

W. R. McCollum, Jr. Vice President

Duke Energy

Oconee Nuclear Station 7800 Rochester Highway Seneca, SC 29672 (864) 885-3107 OFFICE (864) 885-3564 FAX

September 11, 2001

U. S. Nuclear Regulatory Commission Document Control Desk Washington, D. C. 20555

Subject:

Oconee Nuclear Station

Docket Nos. 50-269, -270, -287

Emergency Plan Implementing Procedures Manual

Volume B, Revision 2001-06

Please find attached for your use and review copies of the revision to the Oconee Nuclear Station Emergency Plan:

Volume B Revision 2001-06 September 2001

This revision is being submitted in accordance with 10 CFR 50-54(q) and does not decrease the effectiveness of the Emergency Plan or the Emergency Plan Implementing Procedures.

Any questions or concerns pertaining to this revision please call Mike Thorne, Emergency Planning Manager at 864-885-3210.

By copy of this letter, two copies of this revision are being provided to the NRC, Region II, Atlanta, Georgia.

Very truly yours,

W. R. McCollum, Jr VP, Oconee Nuclear Site

(w/2 copies of attachments) XC:

Mr. Luis Reyes,

Regional Administrator, Region II U. S. Nuclear Regulatory Commission 61 Forsyth St., SW, Suite 24T23

Atlanta, Georgia 30303

w/copy of attachments Mr. Steven Baggett Rockville, Maryland

(w/o Attachments, Oconee Nuclear Station) NRC Resident Inspector M. D. Thorne, Manager, Emergency Planning

September 11, 2001

OCONEE NUCLEAR SITE

SUBJECT: Emergency Plan Implementing Procedures

Volume B, Revision 2001-06

Please make the following changes to the Emergency Plan, Volume B by following these instructions.

REMOVE

Cover Sheet Rev. 2001-05

Table of Contents page 1

Chemistry Lab LM-O-P919 (10/26/99)

ADD

Cover Sheet Rev. 2001-06

Table of Contents page 1

Chemistry Lab LM-O-P919 (08/17/01)

DUKE POWER

EMERGENCY PLAN IMPLEMENTING PROCEDURES VOLUME B

APPROVED:
WW Josh
W. W. Foster, Manager
Safety Assurance
9/1/0/ Date Approved
Date Approved
09/11/01
Effective Date

VOLUME B REVISION 2001-06 September, 2001

VOLUME B TABLE OF CONTENTS

Chemistry Lab LM-O-P003C	Determination Of Boron By Manual Colorimetric Titration	11/18/96
Chemistry Lab LM-O-P919	Boron Analysis by Mettler DL 58 Boron Titration	08/17/01
CP/1/A/2002/004C	Operating Procedure For The Post Accident Liquid Sampling System (PALSS)	03/15/01
CP/1&2/A/2002/005	Post Accident Caustic Injection Into The Low Pressure Injection System	02/14/01
CP/2/A/2002/004C	Operating Procedure For The Post Accident Liquid Sampling System (PALSS)	03/15/01
CP/3/A/2002/004C	Operation Procedure For The Post-Accident Liquid Sampling System (PALSS)	03/15/01
CP/3/A/2002/005	Post Accident Caustic Injection Into The Low Pressure Injection System	02/14/00
HP/0/B/1009/009	Procedure For Determining The Inplant Airborne Radioiodine Concentation During Accident Conditions	e 12/03/97
HP/0/B/1009/012	Distribution Of Potassium Iodide Tablets In The Event Of A Radioiodine Release	01/09/01
HP/0/B/1009/015	Procedure For Sampling And Quantifying High Level Gaseous Radioiodine And Particulate Radioactivity	07/23/01
HP/0/B/1009/016	Procedure For Emergency Decontamination Of Personnel And Vehicles On-Site And From Off-Site Remote Assembly Area	12/29/97
HP/1/A/1009/017	Operating Procedure For Post-Accident Containment Air Sampling System	09/13/00
HP/2/A/1009/017	Operating Procedure For Post-Accident Containment Air Sampling System	09/13/00
HP/3/A/1009/017	Operating Procedure For Post-Accident Containment Air Sampling System	09/13/00
RP/0/B/1000/011	Planned Emergency Exposure	02/01/94
RP/0/B/1000/025	Operational Support Center Manager Procedure	06/26/00
RP/0/B/1000/027	Re-Entry Recovery Procedure	05/30/00
		Revision 2001-06 September, 2001

