
NUREG/CR-4640
PN L-5784

Handbook of Software
Quality Assurance Techniques
Applicable to the Nuclear Industry

Prepared by J. L. Bryant, N. P. Wilburn

Pacific Northwest Laboratory
Operated by
Battelle Memorial Institute

Prepared for
U.S. Nuclear Regulatory
Commission

NOTICE

NOTICE

Availability of Reference Materials Cited in NRC Publications
Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 1717 H Street, N.W.
Washington, DC 20555

2. The Superintendent of Documents, U.S. Government Printing Office, Post Office Box 37082,
Washington, DC 20013-7082

3. The National Technical Information Service, Springfield, VA 22161
Although the listing that follows represents the majority of documents cited in N RC publications,
it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Docu
ment Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection
and Enforcement bulletins, circulars, information notices, inspection and investigation notices;
Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and
licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the GPO Sales
Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and
NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the Code of
Federal Regulations, and Nuclear Regulatory Commission Issuances.
Documents available from the National Technical Information Service include NUREG series
reports and technical reports prepared by other federal agencies and reports prepared by the Atomic
Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items,
such as books, journal and periodical articles, and transactions. Federal Register notices, federal and
state legislation, and congressional reports can usually be obtained from these libraries.
Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference
proceedings are available for purchase from the organization sponsoring the publication cited.
Single copies of NRC draft reports are available free, to the extent of supply, upon written
request to the Division of Information Support Services, Distribution Section, U.S. Nuclear
Regulatory Commission, Washington, DC 20555.
Copies of industry codes and standards used in a substantive manner in the NRC regulatory process
are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available
there for reference use by the public. Codes and standards are usually copyrighted and may be
purchased from the originating organization or, if they are American National Standards, from the
American National Standards Institute, 1430 Broadway, New York, NY 10018.

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, or any of their
employees, makes any warranty, expressed or implied, or assumes any legal liability of re
sponsibility for any third party's use, or the results of such use, of any information, apparatus,
product or process disclosed in this report, or represents that its use by such third party would
not infringe privately owned rights.

NUREG/CR-4640
PN L-5784

Handbook of Software
Quality Assurance Techniques
Applicable to the Nuclear Industry

Manuscript Completed: June 1987
Date Published: August 1987

Prepared by
J. L. Bryant, N. P. Wilburn

Pacific Northwest Laboratory
Richland, WA 99352

Prepared for
Division of Licensee Performance and Quality Evaluation
Office of Nuclear Reactor Regulation
U.S. Nuclear Regulatory Commission
Washington, DC 20555
NRC FIN P2002

ABSTRACT

Pacific Northwest Laboratory is conducting a research project to recommend
good engineering practices in the application of 10 CFR 50, Appendix B require
ments to assure quality in the development and use of computer software for the
design and operation of nuclear power plants for NRC and industry. This hand
book defines the content of a software quality assurance program by enumerating
the techniques applicable. Definitions, descriptions, and references where
further information may be obtained are provided for each topic.

iii

PREFACE

This publication has been prepared to provide general recommendations for
software quality assurance (SQA) programs. It is intended to be used by the
commercial nuclear power industry as an aid for structuring SQA programs and
assessing the adequacy of existing software practices including its development
and use.

This handbook describes a framework and overall approach for an SQA pro
gram as applied to software systems alone as distinct from other systems such
as associated plant hardware or the man-machine interface. It recommends a set
of topics to be addressed and describes some methods and references some tools
that can be used to implement and evaluate such a program. It is not intended
to supplant standards and does not prescribe specific procedures. The user of
the handbook can tailor the information presented to fit the individual needs
of the process under consideration.

v

SUMMARY

Computer software has become an increasingly important part of the design
and operation of systems that perform complex and critical functions, including
nuclear power plants. The growing role of software in supporting nuclear plant
design and operation emphasizes the need for software integrity. Pacific
Northwest Laboratory (PNL) is assisting the U.S. Nuclear Regulatory Commission
(NRC) in identifying areas where recommendations are needed on how to control
the development and use of software in nuclear power plants.

Software development and management practices that are necessary compo
nents of software quality assurance (SQA) programs are enumerated and discussed
in this report. These practices are derived from the review and compilation of
many sources: industry standards of SQA, current literature, established SQA
programs, and experience with software development efforts. Checklists for
specific-areas, such as documentation, are provided where possible.

The principal conclusions drawn from this study are the following:

" While similarities exist between SQA and QA typically applied to the
installation and use of equipment in nuclear power plants, hereafter,
"hardware QA," a hardware QA program cannot be directly applied to
software. Rather, hardware QA principles must be modified to fit the
special needs of software QA.

" Use of the SQA techniques described in this report will yield good
quality software. It has been shown that quality cannot be tested
into software after development is complete; it must be incorporated
into the design and construction processes.

"* The majority of software currently in use was not originally designed
and constructed using all the systematic methods described in this
report. This does not imply that all such software is of inferior
quality. However, specific techniques described in this document can
be applied to software currently being implemented to assure that the
future use of such software is controlled and technically correct.
For example, planning, documenting, and carrying out adequate testing
of software systems could define and demonstrate specific cases and
parameter ranges in which the software performs satisfactorily.

"* Adoption of a complete and systematic SQA program is imperative for
producing reliable and maintainable software. The application of
specific techniques for software already developed and used cannot
fully replace such an overall program.

"* To adequately implement an SQA program, the SQA function must be
staffed with technically competent pprsnnnl cognizant of software
engineering techniques. It is imperative, too, that upper management
be firmly committed to SQA.

vii

CONTENTS

ABSTRACT iii

PREFACE ... v

SUMMARY .. vii

1.0 INTRODUCTION .. 1.1

1.1 NEED FOR SOFTWARE QUALITY ASSURANCE 1.1

1.2 SCOPE .. 1.2

1.3 REPORT CONTENTS # 1.2

2.0 OVERVIEW OF SOFTWARE QUALITY ASSURANCE 2.1

2.1 DESCRIPTION OF SOFTWARE QUALITY ASSURANCE 2.1

2.2 SOFTWARE QUALITY ASSURANCE VERSUS HARDWARE QUALITY
ASSURANCE 2.1

2.3 CORRESPONDENCE BETWEEN APPENDIX B CRITERIA AND
SQA REQUIREMENTS 2.2

2.4 TYPES OF SOFTWARE PRODUCTS COVERED BY SQA 2.4

2.5 SOFTWARE QUALITY ATTRIBUTES 2.5

3.0 SOFTWARE LIFE CYCLE 3.1

3.1 REQUIREMENTS SPECIFICATION 3.3

3.2 FUNCTIONAL SPECIFICATION 3.3

3.3 DETAILED SOFTWARE DESIGN 3.4

3.4 CODING AND SOFTWARE GENERATION 3.4

3.5 TESTING, INSTALLATION, AND COMMISSIONING 3.4

3.6 TRANSFER OF RESPONSIBILITY 3.5

3.7 OPERATION/MAINTENANCE 3.5

3.8 PROJECT MANAGEMENT .. 3.6

3.9 SOFTWARE VERIFICATION AND VALIDATION 3.7

ix

4.0 MANAGEMENT .. 4.1

4.1 SETTING OF OVERALL SQA POLICIES, GOALS, AND OBJECTIVES 4.1

4.2 SQA MANAGEMENT ORGANIZATION 4.2

4.2.1 Competent Staffing 4.2

4.2.2 Structure ... 4.2

4.2.3 Interfaces and Authorities 4.3

4.3 SQA IMPLEMENTATION 4.3

4.3.1 SQA Organizational Tasks 4.3

4.3.2 Responsibilities for Tasks 4.4

4.4 TRAINING/EDUCATION ... 4.4

5.0 DOCUMENTATION 5.1

5.1 MINIMUM DOCUMENTATION REQUIREMENTS 5.1

5.1.1 Software Quality Assurance Plan 5.1

5.1.2 Software Requirements Specification 5.1

5.1.3 Software Design Documentation 5.2

5.1.4 Software Verification and Validation Plan 5.2

5.1.5 Software Verification and Validation Reports 5.2

5.1.6 User Documentation 5.3

5.2 OTHER DOCUMENTATION 5.3

5.2.1 Software Development Plan 5.4

5.2.2 Software Configuration Management Plan 5.4

5.2.3 Standards and Procedures Manual 5.4

5.2.4 Training Manual 5.4

5.2.5 Operations Manual 5.4

5.2.6 Installation Manual 5.5

x

5.2.7 Maintenance Manual 5.5

5.2.8 Unit Development Folders 5.5

5.2.9 Project File .. 5.5

5.3 DOCUMENTATION QUALITY 5.5

5.3.1 Application of Standards 5.6
5.3.2 Review .. 5.6

5.3.3 Documentation Maintenance 5.6

5.4 DOCUMENTATION CONTROL # 5.6

5.5 SOFTWARE RECORDS: COLLECTION, MAINTENANCE
AND RETENTION 5.7

5.5.1 Records to be Collected 5.7

5.5.2 Records Maintenance 5.8

5.5.3 Records Retention * * 5.8

5.5.4 Organizational Responsibility 0.0. 5.8

6.0 STANDARDS, PRACTICES, AND CONVENTIONS 6.1

6.1 APPLICABLE STANDARDS o 6.1

6.1.1 Documentation Standards 6.2

6.1.2 Design Standards 6.2

6.1.3 Coding Standards 6.3

6.1.4 Testing Guidelines 6.4

6.1.5 Code Operation/Maintenance Standards 0..0 6.4

6.1.6 Code Quality Requirements 6.5

6.1.7 Other Standards 6.5

6.2 IMPLEMENTATION OF STANDARDS 6.6

6.2.1 Use of Available Standards 6.6

6.2.2 Creation and Review of Standards ... o.o.. . 6.6

xi

6.2.3 Maintenance and Control of Standards 6.7

6.3 COMPLIANCE MONITORING 6.7

6.4 ENFORCEMENT OF STANDARDS 6.7

7.0 REVIEWS, AUDITS, AND CONTROLS 7.1

7.1 TECHNICAL REVIEWS .. 7.1

7.1.1 Review Team Members 7.1

7.1.2 Review Procedures 7.2

7.1.3 Review Types .. 7.2

7.2 AUDITS ... 7.4

7.2.1 Functional Configuration Audit 7.4

7.2.2 Physical Configuration Audit 7.5

7.2.3 In-Process Audits 7.5

7.2.4 SQA Audits .. 7.5

7.3 CORRECTIVE ACTION .. 7.5

8.0 TOOLS AND TECHNIQUES .. 8.1

8.1 TOOLS .. *........... 8.1

8.2 TECHNIQUES ... 8.2

8.3 EVALUATION OF TOOLS AND TECHNIQUES 8.3

8.4 CONTROL OF TOOLS AND TECHNIQUES 8.3

9.0 SOFTWARE CONFIGURATION MANAGEMENT AND CODE CONTROL 9.1

9.1 PROBLEM REPORTING AND CORRECTIVE ACTION 9.1

9.1.1 Corrective Action Procedures 9.2

9.1.2 Organizational Responsibilities 9.3

9.2 SCM ACTIVITIES ... 9.3

9.2.1 Configuration Identification 9.3

xii

9.2.2 Configuration Change Control 9.4

9.2.3 Configuration Status Accounting and Reporting 9.4

9.2.4 Configuration Audits and Reviews 9.4

9.2.5 Supplier SCM Control 9.4

9.2.6 Collection and Retention of SCM Records 9.4

9.3 CODE CONTROL *.................... *........ 9.5

9.4 PHYSICAL MEDIA CONTROL 9.6

9.4.1 Access Authorization and Security 9.6

9.4.2 Protection from Damage, Alteration, and
Degradation ... 9.7

9.4.3 Verification of Physical Transmittal 9.7

10.0 VERIFICATION AND TESTING .. 10.1
10.1 VERIFICATION *.................... 10.1

10.1.1 Effects of Verification 10.1

10.1.2 Verification Concepts 10.2

10.1.3 Verification Methods Across the Software
Life Cycle 10.6

10.2 TESTING *............. 10.10

10.2.1 Planning ... 10.10

10.2.2 Performance 10.11

10.2.3 Review 10.11

10.2.4 Acceptance Testing and Certification 10.11

10.2.5 Operation/Maintenance Testing 10.12

11.0 CONTROL OF SOFTWARE PROCUREMENT 11.1

11.1 REQUIREMENTS FOR THE SUPPLIER'S SQA PROGRAM 11.1

11.2 AUDITING OF THE SUPPLIER'S SQA PROGRAM 11.2

xiii

11.3 NONCONFORMANCE OF A SUPPLIER 11.2

11.4 TRANSFER OF RESPONSIBILITY 11.2

REFERENCES R.1

BIBLIOGRAPHY ... Bib.1

APPENDIX A - CRITERIA FOR ASSESSING SOFTWARE QUALITY A.1

APPENDIX B - EXAMPLE QUESTIONS TO BE ADDRESSED FOR
PROCURED SOFTWARE B.1

APPENDIX C - SRS REVIEW CHECKLIST C.1

xiv

FIGURES

3.1 Software Life Cycle .. 3.2

10.1 Software Error Cost Versus Software Development Phase 10.2

TABLES

2.1 Correspondence Between SQA Requirements and Appendix B
Criteria ... 2.2

2.2 Attributes of Quality Software 2.5

7.1 Checklist of Potential Reviews Throughout the Software
Life Cycle 7.3

10.1 Verification Concepts ... 10.3

xv

1.0 INTRODUCTION

This chapter presents the need for SQA, the scope and applicability of
this handbook, and a discussion of the handbook's structure.

1.1 NEED FOR SOFTWARE QUALITY ASSURANCE

Software applications have become too prominent in the nuclear industry to
be developed and maintained in the informal atmosphere that was so common in
early software development. Software is now used in most aspects of nuclear
plant licensing, from design, through construction, and in some cases through
out the world, in operation as well. Use of software to produce calculations
critical to the design of safety-related components is one example of how soft
ware can have a direct impact on safety functions in nuclear power plants. The
Code of Federal Regulations, Title 10, Part 50, Appendix B (U.S. NRC 1984)
requires that a quality assurance (QA) program be implemented for all "struc
tures, systems, and components that prevent or mitigate the consequences of
postulated accidents that could cause undue risk to the health and safety of
the public" in nuclear power plants and fuel reprocessing plants. For this
reason, software used for these purposes is subject to the same kind of engi
neering control principles, including quality assurance, as other facets of
plant design, construction, and operation.

Existing software quality assurance (SQA) programs established by vendors
and utilities represent each organization's interpretation of what is required
for control of software. Because SQA techniques are not widely known or prac
ticed there is a tendency within the nuclear industry to apply hardware QA
techniques even when they are inappropriate or a "force-fit." Because the
principles of development and QA of hardware are different from those for soft
ware (see Chapter 2.0), the forced substitution of one for the other can be
cumbersome and ineffective.

This situation is not unique to the nuclear industry. With the exception
of the aerospace industry and the U.S. Department of Defense (U.S. Department
of Defense 1985), most organizations are neither organized nor equipped to
properly address formal SQA requirements. Many companies lack software pol
icies, and SQA personnel lack a parity with hardware QA personnel. There has
not been enough experience in software development within most organizations to
fully understand the full ramifications of SQA.

The basic need for SQA concerns the potential for latent defects or errors
in software. One of the main thrusts of an SQA program is to reduce the like
lihood of defects ever getting into the executable code by applying appropri
ate, systematic techniques throughout the software life cycle.

Latent defects are not the only problem, however. Many computer programs
do not do the job that they were specified to do. A program that is poorly
documented or reflects complex rather than straightforward programming tech
niques is hard to understand, test, or "debug." The list of problems that

1.1

confront software development, operation, and maintenance also includes unreli
able software; difficult-to-maintain software; poor requirements specifica
tions; inefficient use of resources; lack of conclusive testing; and poor
documentation (Brown 1979).

SQA results in a program of planned and systematic activities to achieve
the required software qualities. These actions assure that the materials,
data, supplies, and services conform to established technical requirements, and
that they perform satisfactorily. The essence of SQA is to prevent problems,
to remove defects as they are found, and to contribute to the usability and
maintainability of the software (Fujii 1978).

1.2 SCOPE

The purpose of this handbook is to delineate those techniques that must be
an integral part of the development, operation and management of software
systems to be applied to the design and operation of facilities regulated by 10
CFR 50. This document does not prescribe an SQA program to be adopted by all
facilities. Such a program would be too general to provide usable guidance.
This document does contain a fairly comprehensive list of subjects to be
addressed when structuring an SQA program. For this reason, the adequacy of
existing nuclear industry practices can be assessed using this document as an
aid.

1.3 REPORT CONTENTS

The structure of this document reflects the emphasis on nuclear utility
requirements by first comparing SQA and hardware QA requirements (Chapter 2.0).
Chapter 2.0 also correlates the criteria of 10 CFR 50, Appendix B with the SQA
practices delineated in this document.

The next six chapters deal with the basic definitions and philosophy of
SQA. Chapter 3.0 describes the software life cycle adopted for this document
and references other life cycles suitable for utility use. Chapter 4.0 dis
cusses the management philosophy and structure of an SQA organization. Also
included is a discussion of SQA training and education. Chapter 5.0 presents
the requirements for documentation of SQA functions and discusses records
collection, maintenance, and retention. Chapters 6.0 and 7.0 provide the
rationale for adoption of the practices enumerated for records collection,
maintenance, and retention. Chapter 8.0 provides the basic tools and techni
ques that may be used in software development.

The final three chapters of the document deal with those activities of the
software life cycle that are more common to the nuclear utility environment:
Configuration Management and Code Control (Chapter 9.0), Verification and
Testing (Chapter 10.0), and Control of Software Procurement (Chapter 11.0).

Because the subject of SQA is so broad (basically encompassing the whole
area of software engineering), only a brief discussion of each topic is

1.2

presented. Guides, standards, and documents are referenced for further
reading. The references are readily available in the open literature or from
standards sources such as the Computer Society of the Institute of Electrical
and Electronics Engineers, Inc. (IEEE).

1.3

2.0 OVERVIEW OF SOFTWARE QUALITY ASSURANCE

This chapter discusses a number of issues: what SQA is; software QA versus
hardware QA; correspondence between 10 CFR 50, Appendix B criteria and SQA
practices; the types of software products that should be subject to SQA includ
ing how the intended use of the software affects the degree of QA; and the
elements which make up the attributes of quality software.

2.1 DESCRIPTION OF SOFTWARE QUALITY ASSURANCE

It cannot be overemphasized that an SQA program involves the entire soft
ware development process, not just inspection and testing of the end product.
Although the removal and analysis of defects is an important function of SQA,
it is the prevention of defects that demands most of SQA's attention. In the
past, SQA programs have equated SQA to a test program i.e., a specification of
test plans, procedures, categories, types of tests, and methods of testing.
The major pitfall of such a test-oriented SQA program is that quality cannot be
tested into a software product; quality must be built into the product.

Definition of criteria to be used to judge the quality of a software
project establishes, in essence, the SQA processes and their degree for that
project. Without concrete goals, the process never reaches an endpoint. A
variety of methods and criteria can be used to determine the specific SQA tech
niques to be applied. For example, risk analysis can be used to assess the
impact of software failure on the overall system. Whenever risks and conse
quences are considered great, an intensive SQA effort is merited.

Each organization needs to tailor an SQA program to fit its activities.
Those that develop software must be more concerned with the design and testing
process than organizations who apply acquired software products. The latter
organizations must concentrate their SQA efforts on configuration management
and code control, acceptance testing, and procurement practices. Most nuclear
utilities fall into this second group. However, utilities must be able to
audit and review the SQA practices of their software suppliers to assure com
pliance with SQA requirements. This subject is addressed in Chapter 11.0,
Control of Software Procurement.

2.2 SOFTWARE QUALITY ASSURANCE VERSUS HARDWARE QUALITY ASSURANCE

Although many of the concepts of hardware QA applied throughout the nuc
lear industry are applicable to SQA, there are many differences. These differ
ences must be considered in establishing any SQA program (Dunn and Ullman
1982).

* Hardware repairs restore the original condition. Software repairs
establish a new piece of software.

2.1

"* Unlike hardware, software failures are rarely preceded by warnings.

"* Hardware components can be standardized. Software components have
rarely been standardized.

"• Hardware can usually be tested exhaustively. Software essentially
requires infinite testing.

" Hardware quality can be established by product measurements such as
ultrasonics, materials testing, and by accumulating statistics when
multiple copies are available. In contrast, each piece of software
is unique.

The consequence of the above considerations is that software quality must
be built into the software during the development process. SQA serves as an
independent instrument for assuring compliance with performance objectives and
development and maintenance standards.

2.3 CORRESPONDENCE BETWEEN APPENDIX B CRITERIA AND SQA REQUIREMENTS

The 18 elements of a complete nuclear quality assurance program given in
10 CFR 50, Appendix B correspond in many ways to the practices and requirements
of a complete SQA program. Table 2.1 identifies the chapters of this document
that are applicable to the 18 criteria of Appendix B.

TABLE 2.1. Correspondence Between SQA Requirements and Appendix B Criteria

Report Chapter Appendix B Criteria

3.0 Software Life Cycle II.
III.

X.

4.0 Management

5.0 Documentation

6.0 Standards, Practices, and
Conventions

Quality Assurance Program
Design Control
Inspection

I. Organization
II. Quality Assurance Program

II. Quality Assurance Program
III. Design Control

IV. Procurement Document Control
V. Instructions, Procedures,

and Drawings
VI. Document Control

XVII. Quality Assurance Records

II. Quality Assurance Program
III. Design Control

2.2

TABLE 2.1. (contd)

Report Chapterr

7.0 Review, Audits, and Controls

8.0 Tools and Techniques

9.0 Software Configuration
Management and Code Control

10.0 Verification and Testing

11.0 Control of Software
Procurement

Appendix B Criteria

I. Organization
II. Quality Assurance Program

III. Design Control
V. Instructions, Procedures, and

Drawings
VI. Document Control

VIII. Identification and Control of
Materials, Parts, and Components

X. Inspection
XVIII. Audits

Ill. Design Control
IX. Control of Special Processes

I. Organization
II. Quality Assurance Program
V. Instructions, Procedures, and

Drawings
VI. Document Control

VII. Control of Purchased Material,
Equipment, and Services

VIII. Identification and Control of
Materials, Parts, and Components

XIII. Handling, Storage and Shipping
XIV. Inspection, Test, and Operating

Status
XV. Nonconforming Materials, Parts,

and Components
XVI. Corrective Action

XVII. Quality Assurance Records

II.
III.

X.
XI.

I.
II.

IIl.
IV.

