mathrm{i}}:=\frac{\pi \cdot \mathrm{r}_{02} \cdot 1}{\left({ }^{2} \text { initial }^{2} \cdot 1 \mathrm{~b} \cdot \mathrm{in}^{-3}\right)} \quad \mathrm{m}_{\mathrm{w} 2 \mathrm{i}}=0.121 \quad \text { lb per unit length (} 2^{\prime \prime} \text { Sch } 40 \text {) } \\
& m_{w 3 i}:=\frac{\pi \cdot r_{03^{2} \cdot 1}^{\left(v_{\text {initial }} \cdot l b \cdot i n^{-3}\right)} \quad m_{w 3 i}=0.019 \quad \text { lb per unit length }\left(3 / 4^{4} \operatorname{Sch} 40\right)}{}
\end{aligned}
$$

The mean coefficient of thermal expansion for SA-312 Gr TP304 at 250 F (Reference 12) is

$$
\alpha_{\mathrm{T}}:=8.90 \cdot 10^{-6}
$$

And the strain due to thermal expansion is

$$
\varepsilon_{\mathrm{th}}:=\alpha_{\mathrm{T}} \cdot\left(\mathrm{~T}_{\text {LOLA }}-\mathrm{T}_{\mathrm{amb}}\right) \quad \varepsilon_{\mathrm{th}}=1.602 \cdot 10^{-3} \quad \mathrm{in} / \mathrm{in}
$$

MPR Associates, Inc.
320 King Street
Alexandria, VA 22314
Calculation No. 025-057-01

Prepared By MB6

The total mass of the water in the piping, assuming that the pipe is filled, is

$$
\mathrm{m}_{\text {tot }}:=\mathrm{m}_{\mathrm{w} 1 \mathrm{i}} \cdot \mathrm{~L}_{1}+\mathrm{m}_{\mathrm{w} 2 \mathrm{i}} \cdot \mathrm{~L}_{2}+\mathrm{m}_{\mathrm{w} 3 \mathrm{i}} \cdot \mathrm{~L}_{3} \quad \mathrm{~m}_{\mathrm{tot}}=991.893
$$

To solve the equations for the system with both pipe sizes, we must guess inital values for the variables.

$\mathrm{p}:=3000$	$\varepsilon_{\mathrm{p} 1}:=0.01$	$\mathrm{vol}_{1}:=1$
$v:=0.016$	$\varepsilon_{\mathrm{p} 2}:=0.01$	$\operatorname{vol}_{2}:=1$
$\sigma_{\mathrm{h} 1}:=100$	$\varepsilon_{\mathrm{p} 3}:=0.01$	$\operatorname{vol}_{3}:=1$
$\sigma_{\mathrm{h} 2}:=100$	$\mathrm{r}_{1}:=1$	$\mathrm{~m}_{\mathrm{w} 1}:=1$
$\sigma_{\mathrm{h} 3}:=100$	$\mathrm{r}_{2}:=1$	$\mathrm{~m}_{\mathrm{w} 2}:=1$
	$\mathrm{r}_{3}:=1$	$\mathrm{~m}_{\mathrm{w} 3}:=1$

Assign a function to represent the change from elastic strain to plastic strain as follows:

$$
\begin{aligned}
& f_{1}\left(\sigma_{\mathrm{h} 1}, S_{\mathrm{y} 1}, E_{1}, \mathrm{E}_{\mathrm{p} 1}, \varepsilon_{\mathrm{y} 1}\right):=\mathrm{if}\left(\sigma_{\mathrm{h} 1}>\mathrm{S}_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}-S_{\mathrm{y} 1}}{E_{\mathrm{p} 1}}+\varepsilon_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}}{E_{1}}\right) \\
& \mathrm{f}_{2}\left(\sigma_{\mathrm{h} 2}, S_{\mathrm{y} 2}, \mathrm{E}_{2}, \mathrm{E}_{\mathrm{p} 2}, \varepsilon_{\mathrm{y} 2}\right):=\mathrm{if}\left(\sigma_{\mathrm{h} 2}>\mathrm{S}_{\mathrm{y} 2}, \frac{\sigma_{\mathrm{h} 2}-S_{\mathrm{y} 2}}{E_{\mathrm{p} 2}}+\varepsilon_{\mathrm{y} 2}, \frac{\sigma_{\mathrm{h} 2}}{E_{2}}\right) \\
& \mathrm{f}_{3}\left(\sigma_{\mathrm{h} 3}, S_{\mathrm{y} 3}, E_{3}, E_{\mathrm{p} 3}, \varepsilon_{\mathrm{y} 3}\right):=\mathrm{if}\left(\sigma_{\mathrm{h} 3}>\mathrm{S}_{\mathrm{y} 3}, \frac{\sigma_{\mathrm{h} 3}-S_{\mathrm{y} 3}}{E_{\mathrm{p} 3}}+\varepsilon_{\mathrm{y} 3}, \frac{\sigma_{\mathrm{h} 3}}{E_{3}}\right)
\end{aligned}
$$

Given

$$
\begin{aligned}
& r_{1}=\left(1+\varepsilon_{\mathrm{p} 1}\right) \cdot \mathrm{r}_{01} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \\
& r_{2}=\left(1+\varepsilon_{p 2}\right) \cdot r_{02} \cdot\left(1+\varepsilon_{t h}\right) \\
& r_{3}=\left(1+\varepsilon_{p 3}\right) \cdot r_{03} \cdot\left(1+\varepsilon_{t h}\right) \\
& \operatorname{vol}_{1}=\frac{\pi \cdot r_{1}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{1}}{\left(12^{3}\right)} \\
& \mathrm{vol}_{2}=\frac{\pi \cdot \mathrm{r}_{2}^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{2}}{\left(12^{3}\right)} \\
& \operatorname{vol}_{3}=\frac{\pi \cdot r_{3}^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{3}}{\left(12^{3}\right)} \\
& v=\frac{\mathrm{vol}_{1}}{\mathrm{~m}_{\mathrm{w} 1}} \quad v=\frac{\mathrm{vol}_{2}}{\mathrm{~m}_{\mathrm{w} 2}} \quad v=\frac{\mathrm{vol}_{3}}{\mathrm{~m}_{\mathrm{w} 3}} \quad \sigma_{\mathrm{h}}=\mathrm{P} \cdot \frac{\mathrm{r}_{1}}{\mathrm{t}_{1}} \quad \sigma_{\mathrm{h} 2}=\mathrm{p} \cdot \frac{\mathrm{r}_{2}}{\mathrm{t}_{2}} \quad \sigma_{\mathrm{h} 3}=\mathrm{P} \cdot \frac{r_{3}}{\mathrm{t}_{3}} \\
& \mathrm{P}=\left(4.507 \cdot 10^{9}\right) \cdot v^{2}-\left(1.690 \cdot 10^{8}\right) \cdot v+1.572 \cdot 10^{6} \\
& \mathrm{~m}_{\text {tot }}=\mathrm{m}_{\mathrm{w} 1}+\mathrm{m}_{\mathrm{w} 2}+\mathrm{m}_{\mathrm{w} 3}
\end{aligned}
$$

Calculation No.
Prepared By MB6

$$
\begin{array}{ll}
\varepsilon_{p 1}=f_{1}\left(\sigma_{h 1}, S_{y 1}, E_{1}, E_{p 1}, \varepsilon_{y 1}\right) & \varepsilon_{p 2}=f_{2}\left(\sigma_{h 2}, S_{y 2}, E_{2}, E_{p 2}, \varepsilon_{y 2}\right) \\
\varepsilon_{p 3}=f_{3}\left(\sigma_{h 3}, S_{y 3}, E_{3}, E_{p 3}, \varepsilon_{y 3}\right)
\end{array}
$$

Solving the equations.

$$
\begin{aligned}
& \text { AA }:=\operatorname{Find}\left(r_{1}, r_{2}, r_{3}, \varepsilon_{p 1}, \varepsilon_{p 2}, \varepsilon_{p 3}, v o l_{1}, v o l_{2}, v o l_{3}, v, P_{, ~} \sigma_{h 1}, \sigma_{h 2}, \sigma_{h 3}, m_{w 1}, m_{w 2}, m_{w 3}\right) \\
& r_{1}:=\mathrm{AA}_{0,0} \cdot \text {-in } \\
& \mathrm{r}_{2}:=\mathrm{AA}_{1,0} \cdot \mathrm{in} \quad \mathrm{r}_{2}=1.036 \circ \mathrm{in} \\
& r_{3}:={A A_{2,0}} \text { in } \\
& r_{3}=0.413 \text { } \mathrm{in} \\
& \varepsilon_{\mathrm{p} 1}:=\mathrm{AA}_{3,0} \\
& \varepsilon_{\mathrm{pl}}=2.6290 \% \\
& \varepsilon_{\mathrm{p} 2}:=\mathrm{AA}_{4,0} \\
& \varepsilon_{\mathrm{p} 2}=0.0470 \% \\
& \varepsilon_{\mathrm{p} 3}:=\mathrm{AA}_{5,0} \\
& \mathrm{vol}_{1}:=\mathrm{AA}_{6,0} \cdot \mathrm{ft}^{3} \quad \mathrm{vol}_{1}=16.656 \mathrm{ft}^{3} \\
& \mathrm{vol}_{2}:=\mathrm{AA}_{7,0} \cdot \mathrm{ft}^{3} \quad \mathrm{vol}_{2}=0.094 \mathrm{ft}^{3} \\
& \mathrm{vol}_{3}:=\mathrm{AA}_{8,0} \cdot \mathrm{ft}^{3} \quad \mathrm{vol}_{3}=0.089 \mathrm{oft}^{3} \\
& v:=\mathrm{AA}_{9,0} \cdot \mathrm{ft}^{3} \cdot 1 \mathrm{~b}^{-1} \\
& P:=A A_{10,0}{ }^{\circ} \mathrm{psi} \\
& v=0.016977 \mathrm{ff}^{3} \cdot 1 \mathrm{l}^{-1} \\
& \mathrm{P}=1.891 \cdot 10^{3} \text { opsi } \\
& \sigma_{h 1}:=\mathrm{AA}_{11,0} \cdot \mathrm{psi} \\
& \sigma_{\mathrm{hl}}=34.5060 \mathrm{ksi} \\
& \sigma_{\mathrm{h} 2}:=\mathrm{AA}_{12,0}{ }^{\circ} \mathrm{psi} \\
& \sigma_{\mathrm{h} 2}=12.718 \mathrm{ksi} \\
& \sigma_{\mathrm{h} 3}:=\mathrm{AA}_{13,0} \cdot \mathrm{psi} \\
& \mathrm{~m}_{\mathrm{w} 1}:=\mathrm{AA}_{14,0} \cdot \mathrm{lb} \\
& \sigma_{\mathrm{h} 3}=6.908 \mathrm{ksi} \\
& \mathrm{~m}_{\mathrm{w} 1}=981.108 \mathrm{olb} \\
& m_{w 2}:=A A_{15,0} \cdot \mathrm{lb} \\
& \mathrm{~m}_{\mathrm{w} 2}=5.522 \mathrm{olb} \\
& \mathrm{~m}_{\mathrm{w} 3}:=\mathrm{AA}_{16,0} \cdot \mathrm{lb}
\end{aligned}
$$

		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
$\begin{gathered} \text { Calculation No. } \\ 025-057-01 \end{gathered}$	$\begin{aligned} & \text { Prepared By } \\ & \text { MB6 } \end{aligned}$	Checked By OH:	Page 23

The principal stresses for the first pipe are calculated

$$
\begin{aligned}
& S_{11}:=\frac{P \cdot r_{1}}{\mathrm{t}_{1} \cdot{ }^{\text {in }}} \\
& S_{2 p 1}:=\frac{P \cdot r_{1}}{2 \cdot t_{1} \cdot \text { in }^{n}}+S_{m l} \\
& \mathrm{~S}_{2 \mathrm{pl}}=37.253 \mathrm{ksi} \\
& S_{2 m 1}:=\frac{P \cdot r_{1}}{2 \cdot t_{1} \cdot \mathrm{n}^{n}}-S_{m 1} \\
& S_{2 \mathrm{~m} 1}=-2.747 \cdot \mathrm{ksi} \\
& S_{31}:=\frac{-P}{2} \\
& \mathrm{BB}_{1}:=\left[\begin{array}{c}
\left|\mathrm{s}_{11}-\mathrm{s}_{2 \mathrm{pl}}\right| \\
\left|\mathrm{s}_{11}-\mathrm{s}_{2 \mathrm{ml}}\right| \\
\left|\mathrm{s}_{2 \mathrm{pl}}-\mathrm{s}_{31}\right| \\
\left|\mathrm{s}_{2 \mathrm{ml}}-\mathrm{s}_{31}\right| \\
\left|\mathrm{s}_{31}-\mathrm{s}_{11}\right|
\end{array}\right] \\
& \mathrm{S}_{11}=34.506 \mathrm{ksi} \\
& S_{31}=-0.946 \mathrm{ksi}
\end{aligned}
$$

The stress intensity

$$
\mathrm{SI}:=\max \left(\mathrm{BB}_{1}\right) \quad \mathrm{SI}=38.198 \mathrm{oksi}
$$

The allowable stress is

$$
\mathrm{S}_{\text {allowable }}:=0.7 \cdot \mathrm{~S}_{\mathrm{ul}} \quad \mathrm{~S}_{\text {allowable }}=47.95 \mathrm{ksi}
$$

The stress index is

$$
\text { Index : }=\frac{\text { SI }}{S_{\text {allowable }}} \quad \text { Index }=0.797
$$

Prepared By
MB6

The principal stresses for the second pipe are calculated

$$
\begin{array}{ll}
\mathrm{S}_{12}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{\mathrm{t}_{2} \cdot \mathrm{in}} & \mathrm{~S}_{12}=12.718 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{p} 2}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{2 \cdot \mathrm{t}_{2} \cdot \mathrm{in}}+\mathrm{S}_{\mathrm{m} 2} & \mathrm{~S}_{2 \mathrm{p} 2}=26.359 \mathrm{oksi} \\
\mathrm{~S}_{2 \mathrm{~m} 2}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{2 \cdot \mathrm{t}_{2} \cdot \mathrm{in}}-\mathrm{S}_{\mathrm{m} 2} & \mathrm{~S}_{2 \mathrm{~m} 2}=-13.641 \mathrm{kks} \\
\mathrm{~S}_{32}:=\frac{-\mathrm{P}}{2} & \mathrm{~S}_{32}=-0.946 \mathrm{ksi} \\
\mathrm{BB}_{2}:=\left[\begin{array}{l}
\left|\mathrm{S}_{12}-\mathrm{S}_{2 \mathrm{p} 2}\right| \\
\left|\mathrm{S}_{12}-\mathrm{S}_{2 \mathrm{~m} 2}\right| \\
\left|\mathrm{S}_{2 \mathrm{p} 2}-\mathrm{S}_{32}\right| \\
\left.\left\lvert\, \begin{array}{l}
\mathrm{S}_{2 \mathrm{~m} 2}-\mathrm{S}_{32} \mid \\
\left|\mathrm{S}_{32}-\mathrm{S}_{12}\right|
\end{array}\right.\right]
\end{array}\right. &
\end{array}
$$

The stress intensity

$$
\mathrm{SI}:=\max \left(\mathrm{BB}_{2}\right) \quad \mathrm{SI}=27.304 \mathrm{ksi}
$$

The allowable stress is

$$
\mathrm{S}_{\text {allowable }}:=0.7 \cdot \mathrm{~S}_{\mathrm{u} 2}
$$

$$
\mathrm{S}_{\text {allowable }}=47.95 \mathrm{oksi}
$$

The stress index is

$$
\text { Index }:=\frac{\mathrm{SI}}{\mathrm{~S}_{\text {allowable }}}
$$

$$
\text { Index }=0.569
$$

Calculation No. $025-057-01$	Prepared By MB6	Checked By AHLu.	Page 25

The principal stresses for the third pipe are calculated

$$
\begin{array}{ll}
\mathrm{S}_{13}:=\frac{\mathrm{P} \cdot \mathrm{r}_{3}}{\mathrm{t}_{3} \cdot \mathrm{in}} & \mathrm{~S}_{13}=6.908 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{p} 3}:=\frac{\mathrm{P} \cdot \mathrm{r}_{3}}{2 \cdot \mathrm{t}_{3} \cdot \mathrm{in}}+\mathrm{S}_{\mathrm{m} 3} & \mathrm{~S}_{2 \mathrm{p} 3}=23.454 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{~m} 3}:=\frac{\mathrm{P} \cdot \mathrm{r}_{3}}{2 \cdot \mathrm{t}_{3} \cdot \mathrm{in}}-\mathrm{S}_{\mathrm{m} 3} & \mathrm{~S}_{2 \mathrm{~m} 3}=-16.546 \mathrm{ksi} \\
\mathrm{~S}_{33}:=\frac{-\mathrm{P}}{2} & \mathrm{~S}_{33}=-0.946 \mathrm{ksi} \\
\mathrm{BB}_{3}:=\left[\begin{array}{l}
\left|\mathrm{S}_{13}-\mathrm{S}_{2 \mathrm{p} 3}\right| \\
\left.\left\lvert\, \begin{array}{l}
\mathrm{S}_{13}-\mathrm{S}_{2 \mathrm{~m} 3} \mid \\
\left|\mathrm{S}_{2 \mathrm{p} 3}-\mathrm{S}_{33}\right| \\
\left|\mathrm{S}_{2 \mathrm{~m} 3}-\mathrm{S}_{33}\right| \\
\left|\mathrm{S}_{33}-\mathrm{S}_{13}\right|
\end{array}\right.\right]
\end{array} \quad \mathrm{BB}_{3}=\left[\begin{array}{c}
16.546 \\
23.454 \\
24.4 \\
15.6 \\
7.854
\end{array}\right]\right. \text { oksi }
\end{array}
$$

The stress intensity

$$
\mathrm{SI}:=\max \left(\mathrm{BB}_{3}\right)
$$

$$
\mathrm{SI}=24.4 \mathrm{ksi}
$$

The allowable stress is

$$
\mathrm{S}_{\text {allowable }}:=0.7 . \mathrm{S}_{\mathrm{u} 3} \quad \mathrm{~S}_{\text {allowable }}=47.95 \mathrm{ksi}
$$

The stress index is

$$
\text { Index }:=\frac{\text { SI }}{S_{\text {allowable }}} \quad \text { Index }=0.509
$$

```
MPR Associates, Inc. 320 King Street Alexandria, VA 22314
```

Calculation No. 025-057-01

Prepared By MBG

Page26

APPENDIX B

PURPOSE:

The purpose of this calculation is to perform an evaluation of isolated piping segments that penetrate the containment to determine the effect of thermal over-pressurization during a design basis accident by the thermal expansion of the contained water. The results of this calculation represent penetration RCP Seal at D.C. Cook, Unit 2.