Duke Power Company Nuclear Generation Department

LABORATORY METHOD PROCESS RECORD

Reference Use INFORMATION ONLY

Station:	Oconee	LM/O/ <u>P919</u>
		Rev. #: 5 Change: (A, B, or C, etc.)
Title:	Boron Analysis	by Mettler DL-58 Titration
	pplicable boxes) This Method is based on General Lab This Method is based on General Lab This Method is not based on a Genera These changes affect the associated makes Tield testing performed. Date:	ethod development package.
Descript	ion of Change: (Attach additio	nal pages if necessary)
SEÉ	E Attached	
Basis fo	r Change: (Attach additional p	ages if necessary)
add.	l maintenance :	enclosure; provided clarification
step	\$	
Field Te	esting Comments: (Attach add	tional pages if necessary)
N	/A	
Prepared Technic	d byal Review by	Date $\frac{8/12/61}{Date \frac{6}{0}/3/0}$
Addition	nal Review by (optional)	Date
Approve	ed by Dyn	Date 6/17/01

Boron Analysis by Mettler DL58 Boron Titration

1. Purpose

NOTE:

Seven Control Copies and one Information Only copy of this CSM shall be routed to the Emergency Preparedness Team within three (3) working days following any approved changes/modifications.

1.1 Scope

CAUTION:

This laboratory method describes the automatic titrimetric method for determining boron in aqueous solutions. This laboratory method is applicable for Primary Systems.

1.2 Principle

Boric acid is a weak acid and cannot be titrated directly with a strong base to an accurate endpoint. Mannitol is added to stabilize the anion of boric acid and increase the strength of the acid.

The mannitol-borate complex can then be titrated with a strong base. The concentration of boron is proportional to the amount of standard sodium hydroxide required to titrate the boron to a pH endpoint of 8.3.

The titration is performed by a Mettler DL58 automated titration system. Samples are loaded onto a Mettler ST20A Sample Transport Unit. A digital buret assembly dispenses titrant into the sample. The rate of titrant delivery is slowed near the equivalence point. This allows ample time for thorough mixing and reaction of titrant with the sample until the pH equivalence point is obtained.

1.3 Interferences

- 1.3.1 Carbon Dioxide is an interferent; however, the interference should be negligible if the following conditions are met:
 - Water used for preparing sodium hydroxide is boiled or deaerated.
 - Sodium hydroxide reservoir is air tight or equipped with a CO₂ absorption tube filled with drying agent.
 - Sample is not over-stirred.
 - Sample exposure to air is minimized.
- 1.3.2 Lithium Hydroxide and Ammonium Hydroxide are potential interferences; however, these interferences have been determined to be negligible as the change in boron concentration that they cause is less than the required accuracy needed.

1.4 Limits

This method is applicable for samples containing between 0.2 - 10,000 ppm boron as boric acid.

1.5 Precautions

- 1.5.1 The pH electrode should be stored in a conditioning agent as recommended by the electrode manufacturer when not in use.
- 1.5.2 The sodium hydroxide reservoir should be emptied and refilled rather than "topped off" when the supply is low.
- 1.5.3 Typically, when the titrator has been idle, the first standard/sample will show a high bias result. Therefore, when the titrator has been idle, the first standard/sample of a titration series should be run in duplicate and the first result discarded.
- 1.5.4 If the titrator does not initiate analysis after pressing the [Run] key twice, then the [Run] key may need to be pressed again or the [Start] key may be pressed.
- 1.5.5 If the titrator goes into the Hold mode when adding samples to a series, the [Hold] key may need to be pressed to resume analysis.
- 1.5.6 This laboratory method is related to plant Reactivity Management. Reactor coolant boron directly impacts Reactivity Management. Reactor coolant and support system boron concentrations are determined by this method.
- 1.5.7 When determining the concentration of PALSS boron, results obtained must be multiplied by the PALSS dilution factor found in the appropriate PALSS procedure(s).
- 1.5.8 Wear the following minimum proper personal protective equipment (PPE) when performing this analysis.
 - Labcoat
 - Safety glasses
 - Gloves
 - Apron and faceshield or hood sash when handling 50% W/W Sodium Hydroxide or Hydrochloric Acid
- 1.5.9 When boric acid is heated at 100° to 160°C, it gradually decomposes and loses water to form metaboric acid (HBO₂) then pyroboric acid (H₂B₄O₇), and finally boric anhydride (B₂O₃). Hence, in preparing a boron standard, boric acid is neither dried nor desiccated prior to weighing.
- 1.5.10 For error messages and/or malfunctions, refer to Enclosure 6.3.
- 1.5.11 Sample concentration must not exceed a burette delivery volume of 40 ml. See Section 4.4.2 for selecting appropriate sample size.
- 1.5.12 Sodium Hydroxide lines and delivery tip must be kept free of air bubbles at all times. Air bubbles will result in unreliable sample results.

