CALVERT CLIFFS NUCLEAR POWER PLANT UNITS 1 & 2 STEAM GENERATOR REPLACEMENT

REPLACEMENT STEAM GENERATOR PROJECT STATUS PRESENTATION TO THE NRC August 13, 2001

Calvert Cliffs Nuclear Power Plant, Inc.

Calvert Cliffs Nuclear Power Plant Attendees

<u>Title</u>
CCNPP Project Manager
CCNPP General Supervisor
CCNPP Principal Engineer
CCNPP Principal Engineer
CCNPP Project Engineer
CCNPP Senior Engineer
CCNPP Senior Engineer
SGT RSG Engineering Manager
SGT Lead Licensing Engineer
FRA ANP, Inc. Sr. Licensing Engineer
BWC Senior Project Engineer
BWC Design Engineer

Constellation Nuclear

Meeting Objectives

- Update Fabrication Status
- Update Engineering/Construction Status
- Update of Safety Analysis and Licensing Status
- ***GL 96-06 Considerations**

NRC Presentation August 13, 2001, Slide 3

Introduction
Fabrication Status
Eng. / Con. Status
RSG Safety Analysis
GL 96-06 Considerations
Licensing Status
Open Discussion
Closing Remarks

- B. C. Rudell
- T. L. Konerth
- T. L. Konerth
- M. T. Finley
- C. J. Ludlow
- G. Tesfaye
- **All Attendees**
 - B. C. Rudell

NRC Presentation August 13, 2001, Slide 4

Functional Relationships

NRC Presentation August 13, 2001, Slide 5

RSG Fabrication Status

- **NG1** Final Preparation for Shipment
- ***NG2 Final Preparation for Shipment**
- **NG3** Installation of Tubing
- ***NG4** Installation of Shroud

NRC Presentation August 13, 2001, Slide 6

NG1 - Preparation for Shipment

NG3 - Installation of Tubing

NRC Presentation August 13, 2001, Slide 9

NG4 - Installation of Shroud

NRC Presentation August 13, 2001, Slide 10

Engineering Status

AND	Engineering Status	
	Unit 1 Engineering Service Package Supplements Completed	28 28
	Unit 2 Engineering Service Package Supplements Completed	28 5
	Common Engineering Service Package Supplements Completed	6 5

Construction Status

Temporary warehouse construction August 2001
OSGSF completion October 2001
RUBB Buildings August 2001
Unit 1 RSGs arrive September 2001
Unit 2 RSGs arrive August 2002

NRC Presentation August 13, 2001, Slide 13

* Background

- ► RSG designed similar to OSG
- ➤ Most significant design/operating changes:
 - -> RSG tubing Alloy 690 with reduced wall thickness
 - → UA 4% above zero plugged tube UA for OSG
 - Secondary steam pressure increases 50 psi (25 psi above current safety analysis assumption)
 - RCS flow increases (back to zero plugged tube value)
 - → Integral flow restrictor (1.9 ft²) installed
- Primary and secondary inventory very similar by design

RSG Safety Analysis 10CFR50.59 Scope

NRC Presentation August 13, 2001, Slide 15

RSG Safety Analysis

Review Process

- ► Review each accident and identify:
 - ↔ the acceptance criteria
 - → the critical parameters that affect the approach to the acceptance criteria
- ► Compare the OSG and RSG characteristics
- ➤ Could use of the RSG adversely affect the approach to an acceptance criterion?
 - → No. . . UFSAR remains bounding
 - → Yes. . .Additional Evaluation or analysis required

► Are all acceptance criteria met?

- → Yes. . .Document Evaluation or analysis in UFSAR
- → No. . .NRC prior approval required
- ➤All documents reviewed / approved by SGT & CCNPP

