<u>Probability of a Flaw (@specified year/weld)</u>: The probability of an unacceptable flaw in the segment's "most likely to fail" weld (or typical weld, if they are viewed as clones) at the current age of the weld (usually the current age of the plant unless the pipe has been repaired or replaced). An unacceptable flaw is defined by the ASME Section XI Code. This has been defined as a/t > 0.10 and is obtained from the probabilistic fracture mechanics code (e.g., SRRA).

<u>Probability of Detection</u>: The estimated probability that the inspection method used will be able to detect an unacceptable flaw, given that the flaw is in the weld selected for sample examination. A low assumed probability of detection (POD) results in conservative confidence levels for the sample plans. A POD of 0.2 is considered to be a conservatively low value.

<u>Conditional Probability of Leak/Year/Weld:</u> This input can also be called the conditional leak rate. A failure of a weld may be defined to be a pipe rupture or, more conservatively, as a pipe leak, the leak being a typical precursor to a rupture. In the Perdue Model this is defined as a leak and the same probabilistic fracture mechanics code (e.g., SRRA) that generates the Probability of a Flaw can generate the leak rate conditional on the existence of the unacceptable flaw. This value is an average yearly leakage rate for the remaining life of the plant.

<u>Single Sample Size:</u> Any sample size that is less than or equal to the number of welds (or elements) in the lot can be selected.

<u>Target Leak Rate/Year/Weld:</u> The maximum allowable leak rate per year per weld. This value is required for the calculation of consumer risk. If the application is limited to calculating the probability distributions on number of flaws or leak rates, then this input is not required. Industry experience, currently being captured in industry pipe failure data base efforts, can be used to provide a basis for this value.

Table 3.7-1 provides some suggested target leak rates based on current operating experience (NRC 1997) that can be evaluated in the Perdue model. The values shown are for illustrative purposes and can be further adjusted based on other factors such as type of failure mechanism of concern. Data from SKI (1996) can be used in this assessment along with other data continuing to be captured in ongoing industry efforts.

SUG		Table 3.7-1 LEAK RATES (PER YEAR/PE DUE MODEL (NRC 1997)	R WELD)					
	Nominal Pipe Size (inches)							
Material	<u>≤</u> 1	1 < Diameter < 4	<u>≥4</u> .					
Stainless Steel	1.0E-5	1.0E-5	1.0E-6					
Ferritic Steel	1.0E-5	1.0E-6	5.0E-6					

The outputs from the model are:

<u>Target Leak Rate/Year/Lot</u>: This is equal to the number of welds in the lot times the target leak rate/year/weld.

<u>Implied Leak Rate/Year/Lot:</u> For every possible number of flaws in a lot, there is a corresponding failure or leak rate which is closely approximated by the product of the conditional leak rate/weld and the number of indicated flaws.

<u>Binomial Probability of k Flaws</u>: This is the binomial distribution probability of getting a specified number of flaws (k) based on the lot size and the probability of the flaw existing. The sum of the probabilities is also provided.

<u>Pre-ISI (i.e., no ISI)</u> <u>Probability of k Flaws:</u> This is the cumulative probability distribution of the leak rate in the absence of any inspection.

<u>Single Sample Plan (Probability of Detection (POD) equals 1) Probability of k or Less</u> <u>Flaws:</u> This is the likelihood that the sample plan will pass the lot for the true number of flawed welds. The single sample plan rejects the entire lot if one flaw is found. The lot is accepted if no flaws are found. <u>Single Sample Plan (User Specified POD) Probability of k or Less Flaws:</u> This is the same type of output as discussed in the previous paragraph except that the POD is specified by the user.

Double Sample Plan (Each Sample Size Equals 1) Probability of k or Less Flaws: This is the likelihood that the sample plan will pass the lot for the true number of flawed welds, using a double sampling as illustrated in Figure 3.7-2. For these probabilities, it is assumed that each sample consists of one weld.

> Double Sample Plan: Take a sample of 1 and accept if no flaws found. Otherwise, take another sample of 1 and reject if a flaw is found and accept if no flaw is found.

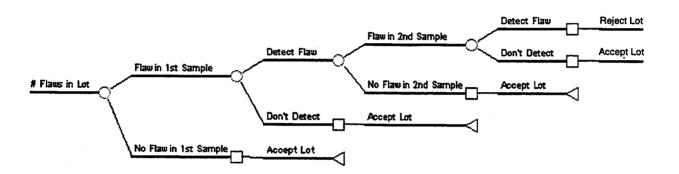


Figure 3.7-2 Decision Tree for a Double Sample of Initial Size=1 (Plan H) Double Sample Plan: Take a sample of 1 and accept if no flaws found. Otherwise, take another sample of 1 and reject if a flaw is found and accept if no flaw is found.

<u>Double Sample Plan (Each Sample Size Equals 2) probability of k or less flaws:</u> This is the same type of output as discussed for the previous output except that each sample consists of two welds.

<u>Consumer Risk:</u> This is the probability of a leak rate for the lot exceeding the target leak rate for that lot, for each sample plan.

<u>Confidence</u>: This is one minus the consumer risk probability.

<u>Variance</u>: The variance for each plan is determined by using the difference between the mean leak rate and the implied leak rate, and the corresponding binomial probability.

<u>Probability of Sampling 100% of the Lot</u>: This is one minus the probability of accepting the lot calculated for each sample plan.

The model should be used to assist in defending a minimum number of examination locations for the following two situations:

- For highly reliable piping segments (or portions thereof) that have been categorized as high safety significant where examinations may be added, reallocated, or reduced from current ASME Section XI program requirements; a minimum of one location is specified even if the model shows 100% confidence with no ISI.
- For highly reliable piping segments (or portions thereof) that have been categorized as low safety significant where examinations may be reduced from current ASME Section XI program requirements; it is acceptable to define no examinations for these segments as long as a 95% confidence level exists that the piping segment will not exceed its target leak rate.

Use of the model in these two situations will assist in defending that current safety margins are maintained and that defense-in-depth is not compromised by implementation of risk-informed ISI programs for piping versus current ASME Section XI inservice inspection requirements.

Different inputs as may be appropriate for a different segment or lot will produce different outputs for each plan so that a risk profile can be produced on a segment-by-segment basis. These inspection plans are viewed as part of a reliability demonstration process which has the following steps:

- Define appropriate lots for sampling.
- Evaluate the ability of each inspection plan to achieve the target reliability in each lot.
- If a segment is divided into multiple lots, evaluate the ability of the aggregated lotspecific choices to achieve the segment target reliability. This can be estimated by

comparing the product of the individual lot confidences for a given segment to a limit value (95%).

A 95% confidence or assurance that the target leak frequency goal will be met was chosen as an acceptable objective for the segment in question. Both the mean leak rate and the estimated confidence level are used in evaluating the inspection plans. The choice of an acceptable plan also considers the projected number of flaws in conjunction with the leak rate statistics and confidence levels.

For Surry Unit 1, the Perdue model was applied to the high safety significant segments, where appropriate, to assist in defining the minimum number of inspection locations that are required for examination in each segment. More than 60 high safety significant pipe segments were evaluated. In addition, the Perdue model was applied to 75 low safety significant pipe segments where current ASME Section XI nondestructive examinations are recommended to be eliminated from the ISI program at Surry Unit 1. These additional evaluations were performed to verify that the current exams could be eliminated in these segments while maintaining a high level of reliability (i.e., insuring that the leak rate post RI-ISI is no greater than current leak rates).

Table 3.7-2 provides an example of the Perdue model for a Surry-1 high head injection piping segment where the cumulative probability distribution on the number of flaws and implied leak rate is tabulated for each of five candidate inspection plans. The mean annual leak rate for the segment, along with its variance, is also provided for each plan. There is a probability of 99.548% that the target leak rate is met for this segment for the Pre-ISI case (i.e., No ISI). The probability of exceeding the target leak rate (i.e., consumer risk) for the Pre-ISI case is 0.452% as compared to 0.308% for the single sample plan with a POD =1.0. The double sample plan with POD=0.2 yields 0.449% and 0.438% for a sample sizes equal one and two, respectively. A low POD value is assumed to provide a conservative upper bound on exceeding the target leak rate. For example, the consumer risk decreases from 0.430% to 0.308% in the single sample plan when the POD is changed from 0.2 to 1.0. The probability of sampling 100% of the lot in the double sampling plan with a sample size equal to one is 0.33% with the POD=0.2 value.

Table 3.7-2

EXAMPLE APPLICATION OF PERDUE MODEL TO A SURRY UNIT 1 HIGH HEAD INJECTION PIPING SEGMENT

	A	В	C	D	н	L	P	Ť
1	Perdue Mode	l	Release 1.1	Date: 9/25/19		•	•	•
2			User Input		1			
3	Plant		SURRY			•		· · · · · · · · · · · · · · · · · · ·
4	Segment # / L	000 #	HHI-012A(BUTT	WELD)				1
5	Number of We		38		for double sa	mple plan wit	h 2 welds/sa	mnle
6	Prob. of Flaw (@ yr 25/weld	2.87E-01					
7	Probability of [0.2	Make 0 <= P	OD <= 0			
8	Cond. Prob. of	Leak /yr/weld	2.06E-05		Г аран а (1
9	Single Sample	Size	1	Make sample	size < "Num	ber of Weids"	& <= 10	· · · · · · · · · · · · · · · · · · ·
10	Target Leak ra	te /yr/weld	1.00E-05					
11]			†				
12	Target Leak ra	te /yr/Lot	3.80E-04	(Calculated)				
13								·
14	Double Sampli	ing Plans	For 1 & 2 welds	in each sampl	e. Accept # =	0 & Cum Rei	ect # = 2 PC	DD = Cell C7
15	Single Samplir	ng Plan	Accept # = 0,Rej	ect # = 1. Ass	umes POD =	100% or cell	C7 as identifi	ed Con Cr
16			*					
17	Results Summ	nary	SURRY			HHI-012A(BL	JTT WELD)	
18				D	Н	L	P	. T
					Double	Double	·····	· · · · · · · · · · · · · · · · · · ·
					Sample	Sample	Single	Single
					Plan (Each		Sample	Sample
				Pre-ISI		Sample Size	Plan	Plan (POD
19				(i.e., No ISI)		= 2)	(POD=1)	= Cell C7)
20	Consumer Risl	k (prob. leak ra	te/yr/lot > target)	0.452%	0.449%	0.438%	0.308%	0.430%
	Confidence (pr			99.548%	99.551%	99.562%	99.692%	99.570%
	Mean Leak/yr/		1	2.25E-04	2.25E-04	2.25E-04	2.19E-04	2.24E-04
23	Variance (Leak	/yr/lot)		3.31E-09	3.31E-09	3.30E-09	3.22E-09	3.30E-09
24	Prob. of Samp	ling 100% of L	ot		3.30E-03	1.54E-02	2.87E-01	5.74E-02
25			1.00000					0.142.02
26			· · · · · · · · · · · · · · · · · · ·					
27	Consumer Ris	sk Table	SURRY			HHI-012A(BU	ITT WELD)	
28	A	B	· C	D	Н	L :		T
			Binomial				······	
	No. of Flaws	Implied	Probability of k					
29	in Lot (k)	Leak/yr/Lot	Flaws	Probabi	lity of k or Les	s Flaws for th	e given Sam	ple Plan
30	0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
31	1	0.00002	0.00004	0.00004	0.00004	0.00004	0.00006	0.00004
32	2	0.00004	0.00030	0.00034	0.00034		0.00045	0.00036
33	3	0.00006	0.00143	0.00177	0.00177	0.00180	0.00230	0.00185
34	4	0.00008	0.00504	0.00681	0.00683	0.00691	0.00863	0.00709
35	5	0.00010	0.01381	0.02063	0.02068	0.02090	0.02546	0.02136
36	6	0.00012	0.03060	0.05123	0.05136	0.05185	0.06161	0.05280
37	7	0.00014	0.05635	0.10758	0.10783	0.10875	0.12609	0.11038
38	8	0.00016	0.08795	0.19553	0.19593	0.19739	0.22349	0.19976
39	9	0.00019	0.11809	0.31361	0.31416	0.31614	0.34991	0.31910
40	10	0.00021	0.13794	0.45155	0.45220	0.45454	0.49249	0.45774
41	11	0.00023	0.14143	0.59297	0.59365	0.59605	0.63345	0.59910
42	12	0.00025		0.72114	0.72176	0.72394	0.75647	0.72649
_				·				

Table 3.7-2 (cont.)EXAMPLE APPLICATION OF PERDUE MODEL TO A SURRY UNIT 1HIGH HEAD INJECTION PIPING SEGMENT

	A	B	C	D	H	L	Р	T
26 27	Consumer Ris	k Table	SURRY			HHI-012A(BL	JTT WELD)	
					Double	Double		_
					Sample	Sample	Single	Single
				Pre-ISI	Plan (Each	Plan (Each	Sample	Sample
				(i.e., No ISI)		Sample Size	Plan	Plan (POD
			Binomial	Probability		= 2) Prob. of	(POD=1)	= Cell C7)
	No. of Flaws	Implied	Probability of k	of k or Less	korLess korLess		Prob. of k or	Prob. of k or
43	in Lot (k)	Leak/yr/Lot	Flaws	Flaws	Flaws	Flaws	Less Flaws	Less Flaws
44	13	0.00027	0.10325	0.82440	0.82490	0.82665	0.85176	0.82854
45	14	0.00029	0.07427	0.89867	0.89903	0.90028	0.91756	0.90152
46	15	0.00031	0.04786	0.94653	0.94676	0.94756	0.95820	0.94829
47	16	0.00033	0.02771	0.97424	0.97438	0.97483	0.98071	0.97522
48	17	0.00035	0.01445	0.98869	0.98876	0.98899	0.99190	0.98918
49	18	0.00037	0.00679	0.99548	0.99551	0.99562	0.99692	0.99570
50	19 i	0.00039	0.00288	0.99836	0.99837	0.99841	0.99894	0.99844
51	20	0.00041	0.00110	0.99946	0.99946	0.99948	0.99967	0.99949
52	21	0.00043	0.00038	0.99984	0.99984	0.99984	0.99991	0.99985
53	22	0.00045	0.00012	0.99996	0.99996	0.99996	0.99998	0.99996
54	23	0.00047	0.00003	0.99999	0.99999	0.99999	0.99999	0.99999
55	24	0.00049	0.00001	1.00000	1.00000	1.00000	1.00000	1.00000
56	25	0.00052	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
57	26	0.00054	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
58	27	0.00056	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
59	28	0.00058	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
60	29	0.00060	0.00000	1.00000	: 1.00000	1.00000	1.00000	1.00000
81	30	0.00062	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
62	31	0.00064	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
63	32	0.00066	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
64	33	0.00068	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
65	34	0.00070	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
66	35	0.00072	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
67	36	0.00074	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
68	37	0.00076	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
69	38	0.00078	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
70	39	0.00080	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
71	40	0.00082	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
72	41	0.00085	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
73	42	0.00087	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
74	43	0.00089	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
75	44	0.00091	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
76	45	0.00093	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
77	46	0.00095	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
78	47	0.00097	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
79	48	0.00099	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
80	49	0.00101	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
81	50	0.00103	0.00000	1.00000	1.00000	1.00000	1.00000	1.00000
82	Col. Total	1	1.00000					

Table 3.7-3 shows a spectrum of statistical evaluations using the Perdue model for segments across several systems of interest for Surry Unit 1 to further illustrate the tool. Large diameter pipes and small diameter pipes are represented for a range of welds contained within those segments. Two low safety-significant segments, where examinations are currently required by ASME Section XI, are also included. These results show that high levels of confidence in meeting the respective target leak rates (see Table 3.7-1) can be achieved in these segments for both the Pre-ISI case and the double sample plan with a sample size of one and a conservative lower bound POD equal to 0.2. Given these results, no further examinations are required for the low safety significant segments. For each high safety-significant segment, one sample is chosen to provide additional assurance that the pressure boundary will be maintained even though the results show that no further examination is required in this highly reliable piping. The location to be examined in each segment is selected by the structural element subpanel using engineering and deterministic insights as discussed in the next section.

...j

Limitations of the Statistical Model

Some limitations have been identified in the statistical model that is used in determining the minimum number of locations to be examined. These limitations have emerged primarily because it had been determined that the piping segments of interest are subject to conditions that may lead to a higher failure potential or importance than was intended for use in the Perdue Model. Also, some piping segments are subject to degradation mechanisms other than those associated with cracking. The Perdue Model should not be used in piping segments where the following conditions may occur:

- Accelerated cracking from high vibratory fatigue, stress-corrosion cracking or other potentially aggressive loading conditions or environments
- Degradation mechanisms associated with wastage, such as flow-assisted corrosion, erosion, or general corrosion
- For socket welds where neither surface nor volumetric examinations are possible
- Where corrective actions or mitigative repairs have been made, such as coatings
 programs or weld overlays, where the initial conditions of the piping have been altered.

Table 3.7-3 SURRY UNIT 1 SAMPLE RESULTS FROM PERDUE MODEL ANALYSIS

ł

Segment	Nominal Pipe Size (inches)	Number of Welds	of Flaw (a/t = 0.10) Probability of Confidence (POD		Double Sample Plan Confidence (POD = 0.2) (%)	Number of Samples per Segment	
ECC-3	6	6	5.38E-02	5.01E-06	100	100	1
ECC-4	6	138	4.99E-02	1.34E-07	100	100	0(1)
HHI-4C	3	9	3.08E-02	1.56E-06	100	100	1
HHI-9	2	82	2.87E-01	2.06E-05	99.99	99.99	1
HHI-12A	2	38	2.87E-01	2.06E-05	99.55	99.55	1
LHI-4	12	2	1.53E-02	6.42E-07	100	100	1
RC-7	36	10	7.66E-04	1.07E-06	99.24	99.24	0(1)
RC-16	6	7	5.38E-02	3.15E-07	100	100	1
RC-58	3	4	3.08E-02	3.40E-07	100	100	1

Note:

(1) Low safety significant segments. Results show high confidence with no subsequent inspections (Pre-ISI column).

For piping segments that have the potential for any of these conditions to occur, a defensible inservice inspection program for these piping segments should be developed based on deterministic information, engineering insights and experience, and industry best practices. Some general guidance for the above situation is provided at the end of Section 3.7.3, and specific examples from the Surry-1 application are provided in Section 3.7.5 for further clarification.

3.7.3 Selection of Actual Inspection Locations

Once the number of locations is determined, the engineering subpanel identifies the specific locations for examination. Figure 3.7-3 displays how this expertise and information is brought together in the structural element selection process.

;

. .

<u>en</u>

. 7

Simplified P&IDs showing the segment boundaries are reviewed by the team along with piping isometrics, plant and industry operating experience, the previous piping segment evaluations performed to determine the high safety-significant piping segments and system design, fabrication and operating conditions. Based on the postulated failure mechanism and the loading conditions for the piping segment, the areas in which this failure mechanism is most likely to occur are identified considering the following factors:

Configuration Dependent. This factor considers the effect of piping layout and support arrangement. For example, piping with low flexibility for thermal expansion will experience high bending moments which, in turn, can drive crack growth.

Component Dependent. For example, socket welds have low resistance to sustained vibration. Elbows or piping immediately downstream of valves, which add turbulence to the flow, are locations susceptible to erosion-corrosion-wear.

Materials/Chemistry Dependent. Intergranular stress corrosion cracking (IGSCC) and dissimilar metal welds are examples of how materials and chemistry can play a role.

Loads Dependent. An example of this is the number of cycles seen by the piping segment. Another example is piping where inadvertent operation may lead to water hammer events. Seismic events are also included in this category.

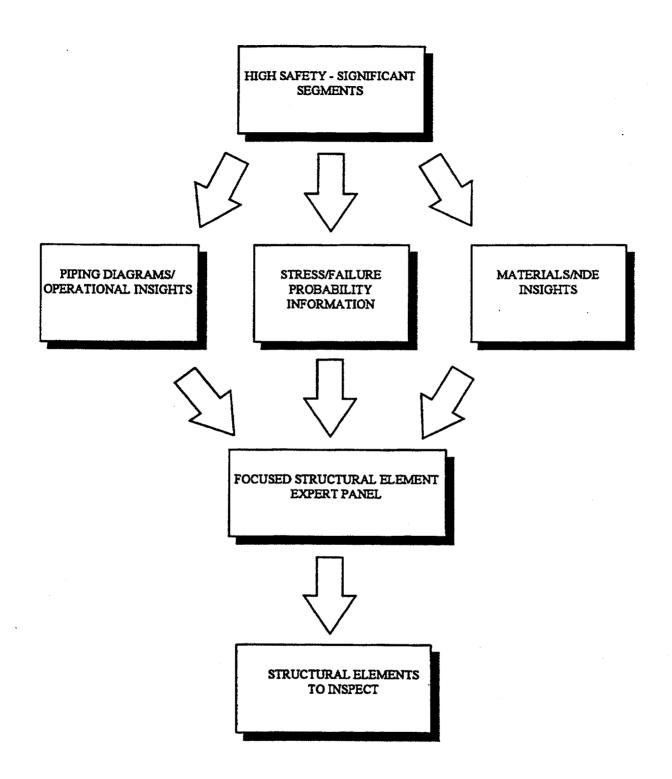


Figure 3.7-3 WOG Structural Element Selection Process

Determination of the inspection location(s) within a piping segment are dependent on these factors. In general,

- Component dependent failure modes are usually localized to a single or small number of locations.
- Materials dependent or operations dependent mechanisms are often present throughout the segment. In such cases, interactions with other effects must be considered for determining the location(s).
- Load dependent failure modes typically involve undetected preexisting flaws or degradation that could fail under high loads. The high loads could arise from dynamic (seismic, water hammer) events, large thermal expansion loads (configuration dependent), or external loading. Locations where such loads could have the greatest impact can often be determined.

Table 3.7-4 provides some additional insights based on postulated failure mechanism that assist in identifying the susceptible areas of piping.

For high safety-significant piping segments where the Perdue statistical model is not applied, the selection of an appropriate number of actual inspection locations will have to be determined using additional rationale beyond the guidance provided above.

• For piping segments subjected to aggressive degradation mechanisms, such as flowassisted corrosion, that are already addressed in an augmented inspection program, it is recommended that a determination of any potential secondary degradation mechanisms (e.g., thermal fatigue) be made. If it is determined that a secondary mechanism may be of concern, then the examination of at least one location in the segment may be warranted and included in the RI-ISI program. This additional examination(s) beyond the current augmented program should also be considered if the delta risk of RI-ISI versus ASME Section XI ISI is enhanced.

INS	Table 3.7-4 INSIGHTS FOR IDENTIFYING INSPECTION LOCATIONS										
Failure Mechanism	General Criteria	Susceptible Areas									
Thermal Fatigue	Areas where hot and cold fluid mix, areas of rapid cold or hot water injection, areas of potential leakage past valves separating hot and cold water	Nozzles, branch pipe connections, safe ends, welds, heat-affected zones, base metal, areas of concentrated stress									
Corrosion Cracking	Areas exposed to contamination and areas with crevices; high stresses (residual, steady-state, pressure), sensitized material (304 SS) and high coolant conductivity are all required; lack of stress relief or cold springing could also lead to residual stresses	Base metal, welds, and heat- affected zones									
Microbiologically influenced corrosion	Areas exposed to organic material or untreated water	Fittings, welds, heat-affected zones, crevices									
Vibratory Fatigue	Configurations susceptible to flow induced vibration and flow striping or for vibratory resonance with rotating equipment (pump) frequencies	Welds, branch pipe connections									
Stress Corrosion Cracking	Areas of high oxygen and stagnant flow	Austenitic steel welds and heat-affected zones									
Flow accelerated corrosion	Areas of low chromium material content, high moisture content, and high pH, high pressure drop or turning losses										
Low cycle fatigue	Areas with high loads due to thermal expansion for heat-up and cool-down thermal cycling.	Equipment nozzles and other anchor points, near snubbers, dissimilar metal joints									

o:\4393\VersionA\4393-3d.doc:1b-021899

- For piping that is highly reliable, but the materials or prior corrective actions negate the applicability of a statistical evaluation, a minimum of one examination location per segment should be performed.
- A segment that is entirely comprised of socket welds and subject to vibration may be appropriately examined using a VT-2 exam that inspects the entire segment for leakage at pressure. Therefore, a minimum number of specific examination locations is not required.

Other situations may exist that warrant considerations beyond the above guidance. However, the engineering subpanel who is selecting the actual inspection locations is always responsible for defending and documenting their rationale for this effort.

Once the initial set of inspection locations is identified, the examinations are performed.

3.7.4 Millstone Unit 3 Examples¹


o:\4393\VersionA\4393-3d.doc:1b-020599

Only one segment, ECCS-0, is considered to be high-safety-significant in the emergency core cooling system. The selection of this segment is primarily based on the consequence of failure because the selected element SRRA failure probability was less than 1.0E-08. The subpanel reviewed the structural elements within the segment and concurred that the element location that was selected is considered to have the highest failure potential. The location of concern is the base metal of a 24" pipe at ground surface that may be subjected to cracking because of outside diameter corrosion and external loads. Since the area being examined at this selected element location is base material; not currently addressed in ASME Section XI, Figure 3.7-4 has been developed to identify the area to be inspected by VT-2 and eddy current examination.

QSS-2 is the only segment that is considered to be high-safety-significant in the quench spray system. The selection of this segment is primarily based on consequence of failure. However, the failure probabilities in this segment were based on prior SRRA evaluations of two locations, both of which are less than 1.0E-8. The subpanel reviewed all the elements in the segment and

- 1

¹ The Perdue model was unavailable at the time of the Millstone 3 reference plant application. However, these examples highlight how engineering insights are used in selecting actual inspection locations by the engineering subpanel.

o:\4393\VersionA\4393-3d.doc:1b-020599

concurred that the two selected locations have the highest failure potential. Both locations are pipe-to-elbow welds in the 12" pipe that may be subjected to cracking from vibrational fatigue caused by pump operation. Both UT and VT-2 examinations are recommended for these two locations.

ر در در <mark>ارم</mark> در در در در ارم

. . ;

 $\dot{2}$

For FWA, five segments were considered to be high safety-significant in this system plus 4 feedwater pipe/elbow to nozzle welds included for plant reliability considerations. The selection of these segments was primarily based on consequence of failure, because the selected element failure probabilities were less than 1.0E-08. The subpanel reviewed all the segment elements and concurred that the element locations selected were considered to have the highest failure probabilities. For the first high safety-significant segment FWA-7, the element location selected was near the turbine driven auxiliary feed pump. The panel agreed that this location on the 2 side of the reducer would act as a sentinel for any vibration related fatigue problems and that the previously specified RT examination should be performed following pump test or system operation. For the remaining 4 high safety-significant segments FWA-12, -14, -16, and -18, a MT examination was added to the specified RT examination because the failure mode was identified to be external loads. Since external loads is a possible combination of several contributors to potential failure and not one single degradation mechanism, the subpanel believed that OD flaws should be examined for at these locations and this was the reason that the MT examination was added. The 4 steam generator inlet feedwater nozzle welds had been included due to plant reliability considerations because of thermal fatigue induced cracking that had been found throughout the industry and at MP3. MP3's nozzles were repaired and modified in 1993 to reduce the potential for fatigue cracking. To monitor the effectiveness of the modifications RT examination of the 2 elbow to nozzle welds and UT examination of the 2 pipe to nozzle welds including additional base material was specified by the subpanel.

Five segments were also considered to be high safety-significant in the SIL system. The selection of these segments was primarily based on consequence of failure, because the selected element failure probabilities were less than 1.0E-08. The subpanel reviewed the element/location selections for each of the selected segments and several changes were made. These changes were based on a detailed review of the piping configurations and fabrication drawings. For SIL-3 a pipe to elbow weld had originally been selected and it was changed to address a unique discontinuity in this piping segment. The subpanel review identified a pipe

o:\4393\VersionA\4393-3d.dcc:1b-020599

transition piece welded to a valve where a pipe class change occurred. This pipe class change or thickness change was believed to have a higher potential for failure than the originally selected element location. The subpanel specified that a RT examination method be used at this location so that the area of the valve counterbore region could be examined along with the transition piece to pipe weld. For SIL-5, welds on both sides of a reducer were originally specified for examination. The subpanel decided that after review of these locations that only the 6 side of the reducer needed to be examined. The subpanel believed that since the failure probabilities at these locations were relatively low, less than 1.0E-08, examining both locations was not necessary. The subpanel decided to focus the examination on the higher stressed 6 side of the reducer in order to address the potential thermal fatigue failure mode at this location. Additionally, the weld volume was extended to include 1 of base material adjacent to the weld.

3.7.5 Surry Unit 1 Examples

The Surry expert panel directed the subpanel to select the necessary locations on the high safety-significant segments and some low safety-significant segments for examination, and to determine the appropriate examination methods and extent of examination. The number of locations selected were determined by the perceived failure mechanism importance, the statistical sampling requirements, and the risk change. The subpanel used the following criteria in the selection process.

- Select the locations (100%) where a perceived high failure importance is recognized. These locations generally have an active failure mechanism recognized with a corresponding high failure probability. In some cases where an augmented program was already established, this was maintained. The subpanel in some cases required additions to the augmented inspection programs.
- Select locations as necessary to meet the statistical sampling requirements and change in risk requirements. The subpanel generally examined locations thought to have high loadings, and would generally, in similar multiple loops, spread the examinations in different locations. Additional rationale must be developed when the statistical model cannot be applied to determine the minimum number of examination locations for a given segment.

• The examination requirements and extent of examination followed the guidance found in Table 4.1-1, which is provided later in this report. In some instances, the subpanel required more than what the guidance indicates. Areas of concern associated with socket welds or materials not inspectable by normal NDE methods required departure from the guidance.

Several examples are provided below where additional rationale had to be applied when the Perdue statistical model could not be exercised and when the NDE methods required departure from the guidance in Table 4.1-1.

Segment FW-002 is a non-Code class piping component in the normal feedwater system. The segment is already inspected by the station's augmented erosion/corrosion inspection program (susceptible to that failure mechanism). This program will be maintained on the segment. The subpanel additionally selected a weld for ultrasonic (volumetric) and magnetic particle (surface) examination at a perceived high stress location. The examination would address the secondary failure mechanism of fatigue. This additional sample examination provided additional inspection coverage for risk considerations. Note that the subpanel required a magnetic particle examination. The magnetic particle examination is not a requirement of the guidance in Table 4.1-1 (R1.11). The subpanel wanted to ensure against outside diameter initiating flaws.

Segments CH-008, 009, and 0010, part of the charging system, are small bore, socket welded piping segments which supply seal injection water to the reactor coolant pump seals. The predicted failure mechanism is high cycle fatigue due to pump vibration. The examination technique required by Table 4.1-1 (R1.12) is a VT-2 exam at each refueling outage. Since the VT-2 exam involves inspection of the whole segment for leakage at pressure, tabulation of the exact number of welds per segment and application of the Perdue Model was not deemed necessary. This would be the case for any segment where VT-2 is the appropriate inspection technique. Additional NDE is also directed to this segment by the engineering subpanel that is over and above the guidance in Table 4.1-1.

रभ्

Service water segments SW-044, 045, 046, 047, and 054 are fabricated of copper/nickel material which is not a material which can be modeled by the SRRA code and statistical model used for

Surry Unit 1. They conduct service water to and from the charging pump intermediate seal coolers. The segments were originally ranked to be low safety significant but were moved up to high by the Expert Panel because of its sensitivity to the possibility of indirect effects. Because the piping is considered highly reliable, the postulated failure mechanism is thermal fatigue by default (actually thermal cycles are practically nonexistent), and the SRRA code could not be used to calculate a failure probability, which is a necessary input to the Perdue Model, the Perdue Model was not used to select examination locations. The subpanel believed that an examination location per segment would be representative of the balance of these highly reliable, low safety significant segments.

Finally, segments RC-041, 042, 043 are Class 1 piping components in the reactor coolant system. The segments provide safety injection water to the three reactor coolant loops when necessary. These segments were identified as being susceptible to thermal striping. The industry has experienced an issue when high pressure and cooler charging water has leaked into the warmer RCS at these locations. The subpanel directed a 100% inspection for this potentially active failure mechanism at the weld connecting the inlet check valve to the reactor coolant piping on all three segments. The statistical model required that one more location be examined on each segment. As the segments were similar in design and function, the subpanel identified welds to be examined at different locations on the three segments. The subpanel required that all selected locations receive an ultrasonic (volumetric) and liquid penetrant (surface) examination, again more than the guidance's requirements.

SECTION 4 INSPECTION PROGRAM REQUIREMENTS

This section contains the minimum Risk-Informed Inservice Inspection (RI-ISI) program requirements for High Safety-Significant (HSS) and Low Safety-Significant (LSS) piping structural elements determined in accordance with the requirements of Section 3.7. Requirements for Nondestructive Examination (NDE), System Pressure Tests, Scheduling, Implementation, Program Monitoring, and Corrective Action Program descriptions are included. Inservice examinations and system pressure tests are to be performed in accordance with this section and the requirements contained in the American Society of Mechanical Engineers (ASME) Boiler & Pressure Vessel Code, Section XI, Edition and Addenda specified in an Owner's current Inservice Inspection Program except where specific references are provided that add supplemental requirements, specify other Code Editions and Addenda, or recommend/require the use of ASME Code Cases.

Examinations and system pressure tests may be performed during either system operation or plant outages, such as refueling outages or maintenance outages. Scheduled examinations are to be completed during each inspection interval. Currently the interval is 10 years. Examinations are distributed across periods such that one third of the examinations are conducted in each period. Alternative examination methods, a combination of methods, or newly developed techniques may be used in lieu of the NDE requirements of Table 4.1-1, as provided in IWA-2240 Alternative Examinations of ASME Section XI.

Experience has shown that when an aggressive mechanism (such as IGSCC, thermal striping, and flow-accelerated corrosion) is discovered, corrective actions and augmented programs are implemented to address the concern. Augmented inspection programs for these situations tend to have intervals less than 10 years.

Through the RI-ISI process, situations may be identified on a plant-specific basis where an aggressive mechanism may potentially occur (e.g., back-leakage of hot water across a check valve into a piping segment containing cooler water, thereby inducing the potential for thermal striping). For these situations, the licensee may choose to either implement examinations more frequently than every 10 years (including the use of thermal monitors) or implement changes to

o:\4393\VersionA\4393-4.doc:1b-020599

minimize the potential for the identified phenomenon. If the licensee chooses to implement a program that will provide vital information more frequently than every 10 years, then that new information would have to be evaluated at the time that is obtained to determine if a change to the prior RI-ISI results is necessary.

Comparison of results to current ASME Section XI locations are provided with a cost benefit update that now includes the pilot plant work at Surry Unit No. 1.

Examinations Requirements

An attempt should be made to provide a minimum of > 90% coverage criteria (per ASME Code Case N-460) when performing an exam. Volumetrically this is done using ultrasonic (UT) techniques with the >90% requirement being met in all Code required directions (averaged). The examination is considered complete if the >90% coverage is obtained using the specified technique in the plan or combinations of techniques if limitations are encountered. Some limitations will not be known until the examination is performed, since some locations will be examined for the first time by the specified techniques.

When an examination location is selected that does not meet >90% examination coverage, a strategy should to be applied with regard to examination coverage as follows:

- If >90% coverage is not obtained, the coverage obtained should be documented as 1. well as the reason for the coverage limitation. If the coverage is limited by an obstruction, which is removable, then an evaluation should be performed to either allow removal of the obstruction or justify why the obstruction cannot be removed.
 - 2. If the obstruction is required to remain, then consideration should be given to the structural elements on either side of the selected structural element, which is limited. If either of these structural elements can be examined to the coverage requirements, then an examination should be performed there in addition to the limited coverage exam already performed. This may be the only examination performed in situations where the selected element was selected for statistical sampling alone. Selecting another location would meet the statistical

12

requirements for the segment, and the original site does not need to be examined. Additionally, the substitution (statistical) would not necessarily be limited to the elements on either side of the element originally selected.

- If the area or volume of concern still remains insufficiently addressed, consideration should be given to leakage monitoring options such as more frequent pressure testing and VT-2 examinations or operator walkdowns.
- 4. The coverage obtained, limitations encountered, alternative provisions, and an assessment of how the risk is being addressed should be documented. The information should be formally submitted as a relief request.

It should be noted though that if a current ASME Section XI examination is a partial examination and it continues to be a partial examination in the RI-ISI process, the amount of risk addressed by examination remains the same for that location. If a new location is going to be examined by RI-ISI and it is a partial examination, but it was not previously required to be examined by Section XI, then the new examination would still increase the amount of risk addressed by examination for that location. It is not necessarily true that because you reduce examination totals, that a complete examination must be performed at the RI-ISI selected locations to maintain risk neutrality or improvement in the program. The impact of locations being removed on the overall risk contribution should be assessed (i.e., usually the segment risk contribution is negligible) in an analysis. Additionally the sampling requirements necessary to maintain assurance of structural integrity should be accounted for in the analysis. These type evaluations should be included in how the risk is being addressed in a partial examination situation.

4.1 HIGH SAFETY-SIGNIFICANT LOCATIONS

HSS piping structural elements should be examined in accordance with the requirements of Table 4.1-1 for the areas and/or volumes of concern at each HSS location. The requirements contained in Table 4.1-1 have been taken directly out of ASME Code Case N-577 Risk-Informed Requirements for Class 1, 2, and 3 Piping - Method A Section XI, Division 1. The NDE method for each HSS location is based on the postulated failure modes and the configuration of each piping structural element as described in Table 4.1-1. As an alternative to the requirements in

o:\4393\VersionA\4393-4.doc:1b-020599

Table 4.1-1, additional guidance for visual examination methods, examination monitoring techniques, and NDE methods associated with postulated failure modes is provided in Table 4.1-2. This guidance may be used subject to approval by an Authorized Nuclear Inservice Inspector (ANII) under the requirements of Section XI, IWA-2240. All ASME Code Class 1, 2, and 3 HSS locations should continue to receive a visual examination for leakage in accordance with the system pressure test requirements of ASME Section XI.

4.2 LOW SAFETY-SIGNIFICANT LOCATIONS

LSS piping structural elements do not require NDE under a RI-ISI program. When a location is determined to be LSS, it usually has no appreciable consequence or failure importance and thus is assigned a low level examination requirement. This low level requirement consists of a visual examination for leakage that may be conducted during operational walkdowns or in conjunction with system pressure tests performed in accordance with ASME Section XI. LSS locations that are determined to have a high failure importance and a low consequence are usually examined by other Owner controlled programs for the failure mechanism of concern such as Flow Accelerated Corrosion (FAC). These Owner controlled programs shall continue to be implemented based on their own requirements.

4.3 SYSTEM PRESSURE TESTS

System pressure test requirements and VT-2 visual examinations shall continue to be performed on all ASME Code Class 1, 2, and 3 systems regardless of whether the segments contain locations that have been determined to be HSS or LSS. It is recommended that each Owner consider the use of ASME Code Cases N-498-1 Alternative Rules for 10-Year System Hydrostatic Testing for Class 1, 2, and 3 Systems Section XI, Division 1 and N-416-1 Alternative Pressure Test Requirement for Welded Repairs or Installation of Replacement Items by Welding, Class 1, 2, and 3 Section XI, Division 1 to eliminate the need to perform elevated system pressure tests. Use of a RI-ISI program does not require elevated system pressure tests as currently required by ASME Section XI. Use of these ASME Code Cases has been approved by the Nuclear Regulatory Commission (NRC) for many Owners. Both Code Cases are presently being evaluated for industry acceptance by the NRC in Draft Regulatory Guide 1050

į

	Table 4.1-1 EXAMINATION CATEGORY R-A, RISK-INFORMED PIPING EXAMINATIONS										
	Parts Examined	Examination Requirement/ Fig. No. ²¹⁰	Examination Method	Acceptance Standard ¹⁰	Extent' and		Deferral of Examination to End of Interval				
Item No.		rig. 190.			Successive 1st Interval Intervals						
R1.10	High Safety-Significant Piping Structural Elements										
R1.11	Elements Subject to Thermal Fatigue	IWB-2500-8(c) ¹ IWB-2500-9,10,11 IWC-2500-7(a) ¹	Volumetric	IWB-3514	Element ^{2,4}	Same as 1st	Not Permissible				
R1.12	Elements Subject to High Cycle Mechanical Fatigue			Each Refueling	Same as 1st	Not Permissible					
R1.13	Elements Subject to Corrosive, Erosive, or Cavitation Wastage	Note 8	Volumetric [*] (for Internal Wastage) or Surface (for External Wastage)	IWB-3514 Note 8	Element' Element'	Same as 1st	Not Permissible				
R1.14	Elements Subject to Crevice Corrosion Cracking	Note 7	Volumetric	IWB-3514	Element ²	Same as 1st	Not Permissible				
R1.15	Elements Subject to Primary Water Stress Corrosion Cracking (PWSCC) ⁶	Note 7	Visual, VT-2"	IWB-3142	Each Refueling	Same as 1st	Not Permissible				
R1.16	Elements Subject to Intergranular Stress Corrosion Cracking (IGSCC)	IWB-2500-8(c) IWB-2500-9,10,11	Volumetric	IWB-3514	Element ²	Same as 1st	Not Permissible				
R1.17	Elements Subject to Microbiologically Influenced Corrosion (MIC)	IWB-2500-8(c) IWB-2500-9,10,11	visual, v 1-5 internal		Element ²	Same as 1st	Not Permissible				
R1.18	Elements Subject to Flow Accelerated Corrosion (FAC)	Note 9	Note 9	Note 9	Note 9	Note 9	Note 9				

1

.

ľ

(

1

1

[(

{

[

[

1

[[

Table 4.1-1 (cont.) EXAMINATION CATEGORY R-A, RISK-INFORMED PIPING EXAMINATIONS

Notes:

- (1) The length for the examination volume shall be increased to include 1/2 in. beyond each side of the base metal thickness transition or counterbore.
- (2) Includes all examination locations identified in accordance with the risk-informed selection process in Section 3.7.
- (3) Includes 100% of the examination location. When the required examination volume or area cannot be examined due to interference by another component or part geometry, limited examinations shall be evaluated by the Expert Panel for acceptability. Areas with acceptable limited examinations, and their bases, shall be documented.
- (4) The examination shall include any longitudinal welds at the location selected for examination in Note 2. The longitudinal weld examination requirements shall be met for both transverse and parallel flaws examination volume defined in Note 2.
- (5) Initially-selected examination locations are to be examined in the same sequence during successive inspection intervals, to the extent practical.
- (6) Applies to mill annealed Alloy 600 nozzle welds and heat affected zone (HAZ) without stress relief.
- (7) The examination volume shall include the volume surrounding the weld, weld heat affected zone, and base metal, where applicable, in the crevice region. Examination should focus on detection of cracks initiating and propagating from the inner surface.
- (8) The examination volume shall include base metal, welds and weld HAZ in the affected regions of carbon and low alloy steel, and the welds and weld HAZ of austenitic steel. Examinations shall verify the minimum wall thickness required. Acceptance criteria for localized thinning is in course of preparation. The examination method and examination region shall be sufficient to characterize the extent of the element degradation.

1

20

1992

- (9) In accordance with the Owner's existing FAC program.
- (10) Paragraph and Figure numbers refer to the 1989 Edition.

17599

1 / da

(11) VT-2 examinations may be conducted during a system pressure test or a pressure test specific to that component/element.

MONITORING TECHN	Table 4.1-2 SUAL EXAMINATION METH NIQUES, AND NDE METHO OSTULATED FAILURE MOD side Surface Initiated Flaws or Re	DS ASSOCIATED WITH DES
Piping Structural Elements	Postulated Failure Modes	Suggested Visual Exam Method, Monitoring Technique, or NDE Method
Butt Welds (2) ≥ .237 in. Nominal Wall Thickness for Piping ≥ NPS 2	Cracking Thermal Fatigue, Mechanical Fatigue, or Corrosion	Ultrasonic Examination (3) or Continuous Temperature and/or Stress Monitoring For Thermal Fatigue
Butt Welds (2) < .237 in. Nominal Wall Thickness	Cracking Thermal Fatigue, Mechanical Fatigue, or Corrosion	Radiographic Examination (4) or Continuous Temperature and/or Stress Monitoring For Thermal Fatigue
Butt Welds (2) Essentially Limited to RAW Water Cooling Systems	FAC Microbiologically Influenced Corrosion, Heat Affected Zone Washout, and General Erosion	Combinations of Ultrasonic Examination (5), and Radiographic Examination (4)
Branch Connection Welds Branch Pipe ≤ NPS 2 Connected to Main Run Pipe ≤ NPS 4	Cracking Thermal Fatigue, Mechanical Fatigue, Corrosion, or Vibrational Fatigue (6)	Radiographic Examination (4) or Continuous Temperature and/or Stress Monitoring For Thermal Fatigue
Branch Connection Welds Branch Pipe > NPS 2 Connected to ≥ .237 in. Nominal Wall Thickness Main Run Pipe > NPS 4	Cracking Thermal Fatigue Mechanical Fatigue, Corrosion, or Vibrational Fatigue (6)	Ultrasonic Examination (3) Main Run Pipe Base Material Adjacent to The Weld and Radiographic Examination (4) Weld and Branch Fitting Base Material Adjacent to The Weld to The Extent Possible or Continuous Temperature and/or Stress Monitoring For Thermal Fatigue
Socket Welds ≥.237 in. Nominal Wall Thickness	Cracking Thermal Fatigue Mechanical Fatigue, Corrosion, or Vibrational Fatigue (6) FAC	Radiographic Examination (4) Supplemented By Ultrasonic Examination (3) Pipe Base Material Adjacent to The Weld or
	General Wastage from Flow or Oxidation	Continuous Temperature and/or Stress Monitoring For Thermal Fatigue

o:\4393\VersionA\4393-4.doc1b-020599

MONITORING TECH	Table 4.1-2 (cont.) SUAL EXAMINATION METH NIQUES, AND NDE METHO OSTULATED FAILURE MOD	DS ASSOCIATED WITH
Potential Piping In	side Surface Initiated Flaws or Re	levant Conditions (1)
Piping Structural Elements	Postulated Failure Modes	Suggested Visual Exam Method, Monitoring Technique, or NDE Method
Socket Welds < .237 in. Nominal Wall Thickness	Cracking Thermal Fatigue Mechanical Fatigue, Corrosion, or Vibrational Fatigue (6) FAC General Wastage from Flow or Oxidation	Radiographic Examination (4) or Continuous Temperature and/or Stress Monitoring For Thermal Fatigue
Pipe Runs or Areas Base Material and Welds	FAC General Wastage from Flow or Oxidation	Ultrasonic Examination (5), Radiographic Examination (4), or Infra-Red Thermography (7)
Pipe Fittings Such as Elbows, Tees, Reducers, or Expanders	FAC General Wastage from Flow or Oxidation	Ultrasonic Examination (5), Radiographic Examination (4), or Infra-Red Thermography (7)
Potential Piping C	Dutside Surface Initiated Flaws or I	Relevant Conditions
All Piping Structural Elements Such as Butt Welds, Branch Connection Welds, Socket Welds, Pipe Runs, or Pipe Fittings	Cracking Thermal Fatigue Mechanical Fatigue, Corrosion, or Vibrational Fatigue (6)	Liquid Penetrant Examination or Eddy Current Examination For Austenitic Stainless Steels, Non- Ferritic High Alloy Materials, and Dissimilar Metal Welds or Magnetic Particle Examination or Eddy Current Examination For Carbon Steel, Ferritic Low Alloy Steel Materials and Welds
All Piping Structural Elements Such as Butt Welds, Branch Connection Welds, Socket Welds, Pipe Runs, or Pipe Fittings	Corrosion General Wastage from Oxidation	Visual, VT-3 Examination (8)

А.

 $\frac{1}{2}$

Table 4.1-2 (cont.) GUIDANCE FOR VISUAL EXAMINATION METHODS, EXAMINATION MONITORING TECHNIQUES, AND NDE METHODS ASSOCIATED WITH POSTULATED FAILURE MODES

Notes:

- (1) Inside surface examinations of piping structural elements subject to cracking may be performed if they become accessible in lieu of the suggested volumetric examinations of this table. Examination methods such as liquid penetrant examination, eddy current examination, or magnetic particle examination for appropriate materials may be used. For piping structural elements subject to FAC, a general VT-3 visual examination may be performed from the inside surface of the piping, but it may necessary to supplement this general visual examination with other examination methods to determine the extent of the erosion or corrosion.
- (2) Butt welds include circumferential welds and longitudinal welds. The examination methods suggested for these welds include methods for welds of all materials, dissimilar metal welds, or portions thereof except for those welds that are made from austenitic cast stainless steel materials. Radiographic examination should be used for welds that include austenitic cast stainless steel materials.
- (3) An ultrasonic angle beam examination sensitive to flaws initiating at the inside diameter surface of a weld or heat affected zone should be used.
- (4) Radiographic examination is a sensitive examination for identifying flaws parallel to the radiation beam used in the technique. The method is good for the detection of pits, slag, and thermal fatigue cracks. Intergranular stress corrosion cracking, stress corrosion cracking, and off angle cracks are not reliably detected with this method. This examination method provides an accurate plan view for the location of flaws that it can detect and is extremely helpful used in conjunction with ultrasonic examination to evaluate localized areas of pitting, flow erosion, or microbiologically influenced corrosion attacks.
- (5) An ultrasonic straight beam examination is used here for accurate measurements of material thickness. This method to used to assess erosion/corrosion material loss.
- (6) Cracking resulting from vibrational fatigue is not usually detectable by NDE methods prior to leaking. Guidance for assessment of vibrational fatigue conditions may be found in Part 3 of the ASME OM-S/G-1990 GUIDE.
- (7) Infra-red thermography may be a useful examination method for overall erosion/corrosion assessments to locate general areas of wall loss in steam or hot fluid systems. This method should be combined with ultrasonic examination or radiographic examination for accurate wall loss measurements.
- (8) This general VT-3 visual examination method is good for location of general wastage from oxidation, but if severe oxidation is identified other examination methods may have to be used to quantify the amount of material loss.

which will be Revision 12 to U.S. NRC Regulatory Guide 1.147. Non-Code Class system examination requirements for HSS or LSS locations shall include those system pressure tests and corresponding visual examinations for leakage that are required under an Owner's Current Licensing Basis (CLB) as defined in 10 CFR 54.3. Generally, Non-Code Class systems do not require inservice type system pressure tests.

4.4 COMPARISON OF RESULTS TO CURRENT ASME XI INSPECTION LOCATIONS

3

1

1.1.1.1

ţ

÷

This section discusses the comparison of the results of the risk-informed process to the current ASME Section XI piping inspection locations.

4.4.1 Comparison of Examination Locations

Millstone 3 Comparison

Table 4.4-1 provides a comparison of the structural element/location selections by system for the representative WOG plant. The risk-informed ISI program results are compared against the existing ISI program weld selections based on the 1989 Edition of the ASME Code Section XI requirements.

The first column of the table represents the systems that were evaluated under the riskinformed ISI program. This list is also shown in Table 3.2-1 and includes all the ASME Code Class 1, 2, and 3 piping systems of the existing ISI program, piping systems modeled in the PSA, and various balance of plant (non-nuclear Code Class) systems.

The second column of the table identifies the piping segments determined to be high safety-significant by the expert panel previously shown in Table 3.6-13. These high safety-significant piping segments include all the piping structural elements that were evaluated for inclusion in the risk-informed ISI program by the expert panel.

The third column divides the number of the structural elements selected for examination by the expert panel into each of the applicable ASME Code Classifications for each system. This column shows the number of elements that were selected for examination in accordance with the risk-informed ISI program within the ASME Code Class 1, 2, and 3 piping systems, and no exemptions were applied from IWB-1220, IWC-1220, or IWD-1220 of Section XI.

	MILLSTONE UNIT RESULTS A	3 PRELIMINAI ND COMPARI		IE SECTION X		N		
Systems Evaluated	High Safety- Significant Segments	Risk-I Higl St		1989 Editior	n XI ISI Prog n Examinatio eld Selectior	n		
		CLASS 1	CLASS 2	CLASS 3	B-F	B-J	C-F-1	C-F-2
BDG (SG Blowdown)	0	-	-	-	-		-	-
CCE (CHS Cool)	0	-		-	-	· -	-	-
CCI (SI Cool)	with SIH	-	-	-	-	-	-	-
CCP (CCW)	4	0	0	5	0	0	0	0
CHS (CVCS)	4	0	6	0	0	9	10	0
CNM (Condensate)	with FWS	-	-	-	-	-	-	-
DTM (Turbine Plant Drains)	with MSS	-	-	-	-	-	-	-
ECCS (1)	1	0	1	0	0	0	0	0
EGF (DG Fuel)	0	-	-	~	-	-	-	-
FWA (Aux Feed)	5	0	8 (2)	1	0	0	0	3
FWS (Feedwater)	0	0	0	0	0	0	0	41
HVK (Control Bld Chill)	0	-	-	-	-	-	-	-
MSS (Main Steam)	0	0	0	0	0	0	0	32
QSS (Quench spray)	1	0	2	0	0	0	64	0

I

[

[

1

Table 4.4-1 (cont.) MILLSTONE UNIT 3 PRELIMINARY STRUCTURAL ELEMENT SELECTION RESULTS AND COMPARISON TO ASME SECTION XI 1989 EDITION REQUIREMENTS											
High Safety- SignificantRisk-Informed ISI ProgramASME Section XI ISISignificantHigh Safety-Significant1989 Edition ExamSystems EvaluatedSegmentsStructural ElementsCategory Weld Sel								ination			
		CLASS 1	CLASS 2	CLASS 3	B-F	B-J	C-F-1	C-F-2			
RCS	55	67(3)	0	0	22	318	0	0			
RHS (RHR)	with SIL	-	-	-	-	-	-	-			
RSS (Recirc)	1	0	1	0	0	0	23	0			
SFC (Fuel Pool)	0	-	-	-	-	-	-	-			
SIH (HPI)	4	0	4	0	0	57	28	0			
SIL (LPI)	5	0	6	0	0	40	106	0			
SWP (SW)	16	0 0 18(3) 0 0 0									
TOTAL (4)	96	67	28	24	22	424	231	76			

Notes:

(1) Section XI weld selections are included in the SIH and SIL systems.

(2) Includes 4 Feedwater Pipe to Nozzle welds that were not determined to be High Safety-Significant.

(3) Eight RCS and 4 Service Water High Safety-Significant elements/segments will require VT-2 exams only.

(4) Total RI-ISI Elements Requiring NDE = 107 Total Section XI Welds = 753 86% REDUCTION

and the second s

1

1 | | | | array | Karamadi . 1

No element selections were determined to be applicable outside the existing ASME Code Class boundaries at Millstone Unit 3, but this may not be the case at all plants that apply this process. Section XI currently addresses only weld selections, and under a risk-informed ISI program, this may not always be the case. Since the process identifies the segments of piping that are high safety-significant in relation to their possible failure affecting core damage, the use of existing Section XI exemptions and examination criteria has been shown at Millstone Unit 3 not to be appropriate. Additionally, the following specific information about some of these element selections is provided to show that, under a risk-informed ISI program, the current Section XI requirements may not be applicable to the elements selected for examination:

- for the Chemical and Volume Control System (CHS), six Class 2 elements are shown to have been selected for examination under the risk-informed ISI program. Of these six elements, five are currently exempt from NDE by Section XI because of their pipe sizes under IWC-1220;
- the element selected for examination under the Class 2 column of the Emergency Core Cooling System (ECCS), is not a weld location, but is limited to base metal and is identified in Figure 3.7-4;
- in the Auxiliary Feedwater System (FWA), the Class 3 element that was selected for examination is located on a line that is currently exempt from NDE by pipe size under IWD-1220;
- in the Low Pressure Safety Injection System (SIL), one of the six Class 2 elements selected for examination is also exempt from NDE by pipe size under IWC-1220; and
- for the Service Water System (SWP), selected Class 3 elements, two of the 18 selected are also exempt from NDE by pipe size under IWD-1220.

