NRC FORM 658 (9-1999)		Ŭ.S.	NUCLEAR REGULATORY COMMISSION	
TRANSMITTAL OF MEETING HANDOUT MATERIALS FOR IMMEDIATE PLACEMENT IN THE PUBLIC DOMAIN				
This form is to person who iss materials, will circumstances Do not includ	be filled out (typed or hand-prin sued the meeting notice). The be sent to the Document Contro will this be done later than the e proprietary materials.	nted) by the person who announ completed form, and the attache ol Desk on the same day of the r working day after the meeting.	ced the meeting (i.e., the d copy of meeting handout neeting; under no	
DATE OF MEETING 8/1601	The attached document(s), v in the public domain as soon near future. Following are a	which was/were handed out in th as possible. The minutes of the dministrative details regarding th	is meeting, is/are to be placed e meeting will be issued in the is meeting:	
L	Docket Number(s)	Project 710	4	
	Plant/Facility Name	General Elect	@.(<u>C</u>	
	TAC Number(s) (if available)		: 	
	Reference Meeting Notice	PULOI		
	Purpose of Meeting (copy from meeting notice)	Discuss Part :	1 notification	
		on stability re Calculations.	load licensing	
NAME OF PERSON WH	O ISSUED MEETING NOTICE	TITLE Project Mana	epe-	
DIVISION				
BRANCH				
<u>Distribution of this</u> Docket File/Centr PUBLIC	<u>s form and attachments:</u> ral File		Df03	
			This form was designed using InForms	

1

14.7

GE Nuclear Energy

Engineering & Technology: Nuclear & Safety Analysis 175 Curtner Avenue, M/C 772, San Jose, CA 95125-1088

NRC Update

Stability DIVOM Curve Non-Applicability

Jason Post and Alan Chung GE Nuclear Energy August 16, 2001

Topics

- □ Stability Detect & Suppress Solutions
- D&S Reload Licensing Methodology

:

:

- **DIVOM Curve Description**
- Problem Discovery/Root Cause
- Part 21 Notification
 - □ Affected Plants
 - Actions
 - □ Final Advice
- □ NRC Feedback

- Stability long-term solutions developed by GE and the BWROG (NEDO-31960-A)
- D&S solutions meet the GDC-12 requirement:

Anticipated reactor instability reliably and readily detected and suppressed

- Automatic scram to provide MCPR Safety Limit protection for anticipated reactor instability
- D&S solution are Options III, I-D, and II

- Stability Option III:
 - Hardware: Oscillation Power Range Monitor
 - OPRM signals composed of closely spaced LPRMs
 - ~30 overlapping OPRM cells per OPRM channel
 - OPRM channel trip logic consistent with RPS
 - Detects core wide and higher harmonic oscillations

- Stability Option III (continued):
 - Software: Each OPRM cell signal individually normalized and processed through 3 algorithms
 - Period based algorithm licensing basis MCPR Safety Limit protection
 - Scram when "counts" exceeds N_P and "amplitude" exceeds S_p
 - Growth rate and amplitude based algorithms defense in depth protection
 - Reload Licensing: Defined in NEDO-32465-A
 - Determine S_p which provides MCPR SL protection
 - Maximum value of N_P corresponds to S_P

- Stability Option I-D:
 - Hardware: Existing flow-biased APRM flux trip
 - Detects only core wide mode oscillations
 - Must confirm core wide oscillation is predominate mode for I-D to be applicable
 - Software: Trip when unfiltered core average power exceeds flow-biased setpoint
 - Reload Licensing: Defined in NEDO-32465-A

2

• Confirm flow-biased flux trip provides adequate MCPR SL protection

÷

- Stability Option II:
 - Hardware: Existing quadrant based flow-biased APRM flux trip
 - Detects core wide and higher harmonic oscillations
 - Software: Trip when quadrant average power exceeds flow-biased setpoint
 - Reload Licensing:
 - Methodology defined by each applicant (similar to NEDO-32465-A)
 - Confirm flow-biased flux trip provides adequate MCPR SL protection

- Developed by GE and BWROG D&S Committee
- Documented in NEDO-32465-A, August 1996 (SER date March 4, 1996)
- Purpose
 - Option III: Define OPRM period based algorithm amplitude trip setpoint (S_P) which provides MCPR SL protection
 - Option I-D: Demonstrate flow-biased APRM flux trip provides MCPR SL protection

• Methodology segregated into three parts:

1	Hot bundle oscillation magnitude (HBOM)	Hardware dependent	Monte Carlo method (OPRM code)
2	Normalized CPR change vs. oscillation magnitude (DIVOM)	Fuel type dependent*	Relationship developed from TRACG calculations
3	Cycle specific CPR limits and performance	Reload dependent	Cycle specific MCPR SL, MCPR OL, ∆CPR from flow runback (3D nodal simulator)

