

QUALITY LEVEL QL-1A (IROFS)

Total Pages 92

ATTACHMENT NUMBER 1

EXPLORATION BORING PROGRAM AND LOG OF BORINGS

Form PP9-8D-3

ATTACHMENT NO. 1 EXPLORATION BORING PROGRAM AND LOG OF BORINGS

1. DRILLING PROGRAM

1.1 Soil Drilling

During June and July of 2000, 13 soil borings were completed at the MFFF site as part of the geotechnical exploration program. All drilling was performed in accordance with DCS document number DCS01-WRS-DS-SPE-G-00002 – Specification for Geotechnical Borings and Sampling. The borings were advanced with a CME-75 truck-mounted drill rig utilizing the rotary-wash method. Drill bits with side discharge, or in the case of tricone bits, bottom deflectors, were required for reaming and advancing the borings. Ten borings were six inches in diameter, and three were eight inches in diameter. The larger diameter borings were cased with six-inch-diameter PVC plastic pipe to allow for seismic downhole testing at a later date. The locations of the borings were surveyed and staked in the field prior to drilling. The selection of boring locations was primarily based on: 1) the proposed structure locations; 2) access restrictions, i.e., brush and trees, steep terrain, archeological restrictions; 3) availability of existing data; and 4) locations of CPT soundings (for borings used to correlate CPT data).

1.2 Standard Penetration Testing (SPT)

SPT testing was performed at maximum intervals of five feet in all borings, with the exception that no sampling was conducted in the berm fill in borings BH-4, BH-11, BH-12 and BH-13. In cases where continuous SPT was performed, the hole was reamed out over the 18-inch sample interval prior to making the next drive. All SPT was performed in accordance with the ASTM Test Method D 1586-99. The split-spoon sampler was equipped with a check valve and bleeder located at the top of the sampler to prevent drilling fluid from entering the sampler from the drill rod. An automatic drive hammer was used to drive the SPT sampler in accordance with ASTM Test Method D 1586 -99. The SPT N-value was determined by adding the number of blows required to drive the spoon sampler the last 12 inches of the standard 18-inch drive.

1.3 Thin-walled Tube Sampling

Thin-walled (Shelby tube) samples were collected in clayey soils where possible, in accordance with ASTM Test Method D 1587-94. Sampling was performed using three-inch-diameter, 30-inch-long thin-walled tubes. All sample tubes were in new condition and made of hardened extruded steel with a smooth coating of TeflonTM or an approved equal. Thin-walled samples were mainly collected in clayey zones within the Tobacco Road Formation (TR3/4) and the Lower Dry Branch Formation (DB4/5). The sample procedure consisted of advancing the tube 24 inches into the material to be sampled, or until 750 psi of hydraulic pressure was reached. The tube was then allowed to "rest" for five minutes before rotating the drill string 90 degrees to shear the bottom of the sample off of the surrounding soil. Upon retrieval from the hole, any space in the ends of the sample tube was filled with melted paraffin wax. The ends of the tube

were then capped and labeled, and the tube was placed upright in a tube box as prescribed by ASTM Procedure 4220-95.

2. Radiological Monitoring

Radiological monitoring was performed at the drill site on each day that soil drilling and sampling was performed. At each drill location, Savannah River Site (SRS) Health Physics obtained samples of drill cuttings and fluids and a sample from each SPT jar sample and Shelby tube sample for radiological analysis and screening. SRS Health Physics cleared all samples of any radiological contamination prior to any sample being removed from the SRS site. No radiological contamination was identified in any of drilling fluids and cuttings or samples tested during the Exploration Boring Program.

3. SAMPLE PREPARATION, HANDLING AND STORAGE

In general, all samples were prepared and handled in accordance with DCS document number DCS01-WRS-DS-SPE-G-00002 – Specification for Geotechnical Borings and Sampling. SPT samples were typically collected from the top and bottom six inches of the sample spoon. If a material change occurred within the sample, additional samples were collected. Care was taken to exclude drill cuttings from the representative samples taken from the SPT split spoon sampler. SPT samples were placed in eight-ounce glass jars with tightly sealing lids. Both the jar and lid were labeled with the boring number, sample number, sample depth, date and job number.

Thin-walled samples were trimmed, measured and sealed with paraffin wax at the drill site. Plastic caps were placed over the ends of the tube, taped and labeled, and the tubes placed vertically in four-tube wooden boxes for transport and storage.

Samples were not removed from the SRS site until released by SRS Health Physics. A locked temporary sample storage area was established in DCS's field office in Aiken, near the SRS site. The storage area was maintained at a temperature of approximately 72 degrees Fahrenheit. Access to samples was limited to the DCS Lead and Field Engineers. The samples were stored at this location until released to the soils testing laboratory.

All samples were turned over to LAWGibb laboratory personnel for transport and storage at LAW's Atlanta, Georgia laboratory testing facility following the procedures outlined in DCS document number DCS01-WRS-DS-SPE-G-00003 – Specification for Laboratory Testing of Soil.

4. **BORING LOGS**

Field boring logs were prepared in the field by an experienced Field Geotechnical Engineer as the exploration borings were advanced and sampled. Initial field classification of the soils was made by the Field Geotechnical Engineer and recorded on the field boring logs. Changes in drilling characteristics and fluid losses were identified and recorded on the logs. Sampling

depths, blow counts, push pressure for thin walled samples, sample recovery etc. were recorded on the field boring logs.

After completion of the laboratory testing program, the field boring logs were edited and soil descriptions were refined to correspond to USCS definitions. Laboratory testing and classification results were also added to create the final boring log. The completed final of Log of Boring for borings BH-1 through BH-13 are included as part of Attachment No. 1.

	9		L	OG	OF	B	DR	ING	6 B	H-1	I			(Pan	e 1	of
	DUKE COGEMA STONE & WEBSTER ne: MOX Fuel Fabrication Facility DOE Savannah River Site r: 08716	U			[[[Date S Date O Drill N .ogge Revier	Com letho ed By	pleted d:	:	7/13/ 7/14/ 6" mt JJT FJW/	00 Jd rot	ary		(rag	<u>e_i</u>	or
Depth (ft) Elevation (ft)	MATER DESCRIF		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_nsi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
0 272					I 	 	[[<u> </u>						L		L T
2	TR1 - To El. 268'															
4 <u>268</u> 6 <u>266</u>	TR1A - El. 268' to 260' Yellow-tan poorly graded SAND, some loose, moist.	silt, fine- to medium-grained,	SP		ss	1	2 2 4	6	33							
8 264 10 262	Mottled reddish-brown/tan CLAY, some dense, moist.	fine-grained sand, medium	CL		ss	2	5 7 11	18	83	3				39	23	1
12	TR2A - Ei. 260'- 238' Mottled reddish-brown/tan silty SAND. 1 medium-grained, interbedded thin claye moist.	rrace clay, fine- to ay stringers, medium dense,	SM		ss	3	5 9 10	19	94							
16 - 256 	Mottled reddish-brown/tan and white cla medium-grained, medium dense, moist	iyey SAND, trace clay, fine- to . Visible layering.	SC		ss	4	6 8 10	18	72					38	21	4
22 250 	Similar to above material.		SM		ss	5	9 10 12	22								;

S S		L	.OG	OF	B	DR	ING	B	H-'	1			(D-		
DUKE COGEMA STONE & WEBSTER Project Name: MOX Fuel Fabrication Facility Location: DOE Savannah River Site Job Number: 08716	Surface Elevation:	80.405.4 55.341.0 272.0 MSL	· · · · · · · · · · · · · · · · · · ·)ate ()rill N ogge	Starte Comp letho d By: wed E	oleted d:	:	JJT		•		(Paç	ge 2	of
Depth (f) Elevation (f) Elevation (f) DESCRIP		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press./Int. psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No 200 Sieve	Liquid Limit	Plastic Limit	
26 246 28 244 Yellow-tan to reddish-brown clayey SAN moist, medium dense. Layered brown-orange, tan, pink, red po coarse-grained, medium dense, moist.				ss	6	5 7 9	16	56							
32 - 240 34 - 238 34 - 238 1aminated clay layers, medium dense, mediu	dium-grained, with thinly oist.	sc			7A 7B	3 6 6 750/1	12	56	22.5		81.9	18.1	44	23	2
38 234 Yellow-orange poorly graded SAND, track medium-grained, medium dense, moist.	e silt, fine- to	SP	X	ss	8	5 6 7	13	44					NV	NP	N
Reddish-brown/purple poorly graded SAN medium-grained, medium dense, moist.	ID, trace silt, fine- to	SP	X	ss		7 11 12	23	44							
8 - 224 Yellow-orange poorly graded SAND, some medium-grained, medium dense, moist.	e silt, trace clay, fine- to	SP	Ø	ss	10	9 13 13	26								

Э		L	OG (OF	B	OR	INC	G E	SH-	1			(D -)		
DUKE COGEMA STONE & WEBSTER Project Name: MOX Fuel Fabrication Facility Location: DOE Savannah River Site Job Number: 08716	EBSTER Johng Eccation: el Fabrication Facility Northing: 8 h River Site Surface Elevation: 2 Datum: M MATERIAL DESCRIPTION wn poorly graded SAND, trace silt, trace fine gravel, fine lined, medium dense, moist, with occasional thin laminal ay. ve, becomes yellow-orange. dish-brown. 1' - 206' SAND, with silt, fine- to medium-grained, medium			D D La	oate (Prill N ogge	Starti Comj fetho ed By wed I	pletec d: ::		JJT		-		(Pag	<u>je 3</u>	of
		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No 200 Sieve	Liquid Limit	Plastic Limit	
56 216 58 214 similar to above, becomes yellow-orange	t, with occasional thin lamina	se SP ae SP	X	SS	11	7 12 13 9 17 12	25	50							
60 212 Becomes reddish-brown. 62 210 TR3/4 - El. 211' - 206' 62 210 Brown clayey SAND, with silt, fine- to me dense, moist. 64 208	dium-grained, medium	sc		ST	1:	150/12 250/6 450/3		104	19.6 22.5 27.0			18.6 24.5	43	20	N.
		CL ML SM	X	SS		13 17 15	32	61							
Tan silty SAND, trace clay, fine- to medium dense, moist.	n-grained, loose to medium	SM	Ŋ.	SS 1	14	3 4 6	10		28.5	٤	86.2	13.8			

	5		L	.00	g of	B	OR	INC) B	SH-	1			(D-	1 0 4	<i>c</i> '
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Easting: Surface Elevation:	80.405.4 55.341.0 272.0 MSL			Date Date Drill M Logge Revie	Com Aetho ed By	pletec d: ::	l:	JJT		·			<u>ge 4</u>	of
Depth (ft) Elevation (ft)	MATER DESCRIF		USCS	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_pei/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No 200 Sieve	Liquid Limit	Plastic Limit	
76 196 78 194 80 192	Gray-tan poorly graded SAND. some si dense, wet.	ilt, fine- to medium-grained,	SP		Øss	15	14 17 17	34	94							
82 190 84 1 188 86 1 186	Disturbed material, cuttings/caved mate	erial.			ss	16			0							
88 184 	DB4/5 - El. 184' - 174' Greenish-gray clayey SAND, fine- to me Interbedded with thin layers of greenish	edium-grained, dense, mois -gray silt.	st. SM		ss	17A	9 14 17 250/15	31	100	36.1		65.7	34.3			
92 - 180	Tan-brown silty SAND, trace clay, fine- fine-grained gravel, dense, wet.	to coarse-grained, trace	SM		ST	17B	450/9	-	100	51.5	1.2	82.4	16.4	86	52	3
94	Gray-green clayey SAND, fine-grained, l	loose, moist.	sc		ss	18	WH 2 7	9	100	34.0		73.6	26.4	42	22	2
98 - 174	ST1 - El. 174' - 154' Light brownish-orange poorly graded SA coarse-grained, dense, wet.	ND, trace silt, fine- to	SP		ss	19	17 24 24	48								

	5			L	OG	OF	= В	OR	INC	G E	H-	1			<u> </u>		
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:	80.40 55.34 272.0 MSL				Date Drill f Logg	Start Com Vietho ed By	pletec od: ':	1 :	JJT		tary		(Pag	<u>ge 5</u>	of
Depth (ft) Elevation (ft)	MATER DESCRIP			USCS Classification	Graphic Log	Sample Type	Sample/Run No.		N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
102 - 170 104 - 168 106 - 166	Yellow-orange poorly graded SAND with with very thin clay and lignite laminae.	n silt, fine-grained, dense.	. wet	SP		ss	20	16 21 23	44	50							
108 164 107 164	Layered yellow-orange, tan, pink poorly a dense to very dense, wet.	graded SAND, trace silt,	:	SP	X	ss	21	16 19 31	50	56							
12 - 160 	Light brown/yellow-orange poorly graded medium-grained, very dense, wet.	SAND, trace silt, fine- to	s	\$P	X	SS	22	18 27 33	60	56							
18	ST2 - El. 154' - 140' Reddish-tan clayey SAND, trace shell frag loose to medium dense, wet.	iments, very fine-grained,	. s	c			23A V	WH 4 6 VR/3 50/3 50/6		00 3	3.0	71	8.4 2	1.6	53	27	26
²² 150 4 148	Yellow-orange poorly graded SAND, some wet.	silt, fine-grained, dense,	SF		Į.	ss	24	14 25 20	45 6	51							
illing Rig: (epth: 149.5 Re CME-75 nny, high 90's F	emarks: Hole groute	ed imme	diate	ly upo	n cor	mplet	tion.	Ave. (grout	dens	ity = '	13.3	lb/ga	<u>-</u> l I.		

	9			LC	CG	OF	B	DR	INC	B	H-'	1			(Pan	e 6 (of
Location:	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:	80,405 55,341 272.0 MSL			1 [[Date (Date (Drill N Logge Revier	Comp letho ed By	oleted d:		7/13/ 7/14/ 6" mi JJT FJW/	/00 ud ro:			<u>(ray</u>		
Depth (ft) Elevation (ft)	MATER DESCRIF			USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
126 146 128 144 130 142	Tan silty SAND, fine-grained, trace me	dium-grained, loose, wet.		SM		ss	25	WR 1 7	8	100	32.8		56.5	43.5	35	28	
132 140 134 138	GC - El. 140' - 137' Yellow-brown poorly graded to silty SAt medium-grained, very dense, wet.	ND, trace clay, fine- to		SP SM		ss	26	9 16 40	56	100							
136 - 136 138 - 134 140 - 132	CG - El. 137' Yellow-brown poorly graded quartz SAN coarse-grained, very dense, wet.	ID, trace silt, fine- to		SP		ss	27	28 38 33	71	44							
142 130 144 128 144 128	Similar to above.			SP		ss	I	32/6" 10/0"	>100	0							
48 124	Dark gray poorly graded SAND, trace si very dense, moist. <u>Completed boring at 149.5.</u>	it, fine- to medium-grained	s,s	SP		ss	29	21 38 52	90								

	G			LC	G	OF	B	DRI	NG	6 B	H-'	1					
ST Project Name: M	DUKE COGEMA ONE & WEBSTER MOX Fuel Fabrication Facility Savannah River Site 1716	Boring Location: Northing: Easting: Surface Elevation: Datum:	80,405, 55,341, 272.0 MSL			C L	Date (Drill M .ogge	Starte Comp lethoo d By: wed B	leted 1:	1:	7/13/ 7/14/ 6" mi JJT FJW/	'00 ud ro	-		(Pag	<u>e 7</u>	of 7)
Depth (ft) Elevation (ft)	MATER DESCRIP		lists	Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press./Int. psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	Plasticity Index
150 - 122 Co $152 - 120 154 - 118 156 - 116 116 112 164 - 116 112 164 - 108 66 106 68 104 102 1$	mpleted boring at 149.5".																
ompletion Depth: rilling Rig: CME-7 'eather: Sunny, h	75	temarks: Hole grout	ed immed	diate	y upo	on cor	mplet	ion. A	Ave. (grout	dens	sity =	13.3	lb/ga	I.		

		5		L	.00	g of	B	OR	lN	G B	H-	2			(Pag	10 ¹	~*
Locat	tion: [DUKE COGENA STONE & WEBSTER ne: MOX Fuel Fabrication Facility DOE Savannah River Site r: 08716	Easting: 55	0,406.7 5,625.3 58.6 SL			Date Date Drill N Logge Revie	Com Aetho ed By	plete od: /:		JJT/	00 uger		'/ 8" n	<u> </u>	otary	
Depth (ft)	Elevation (ft)	MATER DESCRIP		USCS	Graphic Lod	Sample Type	Sample/Run No.	Blows/6" Press /Int position	N Value (Incorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No 200 Sieve	Liquid Limit	Plastic Limit	
0 2 4 6 6	- 258 - 256 - 254 - 252	TR1A - To El. 249' Yellow-orange poorly graded SAND, tra medium-grained, loose, dry to slightly n	ice silt, fine- to noist.	SP		X ss	1	1 2 4	6	78	6.9						
10 10	- 252 - 250 - 248	Red-orange poorly graded SAND, trace dense, slightly moist. TR2A - El. 249' - 226'							26	100							
14	- 246 - 244	Yellow-orange poorly graded SAND, with medium dense, slightly moist.	n silt, fine- to medium-grained	SP . SM		ss	3	6 7 6	13	89	6.9	0.3	90.6	9.1			
18 17 20	242 240 238	Similar to above.						6 7 6	13	0							
24	236 234						-										
rilling	Rig: (epth: 138 F CME-75 nny, high 90's F	Remarks: Hole cased to and casing grouted to top	137.35 of hole.	with	6" dia.	PVC	pipe	сарр	ed at	botto	om. /	Annu	lus be	etwee	n hol	 e

	9		l	.0	GO	F B	OR		GE	BH-:	2			(Pag	je 2	0
Locatio	DUKE COGEMA STONE & WEBSTER It Name: MOX Fuel Fabrication Facility on: DOE Savannah River Site umber: 08716	Easting: 5 Surface Elevation: 2	80.406.7 55.625.3 258.6 MSL				Metho ed By	pietec od: /:	ı:	7/1/0 7/7/0 8" au JJT/. FJW	D0 uger t JKM		/ 8" n	nud re	otary	
Depth (ft)	E MATER DESCRIP		USCS	Graphic Log	Sample Type			1	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No 200 Sieve	Liquid Limit	Plastic Limit	
28 	232 230 Yellow-orange poorly graded SAND. w medium dense, slightly moist. 228	ith silt, fine- to medium-grain	SP SM		s Ss		7 7 10	17	83		2.5	82.5	11			
34	226 TR2B - El. 226' - 204' Yellow poorly graded SAND, with silt, fi medium dense, slightly moist. 224	ne- to medium-grained,	SP SM		Ss	6	6 7 10	17	94	67.0		89.9	11.1			
38	 Yellow-orange poorly graded SAND, so medium-grained, medium dense, moist 18 	me silt, fine- to	SP SM		Ss	7	7 10 12	22	78							
42	Yellow-orange silty SAND, fine-grained, medium dense, moist. 14	medium- to coarse-grained,	SM		ss	8	5 6 8	14	56		8	37.5 ·	12.5			
8 1 210 0		ne silt, fine- to	SP SM		ss	9	4 5 9	14	57							
rilling Ri	on Depth: 138 ig: CME-75 Sunny, high 90's F	Remarks: Hole cased to and casing grouted to top	o 137.35 p of hole.	with	6" dia.	PVC	pipe	cappe	d at	botto	m. A	nnuli	us be	tweer	n hole	

		9			L	OG	OF	B	OR	INC	G E	BH-	2			(P >	ge 3	of
Locati	ion:	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Easting: Surface Elevation:	80,406 55.625 258.6 MSL			ļ	Date Date Drill N Logge Revie	Com Aetho ed By	pletec d:	d:	JJT	00		57 8" ו			
Depth (ft)	Elevation (ft)	MATER DESCRIP		0001 1	Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_psi/in		Recovery (%)	(%	1	Sand	% Passing	Liquid Limit	Plastic Limit	
52	- 208 - 206																	
54 56	- 204	Yellow-orange silty SAND, fine- to medi dense, moist. TR3/4 - El. 204′ - 202′	um-grained, loose to mediu	3 mi	бм		ss		4 5 5 200/12 150/12		100							
58	202 200	DB1/3 - El. 202' - 190' Yellow-orange poorly graded SAND, wit trace coarse grained, very loose to loose	- 190'						500/3 1 2 2	4	63 78	24.3		92	8			
62 64 64 66	198 196 194 192	Light yellow-brown to yellow-orange poor fine- to medium-grained, very dense, mo	ly graded SAND, trace silt, ist.	s	P		ss	13	13 23 28	51	100							
68	190	Yellow-orange sitty SAND, trace clay, fine with thin seams (<1" silt and clay), loose, DB4/5 - El. 190' - 181'	⊱ to medium-grained, grade wet.	es SN	л	X	ss	14	0 2 4	6	111	35.7		84.2	15.8	32	25	7
2	88 86	Tan brown clayey SAND, fine- to medium coarse-grained, wet.	-grained, trace	so			ST		50/12 10/12	1	15	35.3		81.3 81.5		89	31	58
74 74 74 71 74 71 71 71 71	84	Light brown-brown silty SAND, fine- to me coarse-grained, medium dense, wet.	dium-grained, trace	SN	•	X	SS	16	7 10 16	26 1	00			79.3 73.0	20.7 27.0			
rilling R	Rig: (epth: 138 R CME-75 a nny, high 90's F	emarks: Hole cased t nd casing grouted to to	to 137.: p of ho	35' w le.	ith 6'	dia. I	PVC	pipe d	cappe	ed at	botto	om. A	Annu	lus be	etwee	n ho	le

Project Name:	MATER			1	1 []	Drill N .ogge	Com letho id By	oleted d:	:	7/1/0(7/7/0(8" aug JJT/JI) ger to	257	8" mi	ud ro	tary	-
Depth (ft) Elevation (ft)				1		COVIC	wed I	By:		FJW/.						
	DESCRIP	NAL PTION	USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press./Int_psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
76 - 182	ST1 - El. 181' - 164'															Ţ
78	Yellow-brown to brown-orange silty SAN	ND, fine-grained, dense, moist	SM		ss	17	8 14 17	31	83							
174	Yellow-brown to brown-orange poorly gr fine-grained, dense, moist.	raded SAND, with silt,	SP SM		ss	18	8 22 25	47	111		9	14.0	6.0			
86 - 172 88 - 172 90 - 170 170 - 0	Grades less silt.		SP		Ss	19	19 29 35	64	89							
	Yellow-brown to orange-brown poorly gra fine-grained, dense, moist. ST2 - El. 164' - 152.5'	aded SAND, with silt,	SP SM		ss	20	17 20 20	40	81		93	3.2	5.8			
96 - 162 - 162 162 160	Fan clayey SAND, with silt, fine grained, coarse-grained, wet.	trace medium- to	sc		ST	21	00/18		115	34.9		7.8 2		59	29	3

014

. -- $\hat{}$

		Boring Loopting	L	.00	G O				GE					(Pa	ge 5	of
	STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site	Easting: Surface Elevation:	80,406.7 55,625.3 258.6 MSL			Date Drill Log	e Sta e Cor Meth ged B ieweo	nplete od: iy:	d:	7/1/(7/7/(8" ar JJT/ FJW	00 uger JKM		'/ 8'' r	nud r	otary	
Depth (ft) Elevation (ft)	MATER DESCRIP		USCS	Graphic Log	Sample Type	Samole/Bun No	Blows/6"	Press./Int. psi/in N Value	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing	Liquid Limit	Plastic Limit	Dianticit
100	Harder drilling at 100'.			 	 			 	<u> </u>		 	1 T				
102	Grades harder drilling at 102'.															
104	Yellow-brown clayey SAND, with silt, fin medium-grained, medium dense, damp Harder drilling with chatter 105.5'-107'. GC - El. 152.5' - 143'	e-grained, trace	SC SM		S	5 22	7 10 12	22	133	31.4		58.2	41.8	49	24	2:
108 108 108 110 110 110 110 110	Mottled yellow-brown to green-grey silty moist.	CLAY, with fine sand, hard,	CL		Ss	23	5 10 28	38	150							
112 - 146	Mottled yellow-brown to green-grey silty		CL				8									
16 142	containing larger quartz grains, very stiff, CG - El. 143'	, moist.			∬ss 	24	10 12	22	133			-				
18 - 140	Light brown to yellow-orange well graded fine-grained gravel, fine- to coarse-graine	SAND, with silt, trace d, very dense, moist.	SW SM		ss	25	45 50/5	>100			1.5	90.7	7.8			
22 - 	Dark grey poorly graded SAND, fine- to co moist.	parse-grained, very dense,	SP		ss	26	34 50/5.5	>100								