The fourth column shows the current weld selections under the requirements of the existing Millstone Unit 3 ISI program for Class 1 and 2 piping. These selections are determined under the requirements of Table IWB-2500-1 for Class 1 piping, Examination Categories B-F Pressure Retaining Dissimilar Metal Welds and B-J Pressure Retaining Welds in Piping; and Table IWC-2500-1 for Class 2 piping, Examination Categories C-F-1 Pressure Retaining Welds in Austenitic Stainless Steel or High Alloy Piping and C-F-2 Pressure Retaining Welds in Carbon or Low Alloy Steel Piping. For Class 3 piping, there are no current requirements to examine welds, but the piping itself receives system pressure tests. For purposes of identifying Class 3 piping subject to examination, the rules of Table IWD-2500-1, Examination Category D-A under the 1992 Edition of ASME Section XI, have been used.

- 11

- 7

Table 4.4-1 shows that 119 elements were selected for some type of examination under the Millstone Unit 3 risk-informed ISI program. 107 of these elements will receive some type of NDE, Vibration Monitoring, or ID Visual VT3 examination. All the remaining elements in the risk-informed ISI program and those currently included in the Section XI ISI program will continue to receive Visual VT-2 examinations during system pressure tests.

Surry Unit 1 Comparison

Table 4.4-2 for Surry 1 is constructed similar to Table 4.4-1 for Millstone 3 presenting a comparison between a risk-informed program and the current ASME Section XI requirements on piping. An identification of piping segments that are part of plant augmented programs is also included for Surry 1.

As in the Millstone 3 results, Surry 1 will be performing examinations at elements not currently required to be examined by ASME Section XI. Some examples of these additional examinations are provided:

- Several elements currently classified as Non-Code Class will receive examination. These
 examinations will be in addition to applicable augmented inspection programs that will
 be continued. Non-Code Class systems or portions of systems that are Non-Code Class
 identified as having piping segments requiring examination include auxiliary steam,
 steam generator blowdown, and feedwater. The ASME Section XI Code does not
 address Non-Code Class systems.
- Several elements currently classified as Class 3 will receive examination. Class 3 systems or portions of systems that are Class 3 identified as having piping segments requiring examination include auxiliary feedwater and component cooling water. The

ASME Section XI Code does not require NDE (volumetric or surface) examinations on Class 3 systems.

 The ASME Section XI Code does not require volumetric and surface examinations of piping less than 3/8 inch wall thickness on Class 2 piping greater than 4 inch nominal pipe size (NPS). The welds are counted for percentage requirements, but not examined by NDE. The risk-informed program will require examination of these welds. Examples where the risk- informed process required examination and the Code did not are the suction lines to the charging pumps (high head safety injection).

Since the risk-informed inspection program will require examinations on a large number of elements constructed to lesser inspection requirements, the program in all cases will determine through an engineering evaluation the root cause of any unacceptable flaw or relevant condition found during examination. The evaluation will include the applicable service conditions and degradation mechanisms to establish that the element(s) will still perform their intended safety function during subsequent operation. Elements not meeting this requirement will be repaired or replaced.

The evaluation will include whether other elements on the segment or segments are subject to the same root cause and degradation mechanism. Additional examinations will be performed on these elements up to a number equivalent to the number of elements required to be inspected on the segment or segments initially. If unacceptable flaws or relevant conditions are again found similar to the initial problem, then the remaining elements identified as susceptible will be examined.

No additional examinations will be performed if there are no additional elements identified as being susceptible to the same service related root cause conditions or no degradation mechanism.

				SULTS ANI	1 STRUCT	ble 4.4-2 URAL ELEME NISON TO ASI I REQUIREME	ME SEG				
	System	Number of High Safety-Significant Segments (No. in Augmented Program)		Risk-Informed ISI Program High Safety-Significant Structural Elements*				Editio	n XI ISI I n Examir 'eld Sele	Total Number of Segments Credited in Augmented Programs	
ľ			ČLASS 1	CLASS 2	CLASS 3	NON-CODE	B-F	B-J	C-F-1	C-F-2	
	ACC	0						9			0
	AFW ^c	11 (5)		5	3+3*					6	16
	AS	2				2					0
	BD ^c	6 (6)		3		3					12
	CC	6		· · · · · · · · · · · · · · · · · · ·	13+4 [°]						0
ŧ	СН	8	12+6 [°] +4 [°]	1+3°	······			39			3
ſ	CN	0									6
	CS	0		2 ^h					9		2
	CW ^d	4									0
	ECC	7	12	1				4	24		1
ſ	EE	0									0
	FC	0									0
	FW ^c	13 (13)				7				6	17
	нніс	14 (1)		15+2 ^h						63	5
	LHIC	7 (1)		7+3 ^b +2 ^h						23	1

o:\4393\VersionA\4393-4.doc:1b-020599

ł

Į

na la construcción de la

. 1

 -1 1

		1997 - Young and an									
	System	Number of High Safety-Significant Segments (No. in Augmented Program)		Risk-Inform High Safet Structura	1989	Prog Edition	ction XI gram Examin eld Selec	ation	Total Number of Segments Credited in Augmented Programs		
			CLASS 1	CLASS 2	CLASS 3	NON-CODE	B-F	B-J	C-F-1	C-F-2	
	MS	3 (3)		2+1 ^s						18	23
96	RC	11	20+10 ^{h,i} +3 ^b				18	146			3
li	RH	4	1	4				4	12		0
	RS	2		2					4		0
	SW ^d	8			5+3°						0
	VS	2			2						0
	TOTAL	108	68	53	33	12	18	202	49	116	89

1 1

[

Summary: Current ASME Section XI selects a total of 385 non-destructive exams while the proposed RI-ISI program selects a total of 136 exams (166 - 30 visual exams), which results in a 65% reduction.

Notes for Table 4.4-2

a. System pressure test requirements and VT-2 visual examinations shall continue to be performed in all ASME Code Class 1, 2, and 3 systems.

b. VT-2 area exam at specific location.

c. Augmented programs for erosion-corrosion and/or high energy line break continue.

1. 1

d. Pipe coatings program will be maintained.

e. VT-2 for entire segment.

f. UT thickness only.

g. Segment MS-34 has no weld; VT-2 for entire segment.

h. Ten examinations added for change in risk considerations.

i. Six examinations added for defense-in-depth at the reactor vessel outlet nozzle to pipe welds.

4.4.2 Risk/Safety Evaluation

The effect of the RI-ISI program on risk must be estimated in order to ensure that a program that could have an adverse effect on safety is not implemented. The aggregate effects of changes to examination requirements must be evaluated. The assessment should consider changes in ISI effectiveness relative to both the inspection location and the examination method, frequency and level of qualification.

The region in which the piping segment is categorized in the structural element selection matrix (Figure 3.7-1) can be used to guide the evaluation:

- The piping segments in Region 4 should result in a risk neutral impact compared to current ASME Section XI requirements.
- The piping segments in Region 3 should result in a risk neutral impact, particularly if the Owner Defined Program remains the same. However, even if the Owner Defined Program is enhanced, the benefit should be minimal relative to safety, but could be substantial from an plant operation perspective.
- The piping segments in Region 2 should result in a risk neutral impact. The quantitative impact of NDE on these segments is minimal because of the low failure importance within these segments. However, for segments in this region that currently are not examined per current ASME Section XI requirements, the examination of these segments will add defense-in-clepth to these high safety-significant locations.
- The piping segments in Region 1 should result in a risk neutral to a beneficial impact on risk. If new susceptible locations are identified, beyond those already examined per ASME Section XI or per an Owner Defined Program, the examination method, frequency, and qualification could have a beneficial impact on risk. An appropriate selection of examination method, frequency and level of qualification could provide a level of improvement in failure probability of the given location depending on the mechanisms and loading conditions that are experienced.

.....

The combined impact of the segments from all four regions is then evaluated to make an overall assessment of RI-ISI program changes on risk. If properly implemented, the RI-ISI should always result in a risk-neutral to risk-reduction compared to the current ASME Section XI program.

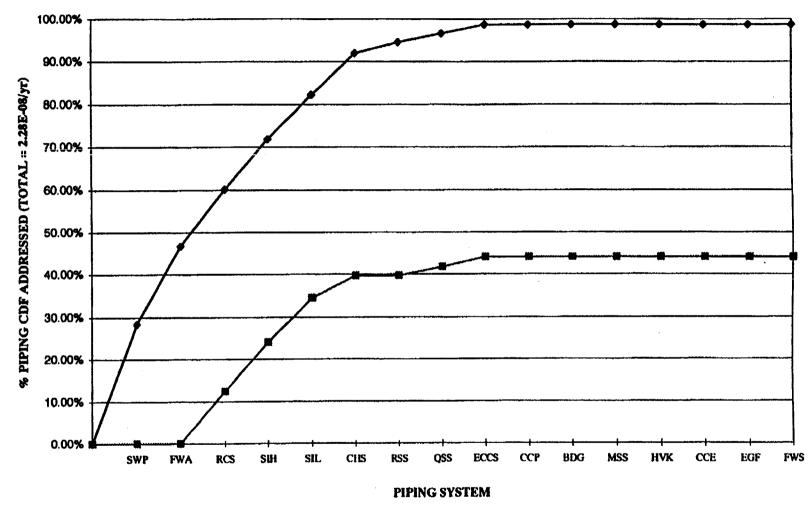
If the proposed changes result in a risk impact that is not acceptable, the results from each step of the process should be reviewed to identify where the inclusion of additional piping examinations would decrease the risk impact.

Millstone 3 Plant Evaluation

A comparison of the core damage frequency being addressed by the current ASME Section XI and by the proposed risk-informed ISI program is shown in Figure 4.4-1.

This comparison was based on the core damage frequency being addressed by examination of the 119 structural elements in the risk-informed ISI program and the 753 weld locations that are examined per current ASME Section XI requirements. If a structural element was being inspected in the current ASME Section XI program, then the CDF contribution for the segment containing that structural element was identified and was included in the total CDF being addressed for the system. Similarly, if a structural element is to be inspected in the proposed risk-informed ISI program, then the CDF for the segment containing that structural element was included in the calculation of the total CDF being addressed for the system. Examination of the current ASME Code weld locations addresses a CDF of 1.00E-08/yr (44%) while examination of the risk-informed ISI structural elements addresses a CDF of 2.25E-08/yr (98%) for pressure boundary piping failures (out of a total piping CDF of 2.28E-08/year). Thus, safety is enhanced with far less locations being inspected.

. :


; :

ć.

This figure shows the comparison by the systems as defined in the risk-informed program. For example, Table 4.4-1 shows no risk-informed ISI locations for the FWS system, but it shows ISI locations for current ASME Section XI requirements. However, because of the system definition used in the risk-informed ISI program, several locations classified under FWS in ASME Section XI are the same as those classified in the FWA system under the risk-informed ISI program (piping that is common to both the FWA and FWS systems was assigned to the FWA system in the risk-informed program).

. [

· · [

1

[

ا و المارین . توصف المارین . ļ

ļ

|

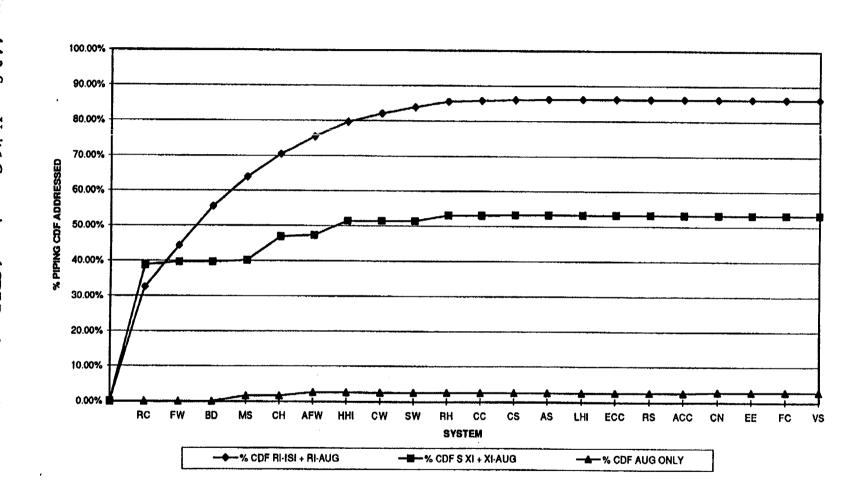
۰.

209

This comparison also assumes 100% effectiveness in detection of precursors to failures for both the Section XI and risk-informed ISI locations in the high safety-significant segments. Credit for leakage testing in finding these precursors by either program in both the high safetysignificant and low safety-significant piping segments is not taken in this evaluation.

The total piping core damage frequency is a small fraction of the total plant core damage frequency of 5.87E-05/yr. Examination of the plant piping at the risk-informed locations, however, will verify that the risk of piping pressure boundary failure remains a small contributor to total risk as the unit ages over its licensed life.

Surry Evaluation


A comparison of the Surry results from the proposed risk-informed ISI program and that of the current Section XI ISI program was made to evaluate the change in risk. Two approaches were used to compare the CDF and LERF changes.

The first approach (similar to the Millstone 3 evaluation) assumed that for any segment a) in the current Section XI program (for the Section XI risk calculation) or b) in the proposed RI-ISI program (for that calculation) or, c) in the augmented program, the risk associated with that segment would be addressed completely (with 100% effectiveness). The results from this approach are shown in Figures 4.4-2 and 4.4-3 by system, for CDF and LERF respectively.

As shown by the figures, the RI-ISI program (with augmented) addresses approximately 86% of the CDF risk while the current Section XI (with augmented) addresses about 53%. Similarly, the RI-ISI program (with augmented) addresses approximately 94% of the LERF risk while the current Section XI addresses only 20%. The systems which lead to the improvement which are addressed in the RI-ISI program are blowdown, feedwater, main steam and auxiliary feedwater.

The second approach evaluates the change in risk with the inclusion of the probability of detection as determined by the SRRA model. For this risk comparison between the current Section XI ISI program and the recommended risk-informed ISI program calculations, the following conditions are used:

Į.

.

211

ļ

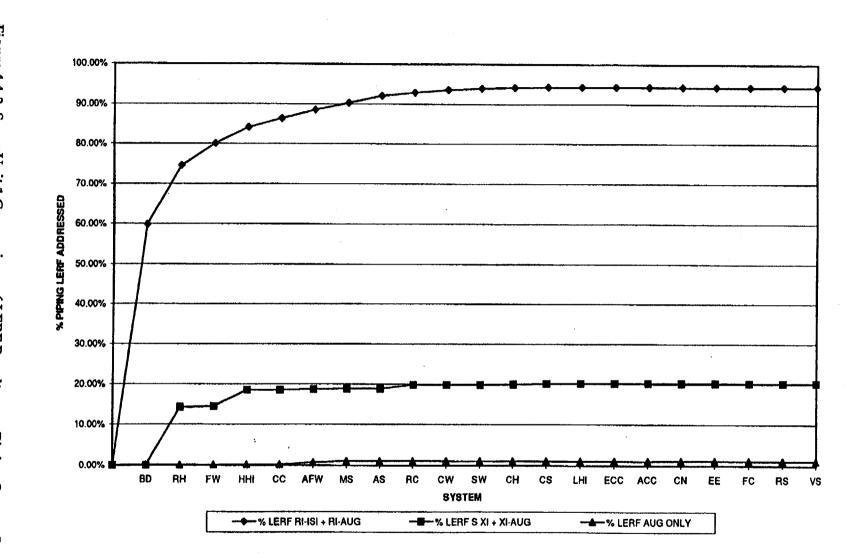


Figure 4.4-3 Surry Unit 1 Comparison of LERF Results on a Piping System Level

1

1

- [· · · [

[

1

. 2

- For piping segments that are part of augmented programs (such as erosion-corrosion and stress corrosion cracking), the SRRA failure probabilities with ISI are used (no change from previous calculations).
- For other piping segments, the failure probability with ISI for those being inspected by <u>NDE are used</u>.
- For the RCS piping segments, the failure probability with ISI for those being inspected by NDE and without ISI for those not being inspected was used along with credit for leak detection.
- The risk calculations are performed for all 4 cases (CDF and LERF with and without operator action). The calculations <u>with operator recovery action from the piping failure</u> assumes perfect operators, that is, no human error probabilities will be included.
- For piping segments that are in both the Section XI program and the augmented program, no additional credit is given to the Section XI program in the calculations.
- For piping segments that are in both the RI-ISI program and the augmented program, no additional credit is given to the RI-ISI program in the calculations.
- For selected piping segments that are in both the RI-ISI program and the augmented program in which additional or more stringent examinations are proposed beyond the augmented program, a factor of three improvement (based on work done by Khaleel and Simonen, 1994 which identified an improvement factor based on failure potential) in the failure probability was credited.
- For selected piping segments that are in both the current Section XI program AND an augmented program in which the Section XI proposes that additional or more stringent examinations beyond the augmented program are performed, a factor of three improvement in the failure probability is credited.

Criteria For Evaluation of Results

The suggested criteria for evaluating the results of the study are the following:

- 1. The total change in piping risk should be risk neutral or a risk reduction in moving from the current Section XI to RI-ISI. If not, the dominant system and piping segment contributors to the RI-ISI risk should be reexamined in an attempt to identify additional examinations which would make the application at least risk neutral. If additional examinations can be proposed, then the change in risk calculations should be revised to credit these additional examinations until at least a risk neutral position is achieved.
- 2. Once this is achieved, an evaluation of the dominant system contributors to the total risk for the RI-ISI (e.g., system contribution to the total is greater than approximately 10%) should be examined to identify where no improvement has been proposed (i.e., where moving from no ISI or Section XI ISI to RI-ISI, the risk has not changed and it is still a dominant contributor to the total CDF/LERF). If any systems are identified where this is the case, the dominant piping segments in that system should be reevaluated in an attempt to identify additional examinations which would reduce the overall risk for these systems and thus possibly the overall risk.
- 3. The results should be reviewed to identify any system in which there is a risk increase in moving from the Current Section XI program to the RI-ISI program. The following guidelines are suggested to identify if additional examinations are necessary:
 - If the CDF increase for the system is approximately a) greater than two orders of magnitude below the risk-informed ISI CDF for that system or b) greater than 1E-08, (whichever is higher), then at least one dominant segment in that system should be reevaluated to identify additional examinations
 - If the LERF increase for the system is a) greater than two orders of magnitude below the risk-informed ISI LERF for that system or b) greater than 1E-09 (whichever is higher), then at least one dominant segment in that system should be reevaluated to identify additional examinations

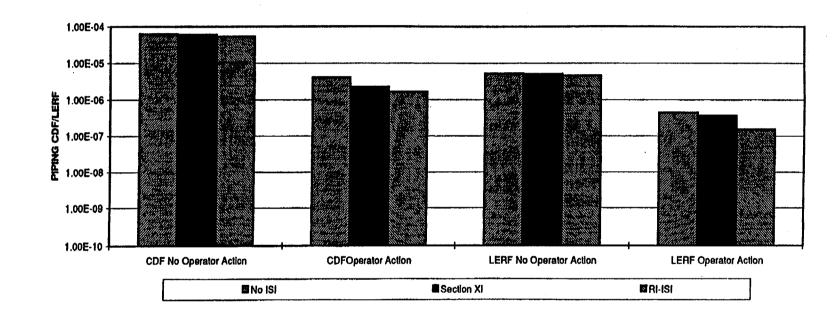
4. If any additional examinations are identified, the change in risk calculations should be revised to credit these additional examinations.

These criteria will provide added assurance that the risk from moving to the RI-ISI program has been addressed. For Surry, this evaluation resulted in the identification of 10 piping segments for which examinations are now required.

The results from the risk comparison for Surry are shown in Table 4.4-3 and Figure 4.4-4. As can be seen from the table and figure, the risk-informed ISI program reduces the risk associated with piping CDF/LERF slightly more than the current Section XI program while reducing the number of examinations required.

Table 4.4-3 SURRY UNIT 1 COMPARISON OF CDF/LERF FOR NO ISI, CURRENT SECTION XI AND RISK-INFORMED ISI PROGRAMS				
Case	Piping CDF/LERF Without ISI	Piping CDF/LERF Current Section XI	Piping CDF/LERF Risk-Informed	
CDF No Operator Action	6.28E-05	6.09E-05	5.34E-05	
CDF with Operator Action	4.05E-06	2.29E-06	1.67E-06	
LERF No Operator Action	5.18E-06	5.09E-06	4.63E-06	
LERF with Operator Action	4.46E-07	3.63E-07	1.54E-07	

Figure 4.4-4 Surry Unit 1 Comparison of CDF/LERF for No ISI, Current Section XI, and Risk-Informed ISI Program ł


{

Į

1

1

[

ſ

[

ſ

1

{

1

o:\4393\VersionA\4393-4.doc:1b-020599

1

1

A comparison between the total piping CDF/LERF and the total plant CDF/LERF reported for Surry in Section 3.1.4 (total plant CDF of 7.2E-05/year and total plant LERF of 1.1E-05/year) was not made because both the piping CDF/LERF and the plant CDF/LERF address large, medium, and small LOCAs, steam line breaks and other events (i.e., there is overlap between the two models).

~ ;

4.4.3 Cost-Benefit Evaluation

Upon completion of general NRC approval allowing use of risk-informed ISI methodologies contained in this WOG Topical Report for piping, a nuclear utility owner will decide whether to develop their own risk-informed program. The owner will have the option to identify and implement alternative approaches to achieve the same or greater level of safety than is obtained through implementation of ASME Section XI. The choice of alternatives will be first predicated on achieving the same or greater safety (as ASME Section XI), and then on the associated economic and manrem burden associated with the various alternatives.

To support the WOG risk-informed ISI applications, both Northeast Utilities and Virginia Power performed cost-benefit evaluations at the time the respective studies at Millstone Unit 3 and Surry Unit 1 were being completed. Northeast Utilities reviewed prior ISI program information to estimate both the direct and indirect inspection costs and to estimate person-rem savings from implementation of the program. Virginia Power used average NDE examination costs and assumed that similar person-rem savings could be achieved as Northeast Utilities showed for Millstone Unit 3. Virginia Power also estimated how much effort it would take to repeat a risk-informed ISI application for heir other units. A paper by Nitin J. Shah, et al (1997) also captures their cost-benefit study along with lessons learned from performing the pilot study at Surry Unit 1. The next sections summarize the Northeast Utilities and Virginia Power studies to help other utilities in determining the cost-benefit of doing a risk-informed ISI program.

Northeast Utilities Study

Northeast Utilities has provided estimated savings from implementation of a risk-informed inservice inspection program to the piping systems at Millstone Unit 3 in the Supplemental Information enclosed within this topical report. This section builds on this information to provide an indication of the cost-benefit for all WOG member plants.

An estimated savings of \$332,000 per outage in direct inspection related costs has been identified for Millstone Unit 3. A savings of 15 person-rem per outage has also been estimated for inspection of Millstone Unit 3 piping using a risk-informed approach.

The Westinghouse Owners Group has established estimated standard cost factors for parameters that are impacted by their programs using a blending of information from the membership. These factors are used in this cost-benefit evaluation, where applicable.

Table 4.4-4 shows net present values of estimated savings from implementation of a riskinformed inspection program for nuclear plant piping systems. As shown in the table, significant savings can be achieved in direct costs. Other indirect cost savings are also expected to be significantly reduced. These indirect cost savings are expected to include:

- Outage critical path reduction (which is becoming more important as utilities continue to reduce outage length)
- Program administration cost reduction
- Insurance premium reduction
- Cost reduction associated with evaluating flaw indications in low safety-significant piping

In addition, a risk-informed ISI program should enhance the finding of precursors to potential failures because inspection resources are focused on locations of highest failure potential in high safety-significant piping segments. The identification of these precursors should help minimize events like leaks, which result in significant business interruption losses. In summary, the development and implementation of a risk-informed ISI program provides the opportunity to significantly reduce burden while maintaining or enhancing safety.

The total effort to perform the risk-informed ISI program for the representative WOG plant exceeded the direct savings that would be gained during one outage at that unit. However, more than half of that cost was associated with learning and adapting the methodology to be applied across all the piping systems at a large nuclear plant, which is a first-of-a-kind application. In addition, there were considerable costs associated with interfacing with ASME, NEI, and the NRC on this project.

Table 4.4-4 ESTIMATED SAVINGS FROM RISK-INFORMED INSPECTION FOR TYPICAL 4-LOOP PLANT* (MILLSTONE 3)				
Description	Considerations	Net Present Value of Savings**		
Direct Costs				
Actual Inspection Costs	Includes NDE, scaffolding and insulation removal	\$1,889,660		
ALARA Costs	Assuming approximately 15 REM per outage savings and using \$10,000/REM	\$846,650		
	TOTAL DIRECT COST SAVINGS	\$2,736,310		
Indirect Costs				
Administrative Costs	Paper work including work orders, surveillances and clearances	Not estimated		
Outage Critical Path	Reduction of 1-2 days of outage time anticipated as outages become shorter (NPV savings assumes 0.5 day at \$340,000 per day)	\$1,314,170		
Insurance Premiums		Not estimated		
Analysis Costs	From flaw indication evaluations in low safety-significant piping segments	Not estimated		
	TOTAL ESTIMATED DIRECT AND INDIRECT SAVINGS	> \$4,050,480		

÷.,

111

3

'n.

ż

- * The estimated savings for 2-loop and 3-loop units will obviously be lower than these values depending on the number of piping locations currently being inspected to the requirements of ASME Section XI. The effort to perform a risk-informed ISI program, however, will require less resources relative to the number of piping system segments to be addressed.
- ** Assumes discount rate of 7.5% and estimated savings at each outage over the remaining 30 years of operating license life.

It is believed by the team members that the risk-informed ISI program can be applied in the future at a cost much less than the direct savings that are gained from piping examinations done in one outage from implementation of the program.

Virginia Power Study

The Surry-1 pilot project endeavored to measure the relative level of safety provided by the risk-informed methodology that should provide a basis for general NRC approval via this Topical report that other utilities will follow.

Preliminary cost figures have been developed from the Surry-1 project, both actual and projected, to better understand the cost of implementing a risk-informed ISI program. A manweek (ManWk) assessment follows:

- 1) System scope 2.5 Manweeks
- 2) Segment identification 7.5 Manweeks
- 3) Conditional consequence quantification 30 Manweeks
- 4) Failure probability quantification 46 Manweeks
- 5) Risk evaluation 3.0 Manweeks
- 6) Expert panel categorization 24 Manweeks
- 7) Element & NDE selection 12 Manweeks
- 8) Administrative 4.0 Manweeks

Total: 129 Manweeks

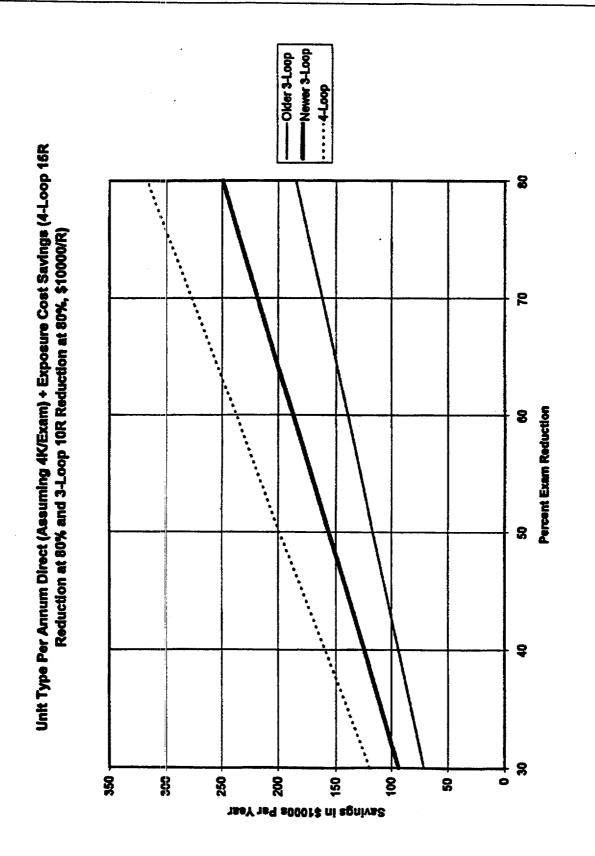
A man-week cost was estimated at \$2300. The estimate contains direct plus contractor costs brought in to support the project and provide training. The estimated cost to develop a program is approximately \$300,000. Additionally, Virginia Power has three other similar units (North Anna 1 & 2 and Surry 2), where some reduction in cost can be obtained due to the similarity. It is estimated that all four units can be completed for approximately \$950,000. This cost does not include WOG support funds requested for the Surry-1 pilot. These funds were considered unique to the pilot application (sensitivity studies, software alterations, research, etc.) and would not be required after rulemaking. The SRRA failure probability software was provided to the Surry project at no additional cost. Program maintenance costs are assumed equivalent to the current program maintenance costs for the purpose of this analysis due to a lack of information and, therefore, are not considered in the evaluation. However, the program is a living program and will require more frequent updates when requirements necessitate it. As such, the maintenance costs will be higher, but probably only marginally.

٠ī

· · · · · · •

· :

Again, assuming equivalency in safety, management will want to recover the initial investment costs in the program over time or the process would be rejected rather quickly. The actual projected reduction is estimated at this time to be 65% (see Table 4.4-2), however savings can be plotted over various reduction percentages to ascertain the break-even point. Figures 4.4-5 and 4.4-6 provide some of this information. The plots assume that an average NDE examination costs \$4000. One-third of the cost is direct NDE costs and two-thirds is associated with support work (scaffolding, insulation removal and reinstallation, cleaning, etc.). Figure 4.4-6 additionally assumes an exposure reduction at 80% (15 Rem / 4 loop plant, 10 Rem / 3 loop plant) and assumes a cost of \$10,000/Rem. The exposure reduction is then reduced linearly with reduction percentage. The plots are based upon current ASME Section XI programs at three Westinghouse PWRs.


By assuming a 65% reduction in examination at an older 3-loop plant, such as Surry-1, due to the risk-informed methodology, then Figure 4.4-5 indicates that the initial \$300,000 investment, not considering exposure reduction, would be paid back in just over 3 years. Considering the exposure reduction (Figure 4.4-6) would reduce the time to approximately 2 years. The example of course is simplified and does not consider interest on investments, inflation or tax credits, which would also be considered in an economic evaluation. Larger plants return the initial investment quicker (12-18 months), since given the same reduction percentage, they have more welds in their current ASME Section XI program to be reduced from examination, as demonstrated in the Millstone-3 reference plant study.

Both the Northeast Utilities and Virginia Power cost-benefit studies show that the riskinformed ISI methodology described in this WOG Topical Report provides an opportunity for nuclear utilities to reduce cost while maintaining high levels of safety. The decision to implement such a program should be made with the knowledge that the process involves a significant technical and economic investment.

Newer 3-Loop -Older 3-Loop4100p 8 Unit Type Per Annum Direct Cost Savings (Assuming 4K/Exam) 20 Percent Exam Reduction 8 Chart7 3 \$ 8 20 150 5 250 8 0 Savings in \$1000\$ Per Year

Figure 4.4-5 Unit Type Per Annum Direct Cost Savings (Assuming 4K/Exam)

o:\4393\VersionA\4393-4.doc:1b-020599

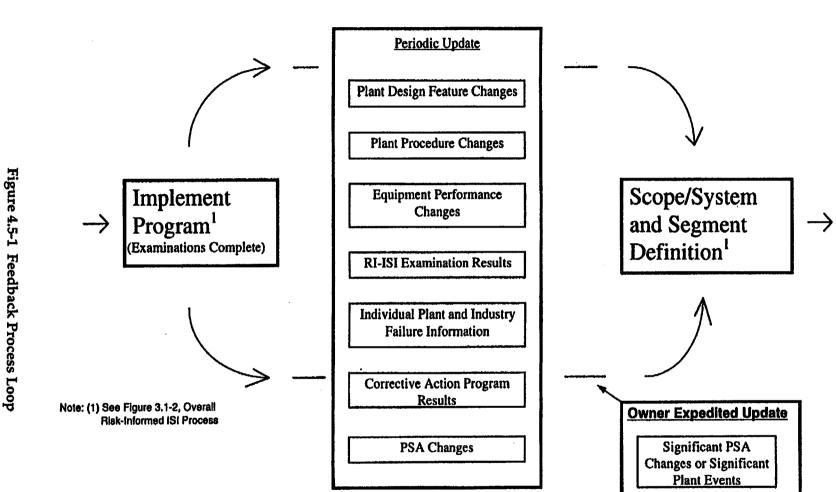
Τ.,

Figure 4.4-6 Unit Type Per Annum Direct (Assuming 4K/Exam) + Exposure Cost Savings (4-Loop 15R Reduction at 90% and 3-Loop 10R Reduction at 90%, \$10000/R)

4.5 IMPLEMENTATION AND PROGRAM MONITORING

This subsection provides program requirements and recommendations for the activities associated with implementation, monitoring and corrective action descriptions necessary to support a RI-ISI program.

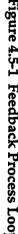
4.5.1 Implementation


The implementation of a RI-ISI program for piping should be initiated at the start of a plant's 10-year inservice inspection interval consistent with the requirements of the ASME Code Section XI, Edition and Addenda committed to by an Owner in accordance with 10 CFR 50.55a. However, implementation may begin at any point in an existing interval as long as the examinations are scheduled and distributed to be consistent with these requirements and those of this section. The requirements for these intervals are contained in ASME Section XI under IWA-2000 as they apply to Inspection Program B. Documentation of program updates shall be kept and maintained by the Owner on site for audit. Changes arising from the program updates should be evaluated using the change mechanisms described in existing applicable regulations (e.g., 10CFR50.55a, 10CFR50.59, and 10CFR50 Appendix B) to determine if the change to the RI-ISI program should be reported to the NRC. Each 10-year inspection interval is subdivided into inspection periods which end at 3, 7, and 10 years of plant service within each interval. Variations in these inspection program intervals and periods by plus or minus 1 year are allowed under ASME Section XI based on refueling outage situations and may be employed by an Owner who implements a RI-ISI program. These same basic RI-ISI program interval and period requirements shall also be used by Owners who choose to perform on-line NDE, but special considerations may have to be taken in regards to program updates during the performance of corrective actions that result from these examinations. When on-line NDE is performed as part of a RI-ISI program, it is the Owner's responsibility to address the special considerations that may require exceptions to the requirements of ASME Section XI or those in this section.

4.5.2 Program Monitoring

RI-ISI programs are living programs and should be monitored continuously. Monitoring of these programs encompasses many facets of feedback or corrective action which includes periodic updates based on inputs and changes resulting from plant design features, plant procedures, equipment performance, examination results, and individual plant and industry failure information. Once the Feedback Process Loop is completed as shown in Figure 4.5-1, all the information is fed back into the Overall Risk-Informed ISI Process of Figure 3.1-2. The periodic update is performed by evaluating the information from the Feedback Process Loop for its applicability to each step in the Overall Risk-Informed ISI Process and begins at the Scope/System and Segment Definition block and ends at the Implement Program block. Changes should be evaluated to determine if the change should be reported to the NRC.

Since the Probabilistic Safety Assessment (PSA) used in the development of any RI-ISI program is a state of knowledge at the time of implementation, any significant changes in these parameters that effect the total plant's Core Damage Frequency (CDF) or Large Early Release Frequency (LERF) by a critical factor should be considered, when identified, as expeditiously as possible. Plant administrative procedures should be in place to input these changes into the PSA and incorporate any relevant results into the RI-ISI program outside of any periodic updates. These expedited program updates should be performed to address significant PSA changes or the occurrence of significant plant events. Significant plant events may include such events as pipe ruptures, earthquakes, or severe operational transients.


- *Periodic Updates.* Updates to a RI-ISI program are performed at least on a period basis to coincide with the inspection program requirements contained in ASME Section XI under Inspection Program B. These updates are required following the completion of all scheduled examinations in each inspection period.
- Plant Design Feature Changes. As plant design changes are implemented, changes to the inputs associated with RI-ISI program segment definition and element selections may occur. It is important to address these changes to the inputs used in any engineering assessment or Structural Reliability/Risk Assessment (SRRA) model that may effect resultant failure probabilities in terms of pipe leakage, disabling leakage or full rupture

1

1

í

[{

. [

Į

events during RI-ISI program periodic updates. Some examples of these inputs would include the following:

- Material and Configuration Changes
- Welding Techniques/Procedures
- Construction and Preservice Examination Results and
- Stress Data (Operating Modes, Pressure, and Temperature Changes)

In addition, plant design changes could result in significant changes to a plant's CDF or LERF, which in turn could result in a change in consequence for a system's piping segments.

- Plant Procedure Changes. Changes to plant procedures that affect system operating
 parameters or the ability of plant operations personnel to perform actions associated
 with accident mitigation should be included for review in any RI-ISI program periodic
 update. Additionally, changes in these procedures which affect component test
 intervals, valve lineups, or operational modes of equipment shall also be assessed for
 their impact on changes in postulated failure mechanism initiation or CDF/LERF
 contribution.
- Equipment Performance Changes. Equipment performance changes should be reviewed with system engineers and maintenance personnel to ensure that changes in performance parameters such as valve leakage, increased pump testing or identification of vibration problems is included in the evaluation of the RI-ISI program periodic update. Specific attention should be paid to these conditions if not previously assessed in the qualitative inputs to the element selections of the RI-ISI program.
- *Examination Results.* When scheduled RI-ISI program NDE examinations and system pressure tests (Refer to 4.3) are completed with corresponding VT-2 visual examinations for leakage, and flaws or indications of leakage are identified, the existence of these conditions should be evaluated as part of the RI-ISI program periodic update.

Current ASME Section XI ISI examination reporting requirements do not contain provisions for reporting examination results of ASME Code Class 3 items nor do they address HSS or HSS Non-Code Class items that could be included in a RI-ISI program. In order to compensate for

these deficiencies in the current requirements, it is recommended that Owners use Code Case N-532 Alternative Requirements to Repair and Replacement Documentation Requirements and Inservice Summary Report Preparation and Submission as Required by IWA-4000 and IWA-6000 Section XI Division 1 with the supplemental requirements contained in this section.

Code Case N-532 provides for reporting examination and pressure test results on a periodic basis for all ASME Code Class 1, 2, and 3 items consistent with the periodic updates described in this section. When using Code Case N-532 RI-ISI results would be documented on an OWNER'S ACTIVITY REPORT FORM OAR-1 which includes the Abstract Tables contained in the Code Case. Figure 4.5-2 shows a sample Form OAR-1 with these Abstract Tables. Owners should be aware that Code Case N-532 is not generically approved for use by the NRC, but that it has been approved on a plant specific basis and is available to the industry subject to NRC approval. After receiving NRC approval to use Code Case N-532 for a RI-ISI program the following should apply:

A Form OAR-1 per N-532 shall be prepared and certified upon completion of all examinations and system pressure tests each refueling outage. All Form OAR-1s prepared during an inspection period shall be submitted to the NRC following the end of the inspection period. The following tables are part of each Form OAR-1.

N-532, Table 1 – Abstract of examinations and tests shall include all HSS piping items examined by NDE and HSS and LSS system pressure tests performed in accordance with requirements of a RI-ISI program regardless of ASME Code Classification.

N-532, Table 2 – Items with flaws that required evaluation for continued service shall include all HSS piping items subject to NDE in accordance with a RI-ISI program. ASME Section XI requires that analytical evaluation of ASME Code Class 1 and 2 examination results be submitted to the regulatory authority having jurisdiction at the plant site in accordance with IWB-3134(b) and IWC-3125(b). It is recommended that for a RI-ISI program analytical evaluations be submitted to the NRC for review prior to returning the component or system to service. Requirements for analytical evaluation submittals shall be applicable to all HSS piping items subject to NDE regardless of ASME Code Classification. When acceptance criteria for ASME Code Class 3 and HSS Non-Code Class piping items does not exist in ASME Section XI, the Owner shall use the provisions of IWA-3100(b) or any applicable acceptance criteria contained in the Owner's CLB.

mmm Insume and Address of Current ant		FORM OAR-1 OWNER'S ACTIVITY REPORT
bit m	sport Number	
Deame and Address of Durret! ant		
Bitme and Addeess of Pans Provemands P		(Name and Address of Owner)
https://www.international.commercial service date	ine	
If a sphecking Instance If a sphecking Instance Instance		Øterno and Address of Plant)
I'ls. 2nd. 2nd. 4dd, ethen) I'ls. 2nd. 2nd. 4dd, ethen) I'ls. 2nd. 2nd I'ls. 2nd I'ls. 2nd. 2nd I'ls.		Commerciel service date Refueling outage no
If us, 2nd, 3nd, 4de, eter) If us, 2nd, 3nd If us, 2nd		
Skion and Addende of Section XI applicable to the inspection plan the and revision of inspection plan CERTIFICITE OF CONCEMANCE I cartify that the statements mude in this part of the trace of a correct, and that the examinations, tests, repeirs, and corrective middle by this report conform to the requirements of Section XI. Certificate of Authorization No	irrent inspection interval	[1 st, 2nd, 3rst, 464, cobar]
Skion and Addende of Section XI applicable to the inspection plan the and revision of inspection plan CERTIFICITE OF CONCEMANCE I cartify that the statements mude in this part of the trace of a correct, and that the examinations, tests, repeirs, and corrective middle by this report conform to the requirements of Section XI. Certificate of Authorization No	unat inspection bation	
the and revision of inspection plan		
Silien and Addende of Section XI applicable to repeirs and replacements. In therest than the inspection plan	Stion and Addends of Sect	ion XI applicable to the inspection plan
Silien and Addende of Section XI applicable to repeirs and replacements. In therest than the inspection plan		
CERTIFICATE CONCENSANCE I carefy there the statements multie in this chart's Accient Reference correct, and then the exeminations, tests, repairs, replacements, evaluations, and corrective intervention to the requirements of Section XI. Certificate of Authorized on No	ICF SHO REVISION OF INSPECTO	
I certify there the statements milde in this many's Action Reference correct, and there the examinational, tests, repairs, replacements, evaluations, and corrective milder in the test and by this report conform to the requirements of Section XI. Certificate of Authorization No	lition and Addanda of Secti	ion XI applicable to repairs and replacements. It is in the inspection plan
I certify there the statements milde in this many's Action Reference correct, and there the externinations, tests, repairs, replacements, evaluations, and corrective milder in the state ted by this report conform to the requirements of Section XI. Certificate of Authorization No		
I certify there the statements milde in this many's Action Reference correct, and there the externinations, tests, repairs, replacements, evaluations, and corrective milder in the state ted by this report conform to the requirements of Section XI. Certificate of Authorization No		
I certify the the statements multi- in this that is a far a Active Ref. are correct, and that the examinations, tests, repairs, replacements, evaluations, and corrective multi-area tested by this report conform to the requirements of Section XI. Certificate of Authorization No		CERTIFICATE CONTERMANCE
Certificate of Authorization No		ents mude in this finant's Active Report are correct, and that the examinations, tests, repairs,
Signed Or or Owner's Designee, Trice CERTIFICATE OF INSERVICE INSPECTION I, the undersigned, holding a valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and the State or Province of and employed by	rapiecements, evaluations,	and corrective memory and the by this report conform to the requirements of Section XI.
Signed	Certificate of Authorization	No
CERTIFICATE OF INSERVICE INSPECTION L the undersigned, holomer a velid commission issued by the National Board of Boiler and Pressure Vessel Inspectors and the State or Province of and employed by for described in this Owner's Activity Report, during the period to to is described in this Owner's Activity Report, during the period to to and employed by and employed by and employed by and employed by to to and state thet to the best of my knowledge and lielief, the Owner has performed all activities represented by this report in accordance with the requirements of Section XJ. By signing this certificate neither the Inspector nor his amployer makes any warranty, expressed or implied, concerning the inspector nor his employer shall be liable in any manner for any personal injury or property demage or a loss of any kind erising from or connected with the inspection		
i, the undersigned, holding a velid commission issued by the National Board of Boiler and Pressure Vessel Inspectors and the State or Province of and employed by		
i, the undersigned, holding i velid commission issued by the National Board of Boiler and Pressure Vessel Inspectors and the State or Province of and employed by	Signed	
i, the undersigned, holding i velid commission issued by the National Board of Boiler and Pressure Vessel Inspectors and the State or Province of and employed by	Signed	
described in this Owner's Activity Report, during the period	Signed	Coller or Dumer's Designee, Tripe
described in this Owner's Activity Report, during the period	i, the undersigned, hold	CERTIFICATE OF INSERVICE INSPECTION CERTIFICATE OF INSERVICE INSPECTION
to the best of my knowledge and lietief, the Owner has performed all activities represented by this report in accordance with the requirements of Section XI. By signing this certificate neither the Inspector nor his amployer makes any warranty, expressed or implied, concerning the examinations, tests, repairs, replacements, evaluations and corrective measures described shie report. Furthermore, neither the Inspector nor his employer shall be liable in any menner for any personal injury or property damage or a loss of any kind ensing from or connected with this inspection. Inspector's Signature Commissions	i, the undersigned, hold	CERTIFICATE OF INSERVICE INSPECTION CERTIFICATE OF INSERVICE INSPECTION and employed by
By signing this certificate neither the Inspector nor his amployer makes any warranty, expressed or implied, concerning the examinations, tests, repairs, replacements, evaluations and corrective measures described this report. Furthermore, neither the Inspector nor his employer shall be lable in any menner for any personal injury or property damage or a loss of any kind ensing from or connected with this inspection. Commissions Inspector's Signature Netional Board, State, Province, and Endersements	I, the undersigned, how the State or Province of -	CERTIFICATE OF INSERVICE INSPECTION CERTIFICATE OF INSERVICE INSPECTION and employed by
examinations, tests, repairs, replacements, evaluations and corrective measures described this report. Furthermore, neither the Inspector nor his employer shall be liable in any menner for any personal injury or property demage or a lose of any kind ensing from or connected with this inspection. Commissions Inspector's Signature Notional Board, State, Province, and Endersoments	I, the undersigned, how the State or Province of described in this Owner's A to the best of my knowledge	CERTIFICATE OF INSERVICE INSPECTION CERTIFICATE OF INSERVICE INSPECTION and employed by
Inspector nor his employer shall be lable in any menner for any personal injury or property demega or a loss of any kind arising from or connected with this inspectionCommissionsCommissions	I, the undersigned, how the State or Province of described in this Owner's A to the best of my knowledg requirements of Section XI.	CERTIFICATE OF INSERVICE INSPECTION CERTIFICATE OF INSERVICE INSPECTION and employed by
from or connected with this inspection. Commissions Inspecter's Signature National Beard, State, Province, and Endersoments	i, the undersigned, hold the State or Province of - described in this Owner's A to the best of my knowledg requirements of Section XI. By eigning this cartificat	CERTIFICATE OF INSERVICE INSPECTION CERTIFICATE OF INSERVICE INSPECTION CERTIFICATE OF INSERVICE INSPECTION Complex valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and complex valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and complex valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and complex valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and complex valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and complex valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and complex valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and complex valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and complex valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and complex valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and complex valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and complex valid commission inspector inspector and ester the complex valid complex valid and the inspector in accordance with the complex valid complex valids any warranty, expressed or implied, concerning the complex valid complex val
Inspector's Signature National Board, State, Province, and Endersoments	I, the undersigned, hold the State or Province of described in this Owner's A to the best of my knowledg requirements of Section XJ. By signing this cartifical examinations, tests, repairs	CERTIFICATE OF INSERVICE INSPECTION CERTIFICATE OF INSERVICE INSPECTION CERTIFICATE OF INSERVICE INSPECTION Compared valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and compared valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and compared valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and compared valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and compared valid commission issued by the National Board of Boiler and Pressure Vessel inspectors and compared by
Inspecial's Signature National Board, State, Province, and Endersements	I, the undersigned, hold the State or Province of described in this Owners A to the best of my knowledg requirements of Section XI. By signing this cartifical examinations, tests, repairs inspector nor his employer	CERTIFICATE OF INSERVICE INSPECTION CERTIFICATE OF INSERVICE INSPECTION and employed by
Date	I, the undersigned, hold the State or Province of described in this Owners A to the best of my knowledg requirements of Section XI. By signing this cartifical examinations, tests, repairs inspector nor his employer	CERTIFICATE OF INSERVICE INSPECTION CERTIFICATE OF INSERVICE INSPECTION and employed by
Cate	i, the undersigned, hok the State or Province of _ described in this Owner's A to the best of my knowledg requirements of Section XI. By eigning this cartifical examinations, tests, repairs inspector nor his employer from or connected with this	CERTIFICATE OF INSERVICE INSPECTION CERTIFICATE OF INSERVICE INSPECTION and employed by
	i, the undersigned, how the State or Province of - described in this Owner's A to the best of my knowledg requirements of Section XI. By eigning this certificat examinations, tests, repairs inspector nor his employer from or connected with this	CERTIFICATE OF INSERVICE INSPECTION CERTIFICATE OF INSERVICE INSPECTION and employed by
This form (E00127) may be obtained from the Order Dept., ASME, 22 Law Drive. Box 2300. Feirlield, NJ 07007-2300.	i, the undersigned, hok the State or Province of _ described in this Owner's A to the best of my knowledg requirements of Section XI. By signing this cartifical examinations, tests, repairs inspector nor his employer from or connected with this	CERTIFICATE OF INSERVICE INSPECTION CERTIFICATE OF INSERVICE INSPECTION and employed by

..

1

1

•

i

ţ

Figure 4.5-2 Sample Form OAR-1 with Abstract Tables 1, 2, and 3

Examination Category	Total Examinations Required for The Interval	Total Examinations Credited for This Period	Total Examinations Credited (%) For The Period	Total Examinations Credited (%) To Date for The Interval	Remarks
-------------------------	---	--	---	--	---------

TABLE 1 ABSTRACT OF EXAMINATIONS AND TESTS

TABLE 2 ITEMS WITH FLAWS OR RELEVANT CONDITIONS THAT REQUIRED EVALUATION FOR CONTINUED SERVICE

Examination Item Category Number	ltem Description	Flaw Characterization (IWA-3300)	Flaw or Relevant Condition Found During Scheduled Section XI Examination or Test (Yes or No)
-------------------------------------	---------------------	--	--

TABLE 3 ABSTRACT OF REPAIRS, REPLACEMENTS, OR CORRECTIVE MEASURES REQUIRED FOR CONTINUED SERVICE

Code Class	Repair, Replacement, or Corrective Measure	Item Description	Description of Work	Fizw or Relevant Condition Found During Scheduled Section XI Examination or Test (Yes/No)	Date Complete	Repair/ Replacement Plan Number	
---------------	---	---------------------	------------------------	--	------------------	---------------------------------------	--

Figure 4.5-2 (cont.) Sample Form OAR-1 with Abstract Tables 1, 2, and 3

N-532, Table 3 – Abstract of repairs, replacements, or corrective measures required for continued service shall include all HSS piping items subject to NDE or HSS and LSS items subject to system pressure tests in a RI-ISI Program regardless of ASME Code Classification. A repair or replacement plan and corresponding Form NIS-2A Repair/Replacement Certification Record is not required for HSS or LSS Non-Code Class piping items. Repairs or replacements performed on HSS or LSS Non-Code Class piping items shall be performed in accordance with the Owner's CLB.

·· 3

Reporting requirements for examination results are shown in Figure 4.5-3.

Individual Plant and Industry Failure Information. Review of individual plant maintenance activities associated with repairs or replacements that are or are not the result of RI-ISI program examinations, including identified flaw evaluations, is an important part of any RI-ISI program periodic update. Evaluating this information as it relates to an Owner's plant provides failure information and trending information that may have a profound effect on the element locations currently being examined under a RI-ISI program. When this review is coupled with industry failure information, a complete update results. Industry failure data is just as important to the overall program as the Owner's information. During the RI-ISI program periodic update individual plant failure information and industry data bases such as the Electric Power Research Institute (EPRI) data base and technical report titled Piping Failures in United States Nuclear Power Plants: 1961 - 1997, presently in draft format at the time of this report, and the Nuclear Performance and Reliability Data System/Equipment Performance and Information Exchange NPRDS/EPIX data base should be reviewed for applicability to the Owner's RI-ISI program.

4.5.3 Use of Corrective Action Programs

Each Owner of a nuclear power plant is responsible to have a corrective action program under the provisions of 10 CFR 50, Appendix B as follows:

"Measures shall be established to assure that conditions adverse to quality, such as failures, malfunctions, deficiencies, deviations, defective material and equipment, and nonconformances

o:\4393\VersionA\4393-4.doc:1b-020599

EXAMINATIONS & PRESSURE TESTS

(Complete Per Refueling Outage RI-ISI Program Requirements)

Û

SUBMIT ALL ANALYTICAL FLAW EVALUATIONS TO NRC

(Recommended Submittal Prior To Returning A System Or Component To Service)

Û

COMPLETE A FORM OAR-1 (With Table Information Required After Each Refueling Outage)

Û

SUBMIT COMPLETED FORM OAR-1s

(With Table Information Required To The NRC Following The End Of Each Inspection Period)

Figure 4.5-3 Reporting Requirements for Examination Results

are promptly identified and corrected. In the case of significant conditions adverse to quality, the measures shall assure that the cause of the condition is determined and corrective action taken to preclude repetition. The identification of the significant condition adverse to quality, the cause of the condition, and the corrective action shall be documented and reported to appropriate levels of management."

In relation to a RI-ISI program for piping, the following process may be used to meet the intent of 10 CFR 50, Appendix B. Figure 4.5-4 is an example of how a unacceptable flaw, one that has been determined unacceptable through evaluation of examination results and subsequent ASME Section XI analytical evaluation, should be addressed in an acceptable corrective action program using attributes described in this subsection.

- Identify. Through the inspection location selection process established under a RI-ISI program, structural element examinations and system pressure tests performed should identify those conditions that would be adverse to quality in relation to identifying precursors to potential or actual leaks, disabling leaks, or pipe ruptures.
- *Characterize.* Depending on the timing of the condition identification and operational mode of the plant, (this may be a more critical situation when on-line NDE is performed) the first issues to be addressed are:
 - the effects on operability of safety-related systems, structures, or components;
 - if regulatory reporting is required (10 CFR 50.72 and 50.73); or
 - the condition results in an immediate plant/personnel safety or operational impact.

If the answer to any of these three considerations is "yes, then the plant's management must be immediately notified through plant established procedures.

• *Evaluate.* Evaluation has two parts: 1) determine the cause and extent of the condition identified, and 2) develop a corrective action plan or plans. Additional examinations shall be considered an acceptable method in providing this cause and extent determination. Under a RI-ISI program, extensive quantitative and qualitative insights

1. IDENTIFY

Examination results and Analytical Evaluation conclude an unacceptable flaw is found during a scheduled NDE (Acceptance Criteria ASME Section XI or CLB)

Û

2. CHARACTERIZE

 (a) Perform an operability evaluation;
 (b) Determine if regulatory reporting is required (10 CFR 50.72 or 50.73); and
 (c) Assess if an immediate plant/personnel safety or operational impact exists (Yes or No Answers)

Ð

3. EVALUATE

(a) Determine the cause and extent of the condition, and
 (b) Develop a Corrective Action Plan
 (Additional Examinations Performed No other Flaws Found)
 (Plan to Replace the Weld)

4. DECIDE Make a decision to implement the plan (No) (Yes or No)

Û

5. IMPLEMENT

Complete the work necessary to correct the problem and prevent recurrence (Replace the Weld) (Perform Preservice NDE) (Update the Program)

Û

6. VERIFY

Verify the RI-ISI program has been updated based on the completed corrective action (Audit the Program)

Û

7. TREND

Look at other corrective actions to see if the problem has really been fixed (Look at All Examination Results on a Period Basis)

Figure 4.5-4 Corrective Action Program Example

have been used to identify postulated failure modes and elements to be examined. Performance of examinations on selected elements have been grouped into regions of High and Low failure importance and safety significance. These groupings provide the basis for additional examinations to be performed to determine the cause and extent of the condition identified. Acceptable sampling schemes such as those required in ASME Section XI under IWB-2430 shall be used. These additional examinations may be limited by piping segment, materials, service conditions, and failure modes already established in the RI-ISI program. Alternatively, due to the available information used in a RI-ISI program, an engineering evaluation may be used as a substitute for additional examinations to determine the cause and extent of the condition identified. If the engineering evaluation concludes that additional elements are not subjected to the same root cause or that no degradation mechanism exists (such as insignificant indications or conditions that have existed since original fabrication) then no additional examinations may be necessary.