VII.

Quality Assurance Program
Design Control
Inspection
Test Control

Organization
Quality Assurance Program
Design Control
Procurement Document Control
Control of Purchased Material,
Equipment, and Services

2.3

2.4 TYPES OF SOFTWARE PRODUCTS COVERED BY SQA

The type of software products that need to be covered by an SQA program
are essentially specified by the requirements given in 10 CFR 50, Appendix B.
The motivation for including software under a QA program is that software can
be used in the design, analysis or operation of safety-related structures,
systems, and components. Four types of software are commonly used in the
nuclear power industry: application, support, test and maintenance, and
training software.

"* Application Software

Examples of application software include computer codes written for reac
tor design, core physics studies, stress calculations, thermal calcula
tions, hydraulic calculations, all reactor safety accident analyses estab
lishing plant limiting conditions (such as power distributions and heat
generation rates), for surveillance testing, for safety systems actuation,
and (for potential future applications) plant control. Other areas in
which application software is used include the determination of materials
compatibility, plant accessibility for in-service inspection, and mainten
ance and repair scheduling.

"* Support Software

Support software includes those software items employed to create or use
application software, such as compilers, assemblers, editors, testing pro
grams, data bases, input parameters to the codes, debuggers, mathematical
subroutine libraries, system libraries, and utility routines. Support
software should be considered in SQA because the output of the support
software can influence the outputs of application software.

"* Test and Maintenance Software

Test and maintenance software is used to carry out the testing, operation,
and maintenance functions during the latter phases of the software life
cycle, described in Chapter 3.0. The results of testing programs are
directly affected by the particular set of software tools that are used.

"* Training Software

More and more, software systems are used to perform computer aided
instruction (CAI) in the tasks associated with nuclear facilities. Train
ing software consists of CAI as well as software for simulators built for
training reactor operators and other personnel in the detailed operation
of nuclear facilities. It is critical that the response of the simulator
(or CAI system) very closely approximate that of the real plant or actual
situation. This implies that the requirements specification for the soft
ware be exactingly written and implemented.

2.4

2.5 SOFTWARE QUALITY ATTRIBUTES

To adequately establish an SQA program, the definition of software quality
must be considered. The concept of what constitutes software quality is not
well formulated. Table 2.2 contains an abbreviated list of attributes that can
be used to define software quality (Lipow et al. 1977; Caveno and McCall 1978;
Boehm et al. 1978; McCall 1979). Appendix A contains a more extensive list
with expanded definitions. There is presently no way of measuring these attri
butes. However, this list is included as one possible checklist for evaluating
software quality.

Many of the individual characteristics of software quality are in con
flict. For example, added efficiency is often gained at the price of portabil
ity, accuracy, understandability, and maintainability; added accuracy often
conflicts with portability due to the dependence upon hardware constraints;
conciseness can conflict with readability. Software users generally find it
difficult to assess the relative values of these attributes in such situations.

To summarize, the measurement of quality of a software product varies with
the needs and priorities of the prospective user. No measure can currently
give a single composite rating for software quality. At best, a prospective
user can develop a meaningful rating system with a thorough checklist and asso
ciated priorities. Attention to characteristics of software quality throughout
the software life cycle can lead to increased software reliability and signifi
cant cost savings.

TABLE 2.2. Attributes of Quality Software

Correctness Does it do what I want?

Efficiency Does it run as well as it can?

Flexibility Can it be modified?

Integrity Is it secure from intrusion?

Interoperability Does it interface well with other systems?

Maintainability Can it be fixed?

Portability Can it be moved to another computer?

Reliability Does it always perform correctly?

Reusability Does it consist of general modules?

Testability Can it be tested?

Usability Is it easy to use?

2.5

3.0 SOFTWARE LIFE CYCLE

A software life cycle provides a systematic approach to the development,
use, and operation of any software system (Kastelein 1971). The software life
cycle has been defined as follows (IEEE 1 979c): "That period of time in which
the software is conceived, developed and used." All organizations that have an
effective SQA program use such a formal life-cycle development system. There
are many different life cycle variations, as referenced in these documents:
ANSI/IEEE 1984; Boehm 1976 and 1979; Carrow 1976; Holthouse and Greenberg 1978;
Kerola and Freeman 1981; Lattanzi 1979; Peters and Tripp 1978; U.S. DOD 1979
Fairley 1985. Strict adoption and use of a life cycle ensures that software
development will progress in a traceable, planned, and orderly manner.

The division of the SQA effort into well-defined tasks has additional
benefits. Such a division provides a logical conclusion for each phase of
development, use, and operation, usually with a document. The phases and
activities of the software life cycle that have been chosen for this study are
given below and are shown in Figure 3.1:

1. requirements specification
2. functional specification
3. detailed software design
4. coding and software generation
5. testing, installation, and commissioning
6. transfer of responsibility
7. operation/maintenance
8. project management.

The requirements specification phase (the WHAT) consists of identifying the
requirements that the computer program must satisfy. The functional specifica
tion phase (the HOW) determines the design for the software. Together, these
two phases produce a statement of the project objectives, system functional
specifications, and design constraints.

The detailed software design phase continues the breakdown of the func
tions identified in the software requirements, providing a conceptual solution
or blueprint for the phases that follow. During the detailed design phase, the
software component definition, interfaces, and data definitions are generated
and checked for accuracy against the requirements.

The coding and generation phase consists of both actual code generation
and unit testing of the program by the developer. During the testing phase,
system integration of the software components and system acceptance tests are
performed against the requirements. Transfer of responsibility of the mainten
ance of the software from the developer to the user often takes place after
installation and certification. (Procured software commonly enters an organi
zation at this phase of the life cycle. Chapter 11,0 discusses this in more
detail.) The operations/maintenance phase involves the use and maintenance of

3.1

C=

m

Ln
0

lh

CD

rD

< N.000

130 0 0

.2 0

Ll
0ID

the system. This includes the detection and correction of errors and incorporation of modifications to add capabilities and/or improve performance.
Project management should govern throughout the entire life cycle (see
Chapter 11.0).

3.1 REQUIREMENTS SPECIFICATION

During the requirements specification phase, the requirements that the
computer program must satisfy are identified and recorded, usually in a document called the software requirements specification (SRS) (Wilburn 1982b). System requirements are analyzed to decide what is to be implemented by the software. Analyses determine which software functions are needed and the inputs, processing, and outputs required for each function. The requirements
specification is the most significant phase of the overall project in terms of its effect on quality of the final product (Deutsch 1982). Critical errors need to be caught during the requirements analysis to avoid costly rework, reanalysis, and replanning during later development. If this phase is properly
performed, the cost effectiveness ratios for requirements verification and validation and associated QA activities are probably greater than for any other
activity throughout the life cycle.

The software requirements specification may take many forms. An SRS should include details of the quality of the software and its testability. It must contain enough information to frame the problem so that the software design can address the functions correctly. A type of specification that will lead to quality software is one that is 1) simply structured, 2) traceable to the specified system problem it is intended to solve, and 3) comprehensive and accurate (Dunn and Ullman 1982). The SRS should not specify how the implemen
tation or the design is to be done (the latter is specified in the next step).

References with guidelines for how to write good software requirements
specifications (Wilburn 1982b; IEEE 1984a) may be used to simplify the process.

3.2 FUNCTIONAL SPECIFICATION

Functional specifications determine the high level design for the software
and are documented in a software design specification (SDS). At this point, "how" the software is to provide the requirements and to be implemented is specified. (Several acceptable methodologies are available to carry out this phase of the operation [Enos and Van Tilburg 1981; IEEE 1980b and 1983d; Jackson 1985; Yourdon and Constantine 1978].) The purpose of high level design is to separate the system into functional parts so that each part is a cohesive unit that carries out, as independently as possible, the functions specified in the software requirements specification. This is a key activity in developing
the modular structure of the program. Modularity is a means of dividing a large and complex problem into a set of smaller, less complex ones. The division of the problem into hierarchies of related modules represents a major step

3.3

in the completion of the final design (Dunn and Ullman 1982). The success with

which software can be made modular influences the quality of software over the
entire life cycle.

3.3 DETAILED SOFTWARE DESIGN

Development of the detailed software design continues the logical separa

tion of the functions identified in the software requirements specification
(Glass 1979). The detailed design should include the definition of algorithms

and equations, the detailed control logic, and data operations that are to be

performed within the software. The detailed software design provides a concep

tual solution or blueprint for the implementation phase that follows. All the

ingredients that will ultimately make up final implementation are considered.

Some of the specific considerations are defined at this time, including 1) the

computer, 2) the computer resources to be used and the extent of use, 3) the

computer language, 4) the modules, 5) the sequence of functions, 6) the data

structures and 7) other items specific to the software product.

The primary output of this phase is a detailed design specification, which

is usually designated as the software design description (SDO) It may consist

of words, flowcharts, decision tables, program design languages, or other

choices. Acceptable design methodologies are provided in several references
(Enos and Van Tilburg 1981; IEEE 1980b and 1983d; Jackson 1975; Yourdon and
Constantine 1978).

3.4 CODING AND SOFTWARE GENERATION

During this phase, the detailed software design is translated into a high

level or assembly level programming language. Compilation and assembly errors

are corrected and preliminary program checkout is begun by executing the indi

vidual program modules to remove obvious errors. Although much testing is

performed by the developer in this phase of the life cycle, this testing does

not formally constitute the testing phase of the software life cycle but is

vital to the overall verification process as described in Chapter 10. The pro

duct of this phase is usually a computer program listing, the first item in the

life cycle that is available in computer-readable and computer-processable
form. Several guidelines have been prepared for this phase (ATC 1983 and 1985;
Kernighan and Plauger 1978).

3.5 TESTING, INSTALLATION, AND COMMISSIONING

These phases of the life cycle include final testing by the developer,

installation, acceptance testing, and commissioning (or certification) of the

software system. During the testing phase, program components are combined
into the overall software code, and testing is performed according to a devel

oped Test (Software Verification and Validation) plan. This plan has been

devploped in parallel previous three phases and draws on the SRS, SDS and

SDD. (Information on the specific processes to be followed during the testing

3.4

phase can be obtained from the following sources: Adrion et al. 1981; Beizer
1983 and 1984; Branstad et al. 1980; Computer Program Testing 1981; Glass 1979;
IEEE 1978, 1986c; ANSI/IEEE 1987; Infotech 1979a and 1979b; McCabe 1982; Myers
1976 and 1979; Powell 1982a and 1982b.)

Testing during this phase determines whether all the requirements have
been satisfied and is performed in accordance with the reviewed software veri
fication and validation plan. Test results are evaluated and test and verifi
cation reports are prepared to describe the outcome of the process following
the requirements of the Software Verification and Validation Plan (IEEE 1983f).

Part of the testing process is system integration, which brings together
all system components, man, hardware and software. This testing is conducted
to assure that system requirements in actual or simulated system environments
are satisfied.

When the developer's testing and system installation have been completed,
acceptance testing that leads to ultimate commissioning (or certification) is
begun. Acceptance testing should be done by an independent organization. On
completion of acceptance testing, a functional configuration audit (FCA) and a
physical configuration audit (PCA) are conducted (see Figure 3.1 and Section
7.2), the official commissioning (or certification) of the software occurs, and
the software is turned over to the user for implementation.

Concurrent with all of the previous phases is the preparation of the user
and maintenance manuals. These documents require input from the SRS, SDS, SDD
and the testing documentation. They should be reviewed ("tested") in the
FCA/PCA for completeness and usability.

3.6 TRANSFER OF RESPONSIBILITY

The turnover of the software is a fairly short phase of the life cycle but
is quite important. It involves the transfer of responsibility for the mainte
nance of the software from the developer to the user, and takes place after the
FCA and PCA described in Section 7.2. At this point all the items to be given
to the user for software implementation are assessed. It then becomes the
user's responsibility to establish an appropriate SQA program to control and
manage the software.

3.7 OPERATION/MAINTENANCE

The final phase in the software life cycle is operation and maintenance.
At this point, the software has been accepted for operational use. Further
activity consists of modifying the software to remove latent errors or to
respond to new or revised requirements. Maintenance is defined as any change
made to the software, either to correct a deficiency in performance, as
required by the original software requirements specification, to compensate for

3.5

environmental changes, or to improve its operation (which is also called
enhancement) (Barikh 1980; Glass and Noisex 1981; IEEE 1983e; NBS 1983).

Because changes are inevitable in this phase, a software configuration
management (SCM) program following a SCM Plan must be established. SCM is
discussed in Chapter 9.0. The following references are SCM standards, text
books, and tutorials on software maintenance: Bersoff et al. 1979a and 1980;
Doggett et al. 1983; IEEE 1980a, 1983b, and 1984b. Because maintenance also
involves regression testing (the function required to determine that the soft
ware has not been affected by enhancement or the environment changes), syste
matic archiving must be implemented. These archived results can then be used
for direct comparison (either automatically or manually) of software versions
to determine that the software still correctly performs its originally speci
fied tasks.

3.8 PROJECT MANAGEMENT

Project management is a critical element of SQA and covers the entire
software life cycle, including both the development and operational phases. It
includes management of the SQA function, the software configuration management
functions, the establishment of standards, scheduling of all reviews and veri
fication and validation, preparation of the Software Quality Assurance and the
Software Configuration Management Plans.

Funding (a management function) also affects the quality of software.
Typically, underfunded projects have little or no documentation. This inevit
ably leads to poor control over the product, resulting in poor performance.
Similarly, inadequate funding significantly limits the amount of software prod
uct testing. The result is that the user performs the ultimate testing, too
often by trial and error.

Project management controls the level of software quality because it
determines the budget for software development. Upper management must consider
total costs over the entire software life cycle from its inception to ultimate
removal of the software from service and budget funds appropriately. Because
low quality software results in systems that are difficult and costly to main
tain, other considerations such as software reliability must be addressed as
software is developed.

Many guides and standards are available for the project manager: Bruce
and Pederson 1982; Cooper and Fisher 1979; DeMarco 1982; Fife 1977; IEEE 1979b;
Tausworthe 1977 and 1979; and Yourdon 1979. Implementing the concepts detailed
in these guides and tutorials will greatly enhance the quality and reliability
of the software.

3.6

3.9 SOFTWARE VERIFICATION AND VALIDATION

Software Verification proceeds in parallel with the other elements of the
life cycle. It consists of the preparation and implementation of the Software
Verification and Validation Plan. The methods that can be applied are
described in Section 10.1.3.

Software Validation consists of the whole process of verification through
out the software life cycle, whereas verification consists of the individual
techniques and methods used.

3.7

4.0 MANAGEMENT

Software quality assurance consists of the application of procedures,
techniques, and tools throughout the software life cycle to ensure that the
software products conform to (meet or exceed) prespecified requirements. The objective of the SQA function is to train, plan, report, and control the software development process, so that this goal is met. a) The SQA function must be managed with this objective in mind. The degree of quality in a program
correlates strongly with the software quality objectives and priorities set by
management (Boehm et al. 1976). Imposing plans and procedures that provide for
well-defined milestones within the framework of software life cycle phases will
allow the evaluation of software quality performance at each step (Cooper and
Fisher 1979).

This section considers aspects of management of the SQA function, includ
ing overall SQA policy setting, SQA management organization, SQA program imple
mentation, and SQA training and education.

4.1 SETTING OF OVERALL SQA POLICIES, GOALS, AND OBJECTIVES

A set of SQA management policies, goals, and objectives is necessary to guide the implementation and application of the SQA program. Upper levels of
management must recognize that SQA is a vital paft of the software development process and that software development, implementation, operation, and mainte
nance are similar to other engineering processes subject to QA requirements. This recognition by upper management must be translated into a commitment
through policies that set software quality goals; establish SQA functions; and authorize the necessary resources in terms of people, money, and equipment to
perform the tasks.

The SQA function must not make project management decisions. The issue of compliance or noncompliance to established standards and procedures should be
the only issue in which SQA has the power to dictate a project's fate. The determination of compliance or noncompliance should be objective in nature. The consequences of noncompliance should be spelled out in the policies and
procedures.

The SQA organization will be accepted more readily by the project team if
its policy is one of assistance, rather than exclusively one of audit. SQA
management should always be aware of the danger of overregulation. There is always the fear of empire-building associated with the SQA function, and that SQA will be a hindrance rather than an aid (Buckley and Poston 1984). An

(a) The SQA function encompasses those activities comprising an SQA prugram.
These activities can take place internally within a project or be
implemented by a separate organizational component.

4.1

organization that performs only as watchdog or policeman tends to breed resent
ment and will usually be unsuccessful. A spirit of cooperation cannot exist
between the project team and the SQA function if the latter is always a source
of bad news.

4.2 SQA MANAGEMENT ORGANIZATION

This section discusses the staffing, structure, interfaces, and author
ities associated with an SQA organization. The makeup of the SQA function
depends on the amount of software development performed. An organization that
only uses acquired software needs a much different SQA function than an organi
zation that extensively develops software for use by others. Likewise, soft
ware used in design and production requires a different SQA environment than
that necessary for scientific research.

4.2.1 Competent Staffing

Competent staffing is the key to a successful SQA program. SQA staff must
have the respect of the project staff with which they work. They must under
stand how the work whose quality they are assuring is actually accomplished;
i.e., the SQA staff should be competent to recognize quality in software. SQA
personnel should possess technical experience in software development, software
specification, software design, and software testing. Senior technical staff
are preferable to administrative project management staff. SQA personnel
should have technical currency; they should be able to use current programming
methodologies such as structured programming, top-down design, implementation,
and testing methodologies. The personnel must also have the skills to communi
cate the concepts they are advocating (Gustafson and Kerr 1982). SQA personnel
also need to be conversant with current QA practices, regulations, and stan
dards. They must know how to construct an SQA program to meet the regulatory
requirements of the nuclear industry.

4.2.2 Structure

The SQA organization should have a charter, with each element of the
organization defined and its responsibility outlined. The elements responsible
for SQA should be independent from those responsible for software development.
The responsibilities and authorities for each element of the organization must
be clearly delineated with the means established to measure the proficiency of
the organization.

SQA personnel should be given sufficient responsibility, authority, and
organizational freedom to identify problems in quality and to initiate, recom
mend, and provide solutions. The personnel performing SQA tasks should also be
free to evaluate and recommend changes in the software design and production
activities.

The SQA organization must not be subordinate in any way to software devel
opment activities or to software delivery. The SQA function can best be per
formed by a separate organization if the development of software constitutes a

4.2

significant portion of the organization's tasks. This provides the independ
ence desired for the SQA function and can be cost-effective because all func
tions are maintained in a single organization. Many of the common functions
that are necessary for software development projects can be implemented by one
organization and in one system, assuming that a high level of technical com
petency is maintained by the SQA staff. However, if the projects are small
enough, an SQA function that is integral to the development organization can be
implemented, recognizing the danger that independence may not be maintained.
Another possible mode of operation is to combine the software and hardware
QA organizations. This can only be effective if the differences between hard
ware and software QA are recognized in the organization's policies.

4.2.3 Interfaces and Authorities

The interfaces between the SQA organization and the software development
organization need to be carefully defined. It is important that project man
agers know when and how to bring in SQA resources.

4.3 SQA IMPLEMENTATION

Implementation of an SQA program requires that all the individuals
involved understand what is happening, why it is being done, how they will
benefit, how the organization will benefit, and exactly what is expected of
them. Each individual involved in a software development or operation and
maintenance program must be convinced that a systematic engineering methodology
and an effective SQA program will help rather than hinder the software develop
ment process (Poston 1982).

4.3.1 SQA Organizational Tasks

For each project involving software development, operation, implementation
and maintenance, a set of SQA tasks needs to be established. The input for and
output from each task should be identified and the responsibility for the task
defined (Gustafson and Kerr 1982; Boehm et al. 1976; Fisher 1978).

An SQA task list for a given project can be drawn from a number of
sources: the general organizational SQA plan and policy guides, this document,
or SQA plan standards that have been developed by others (ANSI/IEEE 1984; Bruce
and Pederson 1982; DeMarco 1982; Fife 1977; IEEE 1979b; Tausworthe 1977 and
1979; Yourdon 1979). The software tasks may consist of the following:

"* preparation of an SQA plan
"* development of policies, procedures, and standards
"* analysis and enforcement of policies, procedures, and standards
"* certification and testing of software
"* education and training of personnel performing SQA tasks
"* SQA audits of

- design
- configuration management

4.3

- testing
- verification and validation.

Each task needs to be defined by entrance and exit criteria: i.e., what
is needed to initiate the task and what is the output of the task? The output
of each task should be defined in such a way that its achievement or completion
can be objectively determined in a prescribed manner. Additionally, a table
indicating the staffing levels for each of the tasks should be developed
(ANSI/IEEE 1987).

4.3.2 Responsibilities for Tasks

The organizational elements responsible for each task listed should be
identified. If two or more elements share responsibility for a task, their
respective responsibilities should be identified, as well as the management
position accountable for the overall project SQA.

It can be beneficial to arrange the elements of the SQA organization along
task lines to clearly delineate responsibility. For example, separate elements
of the organization might be assigned to perform education and training,
audits, and development of policies and procedures. However, it is probably
better for clear communications to assign specific personnel to each software
element or major program.

4.4 TRAINING/EDUCATION

While training of personnel is not usually thought of as an SQA activity,
it has been included here because quality of the software product is directly
related to the competence of the individuals developing the product. The SQA
program should provide in-depth training in the elements of software engineer
ing and SQA for all personnel performing activities affecting quality. This
includes training in software design and development techniques, as well as SQA
procedures. The subject areas presented in this document can provide a frame
work for developing a training program specific to a facility's needs.

Classes and seminars can be conducted to train personnel in software
development, software standards, and software engineering techniques. Seminars
or short courses are available from companies in the software industry. Many
of these courses are listed in trade journals. Since the seminars may be some
what expensive, it may often be more practical to bring the seminar to the
company itself. Other possibilities for training are videotape seminars,
interactive laser-disk seminars, computer-aided instruction, and in-house
training using in-house experts.

Training records (courses taken and dates completed) should be kept on
each individual involved in software development, software maintenance, soft
ware testing, and SQA. This information is valuable in establishing when
individuals should be trained or retrained. It also identifies individuals
able to carry out the various phases of development throughout the software

4.4

life cycle. Tests are available through commercial organizations or through
certification organizations that could be used to determine competence in the
subject areas.

Training of personnel takes time and money. Some organizations have
required up to a 6-month fulltime commitment by individuals to obtain adequate
training in software engineering and SQA. Therefore a strong commitment by
upper management to support training is necessary. This commitment should be a
part of company policy.

