FINAL SUBMITTAL

FARLEY INITIAL EXAM 50-348 & 50-364/2001-301

JULY 23 - 27, 2001

FINAL SRO WRITTEN EXAM WITH ANSWERS, KAS

ૡૡૡૡૡૡૡ**ૡઌૡઌ**ૡ**ૡ**ૡૡ**ઌઌ**ૡૡૡૡૡૡૡૡૡૡૡૡૡૡ**ઌ**ૡૡ**ઌ**ૡૡ**ઌ**ૡ૽ૡ૽ૡ૽ૡૼ

ANSWER KEY REPORT

for Farley 2001-301 SRO Test Test Form: 0

#	ID ::::::::::::::::::::::::::::::::::::	Points	Туре		Answers
1	001A2.15 1	1.00	MCS	В	
2	001A3.08 1	1.00	MCS	В	
3	001AK3.02 1	1.00	MCS	D	
4	001K5.05 1	1.00	MCS	D	
5	002K6.02 1	1.00	MCS	D	
6	003AK2.05 1	1.00	MCS	В	
7	003K1.03 1	1.00	MCS	C	
8	003K4.03 1	1.00	MCS	D	
9	004K3.04 1	1.00	MCS	D	
10	005AK1.05 1	1.00	MCS	В	
11	005EG2.4.4 1	1.00	MCS	D	
12	005K1.13 1	1.00	MCS	Α	•
13	006K5.02 1	1.00	MCS	D	
14	007EK2.03 1	1.00	MCS	С	
15	008AA2.12 1	1.00	MCS	Α	
16	008K4.09 1	1.00	MCS	C	
17	009EA2.34 1	1.00	MCS	В	
18	009EG2.4.48 1	1.00	MCS	D	
19	010A3.02 1	1.00	MCS	В	
20	011A3.03 1	1.00	MCS	Α	
21	011EA1.13 1	1.00	MCS	Α	
22	012A1.01 1	1.00	MCS	C	
23	013A4.02 1	1.00	MCS	В	
24	014G2.1.7 1	1.00	MCS	C	
25	014K5.01 1	1.00	MCS	D	
26	015/017AA1.22 1	1.00	MCS	D	
27	015/017AA2.08 1	1.00	MCS	C	
28	016A4.01 1	1.00	MCS	В	
29	017G2.4.47 1	1.00	MCS	D	
30	022A1.02 1	1.00	MCS	D	
31	022AA1.08 1	1.00	MCS	C	
32	024AK2.03 1	1.00	MCS	С	
33	025AK3.01 1	1.00	MCS	С	
34	026EG2.3.2 1	1.00	MCS	Α	
35	026K1.01 1	1.00	MCS	C	
36	028A2.02 1	1.00	MCS	C	
37	028AK2.02 1	1.00	MCS	A	
38	029G2.4.21 1	1.00	MCS	D	
39	032AA1.01 1	1.00	MCS	C	
40	033EG2.1.12 1	1.00	MCS	A	
41	034G2.1.11 1	1.00	MCS	C	
42	035A1.01 1	1.00	MCS	В	
43	035K5.01 1	1.00	MCS	A	
44	036AA2.02 1	1.00	MCS	В	
45	037AA2.06 1	1.00	MCS	C	
46	038EA2.01 1	1.00	MCS	В	
47	038EK3.06 1	1.00	MCS	D	

ANSWER KEY REPORT

for Farley 2001-301 SRO Test Test Form: 0

#	ID .	Points	Туре	- 17	Answers	
48	040AK3.06 1	1.00	MCS	В		
49	041A3.02 1	1.00	MCS	В		
50	054AA2.04 1	1.00	MCS	C		
51	054AK1.01 1	1.00	MCS	Α		
52	055EA1.05 1	1.00	MCS	Α		
53	055K3.01 1	1.00	MCS	В		
54	056AK1.01 1	1.00	MCS	D		
55	057AK3.01 1	1.00	MCS	В		
56	059K4.13 1	1.00	MCS	В		
57	060AA2.05 1	1.00	MCS	D		
58	061K2.02 1	1.00	MCS	Α		
59	061K6.01 1	1.00	MCS	C		
60	062AA1.01 1	1.00	MCS	Α		
61	062AA2.02 1	1.00	MCS	D		
62	062K2.01 1	1.00	MCS	В		
63	063A2.01 1	1.00	MCS	C		
64	065EG2.4.11 1	1.00	MCS	A -		
65	067AK3.04 1	1.00	MCS	В		
66	068A2.04 1	1.00	MCS	A	·	
67	068AA2.09 1	1.00	MCS	C		
68	069EG2.2.24 1	1.00	MCS	A		
69	071A3.02 1	1.00	MCS	A		
70	071A4.13 1	1.00	MCS	D		
71	073K4.01 1	1.00	MCS	C		
72	074EA1.06 1	1.00	MCS	В		
73	075K1.01 1	1.00 1.00	MCS MCS	C D		
74 75	076AA2.02 1	1.00	MCS	D		
75 76	076AK2.01 1	1.00	MCS	В		
76 77	078A4.01 1 086K4.01 1	1.00	MCS	A		
77 78	103A2.03 1	1.00	MCS	D		
78 79	G2.1.07 1	1.00	MCS	C		
80	G2.1.07 1 G2.1.10 1	1.00	MCS	В		
81	G2.1.10 1	1.00	MCS	A		
82	G2.1.20 1	1.00	MCS	C		
83	G2.1.32 1	1.00	MCS	Ċ		
84	G2.2.11 1	1.00	MCS	В		
85	G2.2.12 1	1.00	MCS	D		
86	G2.2.13 1	1.00	MCS	D		
87	G2.2.22 1	1.00	MCS	D		
88	G2.2.28 1	1.00	MCS	D		
89	G2.3.01 1	1.00	MCS	A		
90	G2.3.04 1	1.00	MCS	В		
91	G2.3.06 1	1.00	MCS	Α		
92	G2.3.09 1	1.00	MCS	С		
93	G2.4.01 1	1.00	MCS	В		
94	G2.4.06 1	1.00	MCS	C		

ANSWER KEY REPORT

for Farley 2001-301 SRO Test Test Form: 0

#	ID:	Points	Type	- ++-	Answers
95	G2.4.21 1	1.00	MCS	D	
96	W/E02EK1.3 1	1.00	MCS	C	
97	W/E03EK2.1 1	1.00	MCS	D	
98	W/E04EK1.2 1	1.00	MCS	D	
99	W/E08EK1.3 1	1.00	MCS	В	
100	W/E09EK2.2 1	1.00	MCS	A	
SECT	TON 1 (100 items)	100.00			

for Farley 2001-301 SRO NRC EXAM

1. 001A2.15 001//T2G1/3.6/4.2/C/A/NEW/FR01301/S (1)/SDR

Unit 2 is at 95% power, ramping down to 50% power with the rod control system in automatic. Annunciator FF5, "COMP ALARM ROD SEQ/DEV OR PR FLUX TILT," is received. The crew notes that control bank 'D' rod K10 indicates 216 steps on DRPI. It is also observed that the remainder of control bank 'D' rods indicate 198 steps on both DRPI and group step counters.

Which ONE of the following actions should the SS direct the crew to take?

- A. Stop the load change in progress. Immediately insert rod K10 to agree with the remaining control bank 'D' group DRPI indication.
- B. Stop the load change in progress. Determine if rod K10 is movable.
- C. Stop the load change in progress. Immediately position the remaining rods in bank 'D' as close to rod K10 as possible.
- D. Trip the reactor and go to FNP-2-EEP-0, "REACTOR TRIP OR SAFETY INJECTION."

Feedback

- A Incorrect, The ultimate action if the misaligned rod is movable.
- B Correct, Actions required by AOP-19.
- C Incorrect, Actions required if rod is determined to be unmovable.
- D Incorrect, Action for a dropped rod or rod motion independent of control.

Notes

Source: Summer 2000-301 Categories		
RO Tier:	SRO Tier: T2G1	
YELL YELL (1.00)	Con Level C/A	

K/A Value: 3.6/4.2 Cog. Level: C/A

Source: NEW Exam: FR01301

Test: S (1) Misc: SDR

for Farley 2001-301 SRO NRC EXAM

2. 001A3.08 001/T2G1/T2G1/3.9/4.0/C/A/NEW/FR01301/COM (44)/SDR

A reactor startup is in progress from a shutdown condition with all control rods fully inserted. Shutdown rods are fully withdrawn.

While withdrawing the control rods to achieve criticality, the Reactor Operator fails to notice that rod speed is 30 steps/min rather than the normal 48 steps/min.

Which ONE of the following describes the effects the slower rod speed will have on actual critical conditions verses the predicted critical conditions of the ECC?

- A. Actual critical rod height will be higher than predicted critical rod height with actual power level the same as predicted.
- B. Actual critical rod height will be the same as predicted critical rod height with actual power level higher than predicted.
- C. Actual critical rod height will be higher than predicted critical rod height with actual power level lower than predicted.
- D. Actual critical rod height will be lower than predicted critical rod height with actual power level higher than predicted.

Feedback

B - Correct, Critical rod height will be the same, the rod height is independent of rod speed.

Source: Millstone 3 NRC Exam 1994

Categories

RO Tier: T2G1 K/A Value: 3.9/4.0 Source: **NEW**

Test: COM (44) SRO Tier: T2G1

Cog. Level: C/A

Exam: FR01301 Misc:

for Farley 2001-301 SRO NRC EXAM

3. 001AK3.02 001/T1G2/T1G1/3.2/4.3/C/A/NEW/FR01301/COM (54)/SDR

The positive reactivity addition during a continuous rod withdrawal event at power is minimized by which ONE of the following:

- A. Increasing the Rod Insertion Limit (RIL) as power increases.
- B. Maintaining the control bank at the RIL to provide immediate negative reactivity.
- C. Increasing the minimum required Shutdown Margin (SDM) as power increases.
- Dy Maintaining rods almost fully withdrawn from the core during power operations.

Feedback

- A Incorrect, This ensures adequate SDM.
- B Incorrect, Maintaing the rods at the RIL maximizes the reactivity that can be inserted during a rod withdrawal casualty.
- C Incorrect, This ensures adequate amount of negative reactivity is available to ensure the core can be shutdown, it does not limit the reactivity addition.
- D Correct, the higher the rods are out of the core the less reactivity that can be inserted during a rod withdrawal casualty.

Source: INEL Question Bank

Categories

RO Tier: T1G2 K/A Value: 3.2/4.3 Source: NEW

Test: COM (54)

SRO Tier: T1G1

Cog. Level: C/A

Exam: FR01301 Misc: SDR

for Farley 2001-301 SRO NRC EXAM

4. 001K5.05 001/T2G1/T2G1/3.5/3.9/C/A/NEW/FR01301/COM (41)/SDR

Which ONE of the following will result in the largest reactivity change?

(References are provided.)

- A. Inserting 10 steps with rods initially at 190 steps on Control Bank 'D' at 100% power at 50 MWD/MTU.
- B. Inserting 10 steps with rods initially at 190 steps on Control Bank 'D' at 0% power at 11,500 MWD/MTU.
- C. Withdrawing 10 steps with rods initially at 190 steps on Control Bank 'D' at 100% power at 50 MWD/MTU.
- Dy Withdrawing 10 steps with rods initially at 190 steps on Control Bank 'D' at 0% power at 11,500 MWD/MTU.

Feedback

D - Correct - EOL withdrawal = 108.5 PCM CHANGE

EOL INSERTION = 92.5 PCM

BOL withdrawal= 39 PCM

BOL INSERTION = 40 PCM

Notes

Source: Byron 2000-301

Provide reference of Integral Rod Worth vs. Steps Withdrawn

Categories

RO Tier: T2G1 K/A Value: 3.5/3.9

Source: NEW
Test: COM (4

COM (41)

SRO Tier: T2G1

Cog. Level: C/A

Exam: FF

Misc:

FR01301 SDR

for Farley 2001-301 SRO NRC EXAM

5. 002K6.02 001/T2G2/T2G2/3.6/3.8/MEMORY/NEW/FR01301/COM (1)/SDR

While at 28% reactor power with a Unit 1 startup in progress, 1C Reactor Coolant Pump trips due to an overcurrent condition.

Assume no operator action and no rod motion occurs.

Which ONE of the following describes the Reactor and Tavg initial response?

- A. A reactor trip WILL occur and Loops A and B Tavg increases.
- B. A reactor trip WILL occur and Loops A and B Tavg decreases.
- C. A reactor trip will NOT occur and Loops A and B Tavg decreases.
- Dy A reactor trip will NOT occur and Loops A and B Tavg increases.

Feedback

A & B - Incorrect, A reactor trip will not occur at power levels below 30% when only one RCP bkr is open.

C - Incorrect

D - Correct, Without rod motion or operator action Tavg of the unaffected loops will increase due to the fact that only 2 SG's will be supplying the steam that 3 SG's once were. There is more load on the S/G's there fore a larger delta T. When run on the simualtor Tavg starts at 551.9 and rises to 554 in loops A/B and drops to 540 in loop C.

Notes

Test:

Source: Byron 2000-301

Categories

RO Tier: T2G2 K/A Value: 3.6/3.8 Source: NEW

NEW COM (1) SRO Tier:

Cog. Level: MEMORY Exam: FR01301

Exam: Misc:

SDR

T2G2

for Farley 2001-301 SRO NRC EXAM

6. 003AK2.05 001/T1G2/T1G1/2.5/2.8/C/A/BANK/FR01301/COM (69)/SDR

During a reactor startup, Control Bank D rods are at 10 steps withdrawn when Control Bank D rod 'P8' drops to the bottom.

Which ONE of the following describes the expected response of the "Rod at Bottom" alarm and the reason for that response?

- A. Actuated since bank overlap has already occurred between Control Bank A and Control Bank B.
- B. NOT actuated because Control Bank D rods are below 12 steps.
- C. Actuated because all Shutdown Bank rods are above 211 steps.
- D. NOT actuated because Control Bank C rods are below 211 steps.

Feedback

- A Incorrect, Alarm will not actuate.
- B Correct, Alarm actuates only after the rods in the control bank have been pulled to above 12 steps.
- C Incorrect, This clears the alarm.

Source: Farley NRC Exam 1993

D - Incorrect, This 211 step setpoint is for the shutdown banks, it does not apply to the control banks.

Notes

Categories			
RO Tier:	T1G2	SRO Tier:	T1G1
K/A Value:	2.5/2.8	Cog. Level:	C/A
Source:	BANK	Exam:	FR01301
Test:	COM (69)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

7. 003K1.03 001/T2G1/T2G1/3.3/3.6/C/A/BANK/FR01301/COM (2)/SDR

Unit 2 is at 100% steady-state power. All systems are in automatic and functioning properly. The following annunciators are received:

- DC1, "RCP #1 SEAL LKOF FLOW LO"
- DA5, "2A RCP #2 SEAL LKOF FLOW HI"

The plant operator notes the following parameters:

	RCP	2A	2B	2 <u>C</u>
#1 seal injection flow (gpm)		8.4	8.3	8.4
#1 seal leakoff flow (gpm)		0.0	4.0	4.0
#1 seal D/P (psid)		>400	>400	>400
RCP radial brg. temp (F)		190	184	183

Which ONE of the following is the most probable cause of these indications?

- A. 2A RCP #1 seal failure.
- B. Seal injection flow raised.
- Cy 2A RCP #2 seal failure.
- D. A break in the 2A RCP #2 seal leakoff line.

Feedback

- A Incorrect, Flow into the #1 seal is satisfactory. D/P across the #1 seal is satisfactory. If the #1 seal failed flow through the seal would increase and annunciator DC2, RCP #1 SEAL LKOF FLOW HI, would alarm.
- B Incorrect, Seal injection flow is indicating normally, a rise in seal injection flow would result in #1 seal leakoff flow increasing.
- C Correct, Evidenced mostly be the #1 seal leakoff flow at 0.0 which shows that all the flow is going through the #2 seal indicating its failure. Annunciator DA5, 1A RCP #2 SEAL LKOF FLOW HI, confirms this failure, along with the slighty elevated RCP radial brg temp.
- D Incorrect, A break in the #2 seal leakoff line would not cause the #1 seal leakoff flow to indicate 0.0 gpm.

Notes

Source: Farley Bank Question #O52101D17003

for Farley 2001-301 SRO NRC EXAM

Categories			
RO Tier:	T2G1	SRO Tier:	T2G1
K/A Value:	3.3/3.6	Cog. Level:	C/A
Source:	BANK	Exam:	FR01301
Test:	COM (2)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

8. 003K4.03 001/T2G1/T2G1/2.5/2.8/MEMORY/NEW/FR01301/COM (3)/SDR

Which ONE of the following best describes the lubrication for the Reactor Coolant Pump (RCP) upper radial bearing under NORMAL steady-state operation?

- A. Receives lubrication from the seal injection water flowing up the RCP shaft.
- B. Receives lubrication from the RCP oil lift system.
- C. Receives lubrication from the Component Cooling Water system.
- Dy Receives lubrication from the internal thrust runner driven pump.

Feedback

- A Incorrect, This lubricates the lower radial bearing.
- B Incorrect, This provides initial lifting force during the RCP start and is secured after one minute of RCP operation.
- C Incorrect, The CCW system provide cooling to the RCO pump bearings.
- D Correct, The thrust runner acts as a oil pump to circulate the oil through the thrust bearings and upper radial bearings for cooling and lubrication.

N	1	-	~
7.4	v		3

Source:	New
Categori	es

RO Tier: T2G1
K/A Value: 2.5/2.8
Source: NEW
Test: COM (3)

SRO Tier: T2G1

Cog. Level: MEMORY Exam: FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

9. 004K3.04 001/T2G1/T2G1/3.7/3.9/C/A/BANK/FR01301/COM (4)/SDR

Charging, letdown and the pressurizer level control systems are operating in automatic. The selected pressurizer level channel (LT-459) has failed low.

Alarm DD1, "RCP SEAL INJ FLOW LO," annunciated a short time after LT-459 failed low.

Which ONE of the following describes the reason for the above alarm?

- A. The isolation of letdown caused charging flow to decrease and the seal injection header flow diminished due to the increasing pressure on the charging header.
- B. The loss of the pressurizer heaters caused charging flow to decrease and the seal injection header flow diminished due to the increasing pressure on the charging header.
- C. As charging flow increased, the D/P across the seal injection filter rose and the seal injection header flow diminished due to the increased resistance to flow.
- Dy As charging flow increased, the seal injection header flow diminished due to the decreasing pressure on the charging header.

Feedback

- A Incorrect, Increased charging header pressure would cause the seal injection flow to increase.
- B Incorrect, Increased charging header pressure would cause the seal injection flow to increase.
- C Incorrect, Increased D/P across the seal injection filter under the stated conditions could only be caused by increased flow through the filter.
- D Correct, Increased charging flow robs the seal injection line of flow.

Notes

Source: Farley Bank Question # O52101D14044

Categories

RO Tier:	T2G1	SRO Tier:	T2G1
K/A Value:	3.7/3.9	Cog. Level:	C/A
Source:	BANK	Exam:	FR01301
Test:	COM (4)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

10. 005AK1.05 001/T1G1/T1G1/3.3/4.1/MEMORY/NEW/FR01301/COM (32)/SDR

Unit 1 has experienced a reactor/turbine trip from full power.

While performing FNP-1-ESP-0.1, "REACTOR TRIP RESPONSE," it is observed that the 'Rod Bottom' light is NOT lit for control rod 'M6' in Control Bank 'B'. DRPI shows control rod 'M6' at 228 steps.

Which ONE of the following actions must be performed in accordance with FNP-1-ESP-0.1, "REACTOR TRIP RESPONSE," in response to this condition?

- A. No action is required.
- B. An emergency boration of at least 2500 gallons is required.
- C. An emergency boration of at least 5000 gallons is required.
- D. Verify shutdown margin within the limits provided in the COLR.

Feedback

- A Incorrect, Even a single rod stuck in the core, post trip, requires an emergency boration.
- B Correct, ESP-0.1 Step 3 RNO Step 3.5 requires at least 2500 gal boration per rod not inserted.
- C Incorrect, This value would be for 2 rods not fully inserted.
- D Incorrect, This is the TS action for one or more rods untrippable.

Notes

Source: Summer NRC Exam 2000-301

Categories

RO Tier: T1G1 K/A Value: 3.3/4.1 **NEW** Source: Test:

COM (32)

SRO Tier: T1G1

Cog. Level: MEMORY Exam: FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

11. 005EG2.4.4 001/T1G1/T1G1/4.0/4.3/C/A/NEW/FR01301/COM (70)/SDR

Given the following conditions on Unit 1:

- Reactor power is at 73%.
- Turbine load is being slowly increased.
- Control Bank D rod 'B8' indicates 144 steps.
- Control Bank D rod 'K6' indicates 156 steps.
- Remaining Control Bank 'D' rods indicate 168 steps.
- Control Bank D is being moved as required to maintain Delta I.
- Rod 'B8' and does NOT move when Control Bank D is moved 'out' or 'in'.
- Rod 'K6' does move when Control Bank D is moved 'out' or 'in'.