2. Apparatus

- 2.1 Mettler DL58 Compact Titrator System
 - 2.1.1 DL58 Titrator
 - 2.1.2 20 ml Buret or 10 mL Buret
 - 2.1.3 ST20A Sample Transport
 - 2.1.4 Printer
 - 2.1.5 Electronic Balance with Data Output Module
 - 2.1.6 Combination pH electrode, pH 0-14
- 2.2 Sample cups, 100 mL
- 2.3 Volumetric flasks
- 2.4 Volumetric pipets

3. Reagents

CAUTION: Chemical hazards shall be known prior to use. For additional information and first aid requirements, refer to MSDS Sheets.

- 3.1 pH Buffers, 7, 9, 10
 - 3.1.1 Fisher buffers or equivalent may be purchased or prepared and used per package instructions.
 - 3.1.2 Use manufacturer stated shelf life **OR** record shelf life as 3 months.
- 3.2 Electrode Filling Solution
 - 3.2.1 Use solution specified by the manufacturer of the electrode in use.
 - 3.2.2 Use manufacturer stated shelf life.

NOTE: Reagents may be prepared in varying quantities as long as the ratios remain unchanged.

- 3.3 Sodium Hydroxide (NaOH), 0.10 N
 - 3.3.1 Purchased NaOH (Fisher SS278-1 or equivalent)
 - 3.3.1.1 Use manufacturer stated shelf life.
 - 3.3.1.2 Store in an air tight container \underline{OR} a container fitted with a carbon dioxide (CO₂) absorption tube.
 - 3.3.1.3 Standardize solution once per week or prior to use, whichever is less frequent, per Section 4.3 (NaOH Standardization).

3.3.2 Prepared NaOH, 0.10N

WARNING: Sodium Hydroxide is corrosive. Level III PPE (labcoat, safety glasses, gloves, and faceshield or hood sash) is required when handling 50% W/W Sodium Hydroxide.

- 3.3.2.1 Add 32.0 grams (31.5 32.5) of liquid 50% W/W NaOH to 3850 (3845 3855) mLs of boiled or dearated reagent grade water <u>AND</u> mix.
- 3.3.2.2 Store in an air tight container \underline{OR} a container fitted with a carbon dioxide (CO₂) absorption tube.
- 3.3.2.3 Record shelf life as 1 year.
- 3.3.2.4 Standardize solution once per week or prior to use, whichever is less frequent, per section 4.3 (NaOH Standardization).
- 3.4 Electrode Storage Solution (0.5 mol/L KCL)
 - Weigh out $37.275g \pm 0.1g$ anhydrous KC1. Add to a 1 L volumetric flask and bring to volume with deionized water.
 - 3.4.2 Record shelf life as 3 months.
- 3.5 Standard Boric Acid Solution (NaOH Standardization), 1000 mg/L
 - 3.5.1 Dissolve 5.7194 grams (5.7189 5.7199) of Boric Acid (H₃BO₃) with reagent grade water in a 1000 mL volumetric flask **AND** dilute to volume.
 - 3.5.2 Record shelf life as 1 year.
 - 3.5.3 Verify solution concentration per section 4.4 (QC Check/Sample Analysis).
- 3.6 QC Boric Acid Solution, 1000 mg/L
 - 3.6.1 Use purchased 1000 mg/L Boric Acid Standard
 - 3.6.2 Use manufacturer stated shelf life.
- 3.7 Mannitol

3.8 Hydrochloric Acid (HCl), 0.0025N

WARNING: Hydrochloric acid is corrosive. Level III PPE (labcoat, apron, safety glasses, gloves, faceshield or hood sash) is required when handling concentrated Hydrochloric Acid.