4.5

5.0 DOCUMENTATION

Documentation issued during a software development project is essentially
the only means by which progress through the software life cycle can be mea
sured. This chapter presents minimal documentation requirements, possible
additional documentation, documentation quality, and documentation control. It
is recommended that the following standards and guidelines be followed when
documentation is prepared: ANSI/ANS 1986; ATC 1985; IEEE 1986b; NBS 1976 and
1982; and Neumann 1982.

5.1 MINIMUM DOCUMENTATION REQUIREMENTS

For any project considered safety related and subject to 10 CFR 50, Appen
dix B criteria, the following documentation is considered by many to be the
minimum necessary (ANSI/IEEE 1984):

"* Software Quality Assurance Plan (SQAP)
"* Software Design Documentation (SDS and SDJ
"* Software Requirements Specification (SRS)•)
"* Software Verification and Validation Plan (SVVP)
"* Software Verification and Validation Reports (SVVR)
"* User Documentation.

5.1.1 Software Quality Assurance Plan (SQAP)

The SQAP should identify the documentation to be prepared during the
development, verification and validation, use, and maintenance of the particu
lar software system (ANSI/IEEE 1984; IEEE 1986b). The SQAP should identify the
organizational elements responsible for the origination, verification and vali
dation, maintenance, and control of the required documentation. It should also
identify the specific reviews, audits, and the associated criteria required for
each document. The SQAP should specify the tools, techniques, and methodol
ogies to be followed during quality audits; checks and other functions that
ensure the integrity of the software products; required documentation; and the
management structure and methodology to be employed.

5.1.2 Software Requirements Specification (SRS)

The SRS should clearly describe each software requirement (function, per
formance, design constraints, and attributes of the software and external
interfaces). Each requirement should be defined such that its achievement can
be verified and validated objectively by a prescribed method (e.g., inspection,

(a) The SRS is mandatory for any software development project. The SRS
describes what the software is to do and unless it is available, there is
nothing by which software performance can be measured.

5.1

demonstration, analysis, or testing) (ANSI/IEEE 1984; Wilburn 1982b). The SRS
should specify in detail the requirements agreed on by the software developer
and the requester or user.

The particular form that the SRS should take is described in many stan
dards and guidelines (ANSI/ANS 1986; IEEE 1984a; NBS 1976 and 1982; Neumann
1982).
However, it is a simple fact that the major quality problem is not the form of
the software requirements specification but simply its lack or inadequacy.

5.1.3 Software Design Documentation (SDS, SDD)

The Software Design Specificaiton (SDS) should describe the major compo
nents of software design, including the data bases and internal interfaces
(ANSI/IEEE 1984; IEEE 1986b). The SDS is a technical description of how the
software will meet the requirements set forth in the SRS. It describes the
major functions of the software such as data bases, diagnostics, external and
internal interfaces, and the overall structure. The Software Design Descrip
tion (SDD) involves detailed descriptions of the operating environment, moni
tors, timing, system throughput, tables, sizing, modeling, etc. For each
component in the system, it should contain descriptions of component inputs,
outputs, and calling sequences; function or tasks or algorithms; a list of all
calling components; the allowable and tolerable range of values for all inputs;
allowed and expected range values for all outputs; and assumptions, limita
tions, and effects on other components. The SDS and SDD documentation should
follow the formats suggested in references on software design (Enos and Van
Tilburg 1981; IEEE 1980b and 1983d; Jackson 1975; Yourdon and Constantine
1978).

5.1.4 Software Verification and Validation Plan (SVVP)

The SVVP should describe the following for each phase of the software life
cycle: the verification and validation tasks; tools, techniques, methods and
criteria; inputs and outputs; schedule; resources; risks and assumptions; and
roles and responsibilities for accomplishing verification and validation of the
software. The SVVP should identify all the test documentation that is to be
prepared. The SVVP should include a verification matrix in which the require
ments are referenced to their corresponding SVVP section. The IEEE and others
have issued standards and guidelines useful for preparation of software verifi
cation and validation plans (Adrion et al. 1981; ANSI/ANS 1987; Deutsch 1982;
IEEE 1986; Powell 1982a and 1982b; Wilburn 1983a).

5.1.5 Software Verification and Validation Reports (SVVR)

The SVVR should describe the results of the execution of the SVVP
(ANSI/IEEE 1984). This includes the results of all reviews, audits, and tests
required by the SQAP. The SVVR summarizes the status of the software as a
result of the execution of the SVVP. It describes any major deficiencies
found; provides the results of reviews, audits, and tests; and recommends
whether the software is ready for operational use. The proposed IEEE standard
for test documentation (IEEE 1983f) can be used to format the SVVR.

5.2

5.1.6 User Documentation

User documentation (e.g., operations and maintenance manuals, or guides)
should specify and describe the required data, input sequences, options, pro
gram limitations, and other activities/items necessary for the execution of the
software (ANSI/IEEE 1984; IEEE 1986b). All error messages should be identified
in text meaningful to the user and possible corrective actions described. A
method for transmitting user-identified errors to the software developer should
be developed. User documentation should include the following items:

"* user instructions that contain an introduction, a description of the
user's interaction with the system, and a description of any required
training for using the system

"* a system narrative

"• input/output specifications

"* samples of original source documents and examples of all input
formats, forms, or displays

"* samples of all outputs, forms, reports, or displays

"* data entry instructions for data preparation, data keying, data veri
fication, data proofing, and error correction

"* references to all documents or manuals intended for users

"* a description of system limitations

"* a description of all possible error situations and how the user
should react to these situations (IEEE 1986b).

There are many user documentation guidelines and standards for preparing this
documentation (ANSI 1980; NBS 1976 and 1982; Neumann 1982).

5.2 OTHER DOCUMENTATION

Other documentation that might be created during the course of a software
development project includes the following (ANSI/IEEE 1984; IEEE 1986b):
"* Software Development Plan (SDP)
"* Software Configuration Management Plan (SCMP)
"* Standards and Procedures Manual
"* Training Manual
"* Operations Manual
"* Installation Manual
"* Maintenance Manual
"* Unit Development Folders
"* Project File.

5.3

These additional items may be desirable for larger or more complex projects.
Each item is outlined in the subsections that follow.

5.2.1 Software Development Plan

The software development plan describes the breakdown of the software
development project into manageable tasks arranged into a hierarchical refine
ment of detail. The SDP should identify all technical and managerial activ
ities associated with computer program development. It could specify the
following items (ANSI/IEEE 1984; IEEE 1986b): an activity description, activ
ity deliverables and associated completion criteria, prerequisite deliverables
from prior activities (if any), interrelationship among the activities, and
assignment of responsibilities for each activity. There can be a great deal of
overlap between the SDP and the SQAP, as described above. Project management
determines which section should be in which document.

5.2.2 Software Configuration Management Plan

The SCMP addresses the identification, control, status accounting, and
configuration audit of the operational and support software needed to develop,
produce, support, and test the software throughout its life cycle. The plan
should make visible the configuration management process (ANSI/IEEE 1984; IEEE
1986b) for the installer and any regulatory agency.

5.2.3 Standards and Procedures Manual

The standards and procedures manual should provide details of the stan
dards and procedures to be followed for software development. These standards
and procedures can be derived from a general standards documentation used by
the software development company or from national standards such as the IEEE
(ANSI/IEEE 1984; IEEE 1986b).

5.2.4 Training Manual

The training manual should contain an introduction, instructions for using
the system and preparing the input, data input descriptions, data control
descriptions, instructions for running the system, and a description and inter
pretation of output data (ANSI/IEEE 1984; IEEE 1986b).

5.2.5 Operations Manual

The operations manual should be composed of the following items: run
schedules, set-up requirements, job control procedures, error procedures,
security procedures, distribution procedures, backup and recovery procedures,
and restart procedures. In addition, the operations manual should contain
specifications for the system, including all the environmental requirements,
input/output specifications, and auditing controls (ANSI/IEEE 1984;
IEEE 1986b).

5.4

5.2.6 Installation Manual

The installation manual should contain instructions for the installation
of the software product, instructions for file conversion, use of user
controlled installation options, and instructions for performing an installa
tion test (ANSI/IEEE 1984; IEEE 1986b).

5.2.7 Maintenance Manual

The maintenance manual should contain instructions for software product
support and maintenance such as procedures for correcting defects and install
ing enhancements. This document should refer to both the procedures described
in Section 9.3 and to the Software Configuration Management Plan (ANSI/IEEE
1984; IEEE 1986b).

5.2.8 Unit Development Folders

Unit development folders consist of the programmer's technical records
during the design and testing work on the individual program modules. As stan
dard project documents, these folders augment the project records and specifi
cations by providing more technical documentation for review and inspection.
The folders are especially important in large projects that are subject to
frequent personnel changes or reassignments (IEEE 1983a).

5.2.9 Project File

For each project a file consisting of records, project plans, specifica
tions, schedules, work assignments, budgets, and technical standards should be
maintained. A central repository should be maintained for all current docu
mentation associated with the project and should be available to project devel
opers, users, and managers. It is appropriate that this file be indexed with
an on-line computer system, possibly by means of a relational data base in
which each word in the title can be scanned to identify documents pertinent to
any requested subject. This indexing will allow the computer to do the organ
izing or sorting (IEEE 1983a).

5.3 DOCUMENTATION QUALITY

When considering the quality of the overall development project, the qual
ity of the documentation itself must not be neglected. If the SQA Program is
to be effective, company-wide standards should exist that specify uniform
requirements for all project and software documents. These standards should
define the scope and format of each document. The standards should also
address the issue of technical writing style to improve document clarity and
consistency. Because of the necessity for traceability, paragraph numbering by
means of a decimal system is probably in order. A means of identifying changes
to documents, such as bars in the right or left margins, can be used.

5.5

5.3.1 Application of Standards

Documentation should be formiatted acc•;-ding to appropriate standards.
Standards provide a means for the author to d&tlermine exactly what needs to be
included in the document as well as the form it F, to take. Their use promotes
consistency in documentation among projects. S2,Andards can also provide a
checklist with which documents can be reviewed.

5.3.2 Review

Upon completion, all documentation should be reviewed, preferably by an
independent party who has not been part of the documentation generation.
Reviews will be covered in detail in Chapter 7.0. Most reviews are conducted
after all documentation has been generated. However, documentation can also be
reviewed piecemeal in draft form during the course of its generation.

5.3.3 Documentation Maintenance

One major problem in SQA is the maintenance of documentation. This seems
to be an odious chore to most technical personnel. It has been recommended
that all documentation associated with the software project be maintained
on-line. This eliminates any distribution problem and the inevitable publica
tion costs associated with revisions to documentation, especially for a large
project. Maintenance of documentation on-line allows the developer to obtain
the most up-to-date copy directly when it is needed. It also circumvents the
problem of determining who should receive updated copies of the documenta
tion. With the increasing cost of document reproduction and the decreasing
cost of bulk storage on a computer system, this means of documentation mainte
nance is becoming more and more attractive. Programs to facilitate on-line
documentation are available commercially.

5.4 DOCUMENTATION CONTROL

Control of documentation falls under the heading of software configuration
management (see Chapter 9.0). Documentation can be considered a software pro
duct as much as the computer program itself, and is subject to the same con
figuration management and control. Use of an on-line computer system for
documentation makes its control simpler because only one copy of the documenta
tion need be controlled. No changes should be made to the documentation with
out the appropriate librarian or other responsible person's concurrence. The
computer system also can provide appropriate tools such as software configura
tion control systems, as discussed in the following: Bersoff et al. 1979 and
1980; Doggett et al. 1983; IEEE 1980a, 1983b, and 1986a.

5.6

5.5 SOFTWARE RECORDS: COLLECTION, MAINTENANCE, AND RETENTION

This section deals with the records and data that should be collected and
retained during the course of the software life cycle and the methods that
should be used to assemble and maintain this documentation over the designated
retention period.

5.5.1 Records to be Collected

The records that should be retained during a particular software develop
ment project and its follow-on operation and maintenance phases should be
designated in the software quality assurance plan (ANSI/IEEE 1984). The types
of records to be collected are determined by the overall recordkeeping objec
tives established during the project. Possible objectives are to provide
1) legal and contractual evidence that the software development process was
performed in conformance with established professional practice or with the
customer requirements, and 2) historical or reference data that could be used
to discover long term trends in development techniques. The documents col
lected for historical or reference purposes should be capable of providing data
for productivity, quality, and methodology studies.

The documents collected for legal or contractual purposes should provide
evidence that 1) the SQA plan was followed and all the documents conform to the
requirements of applicable standards, 2) the software meets the design intent
and satisfies contractual requirements, 3) corrective action is effective, and
4) testing has been performed in accordance with test plans. The documents
collected for trend analysis should provide sufficient design, implementation,
and testing data so they will be useful for determining future development
practices.

In addition to these kinds of documents, records should also include pro
gram media containing the exact version of programs and materials used in per
forming tests to assure test repeatability, and a central index listing all the
documents associated with each code used in the design or safety analysis of
the nuclear facility. This listing should contain all information pertinent to
the documentation of the code and any data accumulated throughout code develop
ment, operation, and use. In addition, records should identify the approved
list software users so that when any errors or defects are discovered, the
users can be notified promptly.

The user of a critical piece of software should retain a record of how and
when the code was used. This record could consist of date of use, the code's
identification and version numbers, the project identification, any problems
encountered in running the code, and any other pertinent information. The
completed data sheet could be sent to a central location for retention.
Records of use could be implemented successfully using a data base management
system. If the data for each piece of software are collected in a relational
data base, interrogations could determine trends and occurrences throughout the
life of the software, such as problematic code modules. The collection of
information on standardized forms during development and operation of software
makes it easy to analyze the data using such a data base. Examples of standard

5.7

forms for this type of use are provided in the following references: Barikh
1980; Glass and Noisex 1981; IEEE 1983e and 1986d; NBS 1974 and 1983.

5.5.2 Records Maintenance

The SQA plan should specify acceptable methods of keeping records, (i.e.,
hard copy, computer file, microfiche, etc.) (ANSI/IEEE 1984). Maintaining
records involves both physical media control, discussed in Chapter 9.0 and
updating of the information contained there. Use of a data base management
system or relational data base is a systematic way of accomplishing this main
tenance. Specialized tools for this purpose could also be utilized effect
ively. See Section 8.1 for examples of such tools.

5.5.3 Records Retention

The length of retention for each type of record maintained should be spe
cified in the SQA plan (ANSI/IEEE 1984). In addition, the retention length
could be specified in the document or form itself. The date for destruction or
review for possible destruction should be stated; a computerized system detail
ing this date could be included as part of the maintenance system.

5.5.4 Organizational Responsibility

The SQA plan should identify the organizational elements responsible for
the origination, collection, maintenance, storage, and protection of records.
Authorities responsible for changing, purging, and destroying records should be
identified. Chapter 9.0 discusses control and management of software project
records.

5.8

6.0 STANDARDS, PRACTICES, AND CONVENTIONS

The establishment, implementation, and enforcement of sound standards,
practices, and conventions are essential to any SQA program. Software stan
dards include procedures and rules employed and enforced that prescribe a dis
ciplined, uniform approach to software development and utilization. A software
standard specifies the methods and procedures that should be carried out to
complete a specified software task. Practices are agreed-upon methods or tech
niques for developing and using software, established to ensure uniformity
throughout a project. A software practice specifies the methods and techniques
to be used to carry out a particular software related activity. Conventions
are the uniform patterns or forms for arranging data or presenting information
to provide consistency and to facilitate understanding (ANSI/IEEE 1984). (For
readability, standards, practices, and conventions are referred to in this
chapter as standards.)

Standards serve both technical and managerial functions. They facilitate
program readability, software verification and validation, interface defini
tion, and management review of software development. The use of standards is
consistent with Appendix B of 10 CFR 50 (U.S. NRC 1984), which requires that
activities affecting quality shall be prescribed by documented instructions,
procedures, or drawings of a type appropriate to the circumstances.

A primary function of SQA consists of defining and recommending the soft
ware related standards, practices, and conventions for management approval and
monitoring the software products and software development process to ensure
that they comply with the adopted standards. The standards adopted should con
stitute a thread that links one event to another throughout the software life
cycle and shows how the particular requirement has been implemented in the
ultimate product.

The sections below consider recommended standards and their implementa
tion, monitoring of compliance, and enforcement.

6.1 APPLICABLE STANDARDS

The project manager, in cooperation with the SQA organization, should
select and establish a set of standards and procedures applicable to the par
ticular project. These standards should be identified along with the life
cycle phases to which they are applied. As a minimum, the standards should
address documentation, requirements specification, design, coding, testing, and
operations/maintenance.

Standards that are to be followed during the course of the project are
specified in the SQA plan. If a standard or procedure is revised while the
project is under way, the effect of the revised standard on the project should
be evaluated and a decision made whether to continue to comply with the pre
vious standard or with the new one. However, records should clearly state
which procedure is being followed at all times during the course of the

6.1

project. As a practical matter, the standards pertinent to the particular
project can be packaged in a single handbook. This can be part of the project
file or maintained in on-line computer files.

6.1.1 Documentation Standards

The objective of imposing documentation standards is to ensure uniform
quality. This does not mean that all software will be documented to the same
level of detail. The detail needed depends on the application, complexity, and
expected life span of the software. It does mean that the format of the docu
ment should be prescribed to minimize variation in style, notation, and termin
ology to make review, use, and control of the software documentation easier.

Documentation standards and procedures must be established early in the
software development process and must be adhered to rigidly. The development
of documentation standards is one of the initial activities of the SQA organi
zation. The standards should adhere to industry standards as much as possible.
Standards and guidelines for documentation are given in these references:
ANSI/ANS 1986; ANSI/IEEE 1984; ATC 1983 and 1985; IEEE 1983b, 1983f, 1984a,
1986a, 1986b, and 1986e; NBS 1976 and 1982; Neumann 1982; Tausworthe 1979;
Wilburn 1982b.

6.1.2 Design Standards

The basis for software reliability is design. It is a well known fact
that reliability cannot be tested into a software system. Programs that are
well designed in both data structure and control structure are the first
defense against errors. Good design should be accompanied by careful
proofreading.

The standards to be used during the design phases should be described in a
design standard. Serious consideration should be given to the use of graphical
techniques and the use of top-down design (Yourdon and Constantine 1978).
Naming conventions and argument list standards should be addressed, and serious
consideration should be given to requiring the use of program design languages.

Some attributes of software quality can be enhanced by appropriate design
and implementation methodologies (Goodenough 1979). For example, robustness
can be increased by the use of fault-tolerant design. Defensive programming is
also a technique for increasing system robustness. Such programming consists
of identifying and implementing assumptions whose violation would lead to
critically unacceptable behavior. For example, if the effect of an out-of
range input would be severe, a procedure should check the range. Similarly, a
program that expects input from an on-line terminal is more robust if it is
designed to process arbitrary input sequences, even if the program specifica
tions state that only certain sequences will actually be presented.

As part of the design standard, certain standards can be implemented that
are specific to the design methodology, such as flowcharting standards, hierar
chical chart standards, or the kind of methodology to be used [e.g., the
Jackson (Jackson 1975; IEEE 1983d), the Nassi-Schneiderman (IEEE 1980b) or the

6.2

Yourdon-Constantine (Yourdon and Constantine 1978; Gane and Sarson 1977)
methodologies of design]. It could also be specified that particular program
ming languages should be used or that certain high-level design languages are
to be used.

6.1.3 Coding Standards

The practices and conventions to be used during the implementation and
coding phases should be described in a coding standard. Coding standards pro
vide for specifying quality attributes in a testable way. Implementing stan
dards for structured code or use of structuring precompilers, local/global data
access, and parameter passing will reduce the number of coding errors. Code
maintenance will also be improved by using coding standards, particularly those
that deal with the appearance and arrangement of the code as well as commen
tary. The standards should include criteria for module size, naming and num
bering, header commentary, in-line commentary, local/global data access,
parameter passing, and code formatting. Automated methods or manual methods
for verifying compliance with programming standards can be implemented using
software tools. Using these methods is cost-effective, based upon the authors'
experience.

Coding standards should specify the coding language and format to be used
for implementation. Available coding standards for each of the common langu
ages are provided by Associated Technology, Inc. (ATC 1983 and 1985). Both
high-level and assembly languages are available for computers. Assembly langu
ages are used for systems programming and online systems and are not appropri
ate to scientific codes used in the nuclear industry. For most situations, a
high-level language should be specified.

To provide uniformity in an organization, naming and labeling conventions
should be established for each version and every component of the software.
The program name should be included in all source code and each version derived
from every element. Each version of a program must be given a unique version
number. The version number should be referenced in any testing results
obtained from the program as well as the date on which the program was
tested. Naming and labeling conventions should be unique to each project but
uniform in format throughout a company.

Use of appropriate layout conventions for each software module will result
in higher quality software. Detailed specifications should be established that
cover such programming conventions as indenting and spacing of the program
statements, use of comments, and required use or restriction of certain fea
tures of the programming language. Layout conventions are important, particu
larly for maintenance. If the software throughout an organization always has
the same format, a maintenance progralmmer can gain a great deal of information
simply from familiarity with the particular format. This is the one area where
a standard for an organization is a must.

Coding techniques tend to be specific to a particular programming lan
guage. All the basic structured constructs can be implemented in a standard
fashion using any of the programming langua~es available and in use throughout

6.3

the nuclear industry. Standard constructs, followed rigorously, allow ease of
translation of the so-called pseudo-coding or other design representations
created during detailed design directly into the programming language.

One method for coding that allows in-line verification is assertion test
ing. Assertions are embedded within the code in the form of comments that can
later be activated to determine the state of the processing variables at any
point in the code. The assertions can check limitations on the variables that
are physically realizable, such as ranges of temperature and pressure, and
thereby provide a degree of verification while the code is operating. Pre- and
post-processors can be used to embed assertions into almost any type of imple
mentation language. For example, a FORTRAN assertion checker is available from
the National Bureau of Standards, and other tools that perform the same func
tion are available from commercial software vendors (Houghton 1981, 1982, and
1983; Houghton and Oakley 1980; Riddle and Fairley 1980).

Establishment of standards for in-line commentary will lead to uniformity
in the amount of detail included in the commentary. Commentary should not
simply reflect information that can be obtained more readily by looking at the
logic flow itself, such as by saying, "branch on plus," when it is obvious from
the computer coding. Commentary should add information about programming logic
and can be used as a means to embed the detail design into the program listing.

