50-781

-

AUG 2 1 1973

TO ALL RECIPIENTS

TECHNICAL SPECIFICATION CHANGE NO. 9 TO THE FACILITY LICENSES NOS. DPR-32 AND DPR-37 WAS ISSUED ON AUGUST 9, 1973. PLEASE REPLACE PAGE NO. TS 3.12-17 CHANGE NO. 9 WITH THE ATTACHED PAGE.

DISTRIBUTION:

AEC PDR Local PDR Applicant Applicant's Attorney

<u>Those Persons Appearing on</u> <u>Distribution List for Change No. 9</u> Letter to Applicant

	DPWR-1					Keen 4
OFFICE P	Dromerick:ms					J.P.
SURNAME >	8h 1/73				•••••••••••	
DATE > 1						

superseded page

CHANGE NO. 9

TS 3.12-17 AUG 0 9 1973

worst case basis. When a measurement is taken experimental error must be allowed for and 5% is the appropriate allowance for a full core map taken with the movable incore detector flux mapping system.

The measured value of F_Q^N must be additionally corrected by including a penalty as shown on Figure 3.12-8 (at the appropriate core location) to account for fuel densification effects before comparison with the limiting value above.

In the specified limit of $F_{\Delta H}^{N}$ there is a 8% allowance for uncertainties⁽¹⁾ which means that normal operation of the core is expected to result in $F_{\Delta H}^{N} \leq 1.55/1.08$. The logic behind the larger uncertainty in this case is that (a) abnormal perturbations in the radial power shape (e.g., rod misalignment) affect $F_{\Delta H}^{N}$, in most cases without necessarily affecting F_{Q}^{N} , through movement of part length rods, and can limit it to the desired value, (b) while the operator has some control over F_{Q}^{N} through F_{Z}^{N} by motion of control rods, he has no direct control over $F_{\Delta H}^{N}$, and (c) an error in the predictions for radial power shape, which may be detected during startup physics tests can be compensated for in F_{Q}^{N} by tighter axial control, but compensation for $F_{\Delta H}^{N}$ is less readily available.

At the option of the operator, credit may be taken for measured decreases in the unrodded horizontal plane peaking factor, F_{xy} . This credit may take the form of a reduction in F_Q or expansion of permissible quadrant

CHANGE NO. 9