- 3.8.1 Add 250 µL of concentrated HCl to a 1000 mL volumetric flask partially filled with reagent grade water.
- 3.8.2 Dilute to volume with reagent grade water **AND** mix.
- 3.8.3 Record shelf life as 1 month.

NOTE: During troubleshooting specific keystroke functions can deviate from this method in order to identify and correct instrument problems.

4. Procedure

- 4.1 Initial Setup
 - 4.1.1 Ensure power to titrator, balance, sample changer, and printer is on.
 - 4.1.2 Ensure sufficient volume of sodium hydroxide and reagent grade water in reservoirs.
 - 4.1.3 If needed, refer to Enclosure 6.1 (Sample Changer Manual Operation) to operate the sample changer in the manual mode.
 - 4.1.4 If needed, refer to Enclosure 6.2 (Sample Series Manipulations) to perform any of the following:
 - Delete a sample from a sample series
 - Add additional samples to end of sample series
 - Insert an urgent sample into a sample series
 - Add additional sample series to existing series.
- 4.2 Daily pH Electrode Standardization
 - 4.2.1 Ensure electrode is clean.
 - 4.2.2 Check filling solution level **AND** fill as necessary.
 - 4.2.3 Ensure cap is not covering vent hole.
 - 4.2.4 Using approximately 50 mL of each buffer, place cup of pH 7 buffer in 1st sample changer position, pH 10 buffer in 2nd position, and pH 9 buffer in 3rd position.
 - 4.2.5 Press or select the following in the order listed:
 - 4.2.5.1 [Sample]
 - 4.2.5.2 [F5] (Add)
 - 4.2.5.3 Select "New Sample Series"

4.2.5.4	[F5] (OK)
4.2.5.5	Select "Number of Samples"
4.2.5.6	[2]
4.2.5.7	Scroll down and select "Method ID"
4.2.5.8	[1]
4.2.5.9	[F5] (OK)
4.2.5.10	[F5] (OK)
4.2.5.11	[F5] (OK)
4.2.5.12	[F5] (Add)
4.2.5.13	Select "New Sample Series"
4.2.5.14	[F5] (OK)
4.2.5.15	Select "Number of Samples"
4.2.5.16	[1]
4.2.5.17	Scroll down and select "Method ID"
4.2.5.18	[2]
4.2.5.19	[F5] (OK)
4.2.5.20	[F5] (OK)
4.2.5.21	[Run]
4.2.5.22	[F5] (OK)
4.2.5.23	[F5] (START)
4.2.5.24	[F5] (OK)

NOTE: Measurements will be made and calculations carried out automatically for the first two buffers.

4.2.6 After first sample series has completed and calibration results have printed, press [Run] to continue to 2nd sample series (pH 9 buffer).

- 4.2.7 IF pH 9 buffer result is outside 9 ± 0.1 pH units, THEN repeat Steps 4.2.4 4.2.7.
- 4.2.8 On a daily basis, record slope value in appropriate database or logsheet for instrument performance trending.
- 4.3 NaOH Standardization
 - 4.3.1 Perform this section:
 - Once per week **OR** prior to use, whichever is less frequent.
 - When NaOH reservoir is refilled.
 - 4.3.2 <u>IF NaOH reservoir has been refilled, THEN</u> stir NaOH reservoir to thoroughly mix <u>AND</u> perform the following:
 - 4.3.2.1 Place empty sample cup in 1st position of sample changer and refer to Enclosure 6.1 (Sample Changer Manual Operation) to position electrode assembly in sample cup.
 - 4.3.2.2 Perform the following to rinse buret:
 - A. Press [Burette]
 - B. Select "Dispense"
 - C. Press [F5](OK)
 - D. Ensure the following are selected:
 - 1. Burette drive 2-
 - 2. Burette volume per volume of dispenser being used.
 - Volume (mL) 100 for 20 mL dispenser or 50 (ml) for 10 mL dispenser
 - E. Press [F5] (Start)

NOTE: The buret will rinse 5 times the volume of the dispenser.

- 4.3.2.3 Verify there are no air bubbles in the NaOH delivery line or tip.
- 4.3.2.4 **IF** air bubbles are present, repeat Steps 4.3.2.1 to 4.3.2.3.