CALCULATION:

The expected temperature of the water during a LOCA and the ambient temperature are

$$
\mathrm{T}_{\text {LOCA }}:=250 \quad \mathrm{~T}_{\mathrm{amb}}:=70
$$

The conversion for psi to ksi is

$$
\text { ksi }:=1000 \mathrm{psi}
$$

For penetration RCP Seal, there are two different pipes in the system. Using References 4, 12 and 13, the pipe material properties and geometry were determined, respectively.
The first pipe is $1^{\prime \prime}$ Sch 160 , pipe specification $M-14$
ID 1 M14 $:=0.815$ in
$\mathrm{S}_{\text {mlM14 }}:=20 \mathrm{ksi}$
$t_{1 M 14}:=0.250$ in
$\mathrm{S}_{\mathrm{y} 1 \mathrm{M} 14}:=23.7 \mathrm{ksi}$
$\mathrm{OD}_{1 \mathrm{M}_{14}}:=\mathrm{ID}_{1 \mathrm{M}_{14}+2 \cdot \mathrm{t}} \mathrm{IM} 14$
$S_{\text {ulM14 }}:=68.5 \mathrm{ksi}$
$\mathrm{OD}_{1 \mathrm{M} 14}=1.315$ oin

The second pipe is $3 / 4^{\prime \prime}$ Sch 160 , pipe specification $\mathrm{M}-14$

$$
\begin{array}{ll}
\mathrm{ID}_{34 \mathrm{M} 14}:=0.612 \mathrm{in} & \mathrm{~S}_{\mathrm{m} 34 \mathrm{M} 14}:=20 \mathrm{ksi} \\
\mathrm{t}_{34 \mathrm{M} 14}:=0.219 \mathrm{in} 14:=27.3 \cdot 10^{6} \mathrm{psi} \\
\text { OD }_{34 \mathrm{M} 14}:=\mathrm{ID} \mathrm{ID}_{34 \mathrm{M} 14}+2 \cdot \mathrm{t}_{34 \mathrm{M} 14} \mathrm{~S}_{\mathrm{u} 34 \mathrm{M} 14}:=68.5 \mathrm{ksi} & \mathrm{SA}_{\mathrm{p} 34 \mathrm{M} 14}:=0.425 \cdot 10^{6} \mathrm{psi} \\
\mathrm{OD}_{34 \mathrm{M} 14}=1.05 \text { oin } & \mathrm{S}_{\mathrm{y} 34 \mathrm{M} 14}:=23.7 \mathrm{ksi}
\end{array}
$$

The lengths of the two different pipes are determined from the drawings in Reference 4. The 1" pipe has a total length of approximately 20 ft . while the $3 / 4^{\prime \prime}$ pipe has a total length of approximately 450 ft .
$L_{1}:=(20 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{2}:=(450 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{1}=240$ inches
$L_{2}=5.4 \cdot 10^{3}$ inches

Calculation No.	Prepared By
$025-057-01$	$M B 6$

Checked By	Page 27
cyl	

For the first pipe (1 " Sch 160, M-14), the specific material parameters used in the calculation are

$$
\begin{array}{ll}
\mathrm{t}_{1}:=\mathrm{t}_{1 \mathrm{M} 14} \cdot \mathrm{in}^{-1} & \mathrm{t}_{1}=0.25 \quad \text { inches } \\
\mathrm{r}_{01}:=\left(\frac{\mathrm{OD} 1 \mathrm{M} 14 \cdot \mathrm{in}^{-1}}{2}\right)-\mathrm{t}_{1} & \mathrm{r}_{01}=0.408 \quad \text { inches } \\
\mathrm{S}_{\mathrm{y} 1}:=\mathrm{S}_{\mathrm{y} 1 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} & \mathrm{~S}_{\mathrm{y} 1}=2.37 \cdot 10^{4} \mathrm{psi} \\
\mathrm{E}_{1}:=\mathrm{E}_{1 \mathrm{M} 14 \cdot \mathrm{psi}^{-1}} & \mathrm{E}_{1}=2.73 \cdot 10^{7} \mathrm{psi} \\
\mathrm{E}_{\mathrm{p} 1}:=\mathrm{E}_{\mathrm{plM} 14} \cdot \mathrm{psi}^{-1} & \mathrm{E}_{\mathrm{pl}}=4.25 \cdot 10^{5} \mathrm{psi} \\
\varepsilon_{\mathrm{y} 1}:=\frac{\mathrm{S}_{\mathrm{y} 1}}{\mathrm{E}_{1}} & \varepsilon_{\mathrm{yl}}=8.681 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
\mathrm{~S}_{\mathrm{m} 1}:=\mathrm{S}_{\mathrm{mlM} 14} & \mathrm{~S}_{\mathrm{ml}}=2 \cdot 10^{4} \mathrm{opsi} \\
\mathrm{~S}_{\mathrm{ul}}:=\mathrm{S}_{\mathrm{ulM} 14} & \mathrm{~S}_{\mathrm{ul}}=6.85 \cdot 10^{4} \mathrm{opsi}
\end{array}
$$

For the second pipe ($3 / 4^{\prime \prime}$ Sch $160, \mathrm{M}-14$), the specific material parameters for the calculation are

$$
\begin{array}{ll}
\mathrm{t}_{2}:=\mathrm{t}_{34 \mathrm{M} 14} \cdot \mathrm{in}^{-1} & \mathrm{t}_{2}=0.219 \quad \text { inches } \\
\mathrm{r}_{02}:=\left(\frac{\mathrm{OD} 34 \mathrm{M} 14 \cdot \mathrm{in}^{-1}}{2}\right)-\mathrm{t}_{2} & \mathrm{r}_{02}=0.306 \quad \text { inches } \\
\mathrm{S}_{\mathrm{y} 2}:=\mathrm{S}_{\mathrm{y} 34 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} & \mathrm{~S}_{\mathrm{y} 2}=2.37 \cdot 10^{4} \mathrm{psi} \\
\mathrm{E}_{2}:=\mathrm{E}_{34 \mathrm{M} 14 \cdot} \cdot \mathrm{psi}^{-1} & \mathrm{E}_{2}=2.73 \cdot 10^{7} \mathrm{psi} \\
\mathrm{E}_{\mathrm{p} 2}:=\mathrm{E}_{\mathrm{p} 34 \mathrm{M} 14 \cdot \mathrm{psi}^{-1}} & \mathrm{E}_{\mathrm{p} 2}=4.25 \cdot 10^{5} \mathrm{psi} \\
\varepsilon_{\mathrm{y} 2}:=\frac{\mathrm{S}_{\mathrm{y} 2}}{\mathrm{E}_{2}} & \varepsilon_{\mathrm{y} 2}=8.681 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
\mathrm{~S}_{\mathrm{m} 2}:=\mathrm{S}_{\mathrm{m} 34 \mathrm{M} 14} & \mathrm{~S}_{\mathrm{m} 2}=2 \cdot 10^{4} \mathrm{opsi} \\
\mathrm{~S}_{\mathrm{u} 2}:=\mathrm{S}_{\mathrm{u} 34 \mathrm{M} 14} & \mathrm{~S}_{\mathrm{u} 2}=6.85 \cdot 10^{4} \mathrm{opsi}
\end{array}
$$

At the ambient condition of 70 F , the water has a specific volume
$v_{\text {initial }}:=0.01605 \mathrm{ft}^{3} \cdot \mathrm{lb}^{-1}$

Therefore, the mass of water in a unit length (1 inch) of pipe is

$$
\begin{array}{ll}
\mathrm{m}_{\mathrm{wli}}:=\frac{\pi \cdot \mathrm{r} 01^{2} \cdot 1}{\left(v_{\text {initial }} \cdot \mathrm{lb} \cdot \mathrm{in}^{-3}\right)} & \mathrm{m}_{\mathrm{w} 1 \mathrm{i}}=0.019 \\
\mathrm{~m}_{\mathrm{w} 2 \mathrm{i}}:=\frac{\text { bb per unit length }(1 " \text { Sch } 160)}{\left(v_{\text {initial }} \cdot \mathrm{lb} \cdot \mathrm{in}^{-3}\right)} & \mathrm{m}_{\mathrm{w} 2 \mathrm{i}}=0.011 \quad \text { ib per unit length }\left(3 / 4^{2} \text { Sch } 160\right)
\end{array}
$$

The mean coefficient of thermal expansion for SA-376 Gr TP304 at 250 F (Reference 12) is

$$
\alpha_{\mathrm{T}}:=8.90 \cdot 10^{-6}
$$

And the strain due to thermal expansion is

$$
\varepsilon_{\text {th }}:=\alpha T\left(T_{\text {LOCA }}-T_{\text {amb }}\right) \quad \varepsilon_{\text {th }}=1.602 \cdot 10^{-3} \quad \mathrm{in} / \mathrm{in}
$$

The total mass of the water in the piping, assuming that the pipe is filled, is

$$
\mathrm{m}_{\text {tot }}:=\mathrm{m}_{\mathrm{w} 1 \mathrm{i}} \cdot \mathrm{~L}_{1}+\mathrm{m}_{\mathrm{w} 2 \mathrm{i}} \cdot \mathrm{~L}_{2} \quad \mathrm{~m}_{\text {tot }}=61.79 \quad \mathrm{lb}
$$

To solve the equations for the system with both pipe sizes, we must guess inital values for the variables.

$$
\begin{array}{lll}
\mathrm{P}:=3000 & \varepsilon_{\mathrm{p} 1}:=0.01 & \text { vol }_{1}:=1 \\
\mathrm{v}:=0.016 & \varepsilon_{\mathrm{p} 2}:=0.01 & \mathrm{vol}_{2}:=1 \\
\sigma_{\mathrm{h} 1}:=100 & \mathrm{r}_{1}:=1 & \mathrm{~m}_{\mathrm{w} 1}:=1 \\
\sigma_{\mathrm{h} 2}:=100 & \mathrm{r}_{2}:=1 & \mathrm{~m}_{\mathrm{w} 2}:=1
\end{array}
$$

Assign a function to represent the change from elastic strain to plastic strain as follows:

$$
\begin{aligned}
& f_{1}\left(\sigma_{\mathrm{h} 1}, \mathrm{~S}_{\mathrm{y} 1}, \mathrm{E}_{1}, \mathrm{E}_{\mathrm{p} 1}, \varepsilon_{\mathrm{y} 1}\right):=\mathrm{if}\left(\sigma_{\mathrm{h} 1}>\mathrm{S}_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}-S_{\mathrm{y} 1}}{\mathrm{E}_{\mathrm{p} 1}}+\varepsilon_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}}{E_{1}}\right) \\
& \mathrm{f}_{2}\left(\sigma_{\mathrm{h} 2}, \mathrm{~S}_{\mathrm{y} 2}, \mathrm{E}_{2}, \mathrm{E}_{\mathrm{p} 2}, \varepsilon_{\mathrm{y} 2}\right):=\mathrm{if}\left(\sigma_{\mathrm{h} 2}>\mathrm{S}_{\mathrm{y} 2}, \frac{\sigma_{\mathrm{h} 2}-S_{\mathrm{y} 2}}{E_{\mathrm{p} 2}}+\varepsilon_{\mathrm{y} 2}, \frac{\sigma_{\mathrm{h} 2}}{E_{2}}\right)
\end{aligned}
$$

MPR Associates, Inc.
320 King Street
Alexandria, VA 22314
Calculation No.
Prepared By MB6

Given

$$
\begin{array}{ll}
\mathrm{r}_{1}=\left(1+\varepsilon_{\mathrm{pl}}\right) \cdot \mathrm{r}_{01} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) & \mathrm{r}_{2}=\left(1+\varepsilon_{\mathrm{p} 2}\right) \cdot \mathrm{r}_{02} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \\
\mathrm{vol}_{1}=\frac{\pi \cdot \mathrm{r}_{1}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{1}}{\left(12^{3}\right)} & \mathrm{vol}_{2}=\frac{\pi \cdot \mathrm{r}_{2}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{2}}{\left(12^{3}\right)} \\
v=\frac{\mathrm{vol}_{1}}{\mathrm{~m}_{\mathrm{wl}}} & \mathrm{v}=\frac{\mathrm{vol}_{2}}{\mathrm{~m}_{\mathrm{w} 2}} \\
\mathrm{P}=\left(4.507 \cdot 10^{9}\right) \cdot v^{2}-\left(1.690 \cdot 10^{8}\right) \cdot v+1.572 \cdot 10^{6} & \mathrm{~m}_{\mathrm{tot}}=\mathrm{m}_{\mathrm{wl}}+\mathrm{m}_{\mathrm{w} 2} \\
\sigma_{\mathrm{h} 1}=\mathrm{P} \cdot \frac{\mathrm{r}_{1}}{\mathrm{t}_{1}} & \sigma_{\mathrm{h} 2}=\mathrm{P} \cdot \frac{\mathrm{r}_{2}}{\mathrm{t}_{2}} \\
\varepsilon_{\mathrm{pl}}=\mathrm{f}_{1}\left(\sigma_{\mathrm{h} 1}, \mathrm{~S}_{\mathrm{y} 1}, \mathrm{E}_{1}, \mathrm{E}_{\mathrm{pl}}, \varepsilon_{\mathrm{yl}}\right) & \varepsilon_{\mathrm{p} 2}=\mathrm{f}_{2}\left(\sigma_{\mathrm{h} 2}, \mathrm{~S}_{\mathrm{y} 2}, \mathrm{E}_{2}, \mathrm{E}_{\mathrm{p} 2}, \varepsilon_{\mathrm{y} 2}\right)
\end{array}
$$

Solving the equations.

