INDEX

BASES					
SECTION			PAGE		
	3/4.4.7	MAIN STEAM LINE ISOLATION VALVES	В	3/4	4-6
	3/4.4.8	STRUCTURAL INTEGRITY	В	3/4	4-6
	3/4.4.9	RESIDUAL HEAT REMOVAL	В	3/4	4-6
3/4.	5 EMERGENCY	CORE COOLING SYSTEMS			
	3/4.5.1/2	ECCS - OPERATING and SHUTDOWN	В	3/4	5-1
	3/4.5.3	SUPPRESSION CHAMBER	В	3/4	5-3
3/4.	6 CONTAINMEN	I SYSTEMS			
	3/4.6.1	PRIMARY CONTAINMENT			
		Primary Containment Integrity	В	3/4	6-1
		Primary Containment Leakage	В	3/4	6-1
		Primary Containment Air Locks	В	3/4	6-1
		MSIV Sealing System	В	3/4	6-1
		Primary Containment Structural Integrity	В	3/4	6-2
		Drywell and Suppression Chamber Internal Pressure	В	3/4	6-2
		Drywell Average Air Temperature	В	3/4	6-2
		Drywell and Suppression Chamber Purge System	В	3/4	6-2
	3/4.6.2	DEPRESSURIZATION SYSTEMS	В	3/4	6-3
	3/4.6.3	PRIMARY CONTAINMENT ISOLATION VALVES	В	3/4	6-5
	3/4.6.4	VACUUM RELIEF	В	3/4	6-5
	3/4.6.5	SECONDARY CONTAINMENT	В	3/4	6-13
	3/4.6.6	PRIMARY CONTAINMENT ATMOSPHERE CONTROL	В	3/4	6-14

LIMITING CONDITION FOR OPERATION (Continued)

<u>ACTION</u>: (Continued)

- 3. With the suppression chamber average water temperature greater than 120°F, depressurize the reactor pressure vessel to less than 200 psig within 12 hours.
- c. With one drywell-to-suppression chamber bypass leakage in excess of the limit, restore the bypass leakage to within the limit prior to increasing reactor coolant temperature above 200°F.

SURVEILLANCE REQUIREMENTS

- 4.6.2.1 The suppression chamber shall be demonstrated OPERABLE:
 - a. By verifying the suppression chamber water volume to be within the limits at least once per 24 hours.
 - b. At least once per 24 hours in OPERATIONAL CONDITION 1 or 2 by verifying the suppression chamber average water temperature to be less than or equal to 95°F, except:
 - 1. At least once per 5 minutes during testing which adds heat to the suppression chamber, by verifying the suppression chamber average water temperature less than or equal to 105°F.
 - 2. At least once per hour when suppression chamber average water temperature is greater than $95^{\circ}F$, by verifying:
 - a) Suppression chamber average water temperature to be less than or equal to 110°F, and
 - b) THERMAL POWER to be less than or equal to 1% of RATED THERMAL POWER.
 - c. At least once per 30 minutes in OPERATIONAL CONDITION 3 following a scram with suppression chamber average water temperature greater than 95°F, by verifying suppression chamber average water temperature less than or equal to 120°F.
 - d. By an external visual examination of the suppression chamber after safety/relief valve operation with the suppression chamber average water temperature greater than or equal to 177°F and reactor coolant system pressure greater than 100 psig.
 - e. At least once per 18 months by a visual inspection of the accessible interior and exterior of the suppression chamber.

LIMITING CONDITION FOR OPERATION (Continued)

f. At least once per 18 months by conducting a drywell-to-suppression chamber bypass leak test at an initial differential pressure of 0.80 psi and verifying that the differential pressure does not decrease by more than 0.24 inch of water per minute for a period of 10 minutes. If any drywell-to-suppression chamber bypass leak test fails to meet the specified limit, the test schedule for subsequent tests shall be reviewed and approved by the Commission. If two consecutive tests fail to meet the specified limit, a test shall be performed at least every 9 months until two consecutive tests meet the specified limit, at which time the 18 month test schedule may be resumed.

3/4.6.4 VACUUM RELIEF

SUPPRESSION CHAMBER - DRYWELL VACUUM BREAKERS

LIMITING CONDITION FOR OPERATION

3.6.4.1 All suppression chamber - drywell vacuum breakers shall be OPERABLE.

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2 and 3.