		ち			-00	g Ol	F B	ORINO	G E	8H-2	2		,	Dane	6
Loca	ition: D	DUKE COGEMA STONE & WEBSTER e: MOX Fuel Fabrication Facility OE Savannah River Site 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:	80.406.7 55.625.3 258.6 MSL			Date Drill N Logge	Started: Completed Method: ed By: wed By:	d:	7/1/0 7/7/0 8" au JJT/J FJW/	i0 iger to IKM	o 25'/		Page	
Depth (ft)	Elevation (ft)	MATER DESCRIP	CIAL TION	USCS.	Classification Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int. psi/in N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit
126	— 132 130	Dark grey poorly graded SAND, fine- to moist.	coarse-grained, very der	nse. SP											
130 130 132 132 132 132 132 132 132 132 132 132	- 128														
134	- 124														
138 138 111 111 111 111 111 111 111 111	- 120	Completed boring at 138'.													
42	- 118 - 116														
44	114														
48 -	112														
rilling	Rig: Cl	pth: 138 R ME-75 a ny, high 90's F	temarks: Hole cased and casing grouted to	d to 137.35 top of hole	' with	6" dia.	PVC	pipe cappe	ed at	bottor		nnulu	s bety	ween	hole

	5		LOG	6 0	F B	OR	INC	βB	H-	3			(Pac	1 م	<u>^</u> '
Location:	DUKE COGEMA STONE & WEBSTER ame: MOX Fuel Fabrication Facility DOE Savannah River Site ber: 08716	Boring Location: Northing: 80.277.5 Easting: 55.528.8 Surface Elevation: 265.9 Datum: MSL			Date Date Drill N Logge Revie	Com Aetho ed By	pieteo od:		JJT	/00		/ 6" n	(Pag		
Depth (ft) Flavation (ft)	MATE DESCR		USCS Classification	Graphic Log		Sample/Run No.	Blows/6" Press /Int_psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Sand	% Passing No 200 Sieve	Liquid Limit	Plastic Limit	
0- 2264 4262	TR1A - To El. 252' Tan-brown poorly graded SAND, fine- t slightly moist.	o medium-grained, medium dense,	SP		ss	1	4 4 7	11	100						
6 - 260 8 - 258 10 - 256 12 - 254		ine- to medium-grained, dense, throughout.	SM		Ss	2	10 14 17	31	100	12.8					
14	TR2A - El. 252' - 244' Reddish-brown silty SAND, some clay, fi damp. Very thin white clay/silt laminae th	ine- to medium-grained, dense, hroughout.	SM		ss	3	15 13 17	30	100		79.6	20.4			
248 20 246	Similar to above.		SM		ss	4	11 15 15	30	100						
2 - 244	TR2B - El. 244' - 218'														
4	Reddish-brown silty SAND, fine- to media	um-grained, medium dense, damp.	SP		ss	5	8 10 14	24	100	-	77.1	22.9			

		5		L	.00	G OF	B	OR	INC	B	1 -3					
Loca	ation:	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Easting: 5 Surface Elevation: 2	30.277.5 55.528.8 65.9 1SL		[[[Date Date Drill M Logge Revier	Com lethc ed By	pleted od: /:	9 : 8 J	5/24/0 5/27/0 " aug JT	0 er to 2	257 6		Yage	
Depth (ft)	Elevation (ft)	MATE DESCR	RIAL		USCS Classification		Sample Type	Sample/Run No.	1		Recovery (%)	t (%)	% Sand % Passing	No. 200 Sieve	Liquid Limit	Plastic Limit
28 11 11 11 11 11 11 11 11 11 11 11 11 11	-240 -238 -236 -234	Orange-brown poorly graded SAND. tra medium dense, damp.	ace silt, fine- to medium-grair	ned.	SP		SS ST	6A 6B	6 8 12 100/18		40					
34 11 34	-232	Grading fine-grained.			SP	X	ss	7	6 10 11	21						
36	- 230	Grading coarser.														
111111	- 228 - 226	Similar to above, grading fine-grained.			SP	Ø	SS		7 12 14	26 40						
	224 222	Yellow-orange poorly graded SAND, with medium dense, moist.	silt, fine- to medium-grained,		SP M	×	SS 1	9 /	11 12 2 12	4 40		93.8	6.2			
16 - 1 16 - 1	220															
	218	TR3/4 - El. 218' - 211' Yellow-orange clayey SAND, fine- to media Grading more clay with depth.	um-grained, loose, moist.	s	c	s	T 10		0/24 5/6	125	66.3	10.3	89.7	175	82	93
omplet illing F	Rig: C	epth: 137.5 Re CME-75 Iny, high 90's F	emarks: Hole grouted in	mmediate	ly up	on com	pletic	on. A	ve. g	rout de	ensity	= 13.	5 lb/g	gal.		

	9		LOG	i 01	FΒ	OR	IN	G B	SH-	3			(D-		
	DUKE COGEMA STONE & WEASTER ne: MOX Fuel Fabrication Facility DOE Savannah River Site r: 08716	Boring Location: Northing: 80.277 Easting: 55.528 Surface Elevation: 265.9 Datum: MSL			Date Date Drill N Logge Revie	Com Metho ed By	pleted od: /:	d:	6/24 6/27 8" au JJT FJW	/00 uger		7 6" n		ge 3 otary	
Depth (ft) Elevation (ft)	MATE DESCR		USCS Classification	Graphic Log		Sample/Run No.		N Value		Water Content (%)	1	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
50 52 52 214	Tan CLAY, highly plastic, trace fine sar Tan SILT, highly plastic, trace fine sand		СН		- X ss	10B	4 4 4	8	40	44.1		88 89 7	148 175		1(9
54 - 212 56 - 210	Yellow-orange clayey SAND to poorly g dense, fine- to medium-grained, moist. Thinly bedded with black carbonaceous DB1/3 - El. 211' - 182'		SC/ SP SC		Ss	11	5 6 7	13	60	34.9 24.7	70.8 89.8	29.2 10.2	59 84	29 24	3
58 208 	Yellow-orange mottled black and white, medium-grained, loose, wet.	silty SAND, trace clay, fine-to	SM		ss	12	WH WH 9	9	60		79.8	20.2			
62 - 204 64 - 202 66 202	Yellow-orange poorly graded SAND, wit/ medium-grained, medium dense, wet.	n silt, trace clay, fine- to	SP SM		ss	13	10 10 11	21	60		91.9	8.1			
58 198 	Yellow-orange with mottled black poorly fine-grained, medium dense, wet.	graded SAND, with clay,	SP SC		ss	14	3 4 10	14	100	25.7	92.1	7.9	39	25	14
194 	Similar to above.		SP SC		ss	15A	4 5 7	12							

	ஒ		_00	30	FΒ	OR	INC	B	H-3					
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site sr: 08716	Boring Location: Northing: 80.277.5 Easting: 55,528.8 Surface Elevation: 265.9 Datum: MSL			Date Date Drill I Logge Revie	Com Metho ed By	pleted od:	: (5/24/00 5/27/00 3" auge IJT 5JW/JH) er to 2	5'/ 6" r		ge 4 otary	
Depth (ft) Elevation (ft)	MATE DESCR		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press./Int. psi/in	N Value (uncorrected)	Recovery (%)	vvater Content (%) % Sand	% Passing	Liquid Limit	Plastic Limit	
76	Tan poorly graded SAND, with clay, fin moist.	e- to coarse-grained, medium dense,	SP SC		ST	15B	>1500		75 24	90.	9 9.1	101	26	
80 186 82 184 84 182	Yellow-tan poorly graded SAND, trace s medium-grained, dense, saturated. DB4/5 - El. 182' - 176'	ilt, trace clay, fine- to	SP		Ss	16	23 25 15	40	30	95.	3 4.7			
86 - 180 	Mottled light brown black and white inter CLAYS, fine-grained, loose, soft. Bedding planes clearly visible. Carbona		sc sc		ss	17A	WH 2 5 100/12 750/12	7		9 72.1 8 61.2		59 98	24 36	3
90 176 	ST1 - El. 176' - 157' Brown silty SAND, with clay, fine- to med	lium-grained.	SM		ST	17B			29.	3 79.4	20.6	43	31	1
94 - 172 96 - 170 98 - 168 10 - 166	Yellow-orange poorly graded SAND, fine- saturated. Interbedded with thin (1-2mm) white clay		SP		ss	18	18 21 20	11 3	0					
rilling Rig: C	4	Remarks: Hole grouted immedia	ately u	ipon c	omple	tion.	Ave. (grout	density	y = 13.	5 lb/g	al.		

	୍ର ୨	1	_OG	; 0	F B	DR	INC	βB	H-	3			(D		
	DUKE COGENA STONE & WEBSTER ne: MOX Fuel Fabrication Facility DOE Savannah River Site r: 08716	Boring Location: Northing: 80.277.5 Easting: 55,528.8 Surface Elevation: 265.9 Datum: MSL			Date Date Drill M Logge Revie	Comj fetho ed By	pletec d:	j:	JJT	/00		'/ 6'' л		otary	
Depth (ft) Elevation (ft)	MATE DESCR		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press./Int. psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Sand	% Passing No 200 Siava	Liquid Limit	Plastic Limit	
100 102 102 104 104 104 104	Yellow-orange silty SAND, fine-grained	. dense. wet.	SM		ss	19	17 21 24	45	45						
106 - 160 	Similar to above, very dense, very mois	st.	SM		ss	20	21 27 27	54	100						
110 - 156 112 - 154 112 - 154 114 - 152	ST2 - El. 157' - 147' Yellow-orange silty SAND, fine-grained, throughout.	loose, moist. Shell fragments visible	SM		SS ST	21	WH WH 5 300/24 500/6	5	100 0	33.5	80.8	19.2	44	28	1
116	Yellow-orange clayey SAND, trace limes dense, moist.	tone fragments, fine-grained,	sc		ss	22	22 18 18	36	65						
120 - 146 	GC - El. 147' - 142' Yellow-orange SILT, with fine-grained sa	ind, trace clay, very dense, moist.	ML		ss	23	28 38 39	77	30						
24 - 142	CG - El. 142'														

	6		L	.00	0	F B	OR	INC	GΒ	H-:	3			(Page	 	<u></u>
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site	Boring Location: Northing: Easting: Surface Elevation: Datum:	80.277.5 55.528.8 265.9 MSL			Date Date Drill N Logge Revie	Com Netho	pleted id: ::	d:	6/24/ 6/27/ 8" au JJT FJW/	/00 Iger t		/ 6" m	(Page		
Depth (ft) Elevation (ft)	MATE DESCR			USCS Classification	Graphic Log	Sample Type		T	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
126 - 140 128 - 138	Very hard drilling with softer layers betw	veen 126 and 128.5 feet.				ss	24	23 50 50	100	0						
130 - 136 132 - 134 132 - 134 134 - 132	Yellow-orange poorly graded SAND, so coarse-grained, very dense, saturated.	ome silt, trace clay, fine- t	o	SP		ss	25	28 53 54	107							
136 - 130 	Light-brown poorly graded SAND, some dense, wet. Completed boring at 137.5'.	silt, fine- to medium-grai	ned, very	SP		ss	26	29 48 54	102							
42																
44 - 122																
48																
rilling Rig:	Pepth: 137.5 F CME-75 Inny, high 90's F	Remarks: Hole grou	ted immedia	itely u	pon c	omple	tion.	Ave.	grou	t den:	sity =	13.5	lb/ga			

		9 DUKE COGEMA	Boring Location	L	.00	6 O	F B((Pag	<u>e 1</u>	of
Loca	ation: D	STONE & WEBSTER MOX Fuel Fabrication Facility DOE Savannah River Site 08716	Ite a webster Doning Education: DX Fuel Fabrication Facility Northing: Ivannah River Site Surface Elevation: 16 Datum: MATERIAL DESCRIPTION dish-brown silty SAND, fine- to medium-grained, dry to medium-grained, dry to medium-grained in the first 25'.				Date S Date (Drill M Logge Reviev	Comp lethor d By:	oleted d:	:	6/13/ 6/15/ 8" au JJT FJW/	00 Iger to	o 40'	/ 6" m	ud ro	otary	
Depth (ft)	Elevation (ft)		R Northing: 80. rication Facility Easting: 55. er Site Surface Elevation: 297 Datum: MS MATERIAL DESCRIPTION SAND. fine- to medium-grained, dry to moist.			Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
2-	- 296	Reddish-brown silty SAND, fine- to me No sampling in the first 25'. Fill to El. 267'	WEBSTER Doning Location. Fuel Fabrication Facility Northing: nnah River Site Surface Elevation: Datum: Datum: MATERIAL DESCRIPTION brown silty SAND, fine- to medium-grained, dry to moist. brown silty SAND, fine- to medium-grained, dry to moist.														
6 8 8	- 292 - 290																
10 11 12 12 12 12 12 12 12 12 12 12 12 12	— 288 — 286		DESCRIPTION														
14 min friedrich 16 min friedrich	- 284 - 282																
18 20	- 280																
22 24 24	- 276 - 274																
rilling	Rig: C	epth: 181 F CME-75 nny, high 90's F	Remarks: Head pres Dbserved good flow o	sure groutir f mud.	ng thro	ough a	drill rod	s. A	verag	e gro	ut de	nsity	was	13.2	lb/ga	llon.	

		G		L	.00	6 0	F B	OR	INC	G B	H-4	4			(D		_
Loca		DUKE COGEMA STONE & WEBSTER MOX Fuel Fabrication Facility DE Savannah River Site 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:	80,182.6 55.230.1 297.1 MSL			Date Date Drill N Logge Revie	Com /lethc ed By	pleteo d:		6/13. 6/15. 8" au JJT FJW.	/00 Jger		'/ 6" n		e 2	<u>of</u>
Depth (ft)	Elevation (ft)	MATE DESCR			USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Sand	% Passing No 200 Sieve	Liquid Limit	Plastic Limit	
26	- 272	Reddish-brown silty SAND, fine- to me	dium-grained, dry to mois	t.	SM												
28 30 30 32	- 270 - 268 - 266	Reddish-brown clayey SAND, fine-grain TR1 - El. 267' - 264' Brown clayey SAND, with roots, damp.			sc sc		Ss	1	9 11 13	24	90						
34 36	- 264	TR1A - El. 264' - 252' Mottled pink-orange silty SAND, fine-gr. Interbedded with thinly laminated light g	ained, medium dense, dry rey-purple clay.	to damp.	SM		ss	2	7 8 10	18	70						
40 42 44 44 44	- 260 - 258 - 256 - 254	Reddish brown and tan silty SAND, fine- dense, damp. Clay stringers throughout	to medium-grained, med	ium	SM		st Ss	3	400/24 2 4 8	12	100	9.5	78.4	21.6			
46 48 48		TR2A - El. 252' - 230' Yellow-tan mottled with pink and white si medium dense, moist. Interspersed clay	mottled with pink and white silty SAND, fine, to medium a						12 12 12	24	90	22	81.4	18.6			
50 Somple Drilling	etion Dep Rig: CN	oth: 181 F ME-75 T ny, high 90's F	Remarks: Head pres Dbserved good flow o	sure groutir f mud.	ng three	ough	drill roo	ds. A	vera	ge gr	out de	ensit	y was	s 13.2	lb/ga	illon.	-

	9		L	OG	O	= B(OR	INC	B	H-4	4			(Pag	e 3	of
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Easting: 5 Surface Elevation: 2	80,182.6 55.230.1 297.1 MSL			Date Date Drill M Logge Revie	Com letho ed By	oletec d:	l:	6/13 6/15 8" au JJT FJW	/00 iger f		'/ 6" n			
Depth (ft) Elevation (ft)	MATE DESCR			USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press./Int. psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Sand	% Passing No 200 Sieve	Liquid Limit	Plastic Limit	
50	Yellow-tan silty SAND, fine-grained, me laminae throughout.	dium dense, moist, thin whit	te clay	SM		ss	6	12 13 16	29	50						
56 	Similar to above, reddish-brown mottled medium-grained, dense.	I with tan, grading fine- to		SM		ss	7	18 19 23	42		17.7	86.0	14.0			
60 	Yellow-tan to pink silty SAND, fine- to m	edium-grained, dense, moist	t.	SM		ss	8	14 19 25	44	50						
64 - 232 66 230 68 228	Yellow-tan silty/clayey SAND, fine- to me TR2B - El 230' - 207'	y/clayey SAND, fine- to medium-grained, dense, moist					9	14 17 20	37	80						
226 70	Yellow-tan poorly graded SAND, with silt moist.	fine- to medium-grained, de	ense, S	SP SM		ss	10	18 21 20	41	45		93.8	6.2			

	G		L	OG	6 0	F B(OR	INC	ЗB	H-4	1					<u> </u>
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:	80.182.6 55,230.1 297.1 MSL			Date Date Drill M Logge Review	Com lethc ed By	plete od: /:		6/13/ 6/15/ 8" au JJT FJW/	00 Iger		'/ 6" n		ge 4	
Depth (ft) Elevation (ft)	MATE DESCR			USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_nsi/in	1		Water Content (%)		% Passing	Liquid Limit	Plastic Limit	
76 776 78 78 78 78 78 78 78 78 78 78 78 78 78	Yellow-tan poorly graded SAND, trace s medium-grained, very dense, moist.	silt, trace clay, fine- to		SP		ss	11	21 25 27	52	40						
80 	Yellow-tan poorly graded SAND, with sil medium-grained, dense, moist to wet.	it, trace clay, fine- to		SP SM		ss	12	16 17 18	35	40		89.9	10.1			
86-11-212 86-11-210 88-11-210	Similar to above, with pink medium plas	tic clay stringers, wet.		SP SM		ss	13	17 15 17	32	33						
90 90 92 92 92 92 92 92 92 92 92 92 92 92 92	TR3/4 - El. 207' - 195' Brown clayey SAND, fine- to medium-gra Brown-orange poorly graded SAND, trac medium dense, moist.			SC SP		ss	14	3 4 11	15		26.3	78.6	21.4	94	36	5
94 	Grey-green sandy SILT, dense, moist wi fine-grained sand and lignite <1mm thick	th thin lenses of orange C		мн		ss	15	15 21 26	47		67	43.3	56.7	80	62	1
iompletion D rilling Rig:		Remarks: Head pres Observed good flow o	ssure groutir of mud.	eg thro	bugh o	drill roc	ls. A	Vera	ge gro	out de	ensity	y was	\$ 13.2	lb/g	allon	

Ĵ

STONI Project Name: MO Location: DOE Sav Job Number: 08711 (1) (1) (1) (1) (1) (1) (1) (16	ed, medium dense, very m		w S S S Classification		Date S Date C Drill M Logge Review	Comr lethou d By: wed E vwd F vwd F v v vwd F v v v vwd F v v v v v v v v v	e Blows/6" Blows/6" A Blows/6" A Blows/6" A Blows/6" A Blows/6" A Blows/6 A	6/1 8" JJ ⁻ FJ	Water Content (%)	<u>и</u>	17 6" m		
100 102 196 Grey s Layeri DB1/3 104 104 104 104 192 106 192 106 0range 190 108 108 109 192 106 Yellow: wet.	DESCR silty SAND, trace clay, fine-graine ring visible. Becoming tan. 3 - El. 195' - 168'	RIPTION		SM	Graphic Log	ss	16	9 12 15			% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit
102 - 196 Grey s Layeri DB1/3 - 194 104 - 192 106 - 190 108 - 190 108 - 188 110 - 186 Yellow. wet.	ring visible. Becoming tan. '3 - El. 195' - 168'							12 15	27 10	00				
106 - 192 106 - Orang 108 - 190 108 - 188 110 - 186 Yellow wet.	ge-brown silty SAND, medium-gra	ained, dense, very moist to) saturated.	SM		M		17						
110- 					M	17		32 70	5					
	v-tan poorly graded SAND, with si	ilt, fine- to medium-grained	SP SM		ss	18	14 17 17	34 75		91.2	8.8			
114 - 182 - 182 - 180 - 180 18 - 180	y-orange poorly graded SAND, sor im dense, saturated.	ne clay, fine- to medium-grained,		SP		ss	19	11 14 15	29 95					
20 - 178 20 - 176 22 - 176 22 - 174 24 - 174	d orange/tan/black clayey SAND, t , moist.	fine- to medium-grained, r	sc		ss	20	12 14 2 15	9 100	34.4	60.0	40.0	74	22	

 $\hat{}$

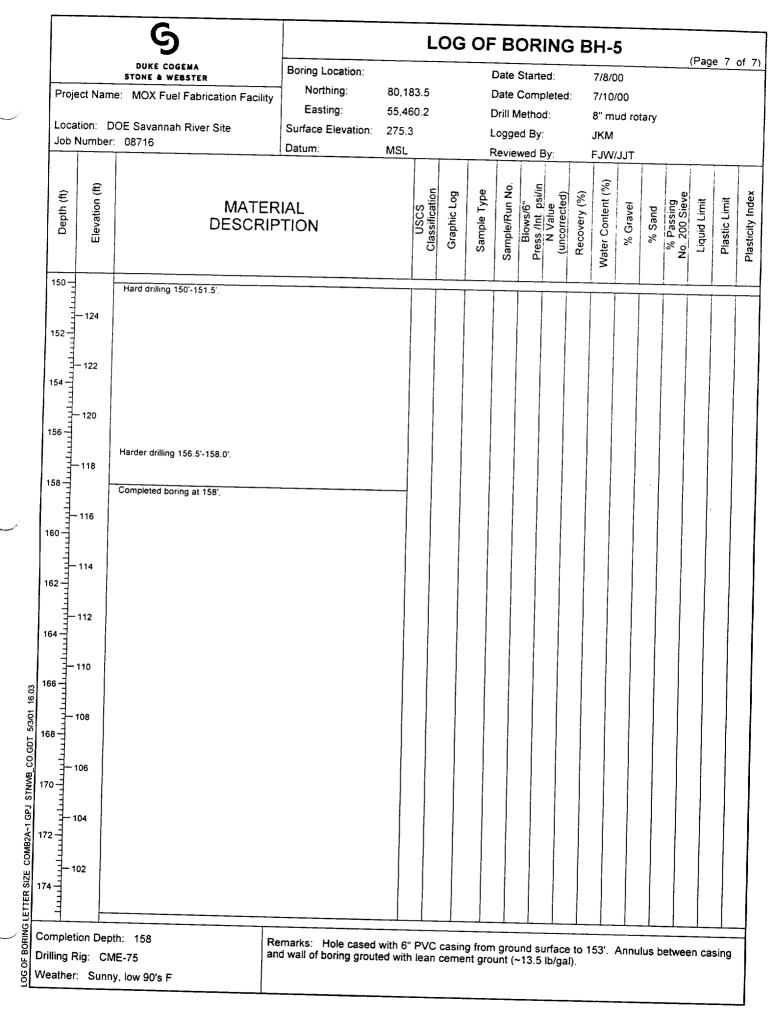
	6	L	-06	60	F B(DR	INC	G E	8H-4	4			(D	•	
	DUKE COGENA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Boring Location:Northing:80,182.6Easting:55,230.1Surface Elevation:297.1Datum:MSL			Date : Date (Drill N Logge Review	Com letho ed By	pleter od:	d:	6/13/ 6/15/ 8" au JJT FJW/	/00 Jger ti			<u> </u>	e_6 d	<u>of</u>
Depth (ft) Elevation (ft)	MATE DESCR		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_nsi/in	N Value	Recovery (%)	Water Content (%)	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	Disclinity Index
126 126 172 172	Yellow-tan poorly graded SAND, with s dense. wet. Brown interbedded silt layers.	ilt. fine- to medium-grained, very	SP		ss	21	28 25 27	52	100						
130	DB4/5 - El. 168' - 162'														
132 - 166	Yellow-tan interbedded silty SAND, fine very moist. Interbedded with white clay laminae 1-3	-	SM		ss	22	17 20 80	100	100						
134 	ST1 - El. 162' - 152' Orange-yellow poorly graded SAND, wit dense to very dense, moist. Interbedded with thin clay laminae and l	-	SP SM		ss	23	25 27 23	50	75						
138 - 	Grey-brown silty SAND, fine- to coarse- Orange-yellow poorly graded SAND, sor dense.		SM SP		Ss	24	19 23 36	59	75						
142							σ								
46	ST2 - El. 152' - 142' Orange-brown silty SAND, very fine-grai White clay stringers throughout.	ned, medium dense, moist.	SM		ss	25	13 13 14	27	75						
						-									
Completion E Drilling Rig: Veather: Si		Remarks: Head pressure grout Observed good flow of mud.	ing thre	ough	drill roo	ds. A	Vera	ge gr	out de	ensity	was	13.2	lb/ga	illon.	