6.1.4 Testing Guidelines

The standards, practices, and conventions to be used during the testing
phase should be described in a set of guidelines for unit, integration, regres
sion, and system testing. The test documentation required could follow that
specified in IEEE Standard 829-1983 (IEEE 1983f) for software test documenta
tion. The criteria for test repeatability and test coverage should be
addressed, perhaps by including requirements that specify testing every
requirement, user procedure, and programming statement.

The guidelines should indicate whether support software may be used. A
testing guideline contains specific criteria governing the program testing be
performed. It assures that programs are uniformly tested by all programmers.
A draft software unit testing standard was recently developed by the IEEE that
can be used in preparing such a testing guide (ANSI/IEEE 1987).

6.1.5 Code Operation/Maintenance Standards

A set of standards or guidelines should be prepared for code operation and
maintenance. Many of the items in such a standard may be indirectly imple
mented by requiring the appropriate items in the design standards discussed in
Section 6.1.3. However, some items can be considered unique to the operation
and maintenance phase. Items that may be considered in preparing a code opera
tions standard are as follows:

* All programs should be designed to print on each page of output the
corresponding version number of the program, the current revision of
the user's guide along with the output date, and the page number.

6.4

"• All codes should print out the input data so that the input actually
used by the code can be checked as part of the output verification.

"* Each page of the paper or microfiche produced by a production, devel
opment, or test program should be identified by the letters PROD,
DEV, or TEST, respectively.

There are two types of maintenance: repair and enhancement. Repair
corrects a defect found in the software or incorporates changes required by a
change in the environment; enhancement adds some feature to the requirement
specification. When considering an operation/maintenance standard, a new kind
of maintenance known as preventative maintenance might also be considered
(Arthur 1984). Most organizations typically practice only the first two types
of maintenance.

Once a program or module has been identified as a candidate for preventa
tive maintenance, an editor (preferably not the programmer) should be chosen to
review and revise the code. In programs where size is a problem, the editor
should look for ways to eliminate redundant code. In a typical program, 10% to 20% of the code is probably redundant (Arthur 1984). Once the redundant code
has been removed, the editor should attempt to reduce decision complexity.
Automatic tools can be used to measure program complexity and indicate where
improvements can be made. The editor should then look for ways to restructure
the logic to reduce decision complexity. Such items should be considered when
preparing an operation/maintenance standard.

6.1.6 Code Quality Requirements

A standard practice or guideline should be considered for specifying the
code quality required. Chapter 2.0 and Appendix A can help determine which
attributes should be included in the standard. While it is difficult to make a
quantitative measurement of these attributes, a statement should be included
regarding the importance of the particular attribute, a description of what it
constitutes, and examples of how it can be obtained. A standard requiring that
these quality attributes be included would be strong motivation toward improv
ing software quality.

6.1.7 Other Standards

Other useful standards could be created for the following:

"* software configuration management
"* problem reporting and corrective action
"* tools, techniques, and methodologies
"* code control
"* physical media control
"* software supplier control
"* records collection, maintenance, and retention
"* training and education.

6.5

The recommendations given within this document and found in the literature
(Foreman 1980; Glass 1981a; Poston 1984 and 1985) can be used to prepare stan
dards for these areas. Such standards will provide management with a tool to
evaluate how well a project is being carried out.

6.2 IMPLEMENTATION OF STANDARDS

The following sections discuss the procedures by which standards may be
implemented within an organization. The first task is to determine who should
create the standards and practices. It is suggested that the SQA organization
be responsible; they must work with the technical staff who will ultimately use
the standards and practices, however. The standards are the most important and
visible result of an SQA program. It is imperative that the standards and con
ventions be acceptable to the software developers, to management, and to the
user.

6.2.1 Use of Available Standards

Many standards have been created by companies, government agencies, and
nongovernment agencies, several of which are referenced in this document and
elsewhere (Wilburn 1983b). The standards can be used as guides for preparing
the company's own in-house standards.

6.2.2 Creation and Review of Standards

An organization must have a structure in which to develop standards.
There should be a limited number of standards and the standards themselves
should be brief. However, they should not be so abbreviated that they do not
cover the subject adequately. The standards should be organized systematically
and be readily available, either in a looseleaf notebook or on an on-line com
puter system so that they can be maintained easily. The following is a sug
gested outline for a standards document (Glass 1981a):

"* name and number of the standard
"* effective date and expiration date
"* objective and applicability
"* method for verifying conformance
"* degree of conformance required
"* procedure for obtaining a waiver
"• related standards and documents
"* detailed statement of the standard
"* explanatory comments
"* indexes.

The following guidelines are suggested for creating software standards:

"* follow a common outline
"* use consistent terminology
"* be brief

6.6

9 check for overlap and inconsistency with other standards
e address the reader.

Procedures for the review and development of standards should be estab
lished. Two distinct organizations should review software standards: a tech
nical group and a management group. Review of the standards can follow the
procedures established for any other documentation review (see Chapter 7.0).

6.2.3 Maintenance and Control of Standards

Standards should be controlled like other documentation and be subject to
the same software configuration management procedures as the documentation
associated with that project. All standards should include a "sunset" clause
by which the standard is automatically void unless reviewed and updated at
periodic intervals (e.g., every 5 years).

6.3 COMPLIANCE MONITORING

The SQA organization must be involved in defining valid software develop
ment standards. They also must ensure that the software products and the pro
cesses used to develop them comply with these standards. An appropriate
methodology to accomplish this is the review and audit process. This implies
that SQA personnel must be competent to evaluate whether the standards are
indeed being followed.

6.4 ENFORCEMENT OF STANDARDS

Associated with compliance monitoring is enforcement of the standards. A
mechanism must be in place to keep management informed, and management in turn
must take the steps necessary to assure that the standards are adhered to.
This sometimes becomes difficult due to conflicting criteria, e.g., software
quality versus production milestones. At this point, it is again necessary to
reaffirm that standards are established in the interest of productivity, per
formance, user acceptability, predictability, and control.

6.7

7.0 REVIEWS, AUDITS, AND CONTROLS

Software development, operation, and maintenance efforts should be
reviewed and audited periodically to determine conformance to SQA requirements.
Technical reviews and audits should be periodically conducted to evaluate the
status and quality of the engineering efforts and to assure the generation of
required engineering documentation and adherence to appropriate standards. The
review of software under development is the primary method used by SQA groups
to assure quality.

The specific technical reviews and audits of software development plans
and schedules should be identified in the SQA plan (ANSI/IEEE 1984). The pro
cedures to be used in reviews and audits should be described in a guideline
(see Freedman and Weinberg 1979; Wilburn 1982a and 1983a; Yourdon 1978). The
participants and their specific responsibilities are to be identified as well.
As a minimum, the following reviews and audits should be conducted (see
Figure 3.1):

"* software requirements review (SRR)
"* preliminary design review (PDR)
"* critical design review (CDR)
"* software verification review (SVR)
"* functional configuration audit (FCA)
"* physical configuration audit (PCA)
"* in-process audit
"* managerial reviews (ANSI/IEEE 1984).

7.1 TECHNICAL REVIEWS

Technical reviews serve many purposes beyond helping to establish software
quality. They allow several individuals to share their experience with the
creators of a product. The software review has the effect of improving the
technical capabilities of the individuals, as well as the team associated with
the development project. The members of the group gradually come to know and
understand their colleagues, how they think in certain situations, where they
routinely make mistakes, etc. Such mutual understanding creates a better tech
nical team and can keep the same types of problems from recurring. The organi
zation of people into teams allows projects to proceed smoothly. The process
of assembling the teams and assigning work can compensate for differences in
individual capabilities. A team can often find defects overlooked by
individuals.

7.1.1 Review Team Members

The review should be performed by individuals having sufficient technical
expertise to provide a thorough review of all activities. Independent checking
should be performed by an engineering or technical group rather than by an SQA

7.1

organization, which normally performs the auditing function. Review partici
pants should be independent of those developing the program logic and techni
cally competent in areas related to the program tasks.

7.1.2 Review Procedures

Methods of software review are provided in the following: Freedman and
Weinberg 1979; Wilburn 1982a and 1983a; Yourdon 1978. The reviews and audits
should be clearly identified, scheduled, and properly sequenced.

The procedures to be used for reviews and audits should identify the par
ticipants, their specific responsibilities, and the types of information to be
collected and reviewed. They should also specify the preparation of a written
report for each review and identify who is to prepare the reports. In addi
tion, the report format, who is to receive the reports, and the associated
management responsibilities are to be described along with any follow-up
actions assure that recommendations made during the reviews and audits are
properly implemented. The time interval between the review and the follow-up
action should be prescribed, as well as the personnel responsible for perform
ing the follow-up actions.

Checklists can be effectively used in the course of the technical review
(ANSI/ANS 1979, Wilburn 1983a). The participants in the review should inspect
all available documentation in light of these checklists before the formal
review meeting. It is almost impossible to conduct an effective review during
the course of the meeting itself.

7.1.3 Review Types

Table 7.1 lists the types of reviews appropriate in the software develop
ment phases of the life cycle. These reviews, which are recommended by the
IEEE in their SQA plan guide (IEEE 1986b), are described in the subsections
below.

7.1.3.1 Software Requirements Review

The software requirements review (SRR) takes place at the end of the life
cycle phase in which the software requirements specification (SRS) (ANSI/IEEE
1984) is generated. The SRR constitutes an evaluation of the SRS. It is con
ducted to assure the adequacy, technical feasibility, and completeness of the
requirements stated in the SRS. The SRR is held to evaluate the SRS to ensure
that it is complete, verifiable, consistent, maintainable, modifiable, trace
able, and usable during the operation and maintenance phases. The review
ensures that sufficient detail is available to complete the software design.
All organizational elements affected or impacted by the requirements should
participate in this review. These may include software design personnel, soft
ware testing personnel, SQA personnel, systems engineering personnel, cus
tomers, users, and marketing and manufacturing personnel. The results of the
SRR should be documented and include a record of all deficiencies identified,
and a plan and schedule for corrective action. After the SRS is updated to
correct these deficiencies, the document should be placed under configuration

7.2

TABLE 7.1. Checklist of Potential Reviews Throughout the Software Life Cycle

Name of Review(a) Acronym Reference Section(b)
Software Requirements Review* SRR 7.1.3.1
Preliminary Design Review PDR 7.1.3.2
Critical Design Review* CDR 7.1.3.3
Software Verification Review* SVR 7.1.3.4
Formal Management Reviews -- 7.1.3.5

(a) An asterisk (*) indicates those reviews required for all
software development projects. Other reviews in the list may be required, depending on the nature of the software
project and final product(s).

(b) The section of this document that discusses the review listed.

control, establishing the baseline to be used for software design and other efforts throughout the life cycle. During software design and its implementation, make further changes to the SRS. In such instances, the broader and farreaching effects of such changes should be assessed.

7.1.3.2 Preliminary Design Review

The preliminary design review (PDR) is held at the end of the functional specification phase (ANSI/IEEE 1984). The PDR evaluates the technical adequacy of the preliminary design as a prelude to the detailed design. The review assesses the technical adequacy of the selected design approach; checks the design compatibility with the functional and performance requirements of the SRS; and verifies the existence and compatibility of the interfaces between
software, hardware, and user.

All organizational elements that impose requirements or that are impacted by the design should send representatives to participate in this review. Documentation of the results should contain a record of all deficiencies identified in the review, and a plan and schedule for their corrective action. The updated SDS document should then be placed under configuration control, establishing a baseline for the detailed software design effort. Changes to the high level design that become necessary during detailed design, implementation or testing should be incorporated into the design documentation, with appropriate reviews made to determine the impact of these changes.

7.1.3.3 Critical Design Review

The critical design review (CDR) is held at the end of the detailed software design phase (ANSI/IEEE 1984). The CDR evaluates the technical adequacy, completeness, and correctness of the detailed design before the start of actual coding. The purpose of the CDR is to evaluate the acceptability of the

7.3

detailed design depicted in the software design description (SDD) to establish

that the detailed design satisfies the requirements of the SRS; to review com

patibility with other software and hardware with which the product is required

to interact; and to assess the technical, cost, and schedule risks of the

product's design.

The organizational elements that impose requirements or that are impacted

by the design should participate in the review. Documentation of the results

of the review should identify the discrepancies found during the review and

should present schedules and plans for their resolution. The updated SDD is

then placed under configuration control to establish a baseline for the next

phase of implementation and coding.

7.1.3.4 Software Verification Review

The software verification review (SVR) constitutes an evaluation of a com

pleted software verification and validation plan (SVVP) (ANSI/IEEE 1984).

Since this plan may be developed incrementally as the requirements specifica
tion, high level design, and detailed design proceed, multiple reviews may be

necessary. These reviews are held to assure that the methods described in the

SVP are adequate and will provide an acceptable verification of the software.

Documentation of the results of the review should record all deficiencies noted

in the review, and schedules and plans for their resolution. The updated SVP,

when placed under configuration control, establishes the baseline for the soft
ware verification (or testing) effort.

7.1.3.5 Managerial Reviews

These reviews are held periodically to assess the status and implementa

tion of the SQA plan and program development plan (ANSI/IEEE 1984). The plan

ned frequency and structure of the managerial reviews should be stated in the

SQA plan and should be conducted under the direction of the program manager.
Each review should be documented by a report summarizing the review findings,

including any exceptions to the process stated in the SQA plan and any recom

mended changes or improvements.

7.2 AUDITS

The following sections describe audits of the SQA program and the SQA

function.

7.2.1 Functional Configuration Audit

A functional configuration audit is held prior to software delivery to

verify that all requirements specified in the software requirements specifica

tion (SRS) have been met (ANSI/IEEE 1984). The functional audit compares the

code with the requirements stated in the current SRS. Its intent is to deter

mine that the code addresses all documented requirements. Documentation of the

7.4

results should include any discrepancies and the plan and schedule for their resolution. Once the discrepancies have been resolved, the software can be
delivered to the user.

7.2.2 Physical Configuration Audit

The principal purpose of a physical configuration audit is to determine if all the technical products of the computer program development effort are complete and formally acceptable to the user (ANSI/IEEE 1984). The material audited during a physical audit includes the technical products related to the computer program to be delivered to the customer, such as the final SRS, the software design description, and all other documentation formally prepared for
the user and identified in previous sections.

7.2.3 In-Process Audits

Walk-throughs and inspections may be included as part of the in-process audit activity (ANSI/IEEE 1984). The objective of these audits is to verify the consistency of the product as it evolves during development or as it is changed during the maintenance phase. The results of all the in-process audits should be documented and should identify all discrepancies found and the plans
and schedule for their resolution.

7.2.4 SQA Audits

These audits should evaluate the adherence to and effectiveness of the prescribed procedures, standards, and conventions provided in SQA program documentation. The internal procedures, the project SQA plans, configuration management, and contractually required deliverables from both the physical and functional aspects should be audited throughout the life cycle. The SQA audit consists of visual inspection of documents to determine if they meet accepted standards and requirements (Tausworthe 1977). The SQA audit is not intended to review the conceptual approach to a solution of a problem or to a design. Rather, the auditor should check the format of each document for conformance with its prescribed outline as well as for omissions, apparent contradictions, and items that may be sources of confusion in later work. The auditors should verify the existence of all required documents and that the quality of each is acceptable. A formal SQA audit report should be generated and submitted to the cognizant project manager for information and action. When such audits are carried on concurrently with design, coding, documentation, etc., they decrease the possibility of oversights or inadvertent misconceptions that could result
in major rework and cost overruns.

7.3 CORRECTIVE ACTION

Plans and schedules for correction of deficiencies are necezbary to complete the review and audit process. Corrective action should take place within a short time (specified by project management) after the review or the audit. Corrective actions are best implemented by assignment of an individual or team to carry out the corrections. If it has been decided that the corrective

7.5

action is not necessary or can be deferred, software users should be notified.
The problem reporting and corrective actions detailed in Chapter 9.0 may be
utilized to inform users of identified software problems.

7.6

8.0 TOOLS AND TECHNIQUES

Application of software tools and techniques in the development/operation
of software systems and SQA functions can significantly improve the quality and
reliability of the software.

8.1 TOOLS

The following tools can be used to develop software systems or in SQA
functions:

interrupt analyzers
debuggers
data base analyzers
language processors
text editors
dynamic simulators
requirements tracers
decision tables
hardware monitors
structural test analyzers
logic analyzers
library handlers
cross reference generators
test drivers
timing analyzers

0

0

0

0

0

source comparitors
instruction tracers
editors
dynamic analyzers
consistency checkers
test beds
standards analyzers
test result processors
flow charters
interface checkers
automated test generators
static analyzers
software monitors
management information systems

These tools are described in the following references: Brown 1979; Fisher 1978; Houghton 1981, 1982, and 1983; Houghton and Oakley 1980; IEEE 1979a and
1983c; NBS 1981; Osterweil 1982; Powell 1982a; Reifer 1979a; and Riddle and
Fairley 1980.

Another method that can be used to improve reliability is to create for
each production program run a run log that contains a record of everything that
happened during the run. This could include operator commands; time and cycle
of restart dumps; timing statistics showing where the CPU, I/O, and system times are being used; and a record of all errors together with diagnostic snap
shots detailing the cause of the problem.

8.1

S

S

0

0

0

0

0

0

0

8.2 TECHNIQUES

Listed below are techniques that support various software quality assur
ance functions:

"* auditing t reviewing
"* code inspection a simulation
"* design inspection * standardization
"* error-prone analysis * static analysis
"* functional testing * stress testing
"* logical testing * walkthroughs
"• path testing * statistical recordkeeping

Statistical recordkeeping merits further discussion here. It has been
demonstrated repeatedly (Dunn and Ullman 1982) that a few modules in any given

system contribute to the observed failures far out of proportion to their num
ber. These modules are candidates for further analysis to determine if the

most appropriate action would be to redesign and recode them. Records can be
used for a trend analysis and review of the effectiveness of the corrective
action program.

Furthermore, it is advantageous to collect data to compute statistics
about software for comparison with other project software with similar attri

butes. Without data to analyze, identifying effective and ineffective methods

used in the development and operation of software is not possible. Methods
cannot then evolve into efficient techniques and tools. Recommendations are

given by NBS (1983) regarding the type of statistical data that should be col
lected during software development and operation. Use of statistical data is a

tool with which to evaluate the effectiveness of the SQA plan itself. Quan

tifying the efficacy of the plan is of primary importance to assuring software
qual i ty.

One method of statistical data collection is to use automatic tools that

operate in the computer on which the software is being developed. The metrics
developed by McCabe (1982) can be used in collecting data with such automatic

tools. Software metrics based on mechanized analysis of code systems can pro
vide a means to quantify many important characteristics before a component
module is compiled or tested. Dynamic analysis helps to identify a module's

efficiency; operational analysis measures its reliability; and change manage
ment tracking (i.e., how frequently the module is required to be changed) mea
sures its maintainability, flexibility, and reliability. Software quality
measurements of this type can be applied to both the developmental and opera
tional phases of the software life cycle.

At the conclusion of each software development project or after a period

of time has elapsed while the software has been in active use, the data col
lected should be analyzed to determine the quality of the particular software

module. Calculations can be made of the number of errors occurring as a func
tion of the number of lines of code, the number of errors per module, and the
number of errors versus the size of the module. Data analysis could involve

comparison with similar data that have been accumulated from other software

8.2

systems. The data analysis could also help determine whether it might be more
cost-effective to completely rewrite a piece of software than to continue to
maintain inferior software.

8.3 EVALUATION OF TOOLS AND TECHNIQUES

The following factors may be used to evaluate software development and
quality assurance tools and techniques (Lipow et al. 1977):

APPLICABILITY

COST-BENEFIT

RISK

STATE OF THE ART

CONTROLLABILITY

PAST EXPERIENCE

DELIVERY

Is the proposed tool or technique well-suited for its task?
Does the proposed tool or technique have a sound quality
basis?

Is there an explicit benefit to be gained from each of the
proposed tools or techniques? Do the benefits of the pro
posed tool or technique equal or exceed the cost to the
project?

What is the risk involved in implementing the proposed tool
or technique?

Is the proposed tool or technique appropriate with respect to
the current state of the art?

How easily can the proposed tool or technique be controlled
by either management or quality assurance personnel?

What has been done to show that the proposed tool or techni
que can be developed or implemented? Is there a good
resource base from which to draw?

Will the tool be delivered on time with enough information to
make it easy to use and maintain?

8.4 CONTROL OF TOOLS AND TECHNIQUES

The design, development, testing, and documentation of tools and tech
niques must entail the same rigor and level of detail as other deliverable
software. The tools and techniques need to be placed within a central reposi
tory that has management responsibility and funds for configuration management,
maintenance, documentation, and dissemination, making them available for wide
distribution and use by many projects and organizations. Most tools and tech
niques will need to be modified to fit specific projects. Therefore, consider
ation of their maintenance and modification is an important part of any
development effort. Tools should be coded in high level languages so that
portability from one computer to another does not entail major rework.

8.3

9.0 SOFTWARE CONFIGURATION MANAGEMENT AND CODE CONTROL

This chapter presents a general discussion of software configuration man
agement (SCM) and code control, including problem reporting and corrective
actions. Control of physical media and computer security (access control) are
also discussed.

9.1 PROBLEM REPORTING AND CORRECTIVE ACTION

A formal procedure of software problem reportjng and corrective action
should be established for all "critical" software,. a Measures should be
established to promptly identify failures, malfunctions, deficiencies, devia
tions, defective materials and equipment, and nonconformances. The problem
reporting system should interface with software configuration management pro
cedures to ensure formal processing to resolve these problems. For any soft
ware defect identified, a time frame should be specified in line with NRC
requirements in which to determine if a potential safety concern has arisen and
if so, whether it is reportable to NRC.

Problems encountered during software development or operation may result
from defects in software, in hardware, or in system operations. Because of the
large number of possible defects, defect sources, and means of detection, a
centrally located system for monitoring software defects is necessary. The
objectives of the software problem reporting and tracking system are
(IEEE 1986b):

"* to assure that the defects are documented, corrected, and not

forgotten

"* to assure that the defects are assessed for their validity

"* to assure that all defect corrections are approved by a review team
or change control board before changes to the software configuration
are made

"* to facilitate measuring the defect correction process

"* to inform the designer and user of the defect's status

"* to provide a method of setting priorities for defect correction and
scheduling appropriate actions

"* to provide management with knowledge of the status of software
defects

(a) "Critical" denotes software whose failure could cause a monetary loss or
physical loss, or would have impact on public health or safety.

9.1

* to provide data for measuring and predicting software quality and
reliability.