$$
A A:=\operatorname{Find}\left(r_{1}, r_{2}, \varepsilon_{p 1}, \varepsilon_{p 2}, \operatorname{vol}_{1}, \operatorname{vol}_{2}, v, P, \sigma_{h 1}, \sigma_{h 2}, m_{w 1}, m_{w 2}\right)
$$

$$
\begin{aligned}
& \mathrm{r}_{1}:=\mathrm{AA}_{0,0} \cdot \text { in } \\
& r_{1}=0.413 \mathrm{in} \\
& r_{2}:=A A_{1,0} \text { in } \\
& r_{2}=0.307 \text { in } \\
& \varepsilon_{\mathrm{pl}}:=\mathrm{AA}_{2,0} \\
& \varepsilon_{\mathrm{pl}}=1.1470 \% \\
& \varepsilon_{\mathrm{p} 2}:=\mathrm{AA}_{3,0} \\
& { }^{\varepsilon}{ }_{\mathrm{p} 2}=0.1430 \% \\
& \mathrm{vol}_{1}:=\mathrm{AA}_{4,0} \cdot \mathrm{ft}^{3} \\
& \mathrm{vol}_{1}=0.0740 \mathrm{ft}^{3} \\
& \mathrm{vol}_{2}:=\mathrm{AA}_{\mathrm{s}, 0} \cdot \mathrm{ft}^{3} \\
& \mathrm{vol}_{2}=0.926 \mathrm{ft}^{3} \\
& v:=A A_{6,0} \cdot f f^{3} \cdot 16^{-1} \\
& v=0.016197 \cdot \mathrm{of}^{3} \cdot 1 \mathrm{~b}^{-1} \\
& \mathrm{P}:=\mathrm{AA}_{7,0} \cdot \mathrm{psi} \\
& \mathrm{P}=1.7081 \cdot 10^{4} \text { opsi } \\
& \sigma_{\mathrm{hl}}:=\mathrm{AA}_{8,0} \cdot \mathrm{psi} \\
& \sigma_{\mathrm{hl}}=28.206 \mathrm{ksi} \\
& \sigma_{\mathrm{h} 2}=23.939 \mathrm{dssi} \\
& \mathrm{~m}_{\mathrm{w} 1}=4.599 \mathrm{db} \\
& \mathrm{~m}_{\mathrm{w}_{2}}:=\mathrm{AA}_{11,0} \cdot \mathrm{lb} \\
& \mathrm{~m}_{\mathrm{w} 2}=57.191 \mathrm{olb}
\end{aligned}
$$

Calculation No. 025-057-01

\qquad

The principal stresses for the first pipe are calculated

$$
\begin{array}{ll}
\mathrm{S}_{11}:=\frac{\mathrm{P} \cdot \mathrm{r}_{1}}{\mathrm{t}_{1} \cdot \mathrm{in}} & \mathrm{~S}_{11}=28.206 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{p} 1}:=\frac{\mathrm{P} \cdot \mathrm{r}_{1}}{2 \cdot \mathrm{t}_{1} \cdot \mathrm{in}}+\mathrm{S}_{\mathrm{ml}} & \mathrm{~S}_{2 \mathrm{pl}}=34.103 \mathrm{oksi} \\
\mathrm{~S}_{2 \mathrm{~m} 1}:=\frac{\mathrm{P} \cdot \mathrm{r}_{1}}{2 \cdot \mathrm{t} 1 \cdot \mathrm{in}}-\mathrm{S}_{\mathrm{m} 1} & \mathrm{~S}_{2 \mathrm{ml}}=-5.897 \mathrm{ksi} \\
\mathrm{~S}_{31}:=\frac{-\mathrm{P}}{2} & \mathrm{~S}_{31}=-8.54 \mathrm{oksi} \\
\mathrm{BB}_{1}:=\left[\begin{array}{l}
\left.\left\lvert\, \begin{array}{l}
\mathrm{S}_{11}-\mathrm{S}_{2 \mathrm{pl}} \mid \\
\left|\mathrm{S}_{11}-\mathrm{S}_{2 \mathrm{~m} 1}\right| \\
\left|\mathrm{S}_{2 \mathrm{pl}}-\mathrm{S}_{31}\right| \\
\left|\mathrm{S}_{2 \mathrm{ml}}-\mathrm{S}_{31}\right| \\
\left|\mathrm{S}_{31}-\mathrm{S}_{11}\right|
\end{array}\right.\right]
\end{array} \quad \mathrm{BB}_{1}=\left[\begin{array}{c}
5.897 \\
34.103 \\
42.643 \\
2.643 \\
36.747
\end{array}\right]\right.
\end{array}
$$

The stress intensity

$$
\mathrm{SI}:=\max \left(\mathrm{BB}_{1}\right)
$$

$$
\mathrm{SI}=42.643 \mathrm{ksi}
$$

The allowable stress is

$$
\mathrm{S}_{\text {allowable }}:=0.7 \cdot \mathrm{~S}_{\mathrm{ul}} \quad \mathrm{~S}_{\text {allowable }}=47.95 \circ \mathrm{ksi}
$$

The stress index is

$$
\text { Index }:=\frac{\text { SI }}{S_{\text {allowable }}} \quad \text { Index }=0.889
$$

Calculation No. $025-057-01$	Prepared By MB6	Checked By MSl	Page 31

The principal stresses for the second pipe are calculated

$$
\begin{array}{ll}
\mathrm{S}_{12}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{\mathrm{t}_{2} \cdot \mathrm{nn}} & \mathrm{~S}_{12}=23.939 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{p} 2}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{2 \cdot \mathrm{t} 2 \cdot \mathrm{ni}}+\mathrm{S}_{\mathrm{m} 2} & \mathrm{~S}_{2 \mathrm{p} 2}=31.969 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{~m} 2}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{2 \cdot \mathrm{t}_{2} \cdot \mathrm{in}}-\mathrm{S}_{\mathrm{m} 2} & \mathrm{~S}_{2 \mathrm{~m} 2}=-8.031 \mathrm{ksi} \\
\mathrm{~S}_{32}:=\frac{-\mathrm{P}}{2} & \mathrm{~S}_{32}=-8.54 \mathrm{ksi}
\end{array}
$$

$$
\mathrm{BB}_{2}:=\left[\begin{array}{l}
\left|\mathrm{s}_{12}-\mathrm{s}_{2 \mathrm{p} 2}\right| \\
\left|\mathrm{s}_{12}-\mathrm{S}_{2 \mathrm{~m} 2}\right| \\
\left|\mathrm{s}_{2 \mathrm{p} 2}-\mathrm{s}_{32}\right| \\
\left|\mathrm{s}_{2 \mathrm{~m} 2}-\mathrm{s}_{32}\right| \\
\left|\mathrm{s}_{32}-\mathrm{s}_{12}\right|
\end{array}\right]
$$

$$
\mathrm{BB}_{2}=\left[\begin{array}{c}
8.031 \\
31.969 \\
40.51 \\
0.51 \\
32.479
\end{array}\right] \circ \mathrm{ksi}
$$

The stress intensity

$$
\mathrm{SI}:=\max \left(\mathrm{BB}_{2}\right)
$$

$\mathrm{SI}=40.51 \mathrm{ksi}$
The allowable stress is

$$
\mathrm{S}_{\text {allowable }}:=0.7 \cdot \mathrm{~S}_{\mathrm{u} 2} \quad \mathrm{~S}_{\text {allowable }}=47.95 \circ \mathrm{ksi}
$$

The stress index is

$$
\text { Index }:=\frac{\text { SI }}{S_{\text {allowable }}}
$$

Index $=0.845$

Calculation No.

Prepared By
 MB6

Page $_{32}$

APPENDIX C

PURPOSE:

The purpose of this calculation is to perform an evaluation of isolated piping segments that penetrate the containment to determine the effect of thermal over-pressurization during a design basis accident by the thermal expansion of the contained water. The results of this calculation represent penetration CPN-37 at D.C. Cook, Unit 2.

CALCULATION:

The expected temperature of the water during a LOCA and the ambient temperature are

$$
\mathrm{T}_{\text {LOCA }}:=250 \quad \mathrm{~T}_{\mathrm{amb}}:=70
$$

The conversion for psi to ksi is

$$
\mathrm{ksi}:=1000 \mathrm{psi}
$$

For penetration CPN-37, there are two different types of pipes in the system. Using References 5, 12 and 13, the pipe material properties and geometry were determined, respectively.

The first pipe is $4^{\prime \prime}$ Sch 10 , pipe specification B-14

$$
\begin{array}{lll}
\mathrm{ID}_{4 \mathrm{~B} 14}:=4.260 \mathrm{in} & \mathrm{~S}_{\mathrm{m} 4 \mathrm{~B} 14}:=20 \mathrm{ksi} & \mathrm{E}_{4 \mathrm{~B} 14}:=27.3 \cdot 10^{6} \mathrm{psi} \\
\mathrm{t}_{4 \mathrm{~B} 14}:=0.120 \mathrm{in} & \mathrm{~S}_{\mathrm{y} 4 \mathrm{~B} 14}:=23.7 \mathrm{ksi} & \mathrm{E}_{\mathrm{p} 4 \mathrm{~B} 14}:=0.425 \cdot 10^{6} \mathrm{psi} \\
\text { OD }_{4 \mathrm{~B} 14}:=\mathrm{ID} 4 \mathrm{~B} 14+2 \cdot \mathrm{t}_{4 \mathrm{~B} 14} & \mathrm{~S}_{44 \mathrm{~B} 14}:=68.5 \mathrm{ksi} & \mathrm{SA}-312 \mathrm{Gr} \text { TP304 } \\
\text { OD }_{4 \mathrm{~B} 14}=4.5 \text { in } & &
\end{array}
$$

The second pipe is $1^{\prime \prime}$ Sch 40, pipe specification B-14

$$
\begin{array}{lll}
\mathrm{ID}_{1 \mathrm{~B} 14}:=1.049 \mathrm{in} & \mathrm{~S}_{\mathrm{mlB} 14}:=20 \mathrm{ksi} & \mathrm{E}_{1 \mathrm{~B} 14}:=27.3 \cdot 10^{6} \mathrm{psi} \\
\mathrm{t}_{1 \mathrm{~B} 14}:=0.133 \mathrm{in} & \mathrm{~S}_{\mathrm{y} 1 \mathrm{~B} 14}:=23.7 \mathrm{ksi} & \mathrm{E}_{\mathrm{p} 1 \mathrm{~B} 14}:=0.425 \cdot 10^{6} \mathrm{psi} \\
\mathrm{OD}_{1 \mathrm{~B} 14}:=\mathrm{ID}_{1 \mathrm{~B} 14}+2 \cdot \mathrm{t}_{1 \mathrm{~B} 14} & \mathrm{~S}_{\mathrm{u} 1 \mathrm{~B} 14}:=68.5 \mathrm{ksi} & \mathrm{SA}-312 \mathrm{Gr} \mathrm{TP} 304 \\
\mathrm{OD}_{1 \mathrm{~B} 14}=1.315 \circ \mathrm{in} & &
\end{array}
$$

The lengths of the two different pipes are determined from the drawings in Reference 5. The $4^{\prime \prime}$ pipe has a total length of approximately 34 ft . while the 1 " pipe has a total length of approximately 3 ft .
$\mathrm{L}_{1}:=(34 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{2}:=(3 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{1}=408$ inches
$L_{2}=36$ inches

Calculation No.
Prepared By
MB6 025-057-01 MB6

For the first pipe (4 " Sch 40, B-14), the specific material parameters used in the calculation are

$$
\begin{array}{ll}
\mathrm{t}_{1}:=\mathrm{t}_{4 \mathrm{~B} 14} \cdot \mathrm{in}^{-1} & \mathrm{t}_{1}=0.12 \quad \text { inches } \\
\mathrm{r}_{01}:=\left(\frac{\mathrm{OD}_{4 \mathrm{~B} 14} \cdot \mathrm{in}^{-1}}{2}\right)-\mathrm{t}_{1} & \mathrm{r}_{01}=2.13 \quad \text { inches } \\
\mathrm{S}_{\mathrm{y} 1}:=\mathrm{S}_{\mathrm{y} 4 \mathrm{~B} 14} \cdot \mathrm{psi}^{-1} & \mathrm{~S}_{\mathrm{yl}}=2.37 \cdot 10^{4} \mathrm{psi} \\
\mathrm{E}_{1}:=\mathrm{E}_{4 \mathrm{~B} 14 \cdot \mathrm{psi}^{-1}} & \mathrm{E}_{1}=2.73 \cdot 10^{7} \mathrm{psi} \\
\mathrm{E}_{\mathrm{pl}}:=\mathrm{E}_{\mathrm{p} 4 \mathrm{~B} 14} \cdot \mathrm{psi}^{-1} & \mathrm{E}_{\mathrm{pl}}=4.25 \cdot 10^{5} \mathrm{psi} \\
\varepsilon_{\mathrm{y} 1}:=\frac{\mathrm{S}_{\mathrm{yl}}}{\mathrm{E}_{1}} & \varepsilon_{\mathrm{y} 1}=8.681 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
\mathrm{~S}_{\mathrm{ml}}:=\mathrm{S}_{\mathrm{m} 4 \mathrm{~B} 14} & \mathrm{~S}_{\mathrm{ml}}=2 \cdot 10^{4} \mathrm{opsi} \\
\mathrm{~S}_{\mathrm{ul}}:=\mathrm{S}_{\mathrm{u} 4 \mathrm{~B} 14} & \mathrm{~S}_{\mathrm{ul}}=6.85 \cdot 10^{4} \mathrm{opsi}
\end{array}
$$

For the second pipe (1" Sch 10, B-14), the specific material parameters for the calculation are

$$
\begin{array}{ll}
\mathrm{t}_{2}:=\mathrm{t}_{1 \mathrm{~B} 14 \cdot \mathrm{in}^{-1}} & \mathrm{t}_{2}=0.133 \quad \text { inches } \\
\mathrm{r}_{02}:=\left(\frac{\mathrm{OD}_{1 \mathrm{~B} 14} \cdot \mathrm{in}^{-1}}{2}\right)-\mathrm{t}_{2} & \mathrm{r}_{02}=0.524 \quad \text { inches } \\
\mathrm{S}_{\mathrm{y} 2}:=\mathrm{S}_{\mathrm{y} 1 \mathrm{~B} 14} \cdot \mathrm{psi}^{-1} & \mathrm{~S}_{\mathrm{y} 2}=2.37 \cdot 10^{4} \mathrm{psi} \\
\mathrm{E}_{2}:=\mathrm{E}_{1 \mathrm{~B} 14 \cdot \mathrm{psi}}{ }^{-1} & \mathrm{E}_{2}=2.73 \cdot 10^{7} \mathrm{psi} \\
\mathrm{E}_{\mathrm{p} 2}:=\mathrm{E}_{\mathrm{p} 1 \mathrm{~B} 14} \cdot \mathrm{psi}^{-1} & \mathrm{E}_{\mathrm{p} 2}=4.25 \cdot 10^{5} \mathrm{psi} \\
\varepsilon_{\mathrm{y} 2}:=\frac{\mathrm{S}_{\mathrm{y} 2}}{\mathrm{E}_{2}} & \varepsilon_{\mathrm{y} 2}=8.681 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
\mathrm{~S}_{\mathrm{m} 2}:=\mathrm{S}_{\mathrm{m} 1 \mathrm{~B} 14} & \mathrm{~S}_{\mathrm{m} 2}=2 \cdot 10^{4} \mathrm{psi} \\
\mathrm{~S}_{\mathrm{u} 2}:=\mathrm{S}_{\mathrm{u} 1 \mathrm{~B} 14} & \mathrm{~S}_{\mathrm{u} 2}=6.85 \cdot 10^{4} \mathrm{psi}
\end{array}
$$

At the ambient condition of 70 F , the water has a specific volume
$v_{\text {initial }}:=0.01605 \mathrm{ft}^{3} \cdot \mathrm{lb}^{-1}$

Calculation No.
Prepared By
MBG
Checked By

Page 34

Therefore, the mass of water in a unit length (1 inch) of pipe is

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{wli}}:=\frac{\pi \cdot \mathrm{r}_{01} 1^{2} \cdot \mathrm{l}}{\left(\mathrm{v}_{\text {initial }} \cdot \mathrm{lb} \cdot \mathrm{in}^{-3}\right)} \quad \mathrm{m}_{\mathrm{wli}}=0.514 \quad \text { lb per unit length (} 4 \text { " Sch } 40 \text {) } \\
& m_{w 2 i}:=\frac{\pi \cdot r_{02} \cdot 1}{\left(v_{\text {initial }} \cdot 1 \mathrm{lb} \cdot \mathrm{in}^{-3}\right)} \\
& \mathrm{m}_{\mathrm{w} 2 \mathrm{i}}=0.031 \\
& \text { lb per unit length (} 1^{\prime \prime} \text { Sch } 10 \text {) }
\end{aligned}
$$

The mean coefficient of thermal expansion for SA-312 Gr TP304 at 250 F (Reference 12) is

$$
\alpha_{\mathrm{T}}:=8.90 \cdot 10^{-6}
$$

And the strain due to thermal expansion is

$$
\varepsilon_{\text {th }}:=\alpha_{T} \cdot\left(T_{\text {LOCA }}-T_{\mathrm{amb}}\right) \quad \varepsilon_{\text {th }}=1.602 \cdot 10^{-3} \quad \mathrm{in} / \mathrm{in}
$$

The total mass of the water in the piping, assuming that the pipe is filled, is

$$
\mathrm{m}_{\text {tot }}:=\mathrm{m}_{\mathrm{w} 1 \mathrm{i}} \cdot \mathrm{~L}_{1}+\mathrm{m}_{\mathrm{w} 2 \mathrm{i}} \cdot \mathrm{~L}_{2} \quad \mathrm{~m}_{\text {tot }}=210.799 \quad \mathrm{lb}
$$