- 4.3.3 Analyze a Blank as follows:
 - 4.3.3.1 Add ≈ 5 grams (4 6) of Mannitol to empty sample cup <u>AND</u> place cup in 1^{st} position of sample changer.
 - 4.3.3.2 Press or select the following in the order listed:
 - A. [Sample]
 - B. [F5] (Add)
 - C. Select "New Sample Series"
 - D. [F5] (OK)
 - E. Select "Number of Samples"
 - F. [1]
 - G. Scroll down and select "Method ID"
 - H. [3]
 - I. [F5] (OK)
 - J. [F5](OK)
 - K. [Run]
 - L. [F5] (OK)
 - M. [F5] (START)
 - N. [F5] (OK)

NOTE: The blank will run, results will be entered and printed out automatically.

- 4.3.4 Determination of titer factor with standard boric acid solution (1000 ppm)
 - 4.3.4.1 Press or select the following in the order listed:
 - A. [Sample]
 - B. [F5] (Add)
 - C. Select "New Sample Series"
 - D. [F5] (OK)
 - E. Select "Number of Samples"
 - F. [2]

- G. Scroll down and select "Method ID"
- H. [4]
- I. [F5] (OK)
- 4.3.5 Place a sample cup on balance pan AND tare.
- 4.3.6 Transfer 20 mLs (18.0 22.0) of Standard Boric Acid Solution (NaOH Standardization) into sample cup.
- 4.3.7 When balance reading stabilizes, press [F4] (Balance).
- 4.3.8 Press [F5] (OK) twice
- 4.3.9 Select "Save Entry" or "Modify Entry".
- 4.3.10 Press [F5] (OK)
- 4.3.11 Place sample cup containing Standard Boric Acid Solution in sample changer.
- 4.3.12 Repeat Steps 4.3.5 to 4.3.11.
- 4.3.13 Add \approx 5 grams (4 6) Mannitol to each sample cup.
- 4.3.14 Press [Run]
- 4.3.15 Press [F5] (START)
- 4.3.16 Press [F5] (OK)

NOTE: Boric Acid Standard Solution will run, results will be entered and printed out automatically.

- 4.3.17 Analyze a QC check per Section 4.4 (QC Check/Sample Analysis) to verify that the standardization is acceptable.
- 4.4 QC Check/Sample Analysis
 - 4.4.1 <u>IF</u> analyzing samples containing borax with pH >6.4 (following post accident conditions), **THEN** adjust sample pH to 6.2 (6.0 6.4) using 0.0025N HCl.
 - 4.4.2 Select appropriate sample size:

Approximate Boron Concentration (ppm)	Approximate Sample Size (grams)
0 – 500	25
500 – 2000	10
2000 - 10,000	5

4.4.3 Press or select the following in the order listed:

- 4.4.3.1 [Sample] 4.4.3.2 [F5] (Add) 4.4.3.3 Select "New Sample Series" 4.4.3.4 [F5] (OK) Select "Number of Samples" 4.4.3.5 4.4.3.6 [Enter number of samples in sample set, i.e. 6] Scroll down and select "Method ID" 4.4.3.7 4.4.3.8 [5] 4.4.3.9 [F5] (OK) IF entering sample ID is desired, press [A] to select "Sample ID" AND enter 4.4.4 sample name, THEN press [v] to select "weight [g]". 4.4.5 Place sample cup on balance pan AND tare. Transfer appropriate amount of sample into the sample cup AND weigh. 4.4.6 When balance reading stabilizes, press [F4] (Balance). 4.4.7 4.4.8 Press [F5] (OK) twice. 4.4.9 Place sample cup in sample changer. 4.4.10 IF analyzing more than one sample, <u>THEN</u> repeat Steps 4.4.4 - 4.4.9 for each additional sample. 4.4.11 Add ≈ 5 grams (4 - 6) Mannitol to each sample cup. 4.4.12 Press [Run] 4.4.13 Press [F5] (OK) 4.4.14 Press [F5] (Start) 4.4.15 Press [F5] (OK)
- 4.5 Instrument Standby
 - 4.5.1 Place sample cup of conditioning agent in last available position in sample changer.
 - 4.5.2 Place red marker in hole next to sample cup of conditioning agent.

NOTE: The sample changer will recognize the marked sample cup as the last in the sample set and place the electrodes in it automatically.

4.6 Calculations

NOTE: These calculations are performed automatically by the instrument.