ACTION:

- a. With one of the above vacuum breakers inoperable for opening restore the vacuum breaker to OPERABLE status within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- b. With one suppression chamber drywell vacuum breaker not closed, close the open vacuum breaker within 2 hours; or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

HOPE CREEK

SURVEILLANCE REQUIREMENTS

4.6.4.1 Each suppression chamber - drywell vacuum breaker shall be:

- a. Verified closed at least once per 14 days*.
- b. Demonstrated OPERABLE:
 - 1. At least once per 31 days and within 12 hours after any discharge of steam to the suppression chamber from the safety-relief valves, by performing a functional test of each vacuum breaker.
 - 2. At least once per 18 months by verifying the opening setpoint of each vacuum breaker to be less than or equal to 0.20 psid.

*Not required to be met for vacuum breaker assembly valves that are open during surveillances or that are open when performing their intended functions.

REACTOR BUILDING - SUPPRESSION CHAMBER VACUUM BREAKERS

LIMITING CONDITION FOR OPERATION

3.6.4.2 Each reactor building - suppression chamber vacuum breaker assembly shall be OPERABLE

APPLICABILITY: OPERATIONAL CONDITIONS 1, 2 and 3.

ACTION:

- a. With one reactor building suppression chamber vacuum breaker assembly, with one or two valves inoperable for opening, restore the vacuum breaker assembly to OPERABLE status within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- b. With two reactor building suppression chamber vacuum breaker assemblies with one or two valves inoperable for opening, restore both valves in one vacuum breaker assembly to OPERABLE status within 1 hour or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- c. With one or two reactor building suppression chamber vacuum breaker assemblies, with one valve not closed, close the open vacuum breaker assembly valve(s) within 72 hours or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.
- d. With two valves in one or two reactor building suppression chamber vacuum breaker assemblies not closed, close one open vacuum breaker assembly valve in each affected assembly within 1 hour or be in at least HOT SHUTDOWN within the next 12 hours and in COLD SHUTDOWN within the following 24 hours.

SURVEILLANCE REQUIREMENTS

4.6.4.2 Each reactor building - suppression chamber vacuum breaker assembly shall be:

- a. Verified closed at least once per 14 days*.
- b. Demonstrated OPERABLE:
 - 1. At least once per 31 days by:
 - a) Performing a functional test of each vacuum breaker assembly valve.

SURVEILLANCE REQUIREMENTS (Continued)

- 2. At least once per 18 months by:
- a) Verifying the opening setpoint of each vacuum breaker assembly valve to be less than or equal to 0.25 psid.

*Not required to be met for vacuum breaker assembly valves that are open during surveillances or that are open when performing their intended functions.

BASES

3/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES

The OPERABILITY of the primary containment isolation values ensures that the containment atmosphere will be isolated from the outside environment in the event of a release of radioactive material to the containment atmosphere or pressurization of the containment and is consistent with the requirements of GDC 54 through 57 of Appendix A of 10 CFR 50. Containment isolation within the time limits specified for those isolation values designed to close automatically ensures that the release of radioactive material to the environment will be consistent with the assumptions used in the analyses for a LOCA.

3/4.6.4 VACUUM RELIEF

Suppression Chamber-to-Drywell Vacuum Breakers

<u>BACKGROUND</u>: The function of the suppression-chamber-to-drywell vacuum breakers is to relieve vacuum in the drywell. There are eight internal vacuum breakers located on the vent header of the vent system between the drywell and the suppression chamber that allow air and steam flow from the suppression chamber to the drywell when the drywell is at a negative pressure with respect to the suppression chamber. Therefore, suppression chamber-to-drywell vacuum breakers prevent an excessive negative differential pressure across the wetwell-drywell boundary. Each vacuum breaker is a self-actuating valve, similar to a check valve, which can be remotely operated for testing purposes.

A negative differential pressure across the drywell wall is caused by rapid depressurization of the drywell. Events that cause this rapid depressurization are cooling cycles, inadvertent drywell spray actuation, and steam condensation from sprays or subcooled water reflood of a break in the event of a primary system rupture. Cooling cycles result in minor pressure transients in the drywell that occur slowly and are normally controlled by heating and ventilation equipment. Spray actuation or spill of subcooled water out of a break results in more significant pressure transients and becomes important in sizing the internal vacuum breakers.