To solve the equations for the system with both pipe sizes, we must guess inital values for the variables.

$$
\begin{array}{lll}
\mathrm{P}:=3000 & \varepsilon_{\mathrm{p} 1}:=0.01 & \mathrm{vol}_{1}:=1 \\
v:=0.016 & \varepsilon_{\mathrm{p} 2}:=0.01 & \mathrm{vol}_{2}:=1 \\
\sigma_{\mathrm{h} 1}:=100 & \mathrm{r}_{1}:=1 & \mathrm{~m}_{\mathrm{w} 1}:=1 \\
\sigma_{\mathrm{h} 2}:=100 & \mathrm{r}_{2}:=1 & \mathrm{~m}_{\mathrm{w} 2}:=1
\end{array}
$$

Assign a function to represent the change from elastic strain to plastic strain as follows:

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\sigma_{\mathrm{h} 1}, \mathrm{~S}_{\mathrm{y} 1}, \mathrm{E}_{1}, \mathrm{E}_{\mathrm{p} 1}, \varepsilon_{\mathrm{y} 1}\right):=\mathrm{if}\left(\sigma_{\mathrm{h} 1}>\mathrm{S}_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}-S_{\mathrm{y} 1}}{E_{\mathrm{pl}}}+\varepsilon_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}}{E_{1}}\right) \\
& \mathrm{f}_{2}\left(\sigma_{\mathrm{h} 2}, \mathrm{~S}_{\mathrm{y} 2}, \mathrm{E}_{2}, \mathrm{E}_{\mathrm{p} 2}, \varepsilon_{\mathrm{y} 2}\right):=\operatorname{if}\left(\sigma_{\mathrm{h} 2}>\mathrm{S}_{\mathrm{y} 2}, \frac{\sigma_{\mathrm{h} 2}-S_{\mathrm{y} 2}}{E_{\mathrm{p} 2}}+\varepsilon_{y 2}, \frac{\sigma_{\mathrm{h} 2}}{E_{2}}\right)
\end{aligned}
$$

MPR Associates, Inc.
320 King Street
Alexandria, VA 22314
Calculation No. 025-057-01

Prepared By

 mb6Given

$$
\begin{array}{ll}
\mathrm{r}_{1}=\left(1+\varepsilon_{\mathrm{p} 1}\right) \cdot \mathrm{r}_{01} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) & \mathrm{r}_{2}=\left(1+\varepsilon_{\mathrm{p} 2}\right) \cdot \mathrm{r}_{02} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \\
\mathrm{vol}_{1}=\frac{{ }^{\pi \cdot r_{1}}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{1}}{\left(12^{3}\right)} & \mathrm{vol}_{2}=\frac{\pi \cdot \mathrm{r}_{2}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{2}}{\left(12^{3}\right)} \\
v=\frac{\mathrm{vol}_{1}}{\mathrm{~m}_{\mathrm{w} 1}} & \mathrm{v}=\frac{\mathrm{vol}_{2}}{\mathrm{~m}_{\mathrm{w} 2}} \\
\mathrm{P}=\left(4.507 \cdot 10^{9}\right) \cdot v^{2}-\left(1.690 \cdot 10^{8}\right) \cdot v+1.572 \cdot 10^{6} & \mathrm{~m}_{\mathrm{tot}}=\mathrm{m}_{\mathrm{w} 1}+\mathrm{m}_{\mathrm{w} 2} \\
\sigma_{\mathrm{h} 1}=\mathrm{P} \cdot \frac{\mathrm{r}_{1}}{\mathrm{t}_{1}} & \sigma_{\mathrm{h} 2}=\mathrm{P} \cdot \frac{\mathrm{r}_{2}}{\mathrm{t}_{2}} \\
\varepsilon_{\mathrm{p} 1}=\mathrm{f}_{1}\left(\sigma_{\mathrm{h} 1}, \mathrm{~S}_{\mathrm{y} 1}, \mathrm{E}_{1}, \mathrm{E}_{\mathrm{pl}}, \varepsilon_{\mathrm{y} 1}\right) & \varepsilon_{\mathrm{p} 2}=\mathrm{f}_{2}\left(\sigma_{\mathrm{h} 2}, \mathrm{~S}_{\mathrm{y} 2}, \mathrm{E}_{2}, \mathrm{E}_{\mathrm{p} 2}, \varepsilon_{\mathrm{y} 2}\right)
\end{array}
$$

Solving the equations.

$$
\begin{aligned}
& A A:=\operatorname{Find}\left(r_{1}, r_{2}, \varepsilon_{\mathrm{p} 1}, \varepsilon_{\mathrm{p} 2}, \mathrm{vol}_{1}, \mathrm{vol}_{2}, \mathrm{v}, \mathrm{P}, \sigma_{\mathrm{h} 1}, \sigma_{\mathrm{h} 2}, \mathrm{~m}_{\mathrm{w} 1}, \mathrm{~m}_{\mathrm{w} 2}\right) \\
& r_{1}:=A A_{0,0} \cdot \text { in } \\
& \mathrm{r}_{1}=2.189 \mathrm{o}_{\mathrm{in}} \\
& r_{2}:=\mathrm{AA}_{1,0} \cdot \text {.n } \\
& \varepsilon_{\mathrm{pl}}:=\mathrm{AA}_{2,0} \\
& \varepsilon_{\mathrm{p} 2}:=\mathrm{AA}_{3,0} \\
& \mathrm{vol}_{1}:=\mathrm{AA}_{4,0} \cdot \mathrm{ft}^{3} \\
& \mathrm{vol}_{2}:=\mathrm{AA}_{5,0} \circ \mathrm{ft}^{3} \\
& v:=\mathrm{AA}_{6,0} \cdot \mathrm{ft}^{3} \cdot 16^{-1} \\
& \mathrm{P}:=\mathrm{AA}_{7,0} \cdot \mathrm{psi} \\
& \sigma_{\mathrm{h} 1}:=\mathrm{AA}_{8,0} \cdot \mathrm{psi} \\
& \sigma_{\mathrm{h} 2}:=\mathrm{AA}_{9,0} \cdot \mathrm{psi} \\
& \mathrm{~m}_{\mathrm{wl}}:=\mathrm{AA}_{10,0} \cdot \mathrm{lb} \\
& \mathrm{~m}_{\mathrm{w} 2}:=\mathrm{AA}_{11,0} \cdot \mathrm{lb} \\
& \begin{aligned}
& r_{2}=0.525 \text { oin } \\
& \varepsilon_{\mathrm{pl}}=2.614 \% \\
& \varepsilon_{\mathrm{p} 2}=0.027 \%
\end{aligned} \\
& \mathrm{vol}_{1}=3.561 \mathrm{of}^{3} \\
& \mathrm{vol}_{2}=0.018 \mathrm{ft}{ }^{3} \\
& v=0.016977 \circ \mathrm{oft}^{3} \cdot 1 \mathrm{lb}^{-1} \\
& \mathrm{P}=1.888 \cdot 10^{3} \text { opsi } \\
& \sigma_{\mathrm{hl}}=34.442 \mathrm{oksi} \\
& \sigma_{\mathrm{h} 2}=7.459 \mathrm{oksi} \\
& \mathrm{~m}_{\mathrm{wl}}=209.732 \mathrm{db} \\
& \mathrm{~m}_{\mathrm{w} 2}=1.066 \mathrm{db}
\end{aligned}
$$

Calculation No. $025-057-01$	Prepared By MB6	Checked By Mon	Page36

The principal stresses for the first pipe are calculated

$$
\begin{array}{ll}
\mathrm{S}_{11}:=\frac{\mathrm{P} \cdot \mathrm{r} 1}{\mathrm{t}_{1} \cdot \mathrm{in}} & \mathrm{~S}_{11}=34.442 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{pl}}:=\frac{\mathrm{P} \cdot \mathrm{r}_{1}}{2 \cdot \mathrm{t}_{1} \cdot \mathrm{in}}+\mathrm{S}_{\mathrm{ml}} & \mathrm{~S}_{2 \mathrm{pl}}=37.221 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{ml}}:=\frac{\mathrm{P} \cdot \mathrm{r} 1}{2 \cdot \mathrm{t}_{1} \cdot \mathrm{in}}-\mathrm{S}_{\mathrm{ml}} & \mathrm{~S}_{2 \mathrm{ml}}=-2.779 \cdot \mathrm{ksi} \\
\mathrm{~S}_{31}:=\frac{-\mathrm{P}}{2} & \mathrm{~S}_{31}=-0.944 \mathrm{ksi} \\
\mathrm{BB}_{1}:=\left[\begin{array}{l}
\left|\mathrm{S}_{11}-\mathrm{S}_{2 \mathrm{pl}}\right| \\
\left.\left\lvert\, \begin{array}{l}
\mathrm{S}_{11}-\mathrm{S}_{2 \mathrm{ml}} \mid \\
\left|\mathrm{S}_{2 \mathrm{pl}}-\mathrm{S}_{31}\right| \\
\left|\mathrm{S}_{2 \mathrm{ml}}-\mathrm{S}_{31}\right| \\
\left|\mathrm{S}_{31}-\mathrm{S}_{11}\right|
\end{array}\right.\right] .
\end{array}\right. & \mathrm{BB}_{1}=\left[\begin{array}{c}
2.779 \\
37.221 \\
38.165 \\
1.835 \\
35.386
\end{array}\right] \circ \mathrm{ks}
\end{array}
$$

The stress intensity

$$
\mathrm{SI}:=\max \left(\mathrm{BB}_{1}\right) \quad \mathrm{SI}=38.165 \circ \mathrm{ksi}
$$

The allowable stress is

$$
\mathrm{S}_{\text {allowable }}:=0.7 \cdot \mathrm{~S}_{\mathrm{ul}} \quad \mathrm{~S}_{\text {allowable }}=47.95 \mathrm{ksi}
$$

The stress index is

$$
\text { Index }:=\frac{\text { SI }}{S_{\text {allowable }}}
$$

$$
\text { Index }=0.796
$$

		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. $025-057-01$	Prepared By MBG	Checked By CASM.	Page 37

The principal stresses for the second pipe are calculated
$S_{12}:=\frac{\mathrm{P} \cdot \mathrm{r} 2}{\mathrm{t}_{2} \cdot \mathrm{in}}$
$S_{12}=7.459 \cdot \mathrm{ksi}$
$S_{2 p 2}:=\frac{P \cdot r_{2}}{2 \cdot t_{2} \cdot \text { in }}+S_{m 2}$
$S_{2 p 2}=23.73$ oksi
$S_{2 m 2}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{2 \cdot \mathrm{t}_{2} \cdot \mathrm{in}^{2}}-\mathrm{S}_{\mathrm{m} 2}$
$S_{2 \mathrm{~m} 2}=-16.27 \mathrm{oksi}$
$S_{32}:=\frac{-P}{2}$
$S_{32}=-0.944 \mathrm{ksi}$
$\mathrm{BB}_{2}:=\left[\begin{array}{c}\left|s_{12}-s_{2 p 2}\right| \\ \left|s_{12}-s_{2 m 2}\right| \\ \left|s_{2 p 2}-s_{32}\right| \\ \left|s_{2 m 2}-s_{32}\right| \\ \left|s_{32}-s_{12}\right|\end{array}\right]$
$\mathrm{BB}_{2}=\left[\begin{array}{c}16.27 \\ 23.73 \\ 24.674 \\ 15.326 \\ 8.403\end{array}\right]$ oksi

The stress intensity

$$
\mathrm{SI}:=\max \left(\mathrm{BB}_{2}\right) \quad \mathrm{SI}=24.674 \mathrm{ksi}
$$

The allowable stress is

$$
\mathrm{S}_{\text {allowable }}:=0.7 . \mathrm{S}_{\mathrm{u} 2} \quad \mathrm{~S}_{\text {allowable }}=47.95 \mathrm{ksi}
$$

The stress index is

$$
\text { Index }:=\frac{\mathrm{SI}}{\mathrm{~S}_{\text {allowable }}} \quad \text { Index }=0.515
$$

Calculation No. 025-057-01

Prepared By \quad Checked By MBG

APPENDIX D

PURPOSE:

The purpose of this calculation is to perform an evaluation of isolated piping segments that penetrate the containment to determine the effect of thermal over-pressurization during a design basis accident by the thermal expansion of the contained water. The results of this calculation represent penetration CPN-32 at D.C. Cook, Unit 2.

CALCULATION:

The expected temperature of the water during a LOCA and the ambient temperature are

$$
\mathrm{T}_{\text {LOCA }}:=240 \quad \mathrm{~T}_{\mathrm{amb}}:=70
$$

The conversion for psi to ksi is

$$
\mathrm{ksi}:=1000 \mathrm{psi}
$$

For penetration CPN-32, there are two different types of pipes in the system. Using References 6, 12 and 13, the pipe material properties and geometry were determined, respectively.

The first pipe is $1^{\prime \prime}$ Sch 160 , pipe specification M-14
ID 1 M14 $:=0.815$ in
$\mathrm{S}_{\mathrm{mlM14}}:=20 \mathrm{ksi}$
$\mathrm{E}_{1 \mathrm{M} 14}:=27.3 \cdot 10^{6} \mathrm{psi}$
$\mathrm{t}_{1 \mathrm{M14}}:=0.250$ in
$\mathrm{S}_{\mathrm{yIM} 14}:=23.7 \mathrm{ksi}$
$\mathrm{E}_{\mathrm{plM} 14}:=0.425 \cdot 10^{6} \mathrm{psi}$
$\mathrm{OD}_{1 \mathrm{M} 14}:=\mathrm{ID}_{1 \mathrm{M} 14}+2 \cdot \mathrm{t}_{1 \mathrm{M} 14}$
$\mathrm{S}_{\mathrm{ulM} 14}:=68.5 \mathrm{ksi}$
SA-376 Gr TP304
$O D_{1 \mathrm{M} 14}=1.315$ in

The second pipe is $3 / 4^{\prime \prime}$ Sch 160 , pipe specification $\mathrm{M}-14$

$$
\begin{array}{ll}
\text { ID }_{34 \mathrm{M} 14}:=0.612 \text { in } & \mathrm{S}_{\mathrm{m} 34 \mathrm{M} 14}:=20 \mathrm{ksi} \\
\mathrm{t}_{34 \mathrm{M} 14}:=0.219 \mathrm{in} & \mathrm{E}_{34 \mathrm{M} 14}:=27.3 \cdot 10^{6} \mathrm{psi} \\
\text { OD }_{34 \mathrm{M} 14}:=\mathrm{ID}_{34 \mathrm{M} 14}+2 \cdot \mathrm{t}_{34 \mathrm{M} 14} \mathrm{~S}_{\mathrm{u} 34 \mathrm{M} 14}:=68.5 \mathrm{ksi} & \mathrm{E}_{\mathrm{p} 34 \mathrm{M} 14}:=0.425 \cdot 10^{6} \mathrm{psi} \\
\text { OD }_{34 \mathrm{M} 14}=1.05 \mathrm{in} & \mathrm{SA} 376 \mathrm{Gr} \text { TP304 }
\end{array}
$$

The lengths of the two different pipes are determined from the drawings in Reference 6. The 1" pipe has a total length of approximately 270 ft . while the $3 / 4^{\prime \prime}$ pipe has a total length of approximately 138 ft .
$\mathrm{L}_{1}:=(270 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{2}:=(138 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{1}=3.24 \cdot 10^{3}$ inches
$L_{2}=1.656 \cdot 10^{3}$ inches

MPR Associates, Inc. 320 King Street
Alexandria, VA 22314

Calculation No. Prepared By
$M B 6$

Checked By oflu.