4.6.1 Boron Result

$$ppm \ Boron = Const \ x \ \frac{1}{Weight} \ x \ V \ x \ Conc$$

Where: Const =
$$\frac{\frac{10.811 \text{ g Boron}}{\text{mol H}_3\text{BO}_3} \text{ x 1000}}{1\text{eq / mol}}$$

Weight = Sample weight in grams

$$V = ml \ x \ \frac{1}{\text{total buret vol (ml)}}$$

V = titrant consumption at the equivalence point in buret units.

$$Conc = \frac{1}{Const Reag} \times \frac{Weight}{V}$$

Conc = titrant concentration in milli-equivalents per buret volume

Const Reag =
$$\frac{61.83 \text{ g H}_3\text{BO}_3 / \text{eq}}{1000}$$

4.6.2 Density Correction

[B]
$$_{mg/L} = [B] _{mg/kg} \bullet (0.99707 + (1.96082E^{-6} \bullet [B] _{mg/kg}))$$

Where: 1.96082E⁻⁶ = factor based on linear regression of boric acid solution densities.

0.99707 = density of water at 25°C.

5. References

- 5.1 Mettler Toledo DL58 Titrator Reference Handbook.
- 5.2 Nuclear Generation Department Analytical Quality Control Program.

6. Enclosures

- 6.1 Sample Changer Manual Operation
- 6.2 Sample Series Manipulations
- 6.3 Error Messages and Malfunctions
- 6.4 Routine Maintenance for the DL-58

Enclosure 6.1 Sample Changer Manual Operation

LM/O/P919 Page 1 of 2

1. Change Lift Position

- 1.1 Press or select the following in the order listed:
 - 1.1.1 [Changer]
 - 1.1.2 Select "Change lift position"
 - 1.1.3 [F5] (OK)
 - 1.1.4 [F4] (Modify) to select "Top", "Bottom", or "Middle"
 - 1.1.5 [F5] (Start)
 - 1.1.6 [F1] (Esc) to return to menu.

2. Rotate Turntable

- 2.1 Press or select the following in the order listed:
 - 2.1.1 [Changer]
 - 2.1.2 Select "Rotate turntable"
 - 2.1.3 [F5] (OK)
 - 2.1.4 Select "Direction"
 - 2.1.5 [F4] (Modify) to select "Forward" or "Backward"
 - 2.1.6 Select "Number of Positions"
 - 2.1.7 Enter the number of positions to move from the numeric keypad
 - 2.1.8 [F5] (Start)
 - 2.1.9 [F1] (Esc) to return to menu.

Enclosure 6.1 Sample Changer Manual Operation

LM/O/P919 Page 2 of 2

3. Rinse Electrodes

- 3.1 Press or select the following in the order listed:
 - 3.1.1 [Changer]
 - 3.1.2 Select "Dispense/rinse"
 - 3.1.3 [F5] (OK)
 - 3.1.4 [F4] (Modify) to select "Rinse"

NOTE: The "Dose" and "Dispense" options are not used.

3.1.5 [F5] (Start)

NOTE: Water will rinse electrodes until [F5] is pressed again.

- 3.1.6 [F5] (Stop)
- 3.1.7 [F1] (Esc) to return to menu.

1. Delete a Sample from a Sample Series

- 1.1 Press or select the following in the order listed:
 - 1.1.1 [Sample]
 - 1.1.2 Select sample to be deleted
 - 1.1.3 [F2] (Delete)
 - 1.1.4 [OK].
- 1.2 Remove deleted sample from sample changer <u>AND</u> move any remaining samples forward one position.
- 1.3 Press [Run] to return to measured values screen.

2. Add Additional Samples to Sample Series

- 2.1 Press or select the following in the order listed:
 - 2.1.1 [Sample]
 - 2.1.2 Select last sample in series
 - 2.1.3 [F5] (Add)
 - 2.1.4 Select "Sample to Series"
 - 2.1.5 [F5] (OK).
- 2.2 Perform Steps 4.4.4 4.4.9.
- 2.3 Repeat Steps 2.1 2.2 for each additional sample.
- 2.4 Add ≈ 5 grams (4 6) Mannitol to sample cup.
- 2.5 Press [Run]

3. Insert an Urgent Sample into Sample Series

NOTE: Active sample will continue to run while adding urgent sample.