		9		L	.OG	60	F B	OR	ING	BB	H-4	I.			(5)	_	
Locat	tion: I	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:	80.182.6 55.230.1 297.1 MSL			Date Date Drill N Logge Revie	Com letho ed By	pleted d:		6/13/ 6/15/ 8" au JJT FJW/	00 ger ti				pe 7	<u>of</u>
Depth (ft)	Elevation (ft)	MATE DESCR			USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press./Int. psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
150	- 146	Orange-yellow silty SAND, trace clay, fi Widely spaced thin clay laminae.	ne-grained, very dense, r	noist.	SM		ss	26	25 25 30	55	100						
154 156 156 158	- 142	GC - El. 142' - 139' Yellow/yellow-orange clayey SILT, some medium dense, moist. Yellow-brown clayey SAND, fine- to med CG - El. 139'			ML SC		Ss	27	2 13 14	27							
162	- 138 - 136 - 134	Orange-brown poorly graded SAND, with dense, moist. Thin clay stringers through	າ silt, fine- to coarse-grair າout.	ied, very	SP SM		Ss	28	25 100/8 >	100			88.4	11.6			
166	- 132 - 130	Yellow-orange poorly graded SAND, trac dense, moist.	e silt, fine- to coarse-grain	ned, very	SP		ss	29	32 40 > 50/5	100							
70	128 126 124	Dark grey to black silty SAND, fine- to co	arse-grained, very dense,	, damp.	SM		ss	30	24 40 >* 50/5	100							
)rilling	Rig: (epth: 181 R CME-75 C	temarks: Head press bserved good flow of	sure groutin f mud.	g thro	ugh c	drill rod	s. A	verage	e gro	out de	nsity	was	13.2	lb/ga	llon.	

	5 Duke cogema	Boring Location:	L	OG	O	B BC				H-4	• •••		((Page	<u> 8</u>	of
	STONE & WEBSTER MOX Fuel Fabrication Facility DOE Savannah River Site 108716	Northing: Easting: Surface Elevation: Datum:	80,182.6 55.230.1 297.1 MSL			Date (Drill M Logge Review	Comp letho ed By	oletec d: :	I:	6/15/	00 ger to	o 4 0'/	′ 6" m	ud ro	tary	
Depth (ft) Elevation (ft)	MATE DESCR	ERIAL		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	1	N Value (uncorrected)		Water Content (%)	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
	Tan poorly graded SAND, trace silt, ve	ry dense, wet.		SP		ss	31	50/5	>100							
180				SM				33								
182	Tan silty SAND, fine-grained, very den	se, wet.		SIVI		X ss	32	40 50/4	>100							
184 - 112														-		
110 188																
190 - 																
192 - 																
194																
198- 																
200-	Pepth: 181	Remarks: Head pre														

~

	9		L	DG O	FB	OR	ING	βB	H-5	5		1	Page	1 ^
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Easting: Surface Elevation:	80.183.5 55,460.2 275.3 MSL			Metho ed By	pleted od: /:	:	7/8/0 7/10/ 8" mi JKM FJW/	00 ud rota	ary		raye	
Depth (ff) Elevation (ft)	MATER DESCRIF		USCS Classification	Graphic Log Sample Type			N Value (uncorrected)		Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit
0- 	TR1 to El. 266' Light-orange/brown poorly graded SAN medium dense, dry.	D, with silt, fine-grained,	SP SM	s:	5 1	1 4 7	11	78						
268 8 10 12 264	Red-orange silty CLAY, with fine-graine TR1A - El. 266' - 259'	ed sand, dense, wet.	CL	Ss ss	2	9 14 27	41	89						
14 - 260 16 - 260	Mottled red-orange to yellow-orange silt medium-grained, medium dense, damp. Grades with calcite stringers.	y SAND, fine- to	SM	Ss	3	5 9 10	19	78	13.6	7	6.2 2	3.8		
16	TR2A - El. 259' - 235' Similar to above, grades with more sand	I, stiff.	SM	Ss	4	4 5 9	14	78						
22	Red-brown and tan clayey SAND, fine- to dense, damp, with more calcite stringers	o medium-grained, medium	sc	ss	5	4 5 9	14	67 1	5.4	80	0.4 19	9.6 3	37 24	0 1


ARE COGEMA ISE & WEBSTER DX Fuel Fabrication Facility avannah River Site 16 MATER DESCRIF ar to above, grades with more whi very stiff. w-tan silty SAND, fine- to coarse-g	Easting: 54 Surface Elevation: 27 Datum: M RIAL PTION	SC	Graphic Lon	Sample Type	Date Drill Logg Revi	4	pleted od: /: By:		7/8/0 7/10// 8" mu FJW// Mater Coutent (%)	DO Id rotai	% Sand %	No. 200 Sieve Liquid Limit	Plastic Limit	
DESCRIF	PTION	sc	Graphic I on			4 7			Water Content (%)	% Gravel	% Sand % Passing	No. 200 Sieve Liquid Limit	Plastic Limit	
very sum. v-tan silty SAND, fine- to coarse-g					5 6A	7	16	83						
very sum. v-tan silty SAND, fine- to coarse-g				X 55	5 6A	7	16	83						
	arained, medium dense.	SM												
				ST	г 68	100/12 200/6 300/3		0						
rown silty SAND, fine- to medium- m dense. With white stringers at :	-grained, trace coarse-grained 33.5'.	SM		Ss	5 7	4 8 10	18	72		79	7 20.3			
ish-tan silty SAND, with clay, fine- ained gravel, medium dense, moi: - El. 235' - 213'	• to coarse-grained, trace st.	SM		ST	8	250/12 600/12 1000/2		108	21.8 (0.4 78.	3 21.3	112	48	6
own poorly graded SAND, with sill barse-grained, medium dense, mo	t, fine- to medium-grained, bist.	SP SM		ss	9	6 9 11	20	61		94.3	5.7			
own poorly graded SAND, with silt, parse-grained, dense, moist.	, fine- to medium-grained,	SP SM		ss	10	9 15 15	30	72		92.9	7.1			
	own poorly graded SAND, with silt, fine- to medium-grained, barse-grained, medium dense, moist. wwn poorly graded SAND, with silt, fine- to medium-grained, arse-grained, dense, moist.	SP SM pown poorly graded SAND, with silt, fine- to medium-grained, barse-grained, medium dense, moist. SM swn poorly graded SAND, with silt, fine- to medium-grained, arse-grained, dense, moist. SM SP SM SM SM SM SM SM SM SM SM SM SM SM SM	amed gravel, medium dense, moist. EI. 235' - 213' own poorly graded SAND, with silt, fine- to medium-grained, barse-grained, medium dense, moist. own poorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. own poorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. SP SM SP SM SS SP SS SP SP SM SP SS SP SP SP SM SP SP SP SP SP SP	amed gravel, medium dense, moist. EI. 235' - 213' pwn poorly graded SAND, with silt, fine- to medium-grained, barse-grained, medium dense, moist. pwn poorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. pwn poorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. SP SM SS SS	ish-tan silty SAND, with clay, fine- to coarse-grained, trace SM ST 8 ained gravel, medium dense, moist. SI ST 8 EI. 235' - 213' SP SP SM SP own poorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. SP SM SS 9 own poorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. SP SM SS 9 own poorly graded SAND, with silt, fine- to medium-grained, arss-grained, dense, moist. SP SM SS 10 58 Remarks: Hole cased with 6" PVC casing from or	amed gravel, medium dense, moist. EI. 235' - 213' pwn poorly graded SAND, with silt, fine- to medium-grained, barse-grained, medium dense, moist. sympoorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. sympoorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. sympoorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. SP SS SS	ish-tan silty SAND, with clay, fine- to coarse-grained, trace SM ST 8 1000/2 ained gravel, medium dense, moist. EI. 235' - 213' SP SS 9 6 own poorly graded SAND, with silt, fine- to medium-grained, barse-grained, medium dense, moist. SP SM SS 9 6 own poorly graded SAND, with silt, fine- to medium-grained, barse-grained, medium dense, moist. SP SM SS 9 11 own poorly graded SAND, with silt, fine- to medium-grained, arse-grained, dense, moist. SP SM SS 10 15 30 58 Remarks: Hole cased with 6" PVC casing from ground surface	ish-tan silty SAND, with clay, fine- to coarse-grained, trace SM ST 8 1000/2 108 ined gravel, medium dense, moist. EI. 235' - 213' ST 8 1000/2 108 own poorly graded SAND, with silt, fine- to medium-grained, barse-grained, medium dense, moist. SP SN SS 9 6 20 61 wwn poorly graded SAND, with silt, fine- to medium-grained, barse-grained, dense, moist. SP SN SS 9 9 20 61 wwn poorly graded SAND, with silt, fine- to medium-grained, arse-grained, dense, moist. SP SN SS 10 9 30 72 58 Remarks: Hole cased with 6" PVC casing from ground surface to the surface	ish-tan silty SAND, with clay, fine- to coarse-grained, trace SM ST 8 1000/2 108 21.8 C ined gravel, medium dense, moist. EL 235' - 213' ST 8 1000/2 108 21.8 C pown poorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. SP SS 9 6 9 61 11	ish-tan silty SAND, with clay, fine- to coarse-grained, trace SM ST 8 1000/2 108 21.8 0.4 78.1 ined gravel, medium dense, moist. EL 235' - 213' SP SS 9 6 9 20 61 94.3 pown poorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. SP SS 9 9 11 20 61 94.3 wwn poorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. SP SS 9 9 11 10 14 94.3 wwn poorly graded SAND, with silt, fine- to medium-grained, marse-grained, dense, moist. SP SS 10 9 15 30 72 92.9 58 Remarks: Hole cased with 6" PVC casing from ground surface to 152". 4 4 53	ish-tan silty SAND. with clay, fine- to coarse-grained, trace SM ST 8 1000/2 108 21.8 0.4 78.3 21.3 ined gravel, medium dense, moist. EL 235' - 213' SS 9 6 9 20 61 94.3 5.7 own poorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. SP SS 9 6 9 20 61 94.3 5.7 wwn poorly graded SAND, with silt, fine- to medium-grained, arse-grained, dense, moist. SP SS 10 9 10 14 94.3 5.7	sh-fan silty SAND, with clay, fine- to coarse-grained, trace SM ST 8 1000/2 108 21.8 0.4 78.3 21.3 112 bown poorly graded SAND, with silt, fine- to medium-grained, barse-grained, medium dense, moist. SP SS 9 6 9 0.1 94.3 5.7 wwn poorly graded SAND, with silt, fine- to medium-grained, barse-grained, medium dense, moist. SP SS 9 61 94.3 5.7 sarse-grained, dense, moist. SP SS 10 15 30 72 92.9 7.1 58 Remarks: Hole cased with 6" PVC casing from ground surface to 151. A surface to 151. A surface to 151. A surface to 151. A surface to 151.	sh-fan silty SAND, with clay, fine- to coarse-grained, trace SM ST 8 1000/2 108 21.8 0.4 78.3 21.3 112 48 pown poorly graded SAND, with silt, fine- to medium-grained, barse-grained, medium dense, moist. SP SS 9 6 9 11 20 61 94.3 5.7 1 48 wm poorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. SP SS 9 9 11 20 61 94.3 5.7 1 1 108 21.8 0.4 78.3 21.3 112 48 wm poorly graded SAND, with silt, fine- to medium-grained, medium dense, moist. SP SS 9 9 11 10 9 94.3 5.7 10 15 30 72 92.9 7.1 10 10 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10	

		Parine Land's	L	OG					GE	8H-8	5		(Pa	age 3	of
Location:	STONE & WEBSTER Ime: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	-				Date Drill I Logg	Stari Com Metho ed By ewed	pleter od: /:	d:	7/8/0 7/10/ 8" mi JKM FJW/	00 ud rota	Ŋ			
Depth (ft) Elevation (ft)	MATER DESCRIP		USCS Classification	Graphic Log	Sample Type	Sample/Run No.		N Value (uncorrected)	Recovery (%)	Water Content (%)		% Sand % Passing	No. 200 Sieve Linuid Limit	Plastic Limit	
50 	Mottled red-brown to yellow-brown poor to medium-grained. trace coarse-graine	ly graded SAND, with silt, fine- ed, dense, moist.	SP SM		ss	11	10 15 16	31	67						
218 58 	Similar to above, medium dense to dens	se.	SP SM	X	ss	12	10 14 15	29	78		92	.5 7.5			
62	TR3/4 - El. 213' - 203'														
54	Mottled yellow-orange to red-orange san sand lenses.	dy CLAY, stiff, wet, with thin	сн	X	ss	13	5 4 5	9	100	41.4	33.	3 66.7	92	28	e
210 56	Red-brown sandy CLAY, soft, wet.		СН		ST		250/12 300/6 400/6		100	46.0	31.4	6 68.4	78	25	5
208 58	Light yellow-brown sandy CLAY, with silt, wet. Grades with black organic streaks and fin		сн	X	ss	15	2 5 6	11	128	12.5	49.(51.0			
2 - 204 2	DB1/3 - El. 203' - 183' Light yellow-brown poorly graded SAND, v medium-grained, dense, moist.	with silt, fine- to	SP SM	M	ss	16	11 17 16	33			91.2	8.8			

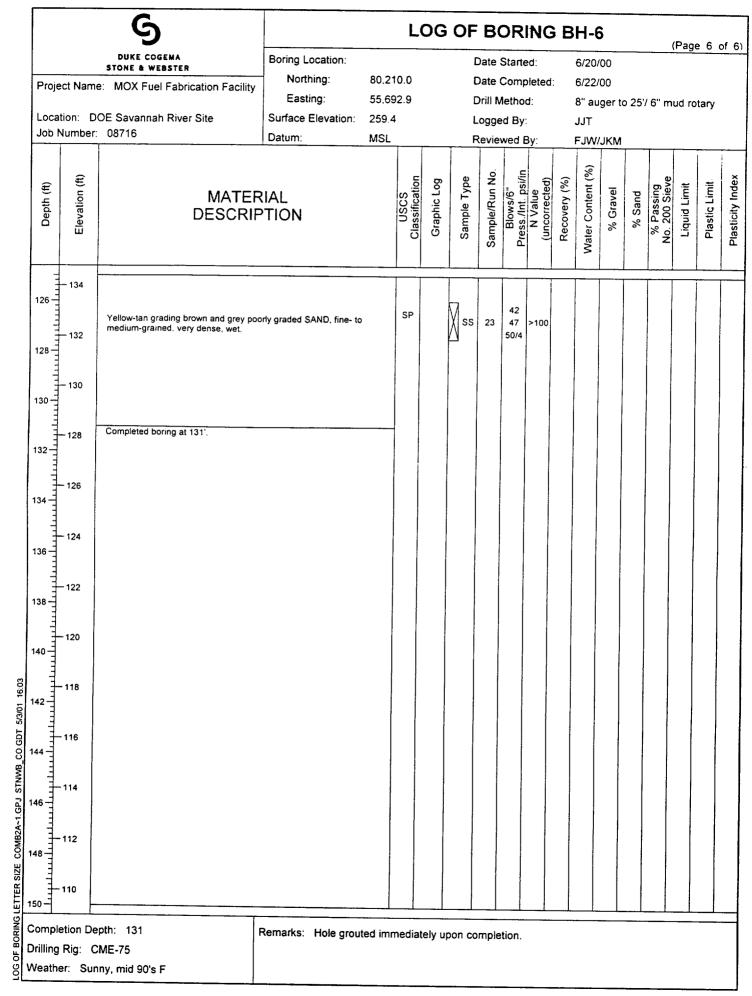
			L	OG (OF	BOI	RIN	GE	3H-	5			(Pa	ge 4	of
	DUKE COGEMA STONE & WEBSTER ne: MOX Fuel Fabrication Facility DOE Savannah River Site r: 08716	Easting: Surface Elevation:	80.183.5 55.460.2 275.3 MSL		Da Dr Lo	ite Sta ite Coi II Meti gged E viewei	nplete nod: By:	ed:	7/8/0 7/10 8" m JKM FJW)/00 hud ro	tary		_,, d	3, 1	
Depth (ft) Elevation (ft)	MATER DESCRIP		USCS Classification	Graphic Log			.=	(uncorrected) Recovery (%)	(%		% Sand	% Passing	Liquid Limit	Plastic 1 imit	
76	Attempted shelby tube sample at 75'. I recovery.	Pushed 6" at 1,000 psi, no													
78 - 	Light brown poorly graded SAND, with a trace coarse-grained, dense, moist.	silt, fine- to medium-grained	J. SM	Ø	SS 1	7 17 7 17 27	44	94							
82 	Similar to above, loose. Becoming medi	um dense at 84.5'-85'.	SP SM	M	SS 1	8 WH 1		133	29.5		91.4	8.6			
86 1 1 1 1 1 1 1 1 1 1 1 1 1	Light-brown poorly graded SAND, with si trace coarse-grained, very dense, moist. Harder drilling at 90'.	ilt, fine- to medium-grained	SP SM	Ŋ,	SS 11	16 26 35	61	89			95.0	5.0			
92 	DB4/5 - El. 183' - 173' Yellow-brown clayey SAND, fine- to medi shell fragments.	um-grained, loose, wet, wit	h sc	S S	SS 20	WH 2 3	5	144	31.2	8	33.7	16.3	60	27	3:
180 180 171 178 178 178 178 178 178 178	Grading more clayey, medium dense.		sc	s	S 21	5 10 16	26	122							

	ち		L	OG	OF	B	OR	INC	B	H-5	5		ſ	Page	: 5 r
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Easting: 5 Surface Elevation: 2	80.183.5 55.460.2 275.3 MSL			Date Drill I Logg	Start Com Metho ed By	pletec od: ::	:	7/8/00 7/10/(8" mu JKM FJW/,	00 Id rota	ary			
Depth (ft) Elevation (ft)	MATER DESCRIP		USCS Classification	Graphic Log	Sample Type	Sample/Run No.		N Value (uncorrected)		Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit
100	Yellow-brown tan clayey SAND, fine- to dense, wet. ST1 - El. 173' - 154'	medium-grained, medium	sc		ST	22	250/12 400/8 500/4		100	32.5 47.1	í	82.1 75.9		67 67	32 32
104 - 172 104 - 170 106 - 170	Similar to above, medium dense. Yellow-brown silty SAND, fine- to coarse moist.	e-grained, medium dense,	SM		ss	23	3 8 19	27	111						
108 108 108 108 108 108 108 108 108 108	Mottled yellow-orange/yellow-brown poo fine-grained, medium dense to dense. Grading to fine silty SAND, last 6" gradi lenses.		SP SM	X	ss	24	3 10 19	29	122		8	9.4 11	0.6		
112 112 14 14 14 160	Similar to above, dense, with thin silt len	ses througout.	SP SM	X	SS	25	19 21 24	45	106						
16	Similar to above, very dense.		SP SM	Ø	SS	26	23 28 30	58	94						
	ST2 - El. 154' - 143' Mottled yellow-brown to yellow-orange cla loose, wet. Numerous white stringers (calcite) and sh		sc	X	ss :	27	WH 1 7	8 1:	33 34	H.6	75.	0 25.	0 61	1 30	3

		DUKE COGENA	Boring Location:		L(CG	0				GE	3H- 7/8/				(Pag	e 6	of
Loca	ation:	STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Northing: Easting: Surface Elevation:	80,183.5 55,460.2 275.3 MSL				Date Drill Logg	e Glan Meth ged B ewed	nplete od: y:	ed:	7/10	/00 iud ro	tary				
Depth (ft)	Elevation (ft)	MATER DESCRIP		nscs	Classification	Graphic Log	Sample Type	Samnle/Run No	Blows/6"	Press./Int. psi/in N Value	(uncorrected) Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
126	— 150 — 148																	
128 128 130	146	Similar to above, loose. Grades with les	ss white stringers and shells	. so			se	5 28	WH WH 7		144							
132	- 144	Tan sandy CLAY, highly plastic, mediur GC - El. 143' - 139'	n stiff, wet.	Cł	4		ST	29	WR/1 50/8 250/		100	39.3		42.0	58.0	61	25	
34 111	- 142	Mottled brown and yellow-brown clayey	SAND, fine-grained, dense.	sc	;		ss	30	7 14 16	30	122	32.0		65.0	35.0			
136 136	- 140 - 138	CG - El. 139'																
38 111 40	- 136	Yellow-brown poorly graded SAND, with very dense.	silt, fine- to coarse-grained,	SP SM		2	ss	31	22 42 50	92	94							and and
42 42	- 134 - 132																	
44 44 46	130	Similar to above, very dense.		SP		X	SS	32	50/5	>100	39							
18 11 11 11 11 11	128	Light brown poorly graded SAND, some s very dense.	ilt, fine- to medium-grained,	SP		Ø	SS	33	25/1	>100	28							
rilling	Rig:	Pepth: 158 R CME-75 a unny, low 90's F	Remarks: Hole cased with a marks of boring groute	with 6" P ed with le	VC	casir ceme	ng fro ent g	om g Iroun	round t (~13	l surfi 3.5 lb/	ace to (gal).	5 153'.	Ann	lulus	betw	een c	asing	g

Durks codetw. Tronk & westere Doring Location: Incomplete the Project Name: MOX Fuel Fabrication Facility Dering Location: Souriace Elevation: 259.4 Date Started: Date Completed: Souriace Elevation: 259.4 Option Method: Souriace Elevation: 259.4 Date Started: Souriace Elevation: 259.4 Option Method: Souriace Elevation: 259.4 Souriace Elevation: Souriace Elevation: 259.4 Date Started: Souriace Elevation: 259.4 Option Method: Souriace Elevation: 259.4 Souriace Elevation: 259.4 Doged By: Souriace Elevation: 259.4 Junc 00 40 40 40 40 40 40 40 40 40 40 40 40 4		ୠ			LC	CG	OF	B	OF	RING	GE	3H-(6					
Option	Project Name: Location: DOE	MOX Fuel Fabrication Facility Savannah River Site	Northing: 8 Easting: 5 Surface Elevation: 2	55.692.9 259.4				Date Drill N Logge	Corr Methe ed B	pleter od: /:		6/22/ 8" au JJT	/00 Jger to	257				
TR1A to EL 246' TR1A to EL 246' Yellow-orange poorly graded SAND, fine-grained, very loose. slightly 254 4 254 254 254 252 3 252 3 252 3 252 3 252 3 252 3 252 3 252 3 252 3 3 75 3 3 75 3 3 75 3 3 75 3 3 75 3 3 75 3 3 75 3 3 75 3 3 75 3 3 75 3 3 75 3 3 75 3 3 75 3 3 75 3 3 75 3 3 3 75 3 3 3 75 3 3 3 3 3 3 3 3				USCS	Classification	Graphic Log				1	1			% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
$\begin{bmatrix} 8 & -250 \\ 10 & -250 \\ 10 & -248 \\ 12 & -248 \\ 14 & -246 \\ 14 & -246 \\ 14 & -244 \end{bmatrix}$ $\begin{bmatrix} ML & ML & ML & ML & ML & ML & 27 \\ 14 & 27 & -216 \\ 14 & -246 \\ 14 & -246 \\ 14 & -246 \\ 14 & -244 \end{bmatrix}$ $\begin{bmatrix} R2A - EI. 246' - 242' \\ Mottled red and tan silty SAND, fine- to medium-grained, dense, moist. \end{bmatrix}$ $\begin{bmatrix} ML & ML & ML & ML & ML & 27 \\ 14 & -248 \\ -248 & -248 \\ -244 & -248 \\ -244 & -248 \\ -244 & -248 \\ -244 & -248 \\ -244 & -248 \\ -244 & -248 \\ -244 & -248 \\ -244 & -248 \\ -248 & -248 \\ $	258 2 2 2 2 2 2 2 2 2 2 2 56 4 7 7 256 4 7 7 7 7 256 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	'ellow-orange poorly graded SAND, fine	e-grained, very loose, slightly	, SF			ss	1	1	3	75							
14 IR2A - El. 246' - 242' Mottled red and tan silty SAND, fine- to medium-grained, dense, SM SS 3 17 34 13.5 67.9 32.1	8 - 250 Mi 10 - 248	ottled red and tan SILT. some fine-grai oist. Interbedded with thin clay and san	ned sand, medium dense, d layers.	ML		X	ss	2	13	27								
	14 IR 	ottled red and tan silty SAND, fine- to m	edium-grained, dense,	SM		Ø	SS		17	34	1	3.5	67	.9 32	2.1			
TR2B - El. 242' - 204' Red-orange silty SAND, trace clay, fine- to medium-grained, trace 20240 Red-orange silty SAND, trace clay, fine- to medium-grained, trace 238 - 238 238 - 238 238 - 238 31.1 31	8 - 240 0 - Coa - 238 2 - 238	d-orange silty SAND, trace clay, fine- to	nedium-grained, trace	SM			SS	4	9	28	1	3.6	68.	9 31	.1			