In the event of a primary system rupture, steam condensation within the drywell results in the most severe pressure transient. Following a primary system rupture, air in the drywell is purged into the suppression chamber free airspace, leaving the drywell full of steam. Subsequent condensation of the steam can be caused by Emergency Core Cooling Systems flow from a recirculation line or main steam line break, or drywell spray actuation following a loss of coolant accident (LOCA).

BASES

In addition, the waterleg in the Mark I Vent System downcomer is controlled by the drywell-to-suppression chamber differential pressure. If the drywell pressure is less than the suppression chamber pressure, there will be an increase in the vent waterleg. This will result in an increase in the water clearing inertia in the event of a postulated LOCA, resulting in an increase in the peak drywell pressure. This in turn will result in an increase in the pool swell dynamic loads. The internal vacuum breakers limit the height of the waterleg in the vent system during normal operation.

<u>APPLICABLE SAFETY ANALYSES</u>: Analytical methods and assumptions involving the suppression chamber-to-drywell vacuum breakers are presented in Section 6.2 and Appendix 6A of the Hope Creek UFSAR as part of the accident response of the primary containment systems. Internal (suppression chamber-to-drywell) and external (reactor building- to-suppression chamber) vacuum breakers are provided as part of the primary containment to limit the negative differential pressure across the drywell and suppression chamber walls that form part of the primary containment boundary.

The safety analyses assume that the internal vacuum breakers are closed initially and are fully open at a differential pressure of 0.20 psid. Additionally, one of the eight internal vacuum breakers is assumed to fail in a closed position. The results of the analyses show that the design pressure limits are not exceeded even under the worst case accident scenario. The vacuum breaker opening differential pressure setpoint and the requirement that all eight vacuum breakers be OPERABLE are a result of the requirement placed on the vacuum breakers to limit the vent system waterleg height. The vacuum relief capacity between the drywell and suppression chamber should be 1/16 of the total main vent cross sectional area, with the valves set to operate at 0.20 psid differential pressure. Design Basis Accident (DBA) analyses require the vacuum breakers to be closed initially and to remain closed and leak tight.

The suppression chamber-to-drywell vacuum breakers satisfy Criterion 3 of the NRC Policy Statement.

LCO: All eight vacuum breakers must be OPERABLE for opening and closed (except during testing or when the vacuum breakers are performing their intended design function). The vacuum breaker OPERABILITY requirement provides assurance that the drywell-to-suppression chamber negative differential pressure remains below the design value. The requirement that the vacuum breakers be closed ensures that there is no excessive bypass leakage should a LOCA occur.

BASES

<u>APPLICABILITY</u>: In OPERATIONAL CONDITIONS 1, 2, and 3, the Suppression Pool Spray System is required to be OPERABLE to mitigate the effects of a DBA. Excessive negative pressure inside the drywell could occur due to inadvertent actuation of this system. The vacuum breakers, therefore, are required to be OPERABLE in OPERATIONAL CONDITIONS 1, 2, and 3, when the Suppression Pool Spray System is required to be OPERABLE, to mitigate the effects of inadvertent actuation of the Suppression Pool Spray System.

Also, in OPERATIONAL CONDITIONS 1, 2, and 3, a DBA could result in excessive negative differential pressure across the drywell wall, caused by the rapid depressurization of the drywell. The event that results in the limiting rapid depressurization of the drywell is the primary system rupture that purges the drywell of air and fills the drywell free airspace with steam. Subsequent condensation of the steam would result in depressurization of the drywell. The limiting pressure and temperature of the primary system prior to a DBA occur in OPERATIONAL CONDITIONS 1, 2, and 3.

In OPERATIONAL CONDITIONS 4 and 5, the probability and consequences of these events are reduced by the pressure and temperature limitations in these OPERATIONAL CONDITIONS; therefore, maintaining suppression chamber-to-drywell vacuum breakers OPERABLE is not required in OPERATIONAL CONDITION 4 or 5.

<u>ACTIONS</u>: With one of the required vacuum breakers inoperable for opening (e.g., the vacuum breaker is not open and may be stuck closed or not within its opening setpoint limit, so that it would not function as designed during an event that depressurized the drywell), the remaining seven OPERABLE vacuum breakers are capable of providing the vacuum relief function. However, overall system reliability is reduced because a single failure in one of the remaining vacuum breakers could result in an excessive suppression chamber-to-drywell differential pressure during a DBA. Therefore, with one of the eight required vacuum breakers inoperable, 72 hours is allowed to restore at least one of the inoperable vacuum breakers to OPERABLE status so that plant conditions are consistent with those assumed for the design basis analysis. The 72 hour Completion Time is considered acceptable due to the low probability of an event and the adequacy of the remaining vacuum breaker capability.