Which ONE of the following describes the action required to be taken within one hour?

- A. Be in Mode 3, Hot Standby.
- B. Reduce turbine load and insert Control Bank D to 155 steps.
- C. Trip the reactor immediately and go to EEP-0, "REACTOR TRIP OR SAFETY INJECTION."
- Dy Determine that the shutdown margin is within the limits specified in the COLR.

Feedback

- A Incorrect, Must be in Mode 3 in 6 hours.
- B Incorrect, This will place the stuck rod within the 12 step limit but will not correct the K6 rod.
- C Incorrect, This is correct action for unexplained rod motion or dropped rod.
- D Correct, Rod B8 could be considered to be untrippable therefore, TS 3.1.4 requires verification of adequate SDM. TS 3.1.4 also requires the verification of adequate SDM if more than one rod not within alignment limit.

N	otes	
N	otes	

Source: New Categories			
RO Tier:	T1G1	SRO Tier:	TIGI
K/A Value:	4.0/4.3	Cog. Level:	C/A
Source:	NEW	Exam:	FR01301
Test:	COM (70)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

12. 005K1.13 001/T2G3/T2G3/3.3/3.5/MEMORY/BANK/FR01301/COM (5)/SDR

Given the following conditions on Unit 2:

- The injection phase of a LOCA is in progress.
- RHR pump flows indicate 1350 gpm on the discharge of each RHR pump.
- The operator inadvertantly takes the control switch for valve FCV-602A, "RHR Miniflow Valve," to the 'CLOSE' position and notes a green light for the valve position.

Which ONE of the following describes the response when FCV-602A switch is returned to the 'AUTO' position and why?

A. FCV-602A will remain closed since pump 'A' discharge flow is at least 1334 gpm.

- B. FCV-602A will remain closed since pump 'A' discharge flow is at least 750 gpm.
- C. FCV-602A will reopen since pump 'A' discharge flow is no more than 1399 gpm.
- D. FCV-602A will reopen since pump 'A' discharge flow is no more than 2199 gpm.

Feedback

- A Correct
- B Incorrect, This value pertains to Unit 1.
- C Incorrect, This value pertains to Unit 1.
- D Incorrect, Valve will only reopen if flow is <1334 gpm.

Notes

Source: Farley NRC Exam 1999

Categories

RO Tier: T2G3 K/A Value: 3.3/3.5 Source: BANK Test: COM (5) SRO Tier:

Cog. Level: MEMORY Exam: FR01301

Exam: Misc:

FR01301 SDR

T2G3

for Farley 2001-301 SRO NRC EXAM

13. 006K5.02 001/T2G2/T2G2/2.8/2.9/MEMORY/NEW/FR01301/COM (47)/SDR

Which ONE of the following describes an adverse consequence of exceeding the upper limit on accumulator nitrogen pressure?

- A. Accumulator pressure and RCS pressure will equalize before sufficient water has injected.
- B. Too little water volume would be available in the accumulator to refill the vessel.
- C. Accumulators could inject during a steamline break.
- Dy Accumulator relief valve actuation and loss of accumulator integrity.

Feedback

- A Incorrect, Higher accumulator pressure will inject all the accumulator volume earlier in the LOCA event.
- B Incorrect, Water level is independent of accumulator pressure.
- C Incorrect, This would not be an adverse consequence.
- D Correct, The max cover pressure limit prevents relief valve actuation and ultimately preserves accumulator integrity.

Notes

Source: Summer NRC Exam 2000

Categories

RO Tier: T2G2 K/A Value: 2.8/2.9 Source: NEW

Test: COM (47)

SRO Tier: T2G2

Cog. Level: MEMORY

Exam: FR01301

Misc: SDR

for Farley 2001-301 SRO NRC EXAM

14. 007EK2.03 001/T1G2/T1G2/3.5/3.6/C/A/NEW/FR01301/COM (50)/SDR

Given the following plant conditions for Unit 1:

- Unit 1 reactor tripped 45 seconds ago.
- All Main Turbine Governor and Throttle Valves are closed.
- Main Generator output breakers are closed.

Which ONE of the following states the condition of the generator and the correct operator response?

- A. Generator exciter has failed; place the MAIN TURB EMERG TRIP switch to trip for 5 seconds.
- B. Generator is motoring; place the MAIN TURB EMERG TRIP switch to trip for 5 seconds.
- C. Generator is motoring; verify REVERSE POWER handswitch in BYPASS then open the 230 KV breakers 810 and 914.
- D. Generator exciter has failed; locally open the 230 KV breakers 810 and 914.

Feedback

- A Incorrect, The generator is motoring; MAIN TURB EMERG TRIP switch is used to isolate steam.
- B Incorrect, MAIN TURB EMERG TRIP switch is used to isolate steam.
- C Correct, Generator is motoring and these actions are per SOP 28.1 section 4.12 and per AOP-3 step 4. Also ops-52520C page 8 gives the proper actions and page 5 says the 30 second TD allows the generator to motorize. 52105C page 31 provides what will happen to turbine on a reverse power condition.
- D Incorrect. The generator is motoring; 230 KV bkrs are located in the high voltage switch vard.

J		
N	ot	es

Source: New Categories

RO Tier:

T1G2

K/A Value: 3.5/3.6

NEW

Source: Test:

COM (50)

SRO Tier: T1G2

Cog. Level: C/A

Exam:

FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

15. 008AA2.12 001/T1G2/T1G2/3.4/3.7/C/A/NEW/FR01301/COM (59)/SDR

Given the following plant conditions:

- An overpressure condition caused a Pressurizer PORV to lift and it subsequently fails to reseat resulting in a small break Loss Of Coolant Accident (LOCA).
- A Safety Injection is in progress and Pressurizer pressure has stablilized at 1350 psig.
- The PRT rupture disc has ruptured and containment temperature is 185 degrees F.
- Actual Pressurizer level is 50%.

Select the combination below that completes the following statement:

The low Pressurizer pressure (1350 psig) tends to make the indicated Pressurizer level on LI-460 than the actual Pressurizer level; the high containment temperature (185 degrees F) tends to make the indicated level on LI-460 read (Y) than the actual level.

(X) **(Y)**

- Higher Higher. A.
- B. Lower Higher.
- C. Higher Lower.
- D. Lower Lower.

Feedback

A - Correct per ops-52201H page 15

Notes

Source: INEL Question Bank

Categories

RO Tier: T1G2 K/A Value: 3.4/3.7

Source: **NEW**

Test: COM (59) SRO Tier:

T1G2 Cog. Level: C/A

Exam: Misc:

SDR

FR01301

for Farley 2001-301 SRO NRC EXAM

16. 008K4.09 001/T2G3/T2G3/2.7/2.9/C/A/BANK/FR01301/COM (26)/SDR

Unit 2 is at 100% power and 'B' Train is the on service train and is properly aligned.

All Component Cooling Water (CCW) pump Local/Remote selector switches at the Hot Shutdown Panel (HSP) are in "REMOTE."

All CCW pump handswitches on the MCB are in "AUTO."

Which ONE of the following describes a condition that will automatically start the 2B CCW pump?

- A. An 'S' signal occurs after CCW pump 2A has been secured from the MCB.
- B. An 'S' signal occurs after CCW pump 2C breaker has been racked out.
- C. An 'S' signal occurs after CCW pump 2A breaker has tripped on overload.
- D. An 'S' signal occurs after CCW pump 2C Local/Remote selector switch at the HSP has been taken to "LOCAL."

Feedback

- A Incorrect, 2A breaker has to be tripped on overload or racked out for an 'S' signal to cause an auto start.
- B Incorrect, 2C is on the 'A' train and not applicable.
- C Correct.
- D Incorrect, 2C is on the 'A' train and not applicable.

Notes

Source: Farley NRC Exam 2000-301

LO: 052102G20

Categories

RO Tier:	T2G3
K/A Value:	2.7/2.9
Source:	BANK
Test:	COM (26)

SRO Tier: T2G3
Cog. Level: C/A
Exam: FR01301
Misc: SDR

for Farley 2001-301 SRO NRC EXAM

17. 009EA2.34 001//T1G2/3.6/4.2/C/A/NEW/FR01301/S (5)/SDR

Given the following plant conditions on Unit 1:

- Reactor trip and safety injection have occurred.
- The crew has entered EEP-1.
- MSIV's have just isolated due to Containment pressure.
- RCS pressure is 1700 psig and stable.
- Core Exit Thermocouples indicate 570 degrees F and subcooling is 52 degrees F.
- All S/G Narrow Range levels are 40% and total AFW flow is 450 gpm.
- Pressurizer level is 52%.

Based upon the above indications, which ONE of the following should you, as SRO, direct the operators to perform?

- A. Verify all Reactor Coolant Pumps stopped.
- B. Transition to ESP-1.1, "SI TERMINATION."
- C. Establish HHSI flow, and start additional charging pumps as required.
- D. Transition to FRP-Z.1, "RESPONSE TO HIGH CONTAINMENT PRESSURE,"due to increasing containment pressure.

Feedback

- A Incorrect, This is the action if the subcooling was below 45 degrees F.
- B Correct, This is the required action per step 7 of EEP-1, LOSS OF REACTOR OR SECONDARY COOLANT.
- C Incorrect, >45 deg F SCMM and > 50%pzr level
- D Incorrect, This action is required when ctmt press >27# and directed to monitor CSF's in EEP-0 step 31

N	otes

Source: Byron 2000-301

Categories

RO Tier:

SRO Tier:

T1G2

K/A Value: 3.6/4.2

Source:

Cog. Level: C/A

NEW

Exam:

FR01301

Test:

S(5)

Misc:

for Farley 2001-301 SRO NRC EXAM

18. 009EG2.4.48 001/T1G2/T1G2/3.5/3.8/C/A/BANK/FR01301/COM (29)/SDR

The following conditions exist on Unit 1:

- 100% power steady-state.
- Charging flow is 52 gpm in auto and slowly trending up.
- VCT level is 32%, dropping slowly.
- Letdown flow is 65 gpm.
- Seal injection flow is 8 gpm/pump.
- Seal return flow is 3 gpm/pump.
- Pressurizer pressure and level are steady on program.
- Rad monitors R2, R7, R11 and R12 all trending upward.
- Rad monitors on plant vent stack trended upward until the minipurge was manually isolated, then they returned to normal values.

Which ONE of the following describes the required actions in accordance with AOP-1.0, "RCS LEAKAGE," for the existing plant conditions?

- A. Manually trip the reactor and go to EEP-0, "REACTOR TRIP OR SAFETY INJECTION."
- B. Manually SI and go to EEP-0, "REACTOR TRIP OR SAFETY INJECTION."
- C. Start an additional charging pump and commence a ramp down in power to Mode 3, "HOT STANDBY."
- Dy Maintain present power level and determine a leak rate using STP-9.0, "RCS LEAKAGE TEST."

Feedback

A,B - Incorrect, Unecessary/unwarrented plant transient.

C - Incorrect, Necessary to establish a leak rate in order to evaluate the required actions using TS

D - Correct, Action required by AP-1.0 step 3.

Notes

Source: Farley Exam Bank Question #O52520A11012

Categories

RO Tier: T1G2

K/A Value: 3.5/3.8

Source: Test:

BANK

COM (29)

SRO Tier:

T1G2

Cog. Level: C/A FR01301

Exam: Misc:

for Farley 2001-301 SRO NRC EXAM

19. 010A3.02 001/T2G2/T2G2/3.6/3.5/MEMORY/BANK/FR01301/COM (6)/SDR

Unit 1 is operating at 100% steady-state power. All systems are in automatic and functioning properly.

Pressurizer pressure channel PT-444 fails high.

Which ONE of the following represents the plant/system response if NO operator action is taken?

- A. The Pressurizer heaters will deenergize and both PORVs open, thus reducing RCS pressure resulting in a Pressurizer low pressure reactor trip and SI.
- B. The Pressurizer heaters will deenergize, both spray valves will open, thus reducing RCS pressure resulting in a Pressurizer low pressure reactor trip and SI.
- C. Both spray valves close and Pressurizer heaters energize, thus raising RCS pressure resulting in a Pressurizer high pressure reactor trip.
- D. The reactor will not trip on high pressure due to PORV-445A opening, thus reducing RCS pressure.

Feedback

- A Incorrect, Only PORV-444B opens and then closes by P-11 at 2000 psig.
- B Correct, Spray valves go full open, the reactor trips at 1865 psig and SI actuates at 1850 psig.
- C Incorrect, The spray valves open and the heaters deenergize.
- D Incorrect, Pressurizer pressure will be decreasing due to the spray valves opening.

Notes

Source: Farley Bank Question #O52201H05010

Categories

RO Tier: T2G2 K/A Value: 3.6/3.5 **BANK** Source: Test: COM (6) SRO Tier:

T2G2

Exam:

Cog. Level: MEMORY FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

20. 011A3.03 001/T2G2/T2G2/3.2/3.3/C/A/NEW/FR01301/COM (7)/SDR

Unit 2 is operating at 100% steady-state power.

The following MCB annunciator alarm and indications are received:

Annunciator:

- HA3, "PRZR LVL LO B/U HTRS OFF LTDN SEC"

Indications:

- LT-459 indicates 54%

- LT-460 indicates 0%

With the pressurizer level control selector switch in the I/II position, which ONE of the following will occur?

(Assume no operator action is taken. All systems are in automatic and functioning properly.)

- A. A reactor trip will occur due to high pressurizer level.
- B. A reactor trip will occur due to high pressurizer pressure.
- C. A reactor trip will occur due to low pressurizer pressure.
- D. Pressurizer level will decrease to and remain at 15%.

Feedback

- A Correct, Charging flow will decrease to minimum, LT-460 will isolate letdown and deenergize the PZR htrs, PZR level will then rise to 92% due to minimum charging flow with no letdown flow and the reactor will trip.
- B Incorrect, Pressurizer spray valves are functional and will prevent a high pressure trip.
- C Incorrect, letdown will be isolated at 15%, PZR level will then be increasing compressing the pressurizer bubble causing pressure to increase slightly.
- D Incorrect, Once letdown flow is isolated at 15% PZR level, PZR level will start to increase due to minimum charging flow and Seal Inj.

Notes

Source: New Categories

RO Tier:

T2G2 K/A Value: 3.2/3.3

Source:

NEW

COM (7) Test:

SRO Tier:

T2G2 Cog. Level: C/A

Exam:

FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

21. 011EA1.13 001/T1G2/T1G1/4.1/4.2/C/A/NEW/FR01301/COM (55)/SDR

Unit 1 has experienced a Large Break Loss Of Coolant Accident (LOCA) inside containment. The crew is currently in EEP-1, "LOSS OF REACTOR OR SECONDARY COOLANT," at step 16, "Check when to transfer to cold leg recirculation."

Step 16 of EEP-1 states:

Action/Expected Response

Response NOT Obtained

16.1 Check RWST level - LESS THAN

16.1 Return to step 14.

12.5 ft.

RWST

LVL

[] LI 4075A

[] LI 4075B

NOTE: Step 16.1 must be complete before continuing with this procedure.

16.2 Go to FNP-1-ESP-1.3, TRANSFER TO COLD LEG RECIRCULATION.

Which ONE of the following describes the basis for the above note?

- A. To ensure the maximum amount of RWST water is used and still allow adequate suction transfer time.
- B. To ensure most of the boric acid available in the RWST has been flushed through the core.
- C. To ensure the operators have taken sufficient time to evaluate plant status per step 14 of EEP-1.
- D. To ensure level in the containment sump is high enough to provide adequate suction head for the LHSI pumps.

for Farley 2001-301 SRO NRC EXAM

Feedback

- A Correct, At 12.5 ft, there is adequate time to swap suction of the LHSI to the sump without draining the RWST and cuasing pump and RWST damage.
- B Incorrect, Adequate SDM is from the control rods, the boron in the RWST is not needed. The boron concentration in the sump will be approximately the same as that in the RWST.
- C Incorrect, Operator continue to monitor the plant status while waiting to meet the swap over criteria but this is not a reason for delaying swap over.
- D Incorrect, EEP-1 does not check containment sump level, containment sump level is checked for suction adequacy in ESP-1.3. If the RWST started out above the TS limit adequate and all break flow went to the sump suction level in the sump would be met long before the 12.5 ft mark in the RWST.

Source: New Categories

RO Tier:

T1G2

4.1/4.2

K/A Value: NEW Source:

Test:

COM (55)

SRO Tier:

Cog. Level: C/A

Exam: Misc:

FR01301

SDR

T1G1

for Farley 2001-301 SRO NRC EXAM

22. 012A1.01 001/T2G2/T2G2/2.9/3.4/C/A/NEW/FR01301/COM (61)/SDR

Which ONE of the following will result in a DECREASE in the Over-Power-Delta-Temperature (OPDT) setpoint?

- A. Pressurizer spray valve sticks open for 15 seconds (assuming the reactor does NOT trip).
- B. A reactor boration is initiated at 50% power.
- C. A power rise from 100% to 105% due to an inadvertent dilution.
- D. Feed flow to a steam generator is increased.

Feedback

- A Incorrect, Affects pressure which is independent of OPDT.
- B Incorrect, Results in power/temp decrease which increases the setpoint.
- C Correct, Power/temp increases which decreases the trip setpoint.
- D Incorrect, Cooling effect which increases the setpoint.

Notes

Source: INEL Ouestion Bank

Categories

RO Tier: T2G2 K/A Value: 2.9/3.4 Source: NEW

Test:

COM (61)

SRO Tier: T2G2

Cog. Level: C/A

Exam:

FR01301

Misc: **SDR**

for Farley 2001-301 SRO NRC EXAM

23. 013A4.02 001/T2G1/T2G1/4.3/4.4/C/A/BANK/FR01301/COM (8)/SDR

Given the following plant conditions:

- An MSIV on the 'A' Main Steam line inadvertantly closed tripping the Main Turbine and generating a reactor trip signal.
- Two minutes ago a code safety on the 'A' Main Steam line opened and failed to reseat resulting in a Safety Injection.
- The operators entered FRP-S.1 and fully inserted ALL control rods in AUTO and manual.
- It is now desired to reset SI and secure SI equipment.
- RCS pressure is now 1800 psig.

Which ONE of the following will prevent resetting SI from the Main Control Board under these conditions?

- A. RCS pressure is less than SI setpoint.
- B. Permissive P-4 has not actuated.
- C. The SI timing relays.
- D. RCS pressure is below the P-11 setpoint.

Feedback

- A Incorrect, Pressurizer pressure below the SI setpoint will initiate an SI signal but will not prevent resetting SI.
- B Correct, With the reactor trip breakers closed the required P-4 signal will not be generated and SI cannot be reset from the MCB.
- C Incorrect, SI will not reset if the 60 second timer is active, but the timer timed out one minute ago.
- D Incorrect, P-11 is the setpoint above which a blocked SI signal will auto unblock. Being below P-11 will not prevent resetting SI.

-		-	•
N	-	•~	
1.4	0	LE	ж

Source: Farley NRC Exam 1998

Categories

RO Tier: T2G1
K/A Value: 4.3/4.4
Source: BANK
Test: COM (8)

SRO Tier: T2G1 Cog. Level: C/A Exam: FR01301

Misc: SDR

for Farley 2001-301 SRO NRC EXAM

24. 014G2.1.7 001//T2G1/3.7/4.4/C/A/BANK/FR01301/S (2)/SDR

The plant is holding power at 33% for SG chemistry concerns, control bank 'D' rods indicate 150 steps on DRPI. A loss of power to DATA 'A' occurs and FF4 "DRPI Non-Urgent Failure" alarm is received.

Which ONE of the following describes the range of accuracy of DRPI for the control bank 'D' rod position?

- A. 144 156 steps
- B. 138 162 steps
- Cr 140 160 steps
- D. 146 154 steps

Feedback

- A Incorrect, DRPI indicators are every 6 steps.
- B Incorrect, Rod out of line criteria is 12 steps.
- C Correct, Accuracy of the DRPI is considered to be + 10 steps with one card inoperable (Half Accuracy).
- D Incorrect, 4 steps is the Full Accuracy of the system if both data cards were operable.

Notes

Source: Farley Bank Question # O52201F09013 text: 052201F page 8 -9 & Table 4 Categories

R	C	Tie	r:

K/A Value: 3.7/4.4

Source:

BANK

Test:

S(2)

SRO Tier:

T2G1

Cog. Level: C/A Exam:

FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

25. 014K5.01 001/T2G2/T2G1/2.7/3.0/MEMORY/BANK/FR01301/COM (10)/SDR

While performing a reactor startup, as Control Bank D rods are being pulled, the operator observes Bank D rod 'B8' indicates 54 steps on DRPI while the demand step counters for Control Bank D indicates 100 steps.

Which ONE of the following describes the reason and the position of rod 'B8'?

- A. Because the step counters are the most accurate indication, rod 'B8' is at exactly 100 steps.
- B. Because the step counters are the most reliable indication, rod 'B8' is approximately 100 steps.
- C. Because DRPI is the most accurate indication, rod 'B8' is at exactly 54 steps.
- Dy Because DRPI is the most reliable indication, rod 'B8' is approximately 54 steps.