Just Gravity Boring Location: Date Starter: Could Name: Date Starter: Could Name: Project Name: MOX Fuel Fabrication Facility Northing: 80.210.0 Date Scompleted: 622000 Location: DOE Savannah River Ste Surface Elevation: 259.4 Logger By: JJT Job Number: DS716 MATERIAL Surface Elevation: 259.4 Logger By: JJT Job Number: DS716 MATERIAL Surface Scompleted: 6/2000 Surface Scompleted: 6/2000 Grave Grave BESCRIPTION MSL Reviewed By: FJWJKM FU 25 Surface Scompleted:	ম স		L	OG	OF	B	OR	INC) E	8H-6	5			(Page	e 2	of
26 -234 Light brown poorly graded SAND, with silt, fine- to medium-grained, most. SP SS 5 11 23 35 28 -230 Vellow-tan poorly graded SAND, with silt, fine- to medium-grained, most. SP SS 5 11 23 35 228 Vellow-tan poorly graded SAND, with silt, fine- to medium-grained, most. SP SS 6 10 22 50 92.2 7.8 228 Vellow-tan poorly graded SAND, with silt, fine- to medium-grained, most. SM SS 6 10 22 50 92.2 7.8 229 -228 Vellow-tan poorly graded SAND, with silt, fine- to medium-grained, most. SM SS 6 10 22 50 92.2 7.8 229 -228 -228 Vellow-tan poorly graded SAND, with silt, fine- to medium-grained, moist. SM SS 6 10 22 50 92.2 7.8 220 -228 -228 -228 -228 -228 -228 -228 -228 -228 -228 -228 -228 -228 -228 -228 -228 -228 -2	STONE & WEBSTER Project Name: MOX Fuel Fabrication Facility Location: DOE Savannah River Site	Northing: Easting: Surface Elevation:	55.692.9 259.4		([[Date (Drill N .ogge	Com letho ed By	pleted d:	1:	6/22/(8" aug JJT	00 ger to	o 25'/				
26 23 Light brown poorly graded SAND, with sill, fine- to medium-grained. SP M SS 5 11 23 35 I I 12 23 35 I 12	Depth (f) DESCRIP		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_nsi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No 200 Sieve	Liquid Limit	Plastic Limit	
30 -228 Yellow-tan poorly graded SAND. with silt, fine- to medium-grained. SP SS 6 8 10 22 50 92.2 7.8 -226 -226 -224 -224 -224 -224 -224 -224 -224 -226 -224 -226 -224 -226 -224 -226 -224 -226 -224 -226 -224 -226 -224 -216 -216 Motiled tan and gray sity SAND, fine- to medium-grained, moist. SM SM ST 7A 96 -214 -216 -214	26 Light brown poorly graded SAND, with s trace coarse-grained, medium dense, m	ilt, fine- to medium-graine loist.	d. SP SM		ss	5	11	23	35							
222 38 40 42 42 42 42 44 46 -218 44 46 -214 Tan silty SAND, trace clay, fine- to medium-grained, trace coarse-grained, medium dense, moist. Black clayey stringers 5M SM ST 7A SM ST 7B ST 7A SM ST 7B ST 7A ST 7B ST 7A ST 7B ST ST ST ST ST ST ST ST ST ST	30 228 32 	., fine- to medium-grained,	SP SM		ss	6	10	22	50			92.2	7.8			
A4 44 44 46 -216 Mottled tan and gray silty SAND, fine- to medium-grained, moist. 46 -214 Tan silty SAND, trace clay, fine- to medium-grained, trace coarse-grained, medium dense, moist. Black clayey stringers throughout. SM SM SM SM SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A ST 7A ST 7A SM ST 7A ST 7A SM ST 7A SM ST 7A ST 7A SM ST 7A ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM ST 7A SM SM ST 7A SM SM ST 7A SM ST 7A SM SM SM ST 7A SM SM ST 7A SM SM ST 7A SM SM ST SM SM SM SM ST SM SM SM SM SM SM SM SM SM SM	222 38 40 															
46 Tan silty SAND, trace clay, fine- to medium-grained, trace coarse-grained, medium dense, moist. Black clayey stringers SM SS 7B 7 14 75 87.1 12.9 -212 <td>-216</td> <td>nedium-grained, moist.</td> <td>SM</td> <td></td> <td>ST</td> <td></td> <td>00/23</td> <td></td> <td>96</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-216	nedium-grained, moist.	SM		ST		00/23		96							
	46 Tan silty SAND, trace clay, fine- to mediur coarse-grained, medium dense, moist. Bla throughout.	m-grained, trace ack clayey stringers	SM	X	ss	7B	7	14	75		8	7.1 1:	2.9			


039

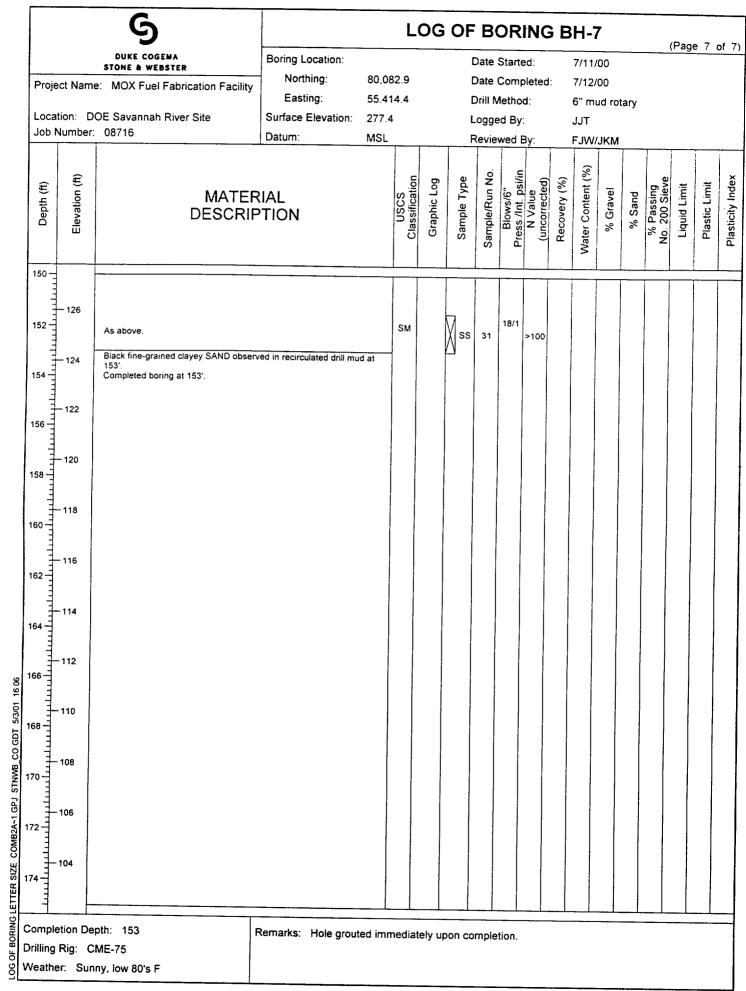
• •

Project Name	DUKE COGEMA Stone & Webster	Boring Location:				-			_						e 3 (
Location: Di Job Number:	e: MOX Fuel Fabrication Facility OE Savannah River Site 08716	Northing: 80,2			1 [Date : Date (Drill M Logge Reviev	Comp letho ed By	oleted d:	:	6/20/ 6/22/ 8" au JJT FJW/	00 ger to		/ 6" m	ud rc	tary	
Depth (ft) Elevation (ft)	MATER DESCRIP		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press./Int. psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
50 208 52 206 54 54	Yellow-tan silty SAND, fine- to medium moist. Interspersed with clay nodules.	grained, medium dense,	SM		ss	8	7 7 8	15	80							
204 56 202 58	TR3/4 - El. 204' - 199' Mottled black yellow-tan clayey SAND. v medium-grained, trace coarse-grained, Black carbonaceous nodules throughou	loose to medium dense, wet	sc		ss	9	3 3 7	10	100	36.3		71.1	28.9			
200 60 198 62 198 62 196 64	DB1/3 - El. 199' - 185' Yellow-tan poorly graded SAND, with sil trace coarse-grained, medium dense, m throughout.	t, fine- to medium-grained, oist. White clay stringers	SP SM		ss	10	8 8 10	18	100			90.1	9.9			
66	Yellow-tan interbedded silty SAND and p coarse-grained, medium dense, wet.	oorly graded SAND, fine- to	SP SM		ss	11	13 13 16	29	75							
70 - 190 70 - 188 72 - 188 72 - 186 74 - 186	Yellow-tan poorly graded SAND, with silt trace coarse-grained, medium dense, sa	, fine- to medium-grained, turated.	SP SM		ss		17 14 15	29	40		9	93.9	6.1			
	DB4/5 - El. 185' - 179'															

Project Nam	DUKE COGEMA STONE & WEBSTER	Boring Location:				-					_				ge 4
	ne: MOX Fuel Fabrication Facility DOE Savannah River Site	Easting: Surface Elevation:	80.210.0 55.692.9 259.4 MSL			Date Drill Logg	e Start Com Metho ged By ewed	pletec od: /:		6/20. 6/22, 8" au JJT FJW,	/00 Jger t		'/ 6" i	mud r	otary
Depth (ft) Elevation (ft)	MATER DESCRIP		USCS Classification	Graphic Log	Sample Type			1		Water Content (%)	% Gravel	% Sand	% Passing	Liquid Limit	Plastic Limit
76	Olive-tan silty SAND, trace gravel, fine- coarse-grained, toose, wet with black ca Tan-brown clayey SAND, fine-grained, t coarse-grained, wet.	arbonaceous stringers.	SM SC		SS ST		2 900/18	5	100	37.6 37.0 33.2	0.2	75.6	24.6 24.4 25.8	58	27 26 26
80	ST1 - El. 179' - 165' Yellow-tan poorly graded SAND, with silt trace coarse-grained, dense, saturated.	t, fine- to medium-grained,	SP SM		ss	14	16 17 14	31	40			92.9	7.1		
84	Similar to above, grading fine-grained, m	tore dense.	SP SM	ľ	ss	15	18 20 20	40	40						
168 2 168 166	Yellow-tan poorly graded SAND, with silt, saturated. Interbedded with silty SAND, very fine-gra		SP SM		ss	16	9 17 19	36	45						
164 164 162 8-	ST2 - El. 165' - 149' Yellow-tan silty SAND, trace clay, fine-grat loose, wet, with shell fragments.	ined, trace medium-grained	H. SP	X	ss	17A	0 0 9	9 1	00 3	5.2	7.	4.5	25.5		
111	Tan poorly graded SAND, with clay, fine- t	o medium-grained, wet.	SP SC		ST	2 178	50/24	1	00 1	8.9		2.7 2 8.8 1	27.3	51	23

DUKE COGEMA BTONE & WEBSTER MOX Fuel Fabrication Facility Savannah River Site 08716 MATER DESCRIP	Datum: IAL TION race medium-grained, very redium-grained, wet.		.9 u	Graphic Log		Drill M Logge Reviev S amble/Knn No.	Comp letho d By: wed E	N Value (uncorrected)	6 8 J. F Kecovery (%)	(%) 1M/1k 11) er to 2:	% Passing		Dastic Limit	of Apacticity 24
DESCRIP	TION race medium-grained, very redium-grained, wet.	S	SC		ss	18A	WR WR WR		60 Kecovery (%)	Water Content (%)	% Gravel % Sand	 	 	 	
an clayey SAND, fine-grained, trace m	edium-grained, wet.	S					WR WR			9.7	66.0	5 33.4	49	25	2
			SC		ST	18B					ł			(1	1
ellow-brown sandy CLAY, fine- to medi	ium-grained, hard, wet.	С							31	3.2	51.4	48.6	57	22	35
ery hard seam at 108.5' (possibly limes	tone).		н		ss	19	6 10 25	35 1	00 34	.6	33.4	66.6	58	30	28
C - El. 149' - 144' ading from brown. rust, black and grey ty SAND, with clay, fine-grained, trace inse, wet.	r-green mottled to yellow-ta medium-grained, medium	n S№	м	X	ss	20	10 10 17	27 10	00 32	2	61.4	38.6			
ssible limestone seam at 115.5'. 5 - El. 144' l <u>low-tan clayey SAND, fine- to coarse-c</u> ht tan-grey poorly graded SAND, fine- nse, saturated.	<u>grained, very dense, wet.</u> to medium-grained, very				ss	21 4	44 >	100 50	0						
nt yellow-tan poorty graded SAND, fine urated. Grading light orange-brown SA	-grained, very dense, ND, with sitt.	SP SM		M	SS 2	22 34	\$/4 >1	100 50							
	sible limestone seam at 115.5'. - El. 144' <u>ow-tan clayey SAND, fine- to coarse-r</u> It tan-grey poorly graded SAND, fine- se, saturated.	sible limestone seam at 115.5'. - El. 144' <u>ow-tan clayey SAND, fine- to coarse-grained, very dense, wet.</u> tt tan-grey poorly graded SAND, fine- to medium-grained, very se, saturated. t yellow-tan poorly graded SAND, fine-grained, very dense, rated. t yellow-tan poorly graded SAND, fine-grained, very dense, rated. Grading light orange-brown SAND, with silt. 131 Remarks: Hole grouted	sible limestone seam at 115.5'. - El. 144' <u>ow-tan clayey SAND, fine- to coarse-grained, very dense, wet.</u> t tan-grey poorly graded SAND, fine- to medium-grained, very se, saturated. t yellow-tan poorly graded SAND, fine-grained, very dense, rated. t yellow-tan poorly graded SAND, fine-grained, very dense, stated. t yellow-tan poorly graded SAND, fine-grained, very dense, stated. Tated. Grading light orange-brown SAND, with silt. 131 Remarks: Hole grouted immed	sible limestone seam at 115.5'. - El. 144' <u>ow-tan clayey SAND, fine- to coarse-grained, very dense, wet.</u> tt tan-grey poorly graded SAND, fine- to medium-grained, very se, saturated. t yellow-tan poorly graded SAND, fine-grained, very dense, stated. t yellow-tan poorly graded SAND, fine-grained, very dense, stated. se, saturated. 1 yellow-tan poorly graded SAND, fine-grained, very dense, stated. SP SM 131 75	sible limestone seam at 115.5'. - El. 144' <u>ow-tan clayey SAND, fine- to coarse-grained, very dense, wet.</u> it tan-grey poorly graded SAND, fine- to medium-grained, very se, saturated. t yellow-tan poorly graded SAND, fine-grained, very dense, sturated. t yellow-tan poorly graded SAND, fine-grained, very dense, sturated. t yellow-tan poorly graded SAND, fine-grained, very dense, sturated. 131 Remarks: Hole grouted immediately uports	sible limestone seam at 115.5'. - El. 144' <u>ow-tan clayey SAND, fine- to coarse-grained, very dense, wet.</u> it tan-grey poorly graded SAND, fine- to medium-grained, very se, saturated. tyellow-tan poorly graded SAND, fine-grained, very dense, stated. tyellow-tan poorly graded SAND, fine-grained, very dense, stated. SP 131 Remarks: Hole grouted immediately upon con	sible limestone seam at 115.5'. - El. 144' <u>Dw-tan clavey SAND, fine- to coarse-grained, very dense, wet.</u> t tan-grey poorly graded SAND, fine- to medium-grained, very se, saturated. t yellow-tan poorly graded SAND, fine-grained, very dense, rated. SS 1 131 75	sible limestone searn at 115.5'. - E. 144' <u>ow-tan clayey SAND, fine- to coarse-grained, very dense, wet.</u> SC it tan-grey poorly graded SAND, fine- to medium-grained, very SP se, saturated. SP tyellow-tan poorly graded SAND, fine-grained, very dense, rated. Grading light orange-brown SAND, with silt. SP 131 Remarks: Hole grouted immediately upon completion.	sible limestone seam at 115.5'. - El. 144' <u>ow-tan clayey SAND, fine- to coarse-grained, very dense, wet.</u> t tan-grey poorly graded SAND, fine- to medium-grained, very se, saturated. t yellow-tan poorly graded SAND, fine-grained, very dense, rated. Grading light orange-brown SAND, with sit. 131 75 Remarks: Hole grouted immediately upon completion.	sible limestone seam at 115.5'. - El. 144' <u>ow-tan clayey SAND, fine- to coarse-grained, very dense, wet.</u> t tan-grey poorly graded SAND, fine- to medium-grained, very se, saturated. t yellow-tan poorly graded SAND, fine-grained, very dense, rated. Grading light orange-brown SAND, with sitt. 131 75 Remarks: Hole grouted immediately upon completion.	sible limestone seam at 115.5'. - El. 144' <u>ow-tan clayey SAND, fine- to coarse-grained, very dense, wet</u> t tan-grey poorly graded SAND, fine- to medium-grained, very se, saturated. t yellow-tan poorly graded SAND, fine-grained, very dense, rated. Grading light orange-brown SAND, with silt. 131 Remarks: Hole grouted immediately upon completion.	sible limestone seam at 115.5'. - El. 144' <u>ow-tan clavey SAND, fine- to coarse-grained, very dense, wet.</u> tan-grey poorly graded SAND, fine- to medium-grained, very se, saturated. tyellow-tan poorly graded SAND, fine-grained, very dense, rated. Grading light orange-brown SAND, with silt. 131 75 Remarks: Hole grouted immediately upon completion.	sible limestone seam at 115.5'. - El. 144' <u>ow-tan clavey SAND, fine- to coarse-grained, very dense, wet.</u> tan-orey poorly graded SAND, fine- to medium-grained, very se, saturated. t yellow-tan poorly graded SAND, fine-grained, very dense, rated. Grading light orange-brown SAND, with silt. 131 75 Remarks: Hole grouted immediately upon completion.	sible limestone seam at 115.5'. - El. 144' <u>Dw-tan clavey SAND, fine- to coarse-grained, very dense, wet.</u> it an-grey poorly graded SAND, fine- to medium-grained, very se, saturated. tyellow-tan poorly graded SAND, fine-grained, very dense, rated. Grading light orange-brown SAND, with sitt. 131 Remarks: Hole grouted immediately upon completion.	sible limestone seam at 115.5'. - El. 144' <u>Dev-tan clavey SAND, fine- to coarse-grained, very dense, wet</u> it an-grey poorly graded SAND, fine- to medium-grained, very se, saturated. It yellow-tan poorly graded SAND, fine-grained, very dense, ated, Grading light orange-brown SAND, with sitt. 131 75 Remarks: Hole grouted immediately upon completion.

1	3		L	OG	OF	B	OR	INC	B B	H-7	7		/	7~~~	
	DUKE COGEMA STONE & WEBSTER He: MOX Fuel Fabrication Facility DOE Savannah River Site : 08716				l I	Date Date Drill M Logge Revie	Comi letho ed By	pleted d:	l:	7/11/ 7/12/ 6" mi JJT FJW/	00 ud rota	ary	(Page	10
Depth (ft) Elevation (ft)	MATER DESCRIP		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_nsi/in	N Value (uncorrected)		Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit
0 2 2 2 2 2 2 7 4 2 7 4 2 7 4 2 7 4 4 2 7 2 7	TR1 to El. 272' Pinkish-tan poorly graded SAND, some TR1A - El. 272' - 263'	silt. fine-grained, loose, moist.	SP		ss	1	1 2 2	4	56						
270 8 10 10 268	Mottled red and tan sandy CLAY/SILT, f moist.	fine-grained, very stiff, slightly	CL ML	4	ss	2	10 10 10	20	100						
12 	Reddish brown silty SAND, with silt, fine- dense, damp. TR2A - El. 263' - 235'	- to medium-grained, medium	SM		ss	3	3 6 7	13	67	20.3	5	9.1 4	0.9		
260 18	Yellow-orange sitty SAND, fine-grained, r Thin white clay/silt laminae throughout.	nedium dense, moist.	SM	X	ss	4	5 7 8	15	72						
22 - 254	Yellow-orange silty SAND, fine- to mediur coarse-grained, medium dense, damp.	n-grained, trace	SM	X	ss	5	5 6 7	13	72		81	.2 18	.8		


	DUKE COGEMA STONE & WEBSTER	Boring Location: Northing: 80,0	L 082.9	OG		Date	Start	ed:		7/11	/00			(Pag	je 2	of
	me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716		414.4 '.4		1 	Date Drill N Logge Revie	Aetho ed By			7/12/ 6" m JJT FJW	nud ro					
Depth (ft) Elevation (ft)	MATER DESCRIP		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
252																
28 - 248	Similar to above, with more white claye	y laminae.	SM	Ĺ	ss 🛛	6A	5 7 8 250/4	15	78							
32-7	Tan clayey SAND, some silt, fine- to co	arse-grained, gravel, moist.	sc		ST	68	750/2		71	20.1	7.7	78.2	14.1	31	20	
244 34	Yellow-orange silty SAND, fine- to medi moist.	um-grained, medium dense,	SM		ss	7	7 9 13	22	72							
240 38 	Red-brown tan silty SAND, fine- to medi coarse-grained, medium dense, moist. T throughout.	ium-grained, trace Thin clayey laminae	SM		ss	8A	7 10 10 250/5	20				83.2	16.8			
42 42	Tan clayey SAND, some silt, fine- to coa gravel, moist.	arse-grained with fine-grained	sc		ST		250/6 450/2 800/7		63	26.2	8.0	74.7	17.3	36	19	1
44	TR2B - El. 235' - 207' Yellow-orange mottled with rust clayey S medium-grained, medium dense, moist, throughout.	AND, fine- to Thin white clay/silt laminae	sc	X	ss	9	6 7 9	16	83			74.4	25.6			
46 	Brown poorly graded SAND, with silt, fine coarse-grained, medium dense, moist.	e- to medium-grained trace	SP SM	X	ss	10	8 13 15	28				93.2	6.8			1

	5		L	OG	OF	B	OR	INC	G E	8 H- ;	7			(Pa	ge 3	of
Location:	DUKE COGEMA STONE & WEBSTER Ime: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	_			1	Date Drill I Logg	Start Com Metho ed By	pletec od: /:	ı:	7/11, 7/12, 6" m JJT FJW,	/00 ud ro	-			<u> </u>	
Depth (ft) Elevation (ft)	MATER DESCRIF		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Drees /Int position	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing	Liquid Limit	Plastic Limit	
50 52 52 54 54 54 56 56 56	Tan with lavender hue poorly graded S. to medium-grained, trace coarse-graine	AND, with silt, trace clay, fine- ed, medium dense, saturated.	SP SM		ss	11	7 12 14	26	72			93.0	7.0			
220 58 218 60	Yellow-orange poorly graded SAND, wit trace coarse-grained, medium dense, n	th silt, fine- to medium-grained, noist.	SP SM		ss	12	8 12 13	25	72			91.6	8.4			
62 	Yellow-orange poorly graded SAND, wit trace fine-grained gravel, medium dense	h silt, fine- to coarse-grained. e, saturated.	SP SM	Ň	ss	13	8 13 11	24	72							
68 	Yellow-orange silty SAND, trace clay, fin saturated.	e-grained, medium dense,	SM		ss	14A	4 8 9	17	67							
72	TR3/4 - El. 207' - 191' Tan silty SAND, fine- to coarse-grained,	saturated.	SM		ST	14B	350/6 750/3 1000/3		54	45.9		54.4	45.6	109	68	4
74 - - -	Yellow-orange interbedded poorly graded to coarse-grained, dense, moist.		SP SM		ss	15	9 18 25	43	100							