BASES

An open vacuum breaker allows communication between the drywell and suppression chamber airspace, and, as a result, there is the potential for suppression chamber overpressurization due to this bypass leakage if a LOCA were to occur. Therefore, the open vacuum breaker must be closed. A short time is allowed to close the vacuum breaker due to the low probability of an event that would pressurize primary containment. If vacuum breaker position indication is not reliable, an alternate method of verifying that the vacuum breakers are closed is to verify that a differential pressure of 0.5 psid between the suppression chamber and drywell is maintained for 1 hour without makeup. The required 2 hour Completion Time is considered adequate to perform this test.

If the inoperable suppression chamber-to-drywell vacuum breaker cannot be closed or restored to OPERABLE status within the required Completion Time, the plant must be brought to an OPERATIONAL CONDITION in which the LCO does not apply. To achieve this status, the plant must be brought to at least OPERATIONAL CONDITION 3 within 12 hours and to OPERATIONAL CONDITION 4 within the following 24 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

<u>SURVEILLANCE REQUIREMENTS</u>: Each vacuum breaker is verified closed to ensure that this potential large bypass leakage path is not present. This Surveillance is performed by observing the vacuum breaker position indication or by verifying that a differential pressure of 0.5 psid between the suppression chamber and drywell is maintained for 1 hour without makeup. The 14 day Frequency is based on engineering judgment, is considered adequate in view of other indications of vacuum breaker status available to operations personnel, and has been shown to be acceptable through operating experience.

A Note is added to this SR that allows suppression chamber-to-drywell vacuum breakers opened in conjunction with the performance of a Surveillance to not be considered as failing this SR. These periods of opening vacuum breakers are controlled by plant procedures and do not represent inoperable vacuum breakers.

Each required vacuum breaker must be cycled to ensure that it opens adequately to perform its design function and returns to the fully closed position. This ensures that the safety analysis assumptions are valid. The 31-day Frequency of this SR was chosen to provide additional assurance that the vacuum breakers are OPERABLE, since they are located in a harsh environment (the suppression chamber airspace). In addition, this functional test is required within 12 hours after a discharge of steam to the suppression chamber from the safety/relief valves.

BASES

Verification of the vacuum breaker opening setpoint is necessary to ensure that the safety analysis assumption regarding vacuum breaker full open differential pressure of 0.20 psid is valid. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. For this facility, the 18-month Frequency has been shown to be acceptable, based on operating experience, and is further justified because of other surveillances performed at shorter Frequencies that convey the proper functioning status of each vacuum breaker.

Reactor Building-to-Suppression Chamber Vacuum Breakers

BACKGROUND: The function of the reactor building-to-suppression chamber vacuum breakers is to relieve vacuum when primary containment depressurizes below reactor building pressure. If the drywell depressurizes below reactor building pressure, the negative differential pressure is mitigated by flow through the reactor building-to-suppression chamber vacuum breakers and through the suppression-chamber-to-drywell vacuum breakers. The design of the external (reactor building-to-suppression chamber) vacuum relief provisions consists of two vacuum breakers (a check type vacuum relief valve and an air operated butterfly valve located in series) in each of two lines from the reactor building to the suppression chamber airspace. The butterfly valve is actuated by differential pressure. The vacuum breaker is self-actuating and can be remotely operated for testing purposes. The two vacuum breakers in series must be closed to maintain a leak tight primary containment boundary.

A negative differential pressure across the drywell wall is caused by rapid depressurization of the drywell. Events that cause this rapid depressurization are cooling cycles, inadvertent primary containment spray actuation, and steam condensation in the event of a primary system rupture. Reactor building-to-suppression chamber vacuum breakers prevent an excessive negative differential pressure across the primary containment boundary. Cooling cycles result in minor pressure transients in the drywell, which occur slowly and are normally controlled by heating and ventilation equipment. Inadvertent spray actuation results in a more significant pressure transient and becomes important in sizing the external (reactor building-to-suppression chamber) vacuum breakers.