Feedback

- A Incorrect, step counters only show the demanded position not actual rod position.
- B Incorrect, step counters only show the demanded position not actual rod position.
- C Incorrect, due to the accuracy of DRPI (± 4), it can not be said that the rod is exactly at 54 steps.
- D Correct, DRPI is the most reliable indication for determining the actual position of the rod.

Source: Farley Bank Question # O52201F10020

Categories

Test:

RO Tier: T2G2 K/A Value: 2.7/3.0 Source: BANK

COM (10)

SRO Tier: T2G1

Cog. Level: MEMORY Exam: FR01301

Misc: SDR

for Farley 2001-301 SRO NRC EXAM

26. 015/017AA1.22 001/T1G1/T1G1/4.0/4.2/MEMORY/MOD/FR01301/COM (24)/SDR

Which ONE of the following is the reason that a minimum primary loop pressure of 325 psig is required to be maintained in order to operate a Reactor Coolant Pump (RCP)?

- A. Ensures sufficient flow of reactor coolant through the RCP number one seal to provide seal cooling in the event that seal injection flow is lost.
- B. Ensures proper operation of the RCP number two seal by providing at least 200 psid across the seal.
- C. Ensures the pressure drop across the RCP number one seal allows opening the RCP seal bypass valve (HV-8142) to ensure cooling for the lower radial bearing.
- Dy Ensures the pressure drop across the RCP number one seal is sufficient to prevent the seal runner from contacting the seal ring.

Feedback

D - Correct, 350 psig provides enough lifting force. This pressure takes into account pressure losses, instrument error and tolerances.

Notes

Source: Farley NRC Exam 2000-301 Learning Objective: 052101D13

Categories

RO Tier: T1G1 K/A Value: 4.0/4.2

Source: MOD COM (24) Test:

T1G1 SRO Tier:

Cog. Level: MEMORY Exam: FR01301 Misc:

for Farley 2001-301 SRO NRC EXAM

27. 015/017AA2.08 001//T1G1/3.4/3.5/C/A/NEW/FR01301/S (16)/SDR

Plant conditions are as follows:

- Unit 1 is at 8% power during a plant startup per UOP-1.2, "STARTUP OF UNIT FROM HOT STANDBY TO MINIMUM LOAD."
- 1C Reactor Coolant Pump (RCP) Lower Radial Bearing temperature is 230 degrees F on computer indication.
- The seal injection flow to the 1C RCP is 10 gpm.

Which ONE of the following actions is required?

- A. Secure the 1C RCP and place the reactor in at least Mode 3, HOT STANDBY, within one hour.
- B. Open the 1C RCP Number 1 seal bypass to cool the bearing and place the reactor in at least Mode 3, HOT STANDBY, within one hour.
- C. Immediately trip the reactor and then secure the 1C RCP.
- D. Immediately trip the reactor and then open the 1C RCP Number 1 seal bypass to cool the bearing.

Feedback

- A Incorrect, RCP is required to be secured immediately if Lower Radial Bearing temperature increases above 225F. Per our plant procedures(ARP's), and management expectations, we are required to trip the reactor prior to securing the RCP.
- B Incorrect, Number 1 seal bypass valve is opened to increase cooling to the bearing under low flow conditions but, only when RCS pressure is between 100 and 1000 psig.
- C Correct, A reactor trip is required per ARP's related to seal failures regardless of power level. Current management expectations are to trip the reactor first, then trip the RCP. If the RCP trips first, then AOP-4 can be used to ramp to Mode 3 within 1 hour.
- D Incorrect, Correct first response but leaves out tripping the RCP and we then would close the RCP seal leakoff line for the affected RCP..

B 7		
N	OI	es

Source: New

LO: O52520D01 & O52101D14

Categories

RO Tier:

SRO Tier:

T1G1

K/A Value: 3.4/3.5

Cog. Level: C/A

Source:

NEW

Exam: FR01301

Test:

S (16)

Misc:

for Farley 2001-301 SRO NRC EXAM

28. 016A4.01 001/T2G2/T2G2/2.9/2.8/C/A/NEW/FR01301/COM (62)/SDR

Given the following conditions on Unit 1:

- Reactor at 95% power.
- Steam dump controller in Tavg mode.

Which ONE of the following describes the requirements for the steam dump valve positioning signal to be passed to the steam dump valve actuators for a loss-of-load?

- A. A turbine trip has not occurred; 15% load decrease in 180 seconds; C-9 is present; P-12 is not present and the interlock selector switches are in 'ON' or 'BYP'.
- By A turbine trip has not occurred; 15% load decrease in 120 seconds; C-9 is present; P-12 is not present and the interlock selector switches are not in 'OFF/RESET'.
- C. P-4 signal is not present; C-7 is present; C-9 is not present; P-12 is present and the interlock selector switches are not in 'OFF/RESET'.
- D. P-4 signal is present; C-7 is present; C-9 is present; P-12 is not present and the interlock selector switches are in 'ON' or 'BYP'.

Feedback

- A Incorrect, Load rejection rate is not high enough must be at least 7.5%/min.
- B Correct
- C Incorrect, P-12 blocks dump actuation. C-9 not available and also blocks dump operation.
- D Incorrect, P-4 is plant trip signal and blocks the loss-of-load signal

Removed the position of BYP due to fig 12 shows when < P-12 and in BYP the stm dumps will be blocked.

N	ntes	

Source:	INEL	Question	Bank

Categories

RO Tier: T2G2 K/A Value: 2.9/2.8 Source: NEW Test: COM (62) SRO Tier: T2G2

Cog. Level: C/A

FR01301 Exam: **SDR**

for Farley 2001-301 SRO NRC EXAM

29. 017G2.4.47 001/T2G1/T2G1/3.4/3.7/C/A/BANK/FR01301/COM (67)/SDR

You have entered ECP-0.0, "LOSS OF ALL AC POWER."

- The turbine driven AFW pump will not start and all S/G WR levels are <50%.
- Reactor power is $<10^{-8}$ amps on both intermediate range channels and trending down.
- The fifth highest Core Exit Thermocouple is 732 degrees F and increasing.
- Subcooling is indicating -28 degrees F.
- RVLIS is not functioning.

Which ONE of the following actions should be taken at this point?

- A. Transition to FRP-C.2, "RESPONSE TO DEGRADED CORE COOLING."
- B. Transition to FRP-H.1, "RESPONSE TO LOSS OF SECONDARY HEAT SINK."
- C. Transition to ECP-0.2, "LOSS OF ALL AC POWER WITH SI REQUIRED."
- Dy Continue in ECP-0.0, "LOSS OF ALL AC POWER."

Feedback

- A Incorrect, Thermocouple value and trend indicates a transition is required based on ORANGE path.
- B Incorrect, S/G value indicates a transition is required based on RED path.
- C Incorrect, No indication that SI is required.
- D Correct, Loss of all AC take precidence over transitions to FRP's.

Notes

Source: Farley Question Bank, Question #O52532A

LO: O52532A04

Categories

RO Tier: T2G1 K/A Value: 3.4/3.7 Source: BANK Test: COM (67) SRO Tier: T2G1

Cog. Level: C/A Exam: FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

30. 022A1.02 001/T2G1/T2G1/3.6/3.8/MEMORY/NEW/FR01301/COM (18)/SDR

What is the MINIMUM cooling equipment necessary to maintain post accident containment pressure below the design value on a design basis LOCA?

- A. Two Containment Cooling Fan units and two trains of Containment Spray.
- B. Two Containment Cooling Fan units and one train of Containment Spray.
- C. One Containment Cooling Fan unit and two trains of Containment Spray.
- Dy One Containment Cooling Fan unit and one train of Containment Spray.

Feedback

- A Incorrect, This is not the minimum. Lesson Plan OPS-52102C page 5, states in part that one train of containment spray heat removal capability equates to 3 containment cooling fans.
- B Incorrect, This is not the minimum. This distractor represents one train of spray and one train of fans.
- C Incorrect, This is not the minimum.
- D Correct, See Tech Spec Bases 3.6.6

Notes

Source: Vogtle NRC Exam 2001

Categories

T2G1 RO Tier: K/A Value: 3.6/3.8 **NEW** Source: Test: COM (18) SRO Tier: T2G1

Cog. Level: MEMORY FR01301 Exam: **SDR**

Misc:

for Farley 2001-301 SRO NRC EXAM

31. 022AA1.08 001/T1G2/T1G2/3.4/3.3/C/A/NEW/FR01301/COM (51)/SDR

Given the following conditions on Unit 2:

- Reactor is at 100 % steady-state power.
- RCS boron concentration is 600 ppm.
- VCT level is currently 40% as indicated on level transmitter LT-112.
- Earlier in the shift VCT level transmitter LT-115 failed low and has been released to I&C for repair.
- Make up Mode Control Switch is in STOP
- The I&C person has just left the control room to electrically isolate LT-115.

I&C reports they have deenergized LT-112 inadvertently.

Which ONE of the following describes how the VCT level and reactor power would respond?

(Assume no operator action)

- A. VCT level increases; reactor power remains the same.
- B. VCT level decreases; reactor power increases.
- C. VCT level increases; reactor power decreases.
- D. VCT level decreases; reactor power decreases.

Feedback

- A Incorrect, RWST will be supplying the charging pump suction with water with 2000+ ppm boron, this will cause reactor power to decrease.
- B Incorrect, Reactor power will not increase due to boration from the RWST.
- C Correct, Letdown will still be going to the VCT causing level to increase; boration from the RWST will be causing power to decrease. Having both level transmitters low will open LCV-115B & D and shut LCV-115C & E this swaps charging pump suction from the VCT to the RWST.
- D Incorrect, VCT level will not decrease, there is not out let flow from the VCT due to LCV-115C and LCV-115E going shut and letdown still going to the VCT.

Notes

Source: Modified from Vogtle NRC Exam 2001

Categories

RO Tier: T1G2
K/A Value: 3.4/3.3
Source: NEW
Test: COM (51)

SRO Tier: T1G2 Cog. Level: C/A Exam: FR01301

SDR

Misc:

for Farley 2001-301 SRO NRC EXAM

32. 024AK2.03 001/T1G1/T1G1/2.6/2.5/C/A/MOD/FR01301/COM (53)/SDR

Unit 1 is in Mode 4, Hot Shutdown.

600 volt Load Center 1E has been tagged out for bus bar repair.

An uncontrolled increase in the Source Range count rate has been observed and operators are entering AOP-27.0, "EMERGENCY BORATION."

Attempts to start the 1A Boric Acid Transfer (BAT) pump have been unsuccessful.

Which ONE of the following describes the appropriate action(s) to be taken in accordance with AOP-27.0?

- A. Start 1B BAT pump and open MOV-8104, "Emerg Borate to Chg Pump Suct."
- B. Start 1B BAT pump and open FCV-113A, "Boric Acid to Blender," and FCV-185, "Man Emerg Boration."
- C. Open LCV-115B, "RWST to Chg Pump," and close LCV-115C, "VCT Outlet Iso."
- D. Initiate a manual safety injection.

Feedback

- A Incorrect, B BAT pump power source is 600V MCC B which is fed from 4160V 1E.
- B Incorrect, Same as A.
- C Correct, This is RNO action for not having BAT pump available.
- D Incorrect, Safety Injection is not warranted.

Notes

Source: Modified from TP NRC Exam 2000 & Farley Bank Question #O52521A04005

LO: O52521A04

Categories

RO Tier: T1G1

K/A Value: 2.6/2.5

Source: MOD

Test: COM (53)

SRO Tier: T1G1

Cog. Level: C/A Exam: FR0

Exam.

FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

33. 025AK3.01 001/T1G2/T1G2/3.1/3.4/C/A/NEW/FR01301/COM (33)/SDR

Unit 1 is in Mode 5, "COLD SHUTDOWN," with the following plant conditions:

- All CETC's read 195 degrees F and are stable.
- All S/G's wide range levels are 94%.
- All RCP's are secured.
- RCS pressure is 325 psig and stable.
- Train 'A' RHR is in service.
- Train 'B' RHR is inoperable for repairs.
- All systems aligned in their normal configuration for the present plant conditions.

A loss of RHR has just occurred and cannot be restored. RCS temperature is rising.

Which ONE of the following is the preferred method for heat removal in accordance with FNP-1-AOP-12.0, "RESIDUAL HEAT REMOVAL SYSTEM MALFUNCTION?"

- A. RWST gravity feed to RCS, spill through the Pressurizer PORVs.
- B. Charging Pump injecting flow through the normal charging line, spill through the Pressurizer PORVs.
- C. Natural Circulation RCS flow with the atmospheric relief valves open, AFW flow and SGBD established.
- D. Reflux cooling to any S/G with level maintained in the Narrow Range.

Feedback

- A Incorrect, This is an alternate method if CETC's >200 deg F and charging pumps are unavailable per AOP-12.0 but, it is not the preferred.
- B Incorrect, This is an alternate method if CETC's >200 deg F per AOP-12.0, step 26, but it is not the preferred.
- C Correct, This is the preferred method per AOP-12 with a loss of both RHR pumps.
- D Incorrect- this would only occur when primary coolant is not in the SG U-tubes.

Notes

Source:	Byron	2000-301

Categories

RO Tier: T1G2
K/A Value: 3.1/3.4
Source: NEW
Test: COM (33)

SRO Tier: T1G2

Cog. Level: C/A
Exam: FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

34. 026EG2.3.2 001/T1G1/T1G1/2.5/2.9/C/A/NEW/FR01301/COM (73)/LSM

The CCW normal makeup through MOV-3030A and B, "MKUP TO CCW FROM DW STOR TK," is not available. You must use the Alternate make-up source.

Which ONE of the following is a concern when using the alternate make up source, which is not a concern when using the normal makeup source?

- A. Possible radioactive contamination of the CCW system.
- B. Possible over pressurization of the CCW system.
- C. Limited capacity of the alternate make up water source.
- D. Possible dilution of the potassium chromate in the CCW system.

Feedback

- A Correct, Alternate makeup comes from the reactor makeup water system through valves MOV-3031A and B. Reactor makeup water should only be used as an emergency source of makeup water to the CCW surge tank due to possible radioactive contamination of the system.
- B Incorrect, System is designed with relief valves to prevent overpressurization.
- C Incorrect, Alternate makeup can supply adequate amount of water.
- D Incorrect, Alternate source will not dilute any more than the normal source which comes from the demineralized water system.

Source: 1	New
Categorie	\$

RO Tier:	T1G1
K/A Value:	2.5/2.9
Source:	NEW
Test:	COM (73)

SRO Tier: T1G1
Cog. Level: C/A
Exam: FR01301
Misc: LSM

for Farley 2001-301 SRO NRC EXAM

35. 026K1.01 001/T2G2/T2G1/4.2/4.2/C/A/BANK/FR01301/COM (17)/SDR

The plant is responding to a large break LOCA with both trains of ECCS in operation. ESP-1.3, "TRANSFER TO COLD LEG RECIRCULATION," is in progress due to low level in the RWST.

The following occurred in rapid succession:

- SI reset is completed.
- One train of Penetration Room Filtration was verified in operation.
- The STA announces that containment pressure has risen to 30 psig and continues to rise.
- At the procedure step to align CCW to RHR heat exchanger, you are unable to open CCW to RHR heat exchanger valve MOV-3185A, "CCW TO 'A' RHR HX."

Which ONE of the following should be performed FIRST based on the above conditions?

- A. Immediately go to FRP-Z.1, "RESPONSE TO HIGH CONTAINMENT PRESSURE."
- B. Immediately transfer to ECP-1.1, "LOSS OF EMERGENCY COOLANT RECIRCULATION," since cold leg recirculation cannot be established with MOV-3185A closed.
- C. Complete the alignment of at least one ECCS train for recirculation and then go FRP-Z.1, "RESPONSE TO HIGH CONTAINMENT PRESSURE."
- D. Hold at the step in effect until emergency support organizations can determine if cold leg recirculation should be established.

Feedback

- A Incorrect, per note in ESP-1.3.
- B Incorrect, not since other train is available.
- C Correct, since one train is available, the correct action would be to continue in ESP-1.3 until step 7 and then transfer to the applicable FRP or procedure and step in effect. ESP-1.3 CAUTION states that "No Function Restoration Procedure should be implemented until step 7 has been completed."
- D Incorrect, The crew is presently at step 5 of ESP-1.3.

Source: Farley Bank Question #O52531G04

Categories

RO Tier: T2G2 K/A Value: 4.2/4.2 Source: BANK Test: COM (17) SRO Tier: T2G1

Cog. Level: C/A Exam: FR0

: FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

36. 028A2.02 001//T2G2/3.5/3.9/C/A/BANK/FR01301/S (3)/SDR

Given the following plant conditions:

- A large break LOCA has occurred on Unit 2 thirty (30) minutes ago.
- Hydrogen concentration inside containment is 4.5%.

Which ONE of the following actions should be taken within the next 30 minutes to reduce hydrogen concentration?

- A. Place only ONE Post LOCA containment hydrogen recombiner is service at a power setting of 100 kilowatts.
- B. Place BOTH Post LOCA containment hydrogen recombiners in service at a power setting of 50 kilowatts.
- C. Evaluate placing the post LOCA containment pressurization and venting system in service.
- D. Evaluate placing the post LOCA containment air mixing system in service.

Feedback

- A Incorrect, Recombiner operation should commence within 1 hour of the event, however, the max power setting is initially set at approximately 68 kilowatts and recombiners should not be put in service if hydrogen concentration is above 4%.
- B Incorrect, Recombiner operation should commence within 1 hour of the event, however, the recombiners should not be put in service if hydrogen concentration is above 4%.
- C Correct, Per EEP-1, the post accident containment venting system should be evaluated to be placed in service when hydrogen concentration is above 4%.
- D Incorrect, The post LOCA containment air mixing system is used to prevent the formation of hydrogen pockets and not to reduce the overall concentration.

 Notes

Source: Farley NRC Exam 1998

Categories

RO Tier:

K/A Value: 3.5/3.9

Source:

BANK

Test:

S (3)

SRO Tier:

r: T2G2

Cog. Level: C/A

Exam:

FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

37. 028AK2.02 001/T1G3/T1G3/2.6/2.7/C/A/BANK/FR01301/COM (31)/SDR

Unit 1 is operating at 100% reactor power with all control systems functioning normally in automatic. The Pressurizer Level Control transfer switch is in position I/III.

The sensing line to Pressurizer level transmitter, LT-459, has just developed a reference leg leak where the reference leg connects to the level D/P cell.

Which ONE of the following describes the plant response from this leak?

A. LI-459 indication will increase.

LI-460 indication will decrease.

LI-461 indication will decrease.

Charging header flow will decrease.

Backup heaters will energize.

B. LI-459 indication will decrease.

LI-460 indication will increase.

LI-461 indication will increase.

Charging header flow will increase.

Letdown will isolate.

Backup heaters will de-energize.

C. LI-459 indication will increase.

LI-460 indication will increase.

LI-461 indication will decrease.

Charging header flow will decrease.

Letdown will isolate.

D. LI-459 indication will decrease.

LI-460 indication will decrease.

LI-461 indication will increase.

Charging header flow will decrease.

Letdown will isolate.

Backup heaters will de-energize.

Feedback

- A Correct, LI-459 level will rise due to less D/P across detector. LI-459 being the controlling channel will cause charging flow to decrease resulting in actual PZR level decreasing. LI-459 will cause PZR heaters to energize at 5% deviation between indicated and program.
- B Incorrect, LI-459 indication will not decrease.
- C Incorrect, LI-460 indication will not increase.
- D Incorrect, LI-459 indication will not decrease.

for Farley 2001-301 SRO NRC EXAM

Notes Source: Farley Exam Bank Question #O52201H12021 Categories RO Tier: T1G3 SRO Tier: T1G3 K/A Value: 2.6/2.7 Cog. Level: C/A Source: **BANK** Exam: FR01301 Test: COM (31) Misc: SDR

for Farley 2001-301 SRO NRC EXAM

38. 029G2.4.21 001//T2G2/3.7/4.3/MEMORY/BANK/FR01301/S (24)/SDR

The plant has been operating under steady-state conditions at 100% power for the past 76 days. The shift support supervisor informs you that the monthly surveillance checks on the Containment Purge Exhaust Flow Gas monitors, R-24A and R-24B, have NOT been documented as being performed for the past 3 months.

Which ONE of the following should be performed by the control room Shift Supervisor?

- A. Direct the performance of the required surveillance checks; station an operator to manually initiate a phase 'A' isolation if R-11, Containment Air Particulate Monitor, or R-12, Containment Radioactive Gas Monitor, should alarm.
- B. Declare the R-24A and R-24B radiation monitors out of service; and prepare to shutdown the plant as per Technical Specification 3.03.
- C. Order a manual containment phase 'A' isolation to ensure that the containment purge is isolated; and continue normal power operations.
- Dy Immediately place and maintain the containment purge and exhaust valves in the closed position; direct the performance of the required surveillance checks; and continue operation.