Standard forms or documents are encouraged for reporting problems and pro
posed changes for critical software. These forms should include the following
items as a minimum (IEEE 1986b):

"* a description of the problem and proposed corrective action

"* authorization to implement the change

"* a list of all items expected to be affected by the change

"* an estimate of the resources required for the change

"* identification of the personnel involved in the origination and dis
position of the problem report and in the resolution of the problem

"* an identification number and date.

9.1.1 Corrective Action Procedures

Corrective action procedures deal with the process of correcting software
discrepancies. All corrective actions must be supported by software develop
ment and testing. Corrective actions must allow developers enough latitude so
that their productivity and creativity are not encumbered. Significant nega
tive impacts on the cost and reliability of software can occur if corrective
action is not timely or is improperly administered. Software errors that go
uncorrected until the system is implemented cost far more to correct than those
that are uncovered during software development. The corrective action process
must be established early in the development cycle. Prompt detection and early
correction of software deficiencies cannot be overemphasized.

Corrective action procedures should aid rather than hinder the systematic
identification and correction of software discrepancies and anomalies. The
baselines established in the SCM system should permit systematic incorporation
of corrective action procedures. These procedures should include steps for
identifying the discrepancy in writing, documenting the proposed changes, inde
pendently reviewing the proposed changes for adequacy and retesting of the
affected code and all interfacing modules.

Corrective action procedures should establish a mechanism for feedback to
users on the error analysis of individual problems, and information about
recurrent types of problems. Conversely, corrective action procedures should
require software users to inform the program developer when errors are dis
covered in the computer program, so that the developer can examine and assess
the overall effects of the error. Users should be provided with sufficient
information to determine what effect the defect has had on previous calcula
tions or decisions.

9.2

The program developer is ultimately responsible for the resolution of
errors discovered during software development and use. Furthermore, the devel
oper should decide if the error can be corrected with a minor change, or if a
significant revision that requires reverification of the software is neces
sary. After the significance of the error is assessed, the developer should
inform all users of the corrective action planned and the effect of the changes
on the results already obtained with the defective program.

Effective corrective action procedures require input from software
designers, developers, and testers, as well as SQA and configuration management
organizations. This input helps determine what in the original development
process went wrong. Existing methodologies should then be reexamined by pro
ject management to determine actions to be taken to minimize recurrence of such
defects. In particular, any points in the software development life cycle that
tend to be error-prone should be identified. This function should be incorpor
ated as part of records collection, maintenance, and retention, discussed in
Chapter 5, Section 5.

9.1.2 Organizational Responsibilities

Validating, tracking, and resolving software problems require the coordi
nation of various groups within the organization. The SQA plan should specify
the groups responsible for authorizing and implementing problem reporting and
corrective actions. The groups should be composed of software designers,
developers, and testers, as well as SQA and SCM personnel. These groups should
be vested with the authority to enforce the program.

The relationship between the corrective action program and the overall SQA
program, SCM system, and program management plan should be clearly defined.
The SQA plan should also identify the point in the development process at which
the generation of problem reports is required. The program plan should cover
the organization of the SCM operation; management responsibilities; the inter
faces between SQA, program development, and the SCM organization; SCM implemen
tation; and applicable management policies. Each of these topics is covered in
detail by Bersoff et al. (1980), and IEEE's Guide for Software Confiuration
Managernent (IEEE 1986a).

9.2 SCM ACTIVITIES

SCM activities consist of the following: configuration identification;
configuration change control; configuration status accounting and reporting;
configuration audits and reviews; use of SCM tools, techniques, and method
ologies; supplier SCM control; and collection and retention of SCM records
(Bersoff et al. 1980; Doggett et al. 1983; IEEE 1980a and 1986a).

9.2.1 Configuration Identification

Labeling the components, units, or documents associated with software can
be accomplished several ways. Numbering schemes can identify the components,
or a hierarchy of names can be used to organize and identify components with

9.3

mnemonics or key English labels. The concept of baselines is important in this
function because it allows everyone associated with a project to have a common
point of reference when they are defining, developing, or changing a software
product.

9.2.2 Confiuration Change Control

Configuration change control must provide the controls necessary to manage
and control the change process. The mechanics of processing changes need to be
defined by the SCM plan. Appropriate signoff procedures must be incorpor
ated. A change control board (CCB) has proven to be most effective in SCM of
large projects and critical software. A plan needs to be established to define
the formal structure of the CCB; most importantly, the scope of the CCB author
ity must be established.

9.2.3 Configuration Status Accountinq and Reportin_

Configuration status accounting (CSA) is used to develop and maintain rec
ords of the status of software as it moves through the software life cycle.
CSA may be thought of as an accounting system. It must be established early
enough in the software development life cycle to allow firm control to be
applied.

9.2.4 Configuration Audits and Reviews

As with any established SQA procedure, the SCM process should be audited
and reviewed. The configuration items can be audited when the baseline is
released. The amount of audits involved will vary according to the baseline
being released. The criteria for the audit, including the roles of its par
ticipants, should be set in the SCM plan. At a minimum, audits should be per
formed whenever a product baseline is established, whenever the product
baseline is changed, or whenever a new version of the software is released.

9.2.5 Supplier SCM Control

The subcontractor or software supplier must implement an SCM system com
patible with the buyer's SCM system. The buyer's SCM group should perform an
SCM audit of each major subcontractor used to ensure satisfactory compliance.
Further discussion of this important activity is found in Chapter 10.0.

9.2.6 Collection and Retention of SCM Records

The general collection and retention of SCM records fall are discussed
under the topic documentation (Chapter 5.0). Specific items that should be
retained under code control are user-supplied items and the baseline and tests
library.

Use-Sup plied Items

When a code is specified, items are developed that need to be retained and
controlled as the software is being developed. Included in this category are

9.4

documentation providing the equations for the model, data to be included in the
data base, parameters to be incorporated into the model, and possibly, previ
ously coded subroutines and software. These items are listed at the outset of
code development and placed under configuration control.

Baseline and Tests Library

The items enumerated in Chapter 5.0 that are pertinent to a particular
project should be maintained, using SCM procedures in the baseline and tests
library. Most of these items will change little during the course of operation
of the code itself.

A computer program library system provides an effective means to control
software documentation and operating programs that may be stored on several
kinds of media (cards, tapes, disks, etc.). Documentation and program storage,
retrieval, and change processing are essential activities in the library func
tion. SQA policies should provide for monitoring of the library control system
to ensure that correct procedures are followed.

Test documentation that has been prepared during software development
should be maintained for regression testing whenever changes are made. Doing
so provides confidence that the software is still reliably producing the same
results as when originally tested upon completion of development. These tests
can be repeated and compared manually or with appropriate file comparison rou
tines on-line to determine where any changes have occurred in the results of
the calculation or in any function that the software is to carry out.

The amount of material may seem large. However, with the improving stor
age media such as laser disks, videotapes, and other storage media having large
capacity capabilities, the storage of such documentation on-line becomes quite
practical. For updating and maintaining documentation, the advantages of these
media far outweigh the inconvenience of storing them.

9.3 CODE CONTROL

Code control encompasses the procedures necessary to distribute, protect,
and ensure the validity of the operating software and associated documenta
tion. Once a code baseline has been established, the operating code should be
put under SCM and placed in a centralized computer program library. The SQA
plan should require that adequate controls and security measures are estab
lished for software changes and for protection from inadvertent alteration
after the code has been baselined.

The software to be controlled can include computer-readable documentation
and executable code. The particular types to be controlled on a given project
should be specified by general SQA policy. In the nuclear industry, these
types are typically involved in the design or analysis of operation of safety
systems. However, any software considered critical can be a candidate for
control.

9.5

New version implementation should generally follow the procedures men
tioned in Section 9.2.6. It is the responsibility of the baseline and tests
librarian to maintain a user list as a formal record and to notify users when a
new version becomes available, alerting them when any changes have been made
that might affect their calculations. It is beneficial to identify where the
code or documentation has been modified by bars in the margins, or lists of
pages or lines that have been modified. The easiest way to maintain a user
list is by simply employing system software that identifies when a particular
piece of software is being used. However, when software is distributed for use
on more than one type of computer, maintenance of a user list becomes somewhat
more difficult.

Accurate and unique identification of all versions of a computer program
should be ensured. Controls must be established to record the changing of
source or object code or related material. The software library should assign
and track identification numbers of computer programs and documentation,
including revisions. The library should also provide documentation of release
authorization. An authorized signature list needs to be in place for this
purpose. The software library should assist with the arrangements for marking,
labeling, and packing software shipments, and should maintain logs and records
of the distribution, inventory, and configuration control/status accounting for
deliverables. A central index should be established that lists the documents
composing the project file.

9.4 PHYSICAL MEDIA CONTROL

The control of physical media and associated services is the performance
of functions that assure that the stored data or software is physically
retrievable and cannot be lost or compromised by day-to-day operations or cata
strophic events.

Typical storage media includes magnetic disks, magnetic tapes, large-scale
integrated circuits, punch paper tape, program cards, magnetic diskettes, and
computer listings. As technology evolves, the media will probably also include
videocassette tapes, laser disks, compact disks, and other media of the audio
video industry.

9.4.1 Access Authorization and Security

Control of physical media must be provided to assure that the stored
software is accessible only to authorized persons that can demonstrate need of
access. Greater attention has been focused lately on physical media control
because of recent violations of many computer systems by "hackers" and other
unauthorized individuals. Adequate protection from unauthorized access to
computer program media is available through several methods. The primary
method is password control or hardware access protection, including limited
access program libraries, encryption, external markings, and proprietary state
ments identifying the controlled programs. Modern computer operating systems
are being designed with extensive security features, especially when access is
permitted by telephone lines and associated hardware modems. The following

9.6

standards and guidelines have been developed for physical security of computer
media: NBS 1974, 1979, and 1980; Ruder and Madden 1978; Shankar 1977; and
Steinauer 1985.

Operating computer codes are usually controlled and maintained by the code librarian. The code librarian is responsible for assuring that only the approved versions are distributed and used for analysis, and that any code
modifications are made in accordance with established procedures. The computer
system used should have the necessary software tools to capture all the information essential to produce distribution records and status reports on the
software.

9.4.2 Protection from Damage, Alteration, and Degradation

The physical media upon which the software is stored must be controlled so that the software is not damaged, altered, or degraded. This can be accom
plished by providing adequate SCM techniques, controlled software libraries,
and safe storage techniques such as fireproof and waterproof vaults that are anti-static and anti-magnetic in design. Periodic physical checks of the media
to ensure the use of such controlled environments will minimize degradation.

It is recommended that there be at least two backup copies of any software considered critical. These backups should be stored in separate locations to preclude the possibility that the same catastrophic event could damage both copies. One common practice is to implement a common storage facility for use by many different organizations, with each organization having an additional
local facility for software storage.

A second operating copy of critical software should be provided to allow
ease of access to the user in case the first operating copy is somehow
degraded. The second copy is maintained on the same central machine so that the user can access it readily if it becomes evident that the primary copy has not given a correct result. Periodically, the two copies should be compared to
assure that no degradation has taken place.

In addition, to safeguard against physical damage, protection from inad
vertent damage during routine operations must be available. This protection
can be provided by using library facilities in which access is limited by means of controlled passwords. The system manager or librarian is the only person to allow access, write, or delete privileges. Procedures must be provided to guide the librarian in providing backups and in rare instances, to only author
ized changes to the software itself. There have been many cases of people, including code librarians, who have inadvertently destroyed software by not
following established procedures. The routine functions of library management
are described in the references listed in Section 9.4.1.

9.4.3 Verification of Physical Transmittal

When software is accessed from the central library, it is important that there be an established way to verify that the software was transmitted cor
rectly. Several practices can be used, such as using check sums, parity

9.7

checking, and multiple transmissions with ensuing file comparisons. Appropri
ate test cases should be transmitted along with the software. These test cases

can be run to verify that the software performs correctly.

9.8

10.0 VERIFICATION AND TESTING

As software becomes an increasingly important part of many different kinds
of systems that perform complex and critical functions in the nuclear industry,
the risk of software-caused failures has increased dramatically. There is now
general agreement on the need to increase software reliability and quality by
eliminating errors made during software development. Industry and academic
institutions have responded to this need by improving development methods in
the technology known as software engineering, and by employing systematic
checks for detecting errors in software during and in parallel with the devel
opment process. This second technique for achieving reliable software is
called verification. Software testing is a subset of software verification and
will also be dealt with in this chapter. Validation is a broader term than
verification and includes the whole process of verification throughout the
software life cycle.

10.1 VERIFICATION

Verification concepts and principles for software development and use have
typically not been widely implemented in the nuclear industry. Until recently
no guidelines or standards have been available that directly address verifica
tion (except in the aerospace industries), although there are guidelines cover
ing various types of reviews and related activities. The IEEE, NBS, and ANS
are currently addressing this lack of guidelines (Adrion et al. 1981; ANS/ANSI
1987; IEEE 1986e).

Confidence in the performance of stand-alone codes has traditionally been
established by benchmarking the results from code computations or empirical
data, and by comparing computed results with less complex models. The verifi
cation methods described in the following sections have seldom been implemented
during the other phases of code development.

Programming is done primarily by scientists or engineers, who have little
training in the formal aspects of software development. These groups are
highly motivated to get a program running in the shortest time poss'ible. The
results of this expediency is that the users find the bugs in a software sys
tem, after the system is put into production. While this costs the developer
very little, it potentially costs the user orders of magnitude more than it
would cost the developer to fix the defect during the development phase. The
cost of fixing an error, both in time and money, increases dramatically as the
life cycle progresses. Figure 10.1 illustrates this point (Wilburn 1983a).

10.1.1 Effects of Verification

Implementation of a verification methodology results in systematic review,
analysis, and testing employed throughout the software life cycle. Verifica
tion ensures the production and maintenance of reliable and high quality soft
ware. There are two fundamental criteria for reliable software. The first is
that the software adequately and correctly performs all intended functions.
The second, and more subtle, criterion is that the software does not perform

10.1

so

RELATIVE
COST TO
CORRECT 1
ERROR

2

PRELIMINARY I DETAILED 1 CODE INTEGRATE I VALIDATE I OPERATION

DESIGN DESIGN AND
DEBUG

FIGURE 10.1. Software Error Cost Versus Software Development Phase

any function that either by itself or in combination with other functions can
degrade the performance of the entire system.

Verification has caused major changes in the practice of software devel
opers. "Black-art" programming practices have been replaced with planned,
systematic program development. Each phase of development is considered com

plete only when the phase has been documented and reviewed sufficiently so that

an independent person can easily understand and evaluate the documentation.

One criticism of verification programs is that they substantially increase
the cost of software development. However, when the total cost of software is
considered (i.e., the costs throughout the total software life cycle, from
inception to decommissioning), verification actually results in a reduction in
the overall cost of software development.

10.1.2 Verification Concepts

This section describes a number of concepts associated with the verifica
tion process (Wilburn 1983a). In general, these concepts will affect at least
one of the phases of the software life cycle. Table 10.1 presents these con
cepts, which are discussed below.

10.2

TABLE 10.1. Verification Concepts

"* SRS Is Required

"* Baselines Must Be Congruent

"* Verification Is Not Only Testing

"* Verification Should Be Applied to All Components

"* Verification Should Be Applied to All Changes

"* Verification Should Be Independent of Development

"* Verification Costs Can Be Reduced Using Automated Tools
"* Verification Requires Training, Judgment, and Experience

"* Verification Must Be Done by More than One Method

"* A Verification Plan Is Required

"* Verification Should Include a Metrics Group

"* Verification Must Be Tailored to the Project
"* Organization Standards and Guidelines Are Required

"* Enforcement Is Required

"* SCM Is Required

"* Accurate Records Must Be Kept

"* Management Must Show Commitment

SRS Is Mandatory: The Software Requirements Specification (SRS), which is the
first product in the software life cycle, is a requirement for any verification
program. The SRS forms the foundation for determining the correctness of a
software system by specifying what the software is supposed to do. Unless the
tester, developer, and user know what the program is supposed to do, the pro
gram is essentially impossible to verify.

Baselines Must Be Congruent: Verification must check the consistency between
successive levels of detail within and between successive baselines (i.e.,
products of successive life cycle phases). The extent to which this can be
accomplished depends on the information contained at each level in the respec
tive baselines. The design specification, for example, can only be verified
against an unambiguous and complete SRS. In this manner, verification ensures
that what is intended in one baseline or life cycle phase is actually achieved
in the succeeding one. In other terms, the verification process must establish
traceability between life cycle phases. A systematic method for carrying out
this traceability should also be included within a software configuration man
agement program, which is described in Chapter 9.0.

Verification Is Not Only Testinj: Verification should be integrated into all
phases of the software development life cycle, rather than isolated in a sepa
rate testing stage, which takes place long after the requirements specification

10.3

and design phases. Testing is one aspect of verification, but it cannot do the
whole job. Verification is most effective and efficient when applied from the
beginning of the development process.

Verification Should Be Applied to All Compon-ernts: Many software products are
created within each software life cycle phase and include intermediate pro
ducts, support software, or tools that have been created for the particular
development process. Verification should be applied to these components, as
well as to the end products, to accomplish a quality end-product.

Verification Should Be Applied to All Changfets: Because of their high cost,
documentation and verification of software changes are sometimes omitted, with
severe consequences to the overall project. If the changes are significant
(i.e., a modification to the original requirements), the change should be
implemented as though a new piece of software were being developed. Modifi
cation or correction to the software structure at later phases requires reveri
fication of the original structure produced during previous phases.

Verification Should Be Inependent of Develqpment: Independent verification by
a group separate from the development group is usually necessary. A software
developer has a vested interest in showing that the piece of software works
because it reflects on his other skills as a developer. A group independent of
the development process is likely to do a more thorough and objective job of
planning and executing the software verification, producing a series of complex
tests and verification methods. Another motive for an independent verification
team is its freedom from preconceived ideas that may create blind spots in the
evaluation.

Verification Costs Can Be Reduced by Using Automated Tools: Many activities of
the verification process throughout the software life cycle can be reduced in
cost using automated tools. Government and industry publications are available
that give extensive lists of these tools (see Houghton 1980, 1981, 1982; IEEE
1979a, NBS 1981).

Verification Requires Training, Judgment, and Experience: The use of verifica
tion does not of itself guarantee success. Success depends heavily on the use
of judgment, training, and experience by the individuals involved. It is best
to use people who have experience in software development projects that have
employed software engineering and verification methodologies.

Verification Must Be Done By More Than One Method: Traditionally, testing has
been the only methodology of software verification. However, a single method
of verification cannot provide sufficient substantiation of the correctness and
reliability of the software.

A Verification Plan Is Required: A plan must be created to describe the veri
fication process in detail. A software verification plan describes the verifi
cation approach and methods of performance, specifies how errors will be
reported and documented, specifies the level of detail, and establishes the
degree of rigor to be imposed in accordance with system criticality (ANSI/IEEE
1984).

10.4

Verification Should Include a Metrics Group: A metrics group is responsible
for quantitative data collection, and the metric analysis and forecasting of
the expected number of errors. This group defines useful metrics and uses them
to forecast results with maximum effectiveness. A discussion of the types of
metrics and data that are appropriate to collect are covered by Wilburn
(1983a).

Verification Must Be Tailored to the Project: The criticality of the software
project determines the amount of verification necessary. The decision as to
how much verification should be used is basically one to be made by project
management. Verification should, however, always be applied to critical areas
of a particular piece of software.

Organization Standards and Guidelines are Required: For the verification pro
cess to proceed systematically, company standards and guidelines need to be
developed to guide the development process. These standards and guidelines can
either be developed in-house or by an organization such as IEEE.

Enforcement Is Required: The lack of enforcement of appropriate standards and
guidelines on the earlier products of the life cycle make code verification
difficult, time-consuming, and almost impractical.

SCM Is Required: A software configuration management (SCM) system (described
in Chapter 9.O0 is required that identifies and controls approved and imple
mented changes. It is vital that any changes found to be necessary to the
verification process are correctly implemented.

A configuration control librarian is given the responsibility for ensuring
that all development materials (such as the SRS and other products, tape and
card decks, and program listings) are complete, current, and unaltered. Veri
fication materials such as tools, test data, and test results are similarly
controlled by SCM procedures and the configuration control librarian.

Accurate Records Must Be Kept: Many documents may be generated during the
software life cycle that record verification activities. These documents
include review reports such as the software requirements specification reviews,
design reviews, and the verification readiness review; inspection reports that
result from desk checks of software or other baseline documents; software veri
fication reports that describe the tests that have been run on the system; and
any data collected by a software metrics group.

Management Must Show Commitment: For verification to be an effective process
in software development, management must be committed to the idea. Unless top
management is committed to verification, there is little incentive for project
management to follow verification practices. In fact, verification may be per
ceived as undesirable because of the additional short-term cost of verification
efforts.

Management cannot assume that programmers know how to carry out software
development and verification properly. Most inexperienced programmers and
software developers tend to generate complex and poorly documented codes.

10.5

Therefore, training programs, in addition to appropriate software development
standards, are required. In association, management incentives must be pro
vided to project management and software developers to encourage use of these
training programs.

10.1.3 Verification Methods Across the Software Life Cycle

The sections below describe how verification methods can be implemented in
each phase of the life cycle. Appendix A of Wilburn's work (1983a) references
more than 30 verification methods that can be used throughout the software life
cycle. These verification methods are summarized below.

Requirements Specification

Software Requirements Analysis: Software requirements analysis is one of
the most important verification methods because the derivation of formal speci
fications is one of the most error-prone of all programming activities.
Requirements analysis is performed by the development team to ensure that each
software requirement is completely and correctly defined. The checklist given
in Appendix C (Wilburn 1982b) can also be used effectively in this analysis.

Unique Tagging of Requirements: The verification process throughout the
software life cycle is substantially easier if each requirement is given a
unique identification or tag.

Writing of Testable Requirements: An adequate verification process begins
in the SRS activity with the writing of valid testable requirements. The veri
fication should specify criteria that can be measured to determine whether they
have been successfully met, rather than simply stating general requirements.

Use of Requirements Specification Languages: Many of the mistakes
(defects) of the SRS can be eliminated by using better methods of problem defi
nition, i.e., using specification languages. Languages such as SREM and PDL
are being developed to address problem definition. The use of these languages
makes each requirement more quantitative and testable, which, as noted above,
is required for proper verification.

Use of Structured Methods: By systematically breaking down a complex
problem into a number of intellectually simpler problems, solutions can be con
structed for each "subproblem." These solutions are probably more correct and
easily verifiable than those from the total problem. Similarly, because of
these simpler problem pieces, tests can be generated more easily. This is the
essence of the structured approach.