	9		l	LO	GO	FE	BOR	lNC) B	8 H- 7	7			(D -	n o 1	<i></i>
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:	80.082.9 55.414.4 277.4 MSL			Date Drill Logg	e Stan e Com Metho ged By iewed	pletec od: /:	 I:	7/11/ 7/12/ 6" mi JJT FJW/	/00 ud rot	ary		(Pa	<u>ge 4</u>	of
Depth (ft) Elevation (ft)	MATER DESCRIF		nscs	Classification	Graphic Log Samnle Tyne			Ī	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No 200 Sieve	Liquid Limit	Plastic Limit	
76 - 202 76 - 200 78 - 198 80 - 196	Tan silty SAND, fine- to medium-graine Grading to greenish-grey poorly graded fine- to medium-grained, medium dense	SAND with this cilt ismis	nae, SM		s		12 250/7 500/13	22	0			82.5	17.5			
82	Greyish-tan mottled with black clayey S/ medium-grained, trace coarse-grained,	AND, trace silt, fine- to medium dense, wet.	sc		s:	5 17	2 4 8	12	89	32.5	8	33.3	16.7	62	28	3
86	DB1/3 - El. 191' - 179.5' Yellow-orange SAND, with silt, fine- to m medium dense, wet.	edium-grained, loose to	SP SM		Ss	18	3 4 6	10	100	33.0	8	9.3	10.7			
92	Tan poorly graded SAND, with silt, fine- t saturated.	o coarse-grained, dense,	SP SM		ss	19	3 14 29	43	83		9	3.6	6.4			
	DB4/5 - El. 179.5' - 169' Atternating layers yellow-orange silty/claye medium-grained, loose to medium dense, Thinly laminated silt layers visible.	ey SAND, fine- to wet.	SC SM		ss	20A	6 5 5	10	72							
ompletion D rilling Rig:		emarks: Hole grout	ed immedi	ately	upon c	ompl	etion.					!	1			

	9		L	OG	OF	B	OR	INC) B	8H-7	7			(Pao	e 5	of
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Easting: 55	.082.9 .414.4 7.4 SL		1 [[Date Date Drill N Logge Revie	Com Netho ed By	pletec d: ::		7/11/ 7/12/ 6" mi JJT FJW/	'00 ud roti	ary		(1, 49	<u> </u>	
Depth (ft) Elevation (ft)	MATER DESCRIF		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_nsi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
100 - 176	Tan sandy SILT, with clay, wet.		мн		ST	208	50/9 100/6 400/9		100	54.5		30.9	69.1	93	43	
104 104 104 105 106	Brownish-tan clayey SAND, with silt, fir medium dense, wet, Grading less fine-grained with depth. A visible, Carbonaceous particles also vis	/erv thin white/black lavers	sc		ss	21	WH 7 11	18	128	30.1		71.9	28.1	74	31	
108 108 108 108 108 108 108 108	As above. ST1 - El. 169' - 146' Light brown-orange poorly graded SAN medium-grained, medium dense, moist	D, with silt, fine- to	SC SP SM		ss	22	4 8 10	18	100							
114 - 164 114 - 162	Brown-tan mottled rust/black poorly grad fine- to medium-grained, medium dense Small carbonaceous particles visible.	ded SAND, with silt, trace clay, e, wet.	SP SM	X	ss	23	4 5 8	13	111	35.3	٤	38.1	11.9			
160 118 118 118 118 118 118 158	Brown-tan poorly graded SAND, very fin	e-grained, very dense, moist.	SP	X	ss	24	22 28 24	52	100							
22 - 	Brown-tan silty SAND, fine-grained, very	dense, moist.	SM	M	ss	25	18 34 38	72	78		8	7.4	12.6			

	9			L	OG	OF	B	OR	RINC	G E	3 H- 7	7			(Pag	ie 6 (of
Location:	DUKE COGEMA STONE & WEBSTER ame: MOX Fuel Fabrication Facility DOE Savannah River Site ber: 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:	80.082.9 55,414.4 277.4 MSL			: 	Date Date Drill N Logge Revie	Com Aetho ed By	pletec od: /:	j:	JJT				<u>(r ay</u>	<u> </u>	
Depth (ft) Elevation (ft)	MATER DESCRIP		USCS	Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6"	Ī	Recovery (%)	Water Content (%)	1		% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
126-							 				 						_
128 - 150 128 - 148 130 - 148	Rust-brown clayey SAND, trace silt, find	at second se	S	с		ss	26	9 13 15	28	83			75.0	25.0			
146 132-1 144 134-1 134-1 134-1 134-1 142	ST2 - El. 146' - 139' Yellow-brown silty SAND, fine-grained, t medium dense, moist. Grey-green thin silt laminae throughout.		SN	м		ss	27	WH 5 9	14	133	32.6		62.6	37.4			
136	GC - El. 139' - 135' Yellow-orange SILT, with fine-grained sa Grading rust-light brown, clayey, trace fil	and, medium dense, mois ine sand, dense, moist.	st.		X	ss	28	WH 1 17	18	133							
42 42 136 42 134 44 44 132 46	CG - El. 135' Yellowish-orange silty SAND, trace clay, dense to very dense, saturated. Grading coarser with depth.	fine- to coarse-grained,	SM	1	X	ss		18 24 28	52	89							
48 	Similar to above, very dense.		SM		Ø	SS	30	24/1	>100	0							

	G DUKE COGEMA	Parina La cati	LC	G	OF			GI	3H-8	B		(P	age 1	of
Location	STONE & WEBSTER Name: MOX Fuel Fabrication Facility 1: DOE Savannah River Site 1: 08716	Boring Location: Northing: 79.995 Easting: 55.335 Surface Elevation: 279.4 Datum: MSL			Da Dri Log	ite Co II Met gged		ed:	6/6/0 6/9/0 8" au JJT/F FJW/	iger ti -JW	o 257	6" mua	l rotary	r
			USCS	Classification			Sample/Kun No. Blows/6"	N Value		Water Content (%)	% Sand	No. 200 Sieve	Liquid Limit Plastic Limit	
0 - 274 2 - 276 4 - 276 4 276 6 274	6 Reddish-brown silty SAND, fine- to med	lium-grained, dense, moist.	si	м	<u>s</u>	SS 1	12 19 27	46	100					
272 8 1 10 10 268	Yellow-tan grading to reddish brown mot medium-grained, medium dense, moist.	tled yellow clayey SAND, fine- to	sc	:	s	S 2	3 5 9	14	100					
12 - - - - - - - - - - - - - - - - - - -	Red-brown silty SAND, fine-grained, trace moist.	e medium-grained, medium dense,	SM		Ss	5 3	3 8 9	17	100 1	4.9 5	9.9 40	.1		
260 16 16 262 18 260 20 260 20 258 2	TR2A - El. 263' - 237' Red-brown SILT, trace sand, trace clay, m Red-tan poorly graded SAND, with silt, find dense, moist.	tedium dense, moist. e- to medium-grained, medium	ML SP SM		Ass	4	4 6 7	13	100					
2 	Tan silty SAND, fine- to medium-grained,	medium dense, moist.	SM		Ss	5	5 5 7	12	00	85	.8 14.2			
illing Rig:	Depth: 152.5 Re CME-75 Sunny, mid 80's F	emarks: Hole grouted immedi	iately	upor	n compl	etion.						<u> </u>	<u>L</u>	

Starte Comp ethoo d By: ved B	pleted od: /: By:		JJT/ FJW	00 uger /FJW //JKN	и м	57 6" r		pe 2	
Sample/Run No.	Blows/6"	N Value (uncorrected)	rery (%)	nt (%)	10.1		Ì	1	
		1	Recov	Water Content (%)	% Sand	% Passing	Liquid Limit	Plastic Limit	
6	9 11 13	24	100						
7	10 11 13	24	100		80.9	19.1			
8	9 11 16	27	50						
9 1	13 16 19	35	40	19.0	90.1	9.9			
	9	8 11 16 13 9 16	8 11 27 16 13 16 35 19	8 11 27 50 16 16 19 10 10 10 10 10 10 10 10 10 10 10 10 10	8 11 27 50 16 50 13 35 40 19.0 19 5 40	8 11 27 50 16 16 19 90.1 9 13 35 40 19.0 90.1	8 11 27 50 16 16 19 90.1 9.9 13 16 35 40 19.0 90.1 9.9	8 11 27 50 16 16 19 90.1 9.9 19 19 19 90.1 9.9	8 11 27 50 16 16 1 9.9 13 16 35 40 19.0 90.1 9.9

9 DUKE COGEMA	Boring Location:	LOG	6 O	F B(H-8				(Pag	e 3 (of
STONE & WEBSTER Project Name: MOX Fuel Fabrication Facility Location: DOE Savannah River Site Job Number: 08716	Northing 79 995 3			Date Date Drill N Logge Revie	Comp Netho ed By	oletec d: :	j:	6/9/0 8" au JJT/I)0 iger ti	o 25'	/ 6" m	ud ro	otary	
	ERIAL RIPTION	USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6"	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
50 228 52 226 54 226 54 226	y SAND. with clay, fine- to	SM		ss	10	13 15 18	33	40						
56 Yellow-tan silty SAND, some clay, me	edium dense to dense, moist.	SM		Ss	11	11 14 15	29	35						
220 60 -218 62 -216 Yellow-tan to red-brown poorly graden medium-grained, very dense, moist. 6	d SAND, with silt, fine- to Grades silter with depth.	SP SM		ss	12	19 37 47	84	40		93.7	6.3			
64 - 214 66 - 212 68 - 210 70	silt, fine- to medium-grained, dense,	SP SM		ss	13	15 19 20	39	60						
72 - 208 72 - 208 72 - 206 74 - 206 74 - 206 74 - 206 74 - 206 74 - 206' - 202'	fine- to coarse-grained, medium	SM		Ss	14	9 8 12	20	100						

		Boring Location:	LO	g oi	B B C				H-8		·	(Pag	<u>je 4</u>	of
	STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site pr: 08716	-			Date (Drill N Logge Review	Com letho d By	oleted d: :	: € 8	6/9/00		57 6" r	nud ro	otary	
Depth (ft) Elevation (ft)	MATE DESCR		USCS	Graphic Log	Sample Type	Sample/Run No.	Blows/6"	N Value (uncorrected)	Recovery (%)	Water Content (%) % Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
76 204 78 78 200	Yellow-orange CLAY, some silt, mediur <u>DB1/3 - El. 202' - 173.5'</u> Grades to yellow-orange silty SAND, fin medium dense, moist.		CL SM		ss	15	8 8 12	20	100					
80	Yellow-orange silty SAND, fine- to medi dense, moist. Thin black carbonaceous	um-grained, medium dense to layers throughout.	SM		ss	16	12 14 15	29	80 31.	.5 85.0	15.0			
194 86 1 192 88	Yellow-orange mottled white poorly grade moist.	ed SAND, with silt, medium dens	se. SP SM		ss	17	21 15 13	28 7	0					
90 10 10 10 10 10 10 10 10 10 1	Yellow-orange mottled silty SAND, trace of dense, wet.	clay, fine- to medium-grained,	SM	X	ss	18	15 16 19	35 10	00 35.1	87.2	12.8			
184 16- 182 182 182 182 182 180 0-	Yellow-tan mottled black well graded SAN <u>coarse-grained, very dense, wet.</u> Yellow-orange poorly graded SAND, with stringers.		SW	X	ss 1	19 2	14 26 6 39	5 7	5					

	5		LOG	; OI				βB	H-8	8			(Pag	e 5	of
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Boring Location: Northing: 79,995.3 Easting: 55.335.3 Surface Elevation: 279.4 Datum: MSL			Date Date Drill N Logge Revie	Com Ietho ed By	oletec d:	1:	JJT/I))) Jgert		/ 6" m	nud ro	otary	
Depth (ft) Elevation (ft)	MATE DESCR		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6"	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
100 - 178 102 - 176 104 - 176	Yellow-orange silty SAND, fine- to med medium dense, wet.	ium-grained, trace coarse-grained,	SM		ss	20	7 8 9	17	100		86.9	13.1			
106 106 107 108 108 108 108	DB4/5 - El. 173.5' - 168' Mottled yellow/tan clayey SAND, with si dense, wet.	It, fine- to medium-grained, medium	sc		ss	21	6 7 9	16	100	37.3	61.0	39.0	102	32	
110 110 110 110 168 112 168 112 166 114	ST1 - El. 168' - 151' Dark orange silty SAND, fine-grained, m Grading less silt.	nedium dense, moist.	SM		Ss	22	11 11 17	28	75						
1164 1164 1162	Dark orange poorly graded SAND, with s wet.	silt, fine-grained, dense, moist to	SP SM		ss	23	14 15 24	39	100						
20 160 20 158 22 156	Tan poorly graded SAND, with silt, fine-g dense, wet. Clay stringers in top 6" of sa	grained, trace medium-grained, ample.	SP SM		ss	24	20 22 20	42	60	26.3	88.7	11.3			

	G		LOG	60	F B(OR	INC	βB	H-	8			/De-		_ f
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site m: 08716	Boring Location: Northing: 79.995.3 Easting: 55.335.1 Surface Elevation: 279.4 Datum: MSL			Date Date Drill M Logge Revie	Com letho ed By	oletec d: :		JJT/	00 ugert		/ 6" m		e 6 otary	of
Depth (ft) Elevation (ft)	MATE DESCR		USCS Classification	Graphic Log		Sample/Run No.	Blows/6"	N Value (uncorrected)		(%		% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
126 - 154 - 152 - 152	As above, grade moist to wet with dept ST2 - El. 151' - 138'	h, very dense.	SP SM		ss	25	27 26 28	54	100						
130 130 130 131 148 132 146 134 146	Orange silty SAND, fine-grained, trace moist, with shell fragments.	medium-grained, medium dense,	SM		ss	26	9 10 11	21	100		75.8	24.2			
144 36 1 142 38 1 142	Orange mottled black silty SAND, with c medium-grained, loose, moist. Hard drilling 138'-140'.	lay. fine-grained, trace	sc	ĺ	Ss	27	WR WR 10		100	35.4	58.6	41.4	56	26	3
40 40 	GC - El. 138' - 133.5' Light grey/white clayey SILT, interbedde poorly graded SAND, fine- to medium-gr layer of green CLAY, with silt and fine- to sample, very stiff.	ained medium dense moist Thin	ML		ss	28	10 9 15	24	100						
134 16 134 16 132 18 130	CG - El. 133.5' Yellow-orange well graded SAND, fine- tr	o coarse-grained, very dense, wet.	sw		ss	29	42 49 43	92	85						

		9		L	.00	6 O	F B	OR	INC	GΒ	H-8	3			(Page	. 7	~*
Loca	ation: D	DUKE COGEMA STONE & WEBSTER e: MOX Fuel Fabrication Facility OE Savannah River Site : 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:	79.995.3 55.335.1 279.4 MSL			Date Date Drill N Logge Revie	Com Aetho ed By	oleteo d: :		6/6/0 6/9/0 8" au JJT/F FJW/	iger ti FJW	o 25%	′ 6" m			
Depth (ft)	Elevation (ft)	MATE DESCR			USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6"	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
68 70 72	- 128	Harder drilling. Yellow-orange poorly graded SAND, me dense. wet. Completed boring at 152.5'.	edium- to coarse-grained,	very	SP		SS	30	75 25/1	>100							
omple	etion Dep Rig: Cl	pth: 152.5 R ME-75 ny, mid 80's F	emarks: Hole grout	ed immedia	tely u	pon c	omplet	ion.									

DUKE COGEMA STONE & WEBSTER Boring Location: Date Started: 6/9/00 Project Name: MOX Fuel Fabrication Facility Northing: 79.981.9 Date Completed: 6/12/00 Location: DOE Savannah River Site Surface Elevation: 271.5 Logged By: JJT Job Number: 08716 Datum: MSL Reviewed By: FJW/JKM		9			L	CG	OF	B	DR	ING	6 B	H-9	9			(D		
Image: Participation Image: Participation <th< th=""><th>ocation: D</th><th>STONE & WEBSTER ne: MOX Fuel Fabrication Facility DOE Savannah River Site</th><th>Northing: Easting: Surface Elevation:</th><th>55.614 271.5</th><th></th><th></th><th>נ נ</th><th>Date (Drill N Logge</th><th>Com letho ed By</th><th>pleted d:</th><th>:</th><th>6/12/ 8" au JJT</th><th>'00 Iger to</th><th>o 25%</th><th></th><th>(Pag ud ro</th><th>-</th><th>-</th></th<>	ocation: D	STONE & WEBSTER ne: MOX Fuel Fabrication Facility DOE Savannah River Site	Northing: Easting: Surface Elevation:	55.614 271.5			נ נ	Date (Drill N Logge	Com letho ed By	pleted d:	:	6/12/ 8" au JJT	'00 Iger to	o 25%		(Pag ud ro	-	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Depth (ft) Elevation (ft)				USCS Classification	Graphic Log								% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
$\begin{bmatrix} 3 & -262 \\ 10 & -262 \\ -260 \\ 12 & -26$	2 2 2 2 2 2 2 2 2 2 2 2 58 4 2 58 4 2 58 4 2 568		e-grained, loose, dry.		SP		ss	1	2	4	100							
$\begin{bmatrix} 12 \\ -258 \\ 14 \\ -256 \\ 16 \\ -256 \\ 18 \\ -254 \\ 20 \\ -252 \\ 20 \\ -250 \\ -252 \\ 20 \\ -251 \\ -250 \\ -251 \\ -250 \\ -241 \\ -250 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 \\ -241 \\ -250 $	8-1-262		ense.		SP		ss	2	4	10	70							
18 -252 Similar to above. SM SS 4 4 10 20 -250 TR2A - EL 250' - 241' TR2A - EL 250' - 241'	2	Reddish-brown silty SAND, fine- to med coarse-grained, medium dense, moist,	lium-grained, trace	5	SM		ss	3	7	17	100	15.2		68.4	31.6			
	8	Similar to above.		s	БМ		ss	4	8	18	100							
		TR2A - El. 250' - 241'					,											
24 Reddish-brown silty SAND, fine- to medium-grained, trace SM SS 5 6 17 50 8.0 81.9 18.1	!	Reddish-brown silty SAND, fine- to medi coarse-grained, medium dense, damp.	um-grained, trace	s	SM .		ss	5	6	17	50	8.0	8	31.9 ·	18.1			

			Boring Lacotion		L	OG	0			RING	G B			<u> </u>		(Pag	e 2	of
Loca	ation:	STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:	79,981 55,614 271.5 MSL				Date Date Drill I Logg Revie	Com Metho ed B	ipletec od: y:		6/9/(6/12 8" au JJT FJW	/00 iger t		/6" m	ud ro	tary t	0 1
Depth (ft)	Elevation (ft)	MATER DESCRIP		50011	Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6"	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
26	- 246										 							
28	-244 -242	Same as above.		5	ы		ss	6	7 7 10	17	100							-
30 11 11 32	- 240	TR2B - El. 241' - 216'																
34	-238 -236	Tan poorly graded SAND, with silt, fine- coarse-grained, medium dense, damp.	to medium-grained, trace	s	SP M		ss	7	6 6 8	14	50	5.1		94.2	5.8			
36 	- 234 - 232	Yellow-tan silty SAND, fine-grained, med	tium dense, damp.	SI	м		ss	8	6 7 7	14	95							
42 44 44 46	- 230 - 228 - 226	Grading less sitt, medium-grained,		SM	А		ss	9	5 7 8	15	90							
88 88	224 222	Yellow-tan poorly graded SAND, with silt, damp.	fine-grained, very dense,	SF SM	2	X	ss	10	18 25 33	58	50							
rilling	Rig:	repth: 136 R CME-75 inny, low 90's F	temarks: Hole groute	d, avera	ige f	luid d	ensit	y 14 I	b/gal	 								

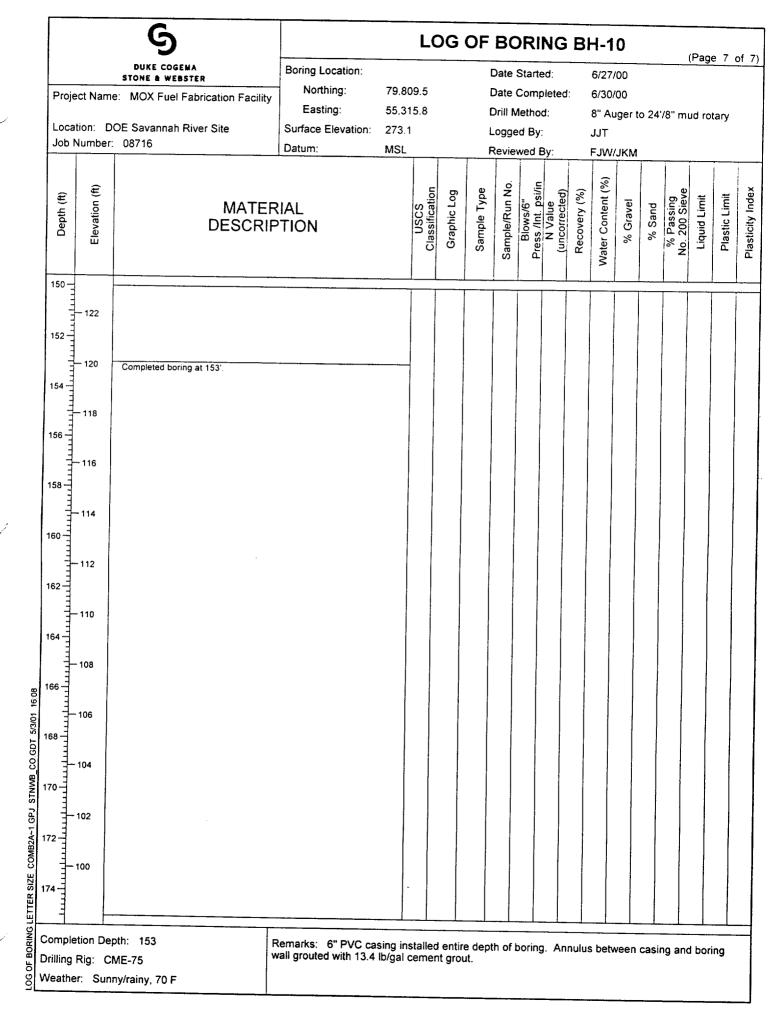
		DUKE COGEMA STONE & WEBSTER	Boring Location:	L	OG	0	F B		····	G E	6/9/((Pa	ge 3	of
Local	tion: (ne: MOX Fuel Fabrication Facility DOE Savannah River Site r: 08716	_				Date Drill I Logg Revie	Metho ed By	r:		JJT	/00 uger t //JKM		/6" m	nud r	otary	to
Depth (ft)	Elevation (ft)	MATER DESCRIP		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6"	N Value (uncorrected)		Water Content (%)	T	% Sand	% Passing	Liauid Limit	Plastic Limit	
50	<u> </u>					<u> </u> T		 		 			 			<u> </u>	
52	- 220																
111 54 71	-218																
56	-216	TR3/4 - El. 216' - 212' Yellow-brown clayey SAND, fine- to mea moist.		sc				3									
58	-214	Yellow-tan sandy CLAY, very stiff, moist	L	СН		∬ss	11	7 10	17	100							
60	-212	DB1/3 - El. 212' - 183'															
62 62	-210	Yellow-orange poorly graded SAND, with trace coarse-grained, medium dense, m	n silt, fine- to medium-grained, oist,	SP SM		ss	12	16 15 14	29	75		,	94.5	5.5			
64 III	208																
66 Jul	206	Yellow-orange poorly graded SAND, with		SP		7		8									
68	204	trace coarse-grained, medium dense, we	an, inter to medium-grained, it.	SM		X ss	13	6 10	16	80	24.3	8	B9.4	10.6			
70 70 71	202																
72-1-1	200	Yellow-orange silty SAND, trace clay, fine medium-grained, medium dense, moist, Very thin laminae of carbonaceous mater		SM		ss	14	4 4 8	12	90 :	29.2	8	12.3	17.7	52	30	2:
74 1 74	198																
		epth: 136 R CME-75	emarks: Hole grouted, a	verage	fluid (densit	y 14 I	b/gal		l,	·	<u>_</u> !		I 			

