Docket no: 0500201; POOM-032

Draft Agenda West Valley Citizen Task Force Meeting

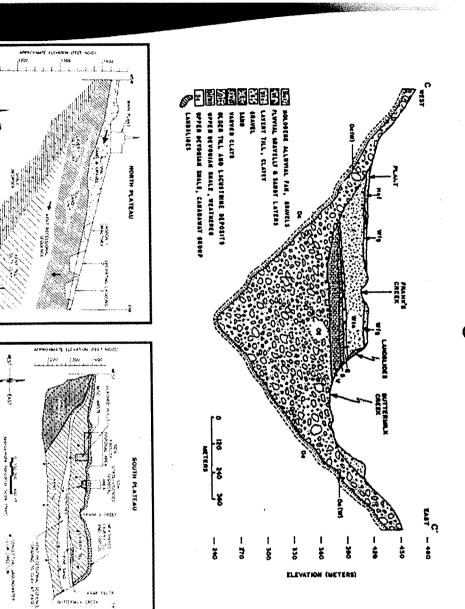
Ashford Office Complex **Tuesday, September 18, 2001** 7:00 p.m. - 9:30 p.m.

Report on Long-Term Stewardship Conference Eric Wohlers

Report on CTF Future Site Use Work Group Mark Mitskovski

Presentation on Status of Erosion Modeling Work Joe Price SAIC

Next Steps


Observer Comments

Adjourn

w:\CTF\Agenda\2001\09-18.wpd

Site Geology

Generalized Geologic Cross Section

1 読録が

Update of Analysis of Long-Term, Unmitigated Erosion for the WV EIS

Joe Price SAIC

September 18, 2001

Post-it " brand fax transmittal memo 7671 # of pages > 18	
To Amy Snyder	From Sonju Allen
CO. KO YIRD	Ca WVNS
Depl.	Phone # 716/942.2152
Fax # 301/415-53918	FBX H 4199

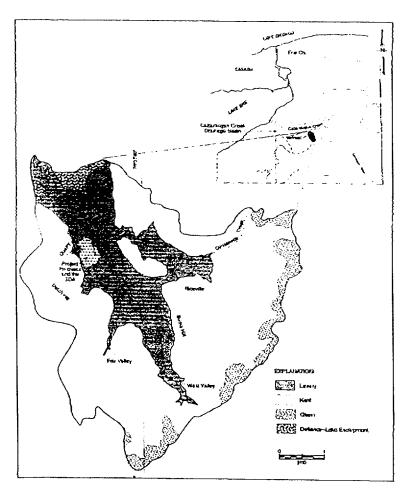
Summary of Content

- Part 1: Background
- Part 2: Erosion Analysis in DEIS (CTF, April 1997)
- Part 3: Current Erosion Analysis (Landform Evolution Modeling, work in progress)

2

• Part 4: Plan for Completing Erosion Analysis

Part 1 Background

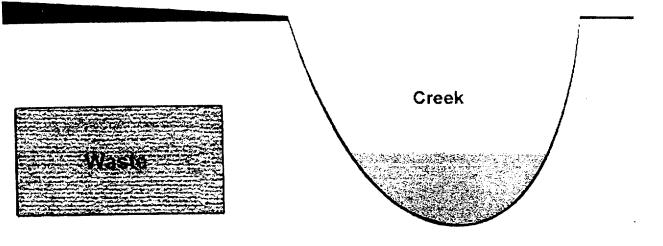

Purpose of Long-Term Erosion Analysis

• Understand role of erosion in contributing to environmental impacts of site management alternatives

3

• Support estimation of dose for long time periods for NRC review

Part 1 Background Physical Setting

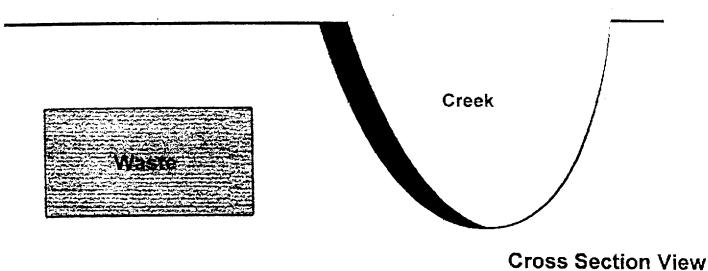

9/14/01

Part 1 Background Upper Level Erosion Processes

- Sheet and rill erosion
- Stream downcutting and valley rim widening
- Gully formation and advance