Model Verification: Part of the requirements definition phase in scienti
fic and engineering software development is definition and incorporation of
mathematical models to describe physical processes. To assure that these
models are adequate, a model verification methodology should be incorporated.
The following approach may be used:

10.6

1. establish the limits of the system inputs over which the model is
believed to be valid due to approximations used in modeling and/or
physical constraints

2. determine the variability in performance of similar software systems
given the same inputs

3. establish prediction error tolerances for the software system being
considered

4. run a simulation of the software system and establish acceptable
bands around each simulation

5. superimpose any experimental data on simulation results

6. identify data points that fall outside the bands.

Functional Specification/Detailed Software Design

Several methodologies can be incorporated into the function specification/ design phase of the software life cycle which will result in software that is easily verifiable during the software construction and software verification
(or testing) activities, and which also will lead to higher quality software
with less propensity to failure. Some of these methods are identified below.

Defensive Design: Defensive design is basically the use of design method
ologies known to result in high quality software. Examples are use of appropriate standards and guidelines; use of design margins; design that anticipates
defects; avoidance of intertwined control constructs; use of a hierarchical design structure; use of a program design language; and use of principles of modular design with coherent, cohesive modules.

Fault-Tolerant Design: The impact of program failures can be reduced most effect-ively during the design phase by first explicitly identifying assumptions
whose violations would be critical to acceptable program operation. The designer should then specify how the program should behave if any of these assumptions are violated. Such a "fault-tolerant" design makes software continue to function successfully in spite of failures when faults occur.

Use of Structured Techniques: A higher quality and more easily verifiable
product is usually achieved by applying approaches popularly known as structured techniques. The objective of these techniques is to reduce the complex
ity of the design and verification of the software by dividing the system into
intellectually manageable components.

Completeness of Design Documentation: The form and completeness of design documentation are a significant part of the verification process. They determine the feasibility of 1) verifying that the design is consistent with and has satisfied the requirements, 2) performing consistency and completeness checks

10.7

within the design itself, 3) verifying the consistency of the code with the
design, and 4) providing a more thorough testing of the code based on the
design.

Threading of Design to SRS: Tracing and verifying requirements as they
are interpreted into the design and then into code is a major problem. One way
of tracking requirements is to note the driving requirement for each design
element or section of code in the design representation, or as comments in the
code or listing. A master requirements tracking document can summarize for
each requirement the location of the related design elements or code sections.

Design Analysis: Design analysis ensures that the computer program design
is correct and that it satisfies the defined software requirements. The first
step in design analysis is to check for design completeness by correlating
design elements with their source requirements. Techniques are then applied to
verify design elements such as mathematical equations, algorithms, and control
logic. Techniques for verifying the mathematical elements include independent
derivation, dimensional analysis, and comparison to outside references. To
verify certain algorithms, such as those for estimation and automatic control,
simulation models are used to evaluate the algorithm's response to external
stimuli. Control logic is more difficult to verify; it is best analyzed by
determining the set of conditions for which the program must execute correctly,
then manually analyzing the logic paths for each condition.

Coding and Software Generation

Many verification methods can be incorporated into the software coding and
generation phase to improve quality, reduce error rate, and increase reliabil
ity. The following sections present some of these methodologies.

Team Efforts: Software is best developed by teams. An advantage of team
development is that it can compensate for individual differences. A team can
find defects overlooked by individual members in their own work and can keep
the same problems from resurfacing. The exchange of information at team meet
ings keeps all members up to date on various problems.

Peer Review: Peer review is a technique of evaluating programs in terms
of overall quality, maintainability, extensibility, and usability.

Coding Standards: The use of coding standards in the development of soft
ware permits reviewers to be on common ground when they are verifying a soft
ware module. If each software module throughout the project is formatted like
every other, a reviewer will always be in familiar territory. A similar format
expedites the review process and makes possible the relatively easy identifica
tion of errors in format and deficiencies. It is strongly recommended that a
coding standard be utilized and developed for each software development
project.

Self-Descriptive Programs: Self-descriptive programs incorporate documen
tation (whether it is design or requirements specifications) into the source
program itself. Documentation internal to the program makes the verification

10.8

and testing easier, and is a powerful incentive for proper maintenance and an
assurance that documentation will be accessible to the user. In the case of
scientific software commentary which references the source of the equations,
the models, and the logic are of great help to reviewers and users in verifica
tion and validation of the software or in establishing the adequacy or applica
bility of the software.

Code Analysis: Code analysis is performed to verify that the computer
program, as coded, correctly implements the specified design. Code analysts
examine the program's source language and its compiled or assembled object code
using a variety of techniques. The equations and logic of the source language
program are reconstructed, either manually or using automated aids, and com
pared to those specified in the design to identify errors made in translating
the design into programming language. Violations of programming standards are
also identified.

Assertions and Assertion Checkers: The use of assertions and associated
assertion checkers come under the general heading of self-validating programs.
The program is instrumented with dynamic assertions, and then usually a pre
processor is used to generate the appropriate code in the high level language
that is being used to check the assertions during code operation. Assertions
should be placed between statements such that every loop and every branch are
cut by at least one assertion. Assertions are a claim that the stated rela
tions hold at this point each time the program control reaches that point.

Parallel Design of Module Tests: An effective means of validation during
software construction is to design the module tests in parallel with the con
struction of the module. When applying criteria to ensure that the module is
effectively tested, logic errors will often become readily apparent to the
developer.

Data Flow Analysis: If, in the design of a program module, each subrou
tine parameter is classified as input, output, or computational, data flow
analyses can then be used to ensure that 1) all input variables are only refer
enced and never assigned values, and 2) all output values are always assigned a
value along some path through the program. In data flow analysis, the goal is
to trace the behavior of program variables as they are initialized or modified
while the program executes. Data flow analysis is performed by associating at
each node in the data flow graph values for the tokens that represent program
variables, and by indicating whether the corresponding variable is referenced,
unreferenced, or defined with the execution of the statement represented by
that node. Some data flow analysis methods can be automated.

Code Instrumentation: Code instrumentation is inserted into the program
solely to measure program characteristics. Knowledge of these characteristics
can be useful for program verification. For medium-sized and large projects,
tools can be acquired or developed to do instrumentation automatically. For
small projects, the programmer can do his or her own instrumentation. Examples
of the type of analyses that can be performed using code instrumentation
include the following: auxiliary coding such as checking array boundaries,

10.9

checking loop control variables, determining if key data values are within per
missible ranges, tracing the execution, and counting the number of times a
group of statements is executed.

Static and Dynamic Analysis: Static analysis focuses on the form and
structure of the programming module, but not on the functional or computational
aspects. It detects classes of errors or error-prone constructs or anomalies.
Dynamic analysis usually consists of a three-step process: 1) static analysis
plus instrumentation of the program, 2) execution of the instrumented program,
and 3) analysis of the instrumented data. Often this process is accomplished
interactively through automated tools.

10.2 TESTING

Software testing is the final verification activity in the software devel
opment phases of the software life cycle and includes software unit, subsystem,
and system testing. This activity should follow the procedures detailed in the
software verification plan. The subject of software testing is very broad.
Many books, reports, and papers have been written on this subject (see Adrion
et al. 1981; Beizer 1983 and 1984; Branstad et al. 1980; Computer Program Test
ing 1981; Glass 1979; IEEE 1978, 1983f; ANSI/IEEE 1987; Infotec 979a and
1979b; McCabe 1982; Myers 1976 and 1979; Powell 1982a and 1982b).

The objective of testing during software development is to provide assur
ance that the software performs as specified by its technical and operational
requirements, which are detailed in the SRS and design documentation. Testing
activities should be designed to assure that these objectives are achieved in
an orderly, cohesive, clear, and controlled fashion. An effective SQA testing
program must start with the requirements definition phase and address any test
ing performed throughout the software life cycle, including the operation and
maintenance phases.

10.2.1 Planning

A test plan document should include (Lipow et al. 1977):

"* a description of the purpose and scope of each level of testing to be
conducted on each deliverable item or support item

"* identification of the organization responsible for each level of
testing

"* identification and description of the pre- and post-test documenta
tion to be generated for each level of testing, including test speci
fications, procedures, and logs

"* test methods to be used to establish compliance (i.e., test by func
tion or structure)

10.10

"* identification and use of the support software and computer hardware
to be used in testing

"* test standards and quality criteria for acceptance to be employed.

10.2.2 Performance

The performance of testing should follow the developed test plan in
detail, keeping appropriate records. Individual tests that are appropriate to
specific cases can be designed using recommendations from the references
identified in Section 10.2.

10.2.3 Review

The SQA plan should identify the activities for review of software testing
which should include (U.S. DOD 1979):

"* review of the software requirements to determine their testability

"• review of the test plans and procedures for compliance with appro
priate standards and satisfaction of contractual requirements

" review of the test requirements and criteria to be used to determine
their adequacy, feasibility, and the satisfaction of the requirements
speci fi cation

"• monitoring of the test and certification processes to establish that
the test results are indeed the actual findings

"* review and certification of test reports

"* assurance that test-related documentation is retained to allow
repeatability of the tests.

Review procedures should follow the recommendations given in Chapter 7.0 and be
incorporated into established milestones.

10.2.4 Acceptance Testing and Certification

Acceptance testing and certification are related to testing performed
during software development. In fact, many tests used in acceptance testing
are identical to those performed during development testing; however, accep
tance testing/certification is more formalized than development testing.

Acceptance testing is defined as "formal testing conducted to determine
whether a software system satisfies its acceptance criteria and to enable the
customer to determine whether to accept the system" (Powell 1982b).

Formal testing includes the planning and execution of several kinds of
test, (e.g., functional, volume, performance tests to demonstrate that the
implemented software satisfies customer requirements for the software system.

10.11

Acceptance testing consists of three activities and many sub-activities. Ref
erence should be made to Wallace (1986) for an overview of software acceptance
testing and an extensive bibliography on the subject.

The first activity, test planning, determines, from the software require
ments, what tests should be performed for each software function and what tests
will exercise the entire computer program's functions or modules. An accep
tance test plan is developed from these findings and the test procedures pre
pared to specify the actual acceptance tests in detail. Second, the acceptance
testing is conducted to establish the proper execution of each software func
tion. Third, analysis is performed to demonstrate that the integrated software
has operated correctly in the use environment.

Performing adequate acceptance testing requires that each software
requirement be identified according to some numerical or other scheme. This
allows a specific requirement to be tested with an appropriate result, so that
it can be recorded that the function was indeed performed correctly. Detailed,
adequate testing can be expensive and time-consuming. However, in the long
run, the time spent and the cost involved are justified. Certification of the
software is indicated by signatures of the concerned parties that testify the
software has indeed performed its functions as specified and is ready for oper
ational use.

10.2.5 Operation/Maintenance Testing

During the course of day-to-day code operation the software system should
be routinely tested, following the same procedures established in the test
planning documentation described above in Section 10.2.1. The results should
be compared with the original results which are to be maintained under configu
ration management. Such routine testing (especially after any maintenance
activities or operating system changes) is known as regression testing and may
identify either software degradation or hidden changes in the environment which
compromise the validity of the software.

10.12

11.0 CONTROL OF SOFTWARE PROCUREMENT

Procured software generally consists of two types. The first type of
software is developed specifically for a particular organization and is new
code. This type is dealt with in Sections 11.1, 11.2, and 11.3. The second
type of software is that which has been developed previously and is being pro
vided "off the shelf" by the supplier (see Section 11.4).

It is essential that appropriate SQA requirements be imposed upon all
suppliers of software to a nuclear utility (Lipow et al. 1977). This can be
achieved by including appropriate supplier SQA requirements in the Request for
Proposal and monitoring the supplier's conformance to these requirements.

11.1 REQUIREMENTS FOR THE SUPPLIER'S SQA PROGRAM

It is recommended that any organization supplying software to nuclear
utilities have a defined SQA program. The supplier's SQA program must include
the following:

"* definition of a software life cycle with intermediate milestones

"* commitment to specific documentation to be supplied to the user

"* commitment regarding the level of detail to be contained in the
documents

"* established review procedures

"* existence of a verification and validation effort

"* identification of software development tools and techniques used in
the effort

"* system of software configuration management

"* methods to provide assurance that the SQA program is actually being
implemented as written.

The purchasing organization should evaluate its choice of suppliers (Lipow
et al. 1977) based on the following considerations:

"* the extent of and specific interactions between the software devel
opment organization (the developer) and the purchasing organization
(user)

"* description and assurance of implementation of the software life
cycle utilized by the developer

11.1

"* description and implementation of the developer's software problem
reporting and corrective action processes

"* description and implementation assurance of configuration control and
management of the software throughout its life cycle

"* developer's methods of assuring that the user's requirements for the
software have been met

"* documentation included in the software package delivered to the user.

Criteria for evaluating each area given above will be established by the pur
chasing organization and will be highly dependent on the end use of the soft
ware to be developed. Examples of questions to be addressed in the procurement
process are provided in Appendix B.

11.2 AUDITING OF THE SUPPLIER'S SQA PROGRAM

The purchasing organization should audit the supplier organization to
assure that each item that the supplier specified will be performed was per
formed adequately. The supplier's SQA plan and procedures for its implementa
tion should be reviewed as well. At specified intervals, the supplier's con
trol activities should be reviewed, including applicable records. These activ
ities should establish that problems identified are corrected quickly and that
the results of the corrective action are documented. Sufficient records should
be maintained to demonstrate the effectiveness of the SQA program.

11.3 NONCONFORMANCE OF A SUPPLIER

Penalty clauses should be written into procurement documentation to
enforce the conformance of the supplier (developer) to the specified SQA pro
gram. The penalty clauses should be strong enough to deter the supplier from
deviating from the plan established when the contract was established. In this
manner, preventative rather than punitive actions will be taken to assure com
pliance to the specified SQA program.

11.4 TRANSFER OF RESPONSIBILITY

Procured software typically enters the organization's life cycle at the
operational phase, where responsibility for configuration management and code
control is transferred to the buyer/user.

This approach to using software "off-the-shelf" has several disadvantages,
including lack of control over the initial phases of the life cycle. The soft
ware package procured from outside suppliers must meet the same QA requirements
as software designed within the organization. Verifying that software indeed
meets the specified criteria for its code class relies on establishment that
the design process for that software has been carried out in the structured,

11.2

systematic manner described in this document. Requisite documentation must be
included as part of the delivered software package. Acceptance tests on the
purchasing organization's computer must be planned, designed, and carried out
in accordance with the software's requirements specifications.

After the code has been tested and/or verified on the purchasing organiza
tion's system, the software must be placed under configuration management.
From that point forward, the code is handled and treated as software developed
by the organization, and the software life cycle is implemented as described.

Another common situation is for facilities to purchase use of software via
a "software clearinghouse." These companies provide read-only access to soft
ware used by the nuclear community. In this case, the clearinghouse places the
software under configuration control and allows access to software on a con
tractual basis. However, this does not absolve the user facility of respon
sibility for controlling use of the software and knowing specific information
about that software. For example, it is important to know version numbers of
the software used to perform calculations, the dates they were run, and who ran
the code. Furthermore, it is imperative that the purchasing organization have
a systematic means of informing all past code users of updates, bugs that have
been identified and fixed, and planned changes to the software. To do this, a
contractual obligation must be established that requires the clearinghouse to
inform the user organization of such conditions. Furthermore, the user facil
ity must assure that someone is responsible for getting this information dis
tributed to the appropriate people within the organization.

Purchasing off-the-shelf software does not absolve the user facility of
responsibility for accuracy of calculational results, identification of soft
ware errors, and assessment of impacts caused by software errors identified by
other users.

11.3

REFERENCES

ANS. 1982. Application Criteria for Programmable Digital Computer Systems of
Nuclear Power Generating Stations. ANS/IEEE-7.4.3.2-1982, American National
Standards Institute/Institute of Electrical and Electronic Engineers, Inc.,
New York.

ANSI/ANS. 1987. American National Standard Guidelines for the Verification
and Validation of Scientific and Engineering Computer Programs for the
Nuclear Industry. Approved Draft Standard, ANSI/ANS 10.4, American Nuclear
Society, La Grange Park, Illinois.

ANSI/ANS. 1986. American National Standard Guidelines for the Documentation
of Digital Computer Programs. ANSI/ANS 10.3-1986, American Nuclear society,
La Grange Parke, Illinois.

ANSI/ANS. 1979. Guidelines for Considering User Needs in Computer Program
Development. ANSI/ANS-10.5-1979, American Nuclear Society, LaGrange Park,
Illinois.

ANSI/IEEE. 1987. Standard for Software Unit Testing. NASI/IEEE Standard
1008-1987, American National Standards Institute/Institute of Electrical and
Electronic Engineers, Inc., New York.

ANSI/IEEE. 1984. IEEE Standard for Software Quality Assurance Plans.
ANSI/IEEE Standard 730-1984, American National Standards Institute/Institute
of Electrical and Electronics Engineers, Inc., New York.

ATC. 1983. A FORTRAN Coding Standard. Associated Technology Co., Estill
Springs, Tennessee.

ATC. 1985. A Product Level Software Documentation Guide. Associated Tech
nology Co., Estill Springs, Tennessee.

Adrion, W. Richard, Martha A. Branstad, and John C. Cherniavsky. 1981. Vali
dation, Verification and Testing of Computer Software. NBS Special Publica
tion NBS-SP-500-75, National Bureau of Standards, Washington, D.C.

Arthur, Jay. 1984. "Software Quality Measurement." Datamation, p. 115
(December issue).

Barikh, Girish. 1980. Techniques of Program and Systems Maintenance. Ethno
tech Inc., Lincoln, Nebraska.

Beizer, Boris. 1983. Software Testing Techniques. Van Nostrand-Reinhold, New
York.

Beizer, Boris. 1984. Software System Testing and Quality Assurance. Van
Nostrand-Reinhold, New York.

R.1

Bersoff, E. H., V. D. Henderson, and S. E. Siegel. 1979a. "Software Configur
ation Management--A Tutorial." IEEE Computer 11(1):6.

Bersoff, E. H., V. D. Henderson, and S. E. Seigel. 1979b. "Attaining Software
Product Integrity." In Proceedings of the Computer Software and Applications
Conference 1979 (COMPSAC-79), p. 680. IEEE Computer Society Catalog
79CH1515-6C, Institute of Electrical and Electronics Engineers, Inc., New
York.

Bersoff, E. H., V. D. Henderson, and S. E. Siegel. 1980. Software Configura
tion Management--An Investment in Product Integrity. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

Boehm, B. W., J. R. Brown, and N. Lipow. 1976. "Quantitative Evaluation of
Software Quality." In Proceedings of the Second International Conference on
Software Engineering, p. 592. IEEE Computer Society Catalog 76CH1125-4C,
Institute of Electrical and Electronics Engineers, Inc., New York.

Boehm, Barry W. et al. 1978. Characteristics of Software Quality. North
Holland Publishing Co., New York.

Boehm, B. W. 1976. "Software Engineering." IEEE Transactions on Computers
C-25(12) :1226-1241.

Boehm, B. W. 1979. "Software Engineering As it Is." In Proceedings of the
Fourth International Conference on Software Engineering, p. 11. IEEE Catalog
79CH1479-5C, Institute of Electrical and Electronics Engineers, Inc.,
New York.

Branstad, Martha A., John C. Cherniavsky, and W. Richard Adrion. 1980. "Vali
dation, Verification and Testing for the Individual Programmer." Computer
13(12):24.

Brown, John R. 1979. Programming Practices for Increased Software Quality."
In Software Quality Management, p. 197. Petrocelli, New York/Princeton.

Bruce, P. and S. M. Pederson. 1982. The Software Development Project-
Planning and Management. J. Wiley and Sons, Inc.

Buckley, F. J. and R. Poston. 1984. "Software Quality Assurance." In IEEE
Transactions on Software Engineering SE-10(1):36. Institute of Electrical
and Electronics Engineers, Inc., New York.

Carrow, J. C. 1976. "Structured Programming: From Theory to Practice." In
Proceedings of the Second International Conference on Software Engineering,
p. 70. IEEE Catalog 76CH1125-4C, Institute of Electrical and Electronics
Engineers, Inc., New York.

Computer Program Testing. 1981. North Holland Publishing Co., Amsterdam, New
York.

R.2

Cooper, John D. and Matthew J. Fisher, eds. 1979. Software Quality Manage
ment. Petrocelli, New York/Princeton.

DeMarco, Tom. 1982. Controlling Software Projects--Management Measurement and
Estimation. Yourdon Press, Inc., New York.

Deutsch, Michael S. 1982. Software Verification and Validation--Realistic
Approaches. Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Doggett, R. B., Z. E. Carey, and N. P. Wilburn. 1983. Guidelines--Software
Configuration Management. HEDL-TC-2263, Westinghouse-Hanford Co., Richland,
Washington.

Dunn, Robert and Richard Ullman. 1982. Quality Assurance for Computer Soft
ware. McGraw-Hill, New York.

Enos, Judith L. and R. L. Van Tilburg. 1981. "Tutorial Series 5: Software
Design." Computer 14(2):61.

Fairley, Richard E. 1985. Software Engineering Concepts. McGraw Hill Book
Co., New York.

Fife, Dennis W. 1977. Computer Science and Technology: Computer Software
Management, A Primer for Project Management and Quality Control. NBS Special
Publication NBS-SP-500-11, National Bureau of Standards, Washington, D.C.

Fisher, Curt F. 1978. "Software Quality Assurance Tools: Recent Experience
and Future Requirements." In Proceedings of the Software Quality Assurance
Workshop, November 15-17, 1978, San Diego, California, p. 116. ACM, New
York.

Foreman, J. J. 1980. "Implementing Software Standards." IEEE Computer
13(6):67.

Freedman, Daniel P. and Gerald M. Weinberg. 1979. Ethnotech Review Hand
book. Ethnotech, Inc., Lincoln, Nebraska.

Fujii, Marilyn S. 1978. "A Comparison of Software Assurance Methods." In
Proceedings of the Software Quality Assurance Workshop, November 15-17, 1978,
San Diego, California, p. 27. ACM, New York.

Gane, Chris and Trish Sarson. 1977. Structured Systems Analysis: Tools and
Techniques. McDonnell-Douglas Automation Co., St. Louis, Missouri.

Glass, Robert L. 1979. Software Reliability Guide Book. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

R.3

Glass, Robert L. 1981a. "Standards for Standards Writers." In Proceedings of
Software Engineering Standards Applications Workshop (SESAW-I), San
Francisco, California, p. 144. IEEE Computer Society Catalog 81CH1633-7,
Institute of Electrical and Electronics Engineers, Inc., New York.