Feedback

- A Incorrect, R-11 and R-12 radiation monitors containment atmosphere, they can be delayed by at least 20 minutes after a leak occurs when rapid isolation of the purge isolation valve is assumed in the safety analysis.
- B Incorrect, T.S. SR 3.0.3, allows 24 hrs to get the surveillance done after discovery before having to state that the LCO is not met.
- C Incorrect, T.S. 3.3.6 require the radiation monitor to be operational.
- D Correct, Isolate the containment purge path and perform the surveillance.

Notes

Source: Farley Question Bank, Question #O52302G04020

LO: O52302G04

Categories

RO Tier:
K/A Value: 3.7/4.3
Source: BANK
Test: S (24)

SRO Tier: T2G2
Cog. Level: MEMORY
Exam: FR01301

SDR

Misc:

for Farley 2001-301 SRO NRC EXAM

39. 032AA1.01 001/T1G2/T1G2/3.1/3.4/C/A/BANK/FR01301/COM (34)/SDR

Unit 1 is shutdown for refueling with fuel movement in progress. The audio count rate selector switch is selected to Source Range channel N-31 and the speaker selector switch is in NORMAL (amplifier 1 supplying the control room speaker and amplifier 2 supplying the containment speaker.) An instrument power fuse blows on N-31.

Which ONE of the following describes the sequence of actions to be taken?

- A. Continue the fuel movement in progress, monitor the remaining NI channels, select Source Range channel N-32 on the audio count rate selector.
- B. Suspend all fuel movement, monitor the remaining NI channels, select Source Range channel N-32 on the audio count rate selector, repair N-31, and then continue fuel movement.
- C. Continue the fuel movement in progress, monitor the remaining NI channels, select Source Range channel N-32 on the audio count rate drawer, then initiate repairs on N-31.
- D. Suspend all fuel movement, monitor the remaining NI channels, select Source Range channel N-32 on the audio count rate selector, continue fuel movement, and then repair N-31.

Feedback

B - Incorrect, If one SR is lost all fuel movement must be suspended per TS 3.9.2. Must have two SR and one audible count rate operable.

C - Correct, TS change allows use of gammametrics. Rev 3 of TS 3.9.2.

Notes

Source: Farley Exam Bank Question #O52302M04007

Categories

RO Tier: T1G2 K/A Value: 3.1/3.4 Source: BANK Test: COM (34) SRO Tier: T1G2

Cog. Level: C/A Exam: FR01301

Misc: SDR

for Farley 2001-301 SRO NRC EXAM

40. 033EG2.1.12 001//T1G2/2.9/4.0/C/A/NEW/FR01301/S (4)/SDR

A Unit 1 reactor startup is in progress. One hour ago Intermediate Range, IR, channel N-36 was taken out of service due to a power supply problem. The decision was made to continue with the reactor startup, power is currently at 8%.

It is estimated that N-36 will be returned to service in the next 2 hours. The technician working on the N-36 power supply performed an action that resulted in Intermediate Range, IR, N-35 failing low.

Which ONE of the following describes the action(s) that must be taken in order to comply with Technical Specification requirements?

- A. Immediately suspend operations involving positive reactivity additions AND reduce thermal power to < P-6 within 2 hours.
- B. Place IR N-36 channel level trip switch in the 'BYPASS' position within 6 hours and be in Mode 3, Hot Standby, within 12 hours.
- C. Do NOT change power level until at least one IR channel is restored to operable status.
- D. Place the IR N-35 channel level trip switch in the 'BYPASS' position and increase thermal power to > P-10 within TWO hours.

Feedback

- A Correct, Actions required by TS 3.3.1.G. with 2 IR channels lost.
- B Incorrect, Action required if two SR channels were lost.
- C Incorrect, Action if power level was below P-6.
- D Incorrect, Action that was in progress with just the one IR channel was out of service, TS 3.3.1.F.

X.	~	~~
13	•)	

Source: New Categories

RO Tier:

K/A Value: 2.9/4.0 **NEW**

Source: Test:

S (4)

SRO Tier:

T1G2 Cog. Level: C/A

Exam:

FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

41. 034G2.1.11 001//T2G2/3.0/3.8/MEMORY/BANK/FR01301/S (10)/SDR

Unit 1 is refueling with the core unload in progress (fuel being transferred inside containment and over the spent fuel pool.) While performing the board walkdown during turnover you, as SRO, notice HV-3538A (SFP TO 1A PRF SUPPLY DAMPER) and HV-3538B (SFP TO 1B PRF SUPPLY DAMPER) are both closed and cannot be immediately opened.

Which ONE of the following describes the action(s), if any, that must be performed to satisfy Technical Specifications?

- A. The Penetration Room Filtration system must have a train restored within the next 7 days or suspend all movement of irradiated fuel in the spent fuel pool room.
- B. No action required, these dampers are not necessary for Penetration Room Filtration operability since the plant is in Mode 6, "REFUELING."
- C. Immediately suspend all irradiated fuel movement in the spent fuel pool room until the dampers can be made operable.
- D. No action required, Technical Specification LCO Sections 3.0.3 and 3.0.4 are not applicable.

Feedback

- A Incorrect, This is the action if only a single train of PRF was unavailable.
- B Incorrect, The TS 3.7.12 is applical be during irradiated fuel movement in the SFP room.
- C Correct, Required action of TS 3.7.12.D when both trains of PRF are inoperable.
- D Incorrect, Action is required per TS 3.7.12 although LCO 3.0.3 and 3.0.4 do not apply.

Notes

Categories				
RO Tier:		SRO Tier:	T2G2	-
K/A Value:	3.0/3.8	Cog. Level:	MEMORY	
Source:	BANK	Exam:	FR01301	
Test:	S (10)	Misc:	SDR	

Source: Farley Exam Bank Question #O52302M17012

for Farley 2001-301 SRO NRC EXAM

42. 035A1.01 001/T2G2/T2G2/4.2/4.5/C/A/NEW/FR01301/COM (9)/SDR

Unit 1 is operating at 55% reactor power with all control systems in automatic functioning properly. FT-477, which is the controlling feedwater flow control channel for the 1A Steam Generator (S/G), fails low.

With NO immediate operator action, which ONE of the following will initially be a direct result of the failure?

- A. Feed Regulating Valve, FCV-478, will open, SGFP speed will increase, and 1A S/G level will increase causing P-14 to actuate closing only FCV-478 and it's bypass valve, FCV-479.
- B. Feed Regulating Valve, FCV-478, will open, SGFP speed will increase, and 1A S/G level will increase causing P-14 to actuate closing all Feed Regulating Valves and their bypass valves.
- C. Feed Regulating Valve, FCV-478, will close, SGFP speed will decrease and all S/G levels will decrease causing a Reactor trip on LO-LO S/G level.
- D. Feed Regulating Valve, FCV-478, will open, SGFP speed will decrease and all S/G levels will decrease causing a Reactor trip on LO-LO S/G level.

Feedback

- A Incorrect, P-14 actuation causes all 3 S/G FRV's and their bypasses to close.
- B Correct.
- C Incorrect, S/G 'A' FRV will open FT-477 failing low.
- D Incorrect, SGFP speed will increase to maintain the feedwater to main steam D/P since the 'A' FRV opening will cause the D/P to decrease.

Notes

Test:

Source: Summer 2000-301

COM (9)

Categories

RO Tier: T2G2 K/A Value: 4.2/4.5 Source: NEW

SRO Tier: T2G2

Cog. Level: C/A Exam: FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

43. 035K5.01 001/T2G2/T2G2/3.4/3.9/MEMORY/BANK/FR01301/COM (11)/SDR

Unit 2 has been ramping up and is currently on HOLD at 80% power with all control systems in automatic functioning properly.

Given the following plant conditions:

- Control bank 'D' rods are at 191 steps.
- Loop 'A' Tavg channel is 572 degrees F.
- Loop 'B' Tavg channel is 568 degrees F.
- Loop 'C' Tavg channel is 566 degrees F.

Which ONE of the following explains how the Rod Control System will initially respond if the selected P_{imp} pressure fails high?

(Assume no Operator action.)

- Ar Rods will step out at 72 steps/minute.
- B. Rods will step out at 40 steps/minute.
- C. Rods will not move.
- D. Rods will step out at 8 steps/minute.

Feedback

- A Correct, Rods would move out at this speed because Tref for Unit 2 is 573. Tref was 576 last outage on Unit 2 and a generic value of 575 (or the old Unit 1) value is used in the lesson plan. Since the rod use a median temp and 568 is the median, then the difference of any of the following would give 72 spm as the answer. 576-568=8 / 575-568=7 / 573-568=5
- B Incorrect, Rods would move out at this speed if average value of Tavg of 569 was used and the current value of 573. If the highest Tavg was used with the old 576 value rods would move out at this speed also.
- C Incorrect, Rods would not move if the temperature mismatch channel output was from 'A' loop Tavg of 572 instead of the median Tavg and the value of 573 was used.
- D Incorrect, Rods will move out at this speed if 'A' loop Tavg of 572 was used with 575 value. Notes

Source: Fa	rley NRC Exam 1997		
RO Tier:		SRO Tier:	T2G2
K/A Value:	3.4/3.9	Cog. Level:	MEMORY
Source:	BANK	Exam:	FR01301
Test:	COM (11)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

44. 036AA2.02 001//T1G3/3.4/4.1/MEMORY/NEW/FR01301/S (13)/SDR

You are the Shift Supervisor (SS).

Unit 1 is in Mode 6, Refueling.

Core reload is occurring in containment and fuel movement is in progress.

The SRO in charge of fuel handling reports to you that the fuel assembly has impacted the seal ring at hold down clamp.

Annunciator EH2, "SFP LVL HI-LO," has just alarmed.

The Refueling Cavity watch reports that the refueling cavity level is lowering rapidly.

Which ONE of the following describes the initial action in accordance with AOP-30.0, "REFUELING ACCIDENT?"

- A. Ensures the SRO in charge of fuel handling evacuates all personnel from Containment and the Spent Fuel Pool room.
- B. Ensures the SRO in charge of fuel handling places any fuel assembly in transit in a safe location.
- C. Initiate action to place the Control Room Emergency Filtration/Pressurization System (CREFS) in service.
- D. Restore the Reactor Internals to the reactor vessel.

Feedback

- A Incorrect, Only non-essential personnel need to be evacuated the refueling crew is needed to safely store the fuel assembly in transit.
- B Correct, Initial response is to secure the fuel assembly in transit, worst case the SRO has 164 minutes to safely store the fuel assembly. Makeup flow capacity from one train of RHR is sufficient to maintain refueling level above the level where uncovery of the fuel assembly would occur.
- C Incorrect, This is the ATTACHMENT 1 actions of AOP-30 which is done in parallel with the remainder of AOP-30 after the fuel assembly is directed to be secured.
- D Incorrect, This can not be done due to the fuel assembly being in transit.

Categories			
RO Tier:	4 t	SRO Tier:	T1G3
K/A Value:	3.4/4.1	Cog. Level:	MEMORY
Source:	NEW	Exam:	FR01301
Test:	S (13)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

45. 037AA2.06 001/T1G2/T1G2/3.0/3.4/C/A/NEW/FR01301/COM (28)/SDR

Unit 1 is at 100% power with the following plant conditions:

- All Pressurizer heaters are energized.
- Letdown flow is 75 gpm.
- Charging flow is 105 gpm.
- S/G levels are constant.
- Tavg/Tref are matched.

Which ONE of the following events could produce the above plant conditions?

- A. The Pressurizer level control channel has failed high.
- B. An atmospheric relief valve has opened.
- C. A S/G tube leak has occurred.
- D. Pressurizer spray bypass flow has increased.

Feedback

- A Incorrect, This would cause charging flow to go to minimum.
- B Incorrect, This would cause a Tavg/Tref mismatch.
- C Correct
- D Incorrect, this does not explain the charging/letdown flow mismatch.

Notes

Source: Byron 2000-301

Categories

RO Tier: T1G2 K/A Value: 3.0/3.4 Source: NEW

Test: COM (28)

SRO Tier:

Cog. Level: C/A Exam: FR01301

Exam: Misc:

SDR

T1G2

for Farley 2001-301 SRO NRC EXAM

46. 038EA2.01 001//T1G2/4.1/4.7/C/A/NEW/FR01301/S (14)/SDR

An accident has occurred on Unit 1.

The following plant conditions exist:

- Containment pressure is 3 psig (slowly lowering).
- S/G levels (Narrow range) A: 18% B: 28% C: 20% (All are slowly increasing)
- HP has confirmed high radiation on 1B Main Steam Line.

Which ONE of the following describes the actions required to be taken by the crew in accordance with EEP-3, "STEAM GENERATOR TUBE RUPTURE?"

- A. Immediately isolate Auxiliary Feedwater flow to 1'B' S/G by CLOSING the 1B Auxiliary Feedwater Stop valve MOV-3350B.
- B. Maintain feedwater flow to the 1B S/G until narrow range level is 32%, then isolate Auxiliary Feedwater to the 1B S/G.
- C. Maintain feedwater flow until ALL S/G narrow range levels are 32%, then isolate Auxiliary Feedwater to the 1B S/G.
- D. Maintain feedwater flow to the 1B S/G until narrow range level is 49%, then isolate Auxiliary Feedwater to the 1B S/G.

Feedback

- A Incorrect, Feed flow is maintained to the SG with the tube rupture until level is above 31%.
- B Correct, Once level is above 31% AFW is isolated to the ruptured S/G.
- C Incorrect, Do not wait until ALL S/G's are above 31% until isolating AFW to the 1B S/G
- D Incorrect, This is the level for adverse containment, containment pressure above 4 psig.

Source: Byron 2000-301

Categories

 RO Tier:
 SRO Tier:
 T1G2

 K/A Value:
 4.1/4.7
 Cog. Level:
 C/A

 Source:
 NEW
 Exam:
 FR01301

 Test:
 S (14)
 Misc:
 SDR

for Farley 2001-301 SRO NRC EXAM

47. 038EK3.06 001/T1G2/T1G2/4.2/4.5/C/A/BANK/FR01301/COM (25)/SDR

Given the following conditions on Unit 1:

- The plant was stable at 100% power when a large load rejection occurred, followed by an immediate steam generator tube rupture.
- The shift crew has implemented EEP-0, "REACTOR TRIP OR SAFETY INJECTION," and EEP-3, "STEAM GENERATOR TUBE RUPTURE."
- RCS average temperature is 550 degrees F and decreasing slowly.
- The crew is ready to commence an RCS cooldown to 485 degrees F.
- Both the C-7A and C-9 lights are illuminated on the Bypass and Permissive panel.

Which ONE of the following action(s), if any, should be taken with the steam dumps?

- A. They should be opened fully to obtain the maximum cooldown rate possible.
- B. They are NOT available as indicated by the C-7A and C-9 lights both being illuminated.
- C. They should NOT be opened past 10% demand to prevent overshooting the required CETC temperatures.
- Dy They should be opened the maximum amount that can be controlled to prevent main steam isolation.

Feedback

- A Incorrect, Opening the steam dumps fully with RCS above P-12 could cause MS isolation.
- B Incorrect, C-9 must be lit for steam dump ops; C-7A being lit does not prevent steam dump ops.
- C Incorrect, Overshooting required CETC temp is not a concern.
- D- Correct, Steam flow must be controlled to prevent exceeding 40% which will cause steam line isolation.

Notes

Source: Farley NRC Exam 2000-301

LO: 052530D03

Categories

RO Tier:	T1G2	SRO Tier:	T1G2
K/A Value:	4.2/4.5	Cog. Level:	C/A
Source:	BANK	Exam:	FR01301
Test:	COM (25)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

48. 040AK3.06 001/T1G1/T1G1/3.4/3.9/MEMORY/BANK/FR01301/COM (23)/SDR

Given the following conditions on Unit 1:

- The plant was at 100% power when the 1C S/G Main Steam line ruptured inside containment.
- Plant trip, safety injection, and Phase A containment isolation have actuated per design.
- Applicable steps of EEP-0, "REACTOR TRIP OR SAFETY INJECTION," and EEP-2, "FAULTED STEAM GENERATOR ISOLATION," to isolate 1C S/G have been performed.
- The crew is currently implementing EEP-1, "LOSS OF REACTOR OR SECONDARY COOLANT."
- Containment pressure spiked to 35 psig and is now continuing to decrease slowly.
- Pressurizer level is 20% and increasing.

Which ONE of the following meets or exceeds prerequisites for securing Containment Spray (CS) in accordance with EEP-1?

- A. When CS has been aligned to the containment sump for 10 hours and containment pressure is 18 psig.
- By When CS has been aligned to the containment sump for 16 hours and containment pressure is 10 psig.
- C. When CS has been in operation for 10 hours and containment pressure is 18 psig.
- D. When CS has been in operation for 8 hours and containment pressure is 10 psig.

Feedback

- A Incorrect, Containment pressure is too high.
- B Correct, CS on recirculation for at least 8 hours and containment pressure < 16 psig.
- C Incorrect, Has to be aligned to containment sump and containment pressure is too high.
- D Incorrect, Has to be aligned to containment sump.

Notes

Source: Farley NRC Exam 2000-301

Categories

RO Tier: T1G1 K/A Value: 3.4/3.9 Source: BANK SRO Tier: T1G1

Cog. Level: MEMORY Exam: FR01301

Misc:

SDR

Test: COM (23)

for Farley 2001-301 SRO NRC EXAM

49. 041A3.02 001/T2G3/T2G3/3.3/3.4/C/A/BANK/FR01301/COM (12)/SDR

The plant is in UOP-3.1, "POWER OPERATION," at 33% power and ramping up.

All systems are in automatic and controlling properly.

Steam dumps are in the Tavg mode and the control rods are at 72 steps on control bank 'D'.

- A malfunction of the DEH control system results in a turbine trip.
- The rod control system is placed in manual and used with the steam dumps to stabilize reactor power at 33%.
- Steam dump control is then inadvertantly transferred from the Tavg mode to the steam pressure mode.

For the conditions given, assuming no further operator action, what will be the response of the plant?

- A. RCS temperature will decrease and pressurizer level will decrease.
- B. RCS temperature will increase and pressurizer level will increase.
- C. Steam dumps will modulate to bring steam header pressure to the steam dump controller setpoint.
- D. No effect in steam pressure mode. The steam dumps will continue to control RCS temperature.

Feedback

- A Incorrect, this is the action if the steam dumps were to fly open.
- B Correct, the steam dumps immediately close when the switch is taken from Tavg mode to Steam pressure mode.
- C Incorrect, steam pressure control output shifts to steam pressure mode in manual with an output of zero.
- D Incorrect, this is the action if the steam dumps continued to operate in the Tavg mode.

Source: Farley exam bank: Question # O52520C06003

Categories

RO Tier: T2G3 K/A Value: 3.3/3.4 Source: BANK Test: COM (12) SRO Tier: T2G3 Cog. Level: C/A

Exam: FR01301
Misc: SDR

for Farley 2001-301 SRO NRC EXAM

50. 054AA2.04 001//T1G2/4.2/4.3/MEMORY/BANK/FR01301/S (15)/SDR

A loss of Main Feedwater has occurred on Unit 2. The crew has transitioned to FRP-H.5, "RESPONSE TO STEAM GENERATOR LOW LEVEL." Auxiliary Feedwater (AFW) flow has been established to recover Steam Generator (S/G) level.

Which ONE of the following explains why AFW flow is procedurally restricted to 100 gpm when recovering S/G level if level has fallen below 12% on the wide range indication?

- A. To minimize reactionary stresses due to water hammer in the S/G feed ring.
- B. To prevent disruption of natural circulation flow in the Reactor Coolant System.
- C. To minimize thermal stresses in S/G components due to cold feedwater.
- D. To prevent establishing runout conditions of the AFW pumps.

Feedback

- A Incorrect, Water hammer is not a concern in restoring AFW flow to a S/G with low level.
- B Incorrect, Adding AFW to a S/G with a low level will enhance natural circulation flow.
- C Correct, Proper operation of the AFW system flow is required to minimize thermal stresses.
- D Incorrect, AFW pump runout is always a concern but the AFW system/components prevent AFW runout conditions from being established.

Notes

Source: Farley NRC Exam 1998

S (15)

LO: O52102H24

Categories

RO Tier:

K/A Value: 4.2/4.3 **BANK** Source:

Test:

SRO Tier:

T1G2

Cog. Level: MEMORY

Exam:

FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

51. 054AK1.01 001/T1G2/T1G2/4.1/4.3/C/A/NEW/FR01301/COM (27)/SDR

Unit 1 experienced an event 2 minutes ago and the following conditions now exist on Unit 1:

- Reactor power is 100% and STABLE.
- RCS Tavg is at normal operating temperature and STABLE.
- RCS pressure is at normal operating pressure and STABLE.
- Containment pressure is INCREASING.

The following conditions now exist on Unit 1 Steam Generators:

	'A'	Έ'	·C'
Steam flow	STABLE	STABLE	STABLE
Feed flow	PEGGED HIGH	STABLE	STABLE
Pressure	STABLE	STABLE	STABLE
Level	DECREASING	STABLE	STABLE

Which ONE of the following events is in progress?