- 3.1 Press or select the following in the order listed:
 - 3.1.1 [Sample]
 - 3.1.2 Select active sample
 - 3.1.3 [F5] (Add)

Enclosure 6.2 Sample Series Manipulations

LM/O/P919 Page 2 of 2

- 3.1.4 Select "Urgent sample"
- 3.1.5 [F5] (OK)
- 3.1.6 Select "Method ID"
- 3.1.7 [5]
- 3.1.8 [F5] (OK)
- 3.2 Repeat Steps 4.4.4 4.4.8.
- 3.3 Place sample cup in appropriate position in sample changer <u>AND</u> move remaining samples as needed.
- 3.4 Add \approx 5 grams (4 6) Mannitol to sample cup.
- 3.5 When active sample completes and results print, press "Run" to start urgent sample.
- 3.6 When urgent sample completes and results print, press [F5] (OK) to continue with original sample series.

4. Add Additional Sample Series to Existing Series

- 4.1 Press or select the following in the order listed:
 - 4.1.1 [Sample]
 - 4.1.2 Select last sample in series
 - 4.1.3 [F5] (Add)
 - 4.1.4 Select "New Sample Series"
 - 4.1.5 [F5] (OK).
 - 4.1.6 Select "Number of Samples"
 - 4.1.7 [Enter number of samples in sample set, i.e. 6]
 - 4.1.8 Select "Method ID"
 - 4.1.9 [5]
 - 4.1.10 [F5] (OK)
- 4.2 Perform Steps 4.4.4 4.4.11.
- 4.3 Repeat Steps 4.1 4.2 for each additional sample series.
- 4.4 After initial series is complete, press [Run] to start additional sample series.

Enclosure 6.3 Error Messages and Malfunctions

. LM/O/P919 Page 1 of 2

1. Malfunctions not reported by the DL-58 Titrator

Malfunction	Potential Cause	Action
No display on titrator	Titrator not connected to power supply	Connect to power supply, if fault persists contact METTLER TOLEDO Service
Several points of the display missing		Contact METTLER TOLEDO Service
Display does not match the pressed key		Contact METTLER TOLEDO Service
Stirrer does not rotate	Stirrer not properly assembled or sensors block it at the titration stand	Check stirrer and seating of the sensors
Transfer error to attached peripheral	Peripheral faulty or switched off	Check attached device is functioning properly
Device (printer, balance, terminal) at Centronics or RC interface do not react	Device not switched on Wrong settings Configuration (switch settings) wrong	Switch on device Settings and configuration must match (see Section 2.7)
Burette does not move to zero position when switched on	Burette drive faulty	Contact METTLER TOLEDO Service
Wrong potential or pH values	Electrode faulty Calibration data wrong	Check electrode (see electrode data sheet) Check defined data Use new electrode
No dispensing, the titrant is discharged from stopcook or piston	Burette tip clogged Follower cam on burette mounted wrongly	Clean burette tip Insert follower cam correctly (see Section 10.2.3)

Enclosure 6.3 Error Messages and Malfunctions

LM/O/P919 Page 2 of 2

2. Error Messages generated by the DL-58 Titrator

Message	Potential Problem	Action
EPROM or RAM Test Failed	Memory is faulty	Contact Staff or METTLER TOLEDO Support
Internal Error	Potential Hardware Failure has occurred	Contact Staff or METTLER TOLEDO Support
Memory Faulty	Parts of User Memory is faulty	Contact Staff or METTLER TOLEDO Support
Faulty Data Deleted	Stored Methods have been partially or totally deleted	Reload Methods manually or from memory card
Storage Not Possible	Memory capability of processor has been exceeded	Notify Staff

Enclosure 6.4

Routine Maintenance for the DL-58

LM/**O**/P919 Page 1 of 1

NOTE:

All daily, weekly, and monthly routine maintenance will be logged in the comments section of the Chemdesk QC Chart. Major maintenance activities will be logged in the Maintenance Log.

1. Weekly Maintenance (or as needed)

- 1.1 Check probe.
- 1.2 Change probe fill solution.
- 1.3 Empty NaOH dispensing line and refill (during buret flush).

2. Monthly Maintenance (or as needed)

- 2.1 Change drying tube.
- 2.2 Clean Titrator table.
- 2.3 Inspect stirrer arm.