Glass, Robert L. and Ronald A. Noisex. 1981. Software Maintenance Guide
Book. Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Goodenough, John B. 1979. "A Survey of Program Testing Issues." In Research
Directions in Software Technology, p. 316. MIT Press, Cambridge,
Massachusetts.

Gustafson, G. G. and R. J. Kerr. 1982. "Some Practical Experience with a
Software Quality Assurance Program." Communications of the ACM 25(1).

Holthouse, M. A. and S. G. Greenberg. 1978. "Software Technology for Scien
tific and Engineering Application." In Proceedings of the IEEE Computer
Software and Applications Conference (COMPSAC 78), p. 814. IEEE Catalog
78CH1338-3C, Institute of Electrical and Electronics Engineers, Inc.,
New York.

Houghton, Raymond C., Jr. 1981. Features of Software Development Tools. NBS
Special Publication 500-74, National Bureau of Standards, Washington, D.C.

Houghton, Raymond C., Jr. 1982. Software Development Tools. NBS Special
Publication NBS-SP-500-88, National Bureau of Standards, Washington, D.C.

Houghton, Raymond C., Jr. 1983. "Software Development Tools: A Profile."
Computer 16(5):63.

Houghton, Raymond C., Jr. and Karen A. Oakley. 1980. NBS Software Tools Data
Base. NBS Special Publication NBS-IR-80-2159, National Bureau of Standards,
Washington, D.C.

IEEE. 1978. Tutorial: Software Testing and Validation Techniques. IEEE
Computer Society Catalog EH0138-8, Institute of Electrical and Electronics
Engineers, Inc., New York.

IEEE. 1979a. Tutorial: Automated Tools for Software Engineering. IEEE Com
puter Society Catalog EHO150-3, Institute of Electrical and Electronics Engi
neers, Inc., New York.

IEEE. 1979b. Tutorial: Software Management. IEEE Computer Society Catalog
EH0146-1, Institute of Electrical and Electronics Engineers, Inc., New York.

IEEE. 1979c. Standard Computer Dictionary. IEEE Computer Society, Institute
of Electrical and Electronics Engineers, Inc., New York.

R.4

IEEE. 1980a. Tutorial: Software Configuration Management. IEEE Computer
Society Catalog EH0169-3, Institute of Electrical and Electronics Engineers,
Inc., New York.

IEEE. 1980b. Tutorial on Software Design Techniques. IEEE Computer Society
Catalog EHO161-O, Institute of Electrical and Electronics Engineers, Inc.,
New York.

IEEE. 1983a. IEEE Standard Glossary of Software Engineering Terminology.
IEEE Standard 729-1983, Institute of Electrical and Electronics Engineers,
Inc., New York.

IEEE. 1983b. IEEE Standard For Software Configuration Management Plan. IEEE
Standard 828-1983, Institute of Electrical and Electronics Engineers, Inc.,
New York.

IEEE. 1983c. SOFTFAIR: A Conference on Software Development Tools, Techni
ques, and Alternatives. IEEE Computer Society Catalog 83CH1919-0, Institute
of Electrical and Electronics Engineers, Inc., New York.

IEEE. 1983d. Tutorial JSP and JSD: The Jackson Approach to Software Develop
ment. IEEE Computer Society Catalog EH0206-3, Institute of Electrical and
Electronics Engineers, Inc., New York.

IEEE. 1983e. Tutorial on Software Maintenance. IEEE Computer Society Catalog
EH0201-4, Institute of Electrical and Electronics Engineers, Inc., New York.

IEEE. 1983f. IEEE Standard for Software Test Documentation. IEEE Standard
829-1983, Institute of Electrical and Electronics Engineers, Inc., New York.

IEEE. 1984a. IEEE Guide to Software Requirements Specification. IEEE Stan
dard 830-1984, Institute of Electrical and Electronics Engineers, Inc., New
York.

IEEE. 1984b. Model Program in Computer Science and Engineering. IEEE Com
puter Society, Institute of Electrical and Electronics Engineers, Inc., New
York.

IEEE. 1986a. Guide for Software Configuration Management. IEEE Computer
Society Approved Draft Guide P1042, Institute of Electrical and Electronics
Engineers, Inc., New York.

IEEE. 1986b. Guide for Software Quality Assurance Plans. IEEE Guide 983
1986, Institute of Electrical and Electronics Engineers, Inc., New York.

IEEE. 1986c. Standard for Software Engineering Standards Taxonomy. IEEE
Computer Society Approved Draft Standard P1002, Institute of Electrical and
Electronics Engineers, Inc., New York.

R.5

IEEE. 1986d. A Standard for Measurements to Produce Reliable Software. IEEE
Computer Society Draft Standard P982, Institute of Electrical and Electronics
Engineers, Inc., New York.

IEEE. 1986e. Standard for Software Verification and Validation Plans. IEEE
Computer Society Approved Draft Standard P101?_ Institute of Electrical and
Electronics Engineers, Inc., New York.

Infotech. 1 979a. Infotech State of the Art Report--Software Testing, Volume
1: Analysis and Bibliography. Infotech International Ltd., Berkshire,
England.

Infotech. 1979b. Infotech State of the Art Report--Software Testing,
Volume 2: Invited Papers. Infotech International Ltd., Berkshire, England.

Jackson, M. A. 1975. Principles of Program Design. Academic Press, New York.

Kastelein, J. E. 1971. Quality Assurance Requirements During Flight Software
Development. TRW-SS-71-05, TRW Systems Group.

Kernighan, Brian W. and P. J. Plauger. 1978. The Elements of Programming
Style. McGraw-Hill, New York.

Kerola, P. and P. Freeman. 1981. "A Comparison of Life Cycle Models." In
Proceedings of the Fifth International Conference on Software Engineering,
p. 90. IEEE Catalog 81CH1627-9, Institute of Electrical and Electronics
Engineers, Inc., New York.

Lattanzi, L. D. 1979. "An Analysis of the Performance of a Software Develop
ment Methodology." In Proceedings of the Computer Software and Applications
Conference, (COMPSAC 79), p. 7. Institute of Electrical and Electronics
Engineers, Inc., New York.

Lipow, H., B. B. White, and B. W. Boehm. 1977. Software Quality Assurance, An
Acquisition Guidebook. TRW-SS-77-07, TRW Systems Group.

McCabe, T. J. 1982. Structured Testing. IEEE Computer Society Catalog
EH0200-6, Institute of Electrical and Electronics Engineers, Inc., New York.

McCall, James A. 1979. "An Introduction to Software Quality Metrics." In
Software Quality Management, p. 127. Petrocelli, New York/Princeton.

Myers, Glenford J. 1976. Software Reliability Principles and Practices.
Wiley-Interscience, New York.

Myers, Glenford J. 1979. The Art of Software Testing. Wiley-Interscience,
New York.

R.6

NBS. 1974. "Guidelines for Automatic Data Processing Physical Security and
Risk Management." Federal Information Processing Standards Publication 31,
National Bureau of Standards, Washington, D.C.

NBS. 1976. "Guidelines for Documentation of Computer Programs and Automated
Data Systems." Federal Information Processing Standard Publication 38,
National Bureau of Standards, Washington, D.C.

NBS. 1979. "Guidelines for Automatic Data Processing Risk Analysis." In
Federal Information Processing Standards Publication 65, National Bureau of
Standards, Washington, D.C.

NBS. 1980. "Guidelines for Security of Computer Applications." Federal
Information Processing Standards Publication 73, National Bureau of Stan
dards, Washington, D.C.

NBS. 1981. Computer Model Documentation Guide. NBS Special Publication
500-73, National Bureau of Standards, Washington, D.C.

NBS. 1981. Proceedings of the NBS/IEEE/ACM Software Tool Fair. NBS Special
Publication NBS-SP-500-80, National Bureau of Standards, Washington, D.C.

NBS. 1982. Proceedings of the NBS/FIPS Software Documentation Workshop. NBS
Special Publication NBS-SP-500-04, National Bureau of Standards, Washington,
D.C.

NBS. 1983. Guidance on Software Maintenance. NBS Special Publication NBS-SP
500-106, National Bureau of Standards, Washington, D.C.

Neumann, Albrecht J. 1982. Management Guide for Software Documentation. NBS
Special Publication NBS-SP-500-87, National Bureau of Standards, Washington,
D.C.

NRC. 1982. Inspection and Enforcement Manual-Computer Code Development and
Use. USNRC Inspection Procedure 37998.

Osterweil, L. J. 1982. "TOOLPACK--An Experimental Software Development Envi
ronment Research Project." In Proceedings of Sixth International Conference
on Software Engineering, p. 166. IEEE Computer Society Catalog 82CH1795-4,
Institute of Electrical and Electronics Engineers, Inc., New York.

Peters, L. J. and L. L. Tripp. 1978. "A Model of Software Engineering." In
Proceedings of the Third International Conference on Software Engineering,
p. 63. IEEE Catalog 78CH1317-7C, Institute of Electrical and Electronics
Engineers, Inc., New York.

Poston, R. M. 1982. "Software Quality Assurance Implementation." In Proceed
ings of Computer Software and Application Conference 1982 (COMPSAC-82), p.
356. IEEE Computer Society Catalog 82CH1810-1, Institute of Electrical and
Electronics Engineers, Inc., New York.

R.7

Poston, R. M. 1984. "Determining a Complete Set of Software Development Stan
dards." Software 1(3):87.

Poston, R. M. 1985. "Software Standards." IEEE Software 2(1):83.

Powell, Patricia B., ed. 1982a. Software Validation, Verification and Test
ing: Technique and Tool Reference Guide. NBS Special Publication NBS-SP
500-93, National Bureau of Standards, Washington, D.C.

Powell, Patricia B., ed. 1982b. Planning for Software Validation, Verifica
tion, and Testing. NBS Special Publication NBS-SP-500-98, National Bureau of
Standards, Washington, D.C.

Reifer, Donald J. 1979a. "Software Quality Assurance Tools and Techniques."
In Software Quality Management, p. 209. Petrocelli, New York/Princeton.

Riddle, W. E. and R. E. Fairley. 1980. Software Development Tools. Springer
Verlag, New York.

Ruder, Bryan and J. D. Madden. 1978. An Analysis of Computer Security Safe
guards for Detecting and Preventing Intentional Computer Misuse. NBS Special
Publication NBS-SP-500-25, National Bureau of Standards, Washington, D.C.

Shankar, K. S. 1977. "The Total Computer Security Problem: An Overview."
IEEE Computer 10(6):50.

Steinauer, Dennis D. 1985. Security of Personal Computer Systems: A Manage
ment Guide. NBS Special Publication NBS-SP-500-120, National Bureau of Stan
dards, Washington, D.C.

Sheron, B. W. and A. R. Rosztocsy. 1980. Report on Nuclear Industry Quality
Assurance Procedures for Safety Analysis Computer Code Development and Use.
NUREG-0653, U.S. Nuclear Regulatory Commission, Washington, D.C.

Tausworthe, Robert C. 1977. Standardized Development of Computer Software:
Part I, Methods. Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Tausworthe, Robert C. 1979. Standardized Development of Computer Software:
Part II, Standards. Prentice-Hall Inc., Englewood Cliffs, New Jersey.

U.S. Department of Defense. 1979. Software Quality Assurance Program Require
ments. Military Specification MIL-S-52779A, U.S. Department of Defense,
Washington, D.C.

U.S. Department of Defense. 1985. Military Standard-Defense System Software
Development. DOD-STD-2167, U.S. Department of Defense, Washington, D.C.

R.8

U.S. Nuclear Regulatory Commission. 1984. "Quality Assurance Criteria for
Nuclear Power Plants and Fuel Reprocessing Plants." Appendix B of Code of
Federal Regulations, Title 10, Energy; Part 50, Domestic Licensing of Produc
tion and Utilization Facilities. U.S. NRC, Washington, D.C. (10 CFR 50).

Wallace, D. R. 1986. An Overview of Computer Software Acceptance Testing.
NBS Special Publication 500-136, U.S. Department of Commerce-National Bureau
of Standards, Washington, D.C.

Wilburn, N. P. 1982a. Guidelines for Technical Reviews of Software Pro
ducts. HEDL-TC-2132, Westinghouse-Hanford Co., Richland, Washington.

Wilburn, N. P. 1982b. Guidelines--Software Requirements Specification (SRS)
Document Preparation. HEDL-TC-2159, Westinghouse-Hanford Co., Richland,
Washington.

Wilburn, N. P. 1983a. Guidelines--Software Verification. HEDL-TC-2425,
Westinghouse-Hanford Co., Richland, Washington.

Wilburn, N. P. 1983b. Standards and Guidelines Applicable to Scientific Soft
ware Life Cycle. HEDL-TC-2314, Westinghouse-Hanford Co., Richland,
Washington.

Yourdon, Edward. 1978. Structured Walkthroughs, 2nd ed. Yourdon Press, Inc.,
New York.

Yourdon, Edward. 1979. Managing the Structured Techniques. Yourdon Press,
Inc., New York.

Yourdon, Edward and Larry L. Constantine. 1978. Structure Design: Funda
mentals of a Discipline of Computer Program and Systems Design. Yourdon
Press, Inc., New York.

R.9

BIBLIOGRAPHY

ANSl/ANS. 1980. Standard Criteria for the Application of Programmable Digital
Computer Systems in Safety Systems of Nuclear Power Generating Stations.
ANSI/ANS-4.3.2, Proposed American National Standard, Draft 8, American
National Standards Institute/American Nuclear Society, La Grange Park,
Illinois.

Ackerman, A. F., A. S. Ackerman, and R. G. Ebenau. 1982. "A Software Inspec
tion Training Program." In Proceedings of IEEE Computer Society's Sixth
International Computer Software and Applications Conference 1982 (COMPSAC

2_), p. 443. IEEE Computer Society Catalog 82CH1810-1, Institute of Elec
trical and Electronics Engineers, Inc., New York.

Barnes, Kate. 1985. "Doing It Yourself--A Blueprint for Training." PC Maga
zine, p. 147 (August 6 issue).

Basili, V. R. and B. T. Perricone. 1984. "Software Errors and Complexity: An
Empirical Investigation." Communications of the ACM 27(1).

Basili, Victor R. and Robert W. Reiter, Jr. 1980. "Evaluating Automatable
Measures of Software Development and Engineering." In Tutorial on Models and
Metrics for Software Management, p. 280. IEEE Computer Society Catalog
EH0167-7, Institute of Electrical and Electronics Engineers, Inc., New York.

Bryan, William L. and Stanley E. Siegel. 1984. "Product Assurance: Insurance
Against a Software Disaster." Computer 17(4):75.

Buckley, F. J. 1982. Software Quality Assurance--A Tutorial. RCA Government
Systems Division.

CSA. 1984. Software Quality Assurance Program. Canadian Standards Associa
tion Standard Q396.1, Canadian Standards Association.

Cain, J. T., G. G. Langdon, and M. R. Varanasi. 1984. "The IEEE Computer
Society Model Program in Computer Science and Engineering." Computer
17(4):8.

Caveno, Joseph P. and James A. McCall. 1978. "A Framework for Measurement of
Software Quality." In Proceedings of the Software Quality and Assurance
Workshop, p. 133. ACM, New York.

Cooke, C. M. 1984. "Lessons from Implementing a Software QA Section." In
Proceedings of Third Software Engineering Standards Application Workshop
(SESAW-III), p. 68. IEEE Computer Society, Institute of Electrical and Elec
tronics Engineers, Inc., New York.

Bib.1

Daughtrey, H. T., S. Y. Horn, and C. A. Schamp. 1984. "Independent Verifica
tion and Validation for Nuclear Plant Safety." In Proceedings of Third Soft
ware Engineering Standards Application Workshop (SESAW-Ill), p. 92. IEEE
Computer Society, Institute of Electrical and Electronics Engineers, Inc.,
New York.

DeMarco, Tom. 1978. Structured Analysis and System Specification. Yourdon
Press, Inc., New York.

EAI. n.d. EAI Software Quality Assurance. Electronic Associates, Inc.

EAI. 1977. EAI Software Methodology. Electronic Associates, Inc.

ESD. 1977. Software Acquisition Management Guidebook: Software Quality
Assurance. ESD-TR-77-255 (NTIS AD-A047318), National Technical Information
Service, Springfield, Virginia.

Endres, Albert. 1975. "An Analysis of Errors and Their Causes in System Pro
grams." In IEEE Transactions on Software Engineering SE-1(2).

Fagan, M. E. "Design and Code Inspection to Reduce Errors in Program Develop
ment." In Tutorial on Structured Programming: Integrated Practices, p.
216. IEEE Computer Society Catalog EH0178-4, Institute of Electrical and
Electronics Engineers, Inc., New York.

Foster, K. A. 1980. "Error Sensitive Test Case Analysis (ESTCA)." IEEE
Transactions on Software Engineering SE-6(3):258.

Gannon, Carolynn 1979. "Error Detection Using Path Testing and Static
Analysis." Computer 12(8):26.

Gannon, Carolyn. 1983. "Software Error Studies." In Proceedings of National
Conference on Software Testing and Evaluation, p. I-1. National Security
Industrial Association.

Glass, Robert L. 1981b. "Persistent Software Errors." IEEE Transactions on
Software Engineering SE-7(2):162-168.

Greene, J. J., C. P. Hollocker, M. A. Jones, and T. C. Pingel. 1982. "Devel
oping a Software Quality Assurance Program Based on the IEEE Standard 730
1981." In Proceedings of IEEE Computer Society's Sixth International Com
puter Software and Applications Conference 1982 (COMPSAC-82), p. 257. IEEE
Computer Society Catalog 82CH1810-1, Institute of Electrical and Electronics
Engineers, Inc., New York.

Guideline for Lifecycle Validation, Verification, and Testing of Computer Soft
ware, Federal Information Processing Standards Publication (FIPS PUB 101),
U.S. Department of Commerce, National Bureau of Standards, June 6, 1983.

Bib.2

Howden, W. E. 1981. "Errors, Design Properties and Functional Program
Tests." In Computer Program Testing, p. 115. North Holland Publishing Co.,
Amsterdam, New York.

Huang, J. C. 1977. "Error Detection Through Program Testing." In Current
Trends in Programming Methodology--Volume 2, Program Validation, p. 16.
Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Keefe, Patricia. 1979. "Quality Assurance Shows Top Growth in Corporate
DP." Computer World, p. 17 (January 16 issue).

Malsbury, J. 1983. "Educational Support for the Standards Process." In
Second Software Engineering Standards Application Workshop (SESAW-II), p.
119. IEEE Computer Society Catalog 83CH1884-6, Institute of Electrical and
Electronics Engineers, Inc., New York.

McGill, J. P. 1984. "The Software Engineering Shortage." IEEE Transactions
on Software Engineering SE-10(1):42.

Meekel, J. and R. Troy. 1984. "Comparative Study of Standards for Software
Quality Assurance Plans." In Software Engineering Standards Workshop (SESAW
III). IEEE Computer Society, Institute of Electrical and Electronics Engi
neers, Inc., New York.

Miller, Edward. 1979. "Software Quality Assurance." Computer 12(8):7.

Mills, H. D. 1979. "Software Development." In Research Directions in Soft
ware Technology, p. 87. MIT Press, Cambridge, Massachusetts.

Mills, H. D. 1980. "Software Engineering Education." Proceedings IEEE
68(9):1158.

Mizuno, Yukio. 1983. "Software Quality Improvement." Computer 16(3):66.

Neumann, A. J. 1982. Management Guide for Software Documentation. NBS
Special Publication 500-87, U.S. Department of Commerce, National Bureau of
Standards, Washington, D.C.

NRC Inspection and Enforcement Manual: Inspection Procedure 37998 - "Computer
Code Development and Use."

Orr, Ken. 1981. Structured Requirements Definition. Ken Orr and Associates,
Inc., Topeka, Kansas.

Osborne, W. M. 1986. Executive Guide to Software Maintenance. NBS Special
Publication 500-130, U.S. Department of Commerce, National Bureau of
Standards, Washington, D.C.

Bib.3

Osterweil, L. J. and L. D. Fosdick. 1978. "DAVE--A Validation
and Documentation System for FORTRAN Programs." In Tutorial:
ing and Validation Techniques, p. 473. IEEE Catalog EH0138-8,
Electrical and Electronics Engineers, Inc., New York.

Error Detection
Software Test
Institute of

Perry, William F. 1981. Effective Methods of EDP Quality Assurance. QED
Information Sciences, Inc., Wellesley, Massachusetts.

Poetschat, G. R. 1981. "Review of ANS-1O Standards and Activities." In Pro
ceedings of the International Topical Meeting on Advances in Mathematical
Methods for the Solution of Nuclear Engineering Problems, p. 567. Munich,
Federal Republic of Germany.

Powel I, P.
Testing.
National

B., ed. 1982. Planning for Software Validation, Verification, and
NBS Special Publication 500-98, Computer Science and Technology,

Bureau of Standards, U.S. Department of Commerce, Washington, D.C.

Powell, P. B., ed. 1982. Software Validation, Verification and Testing
Technique and Tool Reference Guide. NBS Special Publication 500-93, National
Bureau of Standards, Washington, D.C.

"QA Survey Results: Views Vary Significantly." 1985. Government Computer
News, p. 22 (April 26 issue).

Raskin, Robin. 1985. "Individual Training: A Matter of Style." PC Magazine,
p. 121 (August 6 issue).

Reifer, Donald J. 1979b. "The Software Engineering Checklist." In
Tutorial: Software Management, p. 70. IEEE Computer Society Catalog
EH0146-1, Institute of Electrical and Electronics Engineers, Inc., New York.

Rice, John R. 1979. "Software for Numerical Computation." In Research Direc
tions in Software Technology, p. 688. MIT Press, Cambridge, Massachusetts.

Roderique, G., E. D. Giroux, and M. Pratt. 1980. "Perspectives on Large-Scale
Scientific Computation." Computer 13(10):65.

Schneiderman, Ben. 1980. Software Psychology: Human Factors in Computer and
Information Systems. Winthrop Publishers Inc., Cambridge, Massachusetts.

Schneidewind, N. S. and H. M. Hoffman. 1979. "An Experiment in Software Data
Collection and Analysis." IEEE Transactions on Software Engineering SE
5(3):276.

Scholten, Roger W. 1977. "Software Quality Assurance."
Western Regional Conference ASQC, Seattle, Washington.