A. Main Feed line break INSIDE containment.

- B. Main Steam line break INSIDE containment.
- C. 1A Main Feed Water Regulating valve has failed OPEN.
- D. 1A Feed Flow Indicator has failed high.

Feedback

- A Correct
- B Incorrect, Tavg is stable.

Source: Byron 2000-301

- C Incorrect, S/G level decreasing and containment pressure increasing.
- D Incorrect, Containment pressure increasing.

1	-4
13	111111

Categories			
RO Tier:	T1G2	SRO Tier:	T1G2
K/A Value:	4.1/4.3	Cog. Level:	C/A
Source:	NEW	Exam:	FR01301
Test:	COM (27)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

52. 055EA1.05 001/T1G1/T1G1/3.3/3.6/MEMORY/NEW/FR01301/COM (22)/SDR

Given the following conditions on Unit 1:

- A Loss of All AC Power has occurred.
- The crew has entered ECP-0.0, "LOSS OF ALL AC POWER."
- Power can not be immediately restored.
- Attempts are being made to restore power to the emergency buses.

In accordance with ECP-0.0, which ONE of the following describes the LONGEST amount of time available to ensure enough DC capacity to start a Diesel Generator and sequence needed loads?

A > 30 minutes.

- B. 60 minutes.
- C. 90 minutes.
- D. 120 minutes.

Feedback

A - Correct, IAW ECP 0.0 caution prior to step 5

Notes

Source: New

Categories

RO Tier: T1G1 K/A Value: 3.3/3.6

NEW Source:

Test:

COM (22)

SRO Tier: T1G1

Cog. Level: MEMORY

Exam: FR01301

Misc: SDR

for Farley 2001-301 SRO NRC EXAM

53. 055K3.01 001/T2G2/T2G2/2.5/2.7/MEMORY/BANK/FR01301/COM (13)/SDR

Given the following plant conditions:

- Unit 2 has been holding at 33% reactor power.
- Condenser vacuum is slowly degrading.

Which ONE of the following alarms/indications will be the FIRST to actuate?

- A. GJ2, "LO VAC TURB TRIP."
- B. KK2, "TURB COND VAC LO-LO."
- C. CONDENSER AVAILABLE C-9 will extinguish.
- D. KC3, "1A OR 1B SGFP TRIPPED."

Feedback

- A Incorrect, This alarm causes a Turbine Trip on decreasing vacuum at 4.41 PSIA.
- B Correct, This alarm actuates on decreasing vacuum at 2.7 PSIA, when greater than or equal to 30% power.
- C Incorrect, Will go out on decreasing vacuum at approximately 8 PSIA.
- D Incorrect, This alarm will actuate as a result of decreasing vacuum at 5.9 PSIA.

Notes

Source: Farley NRC Exam 1997	

Categori	es
----------	----

RO Tier: T2G2 K/A Value: 2.5/2.7 Source: BANK Test: COM (13) SRO Tier: T2G2

Cog. Level: MEMORY Exam: FR01301

Misc: SDR

for Farley 2001-301 SRO NRC EXAM

54. 056AK1.01 001/T1G3/T1G3/3.7/4.2/C/A/NEW/FR01301/COM (19)/SDR

The plant was operating at 10% Reactor power when a loss of off site power caused the RCP's to trip.

Identify ALL of the indications that would verify adequate natural circulation is occurring.

- 1 Core exit thermocouples --- increasing
- 2 Core exit thermocouples --- stable or decreasing
- 3 RCS hot leg temperature --- stable or decreasing
- 4 RCS hot leg temperature --- increasing
- 5 S/G pressure --- stable or decreasing
- 6 S/G pressure --- increasing
- 7 RCS hot leg temperature --- at saturation for S/G pressure
- 8 RCS cold leg temperature --- at saturation for S/G pressure
- A. 1, 4, 5, and 7
- B. 2, 4, 6, and 8
- C. 1, 3, 6, and 7
- Dy 2, 3, 5, and 8

Feedback

D - Correct, Per ESP 0.2 Step 1.10 RNO

Notes

Source: Byron 2000-301

Categories

RO Tier:

T1G3

K/A Value: 3.7/4.2

Source:

NEW

Test:

COM (19)

SRO Tier:

Tier: T1G3

Cog. Level: C/A

Exam: FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

55. 057AK3.01 001/T1G1/T1G1/4.1/4.4/C/A/NEW/FR01301/COM (58)/LSM

The crew has performed ECP-0.0, "LOSS OF ALL AC POWER," and transitioned to ECP-0.1, "LOSS OF ALL AC POWER RECOVERY WITHOUT SI REQUIRED." While performing ECP-0.1, step 3, "Reset PHASE A CTMT ISO," there was a simultaneous loss of a Vital Instrument bus and SI actuation.

Which ONE of the following describes the crews required action(s)?

- A. Return to ECP-0.0, restore the instrument bus; then transition to ECP-0.2, "LOSS OF ALL AC POWER RECOVERY WITH SI REQUIRED" when directed.
- By Reset the SI signal; then transition to ECP-0.2, "LOSS OF ALL AC POWER RECOVERY WITH SI REOUIRED" when directed.
- C. Transition to EEP-0, "REACTOR TRIP OR SAFETY INJECTION,"; then transition to ECP-0.0, restore the instrument bus; then return to ECP-0.1.
- D. Immediately transition to ECP-0.2, "LOSS OF ALL AC POWER RECOVERY WITH SI REQUIRED".

Feedback

B - Correct, Caution prior to step 1 in ECP-0.1 states that if SI occurs prior to step 9, then reset SI and Caution prior to step 9 in ECP-0.1 states to transition to ECP-0.2. Notes

Source: New

Categories

RO Tier: T1G1 K/A Value: 4.1/4.4

Source: NEW

Test:

COM (58)

SRO Tier: T1G1

Cog. Level: C/A

Exam: FR01301

Misc: LSM

for Farley 2001-301 SRO NRC EXAM

56. 059K4.13 001/T2G1/T2G1/2.9/2.9/C/A/MOD/FR01301/COM (14)/SDR

Given the following plant conditions:

- Unit 1 reactor has tripped from full power.
- Safety injection has occurred.
- AFW flow cannot be established.
- All S/G narrow range levels are at approximately 15% and decreasing.
- FNP-1-FRP-H.1, "RESPONSE TO LOSS OF SECONDARY HEAT SINK," has been entered.

The following indications are observed:

- Pressurizer pressure is 1900 psig.
- S/G wide range levels are 'A' 48%, 'B' 40% and 'C' 41% and decreasing at a rate of 1% every 5 minutes.
- All intact S/G pressures are 950 psig
- Containment pressure is 10 psig.
- Fifth hottest core exit temperature is 705 degrees F.

Which ONE of the following actions should be performed as quickly as possible in accordance with FNP-1-FRP-H.1, "RESPONSE TO LOSS OF SECONDARY HEAT SINK?"

- A. Stop all RCP's and initiate bleed and feed.
- B. Stop all RCP's and establish main feedwater flow to an intact S/G with one SGFP.
- C. Stop all RCP's and establish condensate flow to an intact S/G.
- D. Cooldown the RCS and place RHR in service.

Feedback

- A Incorrect, Bleed and feed criteria is not met for adverse containment numbers until S/G wide range is <31%.
- B Correct, With S/G pressure >500 psig feeding with a SGFP is the only option without AFW.
- C Incorrect, S/G pressure is too high for the condensate pumps to establish flow.
- D Incorrect, Placing RHR in service is one of the first steps in FRP-H.1 if hot leg temperatures are less than 350 degrees F.

Notes

Source: Modified, was a Farley NRC Exam question from 1997 with the old S/G's when bleed and feed criteria was S/G wide range <45%. Stem altered and answer changed (was A now is B.)

for Farley 2001-301 SRO NRC EXAM

 Categories

 RO Tier:
 T2G1
 SRO Tier:
 T2G1

 K/A Value:
 2.9/2.9
 Cog. Level:
 C/A

 Source:
 MOD
 Exam:
 FR01301

Misc:

SDR

Test:

COM (14)

for Farley 2001-301 SRO NRC EXAM

57. 060AA2.05 001/T1G2/T1G2/3.7/4.2/MEMORY/BANK/FR01301/COM (75)/SDR

Given the following plant conditions:

- Unit 1 is operating at 100% power.

Which ONE of the following radiation monitors, if it goes into alarm condition and remains in alarm, will cause an automatic initiation of the emergency dose calculations on the Automatic Rapid Dose Assessment (ARDA)?

- A. Containment Radioactive Gas Monitor (R-12).
- B. Condenser Air Ejector Gas Monitor (R-15A).
- C. Containment Purge Exhaust Gas Monitor (R-24A).
- Dy Steam Jet Air Ejector Gas Monitor (R-15C).

Feedback

- A Incorrect.
- B Incorrect,
- C Incorrect,
- D Correct, per EIP-9.1 and FH1, only one of the following monitors need to come into alarm.
- R-29 Sping, R15C, R60A,B,C,D and R-14, 21, and 22

Notes

LO: O52106D08

Categories

RO Tier: T1G2 K/A Value: 3.7/4.2 Source: BANK Test: COM (75) SRO Tier: T1G2

Cog. Level: MEMORY Exam: FR01301

Misc: SDR

for Farley 2001-301 SRO NRC EXAM

58. 061K2.02 001/T2G1/T2G1/3.7/3.7/C/A/NEW/FR01301/COM (15)/SDR

Unit 1 is operating at 100% steady-state reactor power all systems are in automatic and functioning properly.

- A reactor trip and SI has just occurred.
- A problem in the high voltage switchyard deenergizes the 1B S/U transformer.
- D/G 1B cannot be started.
- S/G narrow range levels are 'A' 26%, 'B' 45% and 'C' 45%.

Which Unit 1 AFW pump(s) are running?

Ay 'A' MDAFW and TDAFW.

- B. 'A' and 'B' MDAFW.
- C. 'B' MDAFW only.
- D. 'A' MDAFW only.

Feedback

A - Correct, The TDAFW pump will start on a blackout signal and the A MDAFW pump will start on SI sequencer. B MDAFW pump does not have power

B & C - Incorrect, The B MDAFW pump does not have a power source.

D - Incorrect, TDAFWP will also start.

Notes

Source: New Categories

RO Tier:

T2G1

Source:

Test:

COM (15)

K/A Value: 3.7/3.7

NEW

SRO Tier:

T2G1

Cog. Level: C/A

Exam: Misc:

FR01301 **SDR**

for Farley 2001-301 SRO NRC EXAM

59. 061K6.01 001/T2G1/T2G1/2.5/2.8/C/A/BANK/FR01301/COM (16)/SDR

With the plant at 100% power, the TDAFW pump steam supply valve from 1B SG, HV-3235A, has been locally isolated in the main steam valve room, and air to the valve has been tagged out.

If an auto start signal is received, how will the operation of the TDAFW pump be affected?

- A. The TDAFW pump will not start, since the steam supply valve from 1B SG, HV-3235A, will not open, the permissive for opening the TDAFW pump steam admission valve, HV-3226, on an auto start signal cannot be obtained.
- B. The TDAFW pump will start, but not enough steam will be supplied to the turbine to operate it at normal speed while supplying full water flow.
- C. The TDAFW pump will start and operate at rated speed while supplying full water flow to the Steam Generators.
- D. The TDAFW pump will start since the isolated air to the TDAFW pump steam supply valve, HV-3235A, also isolates air to the TDAFW steam admission valve, HV-3226, which fails open and will allow steam from 1C S/G to supply the turbine.

Feedback

- A Incorrect, The TDAFW pump will start. HV-3226 opens automatically on an auto start signal independent of the position of HV-3235A.
- B Incorrect, One valve will supply enough steam to allow full operation of the pump.
- C Correct
- D Incorrect, HV-3226 does fail open although air supply comes from a seperate path.

Notes

Source: Farley Exam Bank Question # O52102H13026

Categories

RO Tier: T2G1

K/A Value: 2.5/2.8

SRO Tier: T2G1

Cog. Level: C/A

Source: BANK Exam: FR01301
Test: COM (16) Misc: SDR

for Farley 2001-301 SRO NRC EXAM

60. 062AA1.01 001/T1G1/T1G1/3.1/3:1/MEMORY/BANK/FR01301/COM (72)/SDR

Which ONE of the following could be an effect on plant operation if the 'A' Train of the Service Water system was lost?

- A. Steam Generator Blowdown could isolate due to high heat exchanger outlet temperature.
- B. Containment air temperature could rise due to loss of cooling water to RCP motor air coolers.
- C. Service Water cooling to the 'A' CCW heat exchanger, which is supplying the miscellaneous header, could be lost resulting in higher letdown temperature.
- D. Spent Fuel Pool could overheat as a result of the loss of Service Water cooling to the 'A' Spent Fuel Pool heat exchanger.

Feedback

- A Correct, Supplied from the 'A' Train side low flow will cause temperature rise on SW side of HX and cause blowdown to isolate.
- B Incorrect, RCP motor coolers are supplied from the 'B' Train of SW.
- C Incorrect, 'A' CCW heat exchanger is supplied from the 'B' Train of SW.
- D Incorrect, Cooling supplied by CCW.

Notes

Test:

Source: Farley Question Bank, Question # O52102F14011

LO: O52102F14

Categories

RO Tier: T1G1 K/A Value: 3.1/3.1 Source: BANK

COM (72)

SRO Tier: T1G1

Cog. Level: MEMORY Exam: FR01301

Misc: SDR

for Farley 2001-301 SRO NRC EXAM

61. 062AA2.02 001/T1G1/T1G1/2.6/2.9/C/A/NEW/FR01301/COM (57)/SDR

Given the following plant conditions:

- Service Water Pumps A, B and D are running.
- Service Water Pump "C" Spare Pump Selector switch is in the "D" position.
- Service Water Pump E selector switch is in "LOCAL."

A Safety Injection with a Loss of Off Site Power occurs.

Assuming the ESF sequencers operate properly, which ONE of the following describes the operating status of the Service Water Pumps following the ESF sequencer operation?

Pump 'C'	Pump 'D'	Pump 'E'
ON	ON	ON
ON	OFF	OFF
OFF	ON	OFF
ON	OFF	ON
	ON ON OFF	Pump 'C' Pump 'D' ON ON ON OFF OFF ON

Feedback

- A Incorrect, 'D' pump will not start due to the position of the Pump Spare Selector switch, 'C' pump will start in its place.
- B Incorrect, 'E' pump starts on the loss of offsite power regardless of the selector switch position.
- C Incorrect, 'E' pump starts on the loss of offsite power regardless of the selector switch position.
- D Correct, 'C' is ON and 'D' is OFF due to the position of the Pump Spare Selector switch. 'E' pump starts since the position of the selector switch does not block the auto start function.

 Notes

Source: IN	IEL Question Bank		
Categories			
RO Tier:	TIGI	SRO Tier:	TIGI
K/A Value:	2.6/2.9	Cog. Level:	C/A
Source:	NEW	Exam:	FR01301
Test:	COM (57)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

62. 062K2.01 001/T2G2/T2G2/3.3/3.4/MEMORY/BANK/FR01301/COM (37)/SDR

Which ONE of the following describes the NORMAL, EMERGENCY, and BACKUP power supplies to Emergency 4160V AC Bus 1F?

	NORMAL	<u>EMERGENCY</u>	BACKUP
A.	S/U 1B	1-2A DG	S/U 1A
B.	S/U 1A	1-2A DG	S/U 1B
C.	S/U 1A	1B DG	S/U 1B
D.	S/U 1B	1B DG	S/U 1A

Feedback

- A Incorrect, The normal and backup supplies are reversed.
- B Correct
- C Incorrect, The normal and backup are correct, but the emergency is incorrect.
- D Incorrect, This is correct if it was thought that 1F was B Train.

Notes

Source: Farley NRC Exam 1998

LO: O52520E01

Categories

RO Tier:	T2G2	SRO Tier:	T2G2
K/A Value:	3.3/3.4	Cog. Level:	MEMORY
Source:	BANK	Exam:	FR01301
Test:	COM (37)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

63. 063A2.01 001/T2G2/T2G1/2.5/3.2/C/A/MOD/FR01301/COM (68)/SDR

Annuciator BK5, "ANNUN SYS DC GND" alarmed approximately 20 minutes ago on Unit 1. Appropriate personnel were notified to locate and correct the ground. You are informed that the ground is on the 125V DC Bus 1A.

Which ONE of the following will result if the ground caused the loss of the 125V DC Bus 1A?

- A. DGs 1-2A and 1C will auto start.
- B. TDAFW pump will become inoperable.
- C. S/G atmospheric reliefs will become inoperable.
- D. Power for 'A' Train 4160V AC breaker position indication will auto shift to Unit 2 'A' Train DC.

Feedback

- A Incorrect, DC power will shift to unit 2, however, this is not an auto start signal.
- B Incorrect, Alternate DC power source is available.UPS
- C Correct.
- D Incorrect, This does not occur for loss of Bus 'A'.

Notes

Source: Farley NRC Exam 1994, Modified to fit K/A.

Categories

RO Tier: T2G2 K/A Value: 2.5/3.2 Source: MOD Test: COM (68) SRO Tier: T2G1 Cog. Level: C/A

Exam: FR01301 Misc: SDR

for Farley 2001-301 SRO NRC EXAM

64. 065EG2.4.11 001/T1G3/T1G2/3.4/3.6/C/A/BANK/FR01301/COM (36)/SDR

The Instrument Air (IA) line has ruptured. IA is no longer being supplied to FCV-3009A, FCV-3009B, and FCV-3009C, (Service Water (SW) from Component Cooling Water (CCW) Heat Exchanger Flow Control Valves.)

Which ONE of the following actions must be taken in accordance with AOP-6.0, "LOSS OF INSTRUMENT AIR," to ensure maximum heat removal capability of the on-service 'C' CCW heat exchanger?

- A. Isolate SW supply to the standby CCW heat exchanger by closing MOV-3130B (SW to CCW Heat Exchanger).
- B. Jack open FCV-3009C to restore SW to the CCW on-service heat exchanger.
- C. Start the 'B' Train CCW pump.
- D. Start the standby SW pump.

Feedback

- A Correct, Step 10 of AOP-6.0
- B Incorrect, FCV-3009's fail to 35% open which is close to full flow therfore, jacking the valve open would insignificantly increase heat removal capacity. This action is not IAW AOP-6.0.
- C Incorrect, This would not increase the heat removal capability of the HX and is not IAW AOP-6.0.
- D Incorrect, This may increase SW flow slightly which would increase heat removal but, is not IAW AOP-6.0.

Notes

Test:

Source: Farley Exam Bank Question #O52520F07018

Learning Objective: O52520F07

Categories

RO Tier: T1G3 K/A Value: 3.4/3.6 Source: BANK

BANK COM (36) SRO Tier:

Cog. Level: C/A Exam: FR01301

Exam: Misc:

SDR

T1G2

for Farley 2001-301 SRO NRC EXAM

65. 067AK3.04 001/T1G1/T1G1/3.3/4.1/MEMORY/BANK/FR01301/COM (38)/SDR

The control room has just been evacuated due to a fire in the cable spreading room.

Which ONE of the following conditions will require the use of reactor head vents to assist in plant recovery when operating from the Hot Shutdown Panels?

(Assume no Safety Injection signal present)

- A. Loss of Reactor Coolant Pumps.
- B. Pressurizer level decreasing below 15% level.
- C. Steam Generator levels decreasing below 25% level.
- D. High Head Safety Injection flow of 225 gpm with RCS pressure at 2235 psig.

Feedback

- A Incorrect, Natural circulation can be used following a loss of RCP's.
- B Correct, Pressurizer level decreasing below 15% will result in letdown isolation with the inability to reopen LCV-459 and LCV-460, requiring the use of the head vents for removing mass from the RCS.
- C Incorrect, Control of S/G levels is available at the HSP's therefore, control of RCS cooldown is unavailable.
- D Incorrect, PORV available at this time if desired to lower pressure.

Notes

Source: Farley NRC Exam 1998

LO: O52521C04

Categories

RO Tier: T1G1 K/A Value: 3.3/4.1 Source: BANK Test: COM (38) SRO Tier: T1G1

Cog. Level: MEMORY Exam: FR01301 Misc: SDR

for Farley 2001-301 SRO NRC EXAM

66. 068A2.04 001/T2G1/T2G1/3.3/3.3/C/A/NEW/FR01301/COM (52)/SDR

A radioactive liquid release is in progress from the #2 Waste Monitor Tank (WMT) to the river in accordance with a liquid waste permit and SOP-50.1, "LIQUID WASTE PROCESSING SYSTEM LIQUID WASTE RELEASE FROM WASTE MONITOR TANK."

- Annunciator FH2, "RMS CH FAILURE," has just alarmed.
- R-18, "LIQ WASTE DISCH," is pegged low on the Radiation Monitoring system console and the Low Alarm light is illuminated.

Which ONE of the following describes the actions required in accordance with SOP-50.1?