Page 39

For the first pipe (1 " Sch 160, M-14), the specific material parameters used in the calculation are

$$
\begin{array}{ll}
\mathrm{t}_{1}:=\mathrm{t}_{1 \mathrm{M} 14} \cdot \mathrm{in}^{-1} & \mathrm{t}_{1}=0.25 \quad \text { inches } \\
\mathrm{r}_{01}:=\left(\frac{\mathrm{OD}_{1 \mathrm{M} 14} \cdot \mathrm{in}^{-1}}{2}\right)-\mathrm{t}_{1} & \mathrm{r}_{01}=0.408 \quad \text { inches } \\
\mathrm{S}_{\mathrm{yl}}:=\mathrm{S}_{\mathrm{y} 1 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} & \mathrm{~S}_{\mathrm{yl}}=2.37 \cdot 10^{4} \mathrm{psi} \\
\mathrm{E}_{1}:=\mathrm{E}_{1 \mathrm{M} 14 \cdot \mathrm{psi}^{-1}} & \mathrm{E}_{1}=2.73 \cdot 10^{7} \mathrm{psi} \\
\mathrm{E}_{\mathrm{pl}}:=\mathrm{E}_{\mathrm{plM} 14} \cdot \mathrm{psi}^{-1} & \mathrm{E}_{\mathrm{pl}}=4.25 \cdot 10^{5} \mathrm{psi} \\
\varepsilon_{\mathrm{yl}}:=\frac{\mathrm{S}_{\mathrm{yl}}}{\mathrm{E}_{1}} & \varepsilon_{\mathrm{yl}}=8.681 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
\mathrm{~S}_{\mathrm{ml}}:=\mathrm{S}_{\mathrm{mlM} 14} & \mathrm{~S}_{\mathrm{ml}}=2 \cdot 10^{4} \mathrm{opsi} \\
\mathrm{~S}_{\mathrm{ul}}:=\mathrm{S}_{\mathrm{ulM} 14} & \mathrm{~S}_{\mathrm{ul}}=6.85 \cdot 10^{4} \mathrm{opsi}
\end{array}
$$

For the second pipe ($3 / 4^{\prime \prime}$ Sch 160, M-14), the specific material parameters for the calculation are

$$
\begin{array}{ll}
\mathrm{t}_{2}:=\mathrm{t}_{34 \mathrm{M} 14} \cdot \mathrm{in}^{-1} & \mathrm{t}_{2}=0.219 \quad \text { inches } \\
\mathrm{r}_{02}:=\left(\frac{\mathrm{OD} 34 \mathrm{M} 14 \cdot \mathrm{in}^{-1}}{2}\right)-\mathrm{t}_{2} & \mathrm{r}_{02}=0.306 \quad \text { inches } \\
\mathrm{S}_{\mathrm{y} 2}:=\mathrm{S}_{\mathrm{y} 34 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} & \mathrm{~S}_{\mathrm{y} 2}=2.37 \cdot 10^{4} \mathrm{psi} \\
\mathrm{E}_{2}:=\mathrm{E}_{34 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} & \mathrm{E}_{2}=2.73 \cdot 10^{7} \mathrm{psi} \\
\mathrm{E}_{\mathrm{p} 2}:=\mathrm{E}_{\mathrm{p} 34 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} & \mathrm{E}_{\mathrm{p} 2}=4.25 \cdot 10^{5} \mathrm{psi} \\
\varepsilon_{\mathrm{y} 2}:=\frac{\mathrm{S}_{\mathrm{y} 2}}{\mathrm{E}_{2}} & \varepsilon_{\mathrm{y} 2}=8.681 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
\mathrm{~S}_{\mathrm{m} 2}:=\mathrm{S}_{\mathrm{m} 34 \mathrm{M} 14} & \mathrm{~S}_{\mathrm{m} 2}=2 \cdot 10^{4} \mathrm{psi} \\
\mathrm{~S}_{\mathrm{u} 2}:=\mathrm{S}_{\mathrm{u} 34 \mathrm{M} 14} & \mathrm{~S}_{\mathrm{u} 2}=6.85 \cdot 10^{4} \mathrm{psi}
\end{array}
$$

At the design conditions of 1800 psia and 70 F , the water has a specific volume
$v_{\text {initial }}:=0.015961 \mathrm{ft}^{3} \cdot \mathrm{lb}^{-1}$

Calculation No.	Prepared By
025-057-01	MBC

Page 40

Therefore, the mass of water in a unit length (1 inch) of pipe is

$$
\begin{array}{ll}
\mathrm{m}_{\mathrm{wli}}:=\frac{\pi \cdot r_{01}^{2} \cdot 1}{\left(v_{\text {initial }} \cdot \mathrm{lb} \cdot \mathrm{in}^{-3}\right)} & \mathrm{m}_{\mathrm{wli}}=0.019 \quad \text { lb per unit length }(1 " \text { Sch } 160) \\
\mathrm{m}_{\mathrm{w} 2 \mathrm{i}}:=\frac{\pi \cdot r_{02^{2}} \cdot 1}{\left(v_{\text {initial } \left.\cdot l \mathrm{~b} \cdot \mathrm{in}^{-3}\right)}\right.} \quad \mathrm{m}_{\mathrm{w} 2 \mathrm{i}}=0.011 \quad \text { ib per unit length }\left(3 / 4^{\prime \prime} \operatorname{Sch} 160\right)
\end{array}
$$

The mean coefficient of thermal expansion for SA-376 Gr TP304 at 250 F (Reference 12) is

$$
\alpha_{T}:=8.90 \cdot 10^{-6}
$$

And the strain due to thermal expansion is

$$
\varepsilon_{\mathrm{th}}:=\alpha_{\mathrm{T}} \cdot\left(\mathrm{~T}_{\text {LOCA }}-\mathrm{T}_{\mathrm{amb}}\right) \quad \varepsilon_{\text {th }}=1.513 \cdot 10^{-3} \mathrm{in} / \mathrm{in}
$$

The total mass of the water in the piping, assuming that the pipe is filled, is

$$
\mathrm{m}_{\text {tot }}:=\mathrm{m}_{\mathrm{w} 1 \mathrm{i}} \cdot \mathrm{~L}_{1}+\mathrm{m}_{\mathrm{w} 2 \mathrm{i}} \cdot \mathrm{~L}_{2} \quad \mathrm{~m}_{\text {tot }}=78.946 \quad \mathrm{~b}
$$

To solve the equations for the system with both pipe sizes, we must guess inital values for the variables.

$$
\begin{array}{lll}
P:=3000 & \varepsilon_{\mathrm{p} 1}:=0.01 & \operatorname{vol}_{1}:=1 \\
v:=0.016 & \varepsilon_{\mathrm{p} 2}:=0.01 & \operatorname{vol}_{2}:=1 \\
\sigma_{\mathrm{h} 1}:=100 & \mathrm{r}_{1}:=1 & \mathrm{~m}_{\mathrm{w} 1}:=1 \\
\sigma_{\mathrm{h} 2}:=100 & \mathrm{r}_{2}:=1 & \mathrm{~m}_{\mathrm{w} 2}:=1
\end{array}
$$

Assign a function to represent the change from elastic strain to plastic strain as follows:

$$
\begin{aligned}
& f_{1}\left(\sigma_{\mathrm{h} 1}, S_{\mathrm{y} 1}, E_{1}, E_{\mathrm{p} 1}, \varepsilon_{\mathrm{y} 1}\right):=i f\left(\sigma_{\mathrm{h} 1}>S_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}-S_{\mathrm{y} 1}}{E_{\mathrm{pl}}}+\varepsilon_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}}{E_{1}}\right) \\
& \mathrm{f}_{2}\left(\sigma_{\mathrm{h} 2}, S_{\mathrm{y} 2}, \mathrm{E}_{2}, E_{\mathrm{p} 2}, \varepsilon_{\mathrm{y} 2}\right):=\operatorname{if}\left(\sigma_{\mathrm{h} 2}>S_{\mathrm{y} 2}, \frac{\sigma_{\mathrm{h} 2}-S_{\mathrm{y} 2}}{E_{\mathrm{p} 2}}+\varepsilon_{y 2}, \frac{\sigma_{\mathrm{h} 2}}{E_{2}}\right)
\end{aligned}
$$

Prepared By MB6
 Checked By

 025-057-01Given

$$
\begin{array}{ll}
\mathrm{r}_{1}=\left(1+\varepsilon_{\mathrm{pl}}\right) \cdot r_{01} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) & \mathrm{r}_{2}=\left(1+\varepsilon_{\mathrm{p} 2}\right) \cdot r_{02} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \\
\mathrm{vol}_{1}=\frac{\pi \cdot \mathrm{r}_{1}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{1}}{\left(12^{3}\right)} & \mathrm{vol}_{2}=\frac{\pi \cdot r_{2}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{2}}{\left(12^{3}\right)} \\
\mathrm{v}=\frac{\mathrm{vol}_{1}}{\mathrm{~m}_{\mathrm{w} 1}} & \mathrm{v}_{\mathrm{v}}=\frac{\mathrm{vol}_{2}}{\mathrm{~m}_{\mathrm{w} 2}} \\
\mathrm{P}=\left(4.8551 \cdot 10^{9}\right) \cdot v^{2}-\left(1.8015 \cdot 10^{8}\right) \cdot v+1.6583 \cdot 10^{6} & \mathrm{~m}_{\mathrm{tot}}=\mathrm{m}_{\mathrm{w} 1}+\mathrm{m}_{\mathrm{w} 2} \\
\sigma_{\mathrm{h} 1}=\mathrm{P} \cdot \frac{r_{1}}{\mathrm{t}_{1}} & \sigma_{\mathrm{h} 2}=\mathrm{P} \cdot \frac{r_{2}}{\mathrm{t}_{2}} \\
\varepsilon_{\mathrm{pl}}=\mathrm{f}_{1}\left(\sigma_{\mathrm{h} 1}, \mathrm{~S}_{\mathrm{y} 1}, \mathrm{E}_{1}, \mathrm{E}_{\mathrm{pl},}, \varepsilon_{\mathrm{y} 1}\right) & \varepsilon_{\mathrm{p} 2}=\mathrm{f}_{2}\left(\sigma_{\mathrm{h} 2}, \mathrm{~S}_{\mathrm{y} 2}, \mathrm{E}_{2}, \mathrm{E}_{\mathrm{p} 2}, \varepsilon_{\mathrm{y} 2}\right)
\end{array}
$$

Solving the equations.

$$
A A:=\operatorname{Find}\left(r_{1}, r_{2}, \varepsilon_{p 1}, \varepsilon_{p 2}, \operatorname{vol}_{1}, \operatorname{vol}_{2}, v, P, \sigma_{h 1}, \sigma_{h 2}, m_{w 1}, m_{w 2}\right)
$$

$$
\begin{array}{ll}
r_{1}:=A A_{0,0} \cdot \text { in } & r_{1}=0.41 \text { ॰in } \\
r_{2}:=A A_{1,0} \cdot \text { in } & r_{2}=0.307 \circ \text { in }
\end{array}
$$

$$
\varepsilon_{\mathrm{pl}}:=\mathrm{AA}_{2,0}
$$

$$
\varepsilon_{\mathrm{pl}}=0.422 \%
$$

$$
\varepsilon_{\mathrm{p} 2}:=\mathrm{AA}_{3,0}
$$

$$
\varepsilon_{\mathrm{p} 2}=0.0790 \%
$$

$$
\operatorname{vol}_{1}:=\mathrm{AA}_{4,0} \cdot \mathrm{ft}^{3}
$$

$$
\operatorname{vol}_{1}=0.991 \mathrm{ft}^{3}
$$

$$
\mathrm{vol}_{2}:=\mathrm{AA}_{5,0} \cdot \mathrm{ft}^{3}
$$

$$
\mathrm{vol}_{2}=0.284 \circ \mathrm{ft}^{3}
$$

$$
v:=\mathrm{AA}_{6,0} \cdot \mathrm{ft}^{3} \cdot 1 \mathrm{~b}^{-1}
$$

$$
v=0.016144 \mathrm{oft}^{3} \cdot \mathrm{lb}^{-1}
$$

$$
\mathrm{P}:=\mathrm{AA}_{7,0} \cdot \mathrm{psi}
$$

$$
\mathrm{P}=1.5326 \cdot 10^{4} \mathrm{opi}
$$

$$
\sigma_{\mathrm{h} 1}:=\mathrm{AA}_{8,0} \cdot \mathrm{psi}
$$

$$
\sigma_{\mathrm{h} 1}=25.1250 \mathrm{ksi}
$$

$\sigma_{\mathrm{h} 2}:=\mathrm{AA}_{9,0} \cdot \mathrm{psi}$
$\sigma_{\mathrm{h} 2}=21.464 \mathrm{ksi}$
$\mathrm{m}_{\mathrm{w} 1}=61.378 \mathrm{olb}$
$\mathrm{m}_{\mathrm{wl}}:=\mathrm{AA}_{10,0} \cdot \mathrm{lb}$
$\mathrm{m}_{\mathrm{w} 2}:=\mathrm{AA}_{11,0} \cdot \mathrm{lb}$
$\mathrm{m}_{\mathrm{w} 2}=17.569 \cdot \mathrm{lb}$

Calculation No.	Prepared By		
$025-057-01$	$M B 6$	Checked By	Page $_{42}$

The principal stresses for the first pipe are calculated

$$
\begin{array}{ll}
\mathrm{S}_{11}:=\frac{\mathrm{P} \cdot \mathrm{r}_{1}}{\mathrm{t}_{1} \cdot \mathrm{in}} & \mathrm{~S}_{11}=25.125 \circ \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{pl}}:=\frac{\mathrm{P} \cdot \mathrm{r}_{1}}{2 \cdot \mathrm{t}_{1} \cdot \mathrm{nn}}+\mathrm{S}_{\mathrm{ml}} & \mathrm{~S}_{2 \mathrm{pl}}=32.562 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{ml}}:=\frac{\mathrm{P} \cdot \mathrm{r}_{1}}{2 \cdot \mathrm{t}_{1} \cdot \mathrm{in}}-\mathrm{S}_{\mathrm{ml}} \\
\mathrm{~S}_{31}:=\frac{-\mathrm{P}}{2} & \mathrm{~S}_{2 \mathrm{ml}}=-7.438 \mathrm{ksi} \\
\mathrm{BB}_{1}:=\left[\begin{array}{l}
\left.\left\lvert\, \begin{array}{l}
\left|\mathrm{S}_{11}-\mathrm{S}_{2 \mathrm{pl}}\right| \\
\left\lvert\, \begin{array}{l}
\mathrm{S}_{11}-\mathrm{S}_{2 \mathrm{ml}} \mid \\
\left|\mathrm{S}_{2 \mathrm{pl}}-\mathrm{S}_{31}\right| \\
\left.\left\lvert\, \begin{array}{l}
\mathrm{S}_{2 \mathrm{ml}}-\mathrm{S}_{31} \mid \\
\left|\mathrm{S}_{31}-\mathrm{S}_{11}\right|
\end{array}\right.\right]
\end{array}\right.
\end{array} \begin{array}{l}
\\
\mathrm{S}_{31}=-7.663 \mathrm{ksi}
\end{array}\right.\right]\left[\begin{array}{c}
7.438 \\
32.562 \\
40.225 \\
0.225 \\
32.788
\end{array}\right] \mathrm{ksi}
\end{array} .\right.
\end{array}
$$

The stress intensity

$$
\mathrm{SI}:=\max \left(\mathrm{BB}_{1}\right)
$$

$\mathrm{SI}=40.225 \mathrm{ksi}$

The allowable stress is

$$
\mathrm{S}_{\text {allowable }}:=0.7 \cdot \mathrm{~S}_{\mathrm{ul}} \quad \mathrm{~S}_{\text {allowable }}=47.95 \circ \mathrm{ksi}
$$

The stress index is

$$
\text { Index }:=\frac{\text { SI }}{S_{\text {allowable }}} \quad \text { Index }=0.839
$$

The principal stresses for the second pipe are calculated

$$
\begin{array}{ll}
\mathrm{S}_{12}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{\mathrm{t}_{2} \cdot \mathrm{in}} & \mathrm{~S}_{12}=21.464 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{p} 2}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{2 \cdot \mathrm{t} \cdot \mathrm{in}^{2}}+\mathrm{S}_{\mathrm{m} 2} & \mathrm{~S}_{2 \mathrm{p} 2}=30.732 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{~m} 2}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{2 \cdot \mathrm{t} 2 \cdot \mathrm{in}}-\mathrm{S}_{\mathrm{m} 2} & \mathrm{~S}_{2 \mathrm{~m} 2}=-9.268 \mathrm{ksi} \\
\mathrm{~S}_{32}:=\frac{-\mathrm{P}}{2} & \mathrm{~S}_{32}=-7.663 \mathrm{ksi} \\
\mathrm{BB}_{2}:=\left[\begin{array}{l}
\left|\mathrm{S}_{12}-\mathrm{S}_{2 \mathrm{p} 2}\right| \\
\left|\mathrm{S}_{12}-\mathrm{S}_{2 \mathrm{~m} 2}\right| \\
\left|\mathrm{S}_{2 \mathrm{p} 2}-\mathrm{S}_{32}\right| \\
\left|\mathrm{S}_{2 \mathrm{~m} 2}-\mathrm{S}_{32}\right| \\
\left|\mathrm{S}_{32}-\mathrm{S}_{12}\right|
\end{array}\right] & \mathrm{BB}_{2}=\left[\begin{array}{c}
9.268 \\
30.732 \\
38.395 \\
1.605 \\
29.127
\end{array}\right] \mathrm{ks}
\end{array}
$$

		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No., 025-057-01	Prepared By MB6	Checked By OH2.	Page 44
SENSITIVITY ANALYSIS: EFFECT OF PIPE WALL VARIATION ON CALCULATED PIPING PRESSURE AND STRESS			

PURPOSE

The purpose of this appendix is to perform a sensitivity analysis on the isolated piping segments referenced in MPR Calculation 025-057-01 for D.C. Cook, Unit 2 and to determine the effect of variations in pipe wall thickness on the calculated stress intensities of the piping. The results included herein for CPN-32 are representative of all four penetration segments.