In Proceedings

Shen, V. Y., T. J. Yu, S. M. Thebaut, and L.
Error-Prone Software--An Empirical Study."
Engineering SE-11(3):302.

R. Paulsen. 1985. "Identifying
In IEEE Transactions on Software

Bib.4

Sheron, B. W. and Z. R. Rosztoczy. 1980. Report on Nuclear Industry Quality
Assurance Procedures for Safety Analysis, Computer Code Development and
Use. NUREG-0653, U.S. Nuclear Regulatory Commission, Washington, D.C.

Shooman, M. L. and M. I. Bolsky. 1975. "Types, Distribution, and Test and
Correction Times for Programming Errors." In Proceedings of the Interna
tional Conference on Reliable Software, p. 347. IEEE Computer Society,
Institute of Electrical and Electronics Engineers, Inc., New York.

Silling, S. A. 1983. Final Technical Position on Documentation of Computer
Codes for High-Level Waste Management, U.S. Nuclear Regulatory Commission
Report NUREG-0856, June 1983.

Standard for Software Quality Assurance Plans, Institute of Electrical and
Electronic Engineers (IEEE) Standard 730-1984.

Straker, E. A. 1985. "Software Quality--How Is It Achieved?" In Proceedings
of Nuclear Power Plant Safety Control Technology Seminar.

Thomas, Nina C. and Henry L. Reeves, Jr. 1980. "Experience from Quality
Assurance in Nuclear Power Plant Protection System Software Validation."
IEEE Transactions on Nuclear Science NS-27(1).

Tice, George D., Jr. 1980. "Software Quality Control--Roadbed for the
Bullets." In Proceedings 1980 ASQC Western Regional Conference, Seattle,
Washington.

WHC. 1980. Computer Software Development and Use. Hanford Engineering Devel
opment Laboratory Quality Assurance Bulletin 79-3, Westinghouse-Hanford Co.,
Richland, Washington.

Wallace, D. R., and J. C. Cherniavsky. 1987. Report on the NBS Sortware
Acceptance Test Workshop--April 1-2, 1986. NBS Special Publication 500-146,
U.S. Department of Commerce, National Bureau of Standards, Washington, D.C.

Wasserman, A. I. and Peter Freedman. 1980. "Software Engineering Education:
Status and Prospects." In Tutorial on Software Design Techniques, 3rd ed.,
p. 445. IEEE Computer Society Catalog EHO161-0, Institute of Electrical and
Electronics Engineers, Inc., New York.

Westermeier, J. T., Jr. 1979. "Nuclear Near-Disaster." Data Management, p.
30 (June issue).

Wilkinson, G. F. 1985. Quality Assurance Plan for Computer Software Support
ing the U.S. Nuclear Regulatory Commission's High-Level Waste Management
Program, Sandia National Labortory [DRAFT] Report NUREG/CR-4369 (SAND85
1774), September 1985.

Bib.5

APPENDIX A

CRITERIA FOR ASSESSING SOFTWARE QUALITY

APPENDIX A

CRITERIA FOR ASSESSING SOFTWARE QUALITY

ACCOUNTABILITY

ACCURACY

AUGMENTABILITY

COMMUNICATIVENESS

COMPLETENESS

CONCISENESS

CONSISTENCY

The ability to measure use of computer resources by a
module or program. Critical segments of code can be
instrumented with probes to measure timing, to determine
whether specified branches are exercised, etc. Codes or
subroutines used for probes are preferably invoked by
conditional assembly or compilation.

The extent that the code's outputs are sufficiently pre
cise to satisfy their intended use.

The extent that the code can easily accommodate expansion
of computational functions within components or data
storage requirements.

The extent that the form and content of the code's inputs
and outputs facilitate assimilation, usefulness, and
understanding. Communicativeness also includes those
attributes of the software that provide standard proto
cols and interface routines required to couple the system
with another independent system.

The extent that the code's required functions are present
and fully developed. External reference documents must
be available and the required functions coded and present
as designed.

The absence of redundant or excessive coding and the
assurance that the required functions are implemented
with a minimum amount of coding. Conciseness implies
that the program is not excessively fragmented into
modules, overlays, functions, and subroutines; and that
the same sequence of coding is not repeated in numerous
places (rather than defining a subroutine or macro).

The extent that the code contains uniform notation, ter
minology, comments, symbology, and implementation
techniques.

Internal consistency implies that coding standards are
uniformly adhered to; e.g., comments are not unneces
sarily wordy in one place, while being scanty at another;
the number of arguments in subroutine calls match with
the subroutine header, etc.

A. 1

External consistency refers to the extent
contents are traceable and conform to the
and design. External consistency implies
names and definitions, including physical
sistent with a glossary, or that there is
relationship between functional flowchart
coded routines or modules.

CORRECTNESS

DEVICE EFFICIENCY

DEVICE INDEPENDENCE

EFFICIENCY

ERROR HANDLING
CAPABILITY

HUMAN ENGINEERING

INTEGRITY

that the code's
requi rements
that variable
units, are con
a one-to-one
entities and

The ability of the software to produce specific outputs
when given the specific inputs, and the extent to which a
program satisfies its specifications and fulfills the
user's mission.

The extent that the operations, functions, or instruc
tions provided by the code are performed without waste of
computer resources (CPU time, I/0 channel capacity, core
memory, etc.). Thus a program may be efficient with
respect to one device (e.g., CPU time) but not to another
(e.g., core memory), implying that it is not efficient
with respect to the overall set of resources it employs.

The ability of the code to be unaffected by changes to
the computer hardware or peripheral equipment. For
independence, coding directly related to a specific
hardware device should be minimized, isolated, and
identified.

The extent to which the code performs its required
functions without waste of resources. Choices of source
code construction must be made to produce the minimum
number of words of object code; where alternate algo
rithms are available, those taking the least time should
be chosen; information-packing density in the core should
be high, etc.

The code's ability to handle errors due to hardware
or software failures in a way that the resulting system
performance degrades gracefully rather than
catastrophically.

The extent that the code fulfills its purpose without
wasting the users' time and energy or degrading their
morale. Inputs and outputs should be self-explanatory,
understandable, unambiguous, and designed to avoid misin
terpretation. This attribute implies robustness and
communicativeness.

The extent to which access to software or data by unau
thorized persons can be controlled.

A.2

INTEROPERABILITY

MAINTAINABILITY

MODIFIABILITY

PORTABILITY

READABILITY

RELIABILITY

REUSABILITY

ROBUSTNESS

SELF-CONTAINEDNESS

The effort required to couple the code system to another
independent code system.

The extent that the code facilitates updating to satisfy
new requirements, to correct deficiencies, or to move to
a similar computer system. This implies that the code is
understandable, testable, and modifiable.

Characteristics of the design and implementation of the
code that facilitate incorporation of changes, once the
nature of the desired change has been determined.

The extent that the code can be operated easily and well
on computer configurations other than its current one.

The extent that the code's function and design can be
easily understood by reading (e.g., complex expressions
having mnemonic variable names and parentheses even if
they are unnecessary).

The extent that the code can be expected to perform its
intended functions satisfactorily under normal condi
tions. In a reliable system, abnormal conditions may
cause degraded performance but will not result in
erroneous performance masked as correct performance.
Reliability implies that the program will compile, load,
and execute, producing answers of the requisite accuracy;
and that the program will continue to operate correctly,
except for a tolerably few instances, while in use.
Reliability also implies that the code is complete and
externally consistent.

The extent to which a program or its pieces can be used
in other applications. Reusability is related to the
packaging and scope of the functions that programs
perform.

The extent that the code can continue to perform despite
some violation of the assumptions in its specification.
Robustness implies, for example, that the program will
handle inputs or intermediate calculated variables that
are out of range or in different format or type than
specified, without degrading the performance of functions
not dependent on the inputs or variables.

The extent that the code performs its explicit and
implicit functions within itself. Examples of implicit
functions are initialization, input checking, and
diagnostics.

A.3

SELF-DESCRIPTIVENESS

SIMPLICITY

STRUCTUREDNESS

TESTABILITY

TRACEABILITY

UNDERSTANDABILITY

USABILITY

The extent that the code listing contains enough informa
tion for a reader to determine or verify its objectives,
assumptions, constraints, inputs, outputs, components,
and revision status. Commentary and traceability of pre
vious changes by transforming previous versions of code
into nonexecutable but available code provide for self
descriptiveness. Self-descriptiveness is necessary for
both testability and understandability.

Implementation of functions in the most understandable
manner, usually requiring avoidance of practices that
increase complexity.

The extent that the code possesses a definite pattern
within its interdependent parts. Structuredness implies
that the program design has proceeded in an orderly and
systematic manner, that standard control structures have
been followed in coding the program, etc.

The extent that the code facilitates the establishment of
test plans, designs, procedures, and implementation.

Those attributes of software that provide a thread from
requirements to implementation, with respect to the
specific development and operational environment.

The extent that the code's functions are clear to the
reader. Understandability implies that variable names or
symbols are used consistently, modules of code are self
descriptive, and the control structure is simple or in
accordance with a prescribed standard. The program
should contain no hidden meanings or operating character
istics that come to light only after months of use.

The effort required to learn, operate, prepare input, and
interpret output of a program.

A.4

APPENDIX B

EXAMPLE QUESTIONS TO BE ADDRESSED FOR PROCURED SOFTWARE

APPENDIX B

EXAMPLE QUESTIONS TO BE ADDRESSED FOR PROCURED SOFTWARE

DEVELOPER-USER INTERACTIONS

"* To what extent does the user participate in the following steps of
the software development process:

- software requirements specification?
- software design specification?
- software verification/validation?
- reviews and audits?

"* After transfer of the software to the user, what further obliga
tions/responsibilities reside with the developer? Who in the user
organization will monitor these actions to assure performance?

SOFTWARE LIFE CYCLE

"* Does the developer ascribe to and actually utilize a softwar life
cycle for software development?

"* If so, what is the life cycle, and does it meet the user's needs and
requirements?

"* What assurance does the developer provide to the user that the life
cycle has been implemented as represented; i.e., what traceability is
provided?

PROBLEM REPORTING/CORRECTIVE ACTION

"* How does the developer report software problems and corrective

actions to the user?

"* Conversely, how does the user report problems to the developer?

"* What positions within each organization represent the point of
contact for problem reporting?

"* Will the developer/supplier address the magnitude of problems, cor
rective actions, and possible consequences, or are these the
responsibilities of the user?

B.1

CONFIGURATION CONTROL AND MANAGEMENT

"* What methods of configuration control and configuration management
are used by the developer?

"* When are new versions of software issued by the developer? Does the

user receive updated versions, or must they be purchased?

"* Does the user receive a read-only version of the software?

"* How is the source code protected and stored?

VERIFICATION AND VALIDATION OF THE SOFTWARE

"* How is verification and/or validation (V and/or V) performed?

"* What documentation is provided on the V and/or V process?

"* To what extent has V and/or V been systematically conducted; i.e., is
V and/or V equated with acceptance testing by the developer?

DOCUMENTATION

o What documentation is included along with the software?

- User's manual?
- Theory and algorithms used?
- V and/or V documentation?
- Requirements and design specifications?
- Acceptance tests?
- Other?

B.2

APPENDIX C

SRS REVIEW CHECKLIST

APPENDIX C

SRS REVIEW CHECKLIST(a)

A. Is the software requirements specification (SRS) in conformance with the
SRS documentation guideline (Wilburn 1982b) and any other company
guidelines?

1. Does a formal SRS document exist?

2. Are the necessary sections present?

3. Does each section contain the required information?

4. Is the SRS document in the recommended format?

5. Does the SRS conform to documentation guidelines?

6. Are the technical requirements in concurrence with adminis
trative and contract requirements?

B. Does the SRS reflect an understanding of the problem to be solved?

1. Are the requirements consistent with the Statement of Work for
the program?

2. Are the models that are specified appropriate for the problem
being solved?

3. Are the numerical techniques that are specified appropriate for
the problem being solved?

4. Are the algorithms that are specified appropriate for the prob
lem being solved?

5. Have the program functions been partitioned in a manner consis

tent with the problem to be solved?

6. Will the program, as specified, solve the problem?

7. Are the equations scientifically correct and consistent with the
requirements?

(a) As adapted from Wilburn 1983a.

C.1

8. Is the full scope of software development understood, and are
problem areas explicitly noted?

9. Is the operational environment correctly understood?

C. Are the requirements complete?

1. Are the ultimate software products completely defined and is
adequate documentation required?

2. Are documentation standards established for all deliverable and

nondeliverable software?

3. Is all software to be used, identified?

4. Are system startup, restart, and batch or interactive program
execution procedures identified?

5. Are user requirements addressed?

6. Are human engineering requirements and problem areas identified?

7. Are goals for the software identified?

8. Have the expected level of change in the system and the time
required to implement changes been considered?

9. Is each functional requirement explicitly, quantitatively, and
testably defined in terms of inputs, processing, outputs, data
requirements, interfaces, accuracy, timing, exception handling,
constraints, and performance?

10. Are the requirements mapped from system specifications into cor
rect software requirements specifications?

11. Are the software requirements identified? If not, are possible
approaches described well enough so that possible software
requirements are indicated?

12. Do the requirements include the functions implied by the State
ment of Work?

Input/Out

1. Are display contents and layouts described?

2. Are program inputs identified and described to the extent needed
to design the program?

C.2

3. Are required program outputs identified and described to the
extent needed to design the program?

4. Does the SRS include required behavior in the face of improper
inputs and other anomalous conditions?

Data

1. Are procedures identified for purging and updating data bases?

2. Are data security and protection against data loss provided for?

3. Are the logic data base and its access mechanisms defined?

4. Is each entity or relationship that is mentioned in the require
ments also defined in the data dictionary, and vice versa?

5. Are requirements specified for security, accuracy, who requires
access to the information, and how quickly it is needed?

Interfaces

I. Are the person-machine interfaces and operational procedures
clearly defined?

2. Is adequate attention given to both the hardware-to-software and
software-to-software interfaces?

3. Is conformance with system accuracy control and interface
control specifications (i.e., other equipments, operators, other
software and data/data bases) stated?

4. Are external system interface definitions accurate and complete?

5. Are operational interfaces with the computer program, including
both hardware and software, identified, or are there references
to the specifications that define those interfaces?

6. Are applicable nonoperational interfaces that are related to
computer program support and code generation identified, such as
specific programming language, compiler, data base management
system, loaders, other utility programs, or unique support
hardware? Are references to appropriate documentation of these
interfaces identified?

7. Do the requirements identify external interfaces and fully
specify required program behavior with respect to each?

C.3

Performance

1. Are performance requirements for each function described in
separate paragraphs? Do these paragraphs include source and
type of inputs, and destination and type of outputs?

2. Are requirements for system resource margins adequately
specified?

Error Processing

1. Are provisions made for transition to degraded or manual modes
if the system or subsystem fails?

2. Are adequate provisions made for system backup and redundancy?

3. Are the software and hardware diagnostic capabilities adequate?

4. Is error processing logic described; i.e., does the software
indicate improper, incorrect, or out-of-range inputs?

Envi ronment

1. Are the software tools required for development, testing, and
maintenance of the software described, and are they
deliverables?

2. Does the SRS describe the operational environment into which the
program must fit?

3. Do the specifications tell what the computer program must do,
how well, and under what conditions, and do they describe the
environment in which it is to operate?

4. Have software support and modification requirements been
initially identified?

5. Have support tools, facilities, and recruitment and training of
support personnel been addressed?

Constraints

1. Are explicit limits for the system (i.e, what it should and
should not do) defined, and are constraints identified?

2. Are the volume and throughput expectations for the system
identified?

C.4

3. Are the system protection and security requirements identified?

4. Does the SRS include applicable timing and sizing constraints?

D. Are the requirements correct?

1. Are the requirements consistent with the program's Statement of
Work?

2. Are the requirements consistent with documented descriptions and
known properties of the operational environment into which the
program must fit?

3. Do interface requirements agree with document descriptions and
known properties of the external interfacing elements?

4. Do input requirements correctly describe inputs whose format,
content, data rate, etc. are not at the discretion of the
designer?

5. Do output requirements correctly describe outputs whose format,
content, data rate, etc. are not at the discretion of the
designer?

6. Do requirements concerning models, algorithms, and numerical
techniques agree with standard references, where applicable?

7. Do the project manager and user management have any differences
over interpretation of the requirements?

E. Are the requirements consistent?

1. Is the SRS free of internal contradictions?

2. Are the models, algorithms, and numerical techniques that are
specified mathematically compatible?

3. Are input and output formats consistent, to the extent possible?

4. Are the requirements for similar or related functions
consistent?

5. Are the accuracies required of inputs, computations, output,
etc. compatible?

6. Are the style of presentation and the level of detail consistent
throughout the document?

7. Is the mapping of software requirements from the system specifi
cations consistent, complete, and accurate?

C.5

8. Are software system limits and capacities compatible with the
system specification?

9. Are vertical and horizontal consistency and compatibility
achieved between requirements?

10. Are system availability requirements consistent with the sys
tem's intended operation, and will they require reasonably
priced hardware or software?

11. Is any information entity defined more than once unnecessarily
(i.e., is there redundancy)?

12. Can each input entity be related to a source of information?

13. Is each input entity related to a derived entity or an output
entity?

14. Is each output entity related to a derived or input entity?

F. Are all requirements clear and unambiguous?

1. Can all requirements be adequately interpreted?

2. Can all requirements be interpreted in only one way?

3. Are the requirements sufficiently detailed to prevent
misinterpretation?

4. Are the requirements organized and presented in a way that pro
motes clarity (for example, use of tables and lists in place of
text, where applicable)?

5. Does the SRS differentiate between program requirements and

other information provided in the specifications?

6. Are the data base and data requirements clearly stated?

7. Are the requirements for software structure, etc., clearly
stated?

8. Are requirements stated singularly, clearly, and concisely?

9. Are the performance requirements stated in a manner that will
support unambiguous design and test?

C.6

10. Is each definition and description of an entity or relationship
understandable and consistent with requirements specification
guidelines?

11. Are system/subsystem limitations and restrictions clearly

stated?

G. Are the requirements feasible?

1. Is the necessary technology fully developed and are the
approaches to its utilization mature?

2. Are the specified models, algorithms, and numerical techniques
state of the art?

3. Can the models, algorithms, and numerical techniques be imple
mented within the constraints imposed on the system and on the
development effort?

4. Are the quality attributes specified for the program achievable,
when viewing the program both by its parts and as a whole?

5. Are the required functions attainable within the available

resources?

6. Is the hardware available?

7. Is the hardware of sufficient size to perform debugging?

8. Are adequate development and test facilities available?

9. Are hardware/firmware/software tradeoffs sufficiently discussed,
and are adequate flexibility and growth potential retained in
the result?

H. Does the SRS contain adequate provision for program verification and
acceptance?

1. Are requirements stated in testable terms?

2. Are acceptance criteria specified for each requirement?

3. Can quantitative terms (e.g., ranges, accuracies, tolerances,
rates, boundary values, and limits) used in stating requirements
be recorded as evidence of satisfaction?

C.7

4. Are the acceptance criteria consistent with use of any of the
following:

- results obtained from similar computer programs
- classical solutions
- accepted experimental results
- analytical results published in the technical literature
- benchmark problems?

5. Is the source of each requirement or derivation shown, and are

all requirements traceable to or derived from a higher level
speci fication?

I. Does the SRS avoid placingundue constraints on program design and
impl ementati on?

1. Is there justification for including in the SRS constraints in

the SRS on design or implementation?

2. Is the specification limited to defining requirements, and how
will it be done?

J. Does the SRS have sufficient quality requirements?

1. Does the SRS include the desired quality requirements (e.g.,

requirements for performance, reliability, accuracy, porta
bility, maintainability, user friendliness)?

2. Are the factors that lead to quality and reliable software suf
ficiently well defined? Are modularity, structuredness,
descriptiveness, consistency, simplicity, expandability,
testability, device independence, robustness/integrity, and
accessibility required?

C.8

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION I REPORT NUMBER (Aso,gnedbv TIOC oldd Vol No .,inv)
(2.841
NRCM 1 102D
3201.3202 BIBLIOGRAPHIC DATA SHEET
SEE INSTRUCTIONS ON THE REVERSE PNL -5784
2 TITLE AND SUBTITLE

3 LEAVE BLANK

Handbook of Software Quality Assurance Techniques
Applicable to the Nuclear Industry

4 DATE REPORT COMPLETED

MONTH YEAR
s5 AUTHORS) August 1987
J. L. Bryant

6 DATE REPORT ISSUED N. P. Wilburn
MONTH EAR

August 1987
7 PERFORMING ORGANIZATION NAME AND MAILING ADDRESS (Include Z'o Codal 8. PROJECTITASK/WORK UNIT NUMBER
Pacific Northwest Laboratory
Richland, Washington 99352 9 FIN OR GRANT NUMBER

FIN P2002

10 SPONSORING ORGANIZATION NAME AND MAILING ADDRESS (Incfude Zp Codel 1Ila TYPE OF REPORT

Division of Licensee Performance and Quality Evaluation
Office of Nuclear Reactor Regulation Technical
U.S. Nuclear Regulatory Commission b PERIOD COVERED Onc, dares)

Washington, DC 20555

12 SUPPLEMENTARY NOTES

13 ABSTRACT f200 wOrds o1!ae,

Pacific Northwest Laboratory is conducting a research project to recommend good
engineering practices in the application of 10 CFR 50, Appendix B requirements
to assure quality in the development and use of computer software for the
design and operation of nuclear power plants for NRC and industry. This
handbook defines the content of a software quality assurance program by
enumerating the techniques applicable. Definitions, descriptions, and references where further information may be obtained are provided for each
topic.

14 DOCUMENT ANALYSIS - a. KEYWORDSIDESCRIPTORS

Software Quality Assurance in the Nuclear Industry

b. IDENTIFIERS/OPEN.ENOED TERMS

Computer Software, Software Quality Assurance. Nuclear Industry
Appendix B Criteria, Software Life Cycle, Software Verification and
Validations, Configuration Management and Code Control.

15. AVAILABILITY
STATEMENT

Unlimited
16 SECURITY CLASSfFICATION

I("Ts pogel

Uncl assified
I Th's IgOpt)

Unclassified
17 NUMBER OF PAGES

18 PRICE

I __

I

UNITED STATES
NUCLEAR REGULATORY COMMISSION

WASHINGTON, D.C. 20555

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE, $300

SPECIAL FOURTH-CLASS RATE
POSTAGE & FEES PAID

USNRC
WASH. D.C.

PERMIT No. G-67

C
:3
rr

2 C
r

n

C C,

-i