Once the true extent of the condition has been identified and documented by an Owner, then a corrective action plan shall be developed. The plan could include repair, replacement, or monitoring of the condition identified depending on its safety significance. Several options of corrective action may be available to an Owner, but in all cases, needed success criteria must be defined and documented with the corrective action plan. These success criteria include the measurable attributes needed to evaluate the effectiveness of the corrective action in the prevention of a reoccurrence of the identified condition. The success criteria may be as simple as implementation of new element selections based on the new failure information during the next scheduled periodic update of the RI-ISI program and then performance of the examinations to prove that the issue has been corrected. Conversely, this criteria may require a plant design change depending on the condition identified and possible scheduled replacements might have to implemented on a routine basis to prevent the condition from reoccurring.

.....

 Decide. A decision should be made by appropriate levels of management on the Owner's implementation of any corrective action plan. Agreement on the adequacy of the success criteria should be reached among the personnel involved and resources allocated to implement the plan. Cost will inevitably play a part in the decision process, but it is more important to fix the problem correctly the first time so as to avoid recurrence in the future.

- *Implement.* Complete the work necessary to both correct the problem and prevent
 recurrence. In the case of a RI-ISI program, successive examinations may be one way to
 measure the effectiveness of the corrective action. For example, an Owner could follow
 the requirements for successive examinations as described in ASME Section XI,
 IWB-2420. These requirements could be used when flaws or conditions have been
 accepted by analytical evaluation and measurement of potential service related
 degradation is essential to avoiding a future failure of a piping structural element.
 - *Verify.* The first item that must be verified is whether or not the planned corrective action was implemented. Management should do this as part of their normal daily work activities. In a RI-ISI program this may be as simple as having administrative procedures in place to ensure that the program has been updated as a result of the corrective action plan and checks of the examination data to ensure that the examinations are being performed as scheduled in the program.

Once it has been determined that corrective actions have been implemented, the planned actions to verify that the desired results are obtained should be conducted. This is done by measuring the success criteria at regularly scheduled intervals in accordance with the corrective action plan. This measurement may indicate that based on the success criteria, the problem was not fixed or only partially fixed. Additional corrective action plans may have to be developed and implemented if this situation occurs.

Trend. The purpose of trending is to identify conditions that are significant based not only on individual issues, but on accumulation of similar issues. Even issues assigned low significance may be deemed of greater significance if there is an increasing number of similar issues. During the RI-ISI program periodic updates a review of occurrences which required corrective actions should be performed by the plant expert panel or the plant ISI subpanel review team to determine if these insights should result in any additional or new examination location changes within the program.

SECTION 5

PLANT-SPECIFIC APPLICATION PROCESS

This section provides the framework for applying the risk-informed methods to a specific plant for piping inservice inspection. The tasks required to develop a comprehensive risk-informed inservice inspection program for piping are provided below. The tasks are:

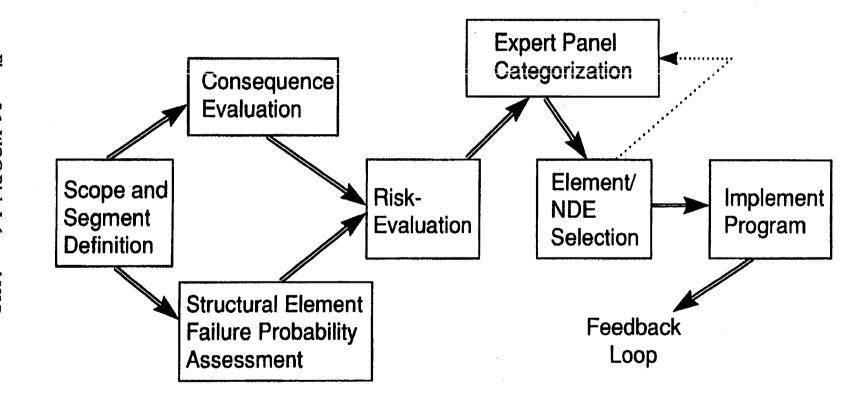

- Scope Definition
- Segment Definition
- Consequence Evaluation
- Failure Probability Estimation
- Risk Evaluation
- Expert Panel Categorization
- Structural Element Selection
- Inspection Requirements
- Implement Program
- Feedback Loop

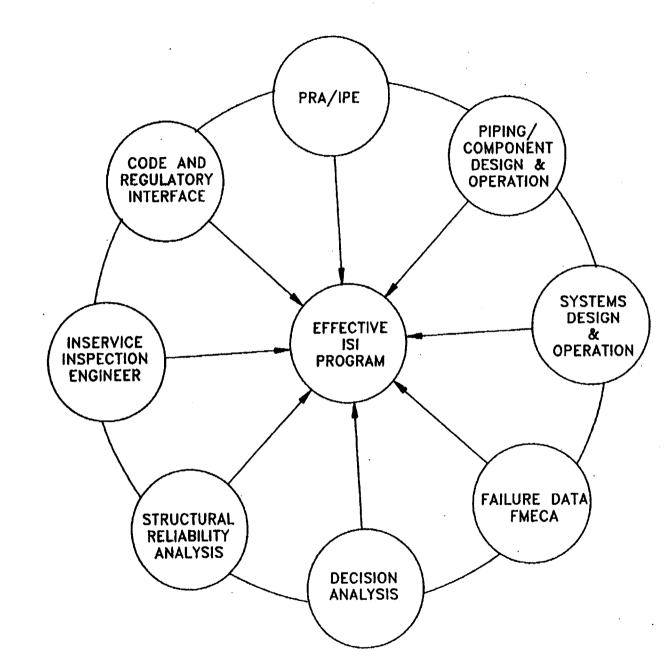
Figure 5-1 shows the process. Each task is summarized in the sections below.

Figure 5-2 identifies the skills necessary for a successful program.

5.1 SCOPE DEFINITION

The fluid systems contained in the plant, modeled in the PSA and considered as part of the Maintenance Rule, are identified and compared with the current classifications and required ISI examinations, and with the stress analysis. This review, along with other plant documentation, is used to determine which systems/classes, or portions of systems/classes, should be evaluated as part of the risk-informed ISI process. Given that system boundaries involve system functions and may also involve interfaces between different types of systems, the definition of these boundaries requires a careful, logical approach. All interfaces must be identified to ensure that there is consistency between the defined boundaries, when viewed from the systems on either side of each boundary, and that no safety functions are overlooked.

1


Figure 5-1 WOG Risk-Informed ISI Process

o:\4393\VersionA\4393-5.doc:1b-020599

1

1

Figure 5-2 Required Skills for Risk-Informed Inspection

•

5.2 SEGMENT DEFINITION

This task involves the development of piping segments for the process. A piping segment is defined as a portion if piping for which a failure at any point in the segment results in the same consequence (e.g., loss of a system, loss of a pump train, etc.) and includes piping structural elements between major discontinuities such as pumps and valves.

5.3 CONSEQUENCE EVALUATION

The consequences given the failure of a piping segment are identified through PSA insights, engineering evaluations and plant design and operations. Consequences that must be considered include both direct effects (failure of a train in which the piping segment is contained) and indirect effects (such as those due to flooding, pipe whip, or jet impingement).

5.4 FAILURE PROBABILITY ESTIMATION

The overall process of identifying potential failure modes, selecting locations and calculating failure probabilities proceeds by system, and includes preliminary activities for the system as a whole, and detailed assessments and data gathering for each segment. This includes the following steps:

- Gather design basis information
- Review industry experience
- Discuss system operations with system engineer and gain further insights into any potential piping problems
- Determine likely failure mode(s)
- Select candidate location(s)
- Gather detailed data for probability of failure analysis

- Calculate probabilities of failure
- Document locations and probabilities

5.5 RISK EVALUATION

This task is to identify and categorize the components (or pipe segments). The approach calculates the relative importance for each component within the systems of interest. This risk-importance is based on the frequency of core damage (or LERF, if available) resulting from the structural failure of the component in a given segment and the total piping pressure boundary core damage frequency (and LERF, if available). The results are then used to calculate the risk-importance for each segment within the system.

The following outlines the steps of the process:

- Apply PSA to calculate piping pressure boundary core damage frequency (and LERF, if available)
 - Identify impact on PSA model (using EPRI PSA Applications Guide)
 - Identify surrogate component
 - Obtain conditional core damage frequency/probability (LERF)
 - Integrate pressure boundary failure probability/rate
 - Calculate segment piping pressure boundary core damage frequency (and LERF)
 - Calculate total piping pressure boundary core damage frequency (and LERF)
- Calculate importance measures
 - Calculate segment Risk Reduction Worth importance measure
 - Calculate segment Risk Achievement Worth measure
- Evaluate important PSA and failure probability factors through sensitivity studies and uncertainty studies, as appropriate

5.6 EXPERT PANEL CATEGORIZATION

An expert panel (such as the expert panel used for the Maintenance Rule) evaluates the riskinformed results and makes a final review to determine the high safety-significant pipe segments for ISI using the guidance in Section 3.6.3. The expert panel should:

• Consider the PSA and failure probability information and associated uncertainties

- Consider other deterministic considerations
 - Shutdown risk evaluation
 - External events evaluation
 - Other accident scenarios
 - Component operating history
 - Plant operation and maintenance insights
 - Design basis analysis
 - Other deterministic insights
- Conduct expert panel sessions and document results

5.7 STRUCTURAL ELEMENT SELECTION

The selection of inspection locations within each high safety-significant pipe segment is obtained by further review by a subpanel, comprised of materials, ISI and NDE expertise, using the following steps.

- Identify where the segment falls on the structural element matrix.
- Determine the number of inspections required in each segment using the statistical model, if appropriate.
- Verify that the locations with the highest failure potential within a segment are identified for examination.
- Document the results and present to the full expert panel for final review and approval.

The output of this process defines the structural elements selected and the associated examination method and frequency for inspection.

5.8 INSPECTION REQUIREMENTS

The inspection requirements defined in Section 4 should be consulted to define the type of inspection to be performed on the structural elements.

5.9 IMPLEMENTATION, MONITORING AND FEEDBACK

The implementation, monitoring and feedback is discussed in detail in Section 4 and summarized below.

Implementation

Once the risk-informed process is completed, the inspection program can be implemented. The required examinations are scheduled over the 10 year inspection interval in periods. If, during the interval, a reevaluation of the risk-informed process is conducted and scheduled items are no longer required, the items may be eliminated. If items are identified for inclusion in the program, the items should be added and distributed across the remaining periods in the interval. Each subsequent 10 year interval should include, as a minimum, a reevaluation of the risk-informed process.

For examinations that reveal flaws or relevant conditions exceeding ASME acceptance standards, additional examinations should be conducted. The additional examinations should include the same type of piping structural element(s) with the same postulated failure mode(s).

If piping structural elements are accepted for continued service, the areas containing flaws or relevant conditions should be reexamined during the next three inspection periods. If the reexaminations reveal that flaws or relevant conditions remain essentially unchanged for three successive inspection periods, the piping examination schedule may revert to the original schedule.

The examination qualification and methods requirements and personnel qualification requirements should be the same as under the plant's current inservice inspection program.

<u>Feedback</u>

The risk-informed inservice inspection program should be reevaluated periodically as new information becomes available. Such information may result for example from changes to the PSA, from inspection results, from new failure modes experienced by the industry, from replacement activities, from repair activities, or plant design or operational changes. The effect of the new information on the risk-informed process should be determined. Each phase of the risk-informed process should be reevaluated to determine where the new information impacts the process and/or the results. The new information should be included at the appropriate level of the analysis (consequence evaluation, failure probability estimation, etc.) and the analysis should be conducted to identify the changes to the risk-informed inspection program.

5.10 DOCUMENTATION

Each major step of the risk-informed ISI process should be documented for future use in retrievable files. Below is a list of information that may be included by an individual utility in their RI-ISI submittal to NRC. A list of information to be retained onsite for retrieval and potential NRC audit is also provided. The information to be retained is summarized in the previous sub-sections.

Proposed NRC Submittal Contents

- Current Inspection Code
- List of changes to licensing basis (relief requests, FSAR, etc.)
- Process followed (compliance with WCAP, Code Case and note exceptions to methodology)
- Justification for statement that PRA is of sufficient quality
- Summary of results of each step of the process, including summary of risk impact
- How meet RG principles
- RI-ISI Program Plan (summary of changes from current program such as shown in Table 4.4-2)

- Summary of any augmented inspections that would be impacted
- Performance monitoring/feedback/corrective action program changes/commitments
- Future reporting to NRC

Retrievable Onsite Documentation for Potential NRC Audit

- Scope Definition
- Segment definition
- Failure probability assessment
- Consequence evaluation
- PSA Model Runs for program
- Risk evaluation
- Structural element/NDE selection
- Change in risk calculations
- PRA Quality review
- Continual assessment forms as program changes based on inspection results, etc.
- ASME Code required documentation (including inspection personnel qualification, inspection results and flaw evaluations)

SECTION 6

SUMMARY AND CONCLUSIONS

6.1 REPORT SUMMARY AND RELATIONSHIP TO NRC RG-1.174

The risk-informed ISI process for piping is described in Sections 3 and 4. An earlier version of the above process had been applied to Millstone Unit 3, a plant designed to ASME Section III requirements, as a reference plant study and this work was reported in the original version of this Topical Report. The process has since been enhanced through benchmarking efforts in a WOG pilot application at Surry Unit 1, a pre-ASME Section III plant design, as reported in this revision of the Topical Report. While the process has been significantly enhanced to meet NRC regulatory guidance on use of probabilistic risk assessment to improve safety decisionmaking, both of these plant application studies yield consistent results.

This process meets the intent of the framework developed by the NRC and key steps and principles of the general regulatory guide and standard review plan (RG-1.174) as described in Sections 1.4 and 6.2.

6.2 SUMMARY OF RESULTS

After application of the risk evaluation process, including plant expert panel review, 96 pipe segments were shown to be high safety-significant at Millstone-3 and 117 pipe segments are shown to be in this category for Surry-1. In comparing the recommended piping structural elements to be inspected by non-destructive examination (NDE) in the risk-informed ISI program to the current ASME Section XI locations, a greater portion of the risk associated with piping pressure boundary failures can be addressed with the risk-informed program with far fewer examinations being required. At Millstone-3, the risk-informed program recommends 107 NDE examinations versus 753 ASME Section XI required exams, and for Surry-1, 137 NDE exams are suggested versus the 385 required by the ASME Code. Both studies show that examinations can be significantly reduced within the reactor coolant system, and examinations should be reallocated and added to other Class 2 and Class 3 systems, such as service water, auxiliary feedwater, and a few other systems based on the specific plant design. At Surry-1, 12 NDE exams are even recommended in the non-Code class portions of three systems. A

significant reduction in radiation exposure is also shown for both units with approximately 60-75 REM being saved each 10-year inspection interval.

This significant reduction in the number of examinations can be achieved while showing a risk reduction in total piping pressure boundary risk in terms of both core damage frequency and large, early release frequency, as demonstrated in detailed calculations performed for Surry-1. Even considering the impact of potential operator actions to recover from piping failure events does not change this positive result. In order to meet defense-in-depth principles and to maintain sufficient safety margins, some current reactor coolant loop piping examinations are kept in place and additional examinations are recommended in 10 low safety-significant segments at Surry-1 to maintain a risk neutral position in the front-line systems, such as containment spray and low head/high head safety injection, and in systems that are dominant contributors to the total piping pressure boundary risk. A statistical model has also been developed and applied to define the minimum number of locations to be examined to insure that an acceptable level of reliability is achieved, consistent with current industry experience, throughout the key piping segments of interest.

Consideration of the key principles, including defense-in-depth and adequate safety margins and uncertainties, have been considered in the risk-informed ISI process through several avenues:

- Piping segments are categorized into two categories (high and low safety significant) and thus require less accuracy than a full ranking.
- The consequence and risk evaluation consider the most bounding situation in terms of assuming no operator action to isolate the piping failure. In addition, conservative assumptions are made to model in the PSA the impact of indirect effects and the piping failures.
- The SRRA model considers uncertainties in inputs by allowing qualitative inputs in terms of ranges and the process allows for sensitivity studies to be conducted with the SRRA model.
- The piping CDF and LERF are determined and an attempt is made to maintain at least an overall risk neutral position.

247

- Additional piping inspection locations have been added for defense-in-depth in the front-line systems and also in systems that are the dominant contributors to the total piping pressure boundary risk.
- Sensitivity studies, including an uncertainty evaluation, are conducted on key aspects that impact the risk evaluation.
- The expert panel considered other plant deterministic information and tended to make decisions based on conservative assumptions.
- Even if the statistical model says that no inspection is required for a given set of high safety significant segments, a single sample will be inspected to ensure integrity.
- Pressure testing will still be performed for all piping within the scope of the RI-ISI program.

6.3 CONCLUSIONS

Implementation of risk-informed ISI programs using the process and methods provided in this WOG Topical Report will yield significant benefits in terms of enhanced safety, reduced radiation exposure, and reduced cost for nuclear plant piping programs. The studies have been independently performed for both plant applications and show that risk-informed ISI programs have the potential to be implemented at a cost that can be returned in one to two years, depending on the size and age of the unit, following implementation. Given that aging effects are directly evaluated in the process using a structural reliability/risk assessment tool, use of this technology for defining aging management programs and the associated inspection of piping systems as part of license renewal programs could yield additional significant benefits.

While the effort for this application focused on the use of risk-informed methods for the inservice inspection of piping, several insights have been obtained for possible application to other equipment. The process described and the steps can be applied to all types of components, such as vessels, tanks, heat exchangers, snubbers and other equipment addressed by ASME Section XI.

Finally, this report has demonstrated that a risk-informed piping ISI process has been created and can be implemented that satisfies the risk-informed regulation policy promulgated by the NRC. This includes demonstrated satisfaction of the principle elements of "Risk-Informed, Plant Specific Decisionmaking" and compliance with the five "Principles of Risk-Informed Regulation."

. . .

SECTION 7 REFERENCES

American Nuclear Society, "Design Basis For Protection of Light Water Nuclear Power Plants Against the Effects of Postulated Pipe Rupture," ANSI/ANS-58.2-1988, 1988.

American Society of Mechanical Engineers, ASME Boiler and Pressure Vessel Code, Section XI, Rules for Inservice Inspection of Nuclear Power Plant Components, 1989 Edition, New York.

American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Code Case N-408-3, "Alternate Rules for Examination of Class 2 Piping Section XI, Division 1," August 9, 1993.

American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Code Case N-416-1, "Alternative Pressure Test Requirement for Welded Repairs or Installation of Replacement Items by Welding, Class 1, 2 and 3 Section XI, Division 1," February 15, 1994.

American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Code Case N-460, "Alternative Examination Coverage for Class 1 and Class 2 Welds, Section XI, Division 1," July 27,1988.

American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Code Case N-498-1, "Alternative Rules for 10-Year Hydrostatic Testing for Class 1, 2, and 3 Systems, Section XI, Division 1," May 11, 1994.

American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Code Case N-532, "Alternative Requirements to Repair and Replacement Documentation Requirements and Inservice Inspection Summary Report Preparation and Submission as Required by IWA-4000 and IWA-6000 Section XI, Division 1," December 12, 1994.

American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Code Case N-577, "Risk-Informed Requirements for Class 1, 2, and 3 Piping, Method A, Section XI, Division 1," September 2, 1997.

514

American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Code Case N-578, "Risk-Informed Requirements for Class 1, 2, and 3 Piping, Method B, Section XI, Division 1," September 2, 1997.

American Society of Mechanical Engineers, "Evaluation of Inservice Inspection Requirements for Class 1, Category B-J Pressure Retaining Welds in Piping," ASME Section XI Task Group on ISI Optimization, Report No. 92-01-01, Revision 1, July 1995.

American Society of Mechanical Engineers, "Risk-Based Inspection - Development of Guidelines, Volume 1, General Document," CRTD-Vol. 20-1, ASME Research Task Force on Risk-Based Inspection Guidelines, Washington, D.C., 1991.

American Society of Mechanical Engineers, "Risk-Based Inspection - Development of Guidelines, Volume 2-Part 1 and Volume 2-Part 2, Light Water Reactor (LWR) Nuclear Power Plant Components," CRTD-Vol. 20-2 and 20-4, ASME Research Task Force on Risk-Based Inspection Guidelines, Washington, D.C., 1992 and 1998.

American Society of Mechanical Engineers, "Risk-Based Inspection - Development of Guidelines, Volume 3, Fossil Fuel-Fired Electric Power Generating Station Applications, CRTD-Volume 20-3, ASME Research Task Force on Risk-Based Inspection Guidelines, Washington, D.C., 1994.

American Society of Mechanical Engineers, Standards and Guides for Operation and Maintenance of Nuclear Power Plants, Part 3, "Requirements for Preoperational and Initial Start-Up Vibration Testing of Nuclear Power Plant Piping Systems," 1990.

Bamford, W. H., "Technical Basis for Revision of Section XI, Appendix A Reference Fatigue Crack Growth Law for Water Environment," pp 433-442, ASME Journal of Pressure Vessel Technology, Vol. 102, 1980.

Bishop, B. A., "Final Report Documenting the Development of Piping Simplified Probabilistic Fracture Mechanics (SPFM) Models for EG&G Idaho, Inc.," October 1993.

Bishop, B. A., and Phillips, J. H., "Prioritizing Aged Piping For Inspection Using a Simple Probabilistic Structural Analysis Model," ASME Transactions of Pressure Vessel and Piping Conference, New York, 1993.

Bush, S. H., "Failure Rates in Nuclear Plant Piping Systems," pp 389-395, ASME Journal of Pressure Vessel Technology, Vol. 114, 1992.

Bush, S. H., "Statistics of Pressure Vessel and Piping Failures," ASME Journal of Pressure Vessel Technology, Vol. 110, August 1988, pp.225-233.

Chapman, O. J. V., and Davers, G. A., "Probability Risk Ranking," Transactions of the 9th International Conference on Structural Mechanics in Reactor Technology, Lausanne, 1987.

Chapman, O. J. V., Milner, R. T., and Baker, A. E., "Probability of Failure and Fatigue Life Monitoring for Life Extension," pp 53-57, Fatigue, Fracture and Risk - 1991, ASME PVP-Vol. 215, 1991.

Electric Power Research Institute, "PSA Applications Guide," EPRI TR-105396, 1995.

Electric Power Research Institute, "Toughness of Austenitic Stainless Steel Pipe Welds," Report NP-4768, 1986.

Gamble, R. M. and Tagart, S. W., Jr., "A Method to Assign Failure Rates for Piping Reliability Assessments," pp 3-12, Fatigue, Fracture and Risk - 1991, ASME PVP-Vol. 215, 1991.

Harris, D. O., et al., "Probabilistic Treatment of Stress Corrosion Cracking in 304 and 316NG PWR Piping Weldments," Lawrence Livermore National Laboratory, U.S. NRC Report NUREG/CR-4792, Vol. 3, 1986.

Harris, D. O., Lim, E. Y., and Dedhia, D. D., "Probability of Pipe Fracture in the Primary Coolant Loop of a PWR Plant, Vol. 5: Probabilistic Fracture Mechanics Analysis," U.S. Nuclear Regulatory Commission, NUREG/CR-2189, Volume 5, 1981. Harris, D. O. and Dedhia, D. D., "Theoretical and User's Manual for pc-PRAISE, A Probabilistic Fracture Mechanics Computer Code for Piping Reliability Analysis," Lawrence Livermore National Laboratory, U.S. NRC Report NUREG/CR-5864, 1992.

Hazelton, W. S. and Koo, W. H., Technical Report on Material Selection and Processing Guidelines for BWR Coolant Pressure Boundary Piping, Report NUREG-0313, Rev. 2, U.S. Nuclear Regulatory Commission, 1988.

Jamali, K., "Pipe Failures in U.S. Commercial Nuclear Power Plants," EPRI TR-100380, Prepared for Northeast Utilities Service Company and the Electric Power Research Institute, Palo Alto, California, 1992.

Khaleel, M. A. and Simonen, F. A., "A Parametric Approach to Predicting the Effects of Fatigue on Piping Reliability," pp 95-107, Service Experience and Reliability Improvement: Nuclear, Fossil, and Petrochemical Plants, ASME PVP-Vol 288, 1994.

Lapay, W. S., Bishop, B. A. and Chay, S. C., "Reserve Strength as a Measure of Fragility," Proceedings of the Workshop on Seismic and Dynamic Fragility of Nuclear Plant Components, Brookhaven National Laboratory, U.S. NRC Report NUREG/CP-0070, 1985.

Mattu, R. K. et al., "Utility Response to NRC Bulletin 87-01, Thinning of Pipe Walls in Nuclear Power Plants," Report NP-6066, Electric Power Research Institute, 1988.

Mendler, O.J., "Method of Analysis and Evaluation of Jet Impingement Loads From Postulated Pipe Breaks," Westinghouse Electric Corporation, WCAP-8951, Revision 0, issued April 1979.

Meyer, M. A., and Booker, J. M., "Eliciting and Analyzing Expert Judgement," NUREG/CR-5424, Los Alamos National Laboratory, Los Alamos, New Mexico, 1989.

Nuclear Management and Resources Council² "Industry Guideline for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants," NUMARC 93-01, 1993.

o:\4393\VersionA\4393-7.doc1b-021799

² The Nuclear Management and Resource Council (NUMARC) has since been integrated with other industry organizations to become the Nuclear Energy Institute (NEI).

Nuclear Management and Resources Council², "Guidelines For Optimizing Safety Benefits in Assuring the Performance of Motor-Operated Valves," NUMARC 93-05, 1993.

Palisade Corporation "@RISK, Risk Analysis and Simulation add-In for Lotus 1-2-3, Version 2.01 Users Guide," Newfield, NY, February 6, 1992.

Palisade Corporation, "Guide to Using @RISK," Windows Version, September, 1996.

Perdue, R. K., A Spreadsheet Model for the Evaluation of Statistical Confidence in Nuclear Inservice Inspection Plans, Westinghouse Science & Technology Center, Pittsburgh, Pennsylvania, June 24, 1997.

Phillips, J. H. et al., "Investigation of the Risk Significance of Passive Components Using PSA Techniques," pp 91-100, Fatigue, Fracture and Risk - 1992, ASME PVP-Vol. 241, 1992.

Shah, N. J., Buchert, D. M., McNeill, A., and Throckmorton, E. W., "Implementation of a Risk-Informed ISI Program at Surry Power Station," Risk-Informed Decision Making, pp 25-30, ASME PVP-Vol 358, New York, 1997.

SKI (Statens Karnkraft Inspektion), Swedish Nuclear Power Inspectomate, "Piping Failures in United States Nuclear Power Plants, 1961-1995, SKI Report 96:20, 1996.

Thomas, H. M., "Pipe and Vessel Failure Probability," Reliability Engineering 2, 1981, pp. 83-124.

U.S. Nuclear Regulatory Commission, Advisory Committee on Reactor Safeguards Probabilistic Risk Assessment Subcommittee Meeting, Rockville, Maryland, July 8, 1997.

U.S. Nuclear Regulatory Commission, Branch Technical Position MEB 3-1, "Postulated Rupture Locations in Fluid System Piping Inside and Outside Containment," Revision 2, June 1987.

U.S. Nuclear Regulatory Commission, Generic Letter 88-20, "Individual Plant Examination for Severe Accident Vulnerabilities," November 23, 1988.

U.S. Nuclear Regulatory Commission, Policy Issue (Information), "Proposed Agency-Wide Implementation Plan for Probabilistic Risk Assessment (PRA)," SECY-94-219, 1994.

U.S. Nuclear Regulatory Commission, Policy Issue (Notation Vote), "Final Policy Statement on the Use of Probabilistic Risk Assessment Methods in Nuclear Regulatory Activities," SECY-95-126, 1995.

U.S. Nuclear Regulatory Commission, Policy Statement on "Use of Probabilistic Risk Assessment Methods in Nuclear Regulatory Activities," (60 Federal Register (FR) 42622), August 16, 1995.

U.S. Nuclear Regulatory Commission, "Monitoring the Effectiveness of Maintenance at Nuclear Power Plants," Regulatory Guide 1.160, 1993.

U.S. Nuclear Regulatory Commission, "Requirements for Monitoring the Effectiveness of Maintenance at Nuclear Power Plants," U.S. Federal Register (56 Fed. Reg. 31324), 10 CFR 50.65, 1991.

U.S. Nuclear Regulatory Commission, "PRA Implementation Plan," SECY-97-076, April 3, 1997.

U.S. Nuclear Regulatory Commission, "Reactor Risk Reference Document," NUREG-1150, 1987.

U.S. Nuclear Regulatory Commission Letter, "Staff Evaluation of Millstone 3 Individual Plant Examination (IPE) - Internal Events, GL88-20 (Tac No. M74434)," Docket No. 50-423, May 5, 1992.

United States Nuclear Regulatory Commission, Regulatory Guide 1.147, "Inservice Inspection Code Case Acceptability ASME Section XI Division 1," Revision 11, October 1994.

Nuclear Regulatory Commission, Regulatory Guide 1.174, "An Approach for Using Probabilistic Risk Assessment in Risk-Informed Decisions on Plant-Specific Changes to the Current Licensing Basis," July 1998. US Nuclear Regulatory Commission, Regulatory Guide 1.178, "An Approach for Plant-Specific, Risk-Informed Decisionmaking: Inservice Inspection of Piping," September 1998, issued for trial use.

Vo, T., Gore, B., Simonen, F., and Doctor, S., "A Pilot Application of Risk-Based Methods to Establish Inservice Inspection Priorities for Nuclear Components at Surry Unit 1 Nuclear Power Station," NUREG/CR-6181, Pacific Northwest Laboratory, Richland, Washington, August 1994.

Vo, T., Smith, B. W., Simonen, F. A., and Gore, B. F., "Feasibility of Developing Risk-Based Rankings of Pressure Boundary Systems for Inservice Inspection," NUREG/CR-6151, Pacific Northwest Laboratory, Richland, Washington, August 1994.

Westinghouse Systems Standards Design Criteria (SSDC) 1.19, "Criteria For Protection Against Dynamic Effects Resulting From Pipe Rupture," Revision 1, 1980.

Wheeler, T. A., Hora, S. C., Cramond, W. R., and Unwin, S. D., "Analysis of Core Damage Frequency from Internal Events: Expert Judgment Elicitation," NUREG/CR-4550, Volume 2, Sandia National Laboratories, Albuquerque, New Mexico, 1989.

Witt, F. J., "Development and Applications of Probabilistic Fracture Mechanics for Critical Nuclear Reactor Components," pp 55-70, Advances in Probabilistic Fracture Mechanics, ASME PVP-Vol. 92, 1984.

Woo, H. H. and Simonen, F. A. Simonen, "The Impact of Inservice Inspection on the Reliability of Nuclear Piping," pp 153-176, Advances in Probabilistic Fracture Mechanics, ASME PVP-Vol. 92, 1984.

Wright, R. E., Steverson, J. A., and Zuroff, W. F., "Pipe Break Frequency Estimation for Nuclear Power Plants," NUREG/CR-4407, Idaho National Laboratory, Idaho Falls, Idaho, 1984.

APPENDIX A

PLANT WALKDOWN INFORMATION

The appendix discusses the review of the plant hazards evaluation and the conduct of the plant walkdown to identify potential indirect effects from piping failure.

PRE-WALKDOWN EVALUATION

Millstone 3

The Millstone 3 Hazards Review Program Summary Sheets were reviewed for systems interactions due to postulated pipe breaks. The summary sheets examine the effects of spray wetting, flooding, temperature, pipe whip, jet impingement, rotating machinery, and pressure boundary ejected missiles. Because the risk-informed inspection program is concerned only with the effects due to pipe breaks and leaks, the rotating machinery and pressure boundary missiles evaluations were not reviewed. Note that the pressure boundary missiles are primarily from valves, which are not part of this program. In addition, Section 3.6 of the Millstone FSAR, "Protection Against Dynamic Effects Associated with the Postulated Ruptures of Piping," was reviewed. A summary of the review is provided in Table A-1.

The Hazards Evaluation examined the containment, the ESF building, the auxiliary building, the diesel generator building, the fuel building, the circulating and service water pumphouse, and the hydrogen recombiner building. Because only two cubicles in the circulating and service water pumphouse were mentioned in the Hazards Evaluation, it was decided to include the entire pumphouse in the walkdown. The turbine building was also included because the Hazards Evaluation did not address the building, and because of the amount of the high energy piping in the building.

<u>Surry</u>

The Surry analysis evaluated system interactions due to pipe ruptures. The internal flooding PSA was used in this evaluation to evaluate the potential for flooding and spray. For pipe whip and jet impingement, Chapter 14, Appendix B, of the Surry UFSAR was used which defined high energy lines as piping for which the maximum operating pressure exceeds 275 psig and

	Table A-1 HAZARDS REVIEW SUMMARY FOR MILLSTONE 3							
Item	Building	Cubicle/Area	Equipment / Pipe Segment	Indirect Effects	Consequences	Walkdown?	Shutdown?	Comments
1	ESF	001, 002, 021, 022	3FWA-004-126-3/128-3	Pipe Whip	Potential loss of "B" electrical division	No	No	Eval concludes no damage
2	ESF	003, 004, 005	FWA, SWP, CCP, RHS piping	Flooding	None	No	Yes	
3	ESF	006, 007, 008, 009, 019, 020	Moderate Energy Cracks	Temperature/ Humidity	Potential loss of equip for 1 RHS or SIH Train (same train/system as break)	No	No	
4	ESF	010	QSS-P1A/B	Flooding	Bounded by 12179-PR-1194	No	No	
5	ESF	011, 012, Rev. 1	FWA*P1B	Water Spray	Loss of Train "B" Equipment in cubicle	Yes	No	Check other equip in cubical
6	ESF	011, 012, Rev. 1	FWA*P1B	Jet Impingement	Cable trays 3TC7520, 3TC7610, TK7520 RHS*P1A cooling	No	Yes	Eval concludes no damage
7	ESF	013, 014	SW & CCW Piping	Flooding	Bounded by 12179-PR-1157	No	No	
8	ESF	013, 014	3FWA-004-126, -128	Pipe Whip	Could cause start of AFW TD pump	No	No	
9	ESF	015, 016, 017, 018	HVQ*ACUS1A/B& HVQ*SCUS2A/B	Water Spray	3EHS*MCC1A4 RHR operation	No	Yes	Eval. concludes no damage
10	AB1	23A, B, E	3CHS-003-8-2	Jet Impingement	3CHS-002-283-2	No	Maybe per T.S.	Letdown line damages seal return line

o:\4393\VersionA\4393-A1.doc:1b-020599

.

	·		HAZARDS REVIE	Table A-1 (cont. W SUMMARY)	•	E 3		
Item	Building	Cubicle/Area	Equipment / Pipe Segment	Indirect Effects	Consequences	Walkdown?	Shutdown?	Comments
11	AB-1	23C, 23D, 24, 25	30" SW	Flooding	Bounded by 12179-PR-1071	No	No	
12	AB-1	23F	30" SW	Flooding	Bounded by 12179-PR-1071	No	No	
13	AB-1	AB26, 27, 28, 89, 90, 99B, 112	•	-	-	-	-	No piping in risk- informed ISI scope
14	AB-1	33, 34, 35	CHS piping	Flooding	Bounded by 12179-PR-1071	No	No	
15	AB-1	29, 91 Rev. 1	-	-	-	-	-	No piping in risk- informed ISI scope
16	AB-2	86, 87, 88	3CCP*P1C/A	Water Spray	Two CCP Trains	Yes	Yes	Check for CCP pipe shroud
17	AB-2	36	3" CHS Letdown Exchanger Inlet Piping	Pipe Whip	6" CCP inlet or outlet lines	No	Yes	Eval concludes no damage
			3" CHS Letdown Exchanger Inlet Piping	Flooding	Bounded by 12179-PR-1071	No	No	
18	АВ-2	38 thru 53, 55 thru 78	CHS piping	Pipe Whip	None - redundant trains in individual cubicles	No	No	
			3" CHS Letdown Exchanger Inlet Piping	Flooding	Bounded by 12179-PR-1071	No	No	
19	AB-2	54, 79, 80, 81	CHS piping	Pipe Whip	Redundant trains in individual cubicles	No	No	

1

	Table A-1 (cont.) HAZARDS REVIEW SUMMARY FOR MILLSTONE 3							
Item	Building	Cubicle/Area	Equipment / Pipe Segment	Indirect Effects	Consequences	Walkdown?	Shutdown?	Comments
20	AB-2	92, 93, 94	CHS alt. mini-flow piping	Jet Impingement	One service water train	No	No	
21	AB-2	30, 31, 32, 95, 96, 97	-	-	-	-	-	No piping in risk- informed ISI scope
22	AB-2	98 Rev. 1	CCP Piping	Flooding	Bounded by 12179-PR-1071	No	Maybe, per TS	
23	EGE	175 - 181 Rev. 1	Service Water	Flooding	Bounded by 12179-PR-1073 Loss of single Generator Train	No	Maybe, per TS	
24	HR	182 - 187 Rev. 1	-	-	-	-	-	No piping in risk- informed ISI scope
25	FB	188, 197, 198	SFC, FPW, CCP Piping	Flooding	Bounded by 12179-PR-1038	No	No	
26	FB	191	CCP, FPW piping	Flooding	Bounded by 12179-PR-1038	No	No	
27	FB	194	SFC pump discharge	Water Spray	Bounded by 12179-NMS-793-DM	No	No	
28	FB	195, 196, 200	SFC piping	Flooding	Bounded by 12179-PR-1038	No	No	
29	сw	201, 202 Rev. 1	SW Pump Discharge Piping	Water Spray	Loss of single electrical train 3EJS*US1A due to spray on 3EHS*MCC1A5 or 3EHS*MCC1B5	Yes	Yes	

o:\4393\VersionA\4393-A1.doc:1b-020599

			HAZARDS REVIE	Table A-1 (cont W SUMMARY		E 3		
Item	Building	Cubicle/Area	Equipment / Pipe Segment	Indirect Effects	Consequences	Walkdown?	Shutdown?	Comments
30	АВ-3	99A	SW Piping, 3SWP*P3A suction or discharge	Water Spray	3SWP*P3A suction or discharge spray on 3SWP*P3B	No	Maybe, per TS	SW pumps are drip protected; No consequential damage
31	AB-3	99C, 110, 111	CCP piping	Water Spray	None	No	Maybe per TS	
32	AB-3	99D	CHS piping	Water Spray	None	No	No	
33	AB-3	100, 118 - 121	-	-	-	-	-	No piping in risk- informed ISI scope
34	AB-3	101, 102	CCP piping	Water Spray	None	No	No	
35	AB-3	103 - 109	CCP piping	Water Spray	None	No	No	
36	AB-3	113 - 117	CHS, SWP piping	Water Spray, Flooding	None	No	No	
37	АВ-3	Elev. 66'-6"	-	-	•	-	-	Hazards addressed are for fans in systems outside risk- informed ISI scope
38	CS-1	131A - F, 132A - H, 138	Moderate energy cracks in all piping	Flooding	Bounded by 12179-NS(B)-249	No	No	
39	CS-1	133A, 133B, 135, 142A, 144	3RCS-003-171-1	Pipe Whip	Conduit damage resulting in closing letdown and isolation valves	No	Yes	Break postulated to isolate itself due to valve closure
40	CS-1	133C, D Rev. 1	3-CHS-003-662-2	Jet Impingement	Seal Water return line 3-CHS-002-618-2	No	No .	

{

[

	Table A-1 (cont.) HAZARDS REVIEW SUMMARY FOR MILLSTONE 3							
Item	Building	Cubicle/Area	Equipment / Pipe Segment	Indirect Effects	Consequences	Walkdown?	Shutdown?	Comments
41	CS-1	134A - F Rev. 1	3-CHS-025-304-2	Jet Impingement	Seal Water return line 3-CHS-002-618-2	No	No	Note event description for BDG line breaks
42	CS-1	136 Rev. 1	RCS piping	Jet Impingement	Bounded by 12179-NSB-177	No	Yes	
43	CS-2	137 Rev. 2	RCS piping	Pipe Whip/Jet Impinge.	Bounded by 12179-NSB-177	No	Yes	
44	CS-2	139, 146 Rev. 2	RCS piping	Pipe Whip/Jet Impinge.	Bounded by various calcs	No	Yes	
45	CS-2	140 Rev. 2	RCS Piping	Pipe Whip/Jet Impinge.	Bounded by various calcs	No	Yes	· · · · · · · · · · · · · · · · · · ·
46	CS-2	141 Rev. 1	RCS piping	Pipe Whip/Jet Impinge.	Bounded by various calcs	No	Yes	
47	CS-2	142B - F	FWS, MSS, FWA piping	Pipe Whip/Jet Impinge.	Bounded by various calcs	No	Yes	
48	CS-2	145A - F, 143, 147	Intermediate Break in 30" MSS line at upstream elbow	Axial Jet	Loss of conduits results in loss of radiation monitors, 3RMS*RIY05 & 3RMS*RIY42 and loss of power to 3RMS*RM42	No	Νο	
			Intermediate Break in 30" MSS line at downstream elbow	Radial Jet	Loss of one MSS line to FWA TD pump	No	Yes	

1

1

ĺ

|

.

the maximum temperature equals or exceeds 200°F. Generally, in this analysis, the impact of ruptures in piping operating at these conditions is evaluated by walking down the areas of interest.

Initially, the plant was divided into areas corresponding to the fire areas defined within the plants 10CFR50 Appendix R report. The following areas were reviewed for indirect effects.

- Auxiliary Building
- Main Steam Valve House And Safeguards Area
- Service Building
- Mechanical Equipment Room No. 4 (Charging Pump/SW Pump Room)
- Containment
- Turbine Building
- Mechanical Equipment Room #5
- Emergency Service Water Room

An example of the documentation is provided in Table A-2. It concludes that the component cooling pumps and the charging pumps would be lost if no action was taken to isolate the ruptured line.

WALKDOWN

Millstone 3

The Millstone 3 walkdown was performed and included members from the PRA, piping, and operations groups at Northeast Utilities, and members of risk and structural reliability groups at Westinghouse. The walkdown covered the specific areas listed in Table A-1 in the ESF building and the auxiliary building. The walkdown also included all of the circulating and service water pumphouse and the turbine building. Two of the walkdown worksheets documenting the information gathered are presented in Tables A-3 and A-4.

		SURRY HAZ	ARD REVIEW SU	Table A-2 JMMARY FOR THE AUX	(ILIARY BUII	DING
Item	Building/ Area	Equipment/ Segment	Indirect Effect	Consequences	Walkdown/ Shutdown	Comments
1	AB/17-1A	Low head to high head recirc. lines	Flooding & Spray	 Loss of CH pump 1A, if isolated Loss of CC and CH pumps if not isolated 	Yes/No	During normal operation these headers are isolated. CC pumps are located in the general area of the AB (17-AB)
2	AB/17-1A	Charging pumps & RWST supply lines	Flooding & Spray	Same as item 1.	Yes/No	See comment for item 1
3	AB/17-1B	Low head to high head recirc. lines	Flooding & Spray	 Loss of CH pump 1B if isolated Loss of CC and CH pumps if not isolated 	Yes/No	See comment for item 1
4	AB/17-1B	Charging pumps & RWST supply lines	Flooding & Spray	Same as item 3	Yes/No	See comment for item 1
5	AB/17-1C	Low head to high head recirc. lines	Flooding & Spray	 Loss of CH pump 1C pump if isolated Loss of CC and CH pumps if not isolated 	Yes/No	See comment for item 1
6	AB/17-1C	Charging pumps & RWST supply lines	Flooding & Spray/Jet Impingement	Same as item 5.	Yes/No	The RWST isolation valves are located in this area. CC pumps are located in area 17-AB
7	AB/17-AB	Fire Protection lines	Flooding & Spray	 None if flooding is terminated Loss of CC and CH pumps if flooding is not terminated 	Yes/No	Water spray does not have the potential to disable more than one CC pump due to the small size of the fire protection header and relative location of the pipes and CC pumps

o:\4393\VersionA\4393-A1.doc:1b-020599

1

1

	Table A-2 (cont.) SURRY HAZARD REVIEW SUMMARY FOR THE AUXILIARY BUILDING						
Item	Building/ Area	Equipment/ Segment	Indirect Effect	Consequences	Walkdown/ Shutdown	Comments	
8	AB/17-AB	Charging pumps & RWST supply lines	Flooding & Spray/Jet Impingement	 None if flooding is terminated Loss of CC and CH pumps if flooding is not terminated 	Yes/No	See Comment for item 7.	
9	AB/17-AB	4"-SLPD-50 and 6"-SA-21	Spray	1A and 1B CC pumps	Yes/Yes		
10	AB/17-AB	4"-SLPD-50	Jet Impingement	1A/B/C CC pumps and 1C Charging pump	Yes/Yes	This is a conservative estimate	
11	AB/17-AB	3"-WGCB-3-601	Pipe Whip	Rupture 2"-CH-90-1503	Yes/Yes	Postulated break is in the horizontal run shown on FP-206AE Sec. 9-9 just to the right of column line TN-5.	
12	AB/17-AB	3"-WGCB-1-601	Pipe Whip	Rupture 2"-CH-8-1503	Yes/Yes	Postulated break is in the horizontal run shown on FP-206A quadrant F4 and detached plan A.	
13	AB/17-AB	3"-WGCB-2-601	Pipe Whip	Rupture 3"-CC-74-151 and 2-ACC-73-21B	Yes/Yes	Postulated break is in the vertical run shown on FP-206AD.	

1

1

Table A-3MILLSTONE 3 RISK-INFORMED INSPECTIONINDIRECT EFFECTS WALKDOWN WORKSHEET

Item #:

Building: ESF

Cubicle/Area: 011

5

Elevation: 21" - 6"

<u>Indirect Effect of Concern</u>: Loss of Train A equipment due to any pipe rupture in area (aux. feedwater suction or discharge piping), including a CCP pipe.

	Com	ponents/Equipment i	n Cubicle/.	Area	
System	Comp. Type	Tag No.	Train	Needed for Safe Shutdown?	Support System?
FWA	Pump	3FWA*P1A	Α	Y	N
FWA	Valve	3FWA*HV31D ¹	A	Y	N
FWA	Valve	3FWA*HV31A ¹	A	Y	N
FWA	Valve	3FWA*V4 ²	A	Y	N
FWA	Valve	3FWA*AV61A ³	A	Y	N
FWA	Valve	3FWA*AV23A ³	А	Y	N
FWA	Valve	3FWA*HV31CB ⁴	В	Y	N
FWA	Valve	3FWA*HV31C ⁴	В	Y	N
FWA	Valve	3FWA*AV62B⁴	В	Y	N

1. Located at far side of room from unisolable break

2. Near pump

3. Located at postulated break location

4. Located at far end of room away pump and postulated break

Comments

Cable tray numbers listed in Hazards Evaluation did not match those marked on the overhead trays in the room. Additional checks needed.

Conclusions

Apparent discrepancy with cable tray identifiers noted. Hazards Evaluation concludes pipe break will not target cable trays, but should further investigate effects of losing cable tray. No additional interactions found. Train B valves located away from postulated break locations. Pipe break will only affect FWA Train A. Need to consider the CCP interaction for inclusion in the segments analyzed.

o:\4393\VersionA\4393-A1.doc:1b-020599

Table A-4MILLSTONE 3 RISK-INFORMED INSPECTIONINDIRECT EFFECTS WALKDOWN WORKSHEET

<u>Item #</u>:

N/A

Building: Turbine

Cubicle/Area:

Elevation: 14'-6"

Indirect Effect of Concern:

	Components/Equipment in Cubicle/Area						
System	Tag No.	Needed for Safe Train Shutdown?		Support System?			
IAS	Compressor	3IAS-C1A	-	N	Y		
IAS	Compressor	3IAS-C1B	-	N	Ŷ.		
SAS	Compressor	3SAS-C1	-	N	Y		

Comments

The three compressors are located side by side near the condensate pump discharge header. A break in the header could potentially fail all three compressors which would cause a reactor trip.

Conclusions

Needs to be considered along with other possible breaks in turbine building.

Surry

The Surry walkdown was performed and included members from the PRA, ISI, structural mechanics and operations groups at Virginia Power and members of the PRA and piping groups at Westinghouse. The walkdown covered the specific areas identified below:

- Main Steam Valve House
- Charging Pump Cubicles
- Service Building
- Turbine Building
- Aux Building Near Elevator and Boric Acid Storage Tanks

An example of the walkdown worksheets documenting the information gathered is shown in Table A-5.

The summary of the indirect effects identified for Surry is provided in section 3.4.2.

INSIGHTS FROM THE WALKDOWN FOR MILLSTONE 3

The following summarizes the insights from the Millstone 3 plant walkdown for the various areas investigated.

Auxiliary Feedwater System

There were numerous valves near the discharge of the motor auxiliary feedwater pump. An AFW piping failure could disable some of these valves, but the effect would still be a loss of one train. Two concerns noted were the spray onto overhead cable trays, and a postulated reactor plant component cooling water (CCP) break which targets the AFW pump and some valve controllers. These sections of piping were not in the original program scope for CCP. Based on the interaction possibility with the AFW system, two CCP segments were added for risk evaluation and the cable trays were investigated for their effects. (Table A-1 Item 5)

	Table A-5 SURRY UNIT 1 INDIRECT EFFECTS WALKDOWN WORKSHEET					
Building: 17 (AB)	Elevation: 2'-13'	Cubicle/Section: 17-1A (Charging Pump 1A Cubicle)				
•	Potential Hazards	Postulated Effect				
Flooding/Spray Source(s) Charging pump supply and	d discharge lines.	No concerns were identified during the walkdown.				
High Temperature/Humid No source was identified.	ity Sources (High Energy Lines only)					
Pipe Whip Source(s) (Higi Break in Charging Pump R		Failure of 1-CH-MOV-1267A and 1-CH-MOV-1275A. (See note 2 and 3)				
Jet Impingement Source(s) Charging pump discharge		None was identified.				
Comments:						
1. Can RWST drain if the	recirculation line is broken? No. The rec	irculation line is not connected to the RWST.				
2. Because the Recirculation line is smaller than the postulated targets, the target piping and MOVs are assumed to maintain structural integrity. The operators on the MOVs are assumed to fail such that the MOVs cannot change position (i.e., MOVs are assumed to						

3. The Surry UFSAR does not consider pipe whip in this location because the maximum operating temperature of the fluid is less than 200°F.

Conclusions/Actions:

fail "as is".)

1

{

The walkdown did not identify any indirect effects.

	I	Table A- SURRY NDIRECT EFFECT WAL			
Building: Aux. Building Area/Sec.: 17-1A (Charging Pump 1A Cubicle)					
		Potential Targe	ts in The Area		
System	Component Type	Tag Number	Train	Needed for Shutdown?	
CH/HHSI	Pump	1-CH-P-1A	А	Yes	
SW	Temp. Control Valve	1-SW-TCV-108A	Α	Yes	
CH/HHSI	MOV	1-CH-MOV-1275A	Α	Yes	
CH/HHSI	MOV	1-CH-MOV-1287A	Α	Yes	
CH/HHSI	MOV	1-CH-MOV-1267A	Α	Yes	
CH/HHSI	MOD	1-VS-MOD-101A	A	Yes	
CH/HHSI	MOV	1-CH-MOV-1286A	Α	Yes	
CH/HHSI	MOV	1-CH-MOV-1267B	Α	Yes	

Lucia

1

Component Cooling Water

It was verified that pipe shrouds had been placed on the discharge piping of CCP pumps 3CCP*P1A and P1C. These shrouds were placed to mitigate the interactions of a break in one train disabling the pump in the other train (as noted in the Hazards Evaluation). No other unique interactions were noted for these areas. (Table A-1 Item 16)

Service Water

There are vital and non-vital motor control centers (MCCs) in the service water pump cubicles. Large drains were noted in each cubicle to prevent flooding problems. The implications of a pipe break spraying on the MCCs was noted for further review. (Table A-1 Item 29) (Note: the expert panel considered this and decided to not take credit for drains and considered this as an indirect effect.)

Turbine Building

The walkdown of the turbine building resulted in several areas needing further consideration for the PSA modeling. The turbine building component cooling water has a small surge tank and virtually any pipe break/leak will eventually fail the system which will lead to reactor trip. The three plant air compressors are located side by side near the condensate pump discharge header. A postulated break in the header could potentially fail all three compressors which would cause a reactor trip. The location of the motor driven and 2 turbine driven pumps makes the system susceptible to losing all pumps due to a pipe break.

It is important to note that the indirect effects discussed here are plant specific. Due to plant layout differences, the contribution of the indirect effects can vary significantly between different plants. It is expected that earlier vintage plants will be impacted more by indirect effects than later vintage plants.

For the reference plant, the most significant indirect effects were associated with Service Water segments SWP-15, SWP-22, and SWP-26 through -29. Segments SWP-15 and SWP-22 are Service Water to the CCE heat-exchangers. It was assumed by the plant expert panel that a pipe failure in either of these segments would result in a loss of both CCE trains due to their close

proximity. A loss of all CCE results in a total loss of charging and therefore the segment was determined to be high safety-significant. The indirect effects resulting from these pipe segment failures significantly changed the calculated CDF contributions. Failure of all charging results in a reactor trip as well as failure to provide its accident mitigating functions. However, failure of one train of charging was not considered to result in a reactor trip and the other train is available for accident mitigation. This piping segment would have been categorized low safety-significant due to failure of one train of CCE if indirect effects were not considered. Piping segments SWP-26 through-29 represent Service Water from the pump to the discharge check valve. A failure in any of these segments would flood the entire room resulting in a loss of the Service Water Train involved, including an MCC associated with it. Without considering the indirect effects, any one of the segments would fail one pump in a pump train. These segments were designated as high safety-significant based the importance of Service Water at shutdown. The loss of an operating Service Water train would result in a loss of the operating RHR, a charging train and a Diesel Generator.

: }

All other indirect effects identified in Table 3.4-3 did not contribute to the determination of the segment safety significance category. Segments CCP-13 and CCP-14 disable one train of AFW which was determined to be low safety-significant. Failures in the Auxiliary Feedwater piping segments cause failures of HVAC which did not contribute to the segment categorization. The indirect effect associated piping segments SWP-1 through -4 is room flooding resulting in a loss of the entire pump train and failure of a MCC associated with the Service Water train. However, without considering indirect effects, a failure in these segments would result in failure of a Service Water train because the other pump in the train would back feed through the break. Therefore, if indirect effects were not considered, these segments would still result in a loss of an entire Service Water train, which was determined to be high safety-significant. Segment SWP-13 fails cooling water to the RHR and RSS ventilation units and spray would result in a loss of an MCC which powers valves needed for the train of RSS which is supported by the ventilation unit. This scenario had a low consequence and was determined to be low safety-significant. Segment SWP-20 is similar to segment SWP-13.

With regard to inspection locations, a piping segment location that was important from an indirect effects standpoint would be selected for inspection above other piping segment locations where the direct and/or indirect effect was less severe.

APPENDIX B SAMPLE EXPERT PANEL WORKSHEETS

Contained in this appendix are sample segment worksheets which were used by the expert panel review for Millstone and Surry. Section 6 of the worksheet contains the final safety-. significance category (high or low safety-significant) determined by the expert panel. Below is a brief summary of the segments represented by the worksheets for Millstone and Surry.

Millstone 3

FWS-1: This segment is the main feedwater piping to steam generator A, between motoroperated valve 35A and gate valve FCV 510. A break in this line causes a loss of main feedwater (feedline break), modeled in the PSA as an initiating event. The calculated full break probability is 0 (1.0E-08 was assumed). The RRW value calculated is 1.00 and the RAW value is relatively low. The segment was designated low safety-significant because of the low failure probability and the relatively low consequence.

ECCS-1: This segment is one of the four safety injection lines and it is located between check valves 8818A and 8819A and 8847A (inside containment). A break in this line causes a partial loss of injection, and the eventual loss of the RWST inside containment. The calculated full break probability is 0 (1.0E-08 was assumed). The RRW and RAW values were relatively high, however, the expert panel believed the PSA modeling was too conservative because the RWST inventory would be available for recirculation. The time to switch to recirculation would however be shorter. This segment was designated low safety-significant because of the low failure probability and the expert panel's assessment that the consequence would be lower than calculated.