RESULTS

The following pages repeat the analysis method used in Appendix D of this calculation for wall thicknesses that vary by $\pm 12.5 \%$ from nominal wall thickness for the CPN-32 piping segment. . Results (pressure, strain, and stress intensity) are summarized in Table 1. For comparison, Table 1 also presents comparable results from Appendix D for the nominal wall thickness case.

Table 1 illustrates that there is less than a one percent difference in stress intensities when using either the maximum or minimum wall thickness in comparison to nominal wall thickness. Also, the pipe strain is well below the five percent allowable for all cases. Accordingly, the effect of using either the minimum or maximum wall thickness is negligible for pipe stress and strain evaluations.

Table E-1

Effect of Variation in Pipe Wall Thickness on Piping Pressure, Strain and Stress Intensity

Segment		Pressure (psia)			Strain (inch/inch)			Stress Intensity, psi			Δ
		$\mathrm{t}_{\text {min }}$	$\mathrm{t}_{\text {nom }}$	$\mathrm{T}_{\text {max }}$	$\mathrm{T}_{\text {min }}$	$\mathrm{t}_{\text {nom }}$	$\mathrm{t}_{\text {max }}$	$\mathrm{t}_{\text {min }}$	$\mathrm{t}_{\text {nom }}$	$\mathrm{t}_{\text {max }}$	
	$1^{\prime \prime}$	13,925	15,326	16,634	0.0066	0.0042	0.0020	40,038	40,225	40,410	0.5\%
CPN-32	3/4"				0.0008	0.0008	0.0008	38,106	38,395	38,671	0.7\%

where $t_{\min }=87.5 \%$ of $t_{\text {nom }}, t_{\max }=112.5 \%$ of $t_{\text {nom }}$ and " Δ " is the maximum percent difference between stress intensity calculated for $t_{\text {nom }}$ versus $t_{\text {min }}$ or $t_{\text {max }}$.

CALCULATION:

The expected temperature of the water during a LOCA and the ambient temperature are

$$
\mathrm{T}_{\text {LOCA }}:=240 \quad \mathrm{~T}_{\text {amb }}:=70 \quad \mathrm{ksi}:=1000 \mathrm{psi}
$$

The $\min /$ max wall thickness is $+/-12.5 \%$ the nominal wall thickness.

$$
\mathrm{f}_{\min }:=0.875(-12.5 \%) \quad f_{\max }:=1.125 \quad(+12.5 \%)
$$

For penetration CPN-32, there are two different types of pipes in the system. Using References 6, 12 and 13, the pipe material properties and geometry were determined, respectively.

Minimum Wall Thickness Evaluation:

The first pipe is $1^{\prime \prime}$ Sch 160 , pipe specification M-14
ID 1 M14 $:=0.815$ in
$\mathrm{S}_{\mathrm{mlM14}}:=20 \mathrm{ksi}$
$\mathrm{E}_{1 \mathrm{M} 14}:=27.3 \cdot 10^{6} \mathrm{psi}$
$\mathrm{t}_{1 \mathrm{M} 14}:=\left(0.250 \cdot \mathrm{f}_{\text {min }}\right)$ in
$\mathrm{S}_{\mathrm{y} 1 \mathrm{M} 14}:=23.7 \mathrm{ksi}$
$\mathrm{E}_{\mathrm{plM14}}:=0.425 \cdot 10^{6} \mathrm{psi}$
$\mathrm{OD}_{1 \mathrm{M} 14}:=\mathrm{ID}_{1 \mathrm{M} 14}+2 \cdot \mathrm{t}_{1 \mathrm{M} 14}$
$\mathrm{S}_{\mathrm{u} 1 \mathrm{M} 14}:=68.5 \mathrm{ksi}$
SA-376 Gr TP304
$\mathrm{OD}_{1 \mathrm{M} 14}=1.252{ }^{\circ} \mathrm{in}$

The second pipe is $3 / 4^{\prime \prime}$ Sch 160 , pipe specification $\mathrm{M}-14$
ID $34 \mathrm{M} 14:=0.612$ in
$\mathrm{S}_{\mathrm{m} 34 \mathrm{M} 14}:=20 \mathrm{ksi}$
$\mathrm{E}_{34 \mathrm{M} 14}:=27.3 \cdot 10^{6} \mathrm{psi}$
$\mathrm{t}_{34 \mathrm{M} 14}:=\left(0.219 \cdot \mathrm{f}_{\mathrm{min}}\right)$ in
$\mathrm{S}_{\mathrm{y} 34 \mathrm{M} 14}:=23.7 \mathrm{ksi}$
$\mathrm{E}_{\mathrm{p} 34 \mathrm{M} 14}:=0.425 \cdot 10^{6} \mathrm{psi}$
$\mathrm{OD}_{34 \mathrm{M} 14}:=\mathrm{ID}_{34 \mathrm{M} 14}+2 \cdot \mathrm{t} 34 \mathrm{M}_{14} \mathrm{~S}_{\mathrm{u} 34 \mathrm{M} 14}:=68.5 \mathrm{ksi}$
SA-376 Gr TP304
$\mathrm{OD}_{34 \mathrm{M} 14}=0.995^{\circ \mathrm{in}}$

The lengths of the two different pipes are determined from the drawings in Reference 6. The 1" pipe has a total length of approximately 270 ft . while the $3 / 4^{\prime \prime}$ pipe has a total length of approximately 138 ft .
$\mathrm{L}_{1}:=(270 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{2}:=(138 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{1}=3.24 \cdot 10^{3}$ inches
$L_{2}=1.656 \cdot 10^{3}$ inches

For the first pipe (1" Sch 160, M-14), the specific material parameters used in the calculation are

$$
\begin{array}{ll}
\mathrm{t}_{1}:=\mathrm{t} 1 \mathrm{M} 14 \cdot \mathrm{in}^{-1} & \mathrm{t}_{1}=0.219 \\
\mathrm{r}_{01}:=\left(\frac{\mathrm{OD} 1 \mathrm{M} 14 \cdot \mathrm{in}^{-1}}{2}\right)-\mathrm{t}_{1} & \mathrm{r}_{01}=0.407 \\
\text { inches }
\end{array}
$$

		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-057-01	Prepared By $M B G$	Checked By offli.	Page 46
$\begin{aligned} & \mathrm{S}_{\mathrm{y} 1}:=\mathrm{S}_{\mathrm{y} 1 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} \\ & \mathrm{E}_{1}:=\mathrm{E}_{1 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} \\ & \mathrm{E}_{\mathrm{p} 1}:=\mathrm{E}_{\mathrm{p} 1 \mathrm{M} 14} \cdot \mathrm{ps}^{-1} \\ & \varepsilon_{\mathrm{y} 1}:=\frac{\mathrm{S}_{\mathrm{y} 1}}{\mathrm{E}_{1}} \\ & \mathrm{~S}_{\mathrm{m} 1}:=\mathrm{S}_{\mathrm{mlM} 14} \\ & \mathrm{~S}_{\mathrm{u} 1}:=\mathrm{S}_{\mathrm{ulM} 14} \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\mathrm{yl}}=2.37 \cdot 10^{4} \mathrm{psi} \\ & \mathrm{E}_{1}=2.73 \cdot 10^{7} \mathrm{psi} \\ & \mathrm{E}_{\mathrm{pl}}=4.25 \cdot 10^{5} \mathrm{psi} \\ & \varepsilon_{\mathrm{yl}}=8.681 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\ & \mathrm{~S}_{\mathrm{ml}}=2 \cdot 10^{4} \mathrm{psi} \\ & \mathrm{~S}_{\mathrm{ul}}=6.85 \cdot 10^{4} \mathrm{psi} \end{aligned}$		

For the second pipe ($3 / 4^{\prime \prime}$ Sch $160, \mathrm{M}-14$), the specific material parameters for the calculation are

$$
\begin{array}{ll}
\mathrm{t}_{2}:=\mathrm{t}_{34 \mathrm{M} 14 \cdot \mathrm{in}^{-1}} & \mathrm{t}_{2}=0.192 \quad \text { inches } \\
\mathrm{r}_{02}:=\left(\frac{\left.\mathrm{OD}_{34 \mathrm{M} 14 \cdot \mathrm{in}^{-1}}^{2}\right)-\mathrm{t}_{2}}{}\right. & \mathrm{r}_{02}=0.306 \quad \text { inches } \\
\mathrm{S}_{\mathrm{y} 2}:=\mathrm{S}_{\mathrm{y} 34 \mathrm{M} 14 \cdot} \cdot \mathrm{psi}^{-1} & \mathrm{~S}_{\mathrm{y} 2}=2.37 \cdot 10^{4} \mathrm{psi} \\
\mathrm{E}_{2}:=\mathrm{E}_{34 \mathrm{M} 14 \cdot \mathrm{psi}^{-1}} & \mathrm{E}_{2}=2.73 \cdot 10^{7} \mathrm{psi} \\
\mathrm{E}_{\mathrm{p} 2}:=\mathrm{E}_{\mathrm{p} 34 \mathrm{M} 14 \cdot \mathrm{psi}^{-1}} & \mathrm{E}_{\mathrm{p} 2}=4.25 \cdot 10^{5} \mathrm{psi} \\
\varepsilon_{\mathrm{y} 2}:=\frac{\mathrm{S}_{\mathrm{y} 2}}{\mathrm{E}_{2}} & \varepsilon_{\mathrm{y} 2}=8.681 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
\mathrm{~S}_{\mathrm{m} 2}:=\mathrm{S}_{\mathrm{m} 34 \mathrm{M} 14} & \mathrm{~S}_{\mathrm{m} 2}=2 \cdot 10^{4} \mathrm{psi} \\
\mathrm{~S}_{\mathrm{u} 2}:=\mathrm{S}_{\mathrm{u} 34 \mathrm{M} 14} & \mathrm{~S}_{\mathrm{u} 2}=6.85 \cdot 10^{4} \mathrm{ppsi}
\end{array}
$$

At the initial conditions of 1800 psia and 70 F , the water has a specific volume

$$
v_{\text {initial }}:=0.015961 \mathrm{ft}^{3} \cdot 1 b^{-1}
$$

Therefore, the mass of water in a unit length (1 inch) of pipe is

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{wli}}:=\frac{\pi \cdot \mathrm{r} 01^{2} \cdot 1}{\left(\mathrm{v}_{\text {initial }} \cdot \mathrm{lb} \cdot \mathrm{in}^{-3}\right)} \\
& \mathrm{m}_{\mathrm{w} 2 \mathrm{i}}:=\frac{\pi \cdot \mathrm{r} 02^{2} \cdot 1}{\left(v_{\text {initial }} \cdot \mathrm{lb} \cdot \mathrm{in}^{-3}\right)} \\
& \mathrm{m}_{\mathrm{w} 2 \mathrm{i}}=0.011 \\
& \text { ib per unit length (3/4" Sch 160) }
\end{aligned}
$$

Calculation No. 025-057-01

Prepared By MB6

The mean coefficient of thermal expansion for SA-376 Gr TP304 at 250 F (Reference 12) is

$$
\alpha_{\mathrm{T}}:=8.90 \cdot 10^{-6}
$$

And the strain due to thermal expansion is

$$
\varepsilon_{\mathrm{th}}:=\alpha \mathrm{T} \cdot\left(\mathrm{~T}_{\text {LOCA }}-\mathrm{T}_{\mathrm{amb}}\right) \quad \varepsilon_{\mathrm{th}}=1.513 \cdot 10^{-3} \quad \mathrm{in} / \mathrm{in}
$$

The total mass of the water in the piping, assuming that the pipe is filled, is

$$
\mathrm{m}_{\text {tot }}:=\mathrm{m}_{\mathrm{w} 1 \mathrm{i}} \cdot \mathrm{~L}_{1}+\mathrm{m}_{\mathrm{w} 2 \mathrm{i}} \cdot \mathrm{~L}_{2} \quad \mathrm{~m}_{\text {tot }}=78.946 \quad \mathrm{lb}
$$

To solve the equations for the system with both pipe sizes, we must guess inital values for the variables.

$$
\begin{array}{lll}
\mathrm{P}:=3000 & \varepsilon_{\mathrm{p} 1}:=0.01 & \mathrm{vol}_{1}:=1 \\
\mathrm{v}:=0.016 & \varepsilon_{\mathrm{p} 2}:=0.01 & \mathrm{vol}_{2}:=1 \\
\sigma_{\mathrm{h} 1}:=100 & \mathrm{r}_{1}:=1 & \mathrm{~m}_{\mathrm{w} 1}:=1 \\
\sigma_{\mathrm{h} 2}:=100 & \mathrm{r}_{2}:=1 & \mathrm{~m}_{\mathrm{w} 2}:=1
\end{array}
$$

Assign a function to represent the change from elastic strain to plastic strain as follows:

$$
\begin{aligned}
& f_{1}\left(\sigma_{\mathrm{h} 1}, S_{y 1}, E_{1}, E_{\mathrm{p} 1}, \varepsilon_{\mathrm{y} 1}\right):=\mathrm{if}\left(\sigma_{\mathrm{h} 1}>S_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}-S_{\mathrm{y} 1}}{E_{\mathrm{p} 1}}+\varepsilon_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}}{E_{1}}\right) \\
& \mathrm{f}_{2}\left(\sigma_{\mathrm{h} 2}, S_{\mathrm{y} 2}, \mathrm{E}_{2}, \mathrm{E}_{\mathrm{p} 2}, \varepsilon_{\mathrm{y} 2}\right):=\mathrm{if}\left(\sigma_{\mathrm{h} 2}>\mathrm{S}_{\mathrm{y} 2}, \frac{\sigma_{\mathrm{h} 2}-S_{\mathrm{y} 2}}{E_{\mathrm{p} 2}}+\varepsilon_{\mathrm{y} 2}, \frac{\sigma_{\mathrm{h} 2}}{E_{2}}\right)
\end{aligned}
$$

Given

$$
\begin{array}{ll}
\mathrm{r}_{1}=\left(1+\varepsilon_{\mathrm{pl}}\right) \cdot \mathrm{r}_{01} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) & \mathrm{r}_{2}=\left(1+\varepsilon_{\mathrm{p} 2}\right) \cdot \mathrm{r}_{02} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \\
\mathrm{vol}_{1}=\frac{\pi \cdot \mathrm{r}_{1}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{1}}{\left(12^{3}\right)} & \mathrm{vol}_{2}=\frac{\pi \cdot \mathrm{r}_{2}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{2}}{\left(12^{3}\right)} \\
v=\frac{\mathrm{vol} 1}{\mathrm{~m}_{\mathrm{wl}}} & v=\frac{\mathrm{vol}_{2}}{\mathrm{~m}_{\mathrm{w} 2}} \\
\mathrm{P}=\left(4.8551 \cdot 10^{9}\right) \cdot v^{2}-\left(1.8015 \cdot 10^{8}\right) \cdot v+1.6583 \cdot 10^{6} & \mathrm{~m}_{\mathrm{tot}}=\mathrm{m}_{\mathrm{wl}}+\mathrm{m}_{\mathrm{w} 2} \\
\sigma_{\mathrm{h} 1}=\mathrm{P}_{\mathrm{r}} \cdot \frac{\mathrm{r}_{1}}{\mathrm{t}_{1}} & \sigma_{\mathrm{h} 2}=\mathrm{P} \cdot \frac{\mathrm{r}_{2}}{\mathrm{t}_{2}} \\
\varepsilon_{\mathrm{p} 1}=\mathrm{f}_{1}\left(\sigma_{\mathrm{h} 1}, \mathrm{~S}_{\mathrm{y} 1}, \mathrm{E}_{1}, \mathrm{E}_{\mathrm{p} 1}, \varepsilon_{\mathrm{y} 1}\right) & \varepsilon_{\mathrm{p} 2}=\mathrm{f}_{2}\left(\sigma_{\mathrm{h} 2}, \mathrm{~S}_{\mathrm{y} 2}, \mathrm{E}_{2}, \mathrm{E}_{\mathrm{p} 2}, \varepsilon_{\mathrm{y} 2}\right)
\end{array}
$$

		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. $025-057-01$	$\begin{gathered} \text { Prepared By } \\ W B 6 \end{gathered}$	Checked By of	Page 48

Solving the equations.