BASES

The external vacuum breakers are sized on the basis of the air flow from the secondary containment that is required to mitigate the depressurization transient and limit the maximum negative containment (drywell and suppression chamber) pressure to within design limits. The maximum depressurization rate is a function of the primary containment spray flow rate and temperature and the assumed initial conditions of the primary containment atmosphere. Low spray temperatures and atmospheric conditions that yield the minimum amount of contained noncondensible gases are assumed for conservatism.

<u>APPLICABLE SAFETY ANALYSES</u>: Analytical methods and assumptions involving the reactor building-to-suppression chamber vacuum breakers are presented in Section 6.2 and Appendix 6A of the Hope Creek UFSAR as part of the accident response of the containment systems. Internal (suppression-chamber-to-drywell) and external (reactor building-to-suppression chamber) vacuum breakers are provided as part of the primary containment to limit the negative differential pressure across the drywell and suppression chamber walls, which form part of the primary containment boundary.

The safety analyses assume the external vacuum breakers to be closed initially and to be fully open at 0.25 psid. Additionally, of the two reactor building-to-suppression chamber vacuum breakers, one is assumed to fail in a closed position to satisfy the single active failure criterion. Design Basis Accident (DBA) analyses require the vacuum breakers to be closed initially and to remain closed and leak tight with positive primary containment pressure.

The reactor building-to-suppression chamber vacuum breakers satisfy Criterion 3 of the NRC Policy Statement.

LCO: All reactor building-to-suppression chamber vacuum breakers are required to be OPERABLE to satisfy the assumptions used in the safety analyses. The requirement ensures that the two vacuum breakers (vacuum breaker and air operated butterfly valve) in each of the two lines from the reactor building to the suppression chamber airspace are closed (except during testing or when performing their intended function). Also, the requirement ensures both vacuum breakers in each line will open to relieve a negative pressure in the suppression chamber.

BASES

<u>APPLICABILITY</u>: In OPERATIONAL CONDITIONS 1, 2, and 3, a DBA could cause pressurization of primary containment. In OPERATIONAL CONDITIONS 1, 2, and 3, the Suppression Pool Spray System is required to be OPERABLE to mitigate the effects of a DBA. Excessive negative pressure inside primary containment could occur due to inadvertent initiation of this system. Therefore, the vacuum breakers are required to be OPERABLE in OPERATIONAL CONDITIONS 1, 2, and 3, when the Suppression Pool Spray System is required to be OPERABLE, to mitigate the effects of inadvertent actuation of the Suppression Pool Spray System.

Also, in OPERATIONAL CONDITIONS 1, 2, and 3, a DBA could result in excessive negative differential pressure across the drywell wall caused by the rapid depressurization of the drywell. The event that results in the limiting rapid depressurization of the drywell is the primary system rupture, which purges the drywell of air and fills the drywell free airspace with steam. Subsequent condensation of the steam would result in depressurization of the drywell. The limiting pressure and temperature of the primary system prior to a DBA occur in OPERATIONAL CONDITIONS 1, 2, and 3.

In OPERATIONAL CONDITIONS 4 and 5, the probability and consequences of these events are reduced due to the pressure and temperature limitations in these OPERATIONAL CONDITIONS. Therefore, maintaining reactor building-to-suppression chamber vacuum breakers OPERABLE is not required in OPERATIONAL CONDITION 4 or 5.

<u>ACTIONS</u>: Action a: With one vacuum breaker assembly with one or two valves inoperable for opening, the leak tight primary containment boundary is intact. The ability to mitigate an event that causes a containment depressurization is threatened, however, if both vacuum breakers in at least one vacuum breaker assembly are not OPERABLE. Therefore, the inoperable vacuum breaker must be restored to OPERABLE status within 72 hours. This is consistent with the Completion Time for Action c and the fact that the leak tight primary containment boundary is being maintained.

Action b: With two vacuum breaker assemblies with one or more vacuum breakers inoperable for opening, the primary containment boundary is intact. However, in the event of a containment depressurization, the function of the vacuum breakers is lost. Therefore, both valves in one assembly must be restored to OPERABLE status within 1 hour. This Completion Time is consistent with the ACTIONS of LCO 3.6.1.1, which requires that primary containment be restored to OPERABLE status within 1 hour.