RCS-7: This segment is the safety injection line from check valve 8948A to the tee on the loop A cold leg. A break in this segment causes a large LOCA, modeled in the PSA as an initiating event. The calculated full break probability is 4.1E-09 (the threshold value of 1.0E-08 was used). The RRW value calculated is 1.00 but the RAW value is relatively high. The segment was designated high safety-significant due to the relatively high RAW value and because of the high consequence of a large LOCA.

RCS-15: This segment is the high pressure safety injection connection from the cold leg tee to check valve 8900B. A break in this segment causes a small LOCA, modeled in the PSA as an initiating event. The calculated full break probability is 1.5E-12 (1.0E-08 was assumed). The RRW value calculated is 1.00 but the RAW value is relatively high. The segment was designated high safety-significant due to the relatively high RAW value and because the pipe failure results in an unisolable break in the RCS.

1

SIL-9: This segment is from accumulator TK1A to check valve 8956A. A break in this line results in the loss of accumulator TK1A. The calculated full break probability is 0 (1.0E-08 was assumed). The RRW value is 1.00 and the RAW is in a medium range. This segment was designated low safety-significant due to the low failure probability, benign normal operating conditions, and low consequence.

SIH-4: This segment is the High Pressure Safety Injection line from motor operated valves 8821A and 8821B to check valves 8819C, 8819A, 8819D, and 8819B. A break in this segment causes a loss of the RWST outside containment. The calculated full break probability is 0 (the threshold value of 1.0E-08 was used for calculations). The RRW and RAW values are relatively high, therefore the segment was designated high safety-significant.

FWA-12: This segment is the Auxiliary Feedwater line from check valve V12 and V47 to the cavitating venture before Steam Generator D. A break in this line causes an eventual loss of the DOST. The calculated full break probability is 0 (the threshold value of 1.0E-08 was used for calculations). The RRW and RAW values are relatively high, therefore the segment was designated high safety-significant.

SIL-3: This segment is the Low Pressure Safety Injection from motor operated valves 8716A and 8716B to V8735 and motor operated valve 8840. A break in this segment causes a loss of the RWST outside containment. The calculated full break probability is 0 (the threshold valve of 1.0E-08 was used for calculations). The RRW and RAW values are relatively high, therefore the segment was designated high safety-significant.

Surry Examples

ECC-3: This segment is the cold leg loop piping between check valves 1-SI-243 (from low head injection) and 1-SI-237 (from high head injection) and discharge check valve 1-SI-85 (to RCS). A piping failure in this line causes a loss of RWST inside containment (this would only cause a shorter time to switchover of recirculation) and the loss of one injection path to the RCS cold leg because flow restrictors on the injection path limit flow. The PSA model already assumes for LOCA events the loss of one cold leg injection path; therefore, there was no postulated conditional core damage. The failure mechanism postulated was thermal stratification while resulted in relatively low failure probabilities from small leak and large leak. This segment was designated as high safety-significant by the expert panel due to the piping possible being pressurized from the RCS and would also be a common mode failure of one of the low head and high head injection systems flowpath.

FW-12: This segment is the main feedwater piping header to steam generator A. A piping failure in this line is postulated to result in a loss of both main feedwater pumps and cause a loss of main feedwater initiating event. Indirect effects would also result from failure of this line due to spray and flooding and cause a loss of all three Unit 1 AFW pumps, the loss of both Unit 1 containment spray pumps and the loss of three main steam relief valves. These consequences were treated as 1) an initiating event with failure of mitigating equipment and 2) failure of mitigating equipment. The RRW for core damage frequency with operator action was 1.04 (high safety significant) and the RRW for LERF with operation action was 1.008 (high safety significant). The failure mechanism assumed was wastage which resulted in high failure probabilities for small and large leak. The segment is in an augmented program and therefore a factor of 10 reduction is the failure probabilities was assumed. The expert panel concurred that this segment was high safety significant.

HHI-4C: The piping segment is located at the discharge of charging pump A between a check valve and two motor-operated valves. A piping failure in this segment is assessed to result in the loss of RWST outside containment in addition to the loss of the Unit 2's RWST and charging pump cross connects. The postulated indirect consequences are not more severe than the direct impact but was also assessed numerically. With operator action, the segment can be isolated and this results in the loss of one charging pump. The postulated failure mechanism was that a

. ÷ с. **ч** ... 23 ż

snubber locks up under thermal conditions; yet the failure probability remained relatively low. The expert panel assessed this segment as high safety significant because high head flow would be temporarily interrupted before the operator took action and because of the potential for a common mode failure of all charging pumps.

LHI-4: This segment is one of the low head safety injection system=s suction line from the containment sump to the first motor-operated valve for LHI pump A. A piping failure in this segment is assessed to result in the loss of recirculation from LHI A path. Fatigue was postulated as the failure mechanism and resulted in relatively low failure probabilities. The importance measures indicated this segment as low safety significant. The panel was concerned that this line had a single containment isolation valve and is an extension of the containment sump. The panel designated this segment as high safety significant.

RC-16: This piping segment is the safety injection line from the first isolation check valve to the RCS loop 1 hot leg. This segment was postulated to result in a large, medium or small LOCA depending on the leak size. Thermal striping/stratification and thermal fatigue was the postulated failure mechanism for this segment. This segment was found to be numerically high risk significant (CDF with operator action). The segment provides hot leg safety injection water. The panel noted that the failure mechanism postulated (thermal striping) had occurred in the industry, though on the cold leg safety injection lines. The panel voted unanimously each segment high safety significant.

RC- 58: This piping segment is from PORV block valve to pressurizer PORV. Failure of this segment was postulated to result in a medium or small LOCA depending on leak size. Closure of the block valve would terminate the event and reduce the consequences. The failure mechanism postulated was fatigue. The concern was raised regarding the loss of cold overpressure mitigation capability during shutdown. The panel was concerned with high stress to allowable stress ratios. The panel voted unanimously to make the segment high safety significant.

SW-4: This piping segment is from the discharge of service water pump A through the diesel cooler and shaft bearing oil cooler back to the intake structure. As a direct impact, a rupture in any one of these segments is assessed to result in the loss of one of three SW pumps. As an

indirect consequence, failure of any one of these segments is assessed to result in the loss of all SW pumps. The postulated failure mechanism was wastage which results in a high failure probability. The RRW for the CDF with operator action showed this segment to be high safety significant. The expert panel identified that fiberglass failures had occurred at the plant and with a high RRW, the panel identified this segment as high safety significant.

MILLSTONE 3 EXPERT PANEL EVALUATION SEGMENT RANKING WORKSHEET

Section 1 System & Pipe Segment Identification				
System & Segment Description:	FWS-1 Main Feedwater/Condensate System From motor valve MOV-35A(V14) to gate valve FCV-510(V15)			
Location/P&ID Drawing:	E-130C			
System Function(s):	Provides feedwater to steam generators			

Section 2 Risk Ranking Information		
Loss of main feedwater flow to steam generator A		
Loss of main feedwater flow to steam generator A		
Loss of Main Feedwater		
None	- <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
Without O	With O	
1.20E-06	1.20E-06	
3.00E-16	3.00E-16	
RAW 5.38 RRW 1.000	106 1.000	
	generator A Loss of main feedy generator A Loss of Main Feed None Without O 1.20E-06 3.00E-16 RAW 5.38	

Section 3 Pressure Boundary Failure Probability				
Segment Elements (welds, tees, elbows, etc.):	Pipe to valve V14 weld			
Pressure Boundary Failure Mechanism(s):	Thermal fatigue, erosion/corrosion			
Pressure Boundary Leak Probability:	Small Leak: Full Break :	1.1E-03 0 (use 1.0E-08)		
Basis for Pressure Boundary Failure Probability:	High temperature at pipe weld, large nominal pipe size, high normal operating pressure			
Comments:	Break exclusion zone. No E tending LO 040- 016 US			

o:\4393\VersionA\4393-B1.doc:1b-020599

?

. .

7

•

Segment: FWS-1 (Sheet 2)

- . . · ·

Section 4 Indirect Effects Evaluation		
Indirect Effect	·	
(Spray, flood, pipe whip, jet impingement)	None identified	
Pressure Boundary Failure Impact on Other Systems	Name 11, 111 1	
	None identified	
Core Damage Frequency Contribution due to Indirect Effects	None	
Section 5 Other	Considerations	
External Events Evaluation		
Seismic: Fire:	External Flood:	
Shutdown Risk Evaluation	Feedline break during cooldown. No impact at shutdown.	
Importance to Other Accident Scenarios		
Component Maintenance and Operation Insights:	Review of reports conducted, no major problems found	
Importance to Design Basis Analysis:	Decrease in heat removal by the secondary system, per FSAR Chapter 15.	
Other Deterministic Insights:		

Section 6 Final Risk Category		
Category:	High Safety Significant	Low Safety Significant X
Basis	Low failure probability, relativ	rely low consequence - loss of MFW

Section 1 System & Pipe Segment Identification		
System & Segment Description:ECCS-1 Emergency Core Cooling From CV8819C (V24) and CV8818 CV8847C (V985)		
Location/P&ID Drawing:	EM-112A, 112B & 113B	
System Function(s):	Provides water from the RWST and the containment sump for core cooling during LOCA	

Section 2 Risk Ranking Information			
Failure Effect on System Without Operator Action:	Loss of RWST inside containment		
Failure Effect on System With Operator Action:	Loss of all RHR & HPSI flow		
PSA Initiating Events Impact:	None	None	
PSA Containment Performance Impact:	None		
Conditional Core Damage Frequency due to Pressure Boundary Failure:	Without OA With OA 4.73E-02* (3.00E-04) 2.09E-03		
Total Segment Pressure Boundary Failure Core Damage Frequency (FP*CDF _{cond}):	4.73E-10* (3.00E-12)	2.09E-11	
CDF _{pb} Importance Measure Values:	RAW 1.50E+05* (1.32E+4) RRW 1.002* (1.00)	1.83E+05 1.002	

earlier transfer to recirc.

Section 3 Pressure Boundary Failure Probability		
Segment Elements (welds, tees, elbows, etc.): Weld at V985		
Pressure Boundary Failure Mechanism(s):	Thermal fatigue	
Pressure Boundary Failure Probability:	Small Leak: 0 (use 1.0E-08 per demand) Full Break: 0 (use 1.0E-08 per demand)	
Basis for Pressure Boundary Failure Probability:	High normal operating pressure, Maximum residual stress level, High fatigue transient frequency	
Comments:	Valve is located on branch line within 2 feet of run pipe connection; Many nearby branch line snubbers exist which potentially may lockup causing break potential	

. .

2

.

1

1

Segment: ECCS - 1 (Sheet 2)

Section 4 Ind	rect Effects Evaluation
Indirect Effect:	· ·
(Spray, flood, pipe whip, jet impingement)	None Identified
Pressure Boundary Failure Impact	
on Other Systems:	None identified
Core Damage Frequency Contribution	
due to Indirect Effects:	None
Section 5 C	ther Considerations
External Events Evaluation	
Seismic:	Fire: External Flood:
Shutdown Risk Evaluation:	X 11 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Shataowit Nisk Evaluation.	Failure results in possible reduced flow for emergency core cooling; loss of RHR flow and
	LOCA during shutdown if RHR is not isolated
Importance to Other Accident Scenarios:	
Component Maintenance and	
Operation Insights:	Review of reports conducted, no major
	problems found
Importance to Design Basis Analysis:	
Other Deterministic Insights:	
Section 6 F	inal Risk Category
	unegory

Section 6 Final Risk Category			
Category:	High Safety Significant	Low Safety Significant X	
Basis Low	Failure Probability and lower co	nsequence given draindown of RWST	<u> </u>

Section 1 System & Pipe Segment Identification		
System & Segment Description:	RCS-7 Reactor Coolant System	
	LPSI Connection from Loop A Cold Leg Tee t CV 8948A (V30)	
Location/P&ID Drawing:	EM-102A	
ystem Function(s): Reactor heat removal		

Section 2 Risk Ranking Information		
Failure Effect on System Without Operator Action:	Large loss of coolant a	accident
Failure Effect on System With Operator Action:	Large loss of coolant a	accident
PSA Initiating Events Impact:	Large LOCA initiator	
PSA Containment Performance Impact:	None	
Conditional Core Damage Frequency due to Pressure Boundary Failure	Without OA 9.36E-03	With OA 9.36E-03
Total Segment Pressure Boundary Failure Core Damage Frequency (FP * CDF _{cond})	2.34E-12	2.34E-12
CDF _{pb} Importance Measure Values	RAW 4.12E+05 RRW 1.000	8.22E+05 1.000
Comments		

Section 3 Pressure Boundary Failure Probability		
Segment Elements (welds, tees, elbows, etc.): 10" Pipe weld at connection to RCS cold leg		
Pressure Boundary Failure Mechanism(s):	Thermal fatigue	
Pressure Boundary Failure Probability:	Small Leak: 1.9E-06 Full Break: 4.1E-09 (Use 1E-08)	
Basis for Pressure Boundary Failure Probability:	7: High temperature at pipe weld, Maximum residual stress level, High steady state stress level	
Comments	High usage factor. Branch is on fatigue watch list	

o:\4393\VersionA\4393-B1.doc:1b-020599

Segment: RCS-7 (Sheet 2)

Section 4 Indirect Effects Evaluation		
Indirect Effects (spray, flood, pipe whip, jet impingement)	None Identified	·
Pressure Boundary Failure Impact on Other Systems	None Identified	
Core Damage Frequency Contribution due to Indirect Effects	None	

Section 5 Other Considerations		
External Events Evaluation Seismic:	Fire:	External Flood:
Shutdown Risk Evaluation	Failure results in Large LOCA at shutdown	
Importance to Other Accident Scenarios		
Component Maintenance and Operation Insights:	Review of found	reports conducted, no major problems
Importance to Design Basis Analysis	Large LOC	A, per FSAR Chapter 15
Other Deterministic Insights		

Section	6	Final	Risk	Category
---------	---	-------	------	----------

Category: High Safety Significant X

Low Safety Significant

Basis Relatively High RAW Value, High consequence - Large LOCA

Section 1 System & Pipe Segment Identification		
System & Segment Description:	RCS-15 Reactor Coolant System	
	HPSI Connection from Cold Leg Tee to CV 8900B (V70)	
Location/P&ID Drawing:	EM-102D	
System Function(s): Reactor heat removal		

Section 2 Risk R	anking Information	
Failure Effect on SystemSmall loss of coolant accidentWithout Operator Action:		
Failure Effect on SystemSmall loss of coolant accidentWith Operator Action:		
PSA Initiating Events Impact: Small LOCA initiator		•
PSA Containment Performance Impact:	None	
Conditional Core Damage Frequency due to Pressure Boundary Failure	Without OA 8.61E-04	With OA 8.61E-04
Total Segment Pressure Boundary Failure Core Damage Frequency (FP * CDF _{cond})	2.15E-13	2.15E-13
CDF _{pb} Importance Measure Values	RAW 3.79E+04 RRW 1.000	7.56E+04 1.000
Comments		

Section 3 Pressure Boundary Failure Probability				
Segment Elements (welds, tees, elbows, etc.):	Weld to V70			
Pressure Boundary Failure Mechanism(s):	Thermal fatigue			
Pressure Boundary Failure Probability:	Small Leak: 0 (Use 1.0E-08) Full Break: Use 1.0E-08			
Basis for Pressure Boundary Failure Probability:	: High temperature at pipe weld, High normal operating pressure, Maximum residual stress level			
Comments	Area of maximum bending stress. SR EL @ 535/540 & Tee @ 550 are on fatigue watch list			

o:\4393\VersionA\4393-B1.doc:1b-020599

1

- -

.

and the second

in the second second

ــــ : ،

· •

.

.

···· •

,

Segment: RCS-15 (Sheet 2)

Section 4 Indirect Effects Evaluation		
Indirect Effects (spray, flood, pipe whip, jet impingement)	None Identified	
Pressure Boundary Failure Impact on Other Systems	None Identified	<u> </u>
Core Damage Frequency Contribution due to Indirect Effects	None	

Section 5 Other Considerations			
External Events Evaluation Seismic:	Fire:	External Flood:	
Shutdown Risk Evaluation	Failure results in Small LOCA at shutdown		
Importance to Other Accident Scenarios			
Component Maintenance and Operation Insights:	Review of a found	reports conducted, no major problems	
Importance to Design Basis Analysis	Small LOC	A, per FSAR Chapter 15	
Other Deterministic Insights			

Section 6 Final Risk Category			
Catego	ory: High Safety Significant X	Low Safety Significant	
Basis	Relatively large RAW value, Unisolable break	2	

Section 1 System & Pipe Segment Identification		
System & Segment Description: SIL-9 Low Pressure Safety Injection SI Accumulator Tank TK1A to CV8956A (V15)		
Location/P&ID Drawing:	EM-112B	
System Function(s):	Provides borated water to core during design basis accidents	

Section 2 Risk Ranking Information			
Failure Effect on System Without Operator Action:	Loss of Accumulator A water flow to cold leg 1		
Failure Effect on System With Operator Action:	Loss of Accumulator A water		
PSA Initiating Events Impact:	None		
PSA Containment Performance Impact:	None		
Conditional Core Damage Frequency due to Pressure Boundary Failure	Without OA 6.61E-04	With OA 6.61E-04	
Total Segment Pressure Boundary Failure Core Damage Frequency (FP*CDF _{cond})	6.61E-12	6.61E-12	
CDF _{pb} Importance Measure Values	RAW 2.91E+04 RRW 1.000	5.80E+04 1.001	
Comments		- · · · · · · · · · · · · · · · · · · ·	

Section 3 Pressure Boundary Failure Probability			
Segment Elements (welds, tees, elbows, etc.):	Valve/pipe weld		
Pressure Boundary Failure Mechanism(s):	Thermal fatigue		
Pressure Boundary Failure Probability:	Small Leak: 0 (use 1E-08 per demand) Full Break: 0 (use 1E-08 per demand)		
Basis for Pressure Boundary Failure Probability:	Maximum Residual Stress		
Comments	Location based on potential check valve leakage causing thermal cycling. Choked flow consideration during DBA not considered to be a significant loading concern (thick stainless steel piping).		

o:\4393\VersionA\4393-B1.doc:1b-020599

....**I**. ..

Segment: SIL-9

----· •

Section 4 Indirect Effects Evaluation		
Indirect Effects (spray, flood, pipe whip, jet impingement)	None	· ·
Pressure Boundary Failure Impact on Other Systems	None	·······
Core Damage Frequency Contribution due to Indirect Effects	None	

Consideration	ons
Fire:	External Flood:
not provid	itors isolated during shutdown, do de function during shutdown, t accumulators available if necessary
Review of problems	f reports conducted; no major found
	Fire: Accumula not provid redundan Review of

Section 6 Final Risk Category		
Category: High Safety Significant Low Safety Significant X		
Basis Reliable piping, benign normal conditions, minimal consequence.		

Section 1 System & Pipe Segment Identification		
System & Segment Description:SIH-4 High Pressure Safety InjectionMOVs 8821A (V15) and 8821B (V19)8819C (V24), 8819A (V28), 8819D (V2(V22)		
Location/P&ID Drawing:	EM-113B	
System Function(s):	Provides emergency core cooling during design basis accidents	

Section 2 Risk Ranking Information		
Failure Effect on System Without Operator Action:	Loss of RWST	
Failure Effect on System With Operator Action:	Loss of HPSI flow to all cold legs	
IPE Initiating Events Impact:	None	
IPE Containment Performance Impact:	None	
Conditional Damage Frequency due to Pressure Boundary Failure	Without OA 4.73E-02	With OA 2.99E-03
Total Segment Pressure Boundary Failure Core Damage Frequency (FP * CDFcond)	4.73E-10	2.99E-11
CDFpb Importance Measure Values	RAW 1.50E+05 RRW 1.002	1.23E+04 1.00
Comments		

Section 3 Pressure Boundary Failure Probability		
Segment Elements (welds, tees, elbows, etc.): (V20)	Valve to pipe weld at discharge of MOV8835	
Pressure Boundary Failure Mechanism(s):	External loads	
Pressure Boundary Failure Probability:	Small Leak: 0 Full Break: 0 (use 1E-08 per demand)	
Basis for Pressure Boundary Failure Probability:	Maximum Residual Stress Level, High Stead State Stress Level, High Normal operating pressure	
Comments:	Potential for locked snubber or operational vibration	

. ..

5

t

, **, , ,** , ,

_

Section 4 Indirect Effects Evaluation		
Indirect Effects (spray, flood, pipe whip, jet impingement)	None	
Pressure Boundary Failure Impact on Other Systems	None	
Core Damage Frequency Contribution due to Indirect Effects	None	

Section 5 Other Considerations			
External Events Evaluation Seismic:	Fire:	External Flood:	
None			
Shutdown Risk Evaluation:	One HPS	I required to be available.	
Importance to Other Accident Scenarios	<u></u>	<u> </u>	
Component Maintenance and Operation Insights	Review of problems	f reports conducted; no major found	
Importance to Design Basis Analysis	LOCA mi	LOCA mitigation system	
Other Deterministic Insights			
	(Pi-1P: 1 0 -		

Section 6 Final Risk Category			
Category: High Safety Significant X Low Safety Significant			
Basis High consequence - loss of RWST, both HPSI pumps injecting to break location.			

1

Section 1 System & Pipe Segment Identification		
System & Segment Description:	FWA-12 Auxiliary Feedwater System From V12 and V47 to cavitating venturi (CAV-60D) before SG-D	
Location/P&ID Drawing:	EM-130B	
System Function(s) provide cooling during startup/cooldown	Supply aux. feedwater to steam generators,	

Section 2 Risk Ranking Information		
Failure Effect on System Without Operator Action:	Loss of DWST	
Failure Effect on System With Operator Action Plant	Loss of flow from m and turbine-driven A	otor-driven AFW pump A AFW pump
IPE Initiating Events Impact:	None	
IPE Containment Performance Impact:	Pipe failure may occ steam release	ur inside containment,
Conditional Core Damage Frequency due to Pressure Boundary Failure	Without OA 8.34E-02	With OA 2.58E-03
Total Segment Pressure Boundary Failure Core Damage Frequency (FP*CDF _{cond})	8.34E-10	2.58E-11
CDF _{pb} Importance Measure Values	RAW 3.14E+05 RRW 1.003	1.02E+04 1.000
Comments	*****	

Section 3 Pressure Boundary Failure Probability			
Segment Elements (welds, tees, elbows, etc.):	Tee to elbow weld, tee to pipe weld		
Pressure Boundary Failure Mechanism(s):	External loads		
Pressure Boundary Failure Probability:	Small Leak: Full Break:	0 (use 1.0E-08 per demand) 0 (use 1.0E-08 per demand)	
Basis for Pressure Boundary Failure Probability	Carbon Steel, Large Initial Flaw, High Steady State Stress		
Comments:	Loads from valve operator or containment during seismic event		

o:\4393\VersionA\4393-B1.doc:1b-020599

Section 4 Indirect Effects Evaluation			
Indirect Effects (spray, flood, pipe whip, jet impingement)	Loss of cable trays containing HVQ*ACUS1A due to jet impingement within the AFW pump A room		
Pressure Boundary Failure Impact on Other Systems	Loss of HVQ*ACUS1A - room cooling to "A" RHR, QSS, SI area		
Core Damage Frequency Contribution due to Indirect Effects			

· .

•

:____

Section 5 Other Considerations				
External Events Evaluation Seismic:	Fire:	External Flood:		
None				
Shutdown Risk Evaluation	cooldow	ovides cooling during plant n/startup, used for safe shutdown nt transients		
Importance to Other Accident Scenarios				
Component Maintenance and Operation Insights	Review of problem	of reports conducted, no major s found		
Importance to Design Basis Analysis				
Other Deterministic Insights	<u></u>			

Section 6 Final Risk Category		
Category: High Safety Significant X	Low Safety Significant	
Basis:	Shorter time to take operator recovery, loss of DWST or loss of motor-driven (A) and turbine- driven AFW pumps (pumps potentially run out)	

.

Section 1 System & Pipe Segment Identifi	cation
System & Segment Description: (SIL, RHS)	SIL-3 Low Pressure Safety Injection From MOVs 8716A (V4) and 8716B (V8) to V8735 (V43) and MOV 8840 (V25)
Location/P&ID Drawing:	EM-112A
System Function(s):	Provide emergency cooling and borated water to core during design basis accidents, maintain the core covered, core cooling during shutdown

Section 2 Risk	Ranking Information	:		
Failure Effect on System Without Operator Action:	Loss of RWST			
Failure Effect on System With Operator Action:	Loss of both RHR pump trains			
IPE Initiating Events Impact:	None			
IPE Containment Performance Impact:	None	· · · · · · · · · · · · · · · · · · ·		
Conditional Core Damage Frequency due to Pressure Boundary Failure	Without OA 4.73E-02	With OA 1.96E-02		
Total Segment Pressure Boundary Failure Core Damage Frequency (FP*CDF _{ond})	4.73E-10	1.96E-10		
CDF _{pb} Importance Measure Values	RAW 1.50E+05 RRW 1.002	8.04E+04 1.001		
Comments	Operator would close 8716 valves if break location is known and sufficient time is available			

Section 3 Pressure Boundary Failure Probability			
Segment Elements (welds, tees, elbows, etc.): Elbow weld at inlet to MOV8840			
Pressure Boundary Failure Mechanism(s):	Thermal fatigue (conservative)		
Pressure Boundary Failure Probability:	Small Leak: 0 use 1.0E-08 (per demand) Full Break: 0 use 1.0E-08 (per demand)		
Basis for Pressure Boundary Failure Probability:	High Steady State Stress Level		
Comments	Location based on stress		

o:\4393\VersionA\4393-B1.doc:1b-020599

.... **I**____

Section 4 Indire	ct Effects Evaluation	
Indirect Effects (spray, flood, pipe whip, jet impingement)	None	· · ·
Pressure Boundary Failure Impact on Other Systems	None	
Core Damage Frequency Contribution due to Indirect Effects	None	

Section 5 Other Considerations				
External Events Evaluation Seismic: None	Fire:	External Flood:		
Shutdown Risk Evaluation	train separ consequen	s isolated by closure of 8716A&B for ration during shutdown (no ace); Loss of decay heat removal if not closed during shutdown		
Importance to Other Accident Scenarios	Loss of ho this function	t leg recirculation (plan not to use on)		
Component Maintenance and Operation Insights	Review of problems f	reports conducted; no major found		
Importance to Design Basis Analysis	basis accid design bas	oumps provide ECCS during design ents. Need cross-connect during is event with single failure to get o all cold legs.		
Other Deterministic Insights				

Section 6 Final Risk Category		
Category: High Safety Significant X	Low Safety Significant	
Basis	Same consequence as SIL-1 and SIL-2, but doesn't have shutdown risk.	

SEGMENT: ECC-003		PLANT: Surry Unit 1				
		Section 1 System and Pipe Segment Identification				
System:		Emergency Core Cooling				
Segment Descri	ptien:	Cold leg loop 3 from CV 1-SI-243 and CV 1-SI-237 to CV 1-SI-85.				
Drawing Numbe	r:	11448-CBM-089B-3 Sh. 4 Rev. 2, 11448-WMKS-0127J3				

	Section 2 Risk Banking Information		
FAILURE EFFECTS ON SYSTEM			
Without Operator Action:	Loss of RWST inside containment; Potential ISLOCA initiating event separated from the RCS by check valves; degradation of the cold leg injection function; only one injection path to a cold leg (hh and LH); flow restrictors on injection paths limit flow.		
With Operator Action:	No change.		
Initiating Events Impect:	Potential ISLOCA (CV SI-85 fails & pipe breaks)		
Containment Performance Impact:			

CONDITIONAL TREATMENT, CDF and LERF IMPORTANCE MEASURE CALCULATIONS

Treatment: None	Without DA	With OA
Conditional Core Damage Fraquency due to Pressure Boundary Failure	0.00E+00	0.00E+00
Conditional Large Early Release Frequency due to Pressure Boundary Failure	0.00E+00	0.00E+00

CDF and IMPORTANCE MEASURE CALCULATIONS		Without OA	With DA
Tetal Segment Pressure Boundary Failure Core Damage CDFcoud)	Frequency (FP *	0.00E+00	0.00E+00
CDFpb impertance	RAW	1.00E+00	1.00E+00
Measure Values	RRW	1	1
LERF and IMPORTANCE MEASURE CALCULATIONS		Witheut OA	With CA
Tetal Segment Pressure Boundary Failure Large Early R (FP * LERFcoad)	elease Frequency	0.00E+00	0.00E+00
LERFpb Importance	RAW	1.00E+00	1.00E+00

Expert Panel Discussion/Comments:

Page

10

9/29/97 4:28:53 PM

	Section 3 Press	ure Boundar	y Failure Probability			
Segment Element(s):	Weld 1-85		/ · · · · · · · · · · · · · · · · · · ·			
Failure Mechanism(s):	Thermal stratification					
· · · · · · · · · · · · · · · · · · ·			Leak Size	Large	Med	C11
Failurs Probability:	Small Leak (w/e ISI):	A 675 A4		_		Small
tenere trouventy.		8.67E-04	Large Leak (w/s ISI):	8.30E-04	0.00E+00	0.00E+(
	Small Leak (with ISI):	9.35E-05	Large Leak (with ISI):	2.91E-05	0.00E+00	0.00E+(
Basis for Failure Probability:	See failure probabili	ity worksh	eet			
Comments:	Based upon ECCS inventor	y and RWST n	nargin assumed small value :	of 2 gpm.		
	Section 4 I	ndirect Effe	cts Evaluation			
Indirect Effects:	No indirect impact.					
	Section 5 0	ther Consid	prations			
External Events Evaluation:						
Seismic: Support function in all	seismic induced events					
Fire: None						
Read: None						
Shutdown Risk Evaluation:	Alternate decay heat remov	val/primary if I	elow mid-loop		• • • • • • • • • • • • • • • • • • • •	
Importance to Other Accident Scenarios:	None					
Component Maintenance and Operation Insights:	Cold leg injection for LHI &	HHI				
Importance to Design Basis Analysis:	LOCAs, tube rupture, main chapter 14	steam line bre	ak, boron dilution, rod øjocti	on as describe	d in UFSAR	
Other Deterministic Insights:	Segment separated by chec HHI-12D & check value 1-S	x valve 1-SI-8 1-243 from se	5 from segment RC-43, che gment LHI-10	ck valve 1-SI-2	37 from segm	ent
	Section 8	Final Risk C	ategory			
Risk Catagory:	• HIGH SAFETY SIGNI	RCANT	O LOW SAF	ETY SIGNIFIC	ANT	
Basis for Risk Catagory:	Common mode - failure mec • pressurized with RCS hear • would see increased sump	ds	·······	- , .;		
و و درمی میلی کرد. این این می می می می می می می می می این این این این این این این این این ای						

.

- .

.

ų,

view-nesen unsherriou exhert Laner Castration Sedment renking Molksussi					
SEGMENT:	FW-012	PLANT: Surry Unit 1			
		Section 1 System and Pipe Segment Identification			
System:		Feedwater System			
Segment Descri	ption:	Feedwater header to SG A from 1-FW-FCV-1478 to 1-FW-12 (check valve).			
Drawing Numbe	r	11448-CBM-068A-3 SH. 1, 11448-WMKS-1018A3			

Section 2 Risk Ranking Information					
FAILURE EFFECTS ON SYSTEM					
Without Operator Action:	Loss of both MFW pumps.				
With Operator Action:	No change.				

Initiating Events Impact: Loss of main feedwater initiating event.

Containment Performance Impact:

CONDITIONAL TREATMENT, CDF and LERF IMPORTANCE MEASURE CALCULATIONS

Treatment:	SYS/JI/S+DC	Without OA	With OA
Conditional Core Da	mage Frequency due to Pressure Boundary Failure	1.72E-03	1.72E-03
Conditional Large E Failure	arly Release Frequency due to Pressure Boundary	1.35E-04	1.35E-04

Treatment:	IE/JI/S+DC	Without DA	With OA
Conditional Core Ba	mage Frequency due to Pressure Boundary Failure	1.49E-04	1.49E-04
Conditional Large E Failure	arly Release Fraquency due to Pressure Boundary	3.62E-06	3.62E-06

CDF and IMPORTANCE MEASURE CALCULATIONS Total Segment Pressure Boundary Failure Core Damage Frequency (FP * CDFcond)			Without CA	With DA
			1.38E-07	1.38E-07
	CDFpb Importance	RAW	3.07E+01	4.61E+02
Measure Values		RRW	1.00221	1.03533

Page

34

97997 428.34 PM

SEGNENT:	FW-012		PLANT: Surry U	nit 1	
LERF and IMP	ORTANCE MEASURE CALCULATIONS		Without OA	With DA	7
Tetal Segment (FP * LERFcon	t Pressure Boundary Failure Large Early Ro d)	slease Frequency	3.59E-09	3.59E-09	
	LERFpb Importance	RAW	2.78E+01	3.12E+02	·
Measure Value	15	RRW	1.00069	1.00811	-

Expert Penel Discussion/Comments:

Failure Effects with Operator Action: Loss of main feedwater; indirect effect of spray and jet impingement assumed instantaneous.

Section 3 Pressure Boundary Failure Probability						
Segment Element(s):	Pipe to FCV 1478; Draw	ings: 1018A3	· · · · · · · · · · · · · · · · · · ·		·	
Failure Mechanism(s):	Wastage*					
			Leak Size	Large	Med	Small
Failure Probability:	Smail Leak (w/s ISI);	3.60E-01	Large Leak (w/e ISI):	3.60E-01	0.00E+00	0.00E+0
	Small Leak (with ISI):	3.60E-02	Large Leak (with ISI):	3.60E-02	0.00E+00	0.00E+0
Basis for Failure Probability:	See failure probabil	ity worksh	eet			
Comments:	gpm disabling leak. Leaka	ge could conti	up capabilities (300,000 gai nue for over 8 hours without program, factor of 10 credi	operator actio	on (1 shift); ca	de
	Section 4	Indirect Effe	cts Evaluation			
Indirect Effects:	Flooding, spray; All three Unit 1 AFW pumps; both Unit 1 CS pumps; Three Main Steam RVs.					

o:\4393\VersionA\4393-B1.doc:1b-020599

35

Page

92997 4:28:34 PM

SEGMENT:	FW-012		PLANT:	Surry Unit 1
		Section 5 Other Consider	ations	
External Event	ts Evaluation:			
Seismic:	Not considered signifi	cant		
Fire:	Backup water supply	for fires.		
Flood:	None			
Shutdown Ris	k Evaluation:	Alternate decay heat removal		
Importance to Other Accident Scenaries:		None		
Component Maintenance and Operation lasights:		Fluid contained is condensate. E/C program	coverage.	
İmpertance te	Design Busis Analyzis:	Loss of normal feedwater.		
Other Determi	aistic lasights:	Separated from segment FW-15 by check v	live 1-FW-12	•
		Section 6 Final Risk Cat	egory	- <u>-</u>
Risk Category:	•	HIGH SAFETY SIGNIFICANT	C	CIOW SAFETY SIGNIFICANT
Basis for Risk	Category:	Total loss of FW, high CDF/LERF with OA R		

Page 36

9/29/97 4:28:34 PM

SEGMENT:	HHI-004C	PLANT: Surry Unit 1
		Section 1 System and Pipe Segment Identification
System:		High Head Safety Injection
Segment Descri	ption:	Discharge of charging pump A, between:1-CH-258 (check valve), 1-CH-MOV-1286A, 1-CH-MOV-1287A.
Drawing Numbe	r:	11448·MKS-1105B5, 11448·MKS-1105B9

Section 2 Risk Ranking Information				
FAILURE EFFECTS ON SYSTEM				
Without Operator Action:	A: Loss of Unit 1 RWST, loss of Unit 2 RWST cross connect to Unit 1 Charging pumps, and loss of Unit 2 Charging pumps cross connect to Unit 1; N: Loss of VCT and BAT to the charging pumps.			
With Operator Action:	Closure of CH-MDV-1267A, 1267B, 1275A isolates segment and would result in loss of one charging pump (A) only.			
Initiating Events Impact:				

Inton the Events Inchart

Containment Performance Impact:

CONDITIONAL TREATMENT, CDF and LERF IMPORTANCE MEASURE CALCULATIONS

Treatment:	SYS/JI/S	Without BA	With DA
Conditional Core Da	unage Frequency due to Pressure Boundary Failure	1.12E-04	1.12E-04
Conditional Large E Failure	arly Release Frequency due to Pressure Boundary	2.60E-05	2.60E-05

Treatment:	sys	Without DA	With OA
Conditional Core Da	mage Frequency due to Pressure Boundary Failure	2.50E-02	0.00E+00
Conditional Large Es Failure	rly Release Frequency due to Pressure Boundary	2.38E-03	2.60E-05

CDF and IMPORTANCE M	EASURE CALCULATIONS	Without OA	With OA	
Tatal Segment Pressure Boundary Failure Core Damage Frequency (FP * (CDFcond)			4.59E-11	2.97E-13
Measure Velves	CDFpb Importance	RAW	4.01E+82	2.86E+01
-measure asines		RRW	1	1

Page

18

9/29/97 4:32:39 PM

. .

• •

:

. •

÷

•

 ~ 2

1

. .

SEGMENT: HHI-004C	PLANT: Surry Unit 1			
LERF and IMPORTANCE MEASURE CALCULATIONS		Without OA	With DA	7
Total Segment Pressure Boundary Failure Large Early Ro (FP * LERFcond)	lease Frequency	4.40E-12	1.17E-13	
LERFph Importance	RAW	4.65E+02	1.18E+02	
Measure Values	RRW	1	1	-

Expert Panel Discussion/Comments:

	Section 3 Press	ure Boundar	y Failure Probability			
Segment Element(s):	Weld 1-04 3" line					
Failure Muchanism(s):	Snubber locks up under Ti	C				
			Leak Size	Large	Med	Small
Failure Prebability:	Small Leak (w/e iSi):	3.88E-05	Large Leak (w/e ISI):	2.66E-05	0.00E+00	0.00E+00
	Small Look (with ISI):	2.76E-06	Large Leak (with ISI):	9.14E-07	0.00E+00	0.00E+00
Basis for Failure Probability:	See failure probabil	lity worksh	eet			
Comments:	Based upon ECCS invento	ry and RWST (nargin assumed small value	of 2 gpm.		
	Section 4	Indirect Effe	ects Eveluation			
Indirect Effects:	segment is not more sever and LHI piping is also asse	e than the dire issed to result;	ct. The indirect impact attri ct impact; indirect consequ indirect consequences of t iavailability of one charging	ences of the H ve HHI and LHI		

Page 17

9/29/97 4:32:40 PM

SEGMENT:	HHI-004C	PLANT: Surry Unit 1	
		Section 5 Other Considerations	
External Even	ta Evaluation:		
Seismic:	Support function in all	seismic induced events	
Fire:	None		
Fleed:	None		
Shutdewn Risl	k Evaluation:	Alternate decay heat removal/primary if below mid-loop	
importance to Scenarios:	Other Accident	None	
Component Ma Operation Insig		No history of problems	
Importance to	Dezign Basis Analyzis:	Important in LOCAs, tube rupture, main steam line break, boron dilution, and rod ejection.	
Other Determi	nistie Insights:	Separated by check valve 1-CH-258 from segment HHI-004A.	
		Section 6 Final Risk Category	
Risk Category:		HIGH SAFETY SIGNIFICANT LOW SAFETY SIGNIFICANT	
Basis for Risk (Category:	- High head flow interrupted - Can mitigate with operator action - Potential interconnection (common cause) of all charging pumps	

18

9/29/97 4:32:40 PM

5. 192

....

max bees inspection capacity in the Links to Minent Benking Markement					
SEGMENT:	LHI-004	PLANT: Surry Unit 1			
		Section 1 System and Pipe Segment Identification			
System:	· · · · · · · · · · · · · · · · · · ·	Low Head Safety Injection			
Segment Descri	ption:	Containment sump to MOV 1860A.			
Drawing Numbe	r.	11448-WMKS-1106A7, CBM-089B-3 SH. 1, Rev. 5			

Section 2 Risk Ranking Information

FAILURE EFFECTS ON SYSTEM

Without Operator Action:	Loss of Recirc from LPI Train A.
--------------------------	----------------------------------

With Operator Action: No change.

Initiating Events Impact:

Containment Performance Impact:

CONDITIONAL TREATMENT, CDF and LERF IMPORTANCE MEASURE CALCULATIONS

Without DA	With OA
5.876-05	5.87E-05
2.00E-07	2.00E-07
	5.87E-05

CDF and IMPORTANCE MEASURE CALCULATIONS	Without DA	With OA	
Total Segment Pressure Boundary Failure Core Damage CDF co nd)	Frequency (FP *	5.59E-11	5.59E-11
CDFpb Importance	RAW	1.94E+00	1.55E+01
Mensure Values	RRW	1	1.00001
LERF and IMPORTANCE MEASURE CALCULATIONS		Without OA	With OA
Total Segment Pressure Boundary Failure Large Early R	elesse Frequency	1.90E-13	1.90E-13
(FP * LERFcond)			

RRW

Expert Panel Discussion/Comments:

Page

Measure Values

10

9/29/97 4:33:19 PM

1

1

	Section 3 Press	ure Boundar	y Failure Probability			
Segment Element(s);	Weld 1-15; Drawing: 110	J6A7				
Failure Mechanism(s):	Fatigue*					
			Leak Size	Large	Med	Smail
Failure Probability:	Small Leak (w/o ISI):	2.005-05	Large Leak (w/e 1Si):	1.52E-05	0.00E+00	0.00E+0
	Small Look (with ISI):	7.48E-07	Large Leak (with ISI):	1.17E-07	0.00E+00	0.00E+0
Basis for Failure Prohability:	See failure probabil	ity worksh	eet			<u>, ,=:</u>
Comments:	Based upon ECCS inventor	ry and RWST n	nargin assumed small value o	of 2 gpm; Cod	e allowables (used
	Section 4	Indirect Effe	cts Evaluation	· .		
Indirect Effects:	No indirect impact.					
	Section 5 0	ther Consid	Prations			
External Events Evaluation:	.		·····			
Seismic: Support function in	all seismic induced events					
Fire: None						
Flood: None						
Shutdown Risk Evaluation:	Alternate decay heat remo	val/primary if t	elow mid-loop			
Importance to Other Accident Scenaries:	None					
Component Maintenance and Operation lasights:	No history of problems, sta	ndby system.				
Importance te Design Basis Analysi	important for large break L	OCA				
Other Deterministic Insights:	None					
	Section B	Final Risk C	stegory	<u> </u>		
Risk Category:	HIGH SAFETY SIGNIL	FICANT	O LOW SAF	ETY SIGNIFIC	ANT	•
Basis for Risk Category:	- Single containment isolati - extension of containment :					
9e 11						·
				979/5	17 4:3 2:19 PM	

1

、

_:

.....

ţ

----' · · i

3

____^

__;

· · · ·

و .. ي

:

.

Risk-based	Inspection i	Expert Pane	l Evaluation Se	gment Rankin	g Worksheet
------------	--------------	-------------	-----------------	--------------	-------------

SEGMENT:	RC-016	PLANT: Surry Unit 1
		Section 1 System and Pipe Segment Identification
System:		Reactor Coolant
Segment Descri	ptien:	SI from CV 1-SI-91 to RCS Loop 1 hot leg.
Drawing Numbe	r:	CBM-086A-3 SH. 1, CBM-089B-3 SH. 4, 11448-WMKS-0122H1

Section 2 Risk Ranking Information		
FAILURE EFFECTS ON SYSTEM		
Without Operator Action:	Large loss of coolant accident Medium loss of coolant accident Small loss of coolant accident	
With Operator Action:	No change.	
laitiating Events Impact:	Large, Medium, or Small LOCA initiator	
Containment Performance Impact:	Either late containment failure or no containment failure are about equally likely.	

CONDITIONAL TREATMENT, CDF and LERF IMPORTANCE MEASURE CALCULATIONS

Treatment: IE-L	Without DA	With OA
Conditional Core Damage Frequency due to Pressure	Boundary Failure 9.40E-03	9.40E-03
Conditional Large Early Release Frequency due to Pr Failure	essure Boundary 3.77E-05	3.77E-05

Treatment: IE-M	Without OA	With CA
Conditional Core Damage Frequency due to Pressure Boundary Fai	iture 5.36E-03	5.36E-03
Conditional Large Early Release Frequency due to Pressure Bound Failure	ary 5.53E-06	5.53E-06

Treatment: IE-S	Without DA	With DA
Conditional Core Damage Frequency due to Pressure Boundary Failure	6.41E-04	6.41E-04
Conditional Large Early Release Frequency due to Pressure Boundary Failure	1.65E-06	1.65E-06

9/29/97 4:29:56 PM

SEGMENT: RC-016	PLANT: Surry Un	it 1	
CDF and IMPORTANCE MEASURE CALCULATIONS		Without DA	With OA
Tetal Segment Pressure Boundary Failure Core Damage CDFcond)	Frequency (FP *	1.23E-07	1.23E-07
CDFpb Importance Measure Values	RAW	2.46E+02	3.80E+03
	RRW	1.00197	1.03132
LERF and IMPORTANCE MEASURE CALCULATIONS		Without OA	With DA
Tetal Segment Pressure Boundary Failure Large Early R (FP * LERFcond)	elease Frequency	3.52E-10	3.52E-10
LERFpb Importance	RAW	9.66E+00	1.02E+02
Measure Values	RRW	1.00007	1.00079

Expert Panel Discussion/Comments:

	Section 3 Press	ure Boundar	y Failure Probability			
Segment Element(s):	ID root of welds 1-08, 2-0	8; Drawings:	122H1, 122K1			
Failure Machanism(s):	Striping/stratification, Thermal fatigue					
			Leak Size	Large	Med	Small
Failure Probability:	Smail Leak (w/e ISI):	5.31E-04	Large Leak (w/s ISI);	3.09E-04	3.34E-04	3.59E-04
	Small Leek (with ISI):	1.69E-05	Large Loak (with ISI):	5.52E-06	6.35E-06	7.00E-0
Basis for Failure Prebability:	See failure probabil	ity worksh	eet			
Comments:	Large LOCA – 5001GPM, LOCA NUREG/CR-4550 P/		A = 1501 GPM, Small LOCA	- 100 GPM/E	BASIS: LARG	E
	Section 4	Indirect Effe	ets Evaluation			
Indirect Effects:	No indirect impact.		· · · · · · · · · · · · · · · · · · ·			

Page

q

9/29/97 4:29:57 PM

• •

• •

1

SEGMENT:	RC-016		PLANT:	Surry Unit 1		
		Section 5 Other Consid	erations	, ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
External Event	ts Evaluation:					
Seismic:	Contributes about 7% t contribution to large br	o small and medium break LOCA seismic C eak LOCA seismic CDF.	DF. Minimal			
Fire:	Not considered a significant contributor to external fire events.					
Fleed:	Reed: Not considered a significant contributor to external flood events.					
Shutdown Risi	k Evaluation:	Shutdown LOCA less likely than at powe	er LOCA since p	ressure reduced.		
Importance to Scenarics:	Other Accident	None				
Component M Operation Insi	nintenance and ghts:	Temperature average between 547 and Chemistry controlled to reduce corrosion		at 2235 psig. during normal operation.		
impertance to	Design Basis Analysis;	LOCA described in UFSAR chapter 14.	Second barrier p	rovided in defense of fission product release.		
Other Determi	inistic Insights:	Segment separated by check valve 1-SI-	91 from segmen	rt ECCS-005		
		Section 6 Final Risk	Category	······································		
Risk Category:		HIGH SAFETY SIGNIFICANT	(C LOW SAFETY SIGNIFICANT		
Basis fer Risk	Category:	No credit for thermal monitoring.				

Page -

-

9/29/97 4:29:57 PM

SEGMENT:	RC-058	PLANT: Surry Unit 1
		Section 1 System and Pipe Segment Identification
ystem:		Reactor Coolant
egment Descrip	ities:	From block valve 1-RC-MOV-1535 to PORV 1-RC-PCV-1456.
rawing Number	r.	CBM-086B-3 SH. 1, 11448-WMKS-0124A1-1

	Section 2 Risk Ranking Information
FAILURE EFFECTS ON SYSTEM	
Without Operator Action:	Medium loss of coolant accident Small loss of coolant accident
With Operator Action:	Closure of MOV-1535 terminates LOCA, therefore none.
Initiating Events Impact:	Medium, or Small LOCA initiator
Containment Performance Impact:	Either late containment failure or no containment failure are about equally likely.

ONDITIONAL TREATMENT, CDF and LERF IMPORTANCE MEASURE CALCULATIONS

IE-M	Without CA	With OA
mage Frequency due to Pressure Boundary Failure	5.36E-03	0.00E+00
ariy Reisase Fraquency due to Pressure Boundary	5.53E-06	0.00E+00
	mage Frequency due to Pressure Boundary Failure	mage Frequency due to Pressure Boundary Failure 5.36E-03

Treatment: IE-S	Without DA	With OA
Conditional Core Damage Fraquency due to Pressure Boundary Failure	6.41E-04	0.00E+00
Conditional Large Early Release Frequency due to Pressure Boundary Failure	1.65E-06	0.00E+00

CDF and IMPORTANCE MEASURE CALCULATIONS Total Segment Pressure Boundary Failure Core Damage Frequency (FP * CDFcond)		Without DA	With OA
		6.84E-09	0.00E+00
Measure Values	RAW	9.66E+01	1.00E+00
	RBW	1.00011	1

pe 171

10/1/97 12:04:36 PM

<u>{``</u>}

, j

• •

o:\4393\VersionA\4393-B1.doc:1b-020599

SEGMENT:	RC-058		PLANT: Surry Un	it 1	
LERF and IMP	DRTANCE MEASURE CALCULATIONS		Without OA	With OA	-
Total Segment (FP * LERFcon	Pressure Boundary Failure Large Early R d)	elease Frequency	8.18E-12	0.00E+00	
LERFph Importance		RAW	2.39E+00	1.00E+00	1
Measure Values	RRW	1	1	1	

Expert Panel Discussion/Comments:

	Section 3 Press	ure Boundar	y Failura Probability			
Segment Element(s):	Pipe to valve, pipe to redu	cer; Drawings	: 0124A1-1			
Failurs Mechanism(s):	Fatigue					
			Leak Size	Large	Med	Small
Failure Probability:	Small Leak (w/o ISI):	4.15E-05	Large Leak (w/o ISI):	0.00E+00	4.568-05	4.56E-05
	Small Leak (with ISI):	3.20E-05	Large Leak (with ISI):	0.00E+00	2.81E-05	2.81E-05
Basis for Failure Probability:	See failure probabil	ity worksh	eet	······		<u>-</u>
Comments:		used due to la	a = 100 GPM/BASIS: NURE rgs number of snubbers; us re used, also for small leak			3; 20%
	Section 4	Indirect Effe	ets Evaluation			
Indirect Effects:	No indirect impact.		·····			

Page 172

10/1/97 12:04:36 PM

SEGMENT:	RC-058	PLANT: Surry Unit 1			
		Section 5 Other Considerations			
External Event	ts Evaluation:				
Seismic:	Seismic: Contributes about 7% to small and medium break LOCA seismic CDF. Minimal contribution to large break LOCA seismic CDF.				
Fire:	Not considered a significant contributor to external five events.				
Flood:	Not considered a significant contributor to external flood events.				
Shutdown Risl	k Evaluation:	Shutdown LOCA less likely than at power LOCA since pressure reduced.			
Importance to Scenaries:	Other Accident	None			
Component Mr Operation Insi	ninternance and ghts:	Temperature average between 547 and 573 degrees F. at 2235 psig. during normal operation. Chemistry controlled to reduce corrosion potential.			
Importance to	Design Basis Analysis:	I.OCA described in UFSAR chapter 14. Second barrier provided in defense of fission product relea	se.		
Other Determi	nistic Insights:	iNone			
		Section 6 Final Risk Category			
Risk Category:		HIGH SAFETY SIGNIFICANT LOW SAFETY SIGNIFICANT			
Basis for Risk	Category:	3x2 reducer at PCV-1456 is high stress location (large fraction of code allowable)			

Page 173

10/1/97 12:04:37 PM

.

.

-

4

с.,

the second in provide a standard of the second seco				
SEGMENT:	SW-004	PLANT: Surry Unit 1		
		Section 1 System and Pipe Segment Identification		
System:		Service Water		
Segment Descri	știea:	From 1-SW-P-1A discharge through diesel cooler and shaft bearing oil cooler to intake structure.		
Drawing Numbe	H .	CBM-071A-3 SH.1		

	Section 2 Risk Ranking Informatio	IR.
FAILURE EFFECTS ON SYSTEM		

 Without Operator Action:
 Loss of pump 1-SW-P-1A

 With Operator Action:
 No change.

 Initiating Events Impact:

Containment Performance Impect:

CONDITIONAL TREATMENT, CDF and LERF IMPORTANCE MEASURE CALCULATIONS

Treatment:	SYS/S	Without OA	With DA
Conditional Core [amage Frequency due to Pressure Boundary Failure	3.69E-04	3.69E-04
A 17-1 4 4	Early Release Frequency due to Pressure Boundary	9.50E-06	9.50E-06
Conditional Large	Certh Mensure Lindmanch and re Literenie Desidetà	0.000.00	4.444

Treatment:	SYS	Without OA	With OA
Conditional Core D	amage Frequency due to Pressure Boundary Failure	3.69E-04	3.69E-04

CDF and IMPORTANCE MEASURE CALCULATIONS		Without OA	With OA		
Total Segment Pressure Boundary Failure Core Damage Frequency (FP * CDFcond)			2.35E-08	2.35E-08	
	CDFpb Importance	RAW	1.28E+01	1.83E+02	
Measure Values		RRW	1.00038	1.00584	

Page 10

9/29/97 4:32:00 PM

SEGMENT: SW-004	PLANT: Surry Unit 1			
LERF and IMPORTANCE MEASURE CALCULATIONS		Without OA	With OA	
Total Segment Pressure Boundary Feillure Large Early R (FP * LERFcond)	elease Fraquancy	6.07E-10	6.07E-10	
LERFpb Impertance	RAW	4.67E+00	4.36E+01	
Mezzure Values	RRW	1.00012	1.00136	

Expert Panel Discussion/Comments:

	Section 3 Press	ure Boundai	y Failure Probability		**••••••••••••••••••••••••••••••••••••		
Segment Element(s):	163L · CLASS PIPE · WELD AT REDUCER ON 2" SIDE						
Failure Mechanism(s):	Wastage/Pitting						
			Leak Size	Large	Med	Small	
Failure Probability:	Small Lank (w/a ISI):	1.00E-02	Large Leak (w/e ISI):	1.00E-02	0.00E+00	0.00E+0	
	Small Leak (with ISI):	1.00E-02	Large Leak (with ISI):	1.00E-02	0.00E+00	0.00E+0	
Basis for Failure Probability:	See failure probabil	ity worksh	eet				
Comments:	10GPM/BASED UPON 10 PROBABILITY SET AT 1)	% OF 2" PIPE (10E-2 FOR S	FLOW; NO SNUBBERS; FIBI MALL LEAK AND LARGE LE/	ERGLASS PIPI NK	NG FAILURE		
	Section 4	Indirect Effe	cts Evaluation				
Indirect Effects:	Loss of SW pumps.						