$$
\begin{aligned}
& A A:=\operatorname{Find}\left(r_{1}, r_{2}, \varepsilon_{p 1}, \varepsilon_{p 2}, \mathrm{vol}_{1}, \mathrm{vol}_{2}, v, \mathrm{P}_{2} \sigma_{\mathrm{h} 1}, \sigma_{\mathrm{h} 2}, \mathrm{~m}_{\mathrm{w} 1}, \mathrm{~m}_{\mathrm{w} 2}\right) \\
& \mathrm{r}_{1}:=\mathrm{AA}_{0,0} \cdot \mathrm{in}^{\mathrm{r}_{1}=0.411 \mathrm{oin}} \\
& r_{2}:=A A_{1,0} \cdot \text { in }^{\prime} \\
& \mathrm{r}_{2}=0.307 \text { in } \\
& \varepsilon_{\mathrm{p} 1}:=\mathrm{AA}_{2,0} \\
& \varepsilon_{\mathrm{p} 1}=0.664 \% \\
& \varepsilon_{\mathrm{p} 2}:=\mathrm{AA}_{3,0} \\
& { }^{\varepsilon}{ }_{\mathrm{p} 2}=0.082 \% \\
& \mathrm{vol}_{1}:=\mathrm{AA}_{4,0} \cdot \mathrm{ft}^{3} \\
& \mathrm{vol}_{1}=0.996 \mathrm{of}^{3} \\
& \operatorname{vol}_{2}:=\mathrm{AA}_{5,0} \cdot \mathrm{ft}^{3} \\
& \mathrm{vol}_{2}=0.284 \mathrm{\sigma t}^{3} \\
& v:=\mathrm{AA}_{6,0} \cdot \mathrm{ft}^{3} \cdot 1 \mathrm{~b}^{-1} \\
& v=0.016205 \mathrm{oft}^{3} \cdot \mathrm{lb}^{-1} \\
& \mathrm{P}:=\mathrm{AA}_{7,0} \cdot \mathrm{psi} \\
& \mathrm{P}=1.3925 \cdot 10^{4} \mathrm{psi} \\
& \sigma_{\mathrm{h} 1}:=\mathrm{AA}_{8,0} \cdot \mathrm{psi} \\
& \sigma_{\mathrm{h} 1}=26.151 \text { } \mathrm{ksi} \\
& \sigma_{\mathrm{h} 2}:=\mathrm{AA}_{9,0} \cdot \mathrm{psi} \\
& \mathrm{~m}_{\mathrm{w} 1}:=\mathrm{AA}_{10,0} \cdot \mathrm{lb}^{\prime} \\
& \sigma_{\mathrm{h} 2}=22.288 \mathrm{oksi} \\
& \mathrm{~m}_{\mathrm{w} 2}:=\mathrm{AA}_{11,0} \cdot \mathrm{lb} \\
& \mathrm{~m}_{\mathrm{wl}}=61.442 \mathrm{olb}
\end{aligned}
$$

The principal stresses for the first pipe are calculated

$$
\begin{array}{ll}
\mathrm{S}_{11}:=\frac{\mathrm{P} \cdot \mathrm{r}_{1}}{\mathrm{t}_{1} \cdot \mathrm{in}} & \mathrm{~S}_{11}=26.151 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{pl}}:=\frac{\mathrm{P} \cdot \mathrm{r}_{1}}{2 \cdot \mathrm{t} 1 \cdot \mathrm{in}}+\mathrm{S}_{\mathrm{ml}} & \mathrm{~S}_{2 \mathrm{pl}}=33.076 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{ml}}:=\frac{\mathrm{P} \cdot \mathrm{r}_{1}}{2 \cdot \mathrm{t}_{1} \cdot \mathrm{nn}}-\mathrm{S}_{\mathrm{ml}} & \mathrm{~S}_{2 \mathrm{ml}}=-6.924 \mathrm{ksi} \\
\mathrm{~S}_{31}:=\frac{-\mathrm{P}}{2} & \mathrm{~S}_{31}=-6.962 \mathrm{ksi} \\
\mathrm{BB}_{1}:=\left[\begin{array}{l}
\left|\mathrm{S}_{11}-\mathrm{S}_{2 \mathrm{pl}}\right| \\
\left|\mathrm{S}_{11}-\mathrm{S}_{2 \mathrm{ml}}\right| \\
\left|\mathrm{S}_{2 \mathrm{pl}}-\mathrm{S}_{31}\right| \\
\left|\mathrm{S}_{2 \mathrm{ml}}-\mathrm{S}_{31}\right| \\
\left|\mathrm{S}_{31}-\mathrm{S}_{11}\right|
\end{array}\right] & \mathrm{BB}_{1}=\left[\begin{array}{c}
6.924 \\
33.076 \\
40.038 \\
0.038 \\
33.114
\end{array}\right]
\end{array}
$$

		MPR Associates, Inc. 320 King Street Alexandria, VA 22314	
Calculation No. 025-057-01	$\begin{gathered} \text { Prepared By } \\ \text { MB6 } \end{gathered}$	Checked By offn.	Page 49

The stress intensity

$$
\mathrm{SI}:=\max \left(\mathrm{BB}_{1}\right) \quad \mathrm{SI}=40.038 \mathrm{ksi}
$$

The allowable stress is

$$
S_{\text {allowable }}:=0.7 \cdot \mathrm{~S}_{\mathrm{u} 1} \quad \mathrm{~S}_{\text {allowable }}=47.950 \mathrm{ksi}
$$

The stress index is

$$
\text { Index }:=\frac{\text { SI }}{S_{\text {allowable }}} \quad \text { Index }=0.835
$$

The principal stresses for the second pipe are calculated

$$
\begin{array}{ll}
\mathrm{S}_{12}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{\mathrm{t}_{2} \cdot \mathrm{nn}} & \mathrm{~S}_{12}=22.288 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{p} 2}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{2 \cdot \mathrm{t}_{2} \cdot \mathrm{in}}+\mathrm{S}_{\mathrm{m} 2} & \mathrm{~S}_{2 \mathrm{p} 2}=31.144 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{~m} 2}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{2 \cdot \mathrm{t}_{2} \cdot \mathrm{in}}-\mathrm{S}_{\mathrm{m} 2} & \mathrm{~S}_{2 \mathrm{~m} 2}=-8.856 \mathrm{ksi} \\
\mathrm{~S}_{32}:=\frac{-\mathrm{P}}{2} & \mathrm{~S}_{32}=-6.962 \mathrm{ksi} \\
\mathrm{BB}_{2}:=\left[\begin{array}{l}
\left|\mathrm{S}_{12}-\mathrm{S}_{2 \mathrm{p} 2}\right| \\
\left|\mathrm{S}_{12}-\mathrm{S}_{2 \mathrm{~m} 2}\right| \\
\left|\mathrm{S}_{2 \mathrm{p} 2}-\mathrm{S}_{32}\right| \\
\left|\mathrm{S}_{2 \mathrm{~m} 2}-\mathrm{S}_{32}\right| \\
\left|\mathrm{S}_{32}-\mathrm{S}_{12}\right|
\end{array}\right] & \mathrm{BB}_{2}=\left[\begin{array}{c}
8.856 \\
31.144 \\
38.106 \\
1.894 \\
29.25
\end{array}\right]
\end{array}
$$

The stress intensity

$$
\mathrm{SI}:=\max \left(\mathrm{BB}_{2}\right) \quad \mathrm{SI}=38.106 \circ \mathrm{ksi}
$$

The allowable stress is

$$
\mathrm{S}_{\text {allowable }}:=0.7 \cdot \mathrm{~S}_{\mathrm{u} 2} \quad \mathrm{~S}_{\text {allowable }}=47.950 \mathrm{ksi}
$$

The stress index is

$$
\text { Index }:=\frac{\mathrm{SI}}{\mathrm{~S}_{\text {allowable }}} \quad \text { Index }=0.795
$$

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

Calculation No.
Prepared By 025-057-01

Maximum Wall Thickness Evaluation:
The first pipe is $1^{\prime \prime}$ Sch 160 , pipe specification $\mathrm{M}-14$
ID $1 \mathrm{Ml}_{4}:=0.815 \mathrm{in}$
$\mathrm{S}_{\text {mlM14 }}:=20 \mathrm{ksi}$
$\mathrm{E}_{1 \mathrm{M14}}:=27.3 \cdot 10^{6} \mathrm{psi}$
${ }^{t_{1 M 14}}:=\left(0.250 \cdot f_{\max }\right)$ in
$\mathrm{S}_{\mathrm{y} 1 \mathrm{M14}}:=23.7 \mathrm{ksi}$
$E_{\text {p1M14 }}:=0.425 \cdot 10^{6} \mathrm{psi}$
$\mathrm{OD}_{1 \mathrm{M} 14}:=\mathrm{ID}_{1 \mathrm{M} 14}+2 \cdot \mathrm{t}_{1 \mathrm{M} 14}$
$\mathrm{S}_{\mathrm{ulM14}}:=68.5 \mathrm{ksi}$
SA-376 Gr TP304
$O D_{1 \mathrm{M14}}=1.377{ }^{\circ \mathrm{in}}$

The second pipe is $3 / 4^{\prime \prime}$ Sch 160 , pipe specification $\mathrm{M}-14$
ID $_{34 \mathrm{M} 14}:=0.612 \mathrm{in}$
$\mathrm{S}_{\text {m34M14 }}:=20 \mathrm{ksi}$
E 34 M14 $:=27.3 \cdot 10^{6} \mathrm{psi}$
$\mathrm{t}_{34 \text { M14 }}:=\left(0.219 \cdot \mathrm{f}_{\max }\right)$ in
$\mathrm{S}_{\mathrm{y} 34 \mathrm{M} 14}:=23.7 \mathrm{ksi}$
$\mathrm{E}_{\mathrm{p} 34 \mathrm{M} 14}:=0.425 \cdot 10^{6} \mathrm{psi}$
$\mathrm{OD}_{34 \mathrm{M} 14}:=\mathrm{ID}_{34 \mathrm{M} 14}+2 \cdot \mathrm{t}_{34 \mathrm{M} 14} \mathrm{~S}_{\mathrm{u} 34 \mathrm{M} 14}:=68.5 \mathrm{ksi}$
SA-376 Gr TP304
$\mathrm{OD}_{34 \mathrm{M} 14}=1.105^{\circ} \mathrm{in}$

The lengths of the two different pipes are determined from the drawings in Reference 6. The 1 "pipe has a total length of approximately 270 ft . while the $3 / 4^{\prime \prime}$ pipe has a total length of approximately 138 ft .
$L_{1}:=(270 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{2}:=(138 \mathrm{ft}) \cdot \mathrm{in}^{-1}$
$L_{1}=3.24 \cdot 10^{3}$ inches
$L_{2}=1.656 \cdot 10^{3}$ inches

For the first pipe (1 " Sch 160, M-14), the specific material parameters used in the calculation are

$$
\begin{aligned}
& { }^{t_{1}}:=t_{1 M 14} \cdot \mathrm{in}^{-1} \quad t_{1}=0.281 \quad \text { inches } \\
& r_{01}:=\left(\frac{O D 1 \mathrm{M} 14 \cdot \mathrm{in}^{-1}}{2}\right)-\mathrm{t}_{1} \quad \mathrm{r}_{01}=0.408 \quad \text { inches } \\
& S_{y l}:=S_{y 1 M 14} \cdot \mathrm{psi}^{-1} \quad S_{y l}=2.37 \cdot 10^{4} \mathrm{psi} \\
& E_{1}:=E_{1 M 14} \cdot \mathrm{psi}^{-1} \quad E_{1}=2.73 \cdot 10^{7} \quad \mathrm{psi} \\
& \mathrm{E}_{\mathrm{pl}}:=\mathrm{E}_{\mathrm{plM1}} / \mathrm{psi}^{-1} \quad \mathrm{E}_{\mathrm{pl}}=4.25 \cdot 10^{5} \mathrm{psi} \\
& \varepsilon_{y l}:=\frac{\mathrm{S}_{\mathrm{y} 1}}{\mathrm{E}_{1}} \quad \varepsilon_{y 1}=8.681 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
& \mathrm{~S}_{\mathrm{ml}}:=\mathrm{S}_{\mathrm{mlM14}} \quad \mathrm{~S}_{\mathrm{ml}}=2 \cdot 10^{4}{ }^{\circ} \mathrm{psi} \\
& S_{u l}:=S_{u 1 M 14} \\
& S_{u l}=6.85 \cdot 10^{4} \text { opsi }
\end{aligned}
$$

Calculation No. 025-057-01
 Prepared By MB

For the second pipe ($3 / 4$ " Sch $160, M-14$), the specific material parameters for the calculation are

$$
\begin{aligned}
& \mathrm{t}_{2}:=\mathrm{t} 34 \mathrm{M} 14 \cdot \mathrm{in}^{-1} \quad \mathrm{t}_{2}=0.246 \quad \text { inches } \\
& r_{02}:=\left(\frac{O D_{34 \mathrm{M}_{14} \cdot \mathrm{in}^{-1}}^{2}}{2}\right)-\mathrm{t}_{2} \quad \mathrm{r}_{02}=0.306 \quad \text { inches } \\
& \mathrm{S}_{\mathrm{y} 2}:=\mathrm{S}_{\mathrm{y} 34 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} \quad \mathrm{~S}_{\mathrm{y} 2}=2.37 \cdot 10^{4} \mathrm{psi} \\
& \mathrm{E}_{2}:=\mathrm{E}_{34 \mathrm{M} 14} \cdot \mathrm{psi}^{-1} \quad \mathrm{E}_{2}=2.73 \cdot 10^{7} \mathrm{psi} \\
& \mathrm{E}_{\mathrm{p} 2}:=\mathrm{E}_{\mathrm{p} 34 \mathrm{M} 14 \cdot \mathrm{psi}^{-1} \quad \quad \mathrm{E}_{\mathrm{p} 2}=4.25 \cdot 10^{5} \mathrm{psi}} \\
& \varepsilon_{y 2}:=\frac{S_{y 2}}{E_{2}} \quad \varepsilon_{y 2}=8.681 \cdot 10^{-4} \mathrm{in} / \mathrm{in} \\
& \mathrm{~S}_{\mathrm{m} 2}:=\mathrm{S}_{\mathrm{m} 34 \mathrm{M} 14} \quad \mathrm{~S}_{\mathrm{m} 2}=2 \cdot 10^{4} \mathrm{psi} \\
& \mathrm{~S}_{\mathrm{u} 2}:=\mathrm{S}_{\mathrm{u} 34 \mathrm{M} 14} \quad \mathrm{~S}_{\mathrm{u} 2}=6.85 \cdot 10^{4} \mathrm{pssi}
\end{aligned}
$$

At the ambient condition of 70 F , the water has a specific volume

$$
v_{\text {initial }}:=0.015961 \mathrm{ft}^{3} \cdot \mathrm{lb}^{-1}
$$

Therefore, the mass of water in a unit length (1 inch) of pipe is

$$
\begin{array}{ll}
\mathrm{m}_{\mathrm{wli}}:=\frac{\pi \cdot \mathrm{r}_{01} 1^{2} \cdot 1}{\left(v_{\text {initial }} \cdot l \mathrm{~b} \cdot \mathrm{in}^{-3}\right)} & \mathrm{m}_{\mathrm{w} 1 \mathrm{i}}=0.019 \quad \text { lb per unit length }\left(1^{\prime \prime} \operatorname{Sch} 160\right) \\
\mathrm{m}_{\mathrm{w} 2 \mathrm{i}}:=\frac{\pi \cdot \mathrm{r}_{02} \cdot 1}{\left(v_{\text {initial }} \cdot 1 \mathrm{~b} \cdot \mathrm{in}^{-3}\right)} & \mathrm{m}_{\mathrm{w} 2 \mathrm{i}}=0.011 \quad \text { lb per unit length }\left(3 / 4^{\prime \prime} \operatorname{Sch} 160\right)
\end{array}
$$

The mean coefficient of thermal expansion for SA-376 Gr TP304 at 250 F (Reference 12) is

$$
\alpha_{\mathrm{T}}:=8.90 \cdot 10^{-6}
$$

And the strain due to thermal expansion is

$$
\varepsilon_{\mathrm{th}}:=\alpha_{\mathrm{T}} \cdot\left(\mathrm{~T}_{\mathrm{LOCA}}-\mathrm{T}_{\mathrm{amb}}\right) \quad \varepsilon_{\mathrm{th}}=1.513 \cdot 10^{-3} \mathrm{in} / \mathrm{in}
$$

The total mass of the water in the piping, assuming that the pipe is filled, is

$$
\mathrm{m}_{\text {tot }}:=\mathrm{m}_{\mathrm{w} 1 \mathrm{i}} \cdot \mathrm{~L}_{1}+\mathrm{m}_{\mathrm{w} 2 \mathrm{i}} \cdot \mathrm{~L}_{2} \quad \mathrm{~m}_{\mathrm{tot}}=78.946
$$

MPR Associates, Inc. 320 King Street
Alexandria, VA 22314

Calculation No. 025-057-01

Prepared By MB6

To solve the equations for the system with both pipe sizes, we must guess inital values for the variables.