* DIVOM curve independent of reload in original development

÷

- HBOM:
 - Statistical methodology
 - Combination deterministic and statistical inputs
 - Determine normalized peak bundle oscillation magnitude when reactor trip has disrupted the oscillation
 - Result depends upon LPRM assignment to OPRM cells
 - Redo calculation if hardware (e. g., cell assignments) changes

- HBOM statistical methodology
 - Rank order 1000 trials
 - 95/95 probability/confidence (non-parametric statistics) corresponds to 39th worst result from 1000 trials
- **HBOM assumptions:**
 - Every trial produces an oscillation
 - Most responsive OPRM channel fails (Opt III)
 - Most responsive APRM channel fails (Opt I-D)
 - No LPRM failures (conservative for up to ~50% failure rate)
 - Oscillation disrupted when control rods inserted 2 ft into core

- **HBOM** deterministic inputs
 - LPRM assignments to OPRM cells/APRM channels
 - OPRM/APRM channel failure assumption (most responsive fails)
 - **RPS trip logic**
 - Trip setpoint
 - Fixed time increment from trip to oscillation disruption
 - **OPRM/APRM response time**
 - **RPS response time**

÷

- Delay for start of control rod motion
- Time for control rods to insert 2 ft into the core

e

¢

- HBOM statistical inputs:
 - Oscillation contours
 - Oscillation period
 - Oscillation growth rate
 - Trip setpoint overshoot
 - LPRM failure rate (no failures is limiting for design calculations)

- **DIVOM Curve:**
 - Normalized CPR change
 = (Final MCPR Initial MCPR)/Initial MCPR
 = △CPR/IMCPR
 - Vs. oscillation magnitude = (P-M)/A

• Each power peak produces a DIVOM data point

- Coupled neutronic/thermal-hydraulic oscillation calculated with TRACG
 - Detailed core axial model
 - Multiple channel groups
 - Channel grouping by harmonic contour and radial power distribution
 - Each channel produces a set of DIVOM curve data points

÷

- Extensive TRACG calculations performed
 - Regional mode: 8x8, 9x9, 10x10, mixed core
 - Core wide mode: 8x8, 9x9
 - Sensitivity studies on fuel design parameters
 - Restrictive power/flow statepoints

- Core wide mode oscillation:
 - Power and flow oscillate in-phase for all channels
 - Fundamental mode of neutron flux excited
 - Variable pressure drop across core determined by circulation loop dynamics
 - Channel flow oscillation coupled to (constrained by) core flow response
- Regional mode oscillation
 - Power and flow in each half of core 180° out-of-phase
 - Harmonic mode of neutron flux excited
 - Constant pressure drop across core
 - Channel flow oscillation independent of (not constrained by) core flow response

• Sample hot channel TRACG calculation:

.

- Produced population of hot channel data points from all TRACG runs
- Regional mode:
 - Decoupling from core response produces greater bundle flow oscillation for a given power oscillation
 - Channels with high harmonic location and high RPF produce largest flow oscillation
 - Larger flow oscillation produces larger CPR change and steeper DIVOM curve
- Specified conservative generic core wide and regional mode DIVOM curves at upper edge of all data points
 - Regional: slope = 0.45, intercept = 0.0

2

• Core wide: slope = 0.175, intercept = 0.05

- Generic DIVOM curves
 - Valid for all fuel types and vendors
 - Reasonably conservative based on data base
 - Relied on overall method conservatism to cover some DIVOM curve variation
- Conservatisms:
 - Highest bundle power at same location as most responsive bundle in oscillation contour
 - Developed for large core plant
 - Use MCPR SL as acceptance criteria
 - Each trial produces an oscillation
 - All regional mode oscillations for Option III

- Cycle-specific CPR inputs and calculations
 - Calculation for two state points:
 - Steady State at 45% rated core flow
 - IMCPR from more limiting of $MCPR_F$ and $MCPR_P$
 - Runback to natural circulation on stability protection line
 - Initiated from MCPR OL
 - $\triangle CPR$ from 3-D nodal simulator

- Option III stability protection line: highest licensed flow control line
 - Proximity to setpoint is N/A to normalized signal
 - Highest rod line produces limiting conditions
- Option I-D (and II) stability protection line: rated rod line
 - HBOM is function of proximity to trip line
 - Highest licensed rod line is close to trip and gives small HBOM
 - Bottom of exclusion zone would give large HBOM, but propensity to oscillate is small
 - Rated rod line chosen as reasonable compromise

2

• Algebraic equation to calculate Final MCPR (i.e., lowest MCPR before oscillation is disrupted):

FMCPR(2PT) = MCPR OL + Δ **CPR(runback) -** Δ **CPR(oscillation)**

and

FMCPR(SS) = MCPR(limit at 45% flow) - Δ CPR(oscillation)

- Confirm FMCPR \geq MCPR SL
 - Option III: S_P is adequate
 - Option I-D (and II): flow-biased trip is adequate

Problem Discovery/Root Cause

- Deviation Statement: The generic DIVOM curves specified in NEDO-32465-A are not adequate to support current reload licensing analysis
- Changes since original development:
 - Evaluating more limiting conditions for MELLLA+
 - Input a small initial flow perturbation consistent with the harmonic mode allows modeling more limiting conditions
 - Discovered importance of peak bundle power for regional mode oscillations
 - Realized that original cases were not adequate for current operation