9/29/97 4:32:00 PM

SEGMENT:	SW-004		PLANT:	Surry Unit 1		
		Section 5 Other Cansic	erations			
External Event	ts Evaluation:					
Soismic:	Provides heat sink for s	seismic LOCA.				
Fire: Not considered a significant contributor to external fire events.						
Fleod:	Not considered a significant contributor to external flood events.					
Shutdown Risi	k Evaluation:	Primary heat sink for decay heat remove	ll during shutdov	wn. Alternate long term decay heat removal.		
Impertance to Scenarios:	Other Accident	Provides heat sink for spent fuel pit coo	ling.			
Component Ma Operation Insi	aistenance and ghts:	Contains river water from James River. during quarterly pump testing.	Flows only duri	ng accident with loss of off-site power and		
Imp ortance to	Design Basis Analysis:	Large break LOCA long term heat remov	al described in U	IFSAR chapter 14.		
Other Determi	nistic Insights:	None.				
· · · · · · · · · · · · · · · · · · ·		Section 6 Final Risk	Category			
Risk Category:		• HIGH SAFETY SIGNIFICANT	C	LOW SAFETY SIGNIFICANT		
Basis for Risk	Category:	High CDF w/OA RRW, fiberglass failures	experienced at	njant		

Page 12

\$125/97 4:32:01 PM

APPENDIX C SAMPLE FAILURE PROBABILITY WORKSHEETS

This appendix contains sample SRRA code input worksheets and the code output for Millstone 3 and Surry. Supplement 1 discusses the SRRA code and its input and output parameters in detail.

Millstone 3

The piping segments presented are the same as those in Appendix B. The piping segments are ECCS-1 (Tables C-1 through C-3), FWS-1 (Tables C-4 through C-6), RCS-7 (Tables C-7 through C-9), RCS-15 (Tables C-10 through C-12), and SIL-9 (Tables C-13 through C-15). For a given segment, the input worksheet is shown first, followed by the small leak probability calculation output then the full break output. For the cases in which 0 failures are predicted, the values in parentheses on the worksheets are those calculated assuming one half failure in 5000 trails, corrected for importance sampling.

Note: The failure probability worksheets and results for Millstone 3 are likely to change because of the modifications made to the SRRA model as described in Supplement 1.

Surry

The piping segments presented are the same as those in Appendix B. The piping segments are ECC-03 (Tables C-16 through C-18), FW-12 (Tables C-19 through C-21), LHI-4 (Tables C-22 through C-24), HHI-4C (Tables C-25 through C-27), RC-16 (Tables C-28 through C-30), RC-58 (Tables C-31 through C-33), and SW-04 (Tables C-34 through C-36). Similar to Millstone, the input worksheet is shown along with the small leak probability calculation output and the large leak probability calculation.

		Table C-1			
		ECCS-1			
	Piping Structural Relia	bility Estimates for N	Millstone Unit No	b. 3	
System	: ECCS	Segment: 1	· · · · · · · · · · · · · · · · · · ·		Sheet of
P&ID N	No.: EM-112A, B & 113B	Data Point: 165 o	f X7003B		
Pipe St	ress Calculation Number: X7003B 831, X10705	PSI/Const. Metho	od: VT-2, PT, UT/H	Iydro, RT	
Piping	Stress Isometric No.: SIL-6, 159 & 165	Proposed ISI Met	hod: VT-2, UT		
Piping	Component/Segment Element (weld, tee, elbow, etc.):	Weld at valve V985		· · · · · · · · · · · · · · · · · · ·	
No.	Input Parameter Description	Check In	put Choice (for Tab	le 1 Value)	Set Value*
1	Type of Piping Material	304 SS	316 SS	Carbon Steel	
2	Temperature at Pipe Weld	Low (150)	Medium (350)	High (550)	350
3	Nominal Pipe Size	Small (2)	Medium (5)	Large (16)	6
4	Pipe Wall Thickness	Thin (.06)	Normal (.14)	Thick (.22)	.12
5	Normal Operating Pressure	Low (0.5)	Medium (1.3)	High (2.1)	2.5
6	Residual Stress Level	None (0.0)	Moderate (0.1)	Maximum (0.2)	.2
7	Initial Flaw Size	Small (.05)	Medium (.11)	Large (.17)	.05
8	Steady-State Stress Level	Low (.05)	Medium (.11)	High (.17)	.17
9	Stress Statusion Potential	None (0.0)	Moderate (0.5)	Maximum (1.0)	0
10	Material Wastage Potential	None (0.0)	Moderate (0.5)	Maximum (1.0)	0
11	High Cycle Fatigue Loads	None (0.0)	Moderate (.08)	Maximum (.16)	0
12	Fatigue Transient Loads	Low (.10)	Medium (.22)	High (.34)	.28
13	Fatigue Transient Frequency	Low (5)	Medium (13)	High (21)	17
14	Design-Limiting Stress (Break Only)	Low (.10)	Medium (.26)	High (.42)	.22
15	Optional Crack Inspection Interval	Low (6)	Medium (10)	High (14)	10
16	Optional crack Inspection Accuracy	High (.16)	Medium (.24)	Low (.32)	.24
*For op	tional numeric input, use a value (and associated units)	from the standard rang	e given in Table 1.		
Small L	eak Probability, No ISI: 0 (6.4E-09)		bability With ISI: 0	·	
	ak Probability, No ISI: 0 (2.3E-12)	•	obability With ISI:		
	nts: Valve is located on branch line within 2 ft. of run p causing break potential.	ipe connection. Many	nearby branch line s	snubbers exist which	h potentially may

o:\4393\VersionA\4393-C1.doc:1b-020599

1

1

ECCS-1 SMALL LEAK PROBABILITY

WESTIN	GHOUSE	STRUCTURAL RI PROBABILI	ELIABILITY AND R TY OF FAILURE PRO	ISK ASSESSMEN OGRAM SPFMPROI	r (Srra) F es) SBU – NTD
======	============	=======================================				*******
<u>1</u> .	NPUT VARIAB	LES FOR CASE 34	4: 316 STAINLESS	STEEL PIPE W	ELD LEAP	C.
	NCYCLE =	40	NFAILS = 1000		RIAL =	5000
	NOVARS =	29	NFAILS = 1000 $NUMSET = 6$		MISI =	5000
	NUMSSC =	7	NUMTRC = 7		MISI = MFMD =	4
	Nombbe -	'	NOMIRE /	NO.	MFMD =	4
VA	RIABLE	DISTRIBUTION	MEDIAN	DEVIATION	SHIFT	USAGE
NO.	NAME	TYPE LOG	VALUE	OR FACTOR	MV/SD	NO. SUB
					110,02	MO. 50D
1	PIPE-DIA	NORMAL NO	6.000D+00	3.0000D-02	.00	1 SET
2	WALL/DIA	NORMAL NO	1.1000D-01	3.3000D-03	.00	2 SET
3	SRESIDUAL	NORMAL YES	1.2357D+01	1.4125D+00	1.00	3 SET
4	INT%DEPTH	NORMAL YES	5.0000D+00	1.4125D+00	1.00	4 SET
5	L/D-RATIO	NORMAL YES	6.000D+00	1.4125D+00	1.00	5 SET
6	PROB/VOL	- CONSTANT -	1.0000D-04			6 SET
7	FIRST-ISI	- CONSTANT -	5.0000D+00			1 ISI
8	FREQ-ISI	- CONSTANT -	1.0000D+01			2 ISI
9	EPST-PND	- CONSTANT -	1.0000D-03			3 ISI
10	ASTAR-PND	- CONSTANT -	-4.8000D-01			4 ISI
11	ANUU-PND	- CONSTANT -	1.6000D+00			5 ISI
12	HOURS/CY	NORMAL YES	7.4473D+03	1.0500D+00	1.00	1 SSC
13	PRESSURE	NORMAL NO	2.5000D+00	1.5000D-02	.00	2 SSC
14	STRESS-SS	NORMAL YES	1.0503D+01	1.2589D+00	.00	3 SSC
15	SCC-COEFF	NORMAL YES	3.2310D-12	2.3714D+00	1.00	4 SSC
16	SCC-EXPNT	- CONSTANT -	2.1610D+00			5 SSC
17	SCC-TIMEI	- CONSTANT -	1.0000D+00			6 SSC
.18	ECW-RATE	NORMAL YES	1.2740D-11	2.3714D+00	.00	7 SSC
19	NOFTRS/HR	- CONSTANT -	6.0000D+01			1 TRC
20	STRESS-FT	NORMAL YES	6.1783D-02	1.4125D+00	.00	2 TRC
21	NOSTRS/CY	- CONSTANT -	1.5000D+01			3 TRC
22	STRESS-ST	NORMAL YES	1.7917D+01	1.2589D+00	.00	4 TRC
23	FCG-COEFF	NORMAL YES	9.1401D-12	2.8508D+00	1.00	5 TRC
24	FCG-EXPNT	- CONSTANT -	4.0000D+00			6 TRC
25	FCG-THOLD	- CONSTANT -	4.6000D+00			7 TRC
26	LIMIT-DSL	NORMAL NO	-9.7000D-01	1.0000D-02	.00	
27	LIMIT-PBS	- CONSTANT -	0.000D+00			2 FMD
28	STRESS-DL	- CONSTANT -	0.000D+00			3 FMD
29	FREQ-DLTR	- CONSTANT -	0.000D+00			4 FMD

PROBABILITIES OF FAILURE MODE: EXCEED LIMITING DEPTH FOR SMALL LEAK

	NUMBER FAILED	= 0	NUMBER OF TRIAN	LS = 5000
END OF	FAILURE PROBABI	LITY WITHOUT AND	WITH IN-SERVICE	INSPECTION
CYCLE	FOR PERIOD	CUM. TOTAL	FOR PERIOD	CUM. TOTAL
.0	6.37720D-09	6.37720D-09	6.37720D-09	6.37720D-09
40.0	0.00000D+00	6.37720D-09	0.00000D+00	6.37720D-09

ECCS-1 FULL BREAK PROBABILITY

-: y

- 1

· .

••••

.

÷

WESTING		PROBABILIT	LIABILITY AND R Y OF FAILURE PR	OGRAM SPFMPRO	F	ESB	JNTD
	=======================================	=======================================			===========	=====	====
II	NPUT VARIA	BLES FOR CASE 3	5: 316 STAINLES	S STEEL PIPE	WELD BREA	łΚ	
N	CYCLE =	40		5.540			
	OVARS =		NFAILS = 1000 NUMSET = 6			5000	
	UMSSC =		NUMTRC = 7		MISI =	5	
144	04350 -	1	NOMIRC = /	INU.	MFMD =	4	
VAR	IABLE	DISTRIBUTION	MEDIAN	DEVIATION	SHIFT	IIS	AGE
NO.	NAME	TYPE LOG	VALUE	OR FACTOR	MV/SD		SUB
					,		000
	PIPE-DIA	NORMAL NO	6.0000D+00	3.0000D-02	.00	1	SET
	WALL/DIA	NORMAL NO	1.1000D-01	3.3000D-03	.00	2	SET
	SRESIDUAL	NORMAL YES	1.2357D+01	1.4125D+00	1.00	3	SET
	INT&DEPTH	NORMAL YES	5.0000D+00	1.4125D+00	1.00	4	SET
	L/D-RATIO	NORMAL YES	6.0000D+00	1.4125D+00	1.00	5	SET
	PROB/VOL	- CONSTANT -	1.0000D-04			6	SET
	FIRST-ISI	- CONSTANT -	5.0000D+00			1	ISI
	FREQ-ISI	- CONSTANT -	1.0000D+01			2	ISI
	EPST-PND	- CONSTANT -	1.0000D-03			3	ISI
	ASTAR-PND	- CONSTANT -	-4.8000D-01			4	ISI
	ANUU-PND	- CONSTANT -	1.6000D+00			5	ISI
	HOURS/CY	NORMAL YES	7.4473D+03	1.0500D+00	1.00	1	SSC
	PRESSURE	NORMAL NO	2.5000D+00	1.5000D-02	.00	2	SSC
	STRESS-SS	NORMAL YES	1.0503D+01	1.2589D+00	.00	3	SSC
	SCC-COEFF	NORMAL YES	3.2310D-12	2.3714D+00	1.00	4	SSC
	SCC-EXPNT	- CONSTANT -	2.1610D+00			5	SSC
	SCC-TIMEI	- CONSTANT -	1.0000D+00			6	SSC
	ECW-RATE	NORMAL YES	1.2740D-11	2.3714D+00	.00	7	SSC
	NOFTRS/HR	- CONSTANT -	6.0000D+01			1 '	TRC
	STRESS-FT	NORMAL YES	6.1783D-02	1.4125D+00	.00	2	TRC
	NOSTRS/CY	- CONSTANT -	1.5000D+01			3	TRC
	STRESS-ST	NORMAL YES	1.7917D+01	1.2589D+00	.00	4	TRC
	FCG-COEFF	NORMAL YES	9.1401D-12	2.8508D+00	1.00	5	TRC
	FCG-EXPNT	- CONSTANT -	4.0000D+00			6	TRC
	FCG-THOLD	- CONSTANT -	4.6000D+00			7	TRC
	LIMIT-DSL	- CONSTANT -	0.000D+00			1	FMD
	LIMIT-PBS	NORMAL NO	6.1783D+01	3.2000D+00	-1.00	2	FMD
	STRESS-DL	NORMAL YES	1.4210D+01	1.4125D+00	1.00	3	FMD
29 I	FREQ-DLTR	- CONSTANT -	1.0000D-03			4	FMD
הסמת							
PROI	DABILITIES	OF FAILURE MOD	E: EXCEED FLOW	STRESS LIMIT	FOR FULL	BREA	K
	100		•				

	NUMBER FAILED	= 0	NUMBER OF TRIAN	LS = 5000
END OF	FAILURE PROBAB:	LITY WITHOUT AND	WITH IN-SERVICE	INSPECTION
CYCLE	FOR PERIOD	CUM. TOTAL	FOR PERIOD	CUM. TOTAL
.0	2.34604D-12	2.34604D-12	2.34604D-12	2.34604D-12
40.0	0.0000D+00	2.34604D-12	0.00000D+00	2.34604D-12

o:\4393\VersionA\4393-C1.doc:1b-020599

		Table C-4 FWS-1		······································	
	Piping Structural Relia	bility Estimates for M	illstone Unit No. 3		
System	: FWS	Segment: 1			Sheet of
P&ID N	No.: EM-130C	Data Point: 410			
Pipe St	ress Calculation Number: X1709	PSI/Const. Metho	od: VT-2/Hydro, R	r	
	Stress Isometric No.: C.I. FWS-11	Proposed ISI Met	•		
Piping	Component/Segment Element (weld, tee, elbow, etc.): 1				
No.	Input Parameter Description		out Choice (for Tab		Set Value*
1	Type of Piping Material	304 SS	316 SS	Carbon Steel	
2	Temperature at Pipe Weld	Low (150)	Medium (350)	High (550)	446
3	Nominal Pipe Size	Small (2)	Medium (5)	Large (16)	18
4	Pipe Wall Thickness	Thin (.06)	Normal (.14)	Thick (.22)	.06
5	Normal Operating Pressure	Low (0.5)	Medium (1.3)	High (2.1)	1.8
6	Residual Stress Level	None (0.0)	Moderate (0.1)	Maximum (0.2)	0.1
7	Initial Flaw Size	Small (.05)	Medium (.11)	Large (.17)	.05
8	Steady-State Stress Level	Low (.05)	Medium (.11)	High (.17)	.08
9	Stress Corrosion Potential	None (0.0)	Moderate (0.5)	Maximum (1.0)	0
10	Material Wastage Potential	None (0.0)	Moderate (0.5)	Maximum (1.0)	0.5
11	High Cycle Fatigue Loads	None (0.0)	Moderate (.08)	Maximum (.16)	0
12	Fatigue Transient Loads	Low (.10)	Medium (.22)	High (.34)	0.1
13	Fatigue Transient Frequency	Low (5)	Medium (13)	High (21)	13
14	Design-Limiting Stress (Break Only)	Low (.10)	Medium (.26)	High (.42)	.16
15	Optional Crack Inspection Interval	Low (6)	Medium (10)	High (14)	10
16	Optional crack Inspection Accuracy	High (.16)	Medium (.24)	Low (.32)	.24
For op	tional numeric input, use a value (and associated units)	from the standard rang	e given in Table 1.		
	eak Probability, No ISI: 1.09E-3	Optional Leak Pro	bability With ISI: 6		
	eak Probability, No ISI: 0 (3.5E-11)	Optional Break Pr	obability With ISI:	0 (3.5E-11)	
	ents: Break exclusion zone. No EC trending, LOC 040-0	16 US.	·····		

1

(

.[

FWS-1 SMALL LEAK PROBABILITY

į

÷ j,

. .

.

---- $z^{-1}y$

.

WESTIN		PROBAB	ILITY (OF FAILU	JRE PRO	ISK ASSESSM)GRAM SPFMP			→NTD
	INPUT VARIA	======================================				PIPE WELD			====
	NCYCLE = NOVARS =	40 29		AILS = 4SET =	1000 6		NTRIAL = NUMISI =	5000	
	NUMSSC =	7		4TRC =	7		NUMFMD =	5 4	
								-	
NO.	RIABLE NAME	DISTRIBUT TYPE	ION LOG	MEDIA VALU		DEVIATION OR FACTOR			AGE
			003			OR FACIOR	MV/SD	NO.	SUB
1	PIPE-DIA		NO	1.80001		9.0000D-0		1	SET
2 3	WALL/DIA SRESIDUAL		NO YES	6.00001		1.8000D-0		2	SET
4	INT&DEPTH		YES	6.43371 5.00001		1.4125D+0		3	SET
5	L/D-RATIO		YES	6.00001		1.4125D+0		4	SET
6	PROB/VOL	- CONSTAN		1.00001		1.4125D+0	0 1.00	5	SET
7	FIRST-ISI	- CONSTAN		5.0000				6	SET
8	FREQ-ISI	- CONSTAN		1.00001				1	ISI
9	EPST-PND	- CONSTAN	-	5.00001				2	ISI
10	ASTAR-PND	- CONSTAN		-2.4000				3	ISI
11	ANUU-PND	- CONSTAN		3.00001				4	ISI
12	HOURS/CY		YES	7.44731		1.0500D+0	0 1.00	5	ISI
13	PRESSURE		NO	1.80001		1.5000D-0		1 2	SSC
14	STRESS-SS		YES	5.1470		1.2589D+0		∠ 3	SSC SSC
15	SCC-COEFF		YES	3.59001		2.3714D+0		3 4	SSC
16	SCC-EXPNT	- CONSTAN		2.1610		2.3/140+0	0 .00		
17	SCC-TIMEI	- CONSTAN		1.00001				5 6	SSC SSC
18	ECW-RATE		YES	6.3700		2.3714D+0	0.00	7	SSC
19	NOFTRS/HR	- CONSTAN		6.00001		2.37140+0	0 .00	í	TRC
20	STRESS-FT		YES	6.43371		1.4125D+0	0.00	2	TRC
21	NOSTRS/CY	- CONSTAN		1.30001		1.41250.0	• •••	3	TRC
22	STRESS-ST		YES	6.43371		1.2589D+0	0 1.00	4	TRC
23	FCG-COEFF	NORMAL	YES	1.2017		2.8508D+0		5	TRC
24	FCG-EXPNT	- CONSTAN	T -	3.70001		2.02002.0	· 1.00	6	TRC
25	FCG-THOLD	- CONSTAN	T -	3.50001				7	TRC
26	LIMIT-DSL	NORMAL	NO -	-9.70001	D-01	1.0000D-0	2 .00	, 1	FMD
27	LIMIT-PBS	- CONSTAN	T -	0.00001	D+00			2	FMD
28	STRESS-DL	- CONSTAN	т -	0.00001	D+00			3	FMD
29	FREQ-DLTR	- CONSTAN	т -	0.00001	D+00			4	FMD
PR	OBABILITIES	OF FAILURE	MODE:	EXCEED	LIMITI	ING DEPTH F	OR SMALL I	- EAK	
	NUM	BER FAILED	= 316			NUMBER OF	TRIALS =	5000	
END (JRE PROBABI	1.TTV 147	າຫນດເທ	א דר ד א ג				
CYCI		PERIOD		TOTAL	AND Y	VITH IN-SER FOR PERIOD		CTION 1. TOT	
6.0	0 1.41	843D-08	1.418	343D-08	-	7.09612D-11	7 00	9612D-	.11
7.0		432D-07		516D-07		4.34590D-09		1686D-	
8.0		267D-07		588D-06		2.25107D-09			
9.0		245D-05		L14D-05		5.15727D-07		5793D-	
10.0		683D-07		740D-05		1.18905D-09		2395D-	
11.0		319D-05)59D-05		9.03992D-09		3584D-	• •
					-		1.4.	2758D-	.00

Table C-5 (cont.)

FWS-1 SMALL LEAK PROBABILITY

$12.0 \\ 14.0 \\ 15.0 \\ 17.0 \\ 19.0 \\ 20.0 \\ 21.0 \\ 23.0 \\ 24.0 \\ 25.0 \\ 27.0 \\ 29.0 \\ 31.0 \\ 32.0 \\ 31.0 \\ 34.0 \\ 35.0 \\ 34.0 \\ 35.0 \\ 36.0 \\ 37.0 \\ 38.0 \\ 39.0 \\ 40.0 \\ 100 $	8.95441D-07 3.21027D-06 2.74723D-08 2.95454D-06 1.58686D-05 5.31092D-07 6.22227D-05 1.34045D-05 8.13526D-06 6.98358D-06 1.05365D-04 1.05498D-04 8.28412D-05 1.63160D-05 2.23614D-04 1.09478D-04 1.09478D-04 1.08010D-05 1.78803D-05 4.47131D-06 7.85007D-05 9.77842D-06 1.75473D-05 2.58613D-05 3.97057D-05 4.21448D-05 7.24170D-06 1.53097D-05 1.44083D-05	4.69014D-05 5.01116D-05 5.01391D-05 6.89622D-05 6.94933D-05 1.31716D-04 1.45121D-04 1.53256D-04 1.60239D-04 2.65604D-04 3.71102D-04 4.53943D-04 4.70259D-04 6.93873D-04 8.03351D-04 8.03351D-04 8.32032D-04 8.36503D-04 9.15004D-04 9.24782D-04 9.42330D-04 9.42330D-04 9.68191D-04 1.00790D-03 1.05728D-03 1.07259D-03 1.08700D-03	3.93405D-08 1.22563D-06 6.15578D-09 6.75335D-09 5.10427D-08 1.32861D-09 1.89205D-07 1.82564D-08 2.86175D-08 4.41429D-08 1.05385D-06 4.55720D-07 1.51379D-06 7.16360D-10 3.49592D-08 2.32728D-08 9.21074D-10 3.64537D-09 9.58423D-10 4.43658D-08 4.74730D-09 1.57386D-08 1.96033D-08 2.22109D-10 1.58531D-10 5.41483D-11 1.93248D-10 2.48961D-10	1.46692D-06 2.69255D-06 2.69871D-06 2.70546D-06 2.7550D-06 2.75783D-06 2.94704D-06 2.94704D-06 2.99391D-06 3.03805D-06 4.09190D-06 6.06141D-06 6.06212D-06 6.06212D-06 6.12236D-06 6.1228D-06 6.12492D-06 6.12588D-06 6.12588D-06 6.12588D-06 6.12034D-06 6.21034D-06 6.21034D-06 6.21072D-06 6.21072D-06 6.21072D-06 6.21096D-06 6.21096D-06 6.21121D-06
	DEVIATION ON CUMUL		5.91907D-05	4.62194D-06

FWS-1 FULL BREAK PROBABILITY

100

•

į

STRUCTURAL RELIABILITY AND RISK ASSESSMENT (SRRA) WESTINGHOUSE PROBABILITY OF FAILURE PROGRAM SPFMPROF ESBU -.NTD INPUT VARIABLES FOR CASE 3: CARBON STEEL PIPE WELD FULL BREAK NCYCLE = 40 NFAILS = 1000 NTRIAL = 5000 NOVARS = NUMSET = 29 6 NUMISI = 5 NUMSSC = 7 NUMTRC = 7 NUMFMD = 4 VARIABLE DISTRIBUTION MEDIAN DEVIATION SHIFT USAGE NO. NAME T.OG VALUE TYPE OR FACTOR MV/SD NO. SUB 1 PIPE-DIA NORMAL NO 1.8000D+01 9.0000D-02 .00 1 SET 2 WALL/DIA NORMAL NO 6.000D-02 1.8000D-03 .00 2 SET 3 SRESIDUAL NORMAL YES 6.4337D+00 .00 1.4125D+003 SET 4 INT%DEPTH NORMAL YES 5.0000D+00 1.4125D+00 1.00 4 SET 5 L/D-RATIO NORMAL YES 6.000D+00 1.4125D+00 1.00 5 SET 6 PROB/VOL - CONSTANT -1.0000D-04 6 SET 7 FIRST-ISI - CONSTANT -5.0000D+00 1 ISI FREQ-ISI 8 - CONSTANT -1.0000D+01 2 ISI 9 EPST-PND - CONSTANT -5.0000D-03 3 ISI 10 ASTAR-PND - CONSTANT --2.4000D-01 Δ ISI 11 ANUU-PND - CONSTANT -3.0000D+00 5 TST 12 HOURS/CY NORMAL YES 7.4473D+03 1.0500D+00 1.00 1 SSC 13 PRESSURE NO NORMAL 1.8000D+00 1.5000D-02 .00 2 SSC 14 STRESS-SS NORMAL YES 5.1470D+00 1.2589D+00 .00 3 SSC 15 SCC-COEFF NORMAL YES 3.5900D-13 2.3714D+00 .00 4 SSC 16 SCC-EXPNT - CONSTANT -2.1610D+00 5 SSC - CONSTANT -17 SCC-TIMEI 1.0000D+00 6 SSC 18 ECW-RATE NORMAL YES 6.3700D-07 2.3714D+00 .00 7 SSC 19 NOFTRS/HR - CONSTANT -6.0000D+01 1 TRC 20 STRESS-FT NORMAL YES 6.4337D-02 .00 1.4125D+002 TRC 21 NOSTRS/CY - CONSTANT -1.3000D+01 3 TRC 22 NORMAL STRESS-ST YES 6.4337D+00 1.2589D+00 1.00 4 TRC 23 FCG-COEFF NORMAL YES 1.2017D-11 2.8508D+00 1.00 5 TRC 24 FCG-EXPNT - CONSTANT -3.7000D+00 6 TRC 25 FCG-THOLD - CONSTANT -3.5000D+00 7 TRC 26 LIMIT-DSL - CONSTANT -0.000D+00 FMD 1 27 LIMIT-PBS NORMAL NO 6.4337D+01 3.2000D+00 -1.00 FMD 2 28 STRESS-DL NORMAL YES 1.0294D+01 1.4125D+00 1.00 3 FMD 29 FREQ-DLTR - CONSTANT -1.0000D-03 4 FMD

PROBABILITIES OF FAILURE MODE: EXCEED FLOW STRESS LIMIT FOR FULL BREAK

0

	NOMBER FRILLED	= 0	NUMBER OF TRIA	LS = 5000
END OF	FAILURE PROBABI	LLITY WITHOUT AND	WITH IN-SERVICE	E INSPECTION
CYCLE	FOR PERIOD	CUM. TOTAL	FOR PERIOD	CUM. TOTAL
.0	3.50552D-11	3.50552D-11	3.50552D-11	3.50552D-11
40.0	0.00000D+00	3.50552D-11	0.00000D+00	3.50552D-11

NTIMERE EATTED -

		Table C-7			
		RCS-7			
	Piping Structural Reli	ability Estimates for M	illstone Unit No. 3		
System	: Reactor Coolant System	Segment: RCS-7			Sheet of
	No.: 12179-EM-102A R10	Data Point: 1021			
Pipe St	ress Calculation Number: X7001B	PSI/Const. Metho	d: VT-2, PT, UT/H	Iydro, PT,RT	
Piping	Stress Isometric No.:	Proposed ISI Met	hod: VT-2, UT		
Piping	Component/Segment Element (weld, tee, elbow, etc.):	Pipe weld at conn RCL			
No.	Input Parameter Description	Check Ing	out Choice (for Tab	le 1 Value)	Set Value*
1	Type of Piping Material	304 SS	316 SS	Carbon Steel	
2	Temperature at Pipe Weld	Low (150)	Medium (350)	High (550)	600
3	Nominal Pipe Size	Small (2)	Medium (5)	Large (16)	10
4	Pipe Wall Thickness	Thin (.06)	Normal (.14)	Thick (.22)	.1
5	Normal Operating Pressure	Low (0.5)	Medium (1.3)	High (2.1)	2.5
6	Residual Stress Level	None (0.0)	Moderate (0.1)	Maximum (0.2)	.2
7	Initial Flaw Size	Small (.05)	Medium (.11)	Large (.17)	.05
8	Steady-State Stress Level	Low (.05)	Medium (.11)	High (.17)	.14
9	Stress Corrosion Potential	None (0.0)	Moderate (0.5)	Maximum (1.0)	0
10	Material Wastage Potential	None (0.0)	Moderate (0.5)	Maximum (1.0)	0
11	High Cycle Fatigue Loads	None (0.0)	Moderate (.08)	Maximum (.16)	.08
12	Fatigue Transient Loads	Low (.10)	Medium (.22)	High (.34)	.25
13	Fatigue Transient Frequency	Low (5)	Medium (13)	High (21)	5
14	Design-Limiting Stress (Break Only)	Low (.10)	Medium (.26)	High (.42)	.22
15	Optional Crack Inspection Interval	Low (6)	Medium (10)	High (14)	10
16	Optional crack Inspection Accuracy	High (.16)	Medium (.24)	Low (.32)	.24
-	tional numeric input, use a value (and associated units)			······································	
	eak Probability, No ISI: 1.85E-06	4	bability With ISI: 1		
	eak Probability, No ISI: 4.15E-09	-	obability With ISI:	3.44E-09	
Comme	ents: High usage factor. Branch is on Fatigue watch list				_

;

. .

373

. .

.

RCS-7 SMALL LEAK PROBABILITY

WESTIN	NGHOUSE	STRUCTURA PROBAB	L R ILI'	ELIABILITY AND TY OF FAILURE 1	PROGRAM SPF	MPROF	ESE	BU-NTD
		BLES FOR CA	SE !	53: 316 STAINLE	ESS STEEL P	IPE WELD LE	====== :AK	.=====
	NCYCLE =	40		NFAILS = 1000)	NTRIAL =	5000	
	NOVARS =	29		NUMSET = 6	5	NUMISI =	5	
	NUMSSC =	7		NUMTRC = 7	7	NUMFMD =	4	
VA	RIABLE	DISTRIBUT	ION	MEDIAN	DEVIATI	ON SHIFT	• TTC	SAGE
NO.	NAME	TYPE I	LOG	VALUE	OR FACT			SUB
1	PIPE-DIA	NORMAL 1	NO	1.0000D+01	5.000D	-02 .00) 1	0.00
2	WALL/DIA		NO	9.0000D-02	2.7000D			SET
3	SRESIDUAL		YES	1.0318D+01	1.4125D			SET
4	INT&DEPTH		YES	5.0000D+00	1.4125D		-	SET
5	L/D-RATIO		YES	6.0000D+00	1.4125D		-	SET
6	PROB/VOL	- CONSTAN		1.0000D-04	1.41250	+00 1.00	5	SET
7	FIRST-ISI	- CONSTAN		5.0000D+00			6	SET
8	FREQ-ISI	- CONSTANT	-	1.0000D+01			1	ISI
9	EPST-PND	- CONSTAN	-	1.0000D+01			2	ISI
10	ASTAR-PND	- CONSTANT	-	-4.8000D-01			3	ISI
11	ANUU-PND	- CONSTANT	-	1.6000D+00			4	ISI
12	HOURS/CY		ZES	7.4473D+03	1.0500D		5	ISI
13	PRESSURE		10	2.7000D+00		2100		SSC
14	STRESS-SS		ZES	7.7003D+00	1.5000D		_	SSC
15	SCC-COEFF		(ES	3.2310D-12	1.2589D		-	SSC
16	SCC-EXPNT	- CONSTANT		2.1610D+00	2.3714D	+00 1.00	-	SSC
17	SCC-TIMEI	- CONSTANT	с — Г —				5	SSC
18	ECW-RATE		ES	1.0000D+00 1.2740D-11			6	SSC
19	NOFTRS/HR	- CONSTANT			2.3714D	+00 .00	•	SSC
20	STRESS-FT		r - ÆS	6.0000D+01			1	TRC
21	NOSTRS/CY	- CONSTANT		4.1068D+00	1.4125D	+00 .00	2	TRC
22	STRESS-ST		-	5.0000D+00			3	TRC
23	FCG-COEFF		ES .	1.2834D+01	1.2589D			TRC
24	FCG-EXPNT		TES	9.1401D-12	2.8508D	+00 1.00		TRC
25	FCG-THOLD	- CONSTANT	-	4.0000D+00			6	TRC
25	LIMIT-DSL	- CONSTANT	-	4.6000D+00			7	TRC
20	LIMIT-PBS		10	-9.7000D-01	1.0000D	-02 .00		FMD
28	STRESS-DL	- CONSTANT		0.000D+00			2	FMD
20		- CONSTANT		0.000D+00			3	FMD
43	FREQ-DLTR	- CONSTANI	. –	0.000D+00			4	FMD
	_							

PROBABILITIES OF FAILURE MODE: EXCEED LIMITING DEPTH FOR SMALL LEAK

	NUMBER FAILED =	= 38	NUMBER OF TRIAL	S = 5000
END OF	FAILURE PROBABII	LITY WITHOUT AND	WITH IN-SERVICE	INSPECTION
CYCLE	FOR PERIOD	CUM. TOTAL	FOR PERIOD	CUM. TOTAL
2.0	8.94271D-10	8.94271D-10	8.94271D-10	8.94271D-10
3.0	1.01876D-08	1.10818D-08	1.01876D-08	1.10818D-08
4.0	5.04658D-08	6.15476D-08	5.04658D-08	6.15476D-08
5.0	9.95457D-08	1.61093D-07	9.95457D-08	1.61093D-07
6.0	3.65580D-08	1.97651D-07	7.38916D-09	1.68482D-07
7.0	1.34157D-09	1.98993D-07	8.06409D-10	1.69289D-07

Table C-8 (cont.)

RCS-7 SMALL LEAK PROBABILITY

8.0 9.0 10.0 11.0 12.0 14.0 19.0 21.0 26.0 28.0 35.0 36.0 40.0	2.70362D-09 2.09142D-10 4.51808D-07 2.28950D-07 1.13720D-08 5.01018D-08 3.38555D-08 1.49986D-09 5.88162D-09 3.87838D-07 2.32675D-08 3.64726D-07 8.99882D-08 0.00000D+00	2.01697D-07 2.01906D-07 6.53714D-07 8.82664D-07 8.94036D-07 9.44137D-07 9.77993D-07 9.77943D-07 9.85374D-07 1.37321D-06 1.39648D-06 1.76121D-06 1.85119D-06 1.85119D-06	2.26866D-09 1.21163D-10 4.44936D-07 2.25890D-07 1.11866D-08 4.95022D-08 1.21196D-08 8.09079D-10 4.88857D-09 7.42869D-08 2.60714D-09 2.94839D-07 4.59765D-09 0.00000D+00	1.71558D-07 1.71679D-07 6.16614D-07 8.42504D-07 9.03193D-07 9.15312D-07 9.16122D-07 9.21010D-07 9.95297D-07 9.97904D-07 1.29274D-06 1.29734D-06 1.29734D-06
40.0	DEVIATION ON CUMUL		0.00000D+00 2.99190D-07	1.29734D-06 2.50752D-07

;

_

·····

-----.

·----

;

RCS-7 FULL BREAK PROBABILITY

WESTI	NGHOUSE	STRUCTURAL RI PROBABILI	ELIABILITY AND RI TY OF FAILURE PRO	GRAM SPFMPRO	F	ESB	UNTD
	INPUT VARIA	BLES FOR CASE S	54: 316 STAINLESS	STEEL PIPE	WELD BRI	===== Eak	=====
	NCYCLE = NOVARS = NUMSSC =	40 29 7	NFAILS = 1000 NUMSET = 6 NUMTRC = 7	NU	RIAL = MISI = MFMD =	5000 5 4	
V	ARIABLE	DISTRIBUTION	MEDIAN	DEVIATION	CUITOM		
NO.		TYPE LOG	VALUE	OR FACTOR	SHIFT MV/SD		AGE SUB
					MV/3D	NO.	205
1	PIPE-DIA	NORMAL NO	1.0000D+01	5.0000D-02	.00	1	SET
2	WALL/DIA	NORMAL NO	9.0000D-02	2.7000D-03	.00	2	SET
3	SRESIDUAL	NORMAL YES	1.0318D+01	1.4125D+00	1.00	3	SET
4	INT&DEPTH	NORMAL YES	5.0000D+00	1.4125D+00	1.00	4	SET
5	L/D-RATIO	NORMAL YES	6.000D+00	1.4125D+00	1.00	5	SET
6 7	PROB/VOL	- CONSTANT -	1.0000D-04			6	SET
	FIRST-ISI	- CONSTANT -	5.0000D+00			1	ISI
8	FREQ-ISI	- CONSTANT -	1.0000D+01			2	ISI
9	EPST-PND	- CONSTANT -	1.0000D-03			3	ISI
10 11	ASTAR-PND	- CONSTANT -	-4.8000D-01			4	ISI
12	ANUU-PND	- CONSTANT -	1.6000D+00			5	ISI
	HOURS/CY	NORMAL YES	7.4473D+03	1.0500D+00	1.00	1	SSC
13 14	PRESSURE	NORMAL NO	2.7000D+00	1.5000D-02	.00	2	SSC
14	STRESS-SS	NORMAL YES	7.7003D+00	1.2589D+00	.00	3	SSC
15	SCC-COEFF	NORMAL YES	3.2310D-12	2.3714D+00	1.00	4	SSC
17	SCC-EXPNT	- CONSTANT -	2.1610D+00			5	SSC
18	SCC-TIMEI	- CONSTANT -	1.0000D+00			6	SSC
19	ECW-RATE	NORMAL YES	1.2740D-11	2.3714D+00	.00	7	SSC
20	NOFTRS/HR	- CONSTANT -	6.0000D+01			1	TRC
20	STRESS-FT	NORMAL YES	4.1068D+00	1.4125D+00	.00	2	TRC
	NOSTRS/CY	- CONSTANT -	5.0000D+00			3	TRC
22	STRESS-ST	NORMAL YES	1.2834D+01	1.2589D+00	.00	4	TRC
23 24	FCG-COEFF	NORMAL YES	9.1401D-12	2.8508D+00	1.00	5	TRC
	FCG-EXPNT	- CONSTANT -	4.0000D+00			6	TRC
25	FCG-THOLD	- CONSTANT -	4.6000D+00			7	TRC
26	LIMIT-DSL	- CONSTANT -	0.0000D+00			1	FMD
27	LIMIT-PBS	NORMAL NO	5.1336D+01	3.2000D+00	-1.00	2	FMD
28	STRESS-DL	NORMAL YES	1.1807D+01	1.4125D+00	1.00	3	FMD
29	FREQ-DLTR	- CONSTANT -	1.0000D-03			4	FMD
ממ							

PROBABILITIES OF FAILURE MODE: EXCEED FLOW STRESS LIMIT FOR FULL BREAK

	NUMBER FAILED = 40	NUMBER OF TRIALS = 5000
END OF CYCLE	FAILURE PROBABILITY WITHOUT AND FOR PERIOD CUM. TOTAL	WITH IN-SERVICE INSPECTION FOR PERIOD CUM. TOTAL
3.0 4.0 5.0 6.0 7.0 8.0	3.32838D-123.32838D-124.56267D-143.37400D-121.11528D-091.11865D-091.80913D-121.12046D-095.08248D-101.62871D-098.65115D-131.62957D-09	3.32838D-123.32838D-124.56267D-143.37400D-121.11528D-091.11865D-098.92447D-141.11874D-091.35968D-101.25471D-092.01630D-131.25491D-09

o:\4393\VersionA\4393-C1.doc:1b-020599

Table C-9 (cont.)

RCS-7 FULL BREAK PROBABILITY

9.0 10.0 11.0 13.0 14.0 15.0 17.0	3.43633D-12 1.16420D-11 3.90819D-10 9.94750D-11 1.13095D-12 2.06633D-12 1.40478D-12 3.61956D-11	1.63301D-09 1.64465D-09 2.03547D-09 2.13495D-09 2.13608D-09 2.13814D-09 2.13955D-09 2.17574D-09	2.85746D-12 9.38850D-12 3.83862D-10 9.90966D-11 1.00875D-12 2.05977D-12 6.68420D-14 8.23173D-12	1.25777D-09 1.26716D-09 1.65102D-09 1.75011D-09 1.75112D-09 1.75318D-09 1.75325D-09 1.76148D-09
19.0	3.61956D-11	2.17574D-09	8.23173D-12	1.76148D-09
20.0	2.13062D-11	2.19705D-09	8.09302D-12	1.76957D-09
22.0	3.36388D-12	2.20041D-09	1.92871D-12	1.77150D-09
24.0	1.90910D-09	4.10951D-09	1.66636D-09	3.43786D-09
26.0	3.11303D-11	4.14064D-09	1.30261D-12	3.43917D-09
30.0	8.01516D-12	4.14866D-09	1.98107D-12	3.44115D-09
40.0	0.00000D+00	4.14866D-09	0.00000D+00	3.44115D-09
2010		ATIVE TOTALS =	6.53396D-10	5.95488D-10

<u>, e e e . e</u>		Table C-10	· · · · · · · · · · · · · · · · · · ·		
		RCS-15			
	Piping Structural Reliab	ility Estimates for Mi	llstone Unit No. 3		
System	a: Reactor Coolant System	Segment: RCS-15		· · · · · · · · · · · · · · · · · · ·	Sheet of
P&ID I	No.: 12179-EM-102D R4	Data Point: 530	······································	· · · · · · · · · · · · · · · · · · ·	
Pipe SI	ress Calculation Number: X10702	PSI/Const. Metho	d: VT-2, PT/Hydr	o, PT, RT	
Piping	Stress Isometric No.:	Proposed ISI Meth	nod: VT-2, RT		
Piping	Component/Segment Element (weld, tee, elbow, etc.): W	eld to V70			
No.	No. Input Parameter Description Check Input Choice (for Table 1 Value)				Set Value*
1	Type of Piping Material	304 SS	316 SS	Carbon Steel	
2	Temperature at Pipe Weld	Low (150)	Medium (350)	High (550)	600
3	Nominal Pipe Size	Small (2)	Medium (5)	Large (16)	1.5
4	Pipe Wall Thickness	Thin (.06)	Normal (.14)	Thick (.22)	.14
5	Normal Operating Pressure	Low (0.5)	Medium (1.3)	High (2.1)	2.5
6	Residual Stress Level	None (0.0)	Moderate (0.1)	Maximum (0.2)	.2
7	Initial Flaw Size	Small (.05)	Medium (.11)	Large (.17)	.05
8	Steady-State Stress Level	Low (.05)	Medium (.11)	High (.17)	.11
9	Stress Corrosion Potential	None (0.0)	Moderate (0.5)	Maximum (1.0)	0
10	Material Wastage Potential	None (0.0)	Moderate (0.5)	Maximum (1.0)	0
11	High Cycle Fatigue Loads	None (0.0)	Moderate (.08)	Maximum (.16)	0
12	Fatigue Transient Loads	Low (.10)	Medium (.22)	High (.34)	.16
13	Fatigue Transient Frequency	Low (5)	Medium (13)	High (21)	5
14	Design-Limiting Stress (Break Only)	Low (.10)	Medium (.26)	High (.42)	.22
15	Optional Crack Inspection Interval	Low (6)	Medium (10)	High (14)	10
16	Optional crack Inspection Accuracy	High (.16)	Medium (.24)	Low (.32)	.16
	tional numeric input, use a value (and associated units) fr	*	•		
	eak Probability, No ISI: 0 (1.7E-10)	· · · · · · · · · · · · · · · · · · ·	bability With ISI: 0		
	eak Probability, No ISI: 1.47E-12		obability With ISI:	1.47E-12	
Comme	ents: Area of maximum bending stress. SR el at 535/540 &	& tee at 550 are on fati	gue watch list.		•

o:\4393\VersionA\4393-C1.doc:1b-020599 C-14

RCS-15 SMALL LEAK PROBABILITY

WESTIN	GHOUSE	STRUCTURAL R PROBABILI	ELIABILITY AND RI: TY OF FAILURE PROD	SK ASSESSMEN GRAM SPFMPROI	r (SRRA)	ESBUNTD
=====	=================		=======================================		=========	========
	INPUT VARIA	BLES FOR CASE	67: 316 STAINLESS	STEEL PIPE (WELD LEAT	K
	NCYCLE =	40	NFAILS = 1000	NT	RIAL =	5000
-	NOVARS =	29	NUMSET = 6	NUI	MISI =	5
	NUMSSC =	7	NUMTRC = 7	NUI	MFMD =	4
VA	RIABLE	DISTRIBUTION	MEDIAN	DEVIATION	SHIFT	USAGE
NO.	NAME	TYPE LOG		OR FACTOR	MV/SD	NO. SUB
					,	
1	PIPE-DIA	NORMAL NO	1.5000D+00	7.5000D-03	.00	1 SET
2	WALL/DIA	NORMAL NO	1.5000D-01	4.5000D-03	.00	2 SET
3	SRESIDUAL	NORMAL YES	1.0318D+01	1.4125D+00	1.00	3 SET
4	INT%DEPTH	NORMAL YES	5.000D+00	1.4125D+00	1.00	4 SET
5	L/D-RATIO	NORMAL YES	6.000D+00	1.4125D+00	1.00	5 SET
6	PROB/VOL	- CONSTANT -	1.0000D-04			6 SET
7	FIRST-ISI	- CONSTANT -	5.0000D+00			1 ISI
8	FREQ-ISI	- CONSTANT -	1.0000D+01			2 ISI
9	EPST-PND	- CONSTANT -	1.0000D-03			3 ISI
10	ASTAR-PND	- CONSTANT -	-3.2000D-01			4 ISI
11	ANUU-PND	- CONSTANT -				5 ISI
12	HOURS/CY	NORMAL YES	7.4473D+03	1.0500D+00	1.00	1 SSC
13	PRESSURE	NORMAL NO	2.7250D+00	1.5000D-02	.00	2 SSC
14	STRESS-SS	NORMAL YES	5.6469D+00	1.2589D+00	.00	3 SSC
15	SCC-COEFF	NORMAL YES	3.2310D-12	2.3714D+00	1.00	4 SSC
16	SCC-EXPNT	- CONSTANT -	2.1610D+00			5 SSC
17	SCC-TIMEI	- CONSTANT -	1.0000D+00			6 SSC
18	ECW-RATE	NORMAL YES	1.2740D-11	2.3714D+00	.00	7 SSC
19	NOFTRS/HR	- CONSTANT -	6.0000D+01			1 TRC
20	STRESS-FT	NORMAL YES	5.1336D-02	1.4125D+00	.00	2 TRC
21	NOSTRS/CY	- CONSTANT -	5.0000D+00			3 TRC
22	STRESS-ST	NORMAL YES	8.7271D+00	1.2589D+00	.00	4 TRC
23	FCG-COEFF	NORMAL YES		2.8508D+00	1.00	5 TRC
24	FCG-EXPNT	- CONSTANT -		2.03000.00	1.00	6 TRC
25	FCG-THOLD	- CONSTANT -				7 TRC
26	LIMIT-DSL	NORMAL NO	-9.7000D-01	1.0000D-02	.00	1 FMD
27	LIMIT-PBS	- CONSTANT -				2 FMD
28	STRESS-DL	- CONSTANT -				3 FMD
29	FREQ-DLTR	- CONSTANT -				4 FMD

PROBABILITIES OF FAILURE MODE: EXCEED LIMITING DEPTH FOR SMALL LEAK

	NUMBER FAILED	= 0	NUMBER OF TRIAI	LS = 5000
END OF	FAILURE PROBABI	LITY WITHOUT AND	WITH IN-SERVICE	INSPECTION
CYCLE	FOR PERIOD	CUM. TOTAL	FOR PERIOD	CUM. TOTAL
.0	1.66284D-10	1.66284D-10	1.66284D-10	1.66284D-10
40.0	0.00000D+00	1.66284D-10	0.00000D+00	1.66284D-10

RCS-15 FULL BREAK PROBABILITY

	GHOUSE		ABILI	TY OF F	AILURE	PRO	GRAM SI	FMPRC	F	RRA)	ESB	JNTD
	INPUT VARIA		CASE	68: 316	STAIN	LESS	STEEL	PIPE	WELD	BRE	ak ak	=====
	NCYCLE =	40		NFAILS	= 10	00		NT	RIAL	=	5000	
	NOVARS =	29		NUMSET	=	6		NU	MISI	=	5	
	NUMSSC =	7		NUMTRC	=	7		NU	MFMD	=	4	
	RIABLE	DISTRIBU		M	EDIAN		DEVIAT	NOI	SHI	FT	US	AGE
NO.	NAME	TYPE	LOG	1	VALUE		OR FAC	TOR	MV/	SD	NO.	SUB
1	PIPE-DIA	NORMAL	NO		000D+0		7.5000			.00	1	SET
2	WALL/DIA	NORMAL	NO		000D-0	-	4.5000	D-03		.00	2	SET
3	SRESIDUAL	NORMAL	YES		318D+0		1.4125	D+00	1.	00	3	SET
4	INT%DEPTH	NORMAL	YES		00D+0		1.4125	D+00	1.	00	4	SET
5	L/D-RATIO	NORMAL	YES	6.0	00D+0	0	1.4125	5D+00		00	5	SET
6	PROB/VOL	- CONSTA	ANT -	1.0	000D-0	4					6	SET
7	FIRST-ISI	- CONSTA	ANT -	5.0	000D+0	0					1	ISI
8	FREQ-ISI	- CONSTA	ANT -	1.0	000D+0	1					2	ISI
9	EPST-PND	- CONSTA	ANT -	1.0	000D-0	3		•			ĩ	ISI
10	ASTAR-PND	- CONSTA	NT -	-3.2	000D-0	1					4	ISI
11	ANUU-PND	- CONSTA	ANT -	1.6	000D+0	0					5	ISI
12	HOURS/CY	NORMAL	YES	7.44	173D+0	3	1.0500	00+O	1	00	ĩ	SSC
13	PRESSURE	NORMAL	NO	2.7	250D+0	ō	1.5000			.00	2	SSC
14	STRESS-SS	NORMAL	YES		169D+0		1.2589			00	3	SSC
15	SCC-COEFF	NORMAL	YES		310D-1		2.3714			00	-	
16	SCC-EXPNT	- CONSTA			510D-1	-	2.3/14	£D+00	1.	.00	4	SSC
17	SCC-TIMEI	- CONSTA			000D+0	-					5	SSC
18	ECW-RATE	NORMAL	YES		740D-1	-	0 000			~ ~	6	SSC
19	NOFTRS/HR	- CONSTA	=			-	2.3714	1D+00	•	00	7	SSC
20	STRESS-FT	NORMAL			000D+0						1	TRC
20	NOSTRS/CY		YES		336D-0	-	1.4125	5D+00		00	2	TRC
21		- CONSTA			000D+0	-					3	TRC
	STRESS-ST	NORMAL	YES		271D+0	-	1.2589			00	4	TRC
23	FCG-COEFF	NORMAL	YES		101D-1		2.8508	3D+00	1.	00	5	TRC
24	FCG-EXPNT	- CONSTA			00D+0						6	TRC
25	FCG-THOLD	- CONSTA			000D+0	-					7	TRC
26	LIMIT-DSL	- CONSTA	NT -	0.0	00D+0	0					1	FMD
27	LIMIT-PBS	NORMAL	NO	5.13	336D+0	1	3.2000	D+00	-1.	.00	2	FMD
28	STRESS-DL	NORMAL	YES	1.12	294D+0	1	1.4125			00	3	FMD
29	FREQ-DLTR	- CONSTA	NT -	1.00	000D-0	3		2.00	±.		4	FMD
PRO	OBABILITIES	OF FAILUR	E MOI	DE: EXCI	EED FL	ow si	RESS L	IMIT	FOR F	ULL	BREAT	٢
							_					
	NUMI	BER FAILED) =	1		1	NUMBER	OF TR	IALS	=	5000	
END (OF FAIL	JRE PROBAE	ነተኒተጥ	/ พาาานกา	ידא ב	רזעד רו	דיים באי			1005	00701	
		PERIOD	, , , , , , , , , , , , , , , , , , ,	CUM. TOT	71 INN. 721.	U WJ	LIU TN-	- SEKVI				
	: •					1	FOR PER	TOD		COM	. TOTA	¥۲
1.0		947D-12	1	160175	10	-	400		-			
40.0) V VV		 	. 4074/D·	-12	1	.469471	2-12	1		947D-	
40.0	0.000	000D+00	1.	.46947D	-12	0	.000001	00+0	1	46	947D-	12
	DEVIATION	N ON CUMUL	ATIVE	E TOTALS	5 =	1.	.469471)-12	1	.46	947D-	12
												-

C-16

o:\4393\VersionA\4393-C1.doc:1b-020599

. .