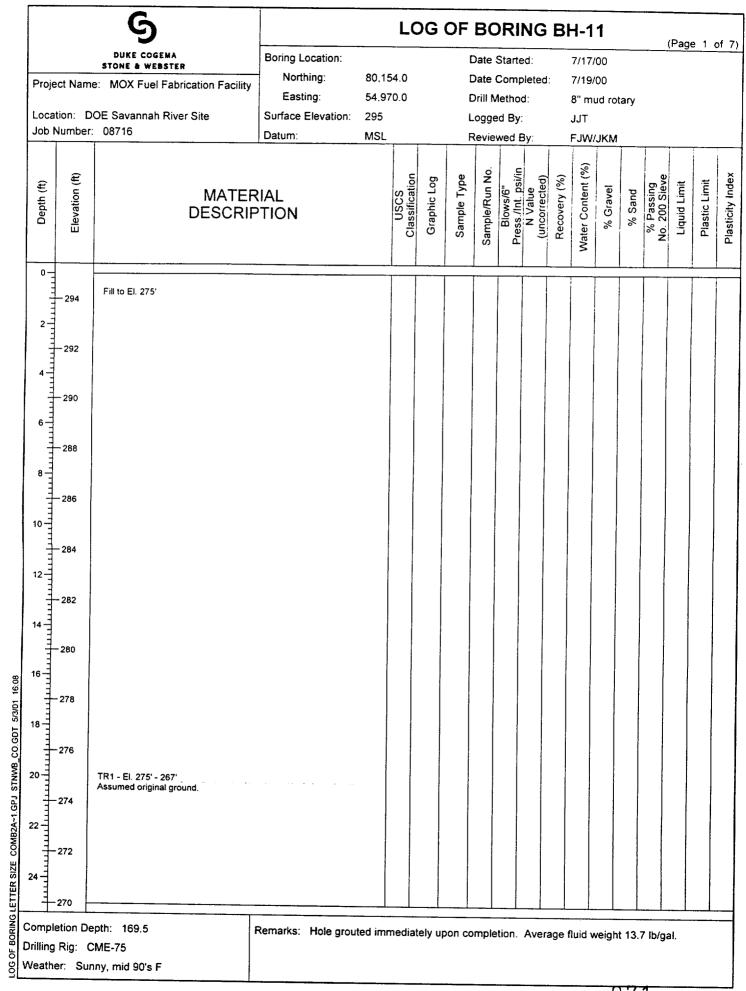
,	G DUKE COGEMA	Paring Laure	L	OG					ЗB					(Pag	e 4	of
Location:	TORE COGEMA STORE & WEBSTER Ime: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Easting: 5 Surface Elevation: 2	9.981.9 5.614.7 71.5 ISL	-1	:	Date Date Drill N Logge Revie	Com Aetho ed By	pietec od: /:	1:	6/9/0 6/12/ 8" au JJT FJW/	00 ger to	25'/	6" mi	ud ro	tary t	0 1:
Depth (ft) Elevation (ft)	MATER DESCRIP		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6"	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	Disstistic Lad
76	Yellow-orange poorly graded SAND, so medium-grained, medium dense, satur	ome silt, fine- to ated.	SP SM		ss	15	12 12 14	26	90							
80 192 80 192 192 80 192 192 80 192 192 80 192 192 80 192 192 80 192 192 192 192 192 192 192 192	Yellow-orange mottled black and white a coarse-grained, dense, wet. Interbedded with thin silty clay layers.	silty SAND, fine- to	SM		ss	16	18 23 25	48	30							
186 86 1 184 88	Orange-brown silty SAND, fine- to medii coarse-grained, medium dense, wet.	um-grained, trace	SM		ss	17	10 8 8	16	80		8	36.6	13.4			
90 1182 90 1180 92 1180 92 1178 94	DB4/5 - El. 183' - 176' Yellow-orange mottled tan and black clay medium dense, moist.	vey SAND, fine-grained,	sc		ss	18	8 7 11	18	100							
96	ST1 - El. 176' - 161' Yellow-orange poorly graded SAND, with trace coarse-grained, dense, moist.	silt, fine- to medium-grained	SP SM	X	ss	19	17 15 16	31	75		9	2.5	7.5			
98 - 172 500 - 172 completion I rilling Rig:	Depth: 136	silt, fine- to medium-grained	I. SM	fluid c	<u> </u>		15 16		75		9	2.5	7.5			

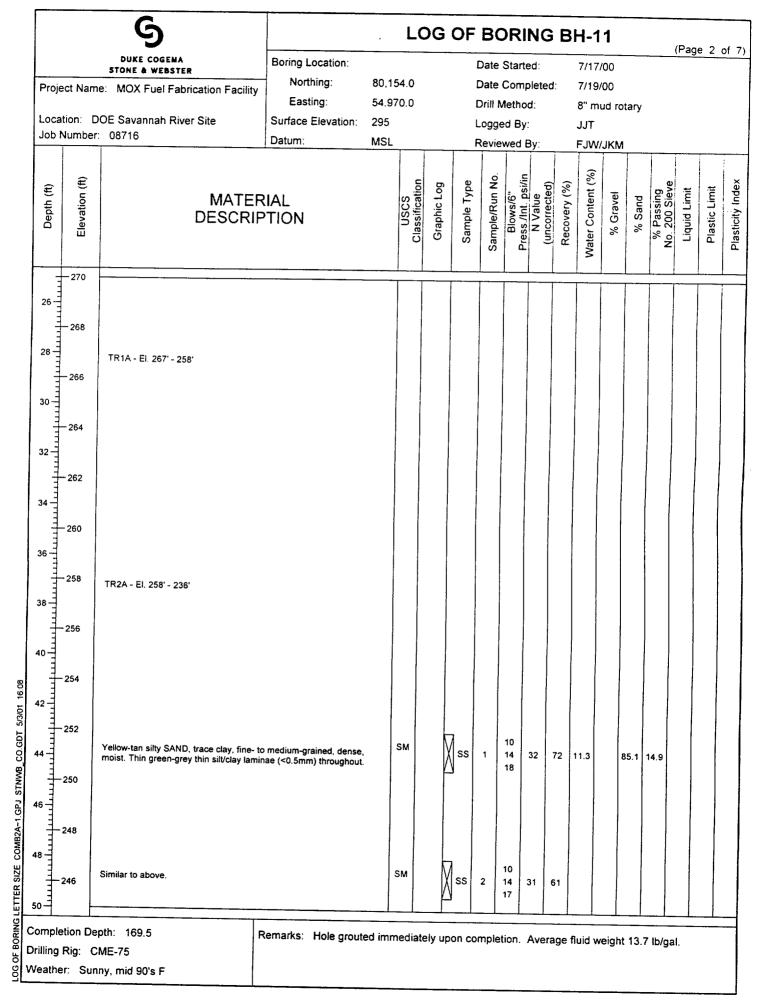
DUKE COGEMA STONE & WEBSTER DOX Fuel Fabrication Facility OE Savannah River Site 08716 MATER	-				Date Date Drill N Logge	Com /letho	pleted od:		6/9/00 6/12/0 8" aug	00	 o 25'/	'6" m		tary t	
MATER		1			Revie				JJT FJW/J					ושישי	.0 1
DESCRIP		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6"	N Value (uncorrected)		Water Content (%)	% Gravel		% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	Diraticity, tag
Similar to above, grading siltier, fine-gra	ained, dense.	SP SM		ss	20	20 22 24	46	40							
dense, saturated.		SP		Ss	21	23 22 25	47	50							
ST2 - El. 161' - 154' Tan sitty SAND, fine- to coarse-grained, orange-yellow mottled with black, fine-gr	medium dense, wet. Grading ained.	SM		ss	22	4 6 7	13	60							
Orange silty/clayey SAND, fine-grained, I Interbedded mottled yellow/white clays. GC - El. 154' - 148'	medium dense, moist.	SC SM		ss	23	7 12 16	28	100							
Yellowish-orange sandy SILT, dense, mo 1" limestone layer in sample. CG - El. 148'	ist.	ML		ss	24	16 19 30	49	90	4	.5 4	12.4 5	53.1			
	Greyish-orange poorly graded SAND, m dense, saturated. Grading orange with silt, fine-grained, w ST2 - El. 161' - 154' Tan silty SAND, fine- to coarse-grained, orange-yellow mottled with black, fine-gr Orange silty/clayey SAND, fine-grained, i Interbedded mottled yellow/white clays. GC - El. 154' - 148' Yellowish-orange sandy SILT, dense, mo 1'' limestone layer in sample. CG - El. 148'	Grading orange with silt, fine-grained, with shells. ST2 - El. 161' - 154' Tan silty SAND, fine- to coarse-grained, medium dense, wet. Grading orange-yellow mottled with black, fine-grained. Orange silty/clayey SAND, fine-grained, medium dense, moist. Interbedded mottled yellow/white clays. GC - El. 154' - 148' Yellowish-orange sandy SILT, dense, moist. 1' limestone layer in sample. CG - El. 148'	Similar to above, grading siltier, fine-grained, dense. SM Greyish-orange poorly graded SAND, medium- to coarse-grained, dense, saturated. SP Grading orange with silt, fine-grained, with shells. SP ST2 - El. 161' - 154' SM Tan silty SAND, fine- to coarse-grained, medium dense, wet. Grading orange-yellow mottled with black, fine-grained. SM Orange silty/clayey SAND, fine-grained, medium dense, moist. SC SM SC Carage silty/clayey SAND, fine-grained, medium dense, moist. SM Vellowish-orange sandy SILT, dense, moist. ML Yellowish-orange sandy SILT, dense, moist. ML CG - El. 148' ML	Similar to above, grading siltier, fine-grained, dense. SM Greyish-orange poorly graded SAND, medium- to coarse-grained, dense, saturated. SP Grading orange with silt, fine-grained, with shells. SM ST2 - El. 161' - 154' SM Tan sifty SAND, fine- to coarse-grained, medium dense, wet. Grading orange-yellow mottled with black, fine-grained. SM Orange silty/clayey SAND, fine-grained, medium dense, moist. SM Orange silty/clayey SAND, fine-grained, medium dense, moist. SM Yellowish-orange sandy SILT, dense, moist. ML	Similar to above, grading siltier, fine-grained, dense. SM SS Greyish-orange poorly graded SAND, medium- to coarse-grained, dense, saturated. SP SS Grading orange with silt, fine-grained, with shells. SM SS ST2 - EL 161' - 154' SM SM Tan silty SAND, fine- to coarse-grained, medium dense, wet. Grading orange-yellow mottled with black, fine-grained. SM SS Orange silty/clayey SAND, fine-grained, medium dense, moist. SM SS SS Orange silty/clayey SAND, fine-grained, medium dense, moist. SM SS Vellowish-orange sandy SILT, dense, moist. ML SS Yellowish-orange sandy SILT, dense, moist. ML SS	Similar to above, grading siltier, fine-grained, dense. SM SS 20 Greyish-orange poorly graded SAND, medium- to coarse-grained, dense, saturated. SP SS 21 Grading orange with silt, fine-grained, with shells. SP SS 21 ST2 - El. 161' - 154' SM SS 22 Grange silty/Clayey SAND, fine- to coarse-grained, medium dense, wet. Grading orange-yellow motiled with black, fine-grained. SM SS 22 Orange silty/Clayey SAND, fine-grained, medium dense, moist. SM SS 23 Orange silty/Clayey SAND, fine-grained, medium dense, moist. SM SS 23 Vellowish-orange sandy SILT, dense, moist. ML SS 24	Similar to above, grading silter, fine-grained, dense. Greyish-orange poorly graded SAND, medium- to coarse-grained, dense, saturated. Grading orange with silt, fine-grained, with shells. ST2 - EL 161' - 154' Tan sitty SAND, fine- to coarse-grained, medium dense, wet. Grading orange-yellow motiled with black, fine-grained. SM Orange silty/clayey SAND, fine-grained, medium dense, moist. Interbedded motiled yellow/white clays. GC - EL 154' - 148' Yellowish-orange sandy SILT, dense, moist. "I imestone layer in sample. SM ML ML SS 20 22 23 24 23 24 23 24 24 25 24 25 24 25 24 25 24 25 24 25 24 25 25 26 27 27 27 28 29 20 29 20 20 20 20 20 20 20 20 21 22 23 24 24 25 24 25 25 26 27 27 28 28 29 29 20 20 20 20 21 22 24 25 25 26 27 27 28 28 29 29 20 29 20 20 20 20 20 20 20 21 23 24 24 25 25 26 27 27 28 28 28 29 29 29 20 20 20 20 20 20 20 20 20 20	Similar to above, grading sitter, fine-grained, dense. SM Image: SS 20 22 46 Grevish-orange poorly graded SAND, medium- to coarse-grained. SP Image: SS 21 23 47 Grading orange with silt, fine-grained, with shelts. SP Image: SS 21 22 47 ST2 - EL 161' - 154' Tan sitty SAND, fine- to coarse-grained, medium dense, wet. Grading orange-yellow mottled with black, fine-grained. SM Image: SS 22 4 6 7 13 Orange silty/clayey SAND, fine-grained, medium dense, moist. SM Image: SS 23 7 28 Orange silty/clayey SAND, fine-grained, medium dense, moist. SM Image: SS 23 7 12 28 Orange silty/clayey SAND, fine-grained, medium dense, moist. SM Image: SS 23 7 12 28 GC - EL 154' - 148' ML Image: SS 24 16 19 30 49 Yellowish-orange sandy SILT, dense, moist. 1'' imestone layer in sample. ML Image: SS 24 16 19 30 49	Similar to above, grading sifter, fine-grained, dense. SM SS 20 22 46 40 Greyish-orange poorly graded SAND, medium- to coarse-grained, dense, saturated. SP SS 21 23 47 50 Grading orange with silt, fine-grained, with shells. SP SS 21 23 47 50 ST2 - EL 161' - 154' SS 22 4 6 7 13 60 Orange silty/clayey SAND, fine- to coarse-grained. SM SS 22 4 6 7 Orange silty/clayey SAND, fine-grained, medium dense, wet. Grading orange-yellow mottled with black, fine-grained. SM SS 23 7 12 28 100 Orange silty/clayey SAND, fine-grained, medium dense, moist. SM SS 23 7 12 28 100 GC - EL 154' - 148' ML SS 24 16 49 90 Yellowish-orange sandy SiLT, dense, moist. ML SS 24 16 19 30 49 90	Similar to above, grading silter, fine-grained, dense. SM SS 20 22 46 40 Greyish-orange poorly graded SAND, medium- to coarse-grained, dense, saturated. SP SS 21 23 47 50 Grading orange with silt, fine-grained, with shells. SP SS 21 22 46 40 ST2 - EL 161' - 154' SS 22 4 6 13 60 ST2 - EL 161' - 154' SS 22 4 7 13 60 Orange silty/Clayey SAND, fine- grained, medium dense, wet. Grading orange-yellow mottled with black, fine-grained. SM SS 23 7 28 100 Orange silty/Clayey SAND, fine-grained, medium dense, moist. SM SS 23 7 28 100 GC - EL 154' - 148' ML SS 24 16 49 90 4 Yellowish-orange sandy SILT, dense, moist. ML SS 24 16 49 90 4	Similar to above, grading silter, fine-grained, dense. SM SS 20 22 46 40 Greyish-orange poorly graded SAND, medium- to coarse-grained. SP SS 21 23 47 50 Grading orange with silt, fine-grained, with shells. SP SS 21 22 46 40 ST2 - EL: 161' - 154' Tan silty SAND, fine-grained, medium dense, wet. Grading orange-yellow mottled with black, fine-grained. SM SS 22 4 6 13 60 Orange silty/clayey SAND, fine-grained, medium dense, moist. SM SS 23 7 12 28 100 Orange silty/clayey SAND, fine-grained, medium dense, moist. SM SS 23 7 12 28 100 1 Orange silty/clayey SAND, fine-grained, medium dense, moist. SM SS 23 16 28 100 1 Vellowish-orange sandy SILT, dense, moist. ML SS 24 16 49 90 4.5 4	Similar to above. grading silter. fine-grained. dense. SM SS 20 22 46 40 Greyish-orange poorly graded SAND. medium- to coarse-grained, dense, saturated. SP SS 21 23 47 50 Grading orange with silt, fine-grained, with shelts. SP SS 21 25 47 50 ST2 - EL 161' - 154' Tan sity SAND, fine- to coarse-grained, medium dense, wet. Grading orange-yellow motified with black, fine-grained. SM SS 22 4 13 60 Orange sitly/clayey SAND, fine- grained. SM SS 23 7 12 28 100 Orange sitly/clayey SAND, fine-grained. ML SS 24 16 49 90 4.5 42.4 5 Yellowish-orange sandy SILT. dense, moist. ML SS 24 16 19 90 4.5 42.4 5	Similar to above. grading sittler. fine-grained, dense. SM SS 20 22 46 40 Greyish-orange poorly graded SAND. medium- to coarse-grained, dense, saturated. SP SS 21 23 47 50 Grading orange with silt, fine-grained, with shelts. SP SS 21 25 47 50 ST2 - EL 161' - 154' Tan sity SAND, fine- to coarse-grained, medium dense, wet. Grading orange-yellow motiled with black, fine-grained. SM SS 22 4 6 13 60 Orange sitty/clayey SAND, fine- grained, medium dense, moist. SM SS 23 7 12 28 100 1 4 <td>Similar to above, grading silter, fine-grained, dense. SM SS 20 22 46 40 Greyish-orange poorly graded SAND, medium- to coarse-grained. SP SS 21 23 47 50 Grading orange with silt, fine-grained, with shells. SP SS 21 23 47 50 ST2 - EL: 161' - 154' Tan sity SAND, fine-to coarse-grained, medium dense, wet: Grading orange with black, fine-grained, imedium dense, wet: Grading orange vithow motited with black, fine-grained, medium dense, moist. SM SS 22 4 6 13 60 Orange sithy(clayey SAND, fine-grained, medium dense, moist. SM SS 23 7 13 60 1</td> <td>Similar to above, grading silter, fine-grained, dense. SM Image Silter, fine-grained, dense. Greyish-orange poorly graded SAND, medium- to coarse-grained, dense, saturated. SP Image Silter, fine-grained, with shells. Grading orange with silt, fine-grained, with shells. SM Image Silter, fine-grained, with shells. ST2 - EL: 161' - 154' SM Image Silter, fine-grained, medium dense, wet. Grading orange with black, fine-grained, medium dense, wet. Grading orange view motited with black, fine-grained, medium dense, moist. SM Image Silter, fine-grained, medium dense, moist. Orange silty/clayey SAND, fine-grained, medium dense, moist. SM Image Silter, fine-grained, medium dense, moist. SM Orange silty/clayey SAND, fine-grained, medium dense, moist. SM Image Silter, fine-grained, medium dense, moist. SM Villowish-orange sandy SILT, dense, moist. ML Image Silty Silt, fine-grained, moist. ML Image Silty Silt, fine-grained, fine-grained, moist. Yillowish-orange sandy SILT, dense, moist. ML Image Silty Silt, fine-grained, fin</td>	Similar to above, grading silter, fine-grained, dense. SM SS 20 22 46 40 Greyish-orange poorly graded SAND, medium- to coarse-grained. SP SS 21 23 47 50 Grading orange with silt, fine-grained, with shells. SP SS 21 23 47 50 ST2 - EL: 161' - 154' Tan sity SAND, fine-to coarse-grained, medium dense, wet: Grading orange with black, fine-grained, imedium dense, wet: Grading orange vithow motited with black, fine-grained, medium dense, moist. SM SS 22 4 6 13 60 Orange sithy(clayey SAND, fine-grained, medium dense, moist. SM SS 23 7 13 60 1	Similar to above, grading silter, fine-grained, dense. SM Image Silter, fine-grained, dense. Greyish-orange poorly graded SAND, medium- to coarse-grained, dense, saturated. SP Image Silter, fine-grained, with shells. Grading orange with silt, fine-grained, with shells. SM Image Silter, fine-grained, with shells. ST2 - EL: 161' - 154' SM Image Silter, fine-grained, medium dense, wet. Grading orange with black, fine-grained, medium dense, wet. Grading orange view motited with black, fine-grained, medium dense, moist. SM Image Silter, fine-grained, medium dense, moist. Orange silty/clayey SAND, fine-grained, medium dense, moist. SM Image Silter, fine-grained, medium dense, moist. SM Orange silty/clayey SAND, fine-grained, medium dense, moist. SM Image Silter, fine-grained, medium dense, moist. SM Villowish-orange sandy SILT, dense, moist. ML Image Silty Silt, fine-grained, moist. ML Image Silty Silt, fine-grained, fine-grained, moist. Yillowish-orange sandy SILT, dense, moist. ML Image Silty Silt, fine-grained, fin

		9			L	ЭG	i OF	B	OR	INC	ЗB	SH-	9					
Local	tion: D	DUKE COGEMA STONE & WEBSTER ne: MOX Fuel Fabrication Facility DOE Savannah River Site :: 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:	79,98 55.614 271.5 MSL				Date Date Drill M Logge Revie	Com Metho ed By	pletec od: /:		6/9/(6/12 8" au JJT FJW	/00 Jger t		—- /6" m		<u>le 6</u> tary t	
Depth (ft)	Elevation (ft)	MATER DESCRIF			USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6"	N Value (uncorrected)		Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	Placticity Index
126	146 144 142	Reddish-brown clayey SAND, fine- to n coarse-grained, trace fine-grained grav moist. Grey-green thin interbeds of sit/clay th	el, medium dense to dens	se.	sc		ss	25	12 14 16	30			0.2	61.1	38.7	50	23	2
130	- 140 - 138	Tan mottled grey-green and dark grey s coarse-grained, loose to medium dense Yellowish-orange/grey silty SAND, fine- dense, saturated.	moist (slough)		SP SM		Ss	26	WR 20 50	70	100							
136 136 38	- 136 - 134	Grey-orange poorly graded SAND, trace coarse-grained, very dense, moist. Completed boring at 137.5'.	e silt, medium- to		SP		ss	27	100/6	>100	30		-					
40	132																	
42 42 44 44	130																	
46	126								-									
#8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	124																	
rilling	Rig: C	epth: 136 CME-75 nny, Iow 90's F	Remarks: Hole grout	ed, ave	rage	fluid	densit	y 14	lb/gal							-	····	

	9		L	OG	OF	BC	RI	NG I	3H-'	10		(Page	1 c
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:	79,809.5 55,315.8 273.1 MSL		ł	Date (Drill M Logge	Starte Compl lethod id By: wed B	eted:	6/3(8" A JJT	luger		/8" mu		
Depth (ff) Elevation (ff)	MATER DESCRIP		USCS Classefficiation	Graphic Log	Sample Type		liin		Water Content (%)			% Passing No. 200 Sieve	Liquid Limit	Plastic Limit
0	TR1 to El. 263'													
6 	Reddish-brown silty SAND, trace clay, fi medium dense, moist. TR1A - El. 263' - 251'	ine- to medium-grained,	SM		SS ST	1A 1B	9 12 17 50/20	29 75						
12 - 262 - 260 14 -	Similar to above.		SM		ss	2	9 10 13	23 75	14.4		75.6	24.4		
258 16 	Similar to above, but grades to yellow-ora	ange at 19'.	SM	Ń	ss	1	8 10 2 11	1 100						
22 	TR2A - El. 251' - 222' Similar to above, less silty, moist.		SM		ss	4	4 5 11 5	0 75						

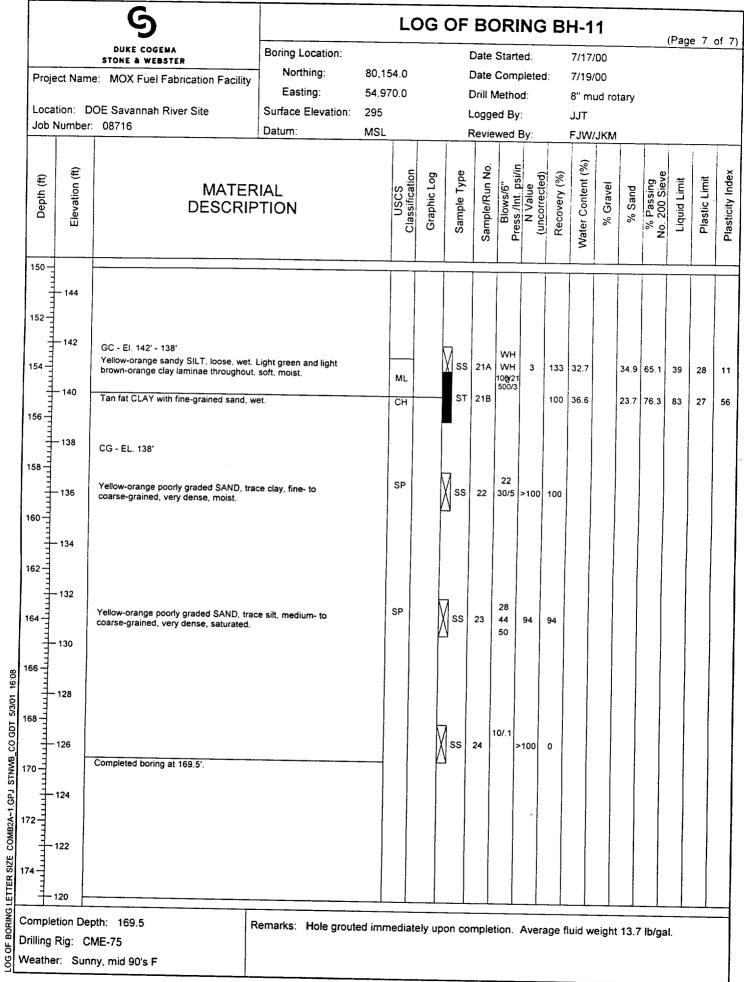

		Desire Levelier		JG	OF					_		•		Page	e 2	of
	STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site	-			1 1 1	Date Date Drill N Logge Revie	Com letho ed By	oleted d:	:	6/27/ 6/30/ 8" Au JJT FJW/	00 iger to	> 24'/	/8" mi	or bu	tary	
Depth (ft) Elevation (ft)	MATER DESCRIF		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_nsi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
26	Yellow-orange silty SAND, fine- to med coarse-grained, medium dense, moist.	ium-grained, trace	SM		ss	5	4 7 8	15	50	18.5		80.7	16.3			
32 	Yellow-orange to orange-brown poorly medium-grained, medium dense, very i	graded SAND, with silt, fine- to moist.	SP SM		SS ST	6A 6B	7 9 11 250/20 400/4	20	40							
-236 38 234 40 232	Yellow-orange, layered red and yellow-or with silt, fine- to medium-grained, trace dense, moist.	orange poorly graded SAND, coarse-grained, medium	SP SM		ss	7	5 9 13	22	40		ç	90.9	9.1			
42 	Reddish-brown to lavender-brown silty 5 medium-grained, medium dense, moist.	SAND, fine- to	SM		ss	8	8 13 15	28	56							
48	Reddish-brown silty SAND, fine-grained medium dense to dense, moist. White v (>0.5mm).	, trace medium-grained, ery thin layers of clay	SM		ss	9	9 13 17	30	56		8	17.3	12.7			