Problem Discovery/Root Cause

- Root Cause:
 - Inadequate understanding of physical phenomena resulted in underestimating the impact of a key parameter (peak bundle power)
 - Limiting radial power distribution cases produced non-symmetric oscillations (until flow perturbation method developed) and were not included in the data base
 - Believed that restrictive power/flow conditions, sensitivity studies, and normalization of curves fully addressed current operating conditions

÷

2

Part 21 Notification

- GE originally defined as a Corrective Action Request: CAR AI-5313 on 2/19/01
 - Believed that it was only an EPU problem (i.e., DIVOM was applicable for 105% uprate)
 - Overlooked one plant that already had EPU > 105%
- Opened PSC (potential safety concern) 4/19/01 when realized 105% uprates potentially affected
 - Per GE EOPs, 10 working days allowed for PSC resolution
- Opened as a PRC on 5/3/01
 - 60 day clock expired 7/2/01

Part 21 Notification

- Safety perspective:
 - Potential to violate MCPR SL for Option III if:
 - An event initiates from limiting conditions
 - The event results in an oscillation
 - The oscillation is regional
 - Automatic trip still functions
 - Small portion of core might experience MCPR SL violation before trip occurs
 - Not a threat to fuel damage!
 - No threat to public health and safety!

Part 21 Notification

- Safety Communication SC01-01 issued 6/29/01
 - Reportable condition [21.21(d)] for one plant
 - 60 day interim report [21.21(a)(2)] since all potentially affected plants not evaluated
 - Transfer of information [21.21(b)] since GE could not evaluate some potentially affected plants
 - Committed to complete Part 21 notification by 8/31
- To "complete" Part 21 notification:
 - List all affected plants
 - List corrective actions which have been and will be taken

e.

• Provide final advice related to the defect

2

Part 21 Notification – Affected Plants

- Only D&S solutions affected, not prevention solutions (i.e., Enhanced Option I-A, exclusion region calculations)
- All plants with Option III installed are affected:
 - Hatch 1&2, Fermi-2, NMP-2, Browns Ferry 2&3, Columbia, Perry
- Current and upcoming NRC submittals to arm Option III also affected
 - Susquehanna 1&2, Peach Bottom 2&3, Limerick 1&2, LaSalle 1&2, Dresden 2&3, Quad Cities 1&2, Hope Creek, Brunswick 1&2
- Option I-D (and II) plants not affected:
 - Cooper, Duane Arnold, FitzPatrick, Monticello, Vermont Yankee (NMP-1, Oyster Creek)

Part 21 Notification – Actions

- Notified initial plant when impact confirmed
- Notified all BWRs through BWROG PIRT in advance of SC01-01
- Defined Figure of Merit (FOM) to assess applicability of generic DIVOM curves
 - Regional mode: peak bundle power to flow ratio at ~30% rated core flow
 - Core wide mode: core average power to flow ratio at ~30% rated core flow
- Continued interaction with PIRT after SC01-01 issued

Part 21 Notification – Actions

- Potentially affected plants evaluated vs. FOM
 - Determined which plants are/are not affected
- Each plant with OPRM armed declared the OPRM inoperable
- Plants have different Tech Spec requirements:
 - 120 day/unlimited outage time when OPRM is inop
 - Do/do not have TS 3.0.4 exemption for restart when OPRM is inop
- Produces different plant needs for OPRM restoration to operable

:

Part 21 Notification – Actions

- GE developed interim regional mode DIVOM curves for higher FOM values
- Detailed reviewed of issue & approach with BWROG
- Calculated interim S_P where requested
- Plant-specific mitigation actions:
 - Load line restriction to maintain plant within FOM
 - Revised S_P based on interim method
 - TS modification
 - Delay implementation

Part 21 Notification – Final Advice

- Participate in BWROG D&S Committee activity
- Plant-specific options:
 - If unlimited outage time: Remain inoperable with trip armed
 - If 120 day limit and/or no TS 3.0.4 exemption:
 - Implement interim S_P and declare operable
 - Consider processing a TS change
 - If OPRM not yet armed:
 - Delay implementation until issued resolved
 - Consider arming and declaring system inop
 - Consider arming and implementing interim setpoint

Part 21 Notification – Final Advice

• BWROG D&S Committee proposed schedule:

3Q01:	Obtain BWROG funding authorization
	Develop and assess existing DIVOM data base, define additional TRACG cases needed
4Q01	Complete additional TRACG cases
1Q02	Assess TRACG results, develop revised methodology
2Q02	Present revised methodology to NRC
3Q02	Issue licensing documentation for revised methodology
4Q02	NRC approval

NRC Feedback

- Discovery/Root Cause
- Plant-specific mitigation actions
- Part 21 reporting completion
- **BWROG** plans to address
- Eventual issue resolution