Accident	UFSAR Chapter	Effect of RSG	Disposition
CEA Withdrawal	14.2	UA ↑ beneficial	Evaluation
		 RCS flow ↑ beneficial 	
		Core physics unaffected	
Boron Dilution	14.3	 RCS inventory very similar 	Evaluation
E		Boron worth unaffected	
Excessive Load	14.4	Steam flow increase is less than 3%	Evaluation
		Steam flow remains less than analysis of record since 5% margin was available	
		■ RCS flow ↑ beneficial	
Loop of Lood	14 E		
Loss of Load	14.5	UA T beneficial for primary pressure, adverse for	Analysis
		Analysis for peak secondary pressure performed	
		RSG design pressure 1 15 psi	
		 Result is less than 110% of design pressure 	
Loss of Feedwater	14.6	Secondary inventory very similar	Evaluation
Flow		 Decay and sensible heat very similar 	
		Significant margin in analysis of record low level trip	
Excess Feedwater	14.7	 Feedwater conditions unaffected 	Evaluation
Heat Removal		RCS flow beneficial	
RCS	14.8	PORV and pressurizer unaffected	Evaluation
Depressurization		RCS flow 1 beneficial	
Loss of Coolant	14.9	RCP coastdown less rapid with fewer plugged tubes	Evaluation
Flow		• RCS flow γ beneficial	
Loss of AC Power	14.10	Decay and sensible heat very similar	Evaluation
	14 11	Secondary inventory very similar	E ve lu e tie e
	1-4.11	 BCS flow ↑ beneficial 	Evaluation
Asymmetric SG	14.12	UA 1 has small effect on core temperature tilt	Evaluation
,		 RCS flow ↑ beneficial 	
CEA Ejection	14.13	Core physics unaffected	Evaluation
-		RCS flow ↑ beneficial	
SLB – IC	14.14	 Integral flow restrictor beneficial (break area ↓) 	Evaluation
		Secondary inventory very similar	
SLB – OC	14.14	 UA ↑ and secondary pressure increase adverse 	Analysis
		Significant margin in break size in analysis of record BOS flow & boxeficial	
		Secondary inventory yory similar _ dose unaffected	
SGTR	14 15	 Decondary inventory very similar – dose difanected Tube ID ↑ is adverse 	Evoluction
00111	14.10	Shortest tube length ↑ is beneficial	
		 Secondary pressure ↑ is beneficial 	
		Ruptured tube flow is bounded	
		Adequate overfill volume	
Seized Rotor	14.16	RCS flow distribution and step change unaffected	Evaluation
		RCS flow ↑ beneficial	
	14 17	UA 1 Deneticial	E
	14.17	 Finally inventory very similar IIA ↑ is beneficial 	Evaluation
		Decreased tube plugging is beneficial	
Fuel Handling Inc.	14.18	Unaffected	Evaluation
Turb. Overspeed	14.19	Unaffected	Evaluation
Containment	14.20	Primary inventory very similar	Evaluation
Resp. – LOCA	-	 RCS flow ↑ beneficial since Tave ↓ 	
Containment	14.20	Smaller break with dry steam adverse	Analysis
Resp. – MSLB		Peak pressure less than design	
 		Temperature spike short with redundant spray	
Hydrogen Accum	14.21	Unattected	Evaluation
vaste Gas Inc.	14.22	Primary inventory very similar	Evaluation
vaste Evap Inc.	14.23	Unaffected	Evaluation
	14.24	Unaffected	Evaluation
=xcess Charging	14.25	Pressurizer and charging pumps unaffected	Evaluation
Facelline D	44.00	Primary inventory very similar	
-eedine Bréak	14.26	Secondary inventory very similar	Evaluation
		UAT IS DENETICIAI Significant margin in brook uncouncil conjunction in	
		 Organicant margin in break uncovery assumption in analysis of record 	

RSG Safety Analysis

*** EVENTS ANALYZED**

≻Loss of Load

► MSLB Outside Containment (Pre-trip)

► MSLB Containment Response

✤Loss of Load

- Increased UA beneficial for primary pressure, adverse for secondary pressure
- Analysis required for maximum secondary pressure case
- ► RSG design pressure is 15 psi greater
- Result of analysis is peak secondary pressure is less than 110% of design pressure

MSLB Outside Containment (Pre-trip)

- ➤Increased UA and higher secondary pressure are more adverse
- ➤Increased RCS flow is beneficial
- ► Comparative analysis of peak power was performed
- ► Peak power increases slightly for same break
- ► Significant margin in analysis of record break size
- Secondary inventory is similar so dose is unaffected

NRC Presentation August 13, 2001, Slide 20

*** MSLB** Containment Response

- Integral flow restrictor reduces break size and causes dry steam blowdown
- ➤ Current licensing basis is 20% moisture carryover
- ► Reanalysis performed with zero moisture carryover
- Peak pressure less than design
- ► Temperature spike short with redundant spray
- ► No issues for NRC prior approval identified

NRC Presentation August 13, 2001, Slide 21

Containment Integrity

► Peak pressure below LOCA pressure.

► Containment wall stays below design temperature.