-- 1

<u></u>		Table C-13	<u> </u>	<u> </u>	
		SIL-9			
	Piping Structural Reliabil	ity Estimates for Mi	llstone Unit No. 3		
System	: Low Pressure Safety Injection	Segment: SIL-9		<u></u>	Sheet of
P&ID N	No.: EM-112B	Data Point: 95			-
Pipe St	ress Calculation Number: 7001B	PSI/Const. Metho	d: VT-2, UT, PT/H	Iydro, RT	
1 0	Stress Isometric No.:	Proposed ISI Meth	od: VT-2, UT		
Piping	Component/Segment Element (weld, tee, elbow, etc.): Val	ve/pipe weld			
No.	Input Parameter Description	Check Inp	ut Choice (for Tab	le 1 Value)	Set Value*
1	Type of Piping Material	304 SS	316 SS	Carbon Steel	
2	Temperature at Pipe Weld	Low (150)	Medium (350)	High (550)	350
3	Nominal Pipe Size	Small (2)	Medium (5)	Large (16)	10
4	Pipe Wall Thickness	Thin (.06)	Normal (.14)	Thick (.22)	.1
5	Normal Operating Pressure	Low (0.5)	Medium (1.3)	High (2.1)	.7
6	Residual Stress Level	None (0.0)	Moderate (0.1)	Maximum (0.2)	.2
7	Initial Flaw Size	Small (.05)	Medium (.11)	Large (.17)	.05
8	Steady-State Stress Level	Low (.05)	Medium (.11)	High (.17)	.11
9	Stress Corrosion Potential	None (0.0)	Moderate (0.5)	Maximum (1.0)	0
10	Material Wastage Potential	None (0.0)	Moderate (0.5)	Maximum (1.0)	0
11	High Cycle Fatigue Loads	None (0.0)	Moderate (.08)	Maximum (.16)	0
12	Fatigue Transient Loads	Low (.10)	Medium (.22)	High (.34)	.1
13	Fatigue Transient Frequency	Low (5)	Medium (13)	High (21)	5
14	Design-Limiting Stress (Break Only)	Low (.10)	Medium (.26)	High (.42)	.09
15	Optional Crack Inspection Interval	Low (6)	Medium (10)	High (14)	10
16	Optional crack Inspection Accuracy	High (.16)	Medium (.24)	Low (.32)	.16
*For op	tional numeric input, use a value (and associated units) from	m the standard range	e given in Table 1.		
-	eak Probability, No ISI: 0 (2.5E-08)	Optional Leak Pro	bability With ISI: ((2.5E-08)	
	eak Probability, No ISI: 0 (9.2E-12)	Optional Break Pro	bability With ISI:	0 (9.2E-12)	<u></u>
	ents: Location based on potential check valve leakage causi	ng thermal cycling.		***************************************	

[

÷

_____ą

: ; ____

· · · · · · ·

4

į

-- --- -

2.50257D-08 2.50257D-08

SIL-9 SMALL LEAK PROBABILITY

	NGHOUSE	PROBA	BILI	TY OF FAII	JURE PRO	ISK ASSESSMEN OGRAM SPFMPRO	F		UNTD
	INPUT VARIA	BLES FOR C	ASE :	18: 316 ST	AINLESS	S STEEL PIPE	WELD LEAF	:==== (
	NCYCLE = NOVARS =	40 29		NFAILS = NUMSET =	1000 6		RIAL = 5 MISI =	000 5	
	NUMSSC =	7		NUMTRC =	7	NU	MFMD =	4	
v.	ARIABLE	DISTRIBU	FION	MEDI	AN	DEVIATION	SHIFT	IIC	AGE
NO	. NAME	TYPE	LOG	VAL		OR FACTOR	MV/SD		SUB
1	PIPE-DIA	NORMAL	NO	1.0000	D+01	5.0000D-02	.00	1	SET
2	WALL/DIA	NORMAL	NO	1.0000	D-01	3.0000D-03	.00	2	SET
3	SRESIDUAL	NORMAL	YES	1.2357	'D+01	1.4125D+00	1.00	3	SET
4	INT%DEPTH	NORMAL	YES	5.0000	D+00	1.4125D+00	1.00	4	SET
5	L/D-RATIO	NORMAL	YES	6.0000	D+00	1.4125D+00	1.00	5	SET
6	PROB/VOL	- CONSTAL	NT -	1.0000)D-04		1.00	6	SET
7	FIRST-ISI	- CONSTAL	- TV	5.0000	D+00			ĩ	ISI
8	FREQ-ISI	- CONSTAL	- TV	1.0000	D+01			2	ISI
9	EPST-PND	- CONSTAL	- TN	1.0000				3	ISI
10	ASTAR-PND	- CONSTAL	- TV	-3.2000	D-01			4	ISI
11	ANUU-PND	- CONSTAN	TT -	1.6000	D+00			5	ISI
12	HOURS/CY	NORMAL	YES	7.4473	D+03	1.0500D+00	1.00	ĩ	SSC
13	PRESSURE	NORMAL	NO	7.0000	D-01	1.5000D-02	.00	2	SSC
14	STRESS-SS	NORMAL	YES	6.1783	D+00	1.2589D+00	.00	รี	SSC
15	SCC-COEFF	NORMAL	YES	3.2310	D-12	2.3714D+00	1.00	4	SSC
16	SCC-EXPNT	- CONSTAL	TT -	2.1610	D+00		2.00	5	SSC
17	SCC-TIMEI	- CONSTAL	- TV	1.0000	D+00			6	SSC
18	ECW-RATE	NORMAL	YES	1.2740	D-11	2.3714D+00	.00	7	SSC
19	NOFTRS/HR	- CONSTAL	TT -	6.0000	D+01			í	TRC
20	STRESS-FT	NORMAL	YES	6.1783	D-02	1.4125D+00	.00	2	TRC
21	NOSTRS/CY	- CONSTAL	- TV	5.0000	D+00			ĩ	TRC
22	STRESS-ST	NORMAL	YES	6.1783	D+00	1.2589D+00	.00	4	TRC
23	FCG-COEFF	NORMAL	YES	9.1401	D-12	2.8508D+00	1.00	5	TRC
24	FCG-EXPNT	- CONSTAL	- TV	4.0000	D+00		2.00	6	TRC
25	FCG-THOLD	- CONSTAN	- TV	4.6000	D+00			7	TRC
26	LIMIT-DSL	NORMAL	NO	-9.7000	D-01	1.0000D-02	.00	i	FMD
27	LIMIT-PBS	- CONSTAL	ν Τ –	0.0000	D+00			2	FMD
28	STRESS-DL	- CONSTAN	- TV	0.0000	D+00			3	FMD
29	FREQ-DLTR	- CONSTAN	- TV	0.0000	D+00			4	FMD
PI	ROBABILITIES	OF FAILURE	e moi	E: EXCEED	LIMITI	ING DEPTH FOR	SMALL LE	AK	
	NUM	BER FAILED	=	0		NUMBER OF TR	IALS = 5	000	
END CYC		JRE PROBABI PERIOD		WITHOUT CUM. TOTAL	AND W	NITH IN-SERVI FOR PERIOD		TION TOT	

2.50257D-08 0.00000D+00

.0 40.0

• • • •

2.50257D-08 0.00000D+00

2.50257D-08

2.50257D-08

SIL-9 FULL BREAK PROBABILITY

	IGHOUSE	PROBABI	RELIABILIT	Y AND RISI LURE PROGI	K ASSESSMEN RAM SPFMPRO	NT (SRRA) DF	ESBU	l -NTD =====
	INPUT VARIA	BLES FOR CAS	E 17: 316 S	TAINLESS S	STEEL PIPE	WELD BRE	AK	
	NCYCLE =	40	NFAILS =	1000	NT	RIAL =	5000	
	NOVARS =	29	NUMSET =	6		MISI =	5	
	NUMSSC =	7	NUMTRC =	7		MFMD =	4	
	RIABLE	DISTRIBUTI			DEVIATION	SHIFT	USA	
NO.	NAME	TYPE L	OG VA	LUE (OR FACTOR	MV/SD	NO.	SUB
1	PIPE-DIA	NORMAL N	I.000	00+01	5.0000D-02	.00	1	SET
2	WALL/DIA		10 1.000		3.0000D-03	.00	1 2	SET
3	SRESIDUAL		ES 1.235		1.4125D+00	1.00	3	SET
4	INT&DEPTH		ES 5.000		1.4125D+00	1.00	4	SET
5	L/D-RATIO		ES 6.000		1.4125D+00	1.00	5	SET
6	PROB/VOL	- CONSTANT			1.41230100	1.00	6	SET
7	FIRST-ISI	- CONSTANT					ĩ	ISI
8	FREQ-ISI	- CONSTANT					2	ISI
9	EPST-PND	- CONSTANT	2 - 1.000	0D-03			3	ISI
10	ASTAR-PND	- CONSTANT	3.200	0D-01			4	ISI
11	ANUU-PND	- CONSTANT	- 1.600	0D+00			5	ISI
12	HOURS/CY	NORMAL Y	'ES 7.447		1.0500D+00	1.00	1	SSC
13	PRESSURE	NORMAL N	IO 7.000	0D-01	1.5000D-02	.00	2	SSC
14	STRESS-SS	NORMAL Y	ES 6.178		1.2589D+00	.00	3	SSC
15	SCC-COEFF	NORMAL Y	ES 3.231		2.3714D+00	1.00	4	SSC
16	SCC-EXPNT	- CONSTANT	2.161				5	SSC
17	SCC-TIMEI	- CONSTANT	r - 1.000	0D+00			6	SSC
18	ECW-RATE		ES 1.274	0D-11	2.3714D+00	.00	7	SSC
19	NOFTRS/HR	- CONSTANT					1	TRC
20	STRESS-FT		ES 6.178	3D-02	1.4125D+00	.00	2	TRC
21	NOSTRS/CY	- CONSTANI					3	TRC
22	STRESS-ST		ES 6.178		1.2589D+00	.00	4	TRC
23	FCG-COEFF		ES 9.140		2.8508D+00	1.00	5	TRC
24	FCG-EXPNT	- CONSTANT					6	TRC
25	FCG-THOLD	- CONSTANT					7	TRC
26	LIMIT-DSL	- CONSTANT					1	FMD
27	LIMIT-PBS		6.178		3.2000D+00	-1.00	2	FMD
28	STRESS-DL		ES 5.560		1.4125D+00	1.00	3	FMD
29	FREQ-DLTR	- CONSTANT	2 - 1.000	0D-03			4	FMD

PROBABILITIES OF FAILURE MODE: EXCEED FLOW STRESS LIMIT FOR FULL BREAK

NUMBER FAILED = 0

NUMBER OF TRIALS = 5000

END OF	FAILURE PROBABIL	ITY WITHOUT AND	WITH IN-SERVICE	INSPECTION
CYCLE		CUM. TOTAL	FOR PERIOD	CUM. TOTAL
.0	9.20644D-12	9.20644D-12	9.20644D-12	9.20644D-12
40.0	0.00000D+00	9.20644D-12	0.00000D+00	9.20644D-12

.

Surry Unit 1

1

ſ

o:\4393\VersionA\4393-C1.doc:1b-020599

ĺ

System	: <u>ECC</u> Segment: <u>ECCS-(</u>	01,002,003	Failure Mode(s	s): Thermal S	stratification/	Welds 1-04; 1-05- 1-05 a Location: Drawings 127J1; 127J2; 127J3
No. In	put Parameter Description	Circ	cle Choice or Set \	Value	Set Value	Basis
1 Ty	pe of Piping Material	304SS	21699	Carbon Steel		Drawing/Spec.
2 Cr	ack inspection Interval (optional)	Low(6)	Medium(10)	High(14)		Section XI
3 Cr	ack inspection Accuracy (optional)	High(.16)	Medium(.24)	Low(.32)		UT
4 Te	mperature at Pipe Weld	Low(150)	Medium(350)	High(550)	170	Line List
5 No	minal Pipe Size	Small(2)	Medium(5)	Large(16)	6	Drawing
3 Th	ickness to O.D. Ratio	Thin(.05)	Normal(.13)	Thick(.21)	.085	Calc.
7 No	rmal Operating Pressure	Low(0.5)	Medium(1.3)	High(2,1)	2.52	Line List
B Re	sidual Stress Level	None(0.0)	Moderate(10)	Maximum(20)		Thick Wall
ini (tial Flaw Conditions	One Flaw	X-Ray NDE	No X-Ray	.15	Spec.
0	V & Thermal Stress Level	Low(.05)	Medium(.11)	High(.17)		Calc.
1 Str	ess Corrosion Potential	Nona(0.0)	Moderate(0.5)	Maximum(1.0)		Judgment
2 Ma	iterial Wastage Potential	None(0.0)	Moderate(0.5)	Maximum(1.0)		Judgment
3 Vit	pratory Stress Range	None(0.0)	Moderate(1.5)	Maximum(3.0)		Judgment
I Fa	tigue Stress Range	Low(.30)	Medium(.50)	High(.70)	.6	Stratification
5 Lo	w Cycle Fatigue Frequency	Low(10)	Medium(20)	High(30)		Stratification
3 De	sign Limiting Stress (LL/Break Only)	Low(.10)	Medium(.26)	High(.42)	.214	Calc.
7 Sy:	stem Disabling Leak (Large Leak Only)	None(0)	Medium(300)	High(600)	2	Assumed Small
B Mir	n. Detectable Leak (LL/Break Only)	None(0)	Medium(5)	High(10)	1	T.S. Limit
rge Leak Prob Leak Prob nall Leak rge Leak Prob	Bit Prob., No ISI: 8.6721E-4 1 Prob., No ISI: 8.2946E-4 2000 N/A election(Snubber locking up under Therr 1 Prob., No ISI: 1 Prob., No ISI:	Small Leak Prob Large Leak Prob Break Prob.,	., With ISI: With ISI: , With ISI: , With ISI: With ISI:	N/A ()(Snubber failure	N/A if not appl N/A if not appl N/A if not appl	icable) t a <u>t_N/A</u> .)(N/A if not applicable) icable) icable) icable)
	<u>etection(</u> Snubber not locking up under S : Prob., No ISI:		ltern 16 set a <u>t_N//</u> ., With ISI:		ure probability N/A if not app!	
ak Prob		Break Prob.,	With ISI:		N/A If not appl	
rge Leak	tion (with Snubber failure if most limiting Prob., No ISI: <u>1.7060E-4</u>	Large Leak Prob			N/A if not appl	
ak Prob	., No ISI: <u>N/A</u>	Break Prob.,	With ISI:	<u>N/A</u> (N/A if not appl	(C2019)

. . [

ł

(

1

[

[

1

1

{

1

PIPING SEGMENT ECC-03 FAILURE PROBABILITY WORKSHEET

Table C-16

ĺ

t

Assumed some check valve back leakage. No snubbers.

PIPING SEGMENT ECC-03 SMALL LEAK FAILURE PROBABILITY

SRRA MODEL OUTPUT

	Output	Print File S6PF	OFSL. P74 Opened	at 12:39 on	04-06-199	97
	Type of	Piping Steel M	laterial ions Detection		316 St	
	Pipe We	ald Pailure Mode	3		Small Lea	a le
	Years 1	Between Inspecti	ons		10.0	
	Wall Fi	raction for 50%	Detection		0.240	
	Degree	(F) at Pipe We	Detection Id 5, inch) ameter		170.0	
	Nomina.	Pipe Size (NPS	, inch)		6.0	
	THICKN	ing Pressure (ks	ameter		0.0850	
	Uniform	ng rrussure (Ka Demidual Strog	:1) :\$ (ksi)			
	Flaw F	ictor (<0 for 1	18 (KB1) 12 au		20.0	
	DW & Th	Armal Streag /	Plaw Streen		1.00	
	SCC Rat	e / Rate for BW	R Sans. SS		0.15	
	Factor	on Wastage of .	R Sens. SS 0095 in/yr for NPS of 1) Flow Stress		0.00	
	P-P Vit	. Stress (ksi f	or NPS of 1)		0 0	
	Cyclic	Stress Range /	Plow Stress		0.600	
		, cloten het 189			30.0	
	Design-	Limit Stress /	Flow Stress		0.214	
	System	Disabling Leak	Rate (GPM)		2.0	
	Value	Detectable Lea	Rate (GPM) k Rate (GPM) ow Stress in Ks:	•	0.0	
	value c	r werd Nergi ki	ow stress in Ks:	1	69.30	
	•	STRUCTURAL RE	LIABILITY AND R			
	nghouse	FROBABILI	TY OF FATITOP DI	DACDIN TRIVING	A 10 -	ESBU-NSD
		الا مع من الدين الأثانية (10 at 10 at 1				
	INFUT VARIA	BLES FOR CASE 7	4: 316 St Steel	Pipe Segment	ECCS-1;2	2;3
	NCYCLE =		NFAILS = 400	NTI	RIAL = 40	000
	NOVARS =		NUMSZT. = 6	NETT	IISI =	5
	NUMSSC =	6	NUMTRC = 6		(FMD =	5
V.	RIABLE		;			-
NO.		DISTREBUTION TYPE LOG	MEDIAN	DEVIATION		USAGE
	54576-643	LIFE LOG	VALUE	OR FACTOR	MV/SD	NO. SUB
1	PIPE-ODIA	NORMAL NO	6.6250D+00	2 40000-00	~~	
2	WALL/ODIA	NORMAL, NO	8,5000D=02	2.4000D-02 2.6350D-03		1 SET
3	SRESIDUAL	NORMAI, YES	8.5000D-02 2.0000D+01	1.4142D+00		
4	INT&DEPTH	Normai, yes	2.0000+01 1.7036D+01 6.0000D+00 3.1824D-03 5.0000D+00	1.3000D+00	2.00	4 SET
5	L/D-RATIO	Normal, yes	6.0000D+00	1.7126D+00	1.00	5 SET
6	FLAWS/IN	- CONSTANT -	3.1824D-03			6 SET
7	FIRST-ISI	- CONSTANT -	5.0000D+00			1 ISI
8 9	FREQ-ISI	- CONSTANT - - CONSTANT -	1.0000D+01			2 ISI
10	LPST-PND	- CONSTANT -	1.0000D-03			3 ISI
11	ANTIT-DUD	- CONSTANT - - CONSTANT -	-2.4000D-01			4 ISI
12	HOURS / VP	- CURSTANT	1:6000D+00			5 ISI
13	PRESSURE	NORMAT. VPC	7.4473D+03 2.5200D+00 1.0396D+01 3.2310D-12	1.0500D+00	.00	
14	SIG-DWATH	NORMAL VES	1:03960+01	1.03230+00	.00	
15	SCC-COEPP	NORMAL YES	3123100-12	1.409990700 2.37148400	.00	3 SSC
16	SCC-EXPNT	- CONSTANT -	2.1610D+00		.00	4 SSC 5 SSC
17	WASTAGE	NORMAL YES	1.2740D-12	2.3714D+00	.00	5 SSC 6 SSC
18	DSIG-VIBR	NORMAL YES	3.6957D-04	1.3465D+00	.00	1 TRC
19	CYCLES/YR	- CONSTANT -	3.0000D+01			2 TRC
20	DSIG-FATG	NORMAL YES	4.1583D+01	1.4142D+00	.00	3 TRC
21	PCG-COEFF	NORMAL YES	9.1401D-12	2.8508D+00	1.00	4 TRC
22	FCG-EXPNT	- CONSTANT -	4.0000D+00			5 TRC
23	FCG-THOLD	- CONSTANT -	1.5000D+00			6 TRC
24	LDEPTH-SL	- CONSTANT -	-9.9900D-01			1 FMD
25	SIG-FLOW	NORMAL NO	6.9305D+01	3.2000D+00	.00	2 FMD

· :

Table C-17 (cont.)

PIPING SEGMENT ECC-03 SMALL LEAK FAILURE PROBABILITY

SRRA MODEL OUTPUT

	STRESS-DL B-SDLEAK	-	CONSTANT		0.0000D 0.0000D					3	FMD FMD
28]	B-MDLEAK	-	CONSTANT		0.0000					5	FMD
										•	
PROI	BABILITIES	of	FAILURE	MODE:	THROUGH	-WALL	CRACK	DEPTH F	FOR SMAL	L LEAI	ĸ
	NUMI	BER	FAILED -	= 400	. •		NUMBER	OF TRI	ials =	1434	
END OI	7 FAII	UR	S PROBABI	LITY W	THOUT	AND	WITH I	N-SERVI	CE INSE	ECTTO	VS.
YEAR	FOR	PEI	RIOD	CUM.	TOTAL		FOR PE			I. TOT	
1.0	3.333	1740	0-07	3.331	174D-07	3	.33174	D-07	3.33	174D-0	07
2.0	2.030			2.363	346D-06	2	.03029	D-06	2.36	346D-0	06
3.0	4.103				512D-06	- 4	.10166	D-06	6.46	512D-0)6
4.0	9.731				969D-05	9	.73175	D-06	1.61	969D-0	5
5.0	6.278				757D-05	6	.27881	.D-06	2.24	757D-0)5
6.0	3.952				283D-05		62860		2.24	920D-0)5
7.0	4.151				170D-05		02527		2.35	172D-0)5
8.0	8.238				351D-05		.65005			.822D-(
9.0	1.760				391D-05		.78993			722D-(
10.0	1.282				516D-04		81927			914D-0	
12.0	9.214				331D-04					804D-	
13.0	1.783				514D-04		.21503			019D-0	
14.0	4.691 1.096				526D-04 189D-04		94242			261D-0	
15.0	3.150				540D-04					960D-0	
16.0	6.413				053D-04		.52273			483D-0	
17.0	9.606				560D-04					:530D-(:685D-(
18.0	2.022				389D-04		.78133			163D-0	
19.0	3.192				082D-04		.35846			399D-(
20.0	2.829				378D-04		15177			5551D-(
21.0	7.098	900	-05		367D-04	-	.98744			6426D-	
22.0	3.468	32D	-05	3.520	50D-04	-	.11425			568D-	
23.0	5.001	.52E	-06	3.570)52D-04	7	.55603	D-08		324D-	
24.0	1.912	89D	-04	5.483	341D-04	3	.01475	D-05		799D-	
25.0	1.177	730	-05	5.601	18D-04	2	.50270	D-07	9.01	302D-0	05
26.0	1.032			5.704	145D-04	1	.07175	iD-09	9.01	312D-0	05
27.0	2.665			5.97(970-04	2	.41576	D-09	9.01	337D-0	05
28.0	3.007				L74D-04	2	.26497	'D-08	9.01	563D-0	05
29.0	1.162				303D-04	-	.81798		9.01	.601D-0	05
30.0	1.077				582D-04	_	77431			.779D-0	
31.0	1.252				L06D-04		.14971			294D-0	
32.0	1.354				595D-04	-	.17955			089D-	
33.0 34.0	7.244				139D-04	-	. 68088			257D-0	
	1.452				62D-04		.00140			757D-0	
35.0 36.0	2.916				178D-04		.79099			835D-	
37.0	3.791 1.219)69D-04		.85712			835D-	
38.0	1.638				63D-04		.78377			838D-	
39.0	9.244				545D-04		.95726			841D-	
40.0	3.320		•		190D-04		.65187			843D-	
4414	J. 320	020	-40	0.0/4	11 D-04	0	.68250	10-10	9.34	849D-	05
	DEVIATION	ON	CUMULAT	IVE TO	TALS =	3	. 68325	D-05	1.40	257D-	05

.

h

. .

٢

۰ ۱

1

ESBU-NSD

PIPING SEGMENT ECC-03 LARGE LEAK FAILURE PROBABILITY

SRRA MODEL OUTPUT

Output Print File S6PROFLL.P75 Opened at 12:41 on	04-06-1997
Type of Piping Steel Material	
ripe weid failure Mode	316 St
Years Between Inspections	Large Leak
Wall Fraction for 50% Detection	10.0
Degrees (P) at Pipe Weld	0.240
Nominal Dime Cive Weld	170.0
Nominal Pipe Size (NPS, inch)	6.0
Thickness / Outside Diameter	0.0850
Operating Pressure (ksi)	
Uniform Residual Stress (ksi)	2.52
Flaw Factor (<0 for 1 Flaw)	20.0
DW & Thermal Stress / Flow Stress	1.00
SCC Bate / Date for VII or Stress	0.15
SCC Rate / Rate for BWR Sens. SS	0.00
Pactor on Wastage of .0095 in/yr	0.00
P-P Vib. Stress (ksi for NPS of 1)	0.0
CYCLIC Stress Range / Plow Stress	
Patigue Cycles per Year	0.600

Fatigue Cycles per Year30.0Design-Limit Stress / Flow Stress0.214System Disabling Leak Rate (GPM)2.0Minimum Detectable Leak Rate (GPM)0.0Value of Weld Metal Flow Stress in Ksi69.30

WESTINGHOUSE

STRUCTURAL RELIABILITY AND RISK ASSESSMENT (SRRA) PROBABILITY OF PAILURE PROGRAM LEAKPROF

		ويبيلين وتقالب البواق بولينوي التكويل	بدين كالدان الأكاف فافتك كالزار الأكا		ESBU-NS
	INPUT VARIA	BLES FOR CASE	75: 316 St Steel	Pipe Segment ECCS-1;	2;3
	NCYCLE =	40			
	NOVARS =	28		NTRIAL = 5	0000
	NUMSSC =	6		NUMISI =	5
		•	NUMTRC = 6	NUMFMD =	5
	ARIABLE	DISTRIBUTION	MEDIAN		
NO.	. NAME	TYPE LOG		DEVIATION SHIFT	USAGE
			VALUE	OR FACTOR MV/SD	NO. SUB
1	PIPE-ODIA	NORMAL NO	6.6250D+00		
2	WALL/ODIA	NORMAL NO	8.5000D-02	2.4000D-02 .00	1 SET
3	SRESIDUAL	NORMAL YES		2.6350D-03 .00	2 Set
- 4	INTEDEPTH	NORMAL YES	1.7036D+01	1.4142D+00 .00	3 SET
5	L/D-RATIO	NORMAL YES	6:0000D+00	1.3000D+00 2.00	4 SET
6	FLAWS/IN	- CONSTANT -	3.1824D-03	1.7126D+00 2.00	5 Set
7	FIRST-ISI	- CONSTANT -	5.0000D+00		6 Set
8	FREQ-ISI	- CONSTANT -	1,0000D+01		1 ISI
9	EPST-PND	- CONSTANT -	1.0000D-03		2 ISI
10	ASTAR-PND	- CONSTANT -	-2.4000D-01		3 ISI
11	ANUU-PND	- CONSTANT -	1.6000D+00		4 ISI
12	HOURS/YR	NORMAL YES	7.4473D+03		5 ISI
13	PRESSURE	NORMAL YES		1.0500D+00 .00	1 SSC
14	SIG-DW&TH	NORMAL YES	2.5200D+00	1.03230+00 .00	2 SSC
15	SCC-COEFF	NORMAL YES	1.03960+01	1.2599D+00 .00	3 SSC
16	SCC-EXPNT	- CONSTANT -	3:2310D-12	2.3714D+00 .00	4 SSC
17	WASTAGE	NORMAL YES	2.1610D+00		5 SSC
18	DSIG-VIBR	NORMAL YES	1.2740D-12	2.3714D+00 .00	6 SSC
19	CYCLES/YR	- CONSTANT -	3.6957D-04	1.3465D+00 .00	1 TRC
20	DSIG-FATG		3.0000D+01		2 TRC
21	FCG-COEFF		4.1583D+01	1.4142D+00 .00	3 TRC
22	FCG-EXPNT		9.1401D-12	2.8508D+00 1.00	4 TRC
23	FCG-THOLD	- CONSTANT -	4.0000D+00		5 TRC
24	LDEPTH-SL	- CONSTANT -	1.5000D+00		6 TRC
25	SIG-FLOW	- CONSTANT -	0.0000D+00		1 FMD
4.5	PTG-LTMM	Normal No	6.9305D+01	3.2000D+00 .00	2 FMD
					• • • • • •

Table C-18 (cont.)

PIPING SEGMENT ECC-03 LARGE LEAK FAILURE PROBABILITY

SRRA MODEL OUTPUT

26 27 28		Normal y - Constant - Constant		1.48310 2.29050 2.08130	+00	1.4142	2D+00	.00	3 4 5	FMD FMD FMD
				•					-	
PR	OBABILITIES OF	FAILURE	MODE:	EXCEED	DISAB	LING LEI	AK RATE OF	BRE	AK .	
	NUMBER	R FAILED =	400			NUMBER	OF TRIALS	; = ;	1080	
END	OF FAILUF	E PROBABI	LITY W	TUOHT	AND	WITH IN	-SERVICE	INSP	ECTIO	ns
YEA	r for Pi	TRIOD	CUM.	TOTAL		FOR PER	RIOD	CUM	. TOI	AL
1.0			C			<		C		••
2.0				050D-10		6.85050	_		050D- 046D-	
3.0				68D-06		1.111631			468D-	
4.				322D-06		1.35354			822D-	
5.0	5.35139	D-06	8.299	61D-06		5.351391	0-06		961D-	
6.0	0 1.01833	3D-05	1.848	329D-05		3.867221	0-08	8.33	828D-	-06
7.0		7D-06	2.397	793D-05		4.593851	0-08	8.38	422D-	•06
8.0				244D-05		1.806751			489D-	
9.0				343D-05		1.53256			975D-	
10.				L35D-05		1.93047			905D-	
11.0				523D-05		7.63772			282D-	
12.0				756D-05		6.81228			094D-	
14.0				592D-05		2.23921			334D-	
15.0			+ + -	71D-05		7.77180			523D- 295D-	
16.0				743D-05		2.49049			299D- 320D-	
17.0				79D-05		2.35864			344D-	
18.0				23D-04		3.14905			493D-	
19.0				049D-04		1.64228			657D-	
20.0	6.48377	7D-06	1.99!	533D-04		2.00995	D-07	2.03	667D-	-05
21.0	5.90433	3D-06	2.054	37D-04		3.37695	D-08	2.04	005D-	-05
22.0	3.76407	7D-05	2.430	078D-04		9.45213	D-07	2.13	457D-	-05
23.0	2.7944	5D-06	2.458	372D-04		1.29279	D-07	2.14	750D-	-05
24.(194D-04		8.29237			832D-	
25.0				237D-04		8.86767			700D-	
26.0				282D-04		4.29405			743D	
27.0				953D-04		2.90591			772D	
28.0				340D-04		6.63992			839D	
30.0				543D-04		3.59089			198D	
31.0				719D-04 051D-04		1.47313			671D 673D	
32.0				312D-04		6.41891			315D	
33.0				597D-04		6.01387			3750	
34.0				340D-04		2.48666			400D	
35.0				348D-04		6.46442			044D	
36.0				594D-04		1.61980			045D	
37.0				261D-04		2.67804			072D	-
38.0				316D-04		3.92740			076D	
39.0				163D-04		1.53305			078D	
40.0				63D-04		0.00000			078D	
	DEVIATION (ON CUMULAI	IVE TO	TALS =		3.29239	D-05	7.72	206D	-06

,

Surry Unit 1

o:\4393\VersionA\4393-C1.doc:1b-021999

C-25

Syst	em: <u>FW</u> Segment: <u>FW-01</u>	2, 013, 014	Fallure Mode	(s): Wastag	<u>e</u>	Location:			
No.	Input Parameter Description	Cir	cle Choice or Set	/alue	Set Value	Basis			
1	Type of Piping Material	304SS	31655	Carbon Steel		Drawing/Spec			
2	Crack inspection Interval (optional)	Low(6)	Medium(10)	High(14)		Section XI			
3	Crack inspection Accuracy (optional)	High(.16)	Mediany 24)	Low(.32)		UT			
4	Temperature at Pipe Weld	Low(150)	Medium(350)	High(550)		Line List			
5	Nominal Pipe Size	Small(2)	Medium(5)	Large(16)	435	Drawing			
6	Thickness to O.D. Ratio	Thin(.05)	Normal(.13)	Thick(.21)	14	Calc.			
7	Normal Operating Pressure	Low(0.5)	Medium(1.3)	High(2.1)	.054	Line List			
8	Residual Stress Level	None(0.0)	Moderate(10)	Maximum(20)	.9	Stress Relieved			
8	Initial Flaw Conditions	One Flaw	X-Ray NDE	No X-Ray		Spec.			
10	DW & Thermal Stress Level	Low(.05)	Medium(.11)	High(.17)	.283	Code Allowables			
11	Stress Corrosion Potential	None(0.0)	Moderate(0.5)	Maximum(1.0)		Judgment			
12	Material Wastage Potential	None(0.0)	Moderate(0.5)	Maximum(1.0)	1.5	Some Wastage			
13	Vibratory Stress Range	None(0.0)	Moderate(1.5)	Maximum(3.0)		Judgment			
14	Fatigue Stress Range	Low(.30)	Medium(.80)	High(.70)		Judgment			
15	Low Cycle Fatigue Frequency	Low(10)	Medium(20)	High(30)		Judgment			
16	Design Limiting Stress (LL/Break Only)	Low(.10)	Medium(.26)	High(.42)	.21	Code Allowables			
17	System Disabling Leak (Large Leak Only)	Nona(0)	Medium(300)	High(600)	500	Condensate Makeup			
18	Min. Detectable Leak (LL/Break Only)	None(0)	Medium(5)	High(10)	1	Accessible Area			
Small *Large Break <u>No Le</u> Small Large Break <u>No Le</u> Large	No Leak Datection Small Leak Prob., No ISI: 3.6003E-1 Small Leak Prob., With ISI: 4.0763E-3 Large Leak Prob., No ISI: 3.6003E-1 Large Leak Prob., With ISI: 4.0763E-3 (N/A If not applicable) Break Prob., No ISI: N/A Break Prob., With ISI: 4.0763E-3 (N/A If not applicable) No Leak Datection(Snubber locking up under Thermal Conditions, Item 14 set at .7 .)(Snubber failure probability set at .10%)(N/A if not applicable) Small Leak Prob., No ISI: 3.6068E-2 Small Leak Prob., With ISI: 4.0739E-4 (N/A if not applicable) Small Leak Prob., No ISI: 3.6068E-2 Large Leak Prob., With ISI: 4.0739E-4 (N/A if not applicable) Small Leak Prob., No ISI: N/A Break Prob., With ISI: 4.0739E-4 (N/A if not applicable) Strape Leak Prob., No ISI: N/A Break Prob., With ISI: 4.0739E-4 (N/A if not applicable) Strape Leak Prob., No ISI: N/A Break Prob., With ISI: 4.0739E-4 (N/A if not applicable) N/A Break Prob., No ISI: N/A Break Prob., With ISI: 4.0783E-4 (N/A if not applicable) Arge Leak Prob., No ISI: N/A Break Prob., With ISI: </td								
'Large	Detection (with Snubber failure if most limiting Leak Prob., No ISI: <u>3.6003E-1</u> Prob., No ISI: <u>N/A</u>	i) Large Leak Prol Break Prob.		4.0763E-3 (I	N/A if not appl N/A if not appl	icable)			

<u>Comments;</u> Code Allowables used.

[

. |

-

Segment: FW-012, 013, 014 Failure Mode(s): Wastage

Pipe to FCV 1478, 1488, 1498 Drawing 1018 A3 Location:

[

•

PIPING SEGMENT FW-12 SMALL LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

Output Print File CSPROFSL.P32 Opened at 09:02 on 04-06-1997

Type of Piping Steel Material	Carbon
Pipe Weld Failure Mode	Small Leak
Years Between Inspections	10.0
Wall Fraction for 50% Detection	0.240
Degrees (F) at Pipe Weld	435.0
Nominal Pipe Size (NPS, inch)	14.0
Thickness / Outside Diameter	0.0540
Operating Pressure (ksi)	0.90
Uniform Residual Stress (ksi)	0.0
Flaw Factor (<0 for 1 Flaw)	12.80
DW & Thermal Stress / Flow Stress	0.28
SCC Rate / Rate for BWR Sens. SS	0.00
Pactor on Wastage of .0095 in/yr	1.50
P-P Vib. Stress (ksi for NPS of 1)	0.0
Cyclic Stress Range / Flow Stress	0.500
Patigue Cycles per Year	10.0
Design-Limit Stress / Flow Stress	0.210
System Disabling Leak Rate (GPM)	500.0
Minimum Detectable Leak Rate (GPM)	0.0
Value of Weld Metal Flow Stress in Ksi	64.80

WESTINGHOUSE	STR					isk assessi Rogram Leai	(ENT (SRRA) (PROF	ESBU-NSD
INPUT VA	RIABLES	FOR CASE	32: Ca	rbon	Steel	Pipe Segme	ent FW-12;1	3;14
NCYCLE =	40		NFAIL	S =	400		NTRIAL = 1	0000
NOVARS =	28		NUMSE	T =	6		NUMISI =	5
NUMSSC =	6		NUMTR	C =	6		NUMFMD =	5
VARTABLE	DTS	TRIMTO	N	MPNT	N	NEXIT SMTA		1103.09

- VX	riable	DISTRIBUT	lon	MEDIAN	DEVIATION	SHIFT	US	AGE
NO.	NAME	TYPE	LOG	VALUE	OR FACTOR	MV/SD		SUB
-						•		
1	PIPE-ODIA		NO	1.4000D+01	3.2000D-02	.00	1	SET
2	WALL/ODIA	NORMAL	No	5.4000D-02	1.6740D-03	.00	2	SET
3	SRESIDUAL	NORMAL	YES	1.0000D-03	1.4142D+00	.00	3	SET
- 4	INT&DEPTH	NORMAL	YES	7.9536D+00	1.5516D+00	.00	4.	SET
5	L/D-RATIO	NORMAL	YES	6.0000D+00	1.7126D+00	.00	5	SET
6	FLAWS/IN	- CONSTAN	T -	3.2504D-02			6	SET
7	FIRST-ISI	- CONSTAN	T -	5.000D+00			ĩ	ISI
8	FREQ-ISI	- CONSTAN	T -	1:0000D+01			2	ISI
9	EPST-PND	- CONSTAN		5.0000D-03			3	ISI
10	ASTAR-PND	- CONSTAN		-2.4000D-01				ISI
11	ANUU-PND	- CONSTAN		3.0000D+00			5	ISI
12	HOURS/YR	NORMAL	YES	7.4473D+03	1.0500D+00	.00	ĩ	SSC
13	PRESSURE		YES	9.0000D-01	1.0323D+00	.00	2	SSC
14	SIG-DW&TH		YES	1.8337D+01	1.2599D+00	.00	3	SSC
15	SCC-COEFF		YES	3.5900D-14	2.3714D+00	.00	4	SSC
16	SCC-EXPNT	- CONSTAN		2.1610D+00	2.3/140+00		5	SSC
17	WASTAGE	NORMAL	YES	1.9110D-06	2.3714D+00		6	
18	DSIG-VIBR	NORMAL	YES			.00	-	SSC
19				1.6667D-04	1.3465D+00	.00	1	TRC
	CYCLES/YR	- CONSTAN		1.0000D+01			2	TRC
20	DSIG-FATG	NORMAL	YES	3.2398D+01	1.4142D+00	.00	3	TRC
21	FCG-COEFF		YES	6.7931D-13	1.7194D+00	.00	4	TRC
22	FCG-EXPNT	- Constan		5.9500D+00			5	TRC
23	FCG-THOLD	- CONSTAN	T -	1.9000D+01			6	TRC
24	LDEPTH-SL	- CONSTAN	T -	-9.9900D-01			1	FMD
25	SIG-FLOW	NORMAL	NO	6.4797D+01	3.2000D+00	.00	2	FMD

Table C-20 (cont.)

PIPING SEGMENT FW-12 SMALL LEAK FAILURE PROBABILITY

SRRA MODEL OUTPUT

26	STRESS-DL	NC	ORMAL Y	res	1.3607	D+01	1.414	2D+00	.00	3	FMD
27	B-SDLEAK	-	CONSTANT	- 1	4.3982					4	FMD
28	B-MDLEAK	-	CONSTANT	r - 1	4.3982					5	FMD
										-	
PRC	BABILITIES	of	FAILURE	MODE:	SMALL	OR LARG	E LEAK	OR BREAK	BY WA	STAG	E
											_
	NUM	BER	FAILED -	- 400			NUMBER	OF TRIAL	LS = 1	111	
	-										
END C			PROBABI		-	AND		N-SERVICE	e inspe	CTIO	ns
YEAR	FOR	PER	lod	CUM.	TOTAL		FOR PE	RIOD	CUM.	TOT	AL.
2.0					90D-04		.000901		9.000	90D	04
3.0)18D-03		.000901		1.800	18D-	03
4.0					27D-03		.000901		2.700	27D-	03
7.0					54D-03		1.350151		2.713	77D	03
8.0					99D-03		250531		2.736	28D-	03
9.0					14D-02		. 803471		2.754:	31D-	03
10.0					20D-02	-	.209401		2.7864	11D-	03
11.0					25D-02		.95670		2.8159		
12.0					32D-02		.80018		2.8639		+ -
13.0					39D-02		5.77420		2.921		
14.0			+ -		43D-02		.241021		3.004		
15.0					47D-02		. 113381		3.1154		
16.0					58D-02		.063741		3.821		
17.0					68D-02		.977741		3.827		
18.0					78D-02		.39504[3.8362		
19.0					94D-02		.864171		3.854		
20.0					00D-02		.402291		3.8642		
21.0	1.080				11D-01		250751		3.876		
22.0					12D-01		.568550		3.9024		
23.0	1.080				13D-01		.277361		3.945		
24.0	1.080				14D-01		.392191		3.979		
25.0	1.530				15D-01		-486541		4.0140		
26.0	1.530				170-01	-	.802301		4.072		
27.0	1.170				18D-01		.930111		4.072		
28.0	1.710				20D-01		.592121		4.072		
29.0	8.100				21D-01		.854671		4.0729		
30.0	1.170				22D-01		.983331		4.073	-	
31.0	9.900				23D-01 24D-01	-	.107481		4.0734		
32.0	1.440				26D-01		.859661		4.073		
33.0	1.170				27D-01		.773581		4.074		
34.0	1.530						.43106		4.0740		
35.0	1.800				28D-01		.724031		4.075		
36.0	1.260				30D-01		.641821		4.076		
37.0	7.200				32D-01		.131140		4.0763		
38.0	1.260				32D-01		.974840		4.076		
39.0					33D-01		.19516		4.076		
40.0	1.530				35D-01		.67723		4.076		
40.0	9.900	330	-03	3.600	36D-01	7	.49518	7-09	4.0763	35D-	03
	DEVIATION	~~		T178 ma		-					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		COMOTWL	145 10	TYP2 =	1	.44075	)=UZ	1.9124	14D-	03

----· 、

:

## PIPING SEGMENT FW-12 LARGE LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

#### Output Print File CSPROFLL.P33 Opened at 09:04 on 04-06-1997

Type of Piping Steel Material	Carbon
Pipe Weld Failure Mode	Large Leak
Years Between Inspections	10.0
Wall Fraction for 50% Detection	0.240
Degrees (F) at Pipe Weld	435.0
Nominal Pipe Size (NPS, inch)	14.0
Thickness / Outside Diameter	0.0540
Operating Pressure (ksi)	0.90
Uniform Residual Stress (ksi)	0.0
Flaw Factor (<0 for 1 Flaw)	12.80
DW & Thermal Stress / Flow Stress	0.28
SCC Rate / Rate for BWR Sens. SS	0.00
Factor on Wastage of .0095 in/yr	1.50
P-P Vib. Stress (ksi for NPS of 1)	0.0
Cyclic Stress Range / Flow Stress	0.500
Fatigue Cycles per Year	10.0
Design-Limit Stress / Flow Stress	0.210
System Disabling Leak Rate (GPM)	500.0
Minimum Detectable Leak Rate (GPM)	0.0
Value of Weld Metal Flow Stress in Ksi	64.80

STRUCTURAL RELIABILITY AND RISK ASSESSMENT (SRRA) PROBABILITY OF FAILURE PROGRAM LEAKPROF

ESBU-NSD

INPUT VARIABLES FOR CASE 33: Carbon Steel Pipe Segment FW-12;13;14

			•		•	•
	NCYCLE =	40	NFAILS = 400	NTI	RIAL = 10	000
	NOVARS =	28	NUMSET = 6	NUR	ISI =	5
	NUMSSC =	6	NUMTRC = 6	NU	(FMD =	5
VA	RIABLE	DISTRIBUTION	MEDIAN	DEVIATION	SHIFT	USAGE
NO.	NAME	TYPE LOG	VALUE	OR FACTOR	MV/SD	NO. SUB
					•	
1	PIPE-ODIA	NORMAL NO	1.4000D+01	3.2000D-02	.00	1 SET
2	WALL/ODIA	NORMAL NO	5.4000D-02	1.6740D-03	.00	2 SET
3	SRESIDUAL	NORMAL YES	1.0000D-03	1.4142D+00	.00	3 SET
- 4	INT&DEPTH	NORMAL YES	7.9536D+00	1.5516D+00	.00	4 SET
5	L/D-RATIO	NORMAL YES	6.0000D+00	1.7126D+00	.00	5 SET
6	FLAWS/IN	- CONSTANT -	3.2504D-02			6 SET
7	FIRST-ISI	- CONSTANT -	5.0000D+00			1 ISI
8	FREQ-ISI	- CONSTANT -	1.0000D+01			2 ISI
9	EPST-PND	- CONSTANT -	5.0000D-03			3 ISI
10	ASTAR-PND	- CONSTANT -	-2.4000D-01			4 ISI
11	anuu-pnd	- CONSTANT -	3:0000D+00			5 ISI
12	HOURS/YR	NORMAL YES	7.4473D+03	1.0500D+00	.00	1 SSC
13	PRESSURE	NORMAL YES	9.0000D-01	1.0323D+00	.00	2 SSC
14	SIG-Dw&Th	NORMAL YES	1.8337D+01	1.2599D+00	.00	3 SSC
15	SCC-COEFF	NORMAL YES	3.5900D-14	2.3714D+00	.00	4 SSC
16	SCC-EXPNT	- CONSTANT -	2.1610D+00			5 SSC
17	WASTAGE	NORMAL YES	1.9110D-06	2.3714D+00	.00	6 SSC
18	DSIG-VIBR	NORMAL YES	1.6667D-04	1.3465D+00	.00	1 TRC
19	CYCLES/YR	- CONSTANT -	1.0000D+01			2 TRC
20	DSIG-FATG	NORMAL YES	3.2398D+01	1.4142D+00	.00	3 TRC
21	FCG-COEFF	NORMAL YES	6.7931D-13	1.7194D+00	.00	4 TRC
22	FCG-EXPNT	- CONSTANT -	5.9500D+00			5 TRC
23	FCG-THOLD	- CONSTANT -	1.9000D+01			6 TRC
24	LDEPTH-SL	- CONSTANT -	-9.9900D-01			1 FMD
25	SIG-FLOW	NORMAL NO	6.4797D+01	3.2000D+00	.00	2 FMD
			**********			

WESTINGHOUSE

### Table C-21 (cont.)

# PIPING SEGMENT FW-12 LARGE LEAK FAILURE PROBABILITY

### SRRA MODEL OUTPUT

26 27 28	STRESS-DL NORMAL B-SDLEAK - CONST B-MDLEAK - CONST		+01	.00 3 PMD 4 FMD 5 PMD
PRO	BABILITIES OF FAILU	RE MODE: SMALL O	r large leak or bri	
	NUMBER FAILE		NUMBER OF TRI	
END O		ABILITY WITHOUT		
YEAR		CUM. TOTAL	AND WITH IN-SERVI FOR PERIOD	ICE INSPECTIONS CUM. TOTAL
2.0	9.00090DD4	9.00090D-04	9.00090D-04	9.000900-04
3.0	9.00090D-04	1.80018D-03	9.00090D-04	1.80018D-03
4.0	9.00090D04	2.70027D-03	9.00090D-04	2.70027D-03
6.0	2.700270-03	5.40054D-03	1.35015D-05	2.71377D-03
7.0	4.50045D-03	9.90099D-03	2.250530-05	2.73628D-03
8.0	3.60036D-03	1.35014D-02	1.803470-05	2.75431D-03
9.0	6.30063D-03	1.98020D-02	3.209400-05	2.78641D-03
10.0	5.40054D-03	2.52025D-02	2.95670D-05	2.815970-03
11.0 12.0	7.200720-03	3.24032D-02	4.80018D-05	2.86397D-03
13.0	6.30063D-03	3.87039D-02	5.774200-05	2.92172D-03
14.0	4.50045D-03	4.32043D-02	8.24102D-05	3.00413D-03
15.0	3.60036D-03 1.08011D-02	4.68047D-02	1.11338D-04	3.11546D-03
16.0	1.08011D-02	5.76058D-02	7.06374D-04	3.82184D-03
17.0	9.90099D-()3	6.84068D-02	5.97774D-06	3.82782D-03
18.0	1.53015D-02	7.83078D-02	8.39504D-06	3.83621D-03
19.0	6.30063D-03	9.36094D-02 9.99100D-02	1.86417D-05	3.85485D-03
20.0	6.30063D-03	1.06211D-01	9.40229D-06	3.86425D-03
21.0	1.080110-02	1.17012D-01	1.25075D-05	3.87676D-03
22.0	1.530150-02	1.32313D-01	2.56855D-05	3.902450-03
23.0	1.080110-02	1.43114D-01	4.27736D-05	3.94522D-03
24.0	1.080110-02	1.539150-01	3.39219D-05 3.48654D-05	3.97914D-03
25.0	1.53015D-02	1.69217D-01	5.80230D-05	4.01401D-03
26.0	1.530150-02	1.84518D-01	2.93011D-07	4.07203D-03
27.0	1.17012D-02	1.96220D-01	2.59212D-07	4.07232D-03
28.0	1.71017D-02	2.133210-01	3.85467D-07	4.07258D-03 4.07297D-03
29.0	8.10081D-03	2.214220-01	1.98333D-07	4.07317D-03
30.0	1.17012D-02	2.33123D-01	3.107480-07	4.07348D-03
31.0	9.900990-03	2.43024D-01	2.85966D-07	4.07376D-03
32.0	1.44014D-02	2.57426D-01	4.77358D-07	4.07424D-03
33.0	1.17012D-02	2.69127D-01	4.43106D-07	4.07469D-03
34.0	1.53015D-02	2.84428D-01	6.72403D-07	4.07536D-03
35.0	1.80018D-02	3.02430D-01	9.64182D-07	4.07632D-03
36.0	1.26013D-02	3.15032D-01	4.131140-09	4.076330-03
37.0	7.200720-03	3.22232D-01	2.974840-09	4.076330-03
38.0	1.26013D-02	3.34833D-01	6.19516D-09	4.07633D-03
39.0	1.53015D-02	3.50135D-01	9.67723D-09	4.07634D-03
40.0	9.90099D-03	3.60036D-01	7.49518D-09	4.07635D-03
	DEVIATION ON CUMUL	ATIVE TOTALS =	1.44075D-02	1.91244D-03

.

.....

.

#### Surry Unit 1

}

. {

[

10.	Input Parameter Description	Circ	cle Choice or Set V	alue	Set Value	Basis
1	Type of Piping Material	30455	31655	Carbon Steel		Drawing/Spec.
2	Crack inspection Interval (optional)	Low(6)	Medture(10)	High(14)		Section XI
3	Crack inspection Accuracy (optional)	High(.16)	Medhum(24)	Low(.32)		UT
4	Temperature at Pipe Weld	Low(150)	Medium(350)	High(550)	170	Line List
5	Nominal Pipe Size	Small(2)	Medium(5)	Large(16)	3	Drawing
6	Thickness to O.D. Ratio	Thin(.05)	Normal(.13)	Thick(.21)	.125	Calc.
7	Normal Operating Pressure	Low(0.5)	Medium(1.3)	High(2.1)	2.52	Line List
8	Residual Stress Level	None(0.0)	Moderate(10)	Maximum(20)		Judgment
9	Initial Flaw Conditions	One Flaw	K-Ray NDE	No X-Ray		Spec.
0	DW & Thermal Stress Level	Low(.05)	Medium(.11)	High(.17)	.132	Calc.
1	Stress Corrosion Potential	None(0.0)	Moderate(0.5)	Maximum(1.0)		Judgment ,
12	Material Wastage Potential	None(0,0)	Moderate(0.5)	Maximum(1.0)		Judgment
13	Vibratory Stress Range	None(0.0)	Moderate(1.5)	Maximum(3.0)		Judgment
4	Fatigue Stress Range	Low(.30)	Medium(.50)	High(.70)		Judgment
15	Low Cycle Fatigue Frequency	Low(10)	Medium(20)	High(30)		Judgment
6	Design Limiting Stress (LL/Break Only)	Low(.10)	Medium(.26)	High(.42)	.156	Calc.
7	System Disabiling Leak (Large Leak Only)	None(0)	Medium(300)	High(600)	2	RWST Margin Small
8	Min. Detectable Leak (LL/Break Only)	None(0)	Medium(5)	High(10)	1.	Accessible
mali	ak Detection Leak Prob., No ISI: <u>3.8711E-6</u> Leak Prob., No ISI; 3.3010E-6	_ Smail Leak Pro		<u>1.4437E-7</u> 7.1812E-8 (	N/A if not app	silashiol

ł

1

1

[

. . [

1

 No. Leak Detection (Shubber tocking up binder informal conditions, item 14 set at ______) (Shubber tailure probability set at _______)

 Small Leak Prob., No ISI:
 3.8839E-5

 Large Leak Prob., No ISI:
 2.6592E-5

 Large Leak Prob., No ISI:
 0.1390E-7

 Break Prob., No ISI:
 N/A

 Break Prob., No ISI:
 N/A

#### Leak Detection (withSnubber failure if most limiting)

*Large Leak Prol	b., No ISI:	1.0049E-5	Large Leak Prob	., With ISI:	2.1156E-6	(N/A if not applicable)	<ul> <li>Used Thermal Condition - set 14 to 0.7;</li> </ul>
Break Prob.,	No ISI:	<u>N/A</u>	Break Prob.,	With ISI:	N/A	(N/A if not applicable)	Apply 10%snubber failure probability

Comments:

# PIPING SEGMENT HHI-4C SMALL LEAK FAILURE PROBABILITY

## SRRA MODEL OUTPUT

							•
	Output	Print File S4P	ROFSL.P33 Opened	i at 14:01 on	03-30-199	97	
	Type of	Piping Steel	Material.		304 St		
		ld Failure Mod	6		Small Les	ak.	
	Years B	etween Inspect	ions		10.0		
	Wall Pr	action for 50%	Detection eld S, inch) iameter Wi)		0.240		
	Degrees	(F) at Pipe W			170.0		
	NOMINAL	Pipe Size (NP	S, INCN)		3.0		
	Operati	BB / OUISIDE D	lareter Hill		0.1250		
	Uniform	Residual Stre	es (kei)		10.0		
					1.00		
	DW & Th	ermal Stress /	Flaw) Flow Stress WP Seps. SS				
	SCC Rat	e / Rate for B	WR Sens. SS	÷	0.13 0.00		
	Factor	on Wastage of	.0095 in/yr		0.00		
	P-P Vib	. Stress (ksi	.0095 in/yr for NPS of 1) Flow Stress		0.8 0.300		
	Cyclic	Stress Range /	Flow Stress				
	Facigue	Cycles per Ye	ar Flow Stress		10.0 0.156		
	Sveter	Dimit Stress / Dimabling Leak	Rate (CPN)		2.0		
	Minimum	Detectable Le	Rate (GPM) ak Rate (GPM) low Stress in Ks		0.0		
	Value o	f Weld Metal F	low Stress in Ks	i <b>1</b>	69.30		
•			ELIABILITY AND R				
			ITY OF FAILURE P				BU-NSD
	INFUT VARIA	BLES MOR CASE	33: 304 St Steel	. Pipe Segment	HHI-4C;	5C;6C	
	NCYCLE =	40	NPAILS = 400	NUT	RIAL = 40	000	
	NCYCLE = NOVARS =	28	NUMSET = 6	NIT	MISI =		
	NUMSSC =	6	NFAILS = 400 NUMSET = 6 NUMTRC = 6	NU	MFMD =		
						-	
V	RIABLE	DISTRIBUTION TYPE LOG	MEDIAN VALUE	DEVIATION OR FACTOR	SHIFT	US	AGE
NO.	. NAME	Type log	VALUE	OR FACTOR	MV/SD	NO.	SUB
4	DTDR.ODT1	MODAL T MO	3.5000D+00 1.2500D-01 1.0000D+01 2.2310D+01 6.0000D+00 3.7371D-03 5.0000D+00 1.0000D+01 1.0000D-01				
2	VILL (ODT)	NORMAL NO	3.50000+00	1.6000D-02	.00	1	SET
3	SPESTOULL	NORMAL NU	1.25000-01	3.8750D-03	.00	2	SET
- Ă	INT&DEPTH	NORMAL TES	2.23100+01	1 25440400	2 00	3	SET
5	L/D-RATIO	NORMAL YES	6,0000D+00	1.71260+00	1.00	5	SET
6	FLAWS/IN	- CONSTANT -	3.7371D-03	21/2200.00	1.00	6	SET
7	FIRST-ISI	- CONSTANT -	5.0000D+00			ĩ	ISI
8	FREQ-ISI	- CONSTANT -	1.0000D+01			2	ISI
9	EPST-PND	- Constant -	1.0000D-03 -2.4000D-01 1.6000D+00 7.4473D+03 2.5200D+00 9.1482D+00 3.5900D-11			3	ISI
10	ASTAR-PND	- CONSTANT -	-2.4000D-01			- 4	ISI
11	ANUU-PND	- CONSTANT -	1.6000D+00			5	ISI
12	DDPRCIDE	NORMAL YES	7.4473D+03	1.0500D+00	.00	1	SSC
14	STC-DHLMH	NORMAL IES	2.52000+00	1.03230+00	.00	2	SSC
15	SCC=CORPR	NORMAL ISS	3 50000-11	2 27140400	.00	3	55C 660
16	SCC-EXPNT	- CONSTANT -	2.1610D+00	2.3/140400		5	SSC
17		NORMAL YES		2.3714D+00	.00	5	SSC
18	DSIG-VIBR	NORMAL YES		1.3465D+00	.00	1	TRC
19	CYCLES/YR	- CONSTANT -	1.0000D+01			ī	TRC
20	DSIG-FATG	NORMAL YES		1.41420+00	.00	3	TRC
21	FCG-COEFF	NORMAL YES	9.1401D-12	2.8508D+00	1.00		TRC
22	FCG-EXPNT	- CONSTANT -	4.0000D+00			5	TRC
23	FCG-THOLD	- CONSTANT -	1.5000D+00			6	TRC
24	LDEPTH-SL	- CONSTANT -	-9.9900D-01			1	FMD
25	SIG-FLOW	NORMAL NO	6.9305D+01	3.2000D+00	.00	. 2	FMD