- A. Immediately close RCV-18, WMT Disch to Environment, and inform the Shift Support Supervisor.
- B. Check RCV-18, WMT Disch to Environment, closed automatically, notify Chemistry to implement sampling in accordance with the Offsite Dose Calculation Manual.
- C. Immediately secure #2 WMT pump, inform the Operations Support Supervisor (OSS), then inform Chemistry to implement sampling in accordance with the Offsite Dose Calculation Manual.
- D. Check RCV-18, WMT Disch to Environment, closed automatically, verify the last reading on R-18 was below the setpoint and inform the Shift Support Supervisor.

Feedback

- A Correct, SOP-50.1 states that if the discharge is in progress and R-18 becomes inoperable the discharge is to be immediately stopped and the Shift Support Supervisor notified. Shutting RCV-18 immediately stops the discharge (R-18 automatic action for hi radiation).
- B Incorrect, This is the provision for discharging with R-18 unavailable. (NEED TO ENSURE THIS ANSWER IS CORRECT BY REVIEWING FNP-0-M-011, CHAPTER 2).
- C Incorrect, Securing the pump will stop the discharge although not immediately due to pump coast down and possible syphoning effects on the discharge line. Notifying Chemistry and Health Physics may be prudent but notifying the Shift Support Supervisor is required.
- D Incorrect, The discharge in progress must be securred.

Notes

Source:	New
Categori	es

RO Tier: T2G1 K/A Value: 3.3/3.3 Source: NEW Test: COM (52) SRO Tier: T2G1

Cog. Level: C/A Exam: FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

67. 068AA2.09 001//T1G1/4.1/4.3/C/A/NEW/FR01301/S (19)/SDR

Unit 1 has tripped from 100% power due to Loss of Coolant Accident (LOCA). Subsequent to the LOCA the Control Room had to be evacuated due to heavy smoke. The Hot Shutdown Panels (HSP) are manned.

The following indications are available:

- Pressurizer pressure is 450 psig.
- Thot is 430 degrees F.
- Toold is 405 degrees F.

Which ONE of the following is the approximate RCS Subcooling Margin?

(NOTE: Steam tables provided as a reference.)

- A. 55 degrees F.
- B. 45 degrees F.
- C. 30 degrees F.
- D. 25 degrees F.

Feedback

- A Incorrect, Mistakenly use Toold and converts to Psia.
- B Incorrect, Mistakenly use Tavg and converts to Psia.
- C Correct, Use Thot and Pressurizer pressure after converting to Psia.
- D Incorrect, Mistakenly do not convert to Psia and uses Thot.

NOTE: Provide steam tables as a reference.

Notes	Notes				
Source: Categorie					
RO Tier:		SRO Tier:	TIGI		
K/A Value	e: 4.1/4.3	Cog. Level:	C/A		
Source:	NEW	Exam:	FR01301		
Test:	S (19)	Misc:	SDR		

for Farley 2001-301 SRO NRC EXAM

68. 069EG2.2.24 001//T1G1/2.6/3.8/MEMORY/NEW/FR01301/S (22)/SDR

Which ONE of the following conditions represents a loss of primary containment integrity per Technical Specifications 3.6.1, "Containment?"

- Ay While at 100% power, during an inspection of an equipment hatch, it is determined that the equipment hatch was not sealed properly.
- B. While at 100% power, an electrician opens the outer containment airlock door to perform maintenance activities without prior approval.
- C. While performing an operability test of two normally open redundant containment isolation valves at 100% power, one of the valves fails to close.
- D. While performing the Overall Integrated Containment Leakage Rate Test during Mode 5, Cold Shutdown, containment leakage exceeds the maximum allowable Technical Specification leakage rates.

Feedback

- A Correct, Maintaining the containment operable requires compliance with the visual examinations.
- B Incorrect, Section 3.6.2 covers airlocks.

Source: INEL Question Bank.

- C Incorrect, Section 3.6.3 covers isolation valves.
- D Incorrect, Section 3.6.1 is N/A for Mode 5.

Notes

Categories				
RO Tier:		SRO Tier:	T1G1	
K/A Value:	2.6/3.8	Cog. Level:	MEMORY	
Source:	NEW	Exam:	FR01301	
Test:	S (22)	Misc:	SDR	

for Farley 2001-301 SRO NRC EXAM

69. 071A3.02 001/T2G1/T2G1/2.8/2.8/MEMORY/NEW/FR01301/COM (74)/RCT&SDR

Which ONE of the following describes the overpressure protection used for Waste Gas Decay Tanks (WGDT) #1 through #6?

- A. Individual 150 psig relief valve to WGDT #8 which relieves to the plant vent stack via a 100 psig relief valve.
- B. Individual 100 psig relief valve directly to the plant vent stack.
- C. Individual 150 psig relief valve to WGDT #7 which relieves to the plant vent stack via a 100 psig relief valve.
- D. Individual 150 psig relief valve directly to the plant vent stack.

Feedback

- A Correct, WGDTs 1-6 relief to WDGT 8 then WGDT 8 relieves to the stack.
- B Incorrect, WGDTs 1-6 relief valve lifts at 150 psig and does not go directly to the stack.
- C Incorrect, WGDT #7 is incorrect.
- D Incorrect, WGDTs 1-6 relief does not go directly to the stack.

Notes

Source: New Categories

RO Tier: T2G1 K/A Value: 2.8/2.8

Source: NEW
Test: COM (74)

SRO Tier: T2G1

Cog. Level: MEMORY
Exam: FR01301
Misc: RCT&SDR

for Farley 2001-301 SRO NRC EXAM

70. 071A4.13 001/T2G1/T2G1/3.0/3.1/MEMORY/BANK/FR01301/COM (60)/SDR

You are the unit operator and a waste gas decay tank release is in progress. You receive a radiation alarm and note that it is R-14, "Plant Vent Stack Monitor."

Which ONE of the following methods would you use to confirm that the automatic actions associated with R-14 had occurred?

- A. The red alarm light on the R-14 monitor drawer is confirmation.
- B. The SI component monitor light box (MLB-1) indication for RCV-14 would confirm the automatic actions.
- C. If the automatic action does not occur, an alarm on the MCB will actuate.

Dy Call the Systems Operator to check the waste gas panel indication for RCV-14.

Feedback

- A Incorrect, The alarm light does not confirm auto actions.
- B Incorrect, Does not indicate the position of RCV-14.
- C Incorrect, Alarm on MCB is for the RMS R-14 being above its setpoint.
- D Correct, There is no indication on the MCB for the position of RCV-14 which is the valve that auto closes on an R-14 alarm.

Notes

Source: Farley Exam Bank Question #O52106B02010

LO: O52106B02

Categories

RO Tier: T2G1 K/A Value: 3.0/3.1 Source: BANK Test: COM (60) SRO Tier: T2G1

Cog. Level: MEMORY Exam: FR01301

Misc: S

for Farley 2001-301 SRO NRC EXAM.

71. 073K4.01 001/T2G2/T2G2/4.0/4.3/MEMORY/MOD/FR01301/COM (20)/SDR

A Steam Generator tube leak is in progress on the 1A SG.

- R-23A, "SGBD HX OUTLET," is in High Alarm.

Which ONE of the following describes the automatic action(s) that should occur as a result of the High Radiation Alarm?

- A. SGBD Isolation Valves, HV-7614A, B, and C close.
- B. Dilution Discharge Valve, RCV-023B closes.
- C. SGBD Hx Discharge Valve, FCV-1152 closes.
- D. SGBD Hx Discharge Valve, FCV-1152, and Dilution Discharge Valve, RCV-023B close.

Feedback

- A Incorrect, no automatic actions associated with these valves.
- B Incorrect, closes FCV-1152.
- C Correct- per reference
- D Incorrect- does not close both.

Notes

Source: Farley Exam Bank Question # O52106D08008 and 8003 was modified to get a similar but different result

Categories

. •			
RO Tier:	T2G2	SRO Tier:	T2G2
K/A Value:	4.0/4.3	Cog. Level:	MEMORY
Source:	MOD	Exam:	FR01301
Test:	COM (20)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

72. 074EA1.06 001/T1G1/T1G1/3.6/3.9/MEMORY/BANK/FR01301/COM (46)/SDR

Which ONE of the following conditions allows a RCP to be started even though high containment pressure has caused a Phase 'B' isolation, and all support systems normally needed to start a RCP are NOT available?

- A. When responding to a small-break LOCA in accordance with EEP-1, "LOSS OF REACTOR OR SECONDARY COOLANT."
- By When responding to an inadequate core cooling event in accordance with FRP-C.1, "INADEQUATE CORE COOLING."
- C. When responding to a loss of secondary heat sink in accordance with FRP-H.1, "LOSS OF SECONDARY HEAT SINK."
- D. When responding to a Natural Circulation Cooldown with allowance for Reactor Vessel Head Steam Voiding per ESP-0.3, "NATURAL CIRCULATION COOLDOWN WITH ALLOWANCE FOR REACTOR VESSEL HEAD STEAM VOIDING (WITH RVLIS)."

Feedback

- A Incorrect, A SBLOCA requires RCP support conditions.
- B Correct, Only FRP-C.1 allows starting RCP w/o normal support conditions.
- C Incorrect, FRP-H.1 directs securing RCP.
- D Incorrect, ESP-0.3 requires RCP support conditions.

Notes

Categories

RO Tier: T1G1 K/A Value: 3.6/3.9 Source: BANK Test: COM (46) SRO Tier: T1G1

Cog. Level: MEMORY Exam: FR01301

Misc: SDR

for Farley 2001-301 SRO NRC EXAM

73. 075K1.01 001/T2G2/T2G2/2.5/2.5/MEMORY/NEW/FR01301/COM (30)/SDR

Unit 1 is making preparations for a reactor startup. The Circulating Water (CW) system has been running for 20 minutes after an extended shutdown when a Systems Operator (SO) notices heavy debris on the pump suction screens. The 1A CW pump was secured and the pump suction screens have been cleaned.

You are currently restarting the CW System IAW SOP-26.0, "CIRCULATING WATER SYSTEM." An SO has been dispatched to the Wet Pit to ensure proper CW Pump start and operation.

The SO provides the following information to you:

- Both CW Pump discharge valves are closed.
- The wet pit level is 150 feet, 0 inches.
- All Cooling Tower inlet valves are closed and all Cooling Tower fans are secured.
- The 1A CW Pump motor is still warm due to being run 30 minutes ago.

Which ONE of the following MUST be done prior to starting the 1A Circulating Water Pump?

- A. The 1A Circulating Water Pump associated discharge valve must be opened.
- B. Must wait an additional 30 minutes for the motor to cool.
- C. Manually open LCV-560, "SW TO CW CANAL LCV" and raise wet pit level.
- D. Cooling Tower inlet valves must be opened and Cooling Tower fans must be started.

Feedback

- A Incorrect, The discharge valve must be closed to allow pump start.
- B Incorrect, Although frequent starts may damage the pump, the procedure allows two suscessive starts from ambient and one start from rated temperature (procedural limits).
- C Correct, Wet pit level must be 151 feet to start the CW pump (procedural limit).
- D Incorrect, Procedure states 'If possible, Then ensure cooling tower fans are in operation prior to initiating CW flow through a tower, valves are not required to be open and fans are not required to be running.

Source:	
Categori	es

RO Tier: T2G2 K/A Value: 2.5/2.5 **NEW** Source: Test: COM (30) SRO Tier:

T2G2 Cog. Level: MEMORY FR01301

Exam: Misc:

for Farley 2001-301 SRO NRC EXAM

74. 076AA2.02 001//T1G1/2.8/3.4/C/A/BANK/FR01301/S (8)/SDR

Unit 2 has been operating at power for the last 6 months. Earlier in the shift, 2A Steam Generator Feed pump tripped. Reactor power was rapidly reduced to 50% and is being maintained at that level. Three hours after the load reduction an RCS activity sample was taken.

The RCS activity sample results are as follows:

- Gross (beta-gamma) specific activity is 96/ \overline{E} μ Ci/gm.
- Dose-equivalent I-131 (DEI) specific activity is 190 μCi/gm.

Which ONE of the following describes the restrictions that are place on the Unit's continued power operation?

(Note: Technical Specifications provided)

- A. Additional samples must be taken at 65%, 80 %, and 90% power levels and every 6 hours thereafter for the next 72 hours.
- B. There is no restriction for the continued power operation of Unit 2.
- C. Reduce power to less than 40% of rated thermal power within 48 hours and verify DEI within acceptable region of Figure 3.4.16-1 once per 4 hours.
- Dy The unit must be shutdown to at least Mode 3, HOT STANDBY, with Tavg less than 500 degrees F within 6 hours.

Feedback

- A Incorrect, Power operation cannot continue with I-131 greater than the figure 3.4.16-1
- B Incorrect, Power operation is limited due to DEI > than .5 and greater than figure limits.
- C Incorrect, The unit must be shutdown if the DEI remains elevated. DEI must be restored to <
- .5 w/i 48 hours. At 50 %, you are still > than figure 3.4.16-1. Also GSA is w/i specs as is.
- D Correct, The Dose-Equivalent I-131 is outside the acceptable range of TS figure 3.4.16-1 for Unit 2 at 50% power therefore, LCO 3.4.16.C applies.

Notes

Source: Farley Exam Bank Question #O52302H08023					
Categories					
RO Tier:	SRO Tier:	T1G1			
K/A Value: 2.8/3.4	Cog. Level:	C/A			

Source: BANK Exam: FR01301
Test: S (8) Misc: SDR

for Farley 2001-301 SRO NRC EXAM

75. 076AK2.01 001/T1G1/T1G1/2.6/3.0/MEMORY/NEW/FR01301/COM (48)/SDR

Which ONE of the following describes the function of the Gross Failed Fuel Detector (GFFD) system?

- A. Has no automatic interlocks; provides indication of failed fuel only after shutdown due to N-16 and N-17 at power masking.
- B. Automatically closes RCS LOOPS 2&3 HOT LEG SAMPLE Isolation Valve (SV3102) on High Radiation (modified by a design change implemented in 1999); provides indication of failed fuel only after shutdown due to N-16 and N-17 at power masking.
- C. Automatically closes RCS LOOPS 2&3 HOT LEG SAMPLE Isolation Valve (SV3102) on High Radiation (modified by a design change implemented in 1999); provides indication of failed fuel at power.

Dy Has no automatic interlocks; provides indication of failed fuel at power.

Feedback

- A Incorrect, Sample time is delayed to allow decay of N-16 and N-17 activity to prevent masking.
- B Incorrect, SV3102 does not auto close on high radiation. This is now a two position valve that aligns to either loop 2 or 3, does not isolate
- C Incorrect, see B above
- D Correct, GFFD provides only indication and alarm to give indication of cladding failure at power.

Notes

Source: Summer NRC Exam 2000.

LO: O52106E05

Categories

RO Tier:

T1G1

K/A Value: 2.6/3.0 **NEW**

Source: Test:

COM (48)

SRO Tier:

T1G1

Exam:

Cog. Level: MEMORY FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

76. 078A4.01 001/T2G3/T2G3/3.1/3.1/MEMORY/BANK/FR01301/COM (21)/SDR

A rupture occurred in the service air header. Air pressure decreased and resulted in the isolation of service air. After the isolation, instrument air header pressure returned to normal.

Which ONE of the following describes what the air pressure indicators on the Main Control Board, PI-4004A, "SVC AIR PRESS," and PI-4004B, "INST AIR PRESS," should indicate?

- A. 0 psig on both PI-4004A and PI-4004B.
- B. 0 psig on PI-4004A and 90 100 psig on PI-4004B.
- C. 90 100 psig on PI-4004A and 0 psig on PI-4004B.
- D. 90 100 psig on both PI-4004A and PI-4004B.

Feedback

- A Incorrect, Once the break is isolated, by automatic closure of V901, in the service air header the pressure in the instrument air header will return to normal so PI-4004B will indicate normal instrument air pressure.
- B Correct, Since V901 does not automatically reopen PI-4004B will indicate normal air pressure and due to the break in the service air header this line will depressurize so PI-4004A will indicate 0 psig.
- C Incorrect, This is the opposite of what is true.
- D Incorrect, PI-4004A can not indicate pressure due to the rupture in the service air header.

Source: Farley Bank Question #O52108A03014

Categories

RO Tier: T2G3

K/A Value: 3.1/3.1

Cog. Level: MEMORY

Source: BANK

Exam: FR01301

Test: COM (21) Misc: SDR

for Farley 2001-301 SRO NRC EXAM

77. 086K4.01 001/T2G2/T2G2/3.1/3.7/MEMORY/BANK/FR01301/COM (71)/SDR

Well water pump #2 is selected to the 'AUTO' position locally.

Which ONE of the following signals should have caused well water pump #2 to autostart?

- A. Fire Protection Tank level is at 29 feet and decreasing, and "#2 PUMP LEAD" is selected at the fire pump house.
- B. Either Fire Protection Tank makeup AOV closes fully and "#2 PUMP LEAD" is selected at the fire pump house.
- C. Sanitary Water Pump pressure control valve remains at least 90% open for 10 seconds.
- D. Sanitary Water Tank level is at 22" Below Mounting Flange and decreasing.

Feedback

- A Correct, #2 WWP starts from either tank level when the associated level control valve starts to open from a signal at 30 ft and 9 psig air pressure actuates PS505 or 504. The pump also has to be selected as the pump to run and be in auto.
- B. Incorrect, the AOV, V901, will open actually and the air pressure to the PS 505/504 is what starts the pump
- C Incorrect SW pump PCV does not cause the pump to start.
- D- Incorrect #2 WW Pump starts on a level of 30 " BMF. Since the level switch is mounted on top of the tank, the start is at 30" and the stop is at 18"BMF. Also "#2 PUMP LEAD" has to be selected at the fire pump house.

THIS QUESTION NEEDS VALIDATION. LICENSEE DID NOT SEND INFORMATION ON THE FIRE PROTECTION SYSTEM LESSON PLAN # 052108E.

ON II	ON THE TRE I ROTECTION STSTEM LESSON I LAN # 032100L.										
Notes		•							 		
~					1	_		# 050100E05000	 		

Source: Farley Question Bank, Question # O52108E05009

LO: O52108E05 Categories

RO Tier: T2G2 SRO Tier: T2G2

K/A Value: 3.1/3.7 Cog. Level: MEMORY
Source: BANK Exam: FR01301
Test: COM (71) Misc: SDR

for Farley 2001-301 SRO NRC EXAM

78. 103A2.03 001//T2G2/3.5/3.8/C/A/BANK/FR01301/S (12)/SDR

During Surveillance Testing, the 'A' Train Solid-State Protection System (SSPS) was found to be inoperable. While troubleshooting is in progress, I&C has tagged the Output Relay Mode Selector Switch in the 'TEST' position.

Which ONE of the following is the correct mitigation strategy in accordance with EEP-0, "REACTOR TRIP OR SAFETY INJECTION," if the unit had a reactor trip and safety injection at this time?

- A. Both Trains of Phase 'A' components would actuate, no other action are required.
- B. Only 'B' Train Phase 'A' components would actuate, the operator would have to initiate 'A' Train components with the Phase 'A' handswitch.
- C. Neither Train Phase 'A' components would actuate, the operator would have to initiate both Train components with the Phase 'A' handswitch.
- Dy Only 'B' Train Phase 'A' components would actuate, the operator would have to align 'A' Train components manually.

Feedback

- A Incorrect, B Train will actuate.
- B Incorrect, The handswitch will not work.
- C Incorrect, B Train will actuate and the handswitch will not work.
- D Correct, B train will actuate, the handswitch will not work and the operator will have to manually align components.

Notes

Source: Farley NRC Exam 2000-301

LO: O52201I32

Categories

RO Tier:		SRO Tier:	T2G2
K/A Value:	3.5/3.8	Cog. Level:	C/A
Source:	BANK	Exam:	FR01301
Test:	S (12)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

79. G2.1.07 001//T3/4.4/C/A/NEW/FR01301/S (1)/SDR

Both units are stable at 100% power. 1C DG is tagged out for 18 month PM's.

A nearby earthquake has just caused the following:

- A complete loss of all 230 KV and 500 KV off-site power sources to the Farley switchyard.
- Both reactors have tripped; 2B DG is supplying power to Unit 2, 1B DG has tripped on generator fault.
- The earthquake also caused a loss of 125V DC Bus 1A and a Safety Injection on Unit 1 only.

Which One of the following states the expected response of 1-2A DG and the operator action that must be taken?

- A. DG 1-2A will NOT start, but can be started from the EPB.
- B. DG 1-2A will start, but its field must be flashed locally from the DG Local Control Panel.
- C. DG 1-2A will start, but must be shut down due to inadequate Service Water flow.
- D. DG 1-2A will start, and the output breaker will close to provide power to 1F 4160V Bus.

Feedback

- A Incorrect, 1-2A DG will be started by the SIAS signal and could be started from the EPB if necessary.
- B Incorrect, the field will transfer per the ABT to unit 2
- C Correct, The DG will start but the output breakers do not close due to no control power to either the breaker or the sequencer. SW is not available so the DG has to be shut down.
- D Incorrect, it will not sequence on to the BUS due to no control power to the sequencer or the breaker.