Equipment Qualification (10 CFR 50.49)

- ➤ Temperature spike (app. 400 F) of short duration (Approximately 2 min.)
- ➤ Redundant sprays initiate at approximately 65 seconds.
- Layer of condensate remains on all components.
 - Saturation temperature increases above surface temperature in less than 5 seconds, forming a layer of condensate on equipment
 - → All EQ equipment is located in areas of low velocity or in the path of cool flow (w/e of lodine Removal Unit). Therefore, a layer of condensate will remain on equipment.
 - -> Only 8 percent of condensate is revaporized.
- Due to layer of condensate, surface temperatures remain below dew point temperature.
- ➤ Peak Pressure is 46.6 psig (partial pressure 41.1 psia). Peak temperature is 269 F.
- Method of evaluation is consistent with NUREG 0588
- ► LOCA continues to govern EQ envelope.
- ► Existing EQ profile remains bounding.

NRC Presentation August 13, 2001, Slide 23

RSG Safety Analysis

** … DEPARTURE FROM A METHOD OF EVALUATION DESCRIBED IN THE UFSAR...?"

- ► Concerning RELAP5/MOD2 B&W
 - No, per NEI 96-07 (4.3.8) code has been reviewed by NRC and approved for use on all plants with recirculating steam generators.
- ► Concerning CONTEMPT
 - → No, NUREG 0588 calls out "CONTEMPT-LT or equivalent" and CONTEMPT is equivalent to CONTEMPT-LT
 - No, per NEI 96-07 (4.3.8) benchmark showed results that are "...essentially the same as, or more conservative than... " those produced by COPATTA (an approved code).

NRC Presentation August 13, 2001, Slide 24

GL 96-06 Considerations

✤ Concerns

- ► Overpressurization
- ► Two-phase flow
- ≻ Waterhammer

GL 96-06 Considerations

***** Where We Are Today

- ► Overpressurization meets full design
- Two-phase flow meets full design
- ➤ Waterhammer Operable for LOOP/LOCA
 - -> ~15 seconds to boil higher elevation CAC's
 - -> CAC completely voided
 - → Final waterhammer evaluation pending NRC approval of EPRI TBR (TR-113594)/UM (TR-113954)

GL 96-06 Considerations

Re-evaluation Required

- Higher delta T and superheated condition impacts heat transfer:
 - -> Re-Evaluate pressure in fluid filled isolated lines
 - -> Re-Evaluate two phase flow under MSLB
 - -> Re-Evaluate waterhammer under LOOP/MSLB

GL 96-06 Considerations

*****Waterhammer Analysis

- ► Use EPRI technical guidance in TBR/UM
- ➤ Waiting for NRC to endorse TBR/UM
- > 12 months to complete Waterhammer analysis using TBR/UM
- ➤ Fuel cycle to implement any modifications

- ► Meet full design for overpressurization
- ➤ Meet full design for two-phase flow
- ➤ Revised operability for SRW waterhammer
 - -> Based upon TBR/UN guidance

Licensing Status

- Draft Licensing Report
 July 1999
- Licensing Report

- RSG 50.90 Submittal
- ♦ RSG 50.59 Evaluation
- Updated Licensing Report (Unit 1) April 2002
- Updated Licensing Report (Unit 2) April 2003

NRC Presentation August 13, 2001, Slide 30

May 2000

Sep 2001

Dec 20, 2000

Licensing Status

Activities Requiring Prior NRC Review and Approval

- ► Technical Specification Revisions (Pending)
- ➤ASME Code Relief Requests (One more request scheduled to be submitted by mid September)
- Exemption Request from the Requirements of 10 CFR 50, Appendix J for Containment Leakage Rate Testing (Scheduled to be submitted by end of Oct.)
- ► No other items requiring NRC review are anticipated

NRC Presentation August 13, 2001, Slide 31

- ✤ Project overview meeting (July 29,1998)
- SG Fabrication QA/QC review and project status meeting (April 28, 1999) ✓
- ❖ Replacement SG safety analysis review meeting (November 15, 1999) ✓
- ♦ Replacement SG safety analysis review meeting (November 1, 2000) ✓
- ✤ Project Update Meeting (August 13, 2001) ✓
- Pre-installation meeting Unit 1 (Winter 2002)
- Post installation meeting Unit 1(Fall 2002)
- Pre-installation meeting Unit 2 (Winter 2003)
- Post Installation meeting Unit 2 (Fall 2003)
- Other meetings as needed

NRC Presentation August 13, 2001, Slide 32

AN AND