# Table C-23 (cont.)

### PIPING SEGMENT HHI-4C SMALL LEAK FAILURE PROBABILITY

#### SRRA MODEL OUTPUT

	TRESS-DL - CONSTAL		+00	3 FND
_	-Sdleak - Constan		+00	4 FMD
28 B-	-MDLEAK - CONSTAL	NT - 0.0000D	+00	5 FMD
PROBA	ABILITIES OF FAILURI	e Mode: Through	-WALL CRACK DEPTH FO	R SMALL LEAK
	NUMBER FAILED	= 400	NUMBER OF TRIA	LS = 20149
				•
END OF	FAILURE PROBA	BILITY WITHOUT	AND WITH IN-SERVIC	E INSPECTIONS
YEAR	FOR PERIOD	CUM. TOTAL	FOR PERIOD	CUM. TOTAL
1.0	7.794890-09	7.79489D-09	7.79489D-09	7.79489D-09
2.0	9.46470D-09	1.72596D-08	9.46470D-09	1.72596D-08
3.0	3.13208D-11	1.72909D-08	3.13208D-11	1.72909D-08
4.0	3.78483D-10	1.76694D-08	3.78483D-10	1.76694D-08
5.0	8.63668D-08	1.04036D-07	8.63668D-08	1.04036D-07
6.0	1.46871D-08	1.18723D-07	5.86592D-11	1.04095D-07
7.0	2.80665D-08	<b>1.46790D-07</b>	5.87488D-10	1.04682D-07
8.0	1.58935D-09	1.48379D-07	1.00813D-11	1.04692D-07
9.0	1.57488D-08	1.64128D-07	2.59319D-10	1.04952D-07
10.0	8.30398D-09	1.72432D-07	1.31959D-10	1.05084D-07
11.0	6.77961D-08	2.40228D-07	3.15093D-09	1.08235D-07
12.0	2.99759D-09	2.43226D-07	1.38613D-10	1.08373D-07
13.0	6.69150D-08	3.10141D-07	1.84343D-08	1.26807D-07
14.0	5.88476D-09	3.16025D-07	2.34647D-10	1.27042D-07
15.0	9.38809D-08	4.09906D-07	1.24159D-08	1.39458D-07
16.0	5.27049D-08	4.62611D-07	1.27105D-11	1.39471D-07
17.0	4.449650-08	5.07108D-07	4.34416D-11	1.39514D-07
18.0	4.55557D-08	5.52663D-07	8.66326D-12	1.39523D-07
19.0	4.81838D-08	6.00847D-07	7.22501D-11	1.39595D-07
20.0	9.55378D-08	6.96385D-07	1.03817D-09	1.40633D-07
21.0	3.44537D-09	6.99830D-07	2.80123D-12	1.40636D-07
22.0	1.60112D-07	8.59943D-07	7.51578D-10	1.41388D-07
23.0	1.15915D-07	9.75858D-07	5.23298D-10	1.41911D-07
24.0	1.40958D-07	1.11682D-06	2.09795D-09	1.44009D-07
25.0	6.55326D-08	1.18235D-06	1.81833D-10	1.44191D-07
26.0	1.74409D-07	1.35676D-06	5.09877D-12	1.44196D-07
27.0	3.60366D-07	1.71712D-06	1.85859D-11	1.44214D-07
28.0	2.89741D-07	2.00686D-06	6.00553D-11	1.44274D-07
29.0	3.11527D-08	2.03802D-06	3.80827D-13	1.442750-07
30.0	1.73714D-07	2.21173D-06	1.32070D-11	1.44288D-07
31.0	2.68902D-08	2.23862D-06	1.75926D-12	1.44290D-07
32.0	5.69752D-08	2.29560D-06	1.90512D-12	1.44292D-07
33.0	1.45119D-07	2.44072D-06	6.53594D-11	1.44357D-07
34.0	3.58230D-08	2.47654D-06	2.42113D-12	1.44360D-07
35.0	2.00928D-07	2.67747D-06	1.64363D-11	1.44376D-07
36.0	4.85664D-07	3.16313D-06	1.47700D-12	1.44377D-07
37.0	6.99600D-08	3.23309D-06	1.34318D-14	1.44377D-07
38.0	1.76823D-07	3.40991D-06	7.48626D-14	1.44378D-07
39.0	2.99860D-07	3.70977D-06	8.16170D-13	1.44378D-07
40.0	1.61404D-07	3.87118D-06	5.55890D-13	1.44379D-07
1	DEVIATION ON CUMULA	TIVE TOTALS =	1.91633D-07	3.73674D-08

### Table C-24 PIPING SEGMENT HHI-4C LARGE LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

	Output	Print File S4P	ROFLL.P34 Opened	i at 14:03 on	03-30-19	97 _
	TVDE O	f Piping Steel	Mataria]			
	Pine W	eld Failure Mod	Macariai		304 St	
	Verse				Large Le	ak
	IEdis.	Between Inspect	lons		10.0	
	Wall F	raction for 50%	Detection		0.240	
	Degree	s (F) at Pipe W	eld		170 0	
	Nomina	1 Pipe Size (NP	S. inch)		1/0.0	
	Thickn	ess / Outside D.	ianotor		3.0	
	Onerst	ing Pressure (ki			0.1250	
	Trad Accord	KIG FEBSSUER (K	51)		2.52	
	UNITOR	n Residual Stre	38 (KSi)		10.0	
	Flaw F	actor (<0 for 1	Flav)		1.00	
	SCC Rat	te / Rate for B	R Sens. SS		0.13	
	Factor	OD Wantage of	0095 19/100		0.00	
	P-P VI	b Strong (bei	Flow Stress WR Sens. SS .0095 in/yr for NPS of 1) Flow Stress		0.00	
	Cuclic		OF NPS OF 1)		0.8 0.300	
	Pabien	Stremm kange /	flow stress		0.300	
					10.0	
	Design-	-Limit Stress /	Flow Stress		10.0 0.156	
	System	Disabling Leak	Rate (GPM)		2.0	
	Minimu	Detectable Las	Flow Stress Rate (GPM) & Rate (GPM) low Stress in Ks		2.0	
	Value o	f Weld Netal Pl	OW Stress in We	4	0.0	
			Serena TH Va	*	69.30	
		STRUCTURAL DE	TTARTITMY AND D			
WEST	Inghouse	DDODADTI	LIABILITY AND R	ISK ASSESSMEN	T (SRRA)	
		FRUDADILI	TY OF FAILURE P	Rogram Leakpr	OF	<b>ESBU-</b> NSD
	INPIP VADTA	BLES FOR ALCE	A 204 St Star		وجديد فلك حدقات	
		BUES FOR CASE 3	4: 304 St Steel	Pipe Segment	HHI-4C;	iC;6C
	NCYCLE =			•		
	NOVADO	40	NFAILS = 400	NT	RIAL = 50	000
	NOVARS -	28	NUMSET = 6	NU	MISI =	5
	NUMSSC =	6	NUMSET = 6 NUMTRC = 6	NU	MFMD =	
V2	ARIABLE	DISTRIBUTION	MEDIAN	DEVILITION	CUTION	1103.07
NO.	NAME	Type log	VALUE	DEVIATION OR FACTOR	SHIFT	USAGE
1	PIPE-ODIA	NORMAT. NO	3.5000D+00 1.2500D-01 1.0000D+01 2.2310D+01 6.0000D+00 3.7371D-03			
2	WALL (ODT)	NOBMAT NO	3.30000+00	1.60000-02	.00	1 Set
3	CBPCTDID T	NORMAL NO	1.2500D-01	3.8750D-03	.00	2 SET
Ĩ	SKESIDUAL	NORMAL YES	1.0000D+01	1.4142D+00	.00	3 SET
-	TNISDEPTH	NORMAL YES	2.2310D+01	1.2544D+00	2.00	4 SET
5	L/D-RATIO	Normal yes	6.0000D+00	1.71260+00	2 00	5 SET
6	Flaws/In	- CONSTANT -	3.7371D-03		2.00	5 351
7	FIRST-ISI	- CONSTANT -	5.00000+00			6 SET
8	FREO-IST		1 00000+00			1 ISI
<u>9</u>	EPST-PND		3.7371D-03 5.0000D+00 1.0000D+01 1.0000D-03 -2.4000D-01 1.6000D+00 7.4473D+03 2.5200D+00 9.1482D+00 3.5900D-11			2 ISI
10		- CUNSTART -	1.0000D-03			3 ISI
10	ASTAR-PRU	- CONSTANT -	-2.4000D-01			4 ISI
11	ANUU-PND	- CONSTANT -	1.6000D+00			5 TST
12	HOURS/YR	Normal yes	7.4473D+03	1.0500D+00	. 00	1 860
13	PRESSURE	NORMAL YES	2.52000+00	1.0323D+00		1 SSC 2 SSC
14	SIG-DWLTH	NORMAL VPC	9.14920-00	1 35000.00		
15	SCC-COEFF	NORMAL YES	2 E0000 '	1.2599D+00	.00	3 SSC
16	SCC-EXPNT		2122400-11	2.3714D+00	.00	4 SSC
		- CONSTANT -	2.1610D+00			5 SSC
17	WASTAGE	NORMAL YES	1.2740D-12	2.3714D+00	.00	6 SSC
18	DSIG-VIBR	Normull yes	5.0366D-01	1.3465D+00	.00	1 TRC
19	CYCLES/YR	- CONSTANT -	1.0000D+01			
20	DSIG-FATG	NORMAL YES				2 TRC
21	FCG-COEFF		2.0791D+01	1.4142D+00	.00	3 TRC
		NORMAL YES	9.1401D-12	2.8508D+00	1.00	4 TRC
22	FCG-EXPNT	- Constant -	4.0000D+00			5 TRC
23	FCG-THOLD	- CONSTANT -	1.5000D+00			6 TRC
24	LDEPTH-SL	- CONSTANT -	0.0000D+00			
25	SIG-FLOW					1 FMD
		Normal No	6.9305D+01	3.2000D+00	.00	2 FMD

### Table C-24 (cont.) PIPING SEGMENT HHI-4C LARGE LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

26 27 28	STRESS-DL B-SDLEAK B-MDLEAK	Normal y - Constant - Constant		1.08121 2.14721 1.09961	+00	1.414	2D+00	.00	3 4 5	FMD FMD FMD
PR	OBABILITIES (	OF FAILURE	MODE:	EXCEED	DISAB	LING LE	AK RATE O	R BREAK	:	
	NUMB	ER FAILED =	400			NUMBER	OF TRIAL	5 = 128	56	
END		JRE PROBABI	T T MV 1	TOUCTO	AND					
YEA		PERIOD	-		AND		N-SERVICE			
1.444	K FUR I	ERIOD	CUM.	TOTAL		For Pei	RIOD	CUM.	TOT	AL .
1.	0 5.8271	P0-03	5 923	16D-09		5.82716		5.8271	-	
2.0				781D-09		5.40650		6.3678		
3.				53D-08		2.17075		2.8075		
4.				372D-08		3.41189		3.1487		
5.	0 1.9502	21D-08		93D-08		1.95021		5.0989		
6.	0 2.9821	L5D-09	5.397	14D-08		1.350741		5.1002		
7.0	0 2.2048	34D-09	5.617	63D-08		1.249691	D-11	5.1015		
8.1		LOD-09	6.395	504D-08		8.087881	D-11	5.1096	2D-0	8
9.(			1.389	00D-07		3.32346	D-09	5.4419	6D-(	38
10.0				)32D-07		3.42091	D-09	5.7840	5D-(	38
11.0				96D-07		9.250531		6.7091	1D-(	38
12.0				82D-07		7.198331		6.7163	0D-(	38
13.0				00D-07		2.20141		6.7383	'	
14.0				60D-07		2.375491		6.9758		
16.0				43D-07		3.73470		7.0132		
17.0				42D-07		2.716881		7.0134		
18.0		++		55D-07		1.50510		7.0136		
19.0				62D-07		4.37912		7.0140		
20.0				05D-07		2.280041		7.0163		
21.0				60D-07		6.22060		7.0202		
22.0				91D-07		3.83968		7.0265		
23.0				80D-07		7.86797		7.0268		
24.0				41D-07		3.007921		7.1356		
25.0				60D-07		1.46774		7.1503		
26.0				07D-07		2.80055		7.1503		
27.0		5D-07		63D-07		9.935671		7.1504		
28.0	) 1.1394	5D-08	1.010	96D-06		1.664841		7.1504		
29.0		6D-07	1.292	34D-06		3.63781		7.1541		
30.0		1D-07	1.585	51D-06		1.60880		7.1701		
31.0		5D-08	1.622	01D-06		2.05365	0-12	7.1704	0D-0	28
32.0		'5D-07	2.065	69D-06		6.27477	0-11	7.1766	7D-(	38
33.0				75D-06		3.15045	D-12	7.1769	9D-(	80
34.0				82D-06		3.09455	D-13	7.1770	2D-(	08
35.0			2.132	71D-06		3.51307	0-11	7.1805	3D-(	08
36.0				66D-06		1.461581	0-12	7.1806	8D-(	08
37.0				38D-06		5.278571		7.1806	8D-0	80
38.0				39D-06		6.ŭ9466		7.1806		
39.0				40D-06		1.74272		7.1807		
40.0	8.0967	00-07	3.301	.07 <b>D-06</b>		5.189441	0-12	7.1812	2D-0	80
	DUTTIMTON	ANT ATTACT S IN		M170						

DEVIATION ON CUMULATIVE TOTALS = 1.62472D-07 2.43370D-08

#### Surry Unit 1

#### System: LHI Segment: LHI,003,004,005,006 Failure Mode(s): Fatigue

#### Location:

Welds: 3) 1-13; 4) 1-15; 5) 1-12; 6) 1-16 Drawings wmks 1106A7

No.	Input Parameter Description	Circ	de Choice or Set V	alue	Set Value	Basis
1	Type of Piping Material	30438	31655	Carbon Steel		Drawing/Spec
2	Crack inspection Interval (optional)	Low(6)	Medium(10)	High(14)		Section XI
3	Crack inspection Accuracy (optional)	High(.16)	ModRum(20)	Low(.32)		UT
4	Temperature at Pipe Weld	Low(150)	Medium(350)	High(550)	170	Line List
5	Nominal Pipe Size	Small(2)	Medium(5)	Large(16)	12	Drawing
8	Thickness to O.D. Ratio	Thin(.05)	Normal(.13)	Thick(.21)	.0294	Calo.
7	Normal Operating Pressure	Low(0.5)	Medium(1.3)	High(2.1)	.10	Line List
8	Residual Stress Level	None(0.0)	Moderate(10)	Maximum(20)		Judgment
9	Initial Flaw Conditions	One Flaw	K-Runy NDE	No X-Ray		Spec.
10	DW & Thermal Stress Level	Low(.05)	Medium(.11)	High(.17)	.1	Code Allowable
11	Stress Corrosion Potential	None(0.0)	Moderate(0.5)	Maximum(1.0)		Judgment
12	Material Wastage Potential	None(0.0)	Moderate(0.5)	Maximum(1.0)		Judgment
13	Vibratory Stress Range	None(0.0)	Moderate(1.5)	Maximum(3.0)		Judgment
14	Fatigue Stress Range	Low(.10)	Medium(.50)	High(.70)		Judgment
15	Low Cycle Fatigue Frequency	Low(10)	Medium(20)	High(30)		Jüdgment
16	Design Limiting Stress (LL/Break Only)	Low(.10)	Medium(.26)	High(.42)	.111	Code Aliowable
17	System Disabling Leak (Large Leak Only)	None(0)	Medium(300)	High(600)	2	Assumed Small
18	Min. Detectable Leak (LL/Break Only)	None(0)	Medium(5)	High(10)	None	Not used in testing

#### No Leak Detection

Small Leak Prot	., No ISI:	2.0050E-5	Small Leak Prob	., With ISI:	7.4804E-7	
Large Leak Prot	., No ISI:	1.5218E-5	Large Leak Prob	., With ISI:	1.1679E-7	(N/A if not applicable)
Break Prob.	No ISI:	N/A	Break Prob.	With ISI:	N/A	(N/A if not applicable)

No Leak Detection(Snubber locking up under Thern	nal Conditions, Item 14 set at <u>N/A</u>	lure probability set at N/A)(N/A if not applicable)
Small Leak Prob., No ISI:	Small Leak Prob., With ISI:	(N/A if not applicable)
Large Leak Prob., No ISI:	Large Leak Prob., With ISI:	(N/A if not applicable)
Break Prob., No ISI:	Break Prob., With ISI:	(N/A if not applicable)

No Leak Detection(Snubbe	r not locking up under Se	ismic Conditions, Item 1	6 set a <u>t N/A</u> .)(Snubbe	r failure probability set at	N/A .)(N/A if not applicable)
Large Leak Prob., No ISI:		Large Leak Prob., Wit	ISI:	(N/A if not applicable)	
Break Prob., No ISI:		Break Prob., With	ISI:	(N/A if not applicable)	
Leak Detection (with Snub	ber failure if most limiting)				

Large Leak Prob.	, No ISI:	N/A	Large Leak Prob.	, With ISI:	N/A	(N/A if not applicable)
Break Prob.,	No ISI:	N/A	Break Prob.,	With ISI:	N/A	(N/A if not applicable)

Comments: Code Allowables used.

ļ.

ł

Į

### Table C-26 PIPING SEGMENT LHI-04 SMALL LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

Output Print File S4PROFSL.P52 Opened at 11:19 on 04-07-1997									
		Piping Stee							
	Pipe We	ld Failure M		304 St					
	Years E	etween Inspe		Small Leak 10.0					
	Wall Fr	action for 5		0.240					
	Degrees	(F) at Pipe	Weld		170.0				
	Nominal	. Pipe Size (	NPS. inch)						
	Thickne	ss / Outside	Diameter		12.0 0.0294				
	Operati	ng Pressure	(ksi)		0.10				
	Uniform	Residual St	ress (ksi)		10.0				
	Flaw Pa	ctor (<0 for	1 Flaw)		1.00				
	DW & Th	ermal Stress	/ Flow Stress		0.10				
	SCC Rat	e / Rate for	RWR Sens, SS		0.00				
	Factor	on Wastage of	f .0095 in/yr		0.00				
	P-P Vib	. Stress (ks	f .0095 in/yr i for NPS of 1) / Flow Stress		0.0				
	Cyclic	Stress Range	/ Plow Stress		0.300				
	Fatigue	Cycles per	Year / Flow Stress ak Rate (GPM)		10.0				
	Design-	Limit Stress	/ Flow Stress		0.111				
	System	Disabling Le	ak Rate (GPM)		2.0				
		Detectable	ak Rate (GPM) Leak Rate (GPM) Flow Stress in )		0.0				
	vatue o	I Weid Metal	Flow Stress in 1	Ksi	69.30				
	•								
WESTI	Inghouse	DDORAL	RELIABILITY AND	RISK ASSESSMEN	T (SRRA)				
		PRODAD.	ILITY OF FAILURE	PROGRAM LEARPH	ROF	ES	Bu-nsd		
	INPUT VARIA	BLES FOR CAS	E **: 304 St Stee	el Pipe Segment	: LHI-3;4;	;5;6			
	NCYCLE =	40	NFAILS = 400	<b>n</b>					
	NOVARS =	28 .	••••	6 NI	TRIAL = 40 MISI =	5			
	NUMSSC =	6	NUMTRC =		MISI -				
		•			MFMD =	5			
	RIABLE	DISTRIBUTIO		- AC	MINU -		AGE		
	RIABLE		on Median	DEVIATION	SHIFT	US	AGE SUB		
VA NO.	RIABLE NAME	DISTRIBUTIO TYPE LA	on Median Og Value	DEVIATION OR FACTOR	SHIFT	US	AGE SUB		
VА NO. 1	ARIABLE NAME PIPE-ODIA	DISTRIBUTIO TYPE LA NORMAL NO	DN MEDIAN DG VALUE	DEVIATION OR FACTOR	SHIFT MV/SD .00	US NO.			
VA NO. 1 2	ARIABLE NAME PIPE-ODIA	DISTRIBUTIO TYPE LA NORMAL NO	DN MEDIAN DG VALUE	DEVIATION OR FACTOR 3.2000D-02	SHIFT MV/SD .00	US NO.	SUB		
VA NO. 1 2 3	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI	MEDIAN           XG         VALUE           0         1.2750D+01           0         2.9400D-02           25         1.0000D+01	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04	SHIFT MV/SD .00 .00	USA NO. 1 2	SUB SET		
VX NO. 1 2 3 4	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH	DISTRIBUTIC TYPE LA NORMAL NO NORMAL NO NORMAL YI NORMAL YI	MEDIAN           DG         VALUE           D         1.2750D+01           D         2.9400D-02           S         1.0000D+01           S         2.624D+01	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00	SHIFT MV/SD .00 .00 .00 2.00	US NO. 1 2 3 4	SUB SET SET		
VA NO. 1 2 3 4 5	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI NORMAL YI	MEDIAN           DG         VALUE           D         1.2750D+01           D         2.9400D-02           SS         1.0000D+01           SS         2.6249D+01           SS         6.0000D+00	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00	SHIFT MV/SD .00 .00 .00 2.00	US NO. 1 2 3 4	SUB SET SET SET		
VA NO. 1 2 3 4 5 6	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI NORMAL YI	MEDIAN           DG         VALUE           D         1.2750D+01           D         2.9400D-02           SS         1.0000D+01           SS         2.6249D+01           SS         6.0000D+00	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00	SHIFT MV/SD .00 .00 .00 2.00	US NO. 1 2 3 4 5 6	SUB SET SET SET SET SET SET		
VX NO. 1 2 3 4 5 6 7	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI NORMAL YI - CONSTANT - CONSTANT	MEDIAN           DG         VALUE           D         1.2750D+01           D         2.9400D-02           SS         1.0000D+01           SS         2.6249D+01           SS         6.0000D+00           -         4.0489D-03           -         5.0000D+00	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00	SHIFT MV/SD .00 .00 .00 2.00	US NO. 1 2 3 4 5 6	SUB SET SET SET SET SET		
VX NO. 1 2 3 4 5 6 7	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI NORMAL YI - CONSTANT - CONSTANT	MEDIAN           DG         VALUE           D         1.2750D+01           D         2.9400D-02           SS         1.0000D+01           SS         2.6249D+01           SS         6.0000D+00           -         4.0489D-03           -         5.0000D+00	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00	SHIFT MV/SD .00 .00 .00 2.00	US, NO. 1 2 3 4 5 6 1 2	SUB SET SET SET SET SET SET		
VX NO. 1 2 3 4 5 6 7 8 9	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI FREQ-ISI EPST-PND	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT	MEDIAN VALUE           0         1.2750D+01           0         2.9400D-02           25         1.0000D+01           25         2.6249D+01           25         6.0000D+00           -         4.0489D-03           -         5.0000D+00           -         1.0000D+01           -         1.0000D+01	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00	SHIFT MV/SD .00 .00 .00 2.00	US NO. 1 2 3 4 5 6 1 2 3	SUB SET SET SET SET ISI ISI ISI ISI		
VX NO. 1 2 3 4 5 6 7 8 9	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI FREQ-ISI EPST-PND	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT	MEDIAN VALUE           0         1.2750D+01           0         2.9400D-02           25         1.0000D+01           25         2.6249D+01           25         6.0000D+00           -         4.0489D-03           -         5.0000D+00           -         1.0000D+01           -         1.0000D+01	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00	SHIFT MV/SD .00 .00 .00 2.00	US NO. 1 2 3 4 5 6 1 2 3	SUB SET SET SET SET SET ISI ISI		
VX NO. 1 2 3 4 5 6 7 8 9 10 11	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI FREQ-ISI EPST-PND ASTAR-PND ANUU-PND	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT	MEDIAN           VALUE           0         1.2750D+01           0         2.9400D-02           1         2.0000D+01           2         2.6249D+01           2         6.0000D+00           -         4.0489D-03           -         5.0000D+00           -         1.0000D+01           -         1.0000D-03           -         2.4000D-01           -         1.6000D+00	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00	SHIFT MV/SD .00 .00 2.00 1.00	US NO. 1 2 3 4 5 6 1 2 3 4 5	SUB SET SET SET SET SET ISI ISI ISI ISI ISI		
VX NO. 1 2 3 4 5 6 7 8 9 10 11	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI FREQ-ISI EPST-PND ASTAR-PND ANUU-PND	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT	MEDIAN           VALUE           0         1.2750D+01           0         2.9400D-02           1         2.0000D+01           2         2.6249D+01           2         6.0000D+00           -         4.0489D-03           -         5.0000D+00           -         1.0000D+01           -         1.0000D-03           -         2.4000D-01           -         1.6000D+00	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.7126D+00	SHIFT MV/SD .00 .00 2.00 1.00	US NO. 1 2 3 4 5 6 1 2 3 4 5 1	SUB SET SET SET SET ISI ISI ISI ISI ISI ISI SSC		
VX NO. 1 2 3 4 5 6 7 8 9 10 11 12 13	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI FREQ-ISI EPST-PND ANUU-PND HOURS/YR PRESSURE	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT NORMAL YI	MEDIAN VALUE           0         1.2750D+01           0         2.9400D-02           1         2.0000D+01           2         2.6249D+01           2         5.0000D+00           -         4.0489D-03           -         5.0000D+00           -         1.0000D+01           -         1.0000D-03           -         2.4000D-01           -         1.6000D+00           2         7.4473D+03           2         1.0000D-01	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.7126D+00 1.0323D+00	SHIFT MV/SD .00 .00 2.00 1.00	US NO. 1 2 3 4 5 6 1 2 3 4 5 1 2	SUB SET SET SET SET ISI ISI ISI ISI ISI ISI SSC SSC		
VA NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI PREQ-ISI EPST-PND ANUU-PND HOURS/YR PRESSURE SIG-DW&TH	DISTRIBUTIO TYPE LA NORMAL NO NORMAL NO NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT NORMAL YI NORMAL YI	MEDIAN VALUE           0         1.2750D+01           0         2.9400D-02           1         2.0000D+01           2         5.26249D+01           2         5.26249D+01           2         5.0000D+00           -         4.0489D-03           -         5.0000D+00           -         1.0000D+01           -         1.0000D+01           -         1.6000D+00           2         7.4473D+03           3         1.0000D-01           25         6.9305D+00	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.0500D+00 1.0323D+00 1.2599D+00	SHIFT MV/SD .00 .00 2.00 1.00	US NO. 1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 5 1 2 3	SUB SET SET SET SET ISI ISI ISI ISI ISI SSC SSC SSC		
VA NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI FREQ-ISI EPST-PND ASTAR-PND ANUU-PND HOURS/YR PRESSURE SIG-DW&TH SCC-COEFF	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT NORMAL YI NORMAL YI NORMAL YI	MEDIAN VALUE           0         1.2750D+01           0         2.9400D-02           1         2.0000D+01           2         5.26249D+01           2         5.26249D+01           2         5.26249D+01           2         5.0000D+00           -         4.0489D-03           -         1.0000D+01           -         1.0000D+01           -         1.6000D+00           2         7.4473D+03           1         1.0000D-01           2         6.9305D+00           3         5900D-11	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.7126D+00 1.0323D+00	SHIFT MV/SD .00 .00 2.00 1.00	US NO. 1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 5 1 2 3 4	SUB SET SET SET SET ISI ISI ISI ISI ISI SSC SSC SSC		
VA NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI FREQ-ISI EPST-PND ASTAR-PND ANUU-PND HOURS/YR PRESSURE SIG-DW&TH SCC-COEFF SCC-EXPNT	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT NORMAL YI NORMAL YI NORMAL YI NORMAL YI	MEDIAN           VALUE           0         1.2750D+01           0         2.9400D-02           1.0000D+01         2.5           2.6249D+01         2.5           2.6249D+01         2.5           2.6249D+01         2.5           2.6249D+01         2.6249D+01           -         4.0489D-03           -         5.0000D+00           -         1.0000D-03           -         2.4000D-01           -         1.6000D+00           S         7.4473D+03           S         1.0000D-01           S         3.5900D-11           -         2.1610D+00	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.0323D+00 1.2599D+00 2.3714D+00	SHIFT MV/SD .00 .00 2.00 1.00 .00 .00 .00	US NO. 1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 5	SUB SET SET SET SET ISI ISI ISI ISI ISI SSC SSC SSC SSC		
VA NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	RIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI FREQ-ISI EPST-PND ASTAR-PND ANUU-PND HOURS/YR PRESSURE SIG-DW&TH SCC-COEFF SCC-EXPNT WASTAGE	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT NORMAL YI NORMAL YI NORMAL YI NORMAL YI NORMAL YI	MEDIAN           OS         1.2750D+01           0         2.9400D-02           1.0000D+01         2.5           2.6249D+01         2.5           2.6249D+01         2.5           2.6249D+01         2.5           2.6249D+01         2.5           2.6249D+01         2.6249D+01           -         4.0489D-03           -         5.0000D+00           -         1.0000D-03           -         2.4000D-01           -         1.6000D+00           S         1.0000D-01           S         1.0000D-01           S         1.0000D-01           S         1.0000D-01           S         3.5900D-11           -         2.1610D+00           S         1.2740D-12	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.0323D+00 1.2599D+00 2.3714D+00 2.3714D+00	SHIFT MV/SD .00 .00 2.00 1.00 .00 .00 .00 .00	US NO. 1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 5 6	SUB SET SET SET SET ISI ISI ISI ISI ISI ISI SSC SSC SSC SSC		
VA NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI FREQ-ISI EPST-PND ASTAR-PND ANUU-PND HOURS/YR PRESSURE SIG-DW&TH SCC-CEFF SCC-EXPNT WASTAGE DSIG-VIBR	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT NORMAL YI NORMAL YI NORMAL YI NORMAL YI NORMAL YI	MEDIAN           VALUE           1.2750D+01           2.9400D-02           1.0000D+01           2.6249D+01           2.6249D+01           2.6249D+01           2.6249D+01           2.6249D+01           3.6000D+00           -           1.0000D+01           1.0000D+03           -           2.4000D-01           1.6000D+00           2.4473D+03           2.1600D-01           2.500D-11           2.1610D+00           2.1610D+02           2.1610D+02           2.16667D-04	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.0323D+00 1.2599D+00 2.3714D+00	SHIFT MV/SD .00 .00 2.00 1.00 .00 .00 .00	USJ NO. 1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 5 6 1	SUB SET SET SET SET ISI ISI ISI ISI ISI SSC SSC SSC SSC SSC		
VA NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI FREQ-ISI EPST-PND ASTAR-PND ANUU-PND HOURS/YR PRESSURE SIG-DW&TH SCC-CEFF SCC-EXPNT WASTAGE DSIG-VIBR CYCLES/YR	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT NORMAL YI NORMAL YI NORMAL YI NORMAL YI NORMAL YI NORMAL YI NORMAL YI NORMAL YI	MEDIAN VALUE           0         1.2750D+01           0         2.9400D-02           1         000D+01           2         2.6249D+01           25         2.6249D+01           25         6.0000D+00           -         4.0489D-03           -         5.0000D+00           -         1.0000D+01           -         1.0000D+03           -         2.4000D-01           -         1.6000D+00           2         7.4473D+03           25         1.0000D-01           25         3.5900D-11           -         2.1610D+00           25         1.2740D-12           25         1.6667D-04           -         1.0000D+01	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.0323D+00 1.0323D+00 2.3714D+00 2.3714D+00 1.3465D+00	SHIFT MV/SD .00 .00 2.00 1.00 1.00 .00 .00 .00 .00	USJ NO. 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2	SUB SET SET SET SET ISI ISI ISI ISI SSC SSC SSC TRC		
VA NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	RIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI FREQ-ISI EPST-PND ASTAR-PND ANUU-PND HOURS/YR PRESSURE SIG-DW&TH SCC-CEFF SCC-EXPNT WASTAGE DSIG-VIBR CYCLES/YR DSIG-FATG	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT NORMAL YI NORMAL YI NORMAL YI NORMAL YI - CONSTANT NORMAL YI - CONSTANT NORMAL YI - CONSTANT NORMAL YI	MEDIAN VALUE           0         1.2750D+01           0         2.9400D-02           1.0000D+01         2.6249D+01           2.6249D+01         2.6249D+01           2.6249D+01         2.6249D+01           2.6249D+01         3.6000D+00           -         4.0489D-03           -         1.0000D+01           -         1.0000D+01           -         1.0000D+01           -         1.6000D+00           2.4473D+03         2.5           2.6100D+00         2.5           3.5900D-11         2.1610D+00           2.1610D+00         2.12740D-12           2.1667D-04         1.0000D+01           2.0791D+01         2.0791D+01	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.0323D+00 1.2599D+00 2.3714D+00 1.3465D+00 1.4142D+00	SHIFT MV/SD .00 .00 2.00 1.00 1.00 .00 .00 .00 .00 .00	USJ NO. 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3	SUB SET SET SET SET ISI ISI ISI ISI SSCC SSCC SSCC TRC TRC		
VA NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI FREQ-ISI EPST-PND ASTAR-PND ANUU-PND HOURS/YR PRESSURE SIG-DW&TH SCC-COEFF SCC-EXPNT WASTAGE DSIG-VIBR CYCLES/YR DSIG-PATG FCG-COEFF	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT NORMAL YI NORMAL YI NORMAL YI NORMAL YI NORMAL YI NORMAL YI NORMAL YI NORMAL YI NORMAL YI	MEDIAN VALUE           0         1.2750D+01           0         2.9400D-02           1.0000D+01         2.6249D+01           2.6249D+01         2.6249D+01           2.6249D+01         2.6249D+01           2.6249D+01         3.6000D+00           -         4.0489D-03           -         1.0000D+01           -         1.0000D+01           -         1.0000D+01           -         1.6000D+00           2.4473D+03         2.5           2.1610D+00         2.5           3.5900D-11         -           -         2.1610D+00           2.12740D-12         1.6667D-04           1.0000D+01         2.91610D+01           2.21610D+01         2.91600+01           2.21610D+01         2.91600+01           2.21610D+01         2.910+01           2.91600D+01         3.91000+11	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.0323D+00 1.0323D+00 2.3714D+00 2.3714D+00 1.3465D+00	SHIFT MV/SD .00 .00 2.00 1.00 1.00 .00 .00 .00 .00	USJ NO. 12345612345561234 561234561234	SUB SET SET SET SET ISI ISI ISI ISI SSC SSC SSC SSC TRC TRC TRC		
VA NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI FREQ-ISI EPST-PND ASTAR-PND ANUU-PND HOURS/YR PRESSURE SIG-DW&TH SCC-COEFF SCC-EXPNT WASTAGE DSIG-VIBR CYCLES/YR DSIG-FATG FCG-COEFF FCG-EXPNT	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT NORMAL YI NORMAL YI	MEDIAN VALUE           0         1.2750D+01           0         2.9400D-02           1.0000D+01         2.6249D+01           2.6249D+01         2.6249D+01           2.6249D+01         2.6249D+01           2.6249D+01         3.6000D+00           -         4.0489D-03           -         1.0000D+01           -         1.0000D+01           -         1.0000D+01           -         1.6000D+00           2.4000D-01         3.5900D-01           2.5         1.6607D+00           2.1610D+00         3.5900D-11           -         2.1610D+00           2.12740D-12         1.0000D+01           2.3900D+01         3.9900D+01           -         2.1610D+00           2.12740D-12         3.9900D+01           2.5         1.6667D-04           -         1.0000D+01           2.91401D-12         -           -         4.0000D+00	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.0323D+00 1.2599D+00 2.3714D+00 1.3465D+00 1.4142D+00	SHIFT MV/SD .00 .00 2.00 1.00 1.00 .00 .00 .00 .00 .00	USJ NO. 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3	SUB SET SET SET SET SET SET ISI ISI ISI ISI ISI ISI SSC SSC SSC SSC		
VA NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI PREQ-ISI EPST-PND ANUU-PND HOURS/YR PRESSURE SIG-DW&TH SCC-COEFF SCC-EXPNT WASTAGE DSIG-VIBR CYCLES/YR DSIG-FATG FCG-COEFF FCG-EXPNT FCG-THOLD	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT NORMAL YI NORMAL YI - CONSTANT NORMAL YI NORMAL YI	MEDIAN VALUE           0         1.2750D+01           0         2.9400D-02           1         1.0000D+01           2         2.6249D+01           2         2.6249D+01           2         5.0000D+00           -         4.0489D-03           -         5.0000D+00           -         1.0000D-01           -         1.0000D-01           -         1.6000D+00           2         7.4473D+03           2         1.0000D-01           2         3.5900D-11           -         2.1610D+00           2         1.2740D-12           2         1.6667D-04           -         1.0000D+01           -         1.0000D+01	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.0323D+00 1.2599D+00 2.3714D+00 1.3465D+00 1.4142D+00	SHIFT MV/SD .00 .00 2.00 1.00 1.00 .00 .00 .00 .00 .00	USJ NO. 12345612345561234 561234561234	SUB SET SET SET SET ISI ISI ISI ISI SSC SSC SSC SSC TRC TRC TRC		
VA NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI FREQ-ISI EPST-PND ASTAR-PND HOURS/YR PRESSURE SIG-DW&TH SCC-COEFF SCC-EXPNT WASTAGE DSIG-VIBR CYCLES/YR DSIG-FATG FCG-COEFF FCG-EXPNT FCG-THOLD LDEPTH-SL	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT	MEDIAN VALUE           0         1.2750D+01           0         2.9400D-02           1         1.0000D+01           2         2.6249D+01           2         2.6249D+01           2         2.6249D+01           2         5.0000D+00           -         4.0489D-03           -         5.0000D+00           -         1.0000D-01           -         1.0000D-01           -         1.6000D+00           2         7.4473D+03           2         1.0000D-01           2         5.9305D+00           2         3.5900D-11           -         2.1610D+00           2         1.2740D-12           2         1.6667D-04           -         1.0000D+01           2         9.1401D-12           -         4.0000D+00           -         1.5000D+00           -         9.9900D-01	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.0323D+00 1.2599D+00 2.3714D+00 1.3465D+00 1.4142D+00	SHIFT MV/SD .00 .00 2.00 1.00 1.00 .00 .00 .00 .00 .00	US. No. 123456123455612345 6123455612345	SUB SET SET SET SET SET SET ISI ISI ISI ISI ISI ISI SSC SSC SSC SSC		
VA NO. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	ARIABLE NAME PIPE-ODIA WALL/ODIA SRESIDUAL INT&DEPTH L/D-RATIO FLAWS/IN FIRST-ISI PREQ-ISI EPST-PND ANUU-PND HOURS/YR PRESSURE SIG-DW&TH SCC-COEFF SCC-EXPNT WASTAGE DSIG-VIBR CYCLES/YR DSIG-FATG FCG-COEFF FCG-EXPNT FCG-THOLD	DISTRIBUTIC TYPE LA NORMAL NC NORMAL NC NORMAL YI NORMAL YI - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT - CONSTANT NORMAL YI NORMAL YI - CONSTANT NORMAL YI NORMAL YI	MEDIAN VALUE           0         1.2750D+01           0         2.9400D-02           1         1.0000D+01           2         2.6249D+01           2         2.6249D+01           2         2.6249D+01           2         5.0000D+00           -         4.0489D-03           -         5.0000D+00           -         1.0000D-01           -         1.0000D-01           -         1.6000D+00           2         7.4473D+03           2         1.0000D-01           2         5.9305D+00           2         3.5900D-11           -         2.1610D+00           2         1.2740D-12           2         1.6667D-04           -         1.0000D+01           2         9.1401D-12           -         4.0000D+00           -         1.5000D+00           -         9.9900D-01	DEVIATION OR FACTOR 3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.0323D+00 1.2599D+00 2.3714D+00 1.3465D+00 1.4142D+00	SHIFT MV/SD .00 .00 2.00 1.00 1.00 .00 .00 .00 .00 .00	US. NO. 1234561234556123456123456	SUB SET SET SET SET SET SET SET SET SET SET		

### Table C-26 (cont.) PIPING SEGMENT LHI-04 SMALL LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

an shek

------ ,

26 27	STRESS-DL B-SDLEAK	- CONST - CONST		0.00000						3	FMD FMD
28	B-MDLEAK	- CONS	FANT -	0.0000D	+00					5	FMD
DDC				MIDONAU							-
FRU	BABILITIES	OF FALLS	JRE MODE:	THROUGH	-WALL	CRACK	DEPTH I	FOR S	SMALL	LEAI	K
	NUM	BER FAIL	ED = 400		1	NUMBER	OF TR	IALS	= 186	34	
END C		LURE PROP	BABILITY W	ITHOUT	AND 1	WITH I	N-SERV.	ICE ]	INSPEC	TIO	NS
YEAF	r for	PERIOD	CUM.	TOTAL	1	FOR PE	RIOD		CUM.	TOT	AL.
2.0	) ] AEA	468D-08	1 464	68D-08	•	48460	<b>n</b>				
3.0		939D-10		00D-08		.45468			L.4546 L.5507		
4.0		097D-07		505D-07	-	.68097			1.8360	-	
5.0	6.128	327D-08		880-07	-	.12827			5.4488		
6.0	) 1.758	377D-07	7.207	65D-07	-	.03385			5.4539		
7.0		388D-()8	7.919	554D-07	4	.56368	D-10	. 5	5.4584	7D-(	07
8.0		571D-()8		211D-07	3	.16315	D-10	5	5.4616	4D-1	07
9.0		301D-07		51D-06	-	.79062			5.5095		
10.0		516D-08		56D-06	_	.09621		-	5.5205		
11.0		188D-07 594D-07		575D-06		.25852			5.0463		
13.0		721D-07		45D-06		.36194			5.3825		
14.0		L26D-08		48D-06		.45615			5.6510 5.7 <b>45</b> 6		-
15.0		176D-07		66D-06		.89192			5.9348		
16.0		40D-()8		55D-06		.27178			5.9349		
17.0	1.115	501D-06	4.175	56D-06	-	.35594		-	5.9422		
18.0	2.402	247D-07	4.415	581D-06	1	.85449	D-10		5.9441		
19.0		592D-()7	5.108	40D-06	1	.65287	D-09		5.9606	8D-	07
20.0		71D-07		37D-06	1	.91372	D-10		5.9625	9D-	07
21.0		L78D-(17		)55D-06	2	.13247	D-09	•	5.9839	2D-	07
22.0		547D-07		09 <b>D-06</b>	-	.78818		-	5.9927		
23.0		786D-06		96D-06		.10003		-	7.1027		
24.0		121D-06		522D-05		.72827		-	7.4755		
25.0		524D-07		78D-05	-	.49567			7.4780		
27.0		05D-07		48D-05		.15683			7.4780		
28.0		98D-07		27D-05		.48577 .72205			7.4780		-
29.0		69D-07		81D-05	-	.09393			7 <b>.4</b> 780 7 <b>.4</b> 786		
30.0		98D-07		83D-05	+	.55000		-	7.4786		-
31.0		99D-07		10D-05		.06996			7.4787		
32.0		54D-07		97D-05		.10176			7.4790		
33.0		15D-07		14D-05	-	.57266			7.4795		-
34.0		56D-07		36D-05	-	.36701		-	7.4802		
35.0		27D-07		39D-05		.20227			7.4802		
36.0		82D-06		78D-05	-	.75648		-	7.4804		
37.0		04D-06	1.801	68D-05	ĩ	.30517	D-12		7.4804		
38.0		55D-07	1.825	89D-05	2	.08426	D-14	-	7.4804		
39.0		55D-07	1.896	66D-05	3	.42589	D-12	-	7.4804	8D-	07
40.0	1.083	66D-06	2.005	03D-05	5	.46998	D-13	-	7.4804	9D-	07

DEVIATION ON CUMULATIVE TOTALS = 9.91721D-07 1.93568D-07

### Table C-27 PIPING SEGMENT LHI-04 LARGE LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

	Output Print File S4PROFLL.P53 Opened at 11:22 on 04-07-1997									
	Type of Piping Steel Material						304 St		-	
	Pipe Weld Failure Mode					Large Leak				
	Years Between Inspections					10.0				
	Degrees (F) at Pipe Weld						170.0			
	Nominal	Pipe Size	(NPS,	inch)			12.0			
	Thickne	ss / Outsi	de Dia	neter		0.240 170.0 12.0 0.0294 0.10 10.0				
		ng Pressur				0.10				
		Residual								
	Flaw Fa	ctor (<0 f	OF 1 F.	Law) Law		1.00				
		ermal Stre								
	Ractor	on Wastage	OF DWR	Selle. 33			0.00 0.00			
	P-P Vib	e / Rate f on Wastage . Stress () Stress Ran	ksi fo	r NPS of 1	1					
	Cvelie	Stress Ran	Te / P	low Stress			0.0 0.300			
	Fationa	CVCles De	r Year							
	Design-	Limit Stre	58 / F	low Stress			10.0			
							2.0			
	Minimum	Detectabl	e Leak	Rate (GPM	I)		0.0			
	Value o	f Weld Met	al Flo	w Stress i	n Ksi		69.30			
WPORT	NCHATCH					sk assessmen	IT (SRRA)	-		
	NGHOUSE	PROB	ABILIT	Y OF FAILU	RE PRO	ogram leakpi	ROF	ES	BU-NSD	
-	INPUT VARIA	BLES FOR C	ASE **	: 304 St S	teel 1	Pipe Segment	: LHI-3;4;	5;6		
	NCYCLE = NOVARS = NUMSSC =	40	N	FAILS =	400	NT NT NT	$\mathbf{TRIAL} = 50$	000		
	NOVARS =	28	N	UMSET =	6	N	MISI =	5		
	NUMSSC =	0	N	UMTRC =	6	NU	MFMD =	5		
VA	PTART.P	NTOWNTHIN	TON	MEDIAN	,	DEVITIMITON	CUTIN	TIC	102	
NO.	RIABLE NAME	TYPE	LOG	VALUE		DEVIATION OR FACTOR	MV/SD	NO.	SUB	
					•				~~~	
1	PIPE-ODIA	NORMAL	NO	1.2750D+	·01	3.2000D-02 9.1140D-04 1.4142D+00 1.2312D+00 1.7126D+00 1.7126D+00 1.0323D+00 1.2599D+00 2.3714D+00	.00	1	SET	
2	WALL/ODIA	NORMAL	NO	2.9400D-	02	9.1140D-04	.00	2	SET	
3	SRESIDUAL	NORMAL	YES	1.0000D+	-01	1.4142D+00	.00	3	SET	
4	INT&DEPTH	NORMAL	Yes	2.6249D+	·01	1.2312D+00	2.00	4	SET	
5	L/D-RATIO	NORMAL	YES	6.0000D+	·00	1.7126D+00	2.00	5	SET	
6	FLAWS/IN	- CONSTA	NT -	4.0489D-	•03			6	SET	
7	FIRST-ISI	- CONSTA	NT -	5.0000D+	-00			1	ISI	
	FREQ-ISI	- CONSTA	NT -	1.00000+	·01			2	ISI	
10	AFSI-FND	- CONSTA		-2 40000-	-03			د م	151	
11	ANIII-PND	- Consta - Consta	91 - VT -	1.600004	-00			<b>4</b>	TST	
12	HOURS/YR	NORMAT.	YES	7.44730+	-03	1.05000+00	. 00	1	SSC	
13	PRESSURE	NORMAL	YES	1.0000D-	-01	1.03230+00	.00	2	SSC	
14	SIG-DW&TH	NORMAL	YES	6.9305D+	-00	1.25990+00	.00	3	SSC	
15	SCC-COEFF	NORMAL	YES	3.5900D-	·11 ·	2.3714D+00	.00	-4	SSC	
16	SCC-EXPNT	- CONSTA	NT -	2.1610D+				5	SSC	
17	WASTAGE	NORMAL	YES	1.2740D-		2.3714D+00	.00	6	SSC	
18	DSIG-VIBR	NORMAL	YES	1.6667D-		1.3465D+00	.00	1	TRC	
19	CYCLES/YR	- CONSTA	- TR	1.0000D+	-01			2	TRC	
20	DSIG-FATG	NORMAL	YES	2.0791D+	-01	1.4142D+00	.00	3	TRC	
21	FCG-COEFF	NORMAL	YES	9.1401D-		2.8508D+00	1.00	4	TRC	
22	FCG-EXPNT	- CONSTA	-	4.0000D+				5	TRC	
23	FCG-THOLD	- Consta		1.5000D+	-00			6	TRC	
24	LDEPTH-SL	- Consta	NT -	0.0000D+	-00			1	FMD	
25	SIG-FLOW	NORMAL	NO	6.9305D+	-01	3.2000D+00	.09	2	FMD	

# Table C-27 (cont.) PIPING SEGMENT LHI-04 LARGE LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

ĩ

	TRESS-DL NO	rmal yes	7.69281	+00 1.4	4142D+00	.00	3 FM	~
27 B	-SDLEAK - (	CONSTANT -	1.0546		14120.00			
28 B		CONSTANT -	4.00551					
							5 FMI	D
PROB	ABILITIES OF	FAILURE MODE:	FXCEED	DISART THO				
				DIGUDDING	LEAN RATE C	R BREAK		
	NUMBER	FAILED = 400		ATTAC	BER OF TRIAL	6 - 200		
				NOPL	SER OF TRIAL	s = 302	80	
END OF	FAILURE	PROBABILITY	TTHOIT	AND WITH	I IN-SERVICE	THONDA		
YEAR	FOR PER		. TOTAL					
			. IUIAL	FOR	PERIOD	CUM.	TOTAL	
1.0	2.76955D-	-13 2.76	955D-13	2 760	955D-13			
2.0	1.84989D-		758D-11			2.7695		
3.0	1.83449D-		326D-09		989D-11	1.8775		
4.0	8.59677D-		210D-08		49D-09	1.8532		
5.0	4.19350D-		145D-08		577D-08	8.7821		
6.0	1.17526D-		767D-07		350D-09	9.2014		
7.0	4.54052D-				56D-11	9.2033		
8.0	6.93727D-		172D-07		206D-11	9.2107		
9.0	1.20927D-		866D-07		033D-12	9.2110	7D-08	
10.0	1.80472D-		959D-07		/16D-11	9.2136	7D-08	
11.0	1.03478D-		31D-07		590D-09	9.4102	6D-08	
12.0			909D-07		304D-09	9.8635	7D-08	
13.0	2.54853D-		761D-07		543D-08	1.0970	0D-07	
14.0	9.21467D-		908D-07		137D-10	1.1052	3D-07	
15.0	2.49914D-		900D-07	3.964	135D-10	1.1091	9D-07	
	1.29152D-		)51D-07	3.499	84D-09	1.1441	9D-07	
16.0	2.28668D-		572D-06	4.849	83D-12	1.1442	4D-07	
17.0	2.56427D-		L36D-06	2.588	60D-12	1.1442	7D-07	
18.0	3.83321D-		)69D-06	3.015	61D-12	1.1443		
19.0	2.17753D-		22D-06	8.069	41D-10	1.1523		
20.0	9.52658D-		575D-06		11D-12	1.1523		
21.0	1.20682D-		743D-06		11D-11	1.1525		
22.0	7.15812D-		01D-06	2.186	45D-11	1.1528		
23.0	8.98377D-	08 3.708	85D-06		29D-10	1.1538		
24.0	5.94033D-	09 3.714	79D-06	-	89D-12	1.1538		
25.0	1.53423D-		02D-06		53D-09	1.1676		
26.0	9.41368D-	08 5.343	16D-06		83D-13	1.1676		
27.0	9.55581D-		72D-06		95D-13	1.1676		
28.0	1.20868D-		80D-06		59D-14			
29.0	5.42698D-		07D-06		49D-13	1.1676		
30.0	1.80875D-		95D-06		490-13 15D-13	1.1676		
31.0	8.68635D-		58D-06			1.1676		
32.0	2.64816D-		.06D-06		03D-13	1.1676		
33.0	8.24575D-		.000-06		84D-12	1.1677		
34.0	7.73052D-				42D-14	1.1677		
35.0	3.27432D-		24D-05		17D-13	1.1677		
36.0	6.20221D-		52D-05		56D-11	1.1679		
37.0			72D-05		88D-15	1.1679		
38.0	2.13319D-		85D-05		15D-15	1.1679	3D-07	
	9.22975D-		08D~05		58D-14	1.1679	3D-07	
39.0	2.96237D-		70D-05	2.905	54D-15	1.1679	3D-07	
40.0	4.01302D-0	07 1.521	83D-05	4.760	37D-15	1.1679	3D-07	
	DEVILATION ON							
	DRVIATION ON (		M378					

DEVIATION ON CUMULATIVE TOTALS = 7.55887D-07 6.66573D-08

No.	Input Parameter Description	Cire	cie Choice or Set V	alue -	Set Value	Basis		
1	Type of Piping Material	30455	21685	Carbon Steel		Drawing/Spec.		
2	Crack Inspection Interval (optional)	Low(6)	Medium(10)	High(14)		Section XI		
3	Crack Inspection Accuracy (optional)	High(.16)	Medfum(.24)	Low(.32)		UT		
4	Temperature at Pipe Weld	Low(150)	Medium(350)	High(550)	606	Line List		
5	Nominal Pipe Size	Small(2)	Medium(5)	Large(16)	6	Drawing		
8	Thickness to O.D. Ratio	Thin(.05)	Normal(.13)	Thick(.21)	.085	Calc.		
7	Normal Operating Pressure	Low(0.5)	Medium(1.3)	High(2.1)	2.52	Line List		
8	Residual Stress Level	None(0.0)	Moderate(10)	Maximum(20)		Judgment		
9	Initial Flaw Conditions	One Plaw	X-Ray NDE	No X-Ray		Striping		
10	DW & Thermal Stress Level	Low(.05)	Medium(.11)	High(.17)	.186	Caic.		
11	Stress Corrosion Potential	None(0.0)	Moderate(0.5)	Maximum(1.0)		Judgment		
12	Material Wastage Potential	None(0.0)	Moderate(0.5)	Maximum(1.0)		Judgment, material		
13	Vibratory Stress Range	None(0,0)	Moderate(1.5)	Maximum(3.0)		Judgment, not near pump		
14	Fatigue Stress Range	Low(.30)	Medium(.50)	High(.70)	.6	Strat. (Some)		
15	Low Cycle Fatigue Frequency	Low(10)	Medium(20)	High(30)		Small Changes Annually		
16	Design Limiting Stress (LL/Break Only)	Low(.10)	Medium(.26)	High(.42)	.132	Calc.		
17	System Disabling Leak (Large Leak Only)	None(0)	Medium(300)	High(600)	5001	Large LOCA		
18	Min. Detectable Leak (LL/Break Only)	None(0)	Medium(5)	High(10)	1	T.S. Limit		
No Leak Detection         "Small Leak Prob., No ISI:       5.3143E-4         Small Leak Prob., No ISI:       3.089E-4         Large Leak Prob., No ISI:       3.089E-4         Break Prob., No ISI:       N/A         Break Prob., No ISI:       N/A         Break Prob., No ISI:       N/A         Break Prob., With ISI:       1.6947E-5         (N/A If not applicable)         No Leak Detection(Snubber locking up under Thermal Conditions, Item 14 set at N/A       .)(Snubber failure probability set at N/A       .)(N/A if not applicable)         Small Leak Prob., No ISI:       Small Leak Prob., With ISI:								
Large	ak Detection(Snubber not locking up under S Leak Prob., No ISI: Prob., No ISI:		b., With ISI:	(	lure probabilii N/A if not app N/A if not app	xicable)		

.