BASES

Action c: With one or more vacuum breaker assemblies with one valve not closed, the leak tight primary containment boundary may be threatened. Therefore, the inoperable valves must be restored to OPERABLE status or the open vacuum breaker assembly valve closed within 72 hours. The 72 hour Completion Time is consistent with requirements for inoperable suppression-chamber-to-drywell vacuum breakers in LCO 3.6.4.1, "Suppression-Chamber-to-Drywell Vacuum Breakers." The 72 hour Completion Time takes into account the redundant capability afforded by the remaining valves, the fact that an OPERABLE valve in each of the assemblies is closed, and the low probability of an event occurring that would require the valves to be OPERABLE during this period.

Action d: With one or more vacuum breaker assemblies with two valves not closed, primary containment integrity is not maintained. Therefore, one open valve in each affected assembly must be closed within 1 hour. This Completion Time is consistent with the ACTIONS of LCO 3.6.1.1, "Primary Containment," which requires that primary containment be restored to OPERABLE status within 1 hour.

If all the valves in a vacuum breaker assembly cannot be closed or restored to OPERABLE status within the required Completion Time, the plant must be brought to an OPERATIONAL CONDITION in which the LCO does not apply. To achieve this status, the plant must be brought to at least OPERATIONAL CONDITION 3 within 12 hours and to OPERATIONAL CONDITION 4 within the following 24 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

<u>SURVEILLANCE REQUIREMENTS</u>: Each vacuum breaker is verified to be closed to ensure that a potential breach in the primary containment boundary is not present. This Surveillance is performed by observing local or control room indications of vacuum breaker position. The 14 day Frequency is based on engineering judgment, is considered adequate in view of other indications of vacuum breaker status available to operations personnel, and has been shown to be acceptable through operating experience.

A Note is added to this SR. The first part of the Note allows reactor-tosuppression chamber vacuum breakers opened in conjunction with the performance of a Surveillance to not be considered as failing this SR. These periods of opening vacuum breakers are controlled by plant procedures and do not represent inoperable vacuum breakers. The second part of the Note is included to clarify that vacuum breakers open due to an actual differential pressure are not considered as failing this SR.

BASES

Each vacuum breaker must be cycled to ensure that it opens properly to perform its design function and returns to its fully closed position. This ensures that the safety analysis assumptions are valid. The 31 day Frequency of this SR is more conservative than the Inservice Testing Program requirements.

Demonstration of vacuum breaker opening setpoint is necessary to ensure that the safety analysis assumption regarding vacuum breaker full open differential pressure of 0.25 psid is valid. The 18 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. For this unit, the 18 month Frequency has been shown to be acceptable, based on operating experience, and is further justified because of other surveillances performed at shorter Frequencies that convey the proper functioning status of each vacuum breaker.

3/4.6.5 SECONDARY CONTAINMENT

Secondary containment is designed to minimize any ground level release of radioactive material which may result from an accident. The Reactor Building and associated structures provide secondary containment during normal operation when the drywell is sealed and in service. At other times the drywell may be open and, when required, secondary containment integrity is specified.

Establishing and maintaining a 0.25 inch water gage vacuum in the reactor building with the filtration recirculation and ventilation system (FRVS) once per 18 months, along with the surveillance of the doors, hatches, dampers and valves, is adequate to ensure that there are no violations of the integrity of the secondary containment.

The OPERABILITY of the FRVS ensures that sufficient iodine removal capability will be available in the event of a LOCA. The reduction in containment iodine inventory reduces the resulting site boundary radiation doses associated with containment leakage. The operation of this system and resultant iodine removal capacity are consistent with the assumptions used in the LOCA analyses and with the drawdown analysis. Continuous operation of the system with the heaters and humidity control instruments OPERABLE for 10 hours during each 31 day period is sufficient to reduce the buildup of moisture on the adsorbers and HEPA filters.

BASES

3/4.6.6 PRIMARY CONTAINMENT ATMOSPHERE CONTROL

The OPERABILITY of the systems required for the detection and control of hydrogen gas ensures that these systems will be available to maintain the hydrogen concentration within the primary containment below its flammable limit during post-LOCA conditions. Either containment hydrogen recombiner is capable of controlling the expected hydrogen generation associated with (1) zirconium-water reactions, (2) radiolytic decomposition of water and (3) corrosion of metals within containment. The hydrogen control system is consistent with the recommendations of Regulatory Guide 1.7, "Control of Combustible Gas Concentrations in Containment Following a LOCA" November 1978.