CONTAINMENT SYSTEMS

SURVEILLANCE REQUIREMENTS

4.6.3.1 Each primary containment isolation valve shown in Table 3.6.3-1 shall be demonstrated OPERABLE prior to returning the valve to service after maintenance, repair or replacement work is performed on the valve or its associated actuator, control or power circuit by cycling the valve through at least one complete cycle of full travel and verifying the specified isolation time.

4.6.3.2 Each primary containment automatic isolation valve shown in Table 3.6.3-1 shall be demonstrated OPERABLE during COLD SHUTDOWN or REFUELING at least once per 18 months by verifying that on a containment isolation test signal each automatic isolation valve actuates to its isolation position.

4.6.3.3 The isolation time of each primary containment power operated or automatic valve shown in Table 3.6.3-1 shall be determined to be within its limit when tested pursuant to Specification 4.0.5.

4.6.3.4 At least once per 18 months, verify that a representative sample of reactor instrumentation line excess flow check valves shown in Table 3.6.3-1 actuates to the isolation position on a simulated instrument line break signal.

4.6.3.5 Each traversing in-core probe system explosive isolation value shall be demonstrated OPERABLE*:

- a. At least once per 31 days by verifying the continuity of the explosive charge.
- b. At least once per 18 months by removing the explosive squib from at least one explosive valve such that each explosive squib in each explosive valve will be tested at least once per 90 months, and initiating the explosive squib. The replacement charge for the exploded squib shall be from the same manufactured batch as the one fired or from another batch which has been certified by having at least one of that batch successfully fired. No squib shall remain in use beyond the expiration of its shelf-life or operating life, as applicable.

HOPE CREEK

3/4 6-18

^{*} Exemption to Appendix J of 10 CFR Part 50.

CONTAINMENT SYSTEMS

BASES

3/4.6.3 PRIMARY CONTAINMENT ISOLATION VALVES

The OPERABILITY of the primary containment isolation values ensures that the containment atmosphere will be isolated from the outside environment in the event of a release of radioactive material to the containment atmosphere or pressurization of the containment and is consistent with the requirements of GDC 54 through 57 of Appendix A of 10 CFR 50. Containment isolation within the time limits specified for those isolation values designed to close automatically ensures that the release of radioactive material to the environment will be consistent with the assumptions used in the analyses for a LOCA.

Surveillance 4.6.3.4 requires demonstration that a representative sample of reactor instrumentation line excess flow check valves are tested to demonstrate that the valve actuates to check flow on a simulated instrument line break. This surveillance requirement provides assurance that the instrument line EFCV's will perform so that the predicted radiological consequences will not be exceeded during a postulated instrument line break event as evaluated in the UFSAR. The 18-month frequency is based on the need to perform this surveillance under the conditions that apply immediately prior to and during the plant outage and the potential for an unplanned transient if the surveillance were performed with the reactor at power. The representative sample consists of an approximately equal number of EFCV's, such that each EFCV is tested at least once every ten years (nominal). In addition, the EFCV's in the sample are representative of the various plant configurations, models, sizes and operating environments. This ensures that any potentially common problem with a specific type or application of EFCV is detected at the earliest possible time. The nominal 10 year interval is based on performance testing as discussed in NEDO 32977-A, "Excess Check Valve Testing Relaxation." Furthermore, any EFCV failures will be evaluated to determine if additional testing in that test interval is warranted to ensure overall reliability is maintained. Operating experience has demonstrated that these components are highly reliable and that failures to isolate are very infrequent. Therefore, testing of a representative sample was concluded to be acceptable from a reliability standpoint.

3/4.6.4 VACUUM RELIEF

Vacuum relief breakers are provided to equalize the pressure between the suppression chamber and drywell and between the Reactor Building and suppression chamber. This system will maintain the structural integrity of the primary containment under conditions of large differential pressures.

The vacuum breakers between the suppression chamber and the drywell must not be inoperable in the open position since this would allow bypassing of the suppression pool in case of an accident.

HOPE CREEK

B 3/4 6-5

Amendment No. 132

CONTAINMENT SYSTEMS

BASES

3/4.6.5 SECONDARY CONTAINMENT

Secondary containment is designed to minimize any ground level release of radioactive material which may result from an accident. The Reactor Building and associated structures provide secondary containment during normal operation when the drywell is sealed and in service. At other times the drywell may be open and, when required, secondary containment integrity is specified.

Establishing and maintaining a 0.25 inch water gage vacuum in the reactor building with the filtration recirculation and ventilation system (FRVS) once per 18 months, along with the surveillance of the doors, hatches, dampers and valves, is adequate to ensure that there are no violations of the integrity of the secondary containment.

The OPERABILITY of the FRVS ensures that sufficient iodine removal capability will be available in the event of a LOCA. The reduction in containment iodine inventory reduces the resulting site boundary radiation doses associated with containment leakage. The operation of this system and resultant iodine removal capacity are consistent with the assumptions used in the LOCA analyses and with the drawdown analysis. Continuous operation of the system with the heaters and humidity control instruments OPERABLE for 10 hours during each 31 day period is sufficient to reduce the buildup of moisture on the adsorbers and HEPA filters.

3/4.6.6 PRIMARY CONTAINMENT ATMOSPHERE CONTROL

The OPERABILITY of the systems required for the detection and control of hydrogen gas ensures that these systems will be available to maintain the hydrogen concentration within the primary containment below its flammable limit during post-LOCA conditions. Either containment hydrogen recombiner is capable of controlling the expected hydrogen generation associated with (1) zirconiumwater reactions, (2) radiolytic decomposition of water and (3) corrosion of metals within containment. The hydrogen control system is consistent with the recommendations of Regulatory Guide 1.7, "Control of Combustible Gas Concentrations in Containment Following a LOCA" November 1978.