Comments:

1

Surry Unit 1

1

(

Use Values

. (

1

]

•

1

{

į

[

## Table C-29 PIPING SEGMENT RC-16 SMALL LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

_

----- 7

, j

•

	Output	Print File S6P	ROFSL.P01 Opened	at 12:46 on (	01-16-199	7
	Type or	Piping Steel	Material e ions Detection		316 St	
	Years B	etween Inenect	5	Small Lea	k	
	Wall Fr	action for 50%	Detection		10.0	
	Dedleea	(r) at pipe w	eld.		606 0	
	Nominal	Pipe Size (NP	S, inch)		6.0	
	Thickne	ss / Outside D	iameter		0.0850	
	Operati	ng Pressure (k	si)		2.52	
	Unitorm	Residual Stre	ss (ksi)		10.0 -10.80	
	FLAW FA	ctor («0 for 1	figw)		-10.80	
	SCC Rat	e / Rate for B	Flow Stress		0.19	
					0.00 0.00	
	P-P Vib	. Stress (ksi	0.095 in/yr for NPS of 1) Flow Stress			
	Cyclic	Stress Range /	Flow Stress		0.0 0.600	
	Fationsa	CHAIDS DOF VO	<b></b>			
	Design-	Limit Stress /	Flow Stress		0.132	
	System	Disabling Leak	Rate (GPM)		0.132	
	Value o	Detectable Lei f Weld Metal P	Flow Stress Rate (GPM) ak Rate (GPM) low Stress in Ks:		0.0	
	Varue V	I WEIG MECAI F.	IOW SLIESS IN KS:	1	51.08	
		STRUCTURAL R	ELIABILITY AND R	ISK ASSESSMENT	CODA)	
	NGHOUSE	FROBABIL	ITY OF FAILURE PI	ROGRAM LEAKPRO	30	ESBU-SMPI
*****						
	INPUT VARIA	BLES FOR CASE	1: 316 St Steel	Pipe Segment	RC016017	
			•	•		<b></b>
:	NOVARS =	4U 29	NFAILS = 400 NUMSET = 6 NUMTRC = 6	NTI	RIAL = 40	000
	NUMSSC -	6	NUMTRC = 6	NUR	AISI = AFMD =	5
				NUL		2
VA	RIABLE	DISTRIBUTION TYPE LOG	MEDIAN	DEVIATION	SHIFT	USAGE
NO.	NAME	TYPE LOG	VALUE	OR FACTOR	MV/SD	NO. SUB
•						
2	WALL ODTA	NORMAL NO	6.6250D+00	2.4000D-02 2.6350D-03 1.4600D+01 1.3000D+00 1.7126D+00	.00	1 SET
3	SRESTDUAL	NORMAL NO	8.500D-02 1.000D+00 1.7036D+01 6.0000D+00 -3.4370D-02 5.0000D+00	2.6350D-03	.00	2 SET
4	INT&DEPTH	NORMAL NO	1 70360+00	1.4600D+01	.00	3 SET
5	L/D-RATIO	NORMAL YES	6.0000D+00	1 71260+00	2.00	4 SET
6	FLAWS/IN	- CONSTANT -	-3.4370D-02	2.71200+00	1.00	6 SET
7	FIRST-ISI	- CONSTANT -	5.0000D+00			1 ISI
8	FREQ-ISI	- CONSTANT -	1.0000D+01			2 ISI
9	EPST-PND	- CONSTANT -	5.0000D+00 1.0000D+01 1.0000D-03 -2.4000D-01			3 ISI
10 11	ASTAR - PND	- CONSTANT -	-2.4000D-01			4 ISI
12	ANUU-PND	- CONSTANT -	1.6000D+00 7.4473D+03			5 ISI
12	HOURS/YR PRESSURE	NORMAL YES	7.4473D+03 2.5200D+00	1.0500D+00		
14	SIG-DW&TH	NORMAL YES	9.5018D+00	1.0323D+00 1.2599D+00	.00	
15	SCC-COEFF	NORMAL YES	3.2310D-12	2.3714D+00	.00	3 SSC
16	SCC-EXPNT	- CONSTANT -	2.1610D+00	2.3/140700	.00	4 SSC 5 SSC
17	WASTAGE	NORMAL YES	1.2740D-12	2.3714D+00	.00	6 SSC
18	DSIG-VIBR	NORMAL YES	3.6957D-04	1.3465D+00	.00	1 TRC
19	CYCLES/YR	- CONSTANT -			2 TRC	
20	DSIG-FATG	NORMAL YES	3.0651D+01	1.4142D+00	.00	3 TRC
21	FCG-COBFF	NORMAL YES	9.1401D-12	2.8508D+00	1.00	4 TRC
22	FCG-EXPNT	- CONSTANT -	4.0000D+00			5 TRC
23 24	FCG-THOLD	- CONSTANT -	1.5000D+00			6 TRC
	LDEPTH-SL	- CONSTANT -	-9.9900D-01			1 FMD
	STC. FLOW	NODMAT NO	E 100PD.04	3 88855		
25	SIG-FLOW	NORMAL NO	5.1085D+01	3.2000D+00	.00.	2 FMD

# Table C-29 (cont.) PIPING SEGMENT RC-16 SMALL LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

27	STRESS-DL - B-SDLEAK - B-MDLEAK -	CONSTANT - CONSTANT - CONSTANT -	0.0000D 0.0000D 0.0000D	+00		3 FM 4 FM 5 FM	Ð
DPO:							2
PRO	DADIDITIES OF	FAILURE MOD	E: THROUGH	-WALL CRACK DEP	TH FOR SMALL	LEAK	
	NUMBER	FAILED = 4	00	NUMBER OF	TRIALS = 100	23	
END O		E PROBABILIT	Y WITHOUT	AND WITH IN-SE	ERVICE INSPEC	TIONS	
YEAR	FOR PE	RIOD C	UM. TOTAL	FOR PERIO	D CUM.	TOTAL	
1.0	7.06487	D-08 7.	06487D-08	7.06487D-0	8 7.0648	70-08	
2.0	1.13614	D-07 1.	84263D-07	1.13614D-0			
3.0	2.61393	D-06 2.	79819D-06	2.61393D-0			
4.0	3.41953		21772D-06	3.41953D-0			
5.0	1.46373	D-06 7.	68145D-06	1.46373D-0			
6.0	8.54034	D-06 1.	62218D-05	2.90948D-0			
7.0	1.53790	D-06 1.	77597D-05	2.84612D-0			
8.0	5.13029	D-06 2.3	28900D-05	2.25817D-0			
9.0	3.34913	D-05 5.	63813D-05	2.719110-00			
10.0	1.34063		97876D-05	1.64706D-0			
11.0	2.12286		19104D-05	1.52146D-0			
12.0	6.37091	D-06 7.	82813D-05	5.04352D-0			
13.0	2.03347	D-06 8.	03148D-05	2.12273D-0			
14.0	6.00747	D-06 8.	63223D-05	7.58031D-0			
15.0	2.23316	D-06 8.	85554D-05	4.09244D-0			
16.0	2.090411		06459D-05	7.82116D-10			
17.0	1.11525		01798D-04	5.67209D-0			
18.0	2.593311		27731D-04	1.11759D-0'	7 1.4489	3D-05	
19.0	3.553141		31285D-04	7.64279D-0			
20.0	2.145201		52737D-04	1.49909D-0			
21.0	1.195581		54692D-04	4.70574D-0			
22.0	1.097611	D-05 1.'	75668D-04	1.06634D-0			
23.0	8.608851	D-06 1.8	34277D-04	3.46454D-0			
24.0	1.263171	D-05 1.9	96909D-04	4.64703D-0			
25.0	2.128681	D-05 2.:	18196D-04	6.70642D-0			
26.0	1.750701	0-05 2.3	35703D-04	2.19842D-0			
27.0	1.711121		52814D-04	9.58261D-0			
28.0	1.205231		54866D-04	4.92245D-0			
29.0	6.379331		71246D-04	3.98305D-0			
30.0	3.946751		75192D-04	4.90611D-0		4D-05	
31.0	2.806011		)3252D-04	3.80871D-0	8 1.6765	5D-05	
32.0	3.824011		07076D-04	5.28790D-0	9 1.6770	8D-05	
33.0	1.349251		20569D-04	2.60070D-0			
34.0	6.708251	D-06 3.2	27277D-04	1.99906D-0	8 1.6816	8D-05	
35.0	1.750791		4785D-04	9.03759D-0			
36.0	3.648641		31271D-04	3.11328D-1			
37.0	2.383151	0-05 4.(	05103D-04	2.34054D-1			
38.0	1.684241	0-06 4.0	06787D-04	5.27691D-1			
39.0	1.053361	0-04 5.:	L2123D-04	3.72499D-0			
40.0	1.931591	0-05 5.3	31439D-04	2.00214D-0			
	DEVIATION ON	N CUMULATIVE	TOTALS -	2.60376D-0	5 4.7422	9D-06	

# Table C-30 PIPING SEGMENT RC-16 LARGE LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

.

÷

÷

.

4

1

ė.,

Output Print File S6PROFLL.P02 Opened at 12:49 on 01-16-1997

Type of Piping Steel Material	316 St
Pipe Weld Failure Mode	Large Leak
Years Between Inspections	10.0
Wall Fraction for 50% Detection	
	0.240
Degrees (F) at Pipe Weld	606.0
Nominal Pipe Size (NPS, inch)	6.0
Thickness / Outside Diameter	0.0850
Operating Pressure (ksi)	2.52
Uniform Residual Stress (ksi)	10.0
Flaw Factor (<0 for 1 Flaw)	-10.80
DW & Thermal Stress / Flow Stress	0.19
SCC Rate / Rate for BWR Sens. SS	0.00
Factor on Wastage of 0.095 in/yr	0.00
P-P Vib. Stress (ksi for NPS of 1)	0.0
Cyclic Stress Range / Flow Stress	0.600
Fatigue Cycles per Year	10.0
Design-Limit Stress / Flow Stress	0.132
System Disabling Leak Rate (GPM)	5001.0
Minimum Detectable Leak Rate (GPM)	0.0
Value of Weld Metal Flow Stress in Ksi	51.08

 STRUCTURAL RELIABILITY AND RISK ASSESSMENT (SRRA)

 WESTINGHOUSE
 PROBABILITY OF FAILURE PROGRAM LEAKPROF
 ESBU-SMP

 INPUT VARIABLES FOR CASE 2: 316 St Steel Pipe Segment RC016017

	NCYCLE = NOVARS =	40 ·	NFAILS = 400		IAL = 50	
		28	NUMSET = 6		ISI =	5
	NUMSSC -	6	NUMTRC = 6	NUM	IFMD =	5
VA	RIABLE	DISTRIBUTION	MEDIAN	DEVIATION	SHIFT	USAGE
NO.	NAME	TYPE LOG	VALUE	OR FACTOR	MV/SD	NO. SUB
-					•	
1	PIPE-ODIA	NORMAL NO	6.6250D+00	2.4000D-02	.00	1 SET
2	WALL/ODIA	NORMAL NO	8.5000D-02	2.6350D-03	.00	2 SET
3	SRESIDUAL	NORMAL NO	1.0000D+00	1.4600D+01	.00	3 SET
4	INT*DEPTH	NORMAL YES	1.7036D+01	1.3000D+00	2.00	4 SET
5	L/D-RATIO	NORMAL YES	6.0000D+00	1.7126D+00	2.00	5 SET
6	FLAWS/IN	- CONSTANT -	-3.4370D-02			6 SET
7	FIRST-ISI	- CONSTANT -	5.0000D+00			1 ISI
8	FREO-ISI	- CONSTANT -	1.0000D+01			2 ISI
9	EPST-PND	- CONSTANT -	1.0000D-03			3 ISI
10	ASTAR - PND	- CONSTANT -	-2.4000D-01			4 ISI
11	ANUU - PND	- CONSTANT -	1.6000D+00			.5 ISI
12	HOURS/YR	NORMAL YES	7.4473D+03	1.0500D+00	.00	1 SSC
13	PRESSURE	NORMAL YES	2.5200D+00	1.0323D+00	.00	2 SSC
14	SIG-DW&TH	NORMAL YES	9.5018D+00	1.2599D+00	.00	2 SSC 3 SSC
15	SCC-COEFF	NORMAL YES	3.2310D-12	2.3714D+00		
16	SCC-EXPNT	- CONSTANT -	2.1610D+00	2.3/140+00	.00	4 SSC
17	WASTAGE	NORMAL YES	1.2740D-12	0.000.00		5 SSC
18	DSIG-VIBR			2.3714D+00	.00	6 SSC
19	CYCLES/YR		3.6957D-04	1.3465D+00	.00	1 TRC
20		- CONSTANT -	1.0000D+01			2 TRC
-	DSIG-FATG	NORMAL YES	3.0651D+01	1.4142D+00	.00	3 TRC
21	FCG-COEFF	NORMAL YES	9.1401D-12	2.8508D+00	1.00	4 TRC
22	FCG-EXPNT	- CONSTANT -	4.0000D+00			5 TRC
23	FCG-THOLD	- CONSTANT -	1.5000D+00			6 TRC
24	LDEPTH-SL	- CONSTANT -	0.000D+00			1 FMD
25	SIG-FLOW	NORMAL NO	5.1085D+01	3.2000D+00	.00	2 FMD

# Table C-30 (cont.) PIPING SEGMENT RC-16 LARGE LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

26 27	B-SDLEAK -	ormal yes Constant -	6.7432 1.1628	D+01	4142D+00	.00	3 4	FMD FMD
28	B-MDLEAK -	CONSTANT -	2.0813	D+01			5	FMD
PR	OBABILITIES OF	FAILURE MODE:	EXCEED	DISABLING	LEAK RATE OF	R BREA	ĸ	
	NUMBER	FAILED = 400	)	NUM	BER OF TRIALS	5 = 9	217	
END		E PROBABILITY	WITHOUT	AND WITH	H IN-SERVICE	INSPE	CTIO	NS
YEA	r for pe	RIOD CUM	. TOTAL		PERIOD		TOT	
1.	0 9.44497	D-10 9.44	497D-10	9.444	197D-10	9.444	97n_·	10
2.		D-11 9.79	350D-10		526D-11	9.793		
3.	0 1.18242	D-08 1.28	035D-08		242D-08	1.280		
4.		D-06 1.02	229D-06		948D-06	1.022		
5.			727D-06	2.449	977D-07	1.267		
6.			599D-06	2.57	772D-10	1.267		
7.			438D-06		329D-09	1.276		
8.			437D-06	4.049	945D-09	1.280		
9.0			060D-06	1.429	977D-09	1.281		
10.			557D-06		158D-08	1.314	42D-0	06
11.0			514D-06	2.48	L58D-08	1.339	24D-1	06
12.0			024D-05		L41D-07	1.725	38D-1	06
14.0			782D-05		L59D-08	1.819		
15.0			996D-05		165D-09	1.828		
16.0			520D-05		572D-09	1.831		
17.0			497D-05 102D-05		522D-10	1.832		
18.0			705D-05		517D-10	1.832		
19.0			867D-05		292D-11	1.832		
20.0			296D-05		43D-10 579D-09	1.833		
21.0			679D-05		211D-09	1.834		
22.0			555D-05		595D-09	1.836		
23.0			726D-05		736D-09	1.872		
24.0	6.394191		668D-05		54D-08	1.907		
25.0	2.989341		602D-05		/11D-06	5.494		
26.0	4.358381		186D-05		37D-10	5.494		
27.0			375D-04		06D-08	5.516		
28.0		0-06 2.51	028D-04		07D-11	5.516		
29.0			862D-04		764D-10	5.516		
30.0		0-07 2.54	671D-04	4.140	62D-11	5.516		
31.0			548D-04	5.057	62D-10	5.517		-
32.0			200D-04	8.635	523D-10	5.518		
33.0			409D-04	8.492	43D-10	5.518	86D-0	06
34.0			522D-04		10D-09	5.520		
35.0			737D-04		44D-10	5.520	51D-(	6
36.0			729D-04		598D-12	5.520	52D-(	06
37.0			577D-04		155D-12	5.520	52D-(	06
38.0			507D-04		37D-10	5.520	72D-(	06
39.0			852D-04		157D-11	5.520	75D-(	96
	1.005601		908D-04	5.343	35D-11	5.520	80D-0	D6
	DEVIATION ON	I CUMULATIVE T	OTALS -	1.510	74D-05	2.064	15D-(	06

#### Surry Unit 1

#### System: RC Segment: RC-057,058,059 Failure Mode(s): Fatigue

Pipe to Valve; Pipe to Reducer Location: Drawing 0124 A1-1

No.	Input Parameter Description	Circle Choice or Set Value S			Set Value	Basis
1	Type of Piping Material	30455	\$1683	Carbon Steel		Drawing/Spec.
2	Crack inspection Interval (optional)	Low(6)	Medium(10)	High(14)		Section XI
3	Crack inspection Accuracy (optional)	High(.16)	Medium(26)	Low(.32)		UT
4	Temperature at Pipe Weld	Low(150)	Medium(350)	High(550)	650	Line List ⁱ
5	Nominal Pipe Size	Small(2)	Medium(5)	Large(16)	3	Drawing
6	Thickness to O.D. Ratio	Thin(.05)	Normal(.13)	Thick(.21)	.125	Calc.
7	Normal Operating Pressure	Low(0.5)	Medium(1.3)	High(2.1)	2.235	Line List
8	Residual Stress Level	None(0.0)	Moderate(10)	Maximum(20)		Judgment
9	Initial Flaw Conditions	One Flaw	K-Ray NDB	No X-Ray		Spec.
10	DW & Thermal Stress Level	Low(.05)	Medium(.11)	High(.17)	.342	Calc.
11	Stress Corrosion Potential	None(0.0)	Moderate(0.5)	Maximum(1.0)		Judgment
12	Material Wastage Potential	Non#(0.0)	Moderate(0.5)	Maximum(1.0)		Judgment/Material
13	Vibratory Stress Range	None(0.0)	Moderate(1.5)	Maximum(3.0)		Transients Experienced
14	Fatigue Stress Range	Low(.30)	Medium(.80)	High(.70)		Judgment
15	Low Cycle Fatigue Frequency	Low(10)	Medium(20)	High(30)		Small Changes Annualty
16	Design Limiting Stress (LL/Break Only)	Low(.10)	Medium(.26)	High(.42)	.253	Calc.
. 17	System Disabling Leak (Large Leak Only)	None(0)	Medium(300)	High(600)	.501	Medium LOCA
18	Min. Detectable Leak (LL/Break Only)	None(0)	Medium(5)	High(10)	1	T.S. Limit

1,4375" thick sh 160

#### *No Leak Detection

Small Leak Prob.	No ISI:	4.1474E-5	Small Leak Prob.	, With (SI:	3.202E-5	
*Large Leak Prob	., No ISI:	4.5569E-5	Large Leak Prob.	, With ISI:	2.8049E-5	(N/A if not applicable)
Break Prob.,	No ISI:	<u>N/A</u>	Break Prob.,	With ISI:	<u>N/A</u>	(N/A If not applicable)

No Leak Detection(Snubber	locking up under Therm	al Conditions, Item	14 set a <u>t .7</u>	.)(Snubber failure))	e probability set at 20%	
Small Leak Prob., No ISI:	1.7076E-5	Small Leak Prob.,	With ISI:	5.78E-6	(N/A if not applicable)	
Large Leak Prob., No ISI:	1.3248E-5	Large Leak Prob.,	With ISI:	5.94262E-6	(N/A if not applicable)	
Break Prob., No ISI:	N/A	Break Prob.,	With ISI:	N/A	(N/A if not applicable)	

No Leak Detect	on(Snubbe	r not locking up under Sei	smic Conditions, I	tem 16 set	at .5 .)(Snubber fai	llure probability set at 20%	
Large Leak Prol	b., No ISI:	3.2683E-5	Large Leak Prob.	., With ISI:	3.16298E-5	(N/A if not applicable)	
Break Prob.,	No ISI:	N/A	Break Prob.,	With ISI:	N/A	(N/A if not applicable)	

#### *Leak Detection (with Snubber failure if most fimiting)

* Large Leak Prob	, No ISI:	3.7727E-6	Large Leak Prob	, With ISI:	2.3223E-6	(N/A if not applicable) (nonsnubber failure most limiting
Break Prob.,	No ISI:	N/A	Break Prob.,	With ISI:	<u>N/A</u>	(N/A if not applicable)

1

<u>Comments;</u> Note: 20% snubber failure probability used due to large number of snubbers. • use values/note for no leak detection LL probability should be used

. . . 1

### Table C-32

## PIPING SEGMENT RC-58 SMALL LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

Output Print File S6PROFSL.P16 Opened at 22:15 on 01-16-1997

Type of Piping Steel Material	316 St
Pipe Weld Failure Mode	Small Leak
Years Between Inspections	10.0
Wall Fraction for 50% Detection	0.240
Degrees (F) at Pipe Weld	650.0
Nominal Pipe Size (NPS, inch)	3.0
Thickness / Outside Diameter	0.1250
Operating Pressure (ksi)	2.24
Uniform Residual Stress (ksi)	10.0
Flaw Factor (<0 for 1 Flaw)	1.00
DW & Thermal Stress / Flow Stress	0.34
SCC Rate / Rate for BWR Sens. SS	0.00
Factor on Wastage of 0.095 in/yr	0.00
P-P Vib. Stress (ksi for NPS of 1)	1.5
Cyclic Stress Range / Flow Stress	0.500
Fatigue Cycles per Year	10.0
Design-Limit Stress / Flow Stress	0.253
System Disabling Leak Rate (GPM)	1501.0
Minimum Detectable Leak Rate (GPM)	0.0
Value of Weld Metal Flow Stress in Ksi	49.25

STRUCTURAL RELIABILITY AND RISK ASSESSMENT (SRRA) PROBABILITY OF FAILURE PROGRAM LEAKPROF

#### ESBU-SMP

INPUT VARIABLES FOR CASE 16: 316 St Steel Pipe Segment RC057058059

-	NCYCLE =	40	NFAILS = 400	$\mathbf{NTRIAL} = 40000$			
	NOVARS $=$	28	NUMSET = 6	NUM	ISI =	5	
	NUMSSC =	6	NUMTRC = 6	NUM	IFMD =	5	
VA	RIABLE	DISTRIBUTION	MEDIAN	DEVIATION	SHIFT	US	AGE
NO.	NAME	TYPE LOG	VALUE	OR FACTOR	MV/SD		SUB
1	PIPE-ODIA	NORMAL NO	3.50000+00	1.6000D-02	.00	1	SET
2	WALL/ODIA	NORMAL NO	1.2500D-01	3.8750D-03	.00	2	SET
3	SRESIDUAL	NORMAL NO	1.0000D+00	1.4600D+01	.00	3	SET
4	INT&DEPTH	NORMAL YES	2.2310D+01	1.2544D+00	2.00	4	SET
5	L/D-RATIO	NORMAL YES	6.0000D+00	1.7126D+00	1.00	5	SET
6	FLAWS/IN	- CONSTANT -	3.7371D-03		1.00	6	SET
7	FIRST-ISI	- CONSTANT -	5.0000D+00			1	ISI
8	FREQ-ISI	- CONSTANT -	1.0000D+01			2	ISI
9	EPST-PND	- CONSTANT -	1.0000D-03			3	ISI
10	ASTAR-PND	- CONSTANT -	-2.4000D-01			4	ISI
11	ANUU-PND	- CONSTANT -	1.6000D+00			5	ISI
12	HOURS/YR	NORMAL YES	7.4473D+03	1.0500D+00	.00	1	SSC
13	PRESSURE	NORMAL YES	2.2350D+00	1.0323D+00	.00	2	SSC
14	SIG-DWETH	NORMAL YES	1.6842D+01	1.2599D+00	.00	3	SSC
15	SCC-COEFF	NORMAL YES	3.2310D-12	2.3714D+00	.00	4	SSC
16	SCC-EXPNT	- CONSTANT -	2.1610D+00			ŝ	SSC
17	WASTAGE	NORMAL YES	1.2740D-12	2.3714D+00	.00	6	SSC
18	DSIG-VIBR	NORMAL YES	1.0073D+00	1.3465D+00	.00	1	TRC
19	CYCLES/YR	- CONSTANT -	1.0000D+01	1.34030+00		2	TRC
20	DSIG-FATG	NORMAL YES	2.4623D+01	1.4142D+00	.00	23	TRC
21	FCG-COEFF	NORMAL YES	9.1401D-12	2.8508D+00	1.00	4	TRC
22	FCG-EXPNT	- CONSTANT -	4.0000D+00	2.03000700	1.00	- 5	
23	FCG-THOLD	- CONSTANT -	1.5000D+00			-	TRC
24	LDEPTH-SL	- CONSTANT -	-9.9900D-01			6	TRC
25	SIG-FLOW	NORMAL NO	4.9246D+01	3.2000D+00	.00	1 2	FMD FMD

WESTINGHOUSE

# Table C-32 (cont.) PIPING SEGMENT RC-58 SMALL LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

27 B	-SDLEAK -	CONSTANT CONSTANT CONSTANT	-	0.0000D 0.0000D 0.0000D	+00					3 4 5	FMD FMD FMD
PROB	ABILITIES OF	FAILURE N	IODE;	THROUGH	-WALL	CRACK	DEPTH	FOR SM	ALL	LEAI	ĸ
	NUMBER	FAILED =	400			NUMBER	OF TR	IALS =	54	57	
END OF	FAILURI	E PROBABII			AND	WITH I	N-SERV	ICE IN	SPEC	TIO	15
YEAR	FOR PEI	RIOD	CUM.	TOTAL		FOR PI	RIOD	c	UM.	TOT	AL
1.0	3.057351	D-()5	3.057	35D-05	-	3.05735	D-05	з.	0573	5D-(	05
2.0	1.932751			67D-05		1.93275			0766		
3.0	2.976491			65D-05		2.97649			0796		
4.0	2.645091			510D-05	-	2.64509			1061		
5.0 6.0	6.273451 6.641821			37D-05		5.27345			1123		
7.0	9.623641			98D-05		1.15932 1.28965			1135		
8.0	2.18647			.84D-05		1.54370			1152		
9.0	1.531690			16D-05		1.24834			1164		
10.0	2.234541			50D-05		1.40678			1178		
11.0	1.625051	0-08	3.181	13D-05		7.13916			1179		
12.0	6.761200	0-07	3.248	74D-05	:	1.37749	D-07	3.	1317	1D-0	05
13.0	8.027401			02D-05		1.74791		з.	1491	9D-(	05
14.0	9.439361			46D-05		8.65672			1500		
15.0	1.813341			79D-05		5.00325		-	2000		
16.0	4.434551			22D-05	-	9.34692			2000		
17.0 18.0	2.228441			45D-05		3.36751			2000		
19.0	3.062511 2.768901			76D-05		2.53614			2000		
20.0	5.108720			64D-05		1.78585 4.84685			2001		
21.0	4.088111			52D-05		1.16623			2001		
22.0	1.81130			63D-05		3.89584			2013		
23.0	2.196790			60D-05		9.84884			2014		
24.0	1.979570	·		39D-05		5.07247			2014		
25.0	1.844260	0-08		24D-05		5.08195			2014		
26.0	2.67152	)-07	3.663	95D-05		4.68987			2015		
27.0	1.303660	)-07	3.676	99D-05	(	5.13693	D-13	3.	2015	1D-	05
28.0	2.77886[	)-07	3.704	78D-05		3.22988	D-12	3.	2015	1D-	05
29.0	7.287140			65D-05		3.17546	5D-10	3.	2015	4D-	05
30.0	1.28955			55D-05		5.69171		3.	2015	5D-	05
31.0	5.748140			03D-05		4.33284			2015		
32.0	6.17462			20D-05		2.72044			2015		
33.0	1.620010			20D-05		3.65206	-		2019		
34.0	3.548510			75D-05		5.32502			2019		
35.0	2.856350			31D-05		1.22371			2020		
36.0 37.0	9.36552D 4.11905D			68D-05		7.73760			2020		
38.0	4.11905			70D-05		5.75641			2020		
39.0	1.518680			22D-05		7.3190(			2020		
40.0	2.723150			45D-05		5.49533 1.99024			2020		
		r wr			•		10-12	. د	2020	10U-	05
	DEVIATION ON	CUMULATI	IVE TO	TALS =	:	1.99646	5D-06	1.	7699	70-	06

C-47

## Table C-33 PIPING SEGMENT RC-58 LARGE LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

Output Print File S6PROFLL.P17 Opened at 22:17 on 01-16-1997

Type of Piping Steel Material	316 St
Pipe Weld Failure Mode	Large Leak
Years Between Inspections	10.0
Wall Fraction for 50% Detection	0.240
Degrees (F) at Pipe Weld	650.0
Nominal Pipe Size (NPS, inch)	3.0
Thickness / Outside Diameter	0.1250
Operating Pressure (ksi)	2.24
Uniform Residual Stress (ksi)	10.0
Flaw Factor (<0 for 1 Flaw)	1.00
DW & Thermal Stress / Flow Stress	0.34
SCC Rate / Rate for BWR Sens. SS	0.00
Factor on Wastage of 0.095 in/yr	0.00
P-P Vib. Stress (ksi for NPS of 1)	1.5
Cyclic Stress Range / Flow Stress	0,500
Fatigue Cycles per Year	10.0
Design-Limit Stress / Flow Stress	0.253
System Disabling Leak Rate (GPM)	1501.0
Minimum Detectable Leak Rate (GPM)	0.0
Value of Weld Metal Flow Stress in Ksi	49.25

STRUCTURAL RELIABILITY AND RISK ASSESSMENT (SRRA) PROBABILITY OF FAILURE PROGRAM LEAKPROF

ESBU-SMF

INPUT VARIABLES FOR CASE 17: 316 St Steel Pipe Segment RC057058059

	NCYCLE =	40	NFAILS = 400	NTE	RIAL = 50	000
	NOVARS =	28	NUMSET = 6	NUM	ISI =	5
	NUMSSC =	6	NUMTRC = 6	NUN	IFMD =	5
773	RIABLE					
NO.		DISTRIBUTION	MEDIAN	DEVIATION	SHIFT	USAGE
NO.	NAME	TYPE LOG	VALUE	OR FACTOR	MV/SD	NO. SUB
1	PIPE-ODIA	NORMAL NO	3.5000D+00	1.6000D-02	.00	1 SET
2	WALL/ODIA	NORMAL NO	1.2500D-01	3.8750D-03	.00	2 SET
3	SRESIDUAL	NORMAL NO	1.0000D+00	1.4600D+01	.00	
4	INT&DEPTH	NORMAL YES	2.2310D+01	1.2544D+00	2.00	3 SET
5	L/D-RATIO	NORMAL YES	6.0000D+00	1.7126D+00	2.00	4 SET 5 SET
6	FLAWS/IN	- CONSTANT -	3.7371D-03	1.71200700	2.00	
7	FIRST-ISI	- CONSTANT -	5.0000D+00			
8	FREO-ISI	- CONSTANT -	1.0000D+01			
9	EPST-PND	- CONSTANT -	1.0000D-03			
10	ASTAR-PND	- CONSTANT -	-2.4000D-01			
11	ANUU-PND	- CONSTANT -	1.6000D+00			
12	HOURS/YR	NORMAL YES	7.4473D+03	1.05000+00	~~	5 ISI
13	PRESSURE	NORMAL YES	2.2350D+00	1.0323D+00	.00	1 SSC
14	SIG-DWLTH	NORMAL YES	1.6842D+01		.00	2 SSC
15	SCC-COEFF	NORMAL YES	3.2310D-12	1.2599D+00	.00	3 SSC
16	SCC-EXPNT	- CONSTANT -	2.1610D+00	2.3714D+00	.00	4 SSC
17	WASTAGE	NORMAL YES				5 SSC
18	DSIG-VIBR	NORMAL YES	1.2740D-12	2.3714D+00	.00	6 SSC
19	CYCLES/YR	- CONSTANT -	1.0073D+00	1.3465D+00	.00	1 TRC
20	DSIG-FATG		1.0000D+01			2 TRC
21		NORMAL YES	2.4623D+01	1.4142D+00	.00	3 TRC
22	FCG-COEFF	NORMAL YES	9.1401D-12	2.8508D+00	1.00	4 TRC
	FCG-EXPNT	- CONSTANT -	4.0000D+00			5 TRC
23	FCG-THOLD	- CONSTANT -	1.5000D+00			6 TRC
24	LDEPTH-SL	- CONSTANT -	0.0000D+00			1 FMD
25	SIG-FLOW	NORMAL NO	4.9246D+01	3.2000D+00	.00	2 FMD

WESTINGHOUSE

# Table C-33 (cont.) PIPING SEGMENT RC-58 LARGE LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

) Sweet

1

• •

ì

26 27	STRESS-DL B-SDLEAK		YES	1.2459		1.4142	2D+00	.00	3	FMD .
28	B-MDLEAK	- CONSTAN - CONSTAN		4.4079					4	FMD
		COURTER		1.09961	)+UT				5	FMD
PRC	BABILITIES O	F FAILURE	MODE:	EXCEED	DISAB	LING LEA	K RATE O	R BRI	EAK	
	NUMBE	R FAILED :	= 400			NUMBER	OF TRIAL	s =	3687	
END O		RE PROBABI		****						
YEAR	FOR P			TOTAL	AND	WITH IN	-SERVICE			
			COM.	TUTAL		FOR PER	RIOD	CUN	I. TOT	AL
1.0	3.3351	6D-06	3.335	16D-06	-	3.33516D				
2.0				35D-05		2.440840			516D-	
3.0	4.9244	6D-08		28D-05		.92446D			435D-	
4.0	1.3499	4D09		41D-05		.349940			'928D- '941D-	
5.0	7.5970	1D()8	2.787	01D-05		.597010			701D-	
6.0	1.4798			81D-05		.48406D			706D-	
7.0	1.2091			90D-05		5.06341D			757D-	
8.0	5.9707			50D-05	5	.85096D	-10		763D-	
9.0 10.0	6.4326			93D-05	2	.80123D	-09		791D-	
11.0	4.5722			39D-05		.28518D		2.78	795D-	05
12.0	4.6706			69D-05		22178D		2.78	796D-	05
13.0	1.2248			36D-05		.96029D		2.78	846D-	05
14.0	2.7723			48D-05 25D-05		.33701D			846D-	
15.0	1.2765			23D-05		.21454D		-	856D-	
16.0	2.11578			13D-05		.30684D .45061D			986D-	
17.0	8.57868			71D-05		.45061D		-	986D-	
18.0	1.64121	LD-07		12D-05		.25991D			988D-	
19.0	4.39086	5D-07		03D-05		.72077D			001D-	
20.0	4.62152	2D-08		65D-05		.92562D			003D-	
21.0	2.42487	7D-09	2.917	90D-05		.98393D			006D-	
22.0	1.79865		2.935	88D-05		.35547D			014D-	
23.0	5.85201		2.941	74D-05		.49486D			016D-	
24.0 25.0	7.95809			69D-05	5	.56451D	-10		022D-	
25.0	1.94796			17D-05	5	.68400D	-09		079D-	
27.0	5.21654			39D-05	5	.10303D	-13		079D-	
28.0	4.07707 1.03591			16D-05		.40309D		2.79	093D-	05
29.0	4.99632			52D-05		.86864D			093D-0	
30.0	8.21625			02D-05		.62066D			093D-(	
31.0	4.46089			24D-05		.96166D		2.79	095D-(	05
32.0	1.09754			70D-05 57D-05		.30322D			095D-1	
33.0	5.70996			70-05		.23450D			096D-(	
34.0	1.31202			79D-05		.38261D			234D-(	
35.0	5.46170		4.4734			.22141D			456D-0	
36.0	6.52487	D-08		3D-05		.52405D			481D-4	
37.0	8.26857	D-08	4.4882			.39712D			481D-0	
38.0	4.18999		4.5301			.05253D			481D-0	
39.0	2.05933	D-07	4.5506			.53907D			492D-( 492D-(	
40.0	6.26695	D-03	4.5569			.70250D			492D-( 493D-(	
•			-		•		**	6.004	43304(	13
	DEVIATION O	N CIMULATI	IVE TOT	ALS =	2	.15163D-	-06	1.72	711D-0	06

#### Surry Unit 1

|

ļ

{

System: _SW_ Segment: SW-004, 005, 006 Failure Mode(s): Wastage/Pitting Location: 163L Class Pipe - Weld at Reducer on 2" side

ĺ

1

{

[

[

1 201

ĺ

(

ĺ

No.	Input Parameter Description	Circ	cle Choice or Set V	/atue	Set Value	Basis
1	Type of Piping Material	304SS	21685	Carbon Steel		163L - Drawing/Spec
2	Crack inspection Interval (optional)	Low(6)	Medium(10)	High(14)		Section XI
3	Crack inspection Accuracy (optional)	High(.16)	Medium(.24)	Low(.32)		RT
4	Temperature at Pipe Weld	Low(150)	Medium(350)	High(550)	95	Line List
5	Nominal Pipe Size	Smali(2)	Medium(5)	Large(16)	2	Drawing
6	Thickness to O.D. Ratio	Thin(.05)	Normal(.13)	Thick(.21)	.06	Calc.
7	Normal Operating Pressure	Low(0.5)	Medlum(1.3)	High(2.1)	.025	Line List
8	Residual Stress Level	None(0.0)	Moderale(10)	Maximum(20)	5	Judgment - fillet
9	Initial Flaw Conditions	One Flaw	X-Ray NDE	No X-Ray		Spec.
10	DW & Thermal Stress Level	Low(.05)	Medium(.11)	High(.17)	.038	Calc.
11	Stress Corrosion Potential	None(0.0)	Moderate(0.5)	Maximum(1.0)		Judgment
12	Material Wastage Potential	None(0.0)	Moderate(0.5)	Maximum(1.0)	1.0	Judgment
13	Vibratory Stress Range	None(0.0)	Moderate(1.5)	Maximum(3.0)		Judgment
14	Fatigue Stress Range	Low(.30)	Medium(.50)	High(.70)		Judgment
15	Low Cycle Fatigue Frequency	Low(10)	Medium(20)	High(30)		Judgment
16	Design Limiting Stress (LL/Break Only)	Low(.10)	Medium(.28)	High(.42)	.017	Calc.
17	System Disabling Leak (Large Leak Only)	None(0)	Medium(300)	High(600)	10	10% of 2" pipe flow
18	Min. Detectable Leak (LL/Break Only)	None(0)	Medium(5)	High(10)	1	1 gpm - Pump PT accessible

#### No Leak Detection

Small Leak Prob	, No ISI:	3.4793E-4	Small Leak Prob.	, With ISI:	9.7512E-6	
Large Leak Prob	, No ISI:	9.3320E-5	Large Leak Prob.	, With ISI:	7.0519E-7	(N/A if not applicable)
Break Prob.,	No ISI:	N/A	Break Prob.,	With ISI:	N/A	(N/A if not applicable)

Small Leak Prob.	, NO ISI:	 Small Leak Prod.,	, with ISI:	 (N/A II not applicable)
Large Leak Prob.	, No ISI:	Large Leak Prob.,	, With ISI:	(N/A if not applicable)
Break Prob.	No ISI:	Break Prob.,	With ISI:	(N/A if not applicable)

No Leak Detection(Snubber not locking up under Se Large Leak Prob., No ISI: Break Prob., No ISI:	ismic Conditions, Item 16 sei Large Leak Prob., With ISI: Break Prob., With ISI:	allure probability set at (N/A if not applicable) (N/A if not applicable)	<u>N/A</u> }(N/A if not applicable)
Leak Detection (with Snubber failure if most limiting)		 	

Large Leak Prob	., No ISI:	1.0665E-5	Large Leak Prob	., With ISI:	2.9987E-7	(N/A if not applicable)
Break Prob.,	No ISI:	<u>N/A</u>	Break Prob.,	With ISI:	N/A	(N/A if not applicable)

Comments: No Snubbers.

Fiberglass piping failure probability set at 1E-2 for small leak and large leak (based upon fatigue).

1

1

## Table C-35

. . ,

1

2

# PIPING SEGMENT SW-04 SMALL LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

	Output	Print Fil	e S6P	ROFSL.P03 Opened	l at 14:18 on	04-02-19	97	
		Piping S						•
•	Pipe We	ald Failur	e Mod	<b>6</b> Macat 197		316 St Small Lea	- 1-	
	Years Between Inspections							
	Wall Fraction for 50% Detection							
	Degrees		0.160 95.0					
	Nominal	. Pipe Size	) (NP	S, inch)		2.0		
		ss / Outs:				0.0600		
	Operati	ng Pressu	re (k	si)		0.25		
	Uniform	Residual	Stre	ss (ksi)		5.0		
	LTAM LA	ctor (<0	or 1	Flaw)		12.80		
	SCC Dat	ernal stre	338 / °om D	Flow Stress WR Sens. SS		0.04		
	Factor	on Wastag	LOE B	.0095 in/yr		0.00		
	P-P Vib	. Strass	ksi	for NPS of 1)		1.00		
	Cyclic	Stress Ran	nge /	Flow Stress		0.0 0.300		
	Fatigue	: Cycles pe	er Ye	ar		20.0		
	Design-	Limit Stre	ss /	Flow Stress		0 017		
	System	Disabling	Leak	Rate (GPM)		10.0		
	Minimum	Detect:ab]	e Le	Rate (GPM) ak Rate (GPM) low Stress in Ks		0.0		
	value o	I Weld Met	al F	low Stress in Ks	i	72.44		
	•							
WEST:	Inghouse	PROF	LARTT.	ELIABILITY AND R ITY OF FAILURE P	ISK ASSESSMEN	T (SRRA)		
	يعمر فالمحمد الألاد المتحد الألا						_	BU-NSD
	INPUT VARIA	BLES FOR C	ASE	3: 316 St Steel	Pipe Segment	SW-4;5;6	5	
	NCYCLE = NOVARS =	40 28		NFAILS = 400		RIAL = 40	0000	
	NUMSSC =			NUMSET = 6 NUMTRC = 6		MISI =	5	
		0		NUMTRC = 6	NU	MFMD =	5	
V2	RIABLE	DISTRIBU	TION	MEDIAN	DEVIATION	SHIPT	110	300
NO.		TYPE			OR FACTOR	MV/SD		SUB
						, 00		205
1	PIPE-ODIA	NORMAL	NO	2.3750D+00	1.6000D-02	.00	1	SET
2	WALL/ODIA	NORMAL	NO	6.0000D-02	1.8600D-03			
4	SRESIDUAL	NORMAL	YES	5.0000D+00 3.9953D+01	1.4142D+00	.00	3	
5	INT&DEPTH	NORMAL		3.9953D+01	1.1840D+00		- 4	SET
6	L/D-RATIO	NORMAL	YES	6.0000D+00 6.9762D-02	1.7126D+00	1.00	5	
7	FIRST-ISI		NW -	6.9762D-02			6	
8	FREQ-ISI	- CONSTR	NAL -	5.0000D+00 1.0000D+01 1.0000D-03			1	ISI
	EPST-PND	- CONSTA		1.0000D+01			2	ISI
10		- CONSTA	NT -	-1.6000D-01			3	ISI
11	ANUU-PND	- CONSTA	NT -	1.60000+00			4	ISI
12	HOURS/YR	NORMAL	YES	1.6000D+00 7.4473D+03	1.0500D+00	.00	5 1	ISI SSC
13	PRESSURE	NORMAL	YES	2.5000D-01 2.7527D+00	1.0323D+00	.00		
14	SIG-DW&TH	NORMAL	YES	2.7527D+00	1.2599D+00	.00	3	
15	SCC-COEFF	NORMAL	YES	3.2310D-12	2.3714D+00	.00	4	SSC
16	SCC-EXPNT	- Consta	NT -	2.1610D+00			5	SSC
17	WASTAGE	NORMAL	yes	1.2740D-09	2.3714D+00	.00	6	SSC
18	DSIG-VIBR	NORMAL	YES	8.1948D-04	1.3465D+00	.00	ī	TRC
19	CYCLES/YR	- CONSTA		2.0000D+01	-		2	TRC
20	DSIG-FATG	NORMAL	YES	2.1732D+01	1.4142D+00	.00	3	TRC
21	FCG-COEFF	NORMAL	YES	9.1401D-12	2.8508D+00	1.00	4	TRC
22	FCG-EXPNT	- CONSTA		4.0000D+00			5	TRC
23	FCG-THOLD	- CONSTA		1.5000D+00			6	TRC
24	LDEPTH-SL	- CONSTA	-	-9.9900D-01		•	1	FMD
25	SIG-FLOW	NORMAL	NO	7.2439D+01	3.2000D+00	.00	2	FMD

# Table C-35 (cont.) PIPING SEGMENT SW-04 SMALL LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

26 27 28	STRESS-DL - B-SDLEAK - B-MDLEAK -	- Constant - Constant - Constant	-	0.0000 0.0000 0.0000	+00					3 4 5	FMD FMD FMD
PRO	BABILITIES OF	P FAILURE 1	MODE:	THROUGH	-WALL	CRACK	DEPTH	FOR S	MALL	LEAI	ĸ
	NUMBER	R FATLED =	400			NUMBER	OF TR	IALS	= 62	31	
END (	OF FAILUR	E PROBABII	LITY W	TTHOIT	AND	WTTH T	N-SERV	TOP T	NCDPC	መተለነ	JC
YEAH				TOTAL		FOR PE			CUM.		
1.0	) 1.68675	5D-07	1.686	75D-07	1	L.68675	D-07	1	.6867	50-0	17
2.0	8.09942	2D-08		70D-07		3.09942			.4967		
3.0	4.36649	D-06	4.616	16D-06		.36649			.6161		
4.0		D-06	6.299	70D-06	1	.68354	D-06		.2997		
5.0		5D-07	6.899	32D-06	5	5.99626	D-07	6	.8993	2D-0	6
6.0			1.012	35D-05	8	3.01170	D-09	6	.9073	3D-0	6
7.0			1.123	46D-05	1	L <b>.95106</b>	D-09	6	.9092	8D-(	06
8.0		-		55D-05	2	2.64217	D-09	6	.9119	3D-0	)6
9.0				77D-05		3.44600		7	.7565	3D-(	)6
10.0				62D-05		1.77084		9	.5273	7D-0	)6
11.0				08D-05	-	.68505			.5282		
13.0				60D-05		.54126		-	.6036		
14.0				24D-05		.30008			.7336		
15.0				04D-05		.30191		-	.7379		
16.0				25D-05		.88657			.7418		
17.0				61D-05 60D-04		L.08247			.7429		
18.0				85D-04		.42498 .97019			.7430		
19.0				82D-04		48304			.7460		
20.0				48D-04	_	.24158		-	.7461		
21.0				86D-04		.59468			.7461		
22.0	2.88784	D-06		74D-04		.47138			.7461	_	
23.0	6.72631	D-06		01D-04		5.16649			.7462		
24.0	3.00307	D-06		04D-04		.11170			.7463		
25.0		D-06	1.462	00D-04		.43563			.7470		
26.0	9.46188	D-06	1.556	62D-04	1	.84386	D-12		.7470		
27.0	6.91703	D-06	1.625	79D-04	8	.25949	D-12		.7470		
28.0			1.672	02D-04	9	.75302	D-13	9	.7470	8D-(	6
29.0	8.75900		2.547	92D-04	- 4	.16906	D-09	9	.7512	5D-0	)6
30.0	2.80004			92D-04	4	.11208	D-12	9	.7512	5D-(	)6
31.0	3.02396			16D-04		.67371		- 9	.7512	5D-(	)6
32.0	1.15533			69D-04	-	51220		9	.7512	6D-0	)6
33.0	2.56739			37D-04		.38600		-	.7512		
35.0	1.54113			78D-04		.55637		-	.7512	. –	
36.0	3.71838 1.09185			50D-04		.85880		-	.7512		
37.0	· 1.09185			68D-04		07253			.7512		
38.0	2.36529			35D-04		02031		-	.7512		
39.0	1.41398			88D-04		.61787			.7512		
40.0	1.17076			28D-04 35D-04		.77205			.7512		-
					4	.95532	<b>D-14</b>	9	.7512	:/D+(	90
DEVIATION ON CUMULATIVE TOTALS =					1	.68305	D-05	2	.9100	0D0	06

## Table C-36

# PIPING SEGMENT SW-04 LARGE LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

Output Print File S6PROFLL.P04 Opened	at 14:21 on 04-02-1997
Type of Piping Steel Material	316 St
Pipe Weld Failure Mode	Large Leak
Years Between Inspections	10.0
Wall Fraction for 50% Detection	0.160
Degrees (F) at Pipe Weld	95.0
Nominal Pipe Size (NPS, inch)	2.0
Thickness / Outside Diameter	0.0600
Operating Pressure (ksi)	0.25
Uniform Residual Stress (ksi)	5.0
Flaw Factor (<0 for 1 Flaw)	12.80
DW & Thermal Stress / Flow Stress	0.04
SCC Rate / Rate for BWR Sens. SS	0.00
Factor on Wastage of .0095 in/yr	1.00
P-P Vib. Stress (ksi for NPS of 1)	0.0
Cyclic Stress Range / Flow Stress	0.300
Fatigue Cycles per Year	20.0
Design-Limit Stress / Flow Stress	0.017
System Disabling Leak Rate (GPM)	10.0
Minimum Detectable Leak Rate (GPM)	0.0
Value of Weld Metal Flow Stress in Ks	i 72.44
	- /4.44
STRUCTURAL RELIABILITY AND R: WESTINGHOUSE PROBABILITY OF FAILURE PI	ISK ASSESSMENT (SRRA) Rogram leakprof esbu

ESBU-NSD

____ 1

----,

. .....

-----,

3 ÷

Э

	INPUT VARIA	ABLES FOR CASE	4: 316 St Steel	Pipe Segment	SW-4;5;	6
	NCYCLE =	40	NFAILS = 400	NT	RIAL = 5	0000
	NOVARS =	28	NUMSET = 6		MISI =	5
	NUMSSC =	6	NUMTRC = 6	+	MFMD =	5
-	RIABLE	DISTRIBUTION	MEDIAN	DEVIATION	SHIFT	USAGE
NO.	NAME	TYPE LOG	VALUE	OR FACTOR	MV/SD	NO. SUB
					,	
1	PIPE-ODIA	NORMAL NO	2.3750D+00	1.6000D-02	.00	1 SET
2	WALL/ODIA	NORMAL NO	6.0000D-02	1.8600D-03	.00	2 SET
3	SRESIDUAL	Normal Yes	5.0000D+00	1.4142D+00	.00	3 SET
4	INT&DEPTH	NORMAL YES	3.9953D+01	1.1840D+00	2.00	4 SET
5	L/D-RATIO	NORMAL YES	6.0000D+00	1.7126D+00	2.00	5 SET
6	FLAWS/IN	- CONSTANT -	6.9762D-02			6 SET
7	FIRST-ISI	- CONSTANT -	5.0000D+00			1 ISI
8	FREQ-ISI	- CONSTANT -	1.0000D+01			2 ISI
9	EPST-PND	- Conistant -	1.0000D-03			3 ISI
10	ASTAR-PND	- Constant -	-1.6000D-01			4 ISI
11	ANUU-PND	- Constant -	1.6000D+00			5 ISI
12	HOURS/YR	NORMAL YES	7.4473D+03	1.0500D+00	.00	1 SSC
13	PRESSURE	Normal Yes	2.5000D-01	1.0323D+00	.00	2 SSC
14	SIG-DW&TH	Normal yes	2.75270+00	1.25990+00	.00	3 SSC
15	SCC-COEFF	Normal yes	3.2310D-12	2.3714D+00	00	4 SSC
16	SCC-EXPNT	- Constant -	2.1610D+00			5 SSC
17	WASTAGE	NORMAL YES	1.2740D-09	2.3714D+00	.00	6 SSC
18	DSIG-VIBR	Normal yes	8.1948D-04	1.3465D+00	.00	1 TRC
19	CYCLES/YR	- CONSTANT -	2.0000D+01			2 TRC
20	DSIG-FATG	NORMAL YES	2.1732D+01	1.41420+00	.00	3 TRC
21	FCG-COEFF	NORMAL YES	9.1401D-12	2.8508D+00	1.00	4 TRC
22	FCG-EXPNT	- CONSTANT -	4.0000D+00			5 TRC
23	FCG-THOLD	- CONSTANT -	1.5000D+00			6 TRC
24	LDEPTH-SL	- CONSTANT -	0.0000D+00			1 FMD
25	SIG-FLOW	NORMAL NO	7.2439D+01	3.2000D+00	. OÓ	2 FMD

# Table C-36 (cont.) PIPING SEGMENT SW-04 LARGE LEAK FAILURE PROBABILITY SRRA MODEL OUTPUT

26	STRESS-DL	NORMAL	YES	1.2315	D+00 1.	4142D+00	.00	3	FMD
27	B-SDLEAK	- Cons	TANT -	7.4613				4	
28	B-MDLEAK	- Cons	TANT -	7.4613	D+00			5	FMD
								-	
PR	OBABILITIES	OF FAIL	URE MODE:	EXCEED	DISABLING	LEAK RATE	OR BREAD	C .	
	NUM	BER FAIL	ED = 400		NUM	BER OF TRI	ALS = 149	500	
			_						
END			BABILITY 1		AND WIT	H IN-SERVI	CE INSPE	TIO	ns
YEA	r for	PERIOD	CUM	. TOTAL	FOR	PERIOD	CUM.	TOT	AL
	_								
1.0		159D-12		159D-12	4.47	159D-12	4.4715	59D-	12
2.		694D-11		410D-11	4.53	694D-11	4.9841	LOD-	11
3.		988D-07		038D-07	3.58	988D-07	3.5903	8D-	07
4.(		973D-09		068D-07	1.02	973D-09	3.6006	58D-	07
5.0		609D-07		677D-07	3.39	609D-07	6.9967	7D-	07
6.1		387D-06	1.903	354D-06	1.22	417D-09	7.0090	)1D-	07
7.0		967D-07	2.67	551D-06	8.03	318D-10	7.0170	4D-	07
8.(		489D-07	2.819	900D-06	1.46	276D-10	7.0185	50D-	07
9.(		709D-07		271D-06	5.94	038D-10	7.0244	5D-	07
10.0		957D-07	3.94	567D-06	5.70	273D-10	7.0301	15D-	07
11.0		261D-07		593D-06	9.87	671D-10	7.0400	)2D-	07
12.0		344D-07	5.122	227D-06	2.09	279D-10	7.0423	12D-	07
13.0		293D-09	5.133	L23D-06	1.06	631D-11	7.0422	2D-	07
14.0		281D-07	5.690	052D-06	8.01	195D-10	7.0502	24D-	07
15.0		427D-07	5.800	594D-06	1.32	938D-10	7.051	57D-	07
16.0		018D-08	5.817	704D-06	1.47	1070-14	7.051	57D-	07
17.0		847D-07	5.95	589D-06	2.59	078D-13	7.051	57D-	07
18.0		703D-07	6.20	559D-06	2.82	860D-13	7.051	570-	07
19.0		051D-06	1.211	L61D-05	2.45	604D-11	7.0518	32D-	07
20.0		392D-07	1.241	L45D-05	7.78	344D-13	7.0518	32D-	07
21.0		386D-08	1.247	766D-05	8.56	556D-14	7.0518	3D-	07
22.0		247D-07	1.263	318D-05	2.09	962D-13	7.0518	3D-	07
23.0		290D-08	1.272	254D-05	1.34	603D-13	7.0518	3D-	07
24.0		082D~07	1.32	524D-05	1.45	966D-12	7.0518		
25.0		152D-06	1.482	240D-05	6.62	705D-12	7.0519	)1D-	07
26.0		501D-06	2.105	590D-05	1.26	675D-13	7.0519	1D-	07
27.0		398D-06	2.223	80D-05	5.37	125D-15	7.0519	1D-	07
28.0		778D-06	2.445	57D-05	4.44	289D-15	7.0519	1D-	07
29.0		595D-07	2.510	)33D-05	1.38	936D-15	7.0519	1D-	07
30.0		2300-06	2.833	56D-05	5.91	452D-13	7.0519		
31.0	1.352	281D-06	2.968	84D-05		518D-15	7.0519		
32.0	2.723	396D-06	3.241	24D-05	4.66	115D-14	7.0519	2D-	07
33.0	2.032	292D-07		57D-05		785D-16	7.0519		
34.0	3.149	36D-07	3.293	06D-05		897D-16	7.0519		
35.0	4.925	516D-07		232D-05		981D-15	7.0519		
36.0	4.623	89D-07		55D-05		744D-18	7.0519		
37.0	3.040	58D-07		96D-05		665D-19	7.0519		-
38.0	5.207	790-05		575D-05		445D-14	7.0519		
39.0		281D-06		03D-05		959D-16	7.0519		
40.0	1.590	19D-06		05D-05		975D-17	7.0519		

DEVIATION ON CUMULATIVE TOTALS = 4.60138D-06 4.05585D-07

o:\4393\VersionA\4393-C2.doc:1b-021999

# APPENDIX D SRRA CODE DESCRIPTION

Information now contained in WCAP-14572, Revision 1-NP-A, Supplement 1.

## APPENDIX E BENCHMARKING OF SRRA CODE

Information now contained in WCAP-14572, Revision 1-NP-A, Supplement 1.

## APPENDIX F RELATED WOG AND ACRS CORRESPONDENCE

Note: The WOG letters provided in this appendix contain the changes suggested to be made to the WCAP based on NRC staff review of the submitted WOG Topical Report. These recommended changes have been incorporated into the accepted version of the report. One WOG letter is referenced in the NRC's SER, while the other letter is referenced in an NRC Advisory Committee on Reactor Safeguards (ACRS) letter also included in this appendix. The ACRS letter contains the review and recommendations of the ACRS based on their review of the submitted WOG Topical Report.