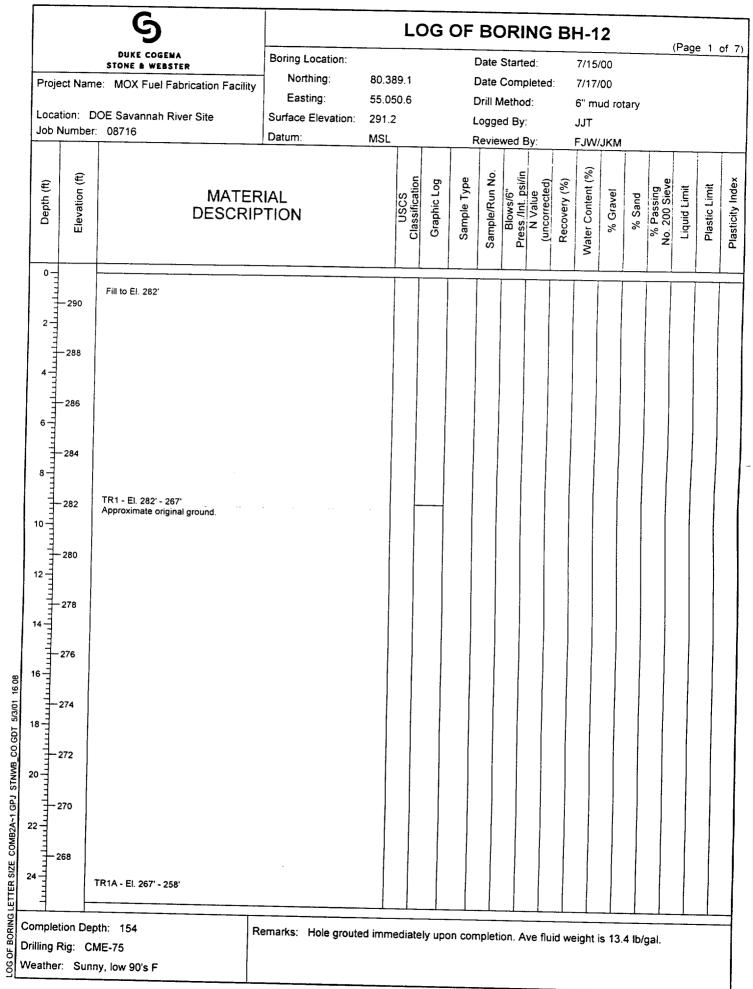

Joh Number: 09716	-	809.5 315.8 .1		l	Date Date Drill N Logge	Start	ed: pletec od: /:	d:	6/27/ 6/30/	/00 /00 uger t		/8" m	(Pagi ud ro		of
Depth (I) Depth (I) DESCRIP		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /lat_psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	Disctisity Index
50 - 222 52 - 220 54 - 220 54 - 220 Reddish-brown poorly graded SAND, wit to medium-grained, trace coarse-grained	h silt, trace fine-gravel, fine- d, dense, moist.	SP		X ss	10	11 16 18	34	44	23.0	1.1	91.4	7.5			
56 - 216 58 - 214 60 - 212 Yellow-orange poorly graded SAND, with gravel, fine- to coarse-grained, dense, m	silt, trace fine-grained oist.	SP SM		ss	11	12 17 17	34	61							
62 62 62 64 64 51LT, medium dense, very stiff, moist. 66 66 66 66 66 67 68 68 68 68 68 68 68 68 68 68	৻y SAND, silty CLAY and	SM		ss	12	6 9 9	18	39			-				
Brownish-red silty SAND, trace clay, fine- coarse-grained, medium dense, moist.	to medium-grained, trace	SM		ss	13	7 12 13	25	50		8	36.9 1	13.1			
Orange-tan to reddish-brown poorly grade medium-grained, dense, wet. Layering visi TR3/4 - El. 199' - 196'	d SAND, with silt, fine- to ible.	SP SM		ss		17 15 16 200/8	31	56		9	12.7	7.3			

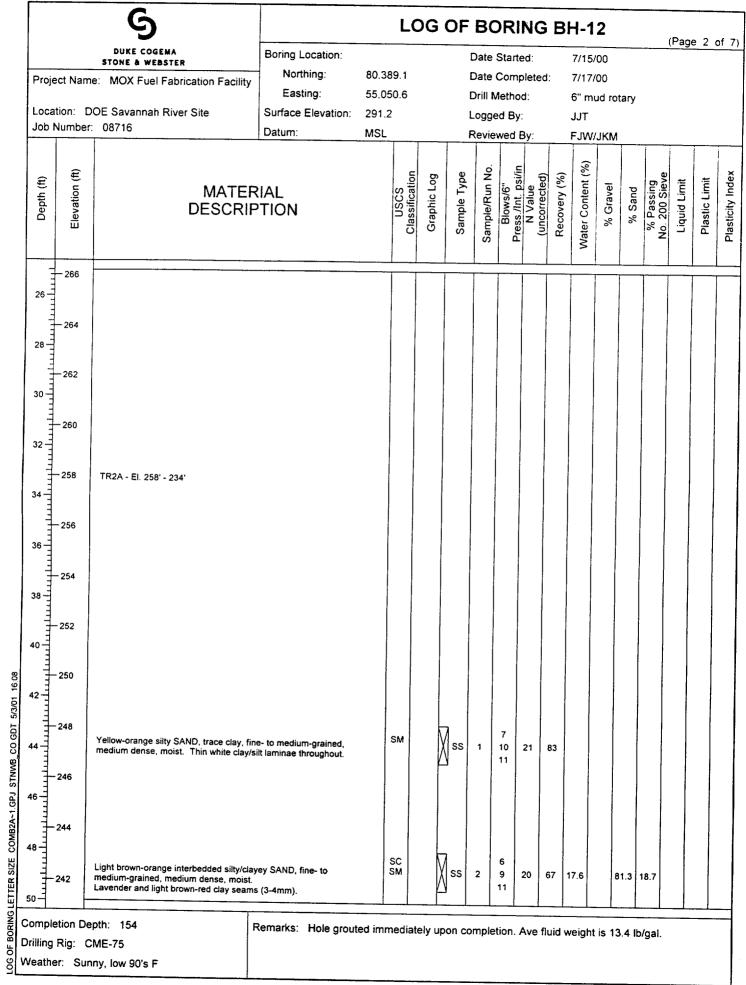

	5		LC	G	OF	BC	R	NG	B	H-1	0			(D-	.	
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	-			: 1 1	Date Date Drill N Logge Revie	Com flethc ed By	pleted od: /:		6/27/ 6/30/ 8" At JJT FJW/	'00 Jger ti	o 24	'/8" n		ge 4 otary	
Depth (ft) Elevation (ft)	MATER DESCRIP		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_psi/in	N Value (uncorrected)		Water Content (%)	% Gravel	% Sand	% Passing	Liquid Limit	Plastic Limit	
76 - 198 	Reddish-brown poorly graded SAND ar coarse-grained, medium dense, moist. DB1/3 El. 196' - 157'	nd silty SAND, fine- to	SP SM		ST	14B	650/1	2	100							
78 - 194 - 194 80	Layered yellow-orange, reddish brown fine- to medium-grained, trace coarse- to wet.	poorly graded SAND, with silt, grained, medium dense, moist	SP SM		Ss	15	8 9 18	27	56			94.0	6.0			
82 190 84 190 84 188 86	Whitish-pink poorly graded SAND, with Layering visible.	silt, fine-grained, dense, wet.	SP SM		ss	16	12 18 19	37	89							
86	White, black, yellow-orange well graded medium-grained, trace coarse-grained, visible.	SAND, with silt, fine- to very dense, moist. Layering	SW SM		ss	17	19 25 26	51	56	16.3	\$	93.6	6.4			
92	Brown, yellow, white, black interbedded medium-grained, very dense, wet.	silty and clayey SAND, fine- to	SC SM		ss	18	21 39 42	81	83							
98 - 	Pinkish tan mottled with black (carbonace clayey SILT/clayey SAND, fine- to mediu moist to wet.	eous material) interbedded m-grained, medium dense,	sc		ss	19	9 11 15	26	117	28.5	6	2.0	38.0	83	23	60
completion D prilling Rig: Veather: Su		Remarks: 6" PVC casing vall grouted with 13.4 lb/ga	installe I ceme	d enti nt gro	re dep out.	oth of	borir	ng. Ar	nulu	s bet	ween	casi	ing a	nd bo	oring	

	り		L(DG	OF	BC	DRI	NG	BI	H-1	0			(Page	5 1	of
Location:	DUKE COGEMA STONE & WEBSTER ame: MOX Fuel Fabrication Facility DOE Savannah River Site per: 08716					Date Date Drill N Logge Revie	Com Aetho ed By	pletec d: ::		JJT) 24'/				
Depth (ft) Elevation (ft)	MATER DESCRIF		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_pei/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
100																
102 - 	Yellow-orange poorly graded SAND, tra fine-grained, dense, saturated.	ace clay, very fine- to	SP		ss	20	11 17 14	31	94							
106	Yellow-orange mottled black silty SAND medium-grained, very dense, wet.		SM		ss 🛛	21A	17 34 40 500/12		78	23.2	3	35.1	14.9			
110 - 164 	Reddish-brown poorly graded SAND, fir wet. Becoming yellow-tan at 109'.	ne- to medium-grained, dense,	JF		ST	218	1250/8		92							
112 - - 160 114 - - 158	Yellow-orange mottled black/white poorl fine-grained, very dense, wet.	y graded SAND, very fine- to	SP	Z	ss	22	17 30 41	71	56							
116 156	DB4/5 - El. 157' - 148'				-											
20 	Tan-brown sandy SILT, medium dense, grey-green silt, light brown silty sand and fragments.	moist. Interbedded I black lignite stringers. Shell	ML		ss	23	5 9 12	21	133							
22 	Tan silty SAND, fine-grained, trace medi wet.	um-grained, medium dense,	ѕм	X	ss	24	4 7 9	16	3	2.8	82	2.4 1	7.6	43 2	8	1:

	DUKE COGEMA STONE & WEBSTER	Boring Location:	L(DG C			Starte	<u>.</u>	B	H-1 6/27				(Pag	ge 6	of
	ne: MOX Fuel Fabrication Facility	Easting: 5 Surface Elevation: 2	79.809.5 55.315.8 273.1 MSL	· · · · ·	D Lo	rill M ogge	Comp letho d By wed l	:		JJT			l'/8" n	nud ro	otary	
Depth (ft) Elevation (ft)	MATER DESCRIP		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing	Liquid Limit	Plastic Limit	
126 - 148	ST1 - El. 148' - 142'									L				 		
128 128 130 130 130 142	Similar to above, grading with clay, me ST2 - El. 142' - 138.5'	dium dense to dense.	SM	X	ss	25	11 13 16	29	89							
132 - 	Similar to above. GC - El. 138.5' - 135' Brown silty SAND, fine- to medium-grai	ned, saturated.	SM SC SM	X	SS :	4	7 7 11 100/12 750/6	18	128	72.4		53.3	46.7	69	24	
138 138 140 140	CG - El. 135' Yellow-orange poorly graded SAND, tra gravel, fine- to coarse-grained, very der	ce silt, trace fine-grained ise, saturated.	SP SM	M		27	27 38 42	80	61	10		04.0	13.4	40	22	
142 142 144 144 144 128	Yellow-brown poorly graded SAND, trace moist.	e siit, trace clay, very dense,	SP	X	SS		43 50/5	>100	67							
48	Gray-black poorly graded SAND, with sil medium dense, wet.	t, fine- to medium-grained,	SM	Ø	ss :	29	11 14 37	51	51	22.6	0.1	93.5	6.4			

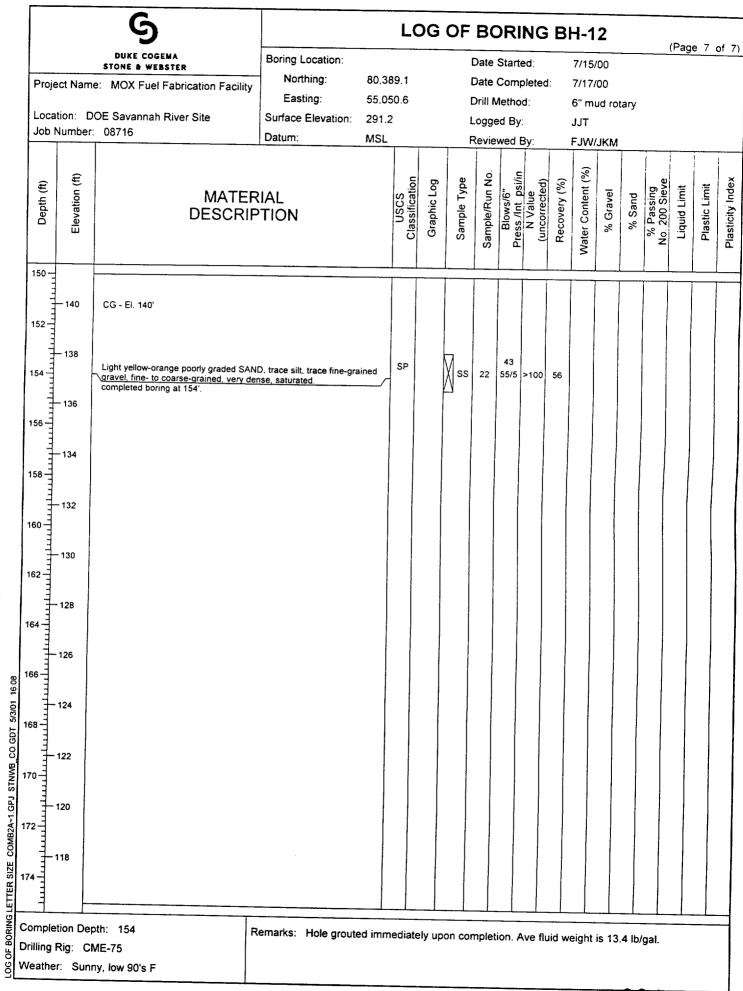



5		LC	C	OF	BC	DRI	NG	Bł	4-1	1			(Doo	- 3	- 1 -
DUKE COGEMA STONE & WEBSTER Project Name: MOX Fuel Fabrication Facility Location: DOE Savannah River Site Job Number: 08716	-				Date Drill N Logg	Start Com Metho ed By	pleted d:	:	JJT		ary	,	<u>(Pag</u>	e 3 (ot
Depth (t) Elevation (t) Elevation (t)		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_pei/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	Plaeticity Index
50 244 52 242 54 Red-light brown poorly graded SAND medium-grained, trace coarse-graine 56	. with silt, fine- to d, medium dense, moist.	SP SM		ss	3	8 10 10	20	44	16.2		93.7	6.3			
238 58 236 Red-brown silty SAND, trace clay, find dense, wet. TR2B - EI. 236' - 220.6' 234	2- to medium-grained, medium	SM		∭ss	4	8 9 12	21	56							
62 - 232 64 - Yellow-orange well graded SAND, with medium-grained, dense, moist. Clayey stringers. 56 - 230	silt, trace clay, fine- to	SW SM		ss	5	7 14 21	35	61	13.5	s	93.1	6.9			
228 Yellow-orange poorly graded SAND, w dense, very moist.	ith silt, fine- to coarse-grained,	SP SM		ss	6	12 17 19	36	50							
222 4 Yellow-orange poorly graded SAND, w trace coarse-grained, dense, moist. TR3/4 - El. 220.6' - 210'	th silt, fine- to medium-grained,	SP SM	N	ss	7A	10 14 17 150/1	31	2	20.2	9	0.4	9.6			


ა		L	DG (OF	B	DR	NG	6 B	H-'	11			(Pa	ge 4	i ni
DUKE COGEMA STONE & WEBSTER Project Name: MOX Fuel Fabrication F Location: DOE Savannah River Site Job Number: 08716	Easting: Surface Elevation:	80,154.0 54,970.0 295 MSL		1 [t	Date Drill I Logg	Start Com Metho ed By	plete od: /:	d:	JJT			,		<u>90</u>	
	TERIAL CRIPTION	USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Τ	N Value	Recovery (%)	(%	Τ		% Passing	No. 200 Sieve Liauid Limit	Plastic Limit	
76 218 78	to coarse-grained, wet.	SC		ST	78	300/2 700/5			26.8	3.6	81.	8 14.	6 59	23	3
216 80 214 214 Yellow-orange clayey SAND, tr loose, saturated. 212 Light brown clayey SAND, fine- 212 B1/3 - El. 210' - 185' 86 208 88	ice silt, medium- to coarse-grained, to medium-grained.	SC SC		SS ST	8A 8B	2 3 5 00/10, 50/12 400/1.5	5	50	28.9 27.7	1.2	1	27.2	54	20 38	
206 90 204 204 92 202 202 Attempted shelby tube sample, r 200		SP SM			9A 9B	2 4 3 ′50/12	7	111		4.5	83.4	12.1			
198 198 198 196 196 196 196 to medium-grained, trace coarse wet.	e silt, trace fine-grained gravel, fine- grained, loose to medium dense,	SC	Ø	SS	10	1 2 7	9	:	37.6		72.6	27.4	86	34	52

Project Name: Location: DOE Job Number: 0 (1) (1) (1) (1) (1) (1) (1) (1)	MATER DESCRIP	Easting: Surface Elevation: Datum: IAL TION	30, 154.0 54.970.0 295 MSL SS SS SS	Graphic Log	D D L	ogge eviev	Comp etho d By	oleted d: : By:	: i	7/17, 7/19, 8" m JJJ T Vater Content (%)	/00 ud ro	-	% Passing No. 200 Sieve		Plastic Limit	
100	DESCRIP Poorly graded SAND. with clay. trace si lense, wet. Clayey stringers throughout	TION	SI				7 13			Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
102 102 104 192 104 192 104 192 0 0 106 190 106 188 108 108 108 108 108 108 108	ense, wet. Clayey stringers throughout	It, fine- to medium-grained,			ss	11	13	30	44							
3 1	ight brown-orange, yellow-tan, black in ILT and CLAY, trace carbonaceous ma	nerbedded silty/clayey SAN aterial, dense/hard, moist.	d. SM	M	ss	12	11 23	46	100							
112	R4/5 - El. 185' - 178' reenish-brown mottled light grey silty S edium-grained, medium dense, wet.		SM		SS	13	23 7 9 8	17	111	27.8		77.1	22.9			
18 Or	T1 - El. 178' - 154' range, yellow-orange, yellow-tan poorly medium-grained, trace coarse-grained	graded SAND, with silt, fin d, medium dense, wet.	a- SP SM	M	SS	14	6 5 17	22	100 3	30.8	1.5	88.9	9.6			
‴'–¦ ∥me	llow-orange poorly graded SAND, with edium- to coarse-grained, very dense, s in clay laminae and carbonaceous part	saturated	SP SM	Ŋ,	ss	15	23 23 46	69	78 2	22.3		94.5	5.5			

୍ର ୨			L	-0	G	DF	BC	R	NG	B	H-1	1					
DUKE COGEMA STONE & WEBSTER Project Name: MOX Fuel Fabrica Location: DOE Savannah River S Job Number: 08716		Boring Location: Northing: Easting: Surface Elevation: Datum:	80,154.0 54.970.0 295 MSL		<u> </u>	[[]	Date Date Drill N Logge Revie	Com fetho ed By	oletec d: :		7/17/ 7/19/ 8" m JJT FJW/	/00 ud rot	tary	<u> </u>	(Pag	ge 6	of
Depth (ft) Elevation (ft)	MATER DESCRIP		nscs	Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int psi/in	1		Water Content (%)	% Gravel	% Sand	% Passing No. 200 Siave	Liquid Limit	Plastic Limit	
170 126 168 128 166 130 164			SF			ss	16	26 30 30	60	50							
132 132 134 134 160 136 160	g with carbonace ated.	eous material, fine- to	SP SM		X	ss	17	26 50/5	>100	61	24.1		93.9	6.1			
138 138 138 136 156 Light brown, black, tan c	ading with silt no Say laminae obs	dules, dense. erved.	SP SM		X	ss	18	20 25 24	49	56							
42 42 42 44 44 44 44 44 44 44	ND, fine-grained ce shell fragmer	d, trace medium-grained, tts.	sc		Ø	SS	19	6 10 11	21	111	31.7	7	77.6	22.4	51	27	24
48	D, very fine-grair	ned, very dense, moist.	SM		M	ss	20	29 31 27	58	61							



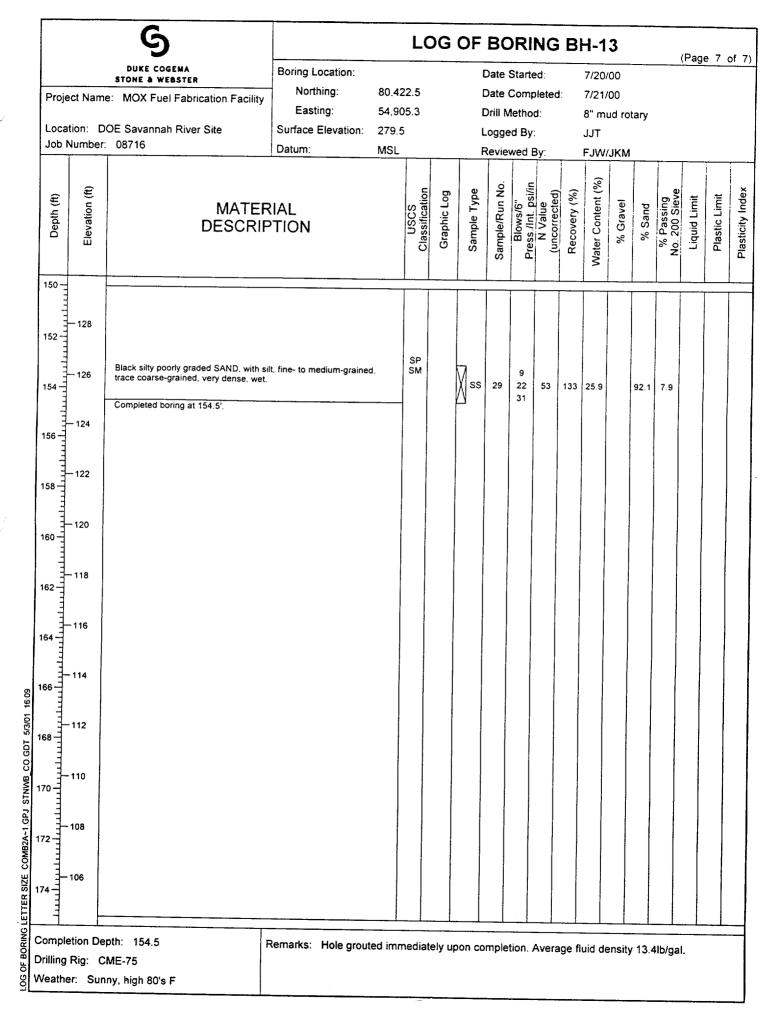
1	9		L	OG	OF	BC	RI	NG	Bł	-1	2			(D		
Project Name:	DUKE COGEMA STONE & WEBSTER MOX Fuel Fabrication Facility E Savannah River Site 08716	Easting: Surface Elevation:	80,389.1 55.050.6 291.2 MSL		 	Date Date Drill N Logge Revie	Com letho ed By	oleted d:	: '	7/15/0 7/17/0 6" mL JJT FJW/0	00 ud rota	ary		(Pag	<u>e 3</u>	of
Depth (ft) Elevation (ft)	MATER DESCRIP		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_pei/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic Limit	
54 	Red clayey SAND, fine- to medium-grai medium dense, moist. Thin clay lamina TR2B - El. 234' - 213' Dark yellow-orange poorly graded SANI Bottom 4" yellow-orange/red interbedde	e throughout.	SC SP SM		ss ss	3	9 7 17 11 16 20	24	67	18.0		80.8	19.2			
62 	Red to yellow-orange silty SAND, fine- to coarse-grained, dense, moist.	o medium-grained, trace	SM		ss	5	11 17 21	38	67 1	19.9	8	17.5 ⁻	12.5			
-224 68 222 70 	Similar to above, grades less silt, trace fi	ne-grained gravel.	SP SM		ss	6	15 22 24	46	61							
72	eddish-brown poorly graded SAND. witl ledium-grained, trace coarse-grained, d	n silt, fin e- to ense, wet.	SP SM		ss	7	7 12 14	26	1	9.2 C	0.3 89	9.9	9.8			