$$
\begin{array}{lll}
\mathrm{P}:=3000 & \varepsilon_{\mathrm{p} 1}:=0.01 & \mathrm{vol}_{1}:=1 \\
v:=0.016 & \varepsilon_{\mathrm{p} 2}:=0.01 & \mathrm{vol}_{2}:=1 \\
\sigma_{\mathrm{h} 1}:=100 & \mathrm{r}_{1}:=1 & \mathrm{~m}_{\mathrm{w} 1}:=1 \\
\sigma_{\mathrm{h} 2}:=100 & \mathrm{r}_{2}:=1 & \mathrm{~m}_{\mathrm{w} 2}:=1
\end{array}
$$

Assign a function to represent the change from elastic strain to plastic strain as follows:

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\sigma_{\mathrm{h} 1}, \mathrm{~S}_{\mathrm{y} 1}, \mathrm{E}_{1}, \mathrm{E}_{\mathrm{p} 1}, \varepsilon_{\mathrm{y} 1}\right):=\mathrm{if}\left(\sigma_{\mathrm{h} 1}>\mathrm{S}_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h} 1}-S_{\mathrm{y} 1}}{E_{\mathrm{pl} 1}}+\varepsilon_{\mathrm{y} 1}, \frac{\sigma_{\mathrm{h}}}{E_{1}}\right) \\
& \mathrm{f}_{2}\left(\sigma_{\mathrm{h} 2}, \mathrm{~S}_{\mathrm{y} 2}, \mathrm{E}_{2}, \mathrm{E}_{\mathrm{p} 2}, \varepsilon_{\mathrm{y} 2}\right):=\mathrm{if}\left(\sigma_{\mathrm{h} 2}>\mathrm{S}_{\mathrm{y} 2}, \frac{\sigma_{\mathrm{h} 2}-S_{\mathrm{y} 2}}{\mathrm{E}_{\mathrm{p} 2}}+\varepsilon_{\mathrm{y} 2}, \frac{\sigma_{\mathrm{h} 2}}{E_{2}}\right)
\end{aligned}
$$

Given

$$
\begin{array}{ll}
\mathrm{r}_{1}=\left(1+\varepsilon_{\mathrm{p} 1}\right) \cdot \mathrm{r}_{01} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) & \mathrm{r}_{2}=\left(1+\varepsilon_{\mathrm{p} 2}\right) \cdot \mathrm{r}_{02} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \\
\mathrm{vol}_{1}=\frac{\pi \cdot \mathrm{r}_{1}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{1}}{\left(12^{3}\right)} & \mathrm{vol}_{2}=\frac{\mathrm{r} \cdot \mathrm{r}_{2}{ }^{2} \cdot\left(1+\varepsilon_{\mathrm{th}}\right) \cdot \mathrm{L}_{2}}{\left(12^{3}\right)} \\
\nu=\frac{\mathrm{vol}_{1}}{\mathrm{~m}_{\mathrm{wl}}} & v=\frac{\mathrm{vol}_{2}}{\mathrm{~m}_{\mathrm{w} 2}} \\
\mathrm{P}=\left(4.8551 \cdot 10^{9}\right) \cdot \nu^{2}-\left(1.8015 \cdot 10^{8}\right) \cdot v+1.6583 \cdot 10^{6} & \mathrm{~m}_{\mathrm{tot}}=\mathrm{m}_{\mathrm{w} 1}+\mathrm{m}_{\mathrm{w} 2} \\
\sigma_{\mathrm{hl}}=\mathrm{P} \cdot \frac{\mathrm{r}_{1}}{\mathrm{t}_{1}} & \sigma_{\mathrm{h} 2}=\mathrm{p} \cdot \frac{\mathrm{r}_{2}}{\mathrm{t}_{2}} \\
\varepsilon_{\mathrm{p} 1}=\mathrm{f}_{1}\left(\sigma_{\mathrm{h} 1}, \mathrm{~S}_{\mathrm{y} 1}, \mathrm{E}_{1}, \mathrm{E}_{\mathrm{p} 1}, \varepsilon_{\mathrm{y} 1}\right) & \varepsilon_{\mathrm{p} 2}=\mathrm{f}_{2}\left(\sigma_{\mathrm{h} 2}, \mathrm{~S}_{\mathrm{y} 2}, \mathrm{E}_{2}, \mathrm{E}_{\mathrm{p} 2}, \varepsilon_{\mathrm{y} 2}\right)
\end{array}
$$

Solving the equations.

The principal stresses for the first pipe are calculated

$$
\begin{array}{ll}
\mathrm{S}_{11}:=\frac{\mathrm{P} \cdot \mathrm{r}_{1}}{\mathrm{t} \cdot \cdot \mathrm{in}} & \mathrm{~S}_{11}=24.186 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{pl}}:=\frac{\mathrm{P} \cdot \mathrm{r} 1}{2 \cdot \mathrm{t}_{1} \cdot \mathrm{in}}+\mathrm{S}_{\mathrm{ml}} & \mathrm{~S}_{2 \mathrm{pl}}=32.093 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{~m} 1}:=\frac{\mathrm{P} \cdot \mathrm{r}_{1}}{2 \cdot \mathrm{t}_{1} \cdot \mathrm{in}}-\mathrm{S}_{\mathrm{ml}} & \mathrm{~S}_{2 \mathrm{ml}}=-7.907 \mathrm{oksi} \\
\mathrm{~S}_{31}:=\frac{-\mathrm{P}}{2} & \mathrm{~S}_{31}=-8.317 \mathrm{ksi} \\
\mathrm{BB}_{1}:=\left[\begin{array}{l}
\left|\mathrm{S}_{11}-\mathrm{S}_{2 \mathrm{p} 1}\right| \\
\left|\mathrm{S}_{11}-\mathrm{S}_{2 \mathrm{~m} 1}\right| \\
\left|\mathrm{S}_{2 \mathrm{pl}}-\mathrm{S}_{31}\right| \\
\left|\mathrm{S}_{2 \mathrm{ml}}-\mathrm{S}_{31}\right| \\
\left|\mathrm{S}_{31}-\mathrm{S}_{11}\right|
\end{array}\right] & \mathrm{BB}_{1}=\left[\begin{array}{c}
7.907 \\
32.093 \\
40.41 \\
0.41 \\
32.504
\end{array}\right] \mathrm{ksi}
\end{array}
$$

MPR Associates, Inc. 320 King Street Alexandria, VA 22314

Calculation No. 025-057-01

Prepared By MSG

Page 54
The stress intensity

$$
\text { SI }:=\max \left(\mathrm{BB}_{1}\right), \quad \mathrm{SI}=40.410 \mathrm{ksi}
$$

The allowable stress is

$$
\mathrm{S}_{\text {allowable }}:=0.7 \cdot \mathrm{~S}_{\mathrm{u} 1} \quad \mathrm{~S}_{\text {allowable }}=47.95 \mathrm{ksi}
$$

The stress index is

$$
\text { Index }:=\frac{\text { SI }}{\mathrm{S}_{\text {allowable }}} \quad \text { Index }=0.843
$$

The principal stresses for the second pipe are calculated

$$
\begin{array}{ll}
\mathrm{S}_{12}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{\mathrm{t}_{2} \cdot \mathrm{in}} & \mathrm{~S}_{12}=20.707 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{p} 2}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{2 \cdot \mathrm{t} 2 \cdot \mathrm{in}}+\mathrm{S}_{\mathrm{m} 2} & \mathrm{~S}_{2 \mathrm{p} 2}=30.354 \mathrm{ksi} \\
\mathrm{~S}_{2 \mathrm{~m} 2}:=\frac{\mathrm{P} \cdot \mathrm{r}_{2}}{2 \cdot \mathrm{t}_{2} \cdot \mathrm{in}}-\mathrm{S}_{\mathrm{m} 2} & \mathrm{~S}_{2 \mathrm{~m} 2}=-9.646 \mathrm{ksi} \\
\mathrm{~S}_{32}:=\frac{-\mathrm{P}}{2} & \mathrm{~S}_{32}=-8.317 \mathrm{ksi} \\
\mathrm{BB}_{2}:=\left[\begin{array}{l}
\left|\mathrm{S}_{12}-\mathrm{S}_{2 \mathrm{p} 2}\right| \\
\left|\mathrm{S}_{12}-\mathrm{S}_{2 \mathrm{~m} 2}\right| \\
\left|\mathrm{S}_{2 \mathrm{p} 2}-\mathrm{S}_{32}\right| \\
\left|\mathrm{S}_{2 \mathrm{~m} 2}-\mathrm{S}_{32}\right| \\
\left|\mathrm{S}_{32}-\mathrm{S}_{12}\right|
\end{array}\right] & \mathrm{BB}_{2}=\left[\begin{array}{c}
9.646 \\
30.354 \\
38.671 \\
1.329 \\
29.024
\end{array}\right] \text { oksi }
\end{array}
$$

The stress intensity

$$
\mathrm{SI}:=\max \left(\mathrm{BB}_{2}\right) \quad \mathrm{SI}=38.671 \circ \mathrm{ksi}
$$

The allowable stress is

$$
\mathrm{S}_{\text {allowable }}:=0.7 \cdot \mathrm{~S}_{\mathrm{u} 2}
$$

$\mathrm{S}_{\text {allowable }}=47.95 \mathrm{ksi}$
The stress index is

$$
\text { Index }:=\frac{\mathrm{SI}}{\mathrm{~S}_{\text {allowable }}}
$$

$$
\text { Index }=0.806
$$

THE FOLLOWING IS A LISTING OF OVERSIZED DRAWINGS CONTAINED WITHIN THIS DOCUMENT.

TO VIEW A DRAWING, REFERENCE THE DRAWING NUMBER SPECIFIC TO THE DESIRED DRAWING (NOTED ON THE LIST) AND LOCATE IT WITHIN THIS PACKAGE OR,
 PERFORM A SEARCH USING THE DRAWING NUMBER

NOTE: Because of these page's large file size, it may be more convenient to copy the file to a local drive and use the Imaging (Wang) viewer, which can be accessed from the Programs/Accessories menu.

The following drawings provide an overview of the non-essential-service water (NESW) system and the details of the NESW piping for components located inside the containment that were modeled in the waterhammer analysis.

Unit 1 Drawings

Inside Containment

OP-1-5114-82	Flow Diagram Non-Essential Service Water Unit 1
OP-1-5114A-25	Flow Diagram Non-Essential Service Water
1-NSW-65	Upper Containment Ventilation Unit 4 Supply Line
1-NSW-66	Upper Containment Ventilation Unit 3 Supply Line
1-NSW-67	Upper Containment Ventilation Unit 2 Supply Line
1-NSW-68	Upper Containment Ventilation Unit 1 Supply Line
1-NSW-69	Upper Containment Ventilation Unit 4 Return Line
1-NSW-70	Upper Containment Ventilation Unit 3 Return Line
1-NSW-71	Upper Containment Ventilation Unit 2 Return Line
1-NSW-72	Upper Containment Ventilation Unit 1 Return Line
1-NSW-174	Instrument Room Ventilation Unit 3 Supply Line
1-NSW-175	Instrument Room Ventilation Unit 4 Supply Line
1-NSW-176	Instrument Room Ventilation Unit 3 Return Line
1-NSW-177	Instrument Room Ventilation Unit 4 Return Line
1-NSW-178	Lower Containment Ventilation Unit 1 Supply Line
1-NSW-179	Lower Containment Ventilation Unit 2 Supply Line
1-NSW-180	Lower Containment Ventilation Unit 3 Supply Line
1-NSW-181	Lower Containment Ventilation Unit 4 Supply Line
1-NSW-182	Lower Containment Ventilation Unit 1 Return Line
1-NSW-183	Lower Containment Ventilation Unit 2 Return Line
1-NSW-184	Lower Containment Ventilation Unit 3 Return Line
1-NSW-185	Lower Containment Ventilation Unit 4 Return Line

Outside Containment

1-NSW-37
1-NSW-38
1-NSW-39
1-NSW-42
1-NSW-44
1-NSW-45
1-NSW-46
1-NSW-47
1-NSW-49
1-NSW-50

Lower Containment Ventilation Unit 2 Supply Line
Lower Containment Ventilation Unit 3 Supply Line Upper Containment Ventilation Unit 2 Supply Line Upper Containment Ventilation Unit 3 Supply Line Upper Containment Ventilation Unit 2 Return Line Lower Containment Ventilation Unit 2 Return Line Lower Containment Ventilation Unit 3 Return Line Upper Containment Ventilation Unit 3 Return Line Instrument Room Ventilation Unit 3 Supply Line Instrument Room Ventilation Unit 4 Return Line

1-NSW-51	Instrument Room Ventilation Unit 3 Return Line
1-NSW-52	Instrument Room Ventilation Unit 4 Supply Line
1-NSW-54	Upper Containment Ventilation Unit 1 Supply Line
1-NSW-55	Lower Containment Ventilation Unit 1 Supply Line
1-NSW-57	Upper Containment Ventilation Unit 4 Supply Line
1-NSW-58	Lower Containment Ventilation Unit 4 Supply Line
1-NSW-59	Lower Containment Ventilation Unit 1 Return Line
1-NSW-60	Upper Containment Ventilation Unit 1 Return Line
1-NSW-62	Lower Containment Ventilation Unit 4 Return Line
1-NSW-63	Upper Containment Ventilation Unit 4 Return Line

Unit 2 Drawings

Inside Containment
OP-2-5114-50
OP-2-5114A-29
2-NSW-130
2-NSW-131
2-NSW-132
2-NSW-133
2-NSW-138
2-NSW-139
2-NSW-140
2-NSW-141
2-NSW-186
2-NSW-187
2-NSW-188
2-NSW-189
2-NSW-192
2-NSW-193
2-NSW-194
2-NSW-195
2-NSW-196
2-NSW-197
2-NSW-198
2-NSW-199
Flow Diagram Non-Essential Service Water Unit No. 2 Flow Diagram Non-Essential Service Water Upper Containment Ventilation Unit 1 Supply Line Upper Containment Ventilation Unit 2 Supply Line Upper Containment Ventilation Unit 3 Supply Line Upper Containment Ventilation Unit 4 Supply Line Upper Containment Ventilation Unit 1 Return Line Upper Containment Ventilation Unit 2 Return Line Upper Containment Ventilation Unit 3 Return Line Upper Containment Ventilation Unit 4 Return Line Instrument Room Ventilation Unit 3 Supply Line Instrument Room Ventilation Unit 4 Supply Line Instrument Room Ventilation Unit 3 Return Line
Instrument Room Ventilation Unit 4 Return Line Lower Containment Ventilation Unit 1 Supply Line Lower Containment Ventilation Unit 2 Supply Line Lower Containment Ventilation Unit 3 Supply Line Lower Containment Ventilation Unit 4 Supply Line Lower Containment Ventilation Unit 1 Return Line Lower Containment Ventilation Unit 2 Return Line Lower Containment Ventilation Unit 3 Return Line Lower Containment Ventilation Unit 4 Return Line

Outside Containment

2-NSW-100
2-NSW-101
2-NSW-102
Lower Containment Ventilation Unit 2 Supply Line
Lower Containment Ventilation Unit 3 Supply Line

2-NSW-105 Upper Containment Ventilation Unit 3 Supply Line
2-NSW-106
2-NSW-107
2-NSW-108
2-NSW-111
2-NSW-112
2-NSW-114
2-NSW-115
2-NSW-116
2-NSW-117
2-NSW-119
2-NSW-120
2-NSW-122
2-NSW-123
2-NSW-124
2-NSW-125
2-NSW-146 Instrument Room Ventilation Unit 3 Supply Line Instrument Room Ventilation Unit 4 Supply Line Upper Containment Ventilation Unit 4 Supply Line Upper Containment Ventilation Unit 1 Supply Line Lower Containment Ventilation Unit 1 Supply Line Upper Containment Ventilation Unit 2 Return Line Lower Containment Ventilation Unit 3 Return Line Lower Containment Ventilation Unit 1 Return Line Upper Containment Ventilation Unit 3 Return Line Instrument Room Ventilation Unit 3 Return Line
Instrument Room Ventilation Unit 4 Return Line
Upper Containment Ventilation Unit 4 Return Line Lower Containment Ventilation Unit 2 Return Line Lower Containment Ventilation Unit 4 Return Line Upper Containment Ventilation Unit 1 Return Line Lower Containment Ventilation Unit 4 Supply Line

In accordance with the restrictions stated on drawings OP-1-5114-82, OP-1-5114A-25, OP-25114-50 and OP-2-5114A-29, Indiana Michigan Power Company (I\&M) hereby releases these documents to the Nuclear Regulatory Commission (NRC) for its information and use in connection with the review of I\&M's submittal. I\&M also permits the NRC to reproduce the drawings as necessary to facilitate the review and distribution of the submittal to meet NRC requirements.