Notes				
Source: 1 Categorie				
RO Tier:		SRO Tier:	T3	
K/A Value	e: 4.4	Cog. Level:	C/A	
Source:	NEW	Exam:	FR01301	
Test:	S (1)	Misc:	SDR	

for Farley 2001-301 SRO NRC EXAM

80. G2.1.10 001//T3/2.7/3.9/MEMORY/NEW/FR01301/S (9)/SDR

The limits on RCS activity provided in Technical Specifications are based on the dose that would be received at the site boundary in a SGTR accident that begins with a steady-state primary-to-secondary leakage of 1 gpm total for the three S/G's.

Maintaining these RCS activity limits ensures that the 2-hour dose at the site boundary during a SGTR will NOT exceed an appropriate fraction of which ONE of the following?

- A. 10 CFR 20 "STANDARDS FOR PROTECTION AGAINST RADIATION" limits.
- By 10 CFR 100 "REACTOR SITE CRITERIA" limits.
- C. EPA Protective Action Guideline thresholds.
- D. 5 Rem TEDE for the general public.

Feedback

B - Correct - per TS Bases B3.4.16-1, Background and applicable safety analysis.

Notes

Source: Byron 2000-301

Categories

RO Tier:

K/A Value: 2.7/3.9

Source:

Test:

NEW

S (9)

SRO Tier:

T3

Cog. Level: MEMORY

FR01301

Exam: Misc:

for Farley 2001-301 SRO NRC EXAM

81. G2.1.12 001//T3/2.9/4.0/C/A/NEW/FR01301/S (6)/SDR

Unit 2 is at 100% reactor power. A leak rate surveillance has been performed and the results are as follows:

- Total RCS leakage rate is 9.0 gpm.
- Leakage to the PRT is 6.0 gpm.
- Leakage to the reactor coolant drain tank is 2.1 gpm.
- Leakage into the secondary from the primary as follows:
 - 'A' S/G is 0.07 gpm
 - 'B' S/G is 0.08 gpm
 - 'C' S/G is 0.09 gpm

Which ONE of the following describes the condition of the RCS Opeational LEAKAGE?

- A. No leakage limits have been exceeded.
- B. Unidentified leakage limit has been exceeded.
- C. Total Primary to Secondary leakage through all S/G's limit has been exceeded.
- D. Primary to Secondary leakage limit through one S/G has been exceeded.

Feedback

- A Correct
- B Incorrect, Total leakage accounted for is 8.34; 9-8.34=0.66 gpm which is less than the limit of 1 gpm allowed by TS 3.4.13..
- C Incorrect, Total leakage to the S/G's is 0.24gal/min*60min/hr*24hr/day=345.6 gpd which is less than the limit of 450 gpd allowed by TS 3.4.13.
- D Incorrect, Total leakage to a single S/G is 0.09gal/min*60min/hr*24hr/day=129.6 gpd which is less than the limit of 150 gpd allowed by TS 3.4.13.

Notes

Source: Byron 2000-301

Categories

RO Tier: K/A Value: 2.9/4.0

Source: NEW

SRO Tier:

Cog. Level: C/A

Exam: Misc:

FR01301

Test: S (6)

SDR

T3

for Farley 2001-301 SRO NRC EXAM

82. G2.1.20 001/T3/T3/4.3/4.2/MEMORY/NEW/FR01301/COM (49)/SDR

Which ONE of the following represents the proper use of a "REFERENCE USE" procedure?

- A. The procedure must be reviewed often enough to be familiar with the requirements of the document and the user is responsible for ensuring that actions performed complies with the requirements of the procedure.
- B. Provided the procedure is readily available for reference, the procedure may be performed completely from memory and the user is responsible for results.
- C. The procedure must be reviewed prior to task performance and often enough to ensure that the activity is being performed correctly.
- D. The procedure must be readily available and each step of the procedure must be reviewed prior to performance of that step.

Feedback

- A Incorrect, This is INFORMATION USE criteria.
- B Incorrect, REFERENCE USE procedures can not be performed from memory.
- C Correct
- D Incorrect, REFERENCE USE procedures do not require each step to be reviewed prior to its performance. This is CONTINUOUS USE criteria.

Notes

Source: Watts Bar NRC Exam 1998

Categories

RO Tier:

T3

K/A Value: 4.3/4.2

Source:

NEW

Test:

COM (49)

SRO Tier: T3

Cog. Level: MEMORY

Exam:

FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

83. G2.1.32 001/T3/T3/3.4/3.8/C/A/BANK/FR01301/COM (66)/SDR

In EEP-2, "FAULTED STEAM GENERATOR ISOLATION," the operator is cautioned that any faulted steam generator should remain isolated during subsequent recovery actions unless needed as a heat sink for RCS cooldown.

Which ONE of the following is the reason for this caution?

- A. AFW pumps could reach run-out flow and cavitate causing damage to the pumps and possibly rendering them inoperable.
- B. Additional steaming from the S/G will increase the likelihood of damaging other equipment, power supplies, or instrumentation in the vicinity of the break.
- C. Un-isolating a faulted steam generator could result in an RCS cooldown causing a severe transient that challenges the primary-secondary barrier.
- D. Re-establishing feed flow to the faulted S/G would cause SI to re-actuate on high steam flow and interfere with the RCS cooldown to Mode 5, Cold Shutdown.

Feedback

- A Incorrect, The AFW system is designed to prevent the conditions of run-out. Procedures limit AFW flow to specific value designed to ensure run-out conditions are not created.
- B Incorrect, This is true but is not the reason for maintaining the S/G isolated.
- C Correct
- D Incorrect, This could occur but is not the reason for maintaining the S/G isolated.

Notes

Source: Farley NRC Exam 1995

LO: OPS52530C03

Categories

RO Tier: T3
K/A Value: 3.4/3.8
Source: BANK
Test: COM (66)

SRO Tier:

Cog. Level: C/A Exam: FR01301

Misc:

SDR

T3

for Farley 2001-301 SRO NRC EXAM

84. G2.2.11 001/T3/T3/2.5/3.4/MEMORY/MOD/FR01301/COM (63)/SDR

Which one of the following is considered a Temporary Plant Alteration that supports Maintenance per AP-13, "Control of Temporary Alterations?"

- A. Placement of a plant labeling deficiency tag IAW AP-25, "Equipment Identification."
- By Lifting leads to defeat a MCB annunciator in preparation for repairs by the oncoming team.
- C. Installation of tygon tubing on a pump drain line IAW AP-14, "Safety Tagging."
- D. Gagging of a relief valve in preparation for a hydrostatic test of that system.

Feedback

A -Incorrect, per AP-13, not a listed item B - Correct, When lifting leads for corrective/preventive maintenance or troubleshooting purposes, the leads shall be identified as shown on the electrical drawing. If the leads are to remain lifted while not attended by the journeyman or if the job is to be turned over to another crew, then a temporary identification tag shall be placed on each lead lifted. (AP-13)

C - Incorrect, per AP-13, not a listed item

D - Incorrect, This was a correct answer prior to the June 8 version 4 change.

Notes	
Source: New	
Categories	
RO Tier: T3	SRO Tier: T3
K/A Value: 2.5/3.4	Cog. Level: MEMORY

FR01301

SDR

Source: MOD Exam: COM (63) Misc: Test:

for Farley 2001-301 SRO NRC EXAM

85. G2.2.12 001/T3/T3/3.0/3.4/MEMORY/NEW/FR01301/COM (42)/SDR

Unit 2 is currently in Mode 4, Hot Shutdown. At 0900 today, it is discovered that a routine 24-hour surveillance involving Shutdown Margin was last performed at 0600 on the previous day.

Which ONE of the following describes the response to the failure to perform the surveillance?

- A. The Technical Specification LCO 3.0.3 is applied.
- B. The LCO is immediately declared not met and the ACTION statement is immediately initiated.
- C. The surveillance may be delayed for up to 24 hours from the time of discovery per Technical Specification 4.0.3.

Dy The surveillance requirements are satisfied if the surveillance is completed by 1200 today.

Feedback

D - Correct, Per SR 3.0.2 there is a 1.25 times the interval to allow the SR to be performed. Notes

Source: Byron 2000-301

Categories

RO Tier: T3

K/A Value: 3.0/3.4

Source: **NEW**

Test:

COM (42)

SRO Tier:

T3

Cog. Level: MEMORY FR01301

Exam: Misc:

for Farley 2001-301 SRO NRC EXAM

86. G2.2.13 001/T3/T3/3.6/3.8/MEMORY/BANK/FR01301/COM (35)/SDR

An individual has requested a Restricted Removal (RR) tag order to allow performance of a maintenance task that he has been assigned.

Which ONE of the following positions, at a minimum, must the individual hold in order to mark the RR block on the Tag Order Acceptance section of the cover sheet for a maintenance task?

- A. A designated operator.
- B. A tagging official.
- C. An apprentice.
- Dr A journeyman.

Feedback

D - Correct, See FNP-0-AP-14, section 4.2

Notes

Source: Farley Exam Bank Question #O52303G02003

Categories

RO Tier: T3

K/A Value: 3.6/3.8

Source:

BANK

Test: COM (35)

T3 Cog. Level: MEMORY

Exam:

SRO Tier:

FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

87. G2.2.22 001//T3/3.4/4.1/MEMORY/BANK/FR01301/S (7)/SDR

Unit 1 is in Mode 3, HOT STANDBY, with preparations underway for a normal reactor startup. The control room operators are performing a dilution to the desired critical boron concentration. When the Pressurizer backup heater control switches are placed in the 'ON' position, the 1A group of heaters does not energize. It is estimated that repairs will take 120 hours.

Which ONE of the following describes the Technical Specifications action(s) required?

(Note: Technical Specifications provided)

- A. Must remain in Mode 3, HOT STANDBY, and reactor startup cannot proceed.
- B. Restore ANY two Pressurizer heater groups with a capacity of at least 125 kW to OPERABLE status within 72 hours before continuing the reactor startup.
- C. May continue the reactor startup and take the reactor critical while waiting on repairs.

Dy Must be in at least Mode 4, HOT SHUTDOWN, within the next 84 hours.

Feedback

Group 'A' and 'B' are the only two groups of PZR heaters that are capable of being supplied by an emergency power supply, both must be available to satisfy TS 3.4.9. This is per SR 3.4.9.2 and STP-27.4

- A Incorrect, Per TS 3.4.9 the heaters must be fixed within 72 hours, if unable to accomplish then ultimately in Mode 4.
- B Incorrect, This is only part of the TS applicability the two groups of heaters must also be capable of being powered from an emergency power supply.
- C Incorrect, Upward Mode changes are not allowed without required equipment available.
- D Correct, This is correct action per TS 3.4.9.B and C.

Notes

Source: Farley Exam Bank Question #O52302H03011

Categories

RO Tier:

SRO Tier:

T3

K/A Value: 3.4/4.1

Cog. Level: **MEMORY**

Source:

BANK

Exam:

FR01301

Test:

S(7)

Misc:

for Farley 2001-301 SRO NRC EXAM

88. G2.2.28 001//T3/2.6/3.5/C/A/MOD/FR01301/S (18)/SDR

Given the following:

- A reactor core re-load is in progress with ten assemblies loaded in the core.
- As the on-coming Shift Supervisor you have been given the following information during turnover:
 - Both Source Range detectors ARE indicating counts.
 - High Flux at Shutdown alarms are BLOCKED.
 - Source Range counts are audible in containment.
 - Containment Normal Purge is in service.
 - Scaffolding is being passed through the equipment hatch.
 - One Reactor Operator is in the Control Room.
 - The RHR system has been secured for 10 minutes to support surveillances that expect to take 40 minutes to complete.

After reviewing the above information your direction to the refueling SRO is to suspend Core Alterations because of which ONE of the following?

- A. The RHR system requirements are not met.
- B. The High Flux at Shutdown alarm should be in service.
- C. There should be at least two licensed Reactor Operators in the Control Room.
- Dy The equipment hatch is not secured.

Feedback

- A Incorrect, TS 3.9.4 allows the system to be removed from operation for < 1 hour per 8 hour period, provided no operations are permitted that would cause reduction of the RCS boron concentration.
- B Incorrect, Not required to be in service at this time.
- C Incorrect, Only One RO required to be in the Control Room.
- D Correct, Violation of TS 3.9.3, equipment hatch must be in place with four bolts.RHR Notes

Source: Farley NRC Exam 2000; Modified stem, distractor, and changed the correct answer. Categories

RO Tier:		SRO Tier:	T3
K/A Value:	2.6/3.5	Cog. Level:	C/A
Source:	MOD	Exam:	FR01301
Test:	S (18)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

89. G2.3.01 001/T3/T3/2.6/3.0/MEMORY/BANK/FR01301/COM (65)/SDR

With the plant in Mode 5, Cold Shutdown, a small accessible area in containment has a general area dose rate of 1150 mrem/hr. The top of this area cannot be enclosed for the purpose of locking the area.

Which ONE of the following describes the minimum additional measures (other than appropriate posting) that must be executed for this area?

- A. Must be barricaded off, conspicuously posted, and a flashing light must be activated.
- B. Must be roped off and the entrance to the containment must be kept locked.
- C. Must be barricaded off, conspicuously posted, and a guard posted at the entrance to the this area.
- D. A flashing light must be activated and the entrance to containment must be kept locked.

Feedback

- A Correct, Per TS 5.7 High Radiation Area section 5.7.3.
- B Incorrect, This is correct if the entire containment was affected by radiation level in excess of 1000 mrem/hr, this would be too restrictive.
- C Incorrect, This would result in unnecessary exposure to the guard.
- D Incorrect, This is correct if the entire containment was affected by radiation level in excess of 1000 mrem/hr, this would be too restrictive.

Notes

Source: Farley NRC Exam 1993

Categories

RO Tier: T3
K/A Value: 2.6/3.0
Source: BANK

Source: BANK Test: COM (65) SRO Tier: T3

Cog. Level: MEMORY Exam: FR01301

Misc: SDR

for Farley 2001-301 SRO NRC EXAM

90. G2.3.04 001//T3/2.5/3.1/C/A/BANK/FR01301/S (11)/SDR

A member of the search and rescue team, who has voluntarily agreed to receive an emergency dose, has spent 10 minutes in an area with a general area radiation level of 75 Rem/Hr gamma while searching for a missing person known to be injured in a tank explosion.

Which ONE of the following is the maximum additional whole body exposure that this individual may voluntarily obtain during continuation of this search per FNP-0-EIP-14, "Personnel Movement, Relocation, Re-Entry and Site Evacuation"?

- A. 100 Rem.
- B . 85 Rem.
- C. 35 Rem.
- D. 10 Rem.

Feedback

- A Incorrect, Maximum allowed for volunteers on lifesaving missions is less than 100 Rem.
- B Correct, Max Dose Remaining = 87.5R = 100-(10min/60min*75R/h*1) where 1 is the QF for gamma.
- C Incorrect, Answer based on 50 Rem which is extremities limit per 10CFR20.
- D Incorrect, Answer based on 25 Rem which is non-voluntary emergency limit per FNP-0-EIP-14.

Notes

Source: Farley NRC Exam 1999-301

Categories

RO Tier:	
K/A Value:	2.5/3.1
Source:	BANK
Test:	S (11)

SRO Tier: T3
Cog. Level: C/A
Exam: FR01301
Misc: SDR

for Farley 2001-301 SRO NRC EXAM

91. G2.3.06 001//T3/2.1/3.1/MEMORY/NEW/FR01301/S (17)/SDR

Unit 1 is at 100% steady-state reactor power with the following plant conditions:

- 1A Steam Generator has a confirmed tube leak of 20 gpd.
- 1B Steam Generator has a confirmed tube leak of 5 gpd.
- The Turbine Building water sump is full and needs to be discharged.

Which ONE of the following, if any, describes the release permit(s) you would expect to review (be in affect) to authorize the release?

- A. A batch release permit.
- B. A continuous release permit.
- C. Both a batch and continuous release permit.
- D. No permit is required.

Feedback

- A Correct, Batch release permit is required if there is evidence of a SGTL creating the possibility that the sump contents may be contaminated.
- B Incorrect, Continuous release permit is required if there is no evidence of a SGTL.
- C Incorrect, Both types of release permits would not be in effect with the evidence of a SGTL it is inappropriate yto have a continuous release permit.
- D Incorrect, A release permit is required.

Notes

Source: New

Categories

RO Tier:
K/A Value: 2.1/3.1
Source: NEW

SRO Tier: T3

Misc:

Cog. Level: MEMORY Exam: FR01301

Test: S (17)

for Farley 2001-301 SRO NRC EXAM

92. G2.3.09 001//T3/2.5/3.4/MEMORY/NEW/FR01301/S (25)/SDR

You are the Unit 2 Supervisor. After a refueling outage, Unit 2 is being made ready to support power operations. The Unit is currently in Mode 5, Cold Shutdown. The crew is performing FNP-2-UOP-1.1, "STARTUP OF UNIT FROM COLD SHUTDOWN TO HOT STANDBY," RCS temperature is 195 degrees F.

A recently licensed plant operator is at the controls performing his first reactor startup. He asks you why the Containment Main Purge system must be secured prior to raising the RCS temperature above 200 degrees F.

Which ONE of the following describes the main reason and hence your response to the operators question?

- A. The minipurge duct work is much smaller providing less flow to the plant vent stack therefore, if a release were to occur and a single isolation valve fails to close, its environmental affects would be minimized.
- B. The minipurge isolation butterfly valves are designed to close within 5 seconds of receiving a isolation signal, the main purge isolation butterfly valves do not receive an isolation signal since they are already shut.
- C. The minipurge duct work has much smaller isolation butterfly valves then the main purge duct work and are much more likely to shut and provide positive isolation of containment.
- D. The minipurge ducts are small enough to be equiped with PAC filter assemblies which remove airborne activity, the main purge exhaust ducts are too large to be equiped with a PAC filter assembly.

Feedback

- A Incorrect, Plant safety analysis assumes that all containment isolation valves close or are closed at the time an event occurs. This can not be stated as fact since it has not been analyzed.
- B Incorrect, The containment isolation signal is sent to all butterfly valves in the containment ventilation system and all valves are designed to be quick closing.
- C Correct

Source: New

D - Incorrect, All containment exhaust is sent through the PAC filtration unit, whether its from the main purge or minipurge.

Categories			
RO Tier:		SRO Tier:	T3
K/A Value:	2.5/3.4	Cog. Level:	MEMORY
Source:	NEW	Exam:	FR01301
Test:	S (25)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

93. G2.4.01 001//T3/4.3/4.6/MEMORY/NEW/FR01301/S (21)/SDR

Which ONE of the following Emergency Response Procedure(s) can be entered directly based on operator evaluation without reference from other procedures?

- A. EEP-0, "REACTOR TRIP OR SAFETY INJECTION," only.
- By EEP-0 and FRP-S.1, "RESPONSE TO NUCLEAR POWER GENERATION/ATWT," only.
- C. EEP-0 and ECP-0.0, "LOSS OF ALL AC POWER," only.
- D. EEP-0, ECP-0.0, and FRP-S.1.

Feedback

- A Incorrect, ECP-0.0 can also be entered directly off of operator determination.
- B Incorrect, FRP-S.1 is entered off of EEP-0 step 1 or fold out page.
- C Correct
- D Incorrect

Notes

Source: New

Categories

RO Tier:

Jiler.

K/A Value: 4.3/4.6

Source:

NEW

Test:

S (21)

SRO Tier: T3

Cog. Level: MEMORY

Exam: FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

94. G2.4.06 001/T3/T3/3.1/4.0/MEMORY/NEW/FR01301/COM (39)/SDR

Which ONE of the following describes the primary basis for depressurizing all intact Steam Generators (S/G) to atmospheric pressure in FRP-C.1, "RESPONSE TO INADEQUATE CORE COOLING?"

- A. Ensure CETC temperatures are reduced to less than 700 degrees F.
- B. Reduce S/G pressure to increase feedwater flow.
- C. Reduce RCS pressure for establishing low-head safety injection.
- D. Enhance natural circulation cooling of the reactor core.

Feedback

- A Incorrect, Core cooling will result from the establishing LHSI flow, but this is not the reason for reducing S/G pressure.
- B Incorrect, S/G pressure does not have to be reduced to atm to ensure adequate feedwater flow.
- C Correct, With continued S/G depressurization, RCS pressure should follow secondary pressure until the shutoff head of the LHSI pumps is reached. Then the LHSI should begin to refill the RCS. (excerpt from OPS-52533C)
- D Incorrect. If natural circulation was established then there would be no reason to be in C.1. Notes

Source: Btron 2000-301

LO: O52533C12

Categories

RO Tier:

T3

K/A Value: 3.1/4.0

Source:

NEW

Test:

COM (39)

SRO Tier:

T3

Cog. Level: MEMORY Exam:

FR01301

Misc:

for Farley 2001-301 SRO NRC EXAM

95. G2.4.21 001//T3/3.7/4.3/C/A/BANK/FR01301/S (20)/SDR

Given the following conditions on Unit 1:

- A reactor trip WITHOUT SI occurred about 12 minutes ago.
- The crew is carrying out FNP-1-ESP-0.1, "REACTOR TRIP RESPONSE."
- Loss of offsite power has just occurred on Unit 1.
- Unit 1 diesel generators will NOT start.
- Unit 1 4160V ESF buses F, G, K, and L are deenergized.
- The STA reports the status of the Critical Safety Functions has just changed to the following:

Heat Sink RED
Subcriticality GREEN
Containment GREEN
Inventory YELLOW
Core Cooling RED
Integrity GREEN

Which ONE of the following procedures should be used in response to these conditions?