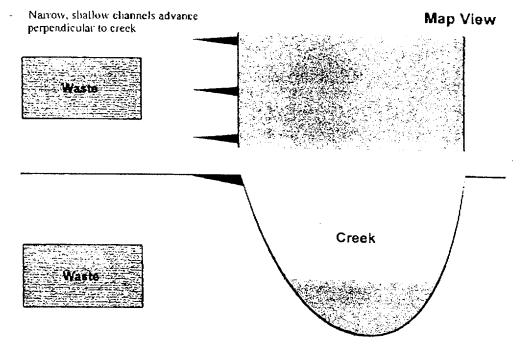
Part 1 Background Sheet and Rill Erosion

- Sheet and Rill Erosion
 - Top surface material is removed


Cross Section View

9/14/01

Part 1 Background Stream Downcutting and Valley Rim Widening


• Rim Widening

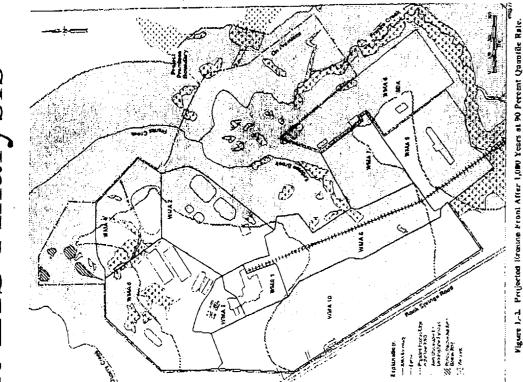
- Creek bank material is removed

Part 1 Background Gully Formation and Advance

Gully Advance

Cross Section View

Part 2 Draft EIS Analysis Technical Approach


- Use U.S. Army Corps of Engineer models to predict stream downcutting for single storms of differing magnitudes
- Combine estimates of downcutting of single storms in a probabilistic manner to estimate average downcuttting for a long period of time

Part 2 Draft EIS Analysis Results

- South Plateau facilities affected within 1,000 years
- North Plateau facilities not affected within 1,000 years

Part 2 Draft EIS Analysis

11

9/14/01

Part 2 Draft EIS Analysis Limitations

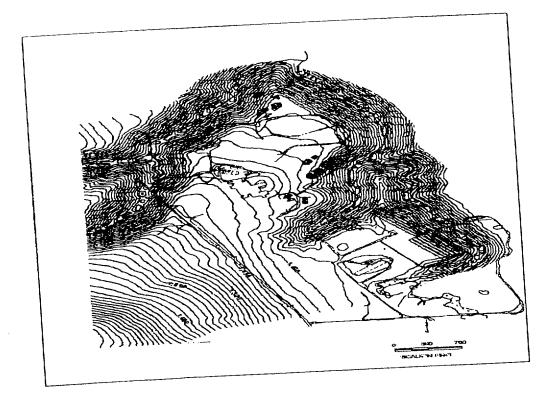
- Models do not consider gully growth
- Models do not explicitly address all underlying erosion processes
- Models consider only stream channels, not adjacent hillslopes
- Models intended for analysis of response to single storms were extended to analyze a sequence of storms

9/14/01

Part 3 Current Erosion Analysis Landform Evolution Modeling SIBERIA Characteristics

- Integrates hillslope and stream channel erosion processes
- Designed to simulate long periods of time
- Models gully growth
- Uses actual topography as initial condition
- Sediment transport limited model
- Uses time averaging of run-off to represent storms of all magnitudes
- Can be executed in sequential (start/stop) manner to explicitly model large storms

9/14/01


Part 3 Current Erosion Analysis Landform Evolution Modeling Technical Approach

- Use state-of-the-art integrated system model (SIBERIA) for long-term projections
- Calibrate the SIBERIA model using a short-term, physical processbased model that considers hillslopes and streams (WEPP)
- Explicitly include stochastic average of storms of differing magnitude and 100-year storms in calibration model
- Establish boundary conditions for stream downcutting using WEPP
- Establish boundary conductions predictions of sediment loss from channels
- Analyze sensitivity to the range of potential conditions

Part 3 Current Erosion Analysis Landform Evolution Modeling Results

- South Plateau affected within 1,000 years
- North Plateau affected within 10,000 years

Part 3 Current Erosion Analysis Results: Illustrative Topography at 1,000 years

16

9/14/01

Part 3 Current Erosion Analysis Landform Evolution Modeling Limitations

- Model does not explicitly address all underlying erosion processes
- No model can reliably predict conditions for a 10,000 year period
- Range of possible conditions difficult to establish
- Grid size and time period of analysis impose computational constraints

Part 4 Plan for Completion of Erosion Analysis

- Completion of sensitivity analysis
- Internal review
- Integrate with dose model
- Review and discuss with NYSDEC and NRC
- Integrate into EIS