- A. FNP-1-FRP-C.1, "RESPONSE TO INADEQUATE CORE COOLING."
- B. FNP-1-ESP-0.2, "NATURAL CIRCULATION COOLDOWN TO PREVENT REACTOR VESSEL HEAD STEAM VOIDING."
- C. FNP-1-FRP-H.1, "RESPONSE TO LOSS OF SECONDARY HEAT SINK."
- Dy FNP-1-ECP-0.0, "LOSS OF ALL AC POWER."

Feedback

- A Incorrect, ECP-0.0 takes precidence over any FRP's.
- B Incorrect, This procedure is not entered from the CSF status. This procedure under these conditions would be entered from ECP-0.1 step 22.
- C Incorrect, ECP-0.0 takes precidence over any FRP's.
- D Correct, This procedure is entered off of the deenergized bus criteria.

Notes

Source: Farley	NRC Exam 1	.993
----------------	------------	------

Categories

RO Tier:		SRO Tier:	T3
K/A Value:	3.7/4.3	Cog. Level:	C/A
Source:	BANK	Exam:	FR01301
Test:	S (20)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

96. W/E02EK1.3 001/T1G2/T1G1/3.5/3.8/C/A/NEW/FR01301/COM (56)/SDR

Which ONE of the following describes the reason for rechecking RCS and S/G pressure at some point after failing to meet the safety injection termination criteria when performing actions in response to EEP-1, "LOSS OF REACTOR OR SECONDARY COOLANT?"

- A. To determine if the criterion for stopping RCPs has been met.
- B. To determine if the break has been isolated.
- C. In case there is a faulted S/G which was not fully depressurized at the time the SI termination criteria was checked.
- D. In case the requirement for power has decreased sufficiently to allow securing of some selected heavy loads and the EDGs.

Feedback

- A Incorrect, RCP stopping criteria is a continuing action step therefore, looping back through the procedure would not be needed.
- B Incorrect, If the break were isolated SI termination criteria would be met and looping back through the procedure would not be required.
- C Correct, Blow down of a S/G through a fault could mask SI termination criteria.
- D Incorrect, Securing of loads is performed after the loop back step therefore, looping back would not accomplish this.

Notes

Source: INEL Question Bank

Categories

RO Tier: T1G2
K/A Value: 3.5/3.8
Source: NEW
Test: COM (56)

SRO Tier: T1G1

Cog. Level: C/A Exam: FR01301

Misc: SDR

for Farley 2001-301 SRO NRC EXAM

97. W/E03EK2.1 001/T1G2/T1G2/3.6/4.0/C/A/NEW/FR01301/COM (45)/SDR

Unit 1 has experienced a Loss Of Coolant Accident (LOCA). The crew is currently in ESP-1.2, "POST LOCA COOLDOWN AND DEPRESSURIZATION." RCS cooldown to cold shutdown is in progress and the crew has just started to reduce RCS pressure to refill the pressurizer.

Which ONE of the following would indicate to the crew that voiding in the RCS is occurring?

- A. Rapidly decreasing Safety injection flow.
- B. Rapidly increasing RCS pressure.
- C. Rapidly decreasing core exit thermal couple temperature.
- Dr Rapidly increasing pressurizer level.

Feedback

- A Incorrect, Decreasing SI flow would be indicative of a pressure increase which is inconsistent with voiding in the RCS.
- B Incorrect, Increasing RCS pressure would suppress voiding in the RCS.
- C Incorrect, This is indicative of increased flow through the core.
- D Correct, Voiding causes water to be displaced in the RCS which shows up as an increase in pressurizer level.

Notes

Source: New (modified from Comanche Peak 1 NRC Exam 1994).

Categories

RO Tier: T1G2 K/A Value: 3.6/4.0 Source: NEW Test: COM (45) SRO Tier:

Cog. Level: C/A Exam: FR01301

T1G2

Misc: SDR

101

for Farley 2001-301 SRO NRC EXAM

98. W/E04EK1.2 001/T1G2/T1G1/3.5/4.2/C/A/NEW/FR01301/COM (43)/SDR

A small break LOCA has occurred outside containment.

Actions of ECP-1.2, "LOCA OUTSIDE CONTAINMENT," have been completed and RCS pressure continued to decrease. A transition was made to ECP-1.1, "LOSS OF EMERGENCY COOLANT RECIRCULATION."

Which ONE of the following describes the reason a transition was made to ECP-1.1?

- A. To recover after the break was isolated.
- B. To terminate offsite release.
- C. To reverify that all automatic actions have been completed.

Dy To take compensatory actions for lack of inventory in the containment sump.

back	

_	
n.	~ + ~ ~
	11111

Source: Byron 2000-301

Categories

RO Tier: T1G2 K/A Value: 3.5/4.2

Source: NEW
Test: COM (43)

SRO Tier:

Cog. Level: C/A

T1G1

Exam: FR01301

Misc: SDR

for Farley 2001-301 SRO NRC EXAM

99. W/E08EK1.3 001/T1G1/T1G1/3.5/4.0/C/A/NEW/FR01301/COM (64)/SDR

The following plant conditions exist.

- At 0900 hrs the RCS is at 430 degrees F.
- RCS pressure is stable at 2235 psig.

Which ONE of the following causes the greatest pressurized thermal shock concerns?

- A. At 0930, RCS temperature is 500 degrees F.
- B. At 0930, RCS temperature is 360 degrees F.
- C. At 1000, RCS temperature is 530 degrees F.
- D. At 1000, RCS temperature is 330 degrees F.

Feedback

- A Incorrect, Heatup is not as limiting as cooldown.
- B Correct, Largest cooldown temperature gradient (2.3F/min).
- C Incorrect, Heat up is not as limiting as cooldown.
- D Incorrect, Large cooldown gradient but not as large as B (1.6F/min).

Notes

Source: INEL Question Bank.

Categories

RO Tier:	TIGI	SRO Tier:	T1G1
K/A Value:	3.5/4.0	Cog. Level:	C/A
Source:	NEW	Exam:	FR01301
Test:	COM (64)	Misc:	SDR

for Farley 2001-301 SRO NRC EXAM

100. W/E09EK2.2 001/T1G1/T1G1/3.6/3.9/C/A/NEW/FR01301/COM (40)/SDR

During a small break Loss Of Coolant Accident (LOCA) on a cold leg, when there is not a large amount of injection flow from the ECCS through the core and out the break, a phase is reached where the vessel level continues to decrease below the hot leg penetrations and boiling in the core is the means of transporting the core heat to the bubble. A fixed differential pressure exists between the core and the break and is maintained by the loop seal.

Which ONE of the following describes the primary mechanism for heat removal during this phase?

- A. Condensation of vapor from the bubble at the hot leg side of the S/G U-tubes, which is cooled by S/G water, and then drains back down to the core via the hot legs.
- B. Condensation of vapor in the head, which is cooled by fans in containment, and then drains back down to the core.
- C. Slug flow via the cold legs through the loop seal and flashing across the cold leg break.
- D. Condensation of vapor from the bubble at the cold leg side of the S/G U-tubes, which is cooled by S/G water, and then drains back down to the core via the cold legs.

Feedback

- A Correct, This describes REFLUX cooling which is almost as efficient as two phase natural circulation.
- B Incorrect, The cooling provided hear is basically losses to ambient and is not very effective.
- C Incorrect, Not likely to occur on a small break LOCA.
- D Incorrect, Natural circulation can not occur when level in the core has decreased below the hot leg penetrations.

notes	N	01	es
-------	---	----	----

Source: Byron 2000-301

Categories

RO Tier: T1G1
K/A Value: 3.6/3.9
Source: NEW
Test: COM (40)

SRO Tier: T1G1

Cog. Level: C/A Exam: FR01301

Misc:

"SIMULATOR CORE"

INTEGRAL WORTH VS. STEPS WITHDRAWN OF BANKS C AND D MOVING IN OVERLAP; BOL, HZP, NO XENON

	WORTH		WORTH	
STEPS	(pcm)	STEPS	(pcm)	STEPS
D226	0.0	D199	68.5	D173
D225	1.2	D198	72.0	D172
D224	2.3	D197	75.5	D171
D223	3.5	D196	79.0	D170
D222	4.7	D195	83.5	D169
D221	5.8	D194	88.0	D168
D220	7.0	D193	92.5	D167
D219	8.8	D192	97.0	D166
D218	10.5	D191	100.5	D165
D217	12.3	D190	104.0	D164
D216	14.0	D189	107.5	D163
D215	16.5	D188	111.0	D162
D214	19.0	D187	115.5	D161
D213	21.5	D186	120.0	D160
D212	24.0	D185	124.5	D159
D211	27.3	D184	129.0	D158
D210	30.5	D183	132.8	D157
D209	33.8	D182	136.5	D156
D208	37.0	D181	140.3	D155
D207	40.0	D180	144.0	D154
D206	43.0	D179	148.8	D153
D205	46.0	D178	153.5	D152
D204	49.0	D177	158.3	D151
D203	53.0	D176	163.0	D150
D202	57.0	D175	166.8	D149
D201	61.0	D174	170.5	D148
D200	65.0			gang period and menggapan period and a series

	WORTH
STEPS	(pcm)
D173	174.3
D172	178.0
D171	182.8
D170	187.5
D169	192.3
D168	197.0
D167	200.8
D166	204.5
D165	208.3
D164	212.0
D163	217.3
D162	222.5
D161	227.8
D160	233.0
D159	236.8
D158	240.5
D157	244.3
D156	248.0
D155	253.3
D154	258.5
D153	263.8
D152	269.0
D151	273.0
D150	277.0
D149	281.0
D148	285.0

	There is a second of the second
	WORTH
STEPS	(pcm)
D147	290.5
D146	296.0
D145	301.5
D144	307.0
D143	311.0
D142	315.0
D141	319.0
D140	323.0
D139	329.0
D138	335.0
D137	341.0
D136	347.0
D135	351.3
D134	355.5
D133	359.8
D132	364.0
D131	370.3
D130	376.5
D129	382.8
D128	389.0
D127	393.5
D126	398.0
D125	402.5
D124	407.0
D123	413.5
D122	420.0

Total worth of Shutdown Banks is -3222 pcm. Total worth of the Control Banks is -4602 pcm. Total worth of all banks is -7824 pcm. Conservative worth of most reactive rod (H02 at EOL) is -1240 pcm.

SIMULATOR CURVES

Unit 1 VOLUME 1 CURVE 34 CYCLE 16 INTEGRAL WORTH VS. STEPS WITHDRAWN OF BANKS C AND D MOVING IN OVERLAP; MOL, HZP, NO XENON

REV. 29

STEPS	WORTH	STEPS	WORTH	STEPS	WORTH	STEPS	WORTH
	(pcm)		(pcm)		(pcm)		(pcm)
D226	0.0	D199	216.3	D173	458.8	D147	598.3
D225	3.3	D198	227.5	D172	466.0	D146	602.6
D224	6.7	D197	238.8	D171	472.3	D145	606.8
D223	10.0	D196	250.0	D170	478.5	D144	611.0
D222	13.3	D195	260.8	D169	484.8	D143	615.3
D221	16.7	D194	271.5	D168	491.0	D142	619.5
D220	20.0	D193	282.3	D167	497.0	D141	623.8
D219	26.3	D192	293.0	D166	503.0	D140	628.0
D218	32.5	D191	303.3	D165	509.0	D139	632.0
D217	38.8	D190	313.5	D164	515.0	D138	636.0
D216	45.0	D189	323.8	D163	520.5	D137	640.0
D215	53.0	D188	334.0	D162	526.0	D136	644.0
D214	61.0	D187	343.3	D161	531.5	D135	647.8
D213	69.0	D186	352.5	D160	537.0	D134	651.5
D212	77.0	D185	361.8	D159	542.0	D133	655.3
D211	86.8	D184	371.0	D158	547.0	D132	659.0
D210	96.5	D183	379.8	D157	552.0	D131	663.0
D209	106.3	D182	388.5	D156	557.0	D130	667.0
D208	116.0	D181	397.3	D155	561.8	D129	671.0
D207	127.0	D180	406.0	D154	566.5	D128	675.0
D206	138.0	D179	413.8	D153	571.3	D127	678.8
D205	149.0	D178	421.5	D152	576.0	D126	682.5
D204	160.0	D177	429.3	D151	580.5	D125	686.3
D203	171.3	D176	437.0	D150	585.0	D124	690.0
D202	182.5	D175	444.3	D149	589.5	D123	694.0
D201	193.8	D174	451.5	D148	594.0	D122	698.0
D200	205.0						

Total worth of Shutdown Banks is -3222 pcm. Total worth of the Control Banks is -4602 pcm. Total worth of all banks is -7824 pcm. Conservative worth of most reactive rod (H02 at EOL) is -1240 pcm.

SIMULATOR CURVES

Unit 1 VOLUME 1 CURVE 34 CYCLE 16 INTEGRAL WORTH VS. STEPS WITHDRAWN OF BANKS C AND D MOVING IN OVERLAP; EOL, HZP, NO XENON

REV. 30

STEPS	WORTH	STEPS	WORTH	STEPS	WORTH	ST	EPS	WORTH
	(pcm)		(pcm)		(pcm)		·	(pcm)
D226	0.0	D199	359.8	D173	746.3		D147	995.8
D225	5.8	D198	377.5	D172	758.0		D146	1003.5
D224	11.7	D197	395.3	D171	769.3		D145	1011.3
D223	17.5	D196	413.0	D170	780.5		D144	1019.0
D222	23.3	D195	430.0	D169	791.8		D143	1026.3
D221	29.2	D194	447.0	D168	803.0		D142	1033.5
D220	35.0	D193	464.0	D167	813.5		D141	1040.8
D219	45.5	D192	481.0	D166	824.0		D140	1048.0
D218	56.0	D191	496.8	D165	834.5		D139	1054.8
D217	66.5	D190	512.5	D164	845.0		D138	1061.5
D216	77.0	D189	528.3	D163	854.8		D137	1068.3
D215	91.0	D188	544.0	D162	864.5		D136	1075.0
D214	105.0	D187	559.0	D161	874.3		D135	1081.5
D213	119.0	D186	574.0	D160	884.0		D134	1088.0
D212	133.0	D185	589.0	D159	893.3		D133	1094.5
D211	149.5	D184	604.0	D158	902.5		D132	1101.0
D210	166.0	D183	617.8	D157	911.8		D131	1107.3
D209	182.5	D182	631.5	D156	921.0		D130	1113.5
D208	199.0	D181	645.3	D155	929.5		D129	1119.8
D207	216.8	D180	659.0	D154	938.0		D128	1126.0
D206	234.5	D179	672.0	D153	946.5		D127	1131.5
D205	252.3	D178	685.0	D152	955.0		D126	1137.0
D204	270.0	D177	698.0	D151	963.3		D125	1142.5
D203	288.0	D176	711.0	D150	971.5		D124	1148.0
D202	306.0	D175	722.8	D149	979.8		D123	1153.5
D201	324.0	D174	734.5	D148	988.0		D122	1159.0
D200	342.0							

Total worth of Shutdown Banks is -3861 pcm. Total worth of the Control Banks is -5439 pcm. Total worth of all banks is -9300 pcm. Conservative worth of most reactive rod (H02 at EOL) is -1240 pcm.

3.4 REACTOR COOLANT SYSTEM (RCS)

3.4.9 Pressurizer

LCO 3.4.9

The pressurizer shall be OPERABLE with:

- a. Pressurizer water level ≤ 63.5% indicated; and
- b. Two groups of pressurizer heaters OPERABLE with the capacity of each group ≥ 125 kW and capable of being powered from an emergency power supply.

	ICABIL	ITV.
APPI	IL ADII	3 L T .

MODES 1, 2, and 3.

	 	NOTE	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
_		1 11 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Pressurizer water level limit does not apply during:

- a. THERMAL POWER ramp > 5% RTP per minute; or
- b. THERMAL POWER step > 10% RTP.

ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
A.	Pressurizer water level not within limit.	A.1	Be in MODE 3 with reactor trip breakers open.	6 hours
		AND		
		A.2	Be in MODE 4.	12 hours
В.	One required group of pressurizer heaters inoperable.	B.1	Restore required group of pressurizer heaters to OPERABLE status.	72 hours
C.	Required Action and associated Completion Time of Condition B not	C.1	Be in MODE 3.	6 hours
	met.	C.2	Be in MODE 4.	12 hours

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.4.9.1	Verify pressurizer water level is ≤ 63.5% indicated.	12 hours
SR 3.4.9.2	Verify capacity of each required group of pressurizer heaters is ≥ 125 kW.	92 days
SR 3.4.9.3	Verify required pressurizer heaters are capable of being powered from an emergency power supply.	18 months

3.4 REACTOR COOLANT SYSTEM (RCS)

3.4.16 RCS Specific Activity

LCO 3.4.16

The specific activity of the reactor coolant shall be within limits.

APPLICABILITY:

MODES 1 and 2,

MODE 3 with RCS average temperature $(T_{avg}) \ge 500$ °F.

ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
Α.	DOSE EQUIVALENT I-131 > 0.5 μCi/gm.	LCO 3.0	Note 0.4 is not applicable.	
		A.1	Verify DOSE EQUIVALENT I-131 within the acceptable region of Figure 3.4.16-1.	Once per 4 hours
		AND		
		A.2	Restore DOSE EQUIVALENT I-131 to within limit.	48 hours
В.	Gross specific activity of the reactor coolant not within limit.	B.1	Be in MODE 3 with Tavg < 500°F.	6 hours

ACTIONS

	CONDITION		REQUIRED ACTION	COMPLETION TIME
C.	Required Action and associated Completion Time of Condition A not met.	C.1 Be in MODE 3 with T _{avg} < 500°F.		6 hours
	OR			
	DOSE EQUIVALENT I-131 in the unacceptable region of Figure 3.4.16-1.			·

SURVEILLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.4.16.1	Verify reactor coolant gross specific activity ≤ 100/Ē µCi/gm.	7 days
SR 3.4.16.2	Only required to be performed in MODE 1.	-
	Verify reactor coolant DOSE EQUIVALENT I-131 specific activity ≤ 0.5 µCi/gm.	14 days AND Between 2 and 6 hours after a THERMAL POWER change of ≥ 15% RTP within a 1 hour period

SURVIELLANCE REQUIREMENTS

	SURVEILLANCE	FREQUENCY
SR 3.4.16.3	Not required to be performed until 31 days after a minimum of 2 effective full power days and 20 days of MODE 1 operation have elapsed since the reactor was last subcritical for ≥ 48 hours.	
	Determine Ē from a sample taken in MODE 1 after a minimum of 2 effective full power days and 20 days of MODE 1 operation have elapsed since the reactor was last subcritical for ≥ 48 hours.	184 days

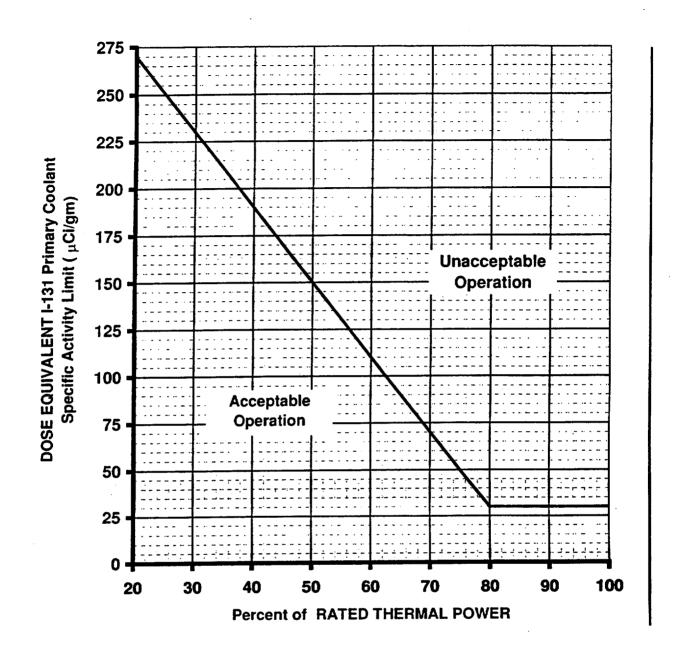


Figure 3.4.16-1

DOSE EQUIVALENT I-131 Primary Coolant Specific Activity Limit Versus Percent of RATED THERMAL POWER with the Primary Coolant Specific Activity > 0.5 μ Ci/gm DOSE EQUIVALENT I-131.