	LOG OF BORING BH-12								(Page 4 of 7								
DUKE COGEMA STONE & WEBSTER Project Name: MOX Fuel Fabrication Facility Location: DOE Savannah River Site Job Number: 08716	÷ .				Date Date Drill N Logge Revie	Com fetho ed By	pletec od: ':		7/17. 6" m JJT	15/00 mud rotary T W/JKM							
Deptr (t) (t) (t) (t) (t) (t) (t) (t) (t) (t)		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing No 200 Sieve	Liquid Limit	Plastic Limit			
-216 76 -214 78 -214 78 -212 80 -212 80 -212 80 -212 80 -212 81 -210 82 -210 82 -210 82 -210 84 -208 Brown poorly graded SAND, with silt, fin medium dense, moist. -206 86 -204 88 -204 88 -202 90 -200 Brown silty SAND, trace clay, fine-grained, the coarse-grained. 90 -200 Brown silty SAND, trace clay, fine-graine coarse-grained.	e- to medium-grained,	SC SM SC SM SM		SS SS SS ST	9	6 7 10 11 10 17 6 4 5 50/2 \$ 50/2 \$ 50/2 \$	27	111	23.2 36.4 30.3		90.0		41	29			
198 196 196 196 194 194 194 192 Yellow-orange poorly graded SAND, with trace coarse-grained, medium dense, mo	silt, fine- to medium-grained, ist.	SP SM		ss	11	8 11 12	23	100	23.1	9	4.1	5.9					

	9	S LOG OF BORING B																		
	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:		Date Started: Date Completed: Drill Method: Logged By: Reviewed By:						(Page 5 of 7/15/00 7/17/00 6" mud rotary JJT FJW/JKM										
Depth (ft) Elevation (ft)	MATER DESCRIP		nscs	Classification	Sample Type					Water Content (%)	% Gravel	% Sand	% Passing No 200 Sieve	Liquid Limit	Plastic Limit					
100 - 190 102 - 190 102 - 188 104 - 188	DB4/5 - El. 189' - 176' Green-grey silty SAND, with clay, trace to medium-grained, loose, wet.	carbonaceous material, fir	ne- SM		X ss	5 12A	524	6	128	39.5		76.7	23.3	109	67					
106	Light yellow-tan clayey SAND, fine- to m medium dense, wet.	nedium-grained, loose to	sc		L) ST	12B	50/19 250/4		117	36.9	ε	31.4	18.6	59	28					
108 108 110 182 110 182 110 182 182	Grey-green silty SAND, with clay, fine- t coarse-grained, dense, wet,	o medium-grained, trace	SM		ss	13	15 14 18	32	94 :	31.0	7	9.0	21.0	62	35					
112 112 112 114 178 114 176 16 16	Interbedded light greyish-green mottled CLAY, sand is fine- to medium-grained, Horizontal layering visible. ST1 - El. 176' - 159'	with white/black flecks san stiff, wet.	_{dy} сн		ss	14	3 5 9	14	133 4	95.3	4	7.2	52.8	79	26	5				
18 18 174 18 172 20 172 172 172 172 170	Light brown-orange poorly graded SAND medium-grained, very dense, wet.	with silt, fine- to	SP SM		ss	15	22 30 37	67	78											
22 - 	, Similar to above, grading fine-grained.		SP SM		ss	16	23 34 50	84 7	78 22	2.6	93	.4 6	5.6							

	LOG OF BORING BH-12																
Location:	DUKE COGEMA STONE & WEBSTER ame: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:	80.389 55.050 291.2 MSL				Date Date Drill N ogge	Com lethc ed By	pletec od:	1:	JJT		(Page 6 (
Depth (ff) Elevation (ft)	MATER DESCRIP		00011	USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_nsi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)		% Sand	% Passing No. 200 Sieve	Liquid Limit	Plastic 1 imit	
126 126 126 164 128 162 130 160 132 158 134 156 136	Light brown-orange poorly graded SAN to wet. ST2 - El. 159' - 143' Light orange-brown poorly graded SAND medium-grained, trace coarse-grained, Interbedded with thin clayey layers.) with sills first to	s	SP SM		SS	17	20 25 28 7 12 8	20	33	25.3	9	00.6	9.4			
40 + + + + + + + + 152	GC - El. 143' - 140' Yellow-orange clayey SAND, fine-grained coarse-grained, wet.	l, trace medium- to	s	с		ST	19 19	00/20 150/4		113	31.4	8	2.0 1	8.0	44	26	18
42	Yellow-orange sandy CLAY, with silt, fine medium-grained, very stiff, moist. Sandy zone of 1"-2" at 143.2' is saturated		CH	4	ء د	5S 2	20	7 8 8	16	83 :	34.8	40	0.4 59	9.6	57	27	30
144 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Olive-grey silty SAND, with clay, fine-grain coarse-grained, medium dense, moist. Gr	ied, trace medium- to ading siltier.	SM	1	∭ s	S 2	1 1	7	22 1	17 2	7.5	66	.1 33	.9			

		Easting: 5 Surface Elevation: 2	30.422.5 64.905.3 79.5 1SL					pleted	 I:	7/20/ 7/21/			(F)	age 1	10
Depth (ft) Elevation (ft)	MATER		1			Logg Revie	ed By	r:		8" mi JJT FJW/	ud rota /JKM	ary			
	MATER DESCRIP		USCS	Classification	Graphic Log Sample Type			1		Water Content (%)		% Sand	No. 200 Sieve	Plastic Limit	
0 - 278 2 - 276 4 - 276 4 - 274	No samples collected in upper 13'. TR1 to El. 270'														
8-1-272 8-1-270 10-1-1-270	TR1A - El. 270' - 262'														
12 - 268 12 266 14 264 16 264	Yellow-orange, pink, orange, lavender-g dense, damp.	rey SILT, trace clay, medium	ML		ss	1	2 5 7	12	67						
260	TR2A - El. 262' - 238' Yellow-orange silty SAND, fine- to mediu damp. Thin white clayey laminae (1-3mm depth. Horizontal layering visible.	im-grained, medium dense, n) throughout, more with	SM		ss	2	5 8 11	19	83	14.8	82	2.8 17.	.2		
22 - 258 22	Similar to above.		SM		Ss	3	7 11 12	23 1	100						


	DUKE COGEMA	Boring Location:	L(CG	OF								(Pag	je 2	(Page 2 of 7)					
Location:	STONE & WEBSTER ame: MOX Fuel Fabrication Facility DOE Savannah River Site ber: 08716	Northing: Easting: Surface Elevation: 2	80.422.5 54.905.3 279.5 MSL		[[]	Date Drill M Logge	Starte Comp Metho ed By wed I	pleted. od: ::	: 7 8 J	7/20/00 7/21/00 3" mud IJT 5JW/Jk) rotary									
Depth (ff) Elevation (ff)	MATER DESCRIP	≀IAL ²TION	USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press./Int_psi/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel % Sand	% Passing No 200 Slave	Liquid Limit	Plastic Limit						
26				 			 						 							
28 252	As above, fine- to medium-grained, trac	ce coarse-grained, moist.	SM		ss	4	7 11 12	23	89 1	13.1	83.1	1 16.9								
- 248 32 - 246 34 - 246	As above.		SM		ss	5A	5 9 11 100/1.5 350/1.5	20	78											
36 	As above, grading less silt, moist.		SM		ST	5B 6	350/1.5 600/6 7 11 13		54 72 14	4.8	85.2	14.8								
42	TR2B - El. 238' - 214'																			
44 - 	As above, with thin white laminae, dense	e, moist.	SM	ľ	ss	7	10 17 18	35 9	56											
46 -																				
48- 	Red-brown poorly graded SAND, with silt, trace coarse-grained, dense, moist.	t, fine- to medium-grained,	SP SM		ss	8	15 22 25	47 6	51 12	.9	94.0	6.0								

	9			LC	G	OF	B	DR	ING	B B	H- 1	13			(Pa	ge 3	
Location:	DUKE COGEMA STONE & WEBSTER ame: MOX Fuel Fabrication Facility DOE Savannah River Site ber: 08716	Boring Location: Northing: Easting: Surface Elevation: Datum:	80.422 54.905 279.5 MSL				Date Date Drill I Logg Revie	Corr Metho ed By	iplete od: y:	d:	7/20 7/21 8" m JJT FJW	/00 nud re	otary		<u></u> , (r' d	<u>ye</u> 3	
Depth (ft) Elevation (ft)	MATER DESCRIF		0 	Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6"	N Value	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing	Liquid Limit	Plastic Limit	
50 - 228 52 - 226 54 - 226 54 - 224 56 - 224	As above.			SP 5M		Ss	9	10 16 21	37	50							
222 58 60 	As above, reddish-brown, trace fine-gra	ined gravel.		SP SM		ss	10	10 14 19	33	56	14.9	0.6	92.5	6.9			
64	Pinkish and yellow-orange silty SAND, fi medium dense, moist. TR3/4 - El. 214' - 207'	ne- to coarse-grained,		P M		ss	11	8 10 15	25	56							
212 68 210 70 70 208	Interbedded purple-grey, yellow-orange, clayey SAND, trace silt, fine- to medium- coarse-grained, loose, wet. Tan clayey SAND, with silt, fine- to media coarse-grained, wet.	grained, trace	, so			ss st		3 2 3 100/4 275/6 600/8	5	133 63	28.7 20.2		74.4 74.3		39	23	11
72 1 1 206 74	DB1/3 - El. 207' - 183' Reddish-brown silty SAND, fine-grained.	medium dense, moist.	SM	л		ss	13	8 10 14	24	67							

OUKE COGEMA DATE & WEBSTER NOX Fuel Fabrication Facility Savannah River Site 716 MATER DESCRIP	Easting: 54 Surface Elevation: 23 Datum: M RIAL PTION	0.422.5 4.905.3 79.5 SL	Graphic Log		Drill N Logge Revie Samble/Knu No	Comp Metho ed By	oleted: d: : By:	Secovery (%) Percevery	(%) (%) (%)	DO Id rotar JKM Gravel	e Sand Passing	No. 200 Sieve Liquid Limit	Plastic Limit	
ow-orange silty SAND, fine- to medi rse-grained. medium dense, wet. fine-grained sand at bottom of sam	PTION		Graphic Log			5 9		Recovery (%)	Water Content (%)	% Gravel			Plastic Limit	
rse-grained, medium dense, wet. fine-grained sand at bottom of sam	-	SM		ss	14	9	22	2	6.7	86	.2 13.8			
nish-tan silty SAND with clay fine.		1	I	1										
poorly graded SAND, with silt, fine- se-grained, wet.	- to medium-grained, trace - to medium-grained, trace	SM SP SM		ss st		4 5 9 100/5 150/7 450/5.5	14	4: 100 2 ⁻	2.8	60.	.9 39.1 6 9.4	94	52	4
ow-orange mottled black silty SAND, se-grained, medium dense, moist.	. trace clay, fine- to	SM		ss	16	4 7 10	17 1	100						
nish-grey mottled light brown orang dium-grained, trace coarse-grained	e and black silty SAND, fine- d dense, wet.	SM		ss	17	8 13 21	34 1	17 34	.4	79.:	2 20.8			
5 - El. 183' - 177' white layer (calcite?) at 98.4'. greenish-grey speckled black motte rained sand, loose, wet to moist.	eled yellow-orange SILT, trace	ML	Ň	ss	18A	3 2 2	4 10	00						
5 wg	e-grained, medium dense, moist. hish-grey mottled light brown orang dium-grained, trace coarse-grained i- El. 183' - 177' white layer (calcite?) at 98.4'. preenish-grey speckled black motte ained sand, loose, wet to moist.	hish-grey mottled light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. - El. 183' - 177' white layer (calcite?) at 98.4'. preenish-grey speckled black motteled yellow-orange SILT, trace ained sand, loose, wet to moist. 	e-grained, medium dense, moist. hish-grey mottled light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. - El. 183' - 177' white layer (calcite?) at 98.4'. preenish-grey speckled black motteled yellow-orange SILT, trace ained sand, loose, wet to moist. 	e-grained, medium dense, moist. hish-grey mottled light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. i- El. 183' - 177' white layer (calcite?) at 98.4'. preenish-grey speckled black motteled yellow-orange SILT, trace ained sand, loose, wet to moist. 154.5 S	e-grained, medium dense, moist. hish-grey mottled light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. i- El. 183' - 177' white layer (calcite?) at 98.4'. preenish-grey speckled black motteled yellow-orange SILT, trace ained sand, loose, wet to moist. 154.5 5 Remarks: Hole grouted immediately upon ci	e-grained, medium dense, moist. hish-grey mottled light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. i- El. 183' - 177' white layer (calcite?) at 98.4'. preenish-grey speckled black motteled yellow-orange SILT, trace ained sand, loose, wet to moist. 154.5 5 Remarks: Hole grouted immediately upon complet	Averange mottled black silty SAND, trace clay, fine- to e-grained, medium dense, moist. hish-grey mottled light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. - El. 183' - 177' white layer (calcite?) at 98.4'. preenish-grey speckled black motteled yellow-orange SILT, trace ained sand, loose, wet to moist. 154.5 SM SS 16 7 10 SM SS 16 7 10 SS 16 7 10 SS 16 7 10 SS 16 7 10 SS 16 7 10 SS 16 7 10 SS 17 21 SS 18A 2 2 154.5 S Remarks: Hole grouted immediately upon completion. /	Averange motified black silty SAND, trace clay, fine- to e-grained, medium dense, moist. hish-grey mottled light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. I- El. 183' - 177' white layer (calcite?) at 98.4'. preenish-grey speckled black motteled yellow-orange SILT, trace ained sand, loose, wet to moist. 154.5 SM SS 16 7 17 17 17 17 17 17 17 17 17	Averange mottled black silty SAND, trace clay, fine- to e-grained, medium dense, moist. hish-grey mottled light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. - El. 183' - 177' white layer (calcite?) at 98.4'. preenish-grey speckled black motteled yellow-orange SILT, trace ained sand, loose, wet to moist. 154.5 S Remarks: Hole grouted immediately upon completion. Average flui	Averange mottled black silty SAND, trace clay, fine- to e-grained, medium dense, moist. iish-grey mottled light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. - El. 183' - 177' white layer (calcite?) at 98.4'. preenish-grey speckled black motteled yellow-orange SILT, trace ained sand, loose, wet to moist. ML ML ML ML ML ML ML ML ML ML	worange motified black silty SAND, trace clay, fine- to e-grained, medium dense, moist. iish-grey mottled light brown orange and black silty SAND, fine-dium-grained, trace coarse-grained dense, wet. SM SS 16 7 17 100 i El. 183' - 177' ML SS 18A 2 4 100 vhite layer (calcite?) at 98.4'. moist. ML SS 18A 2 4 100 154.5 Remarks: Hole grouted immediately upon completion. Average fluid density 13	A corange motified black silty SAND, trace clay, fine- to e-grained, medium dense, moist. Inish-grey motified light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. I- El. 183' - 177' white layer (calcite?) at 98.4'. preenish-grey speckled black motteled yellow-orange SILT, trace ained sand, loose, wet to moist. ISA Remarks: Hole grouted immediately upon completion. Average fluid density 13.4lb/g	A corange motified black silty SAND, trace clay, fine- to e-grained, medium dense, moist. Inish-grey motified light brown orange and black silty SAND, fine-dium-grained, trace coarse-grained dense, wet. SM Image: SS 16 7 17 100 Image: SS 18 17 13 34 117 34.4 79.2 20.8 Inish-grey mottled light brown orange and black silty SAND, fine-dium-grained, trace coarse-grained dense, wet. Image: SS 17 17 13 34 117 34.4 79.2 20.8 I- EI. 183' - 177' Image: SS 18A 3 2 4 100 Image: SS 18A 2 4 100 Image: SS 154.5 15 154.5 15 16 10 10 10 10 10 10 10 <td>Morange motified black silty SAND, trace clay, fine- to e-grained, medium dense, moist. Inish-grey motified light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. Inish-grey motified light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. Inish-grey motified light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. Inish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Interentish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Interentish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Interentish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Interentish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Interentish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Interentish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Interentish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Inite layer (calcite</td>	Morange motified black silty SAND, trace clay, fine- to e-grained, medium dense, moist. Inish-grey motified light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. Inish-grey motified light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. Inish-grey motified light brown orange and black silty SAND, fine- dium-grained, trace coarse-grained dense, wet. Inish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Interentish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Interentish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Interentish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Interentish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Interentish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Interentish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Interentish-grey speckled black motified yellow-orange SiLT, trace Inite layer (calcite?) at 98.4*. Inite layer (calcite

	9		LC	DG	OF	BC	DRI	NG	B	H-1	3			(D-		- •
Location:	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716					Date Drill I Logg	Start Com Metho ed By ewed	pletec od: /:		JJT		-		(Paç	ge 5	of
Depth (ft) Elevation (ft)	MATER DESCRIF		USCS Classification	Graphic Log	Sample Type	Sample/Run No.	Blows/6" Press /Int_nei/in	N Value (uncorrected)	Recovery (%)	Water Content (%)	% Gravel	% Sand	% Passing	Liquid Limit	Plastic Limit	
100	Yellow-brown clayey SAND, fine- to me fine-grained gravel, moist.	edium-grained, trace	SC		ST	188	100/1 200/2 800/2	2]	79	28.0	3.7	79.4	16.9	50	27	
102 102 104 104 104 106 106	ST1 - El. 177' - 158' Yellow-orange to milky-white/clear inter and silty SAND, fine- to coarse-grained Grey-green 1" silt layer between sand l	dense wet	SP SM		ss (19	10 13 26	39								
100 - 172 108 - 172 108 - 170 110 - 170	Tan-grey poorly graded SAND. with silt coarse-grained, very dense, saturated. Becomes orange-yellow.	fine-grained, trace	SP SM		ss	20	31 41 42	83		23.2		93.7	6.3			
112 - 168 112 - 166 114 - 166 114 - 164	Orange-yellow poorly graded SAND, wit dense, saturated.	h silt, fine-grained, very	SP SM		ss	21	23 28 31	59								
162 18 11 160 20	Dark yellow-orange poorly graded SAND dense, saturated.), with silt, fine-grained, very	SP SM		ss	22	23 34 38	72	78							
- 158 22 -	ST2 - El. 158' - 147'															
24	Dark yellow-orange/light brown-orange c trace medium-grained, loose, wet. Trace	layey SAND, fine-grained, spiral shell fragments.	sc		ss	23A	WH 1 6	7	:	35.5	7	5.5	24.5	55	26	29

		5			LC)G	OF	B	OR	INC	G B	H-1	13			(D-		
Loca	ition:	DUKE COGEMA STONE & WEBSTER me: MOX Fuel Fabrication Facility DOE Savannah River Site er: 08716	Easting: 5 Surface Elevation: 2	80,422. 54,905. 279.5 ASL				Date Drill Loge	e Star e Con Meth ged B	nplete Iod: iy:	ed:	JJT		·	•	<u>(Pag</u>	<u>e 6</u>	of
Depth (ft)	Elevation (ft)	MATER DESCRIF		IISCS	Classification	Graphic Log	Sample Type	Samole/Run No	Blows/6"	N Value	Recovery (%)	(%	Τ		% Passing No 200 Sieve	Liquid Limit	Plastic Limit	
126	- 154	Yellow-tan clayey SAND, fine-grained.	wet.	s	iC		s'	T 23	3			35.5	<u> </u>	75.0	25.0	62	26	3
128 128 130	— 152 — 150	As above, but with thin greenish silt/cla	y laminae, medium dense.	s	с		55	5 24	WF 6 5	11	133							
132 132 134 134 134 134 136 136 136	- 148 - 146 - 144	GC - El. 147' - 140' Brown sandy CLAY, with silt, fine- to me coarse-grained, very stiff, wet.	dium-grained, trace	СІ	4		ss	25	6 8 10	18	133	27.1		42.3	57.7	52	23	25
138 40	- 142 - 140	Light brown-orange silty SAND, trace cla fine- to coarse-grained, dense, moist. CG - El. 140'	y, trace fine-grained gravel,	SN	1	2	ss	26	6 10 25	35	133							
42	138 136 134	Yellow-orange poorly graded SAND, with very dense, wet to saturated.	silt, fine- to medium-grained	I, SM			ss	27	31 34 50	84	72							
8	132 130	Yellow-orange to dark orange poorly grad clayey stringers, fine- to coarse-grained, v	ed SAND, with silt, with rery dense, wet to saturated.	SP SM		X	ss	28	42 50/3	>100	56							
rilling	Rig: (epth: 154.5 R CME-75 Inny, high 80's F	emarks: Hole grouted	immed	liate	ly up	on co	omple	etion.	Avera	age fl	uid de	ensity	13.4	lb/ga	I.		

شمد

QUALITY LEVEL QL-1A (IROFS)

Total Pages 483

ATTACHMENT NUMBER 2

CONE PENETRATION TESTING FINAL REPORT

MOX Fuel Fabrication Facility Site Geotechnical Report DCS01-WRS-PLB-G-00005-B

Page 1b of 483

QUALITY LEVEL QL-1, IROFS

.

Total Pages 483

ATTACHMENT NUMBER 2

CONE PENETRATION TESTING FINAL REPORT

CONE PENETRATION TESTING AT THE MIXED OXIDE FUEL FABRICATION FACILITY (MFFF) SAVANNAH RIVER SITE AIKEN, SOUTH CAROLINA

Final Report

Copy 2

Prepared for:

Duke Cogema Stone & Webster, LLC 400 South Tryon Street Charlotte, NC 28202

Prepared by:

Applied Research Associates, Inc. New England Division 415 Waterman Road South Royalton, Vermont 05068

ARA Report No. 0198

October 17, 2000

TABLE OF CONTENTS

1 CONE PENETROMETER TESTING AT THE MIXED OXIDE FUEL FABRICATION FACILITY	
INTRODUCTION	••••••
TEST LOCATIONS	••••••
REPORT OUTLINE	
2 TESTING EQUIPMENT AND PROCEDURES	••••••
INTRODUCTION	•••••
INTRODUCTION PIEZO-ELECTRIC CONE PENETROMETER EQUIPMENT AND TEST	•••••
Saturation of the Piezo-Cone	••••••
Field Calibrations	••••••
reneutation Data Format	
Pore Pressure Correction of Tip Stress	
Numerical Editing of the Penetration Data	
RESISTIVITY TESTING SEISMIC CONE PENETROMETER EQUIPMENT AND TEST	••••••••••••••••
SEISMIC CONE PENETROMETER EQUIPMENT AND TEST	••••••
FORE FRESSURE DISSIPATION RESULTS	
JOIL SAMITLE COLLECTION	
DILATOMETER TESTS (DMT)	
3 DATA ANALYSIS TECHNIQUES	
OVERVIEW	
LOCATION OF THE SITE WATER TABLE	
STANDARD PENETRATION TEST	
UNDRAINED SHEAR STRENGTH (S.,)	
INCOLUTATION OF MAIND S. VALUES	
L'STIMATES OF OVERCONSOLIDATION RATIO (OCR)	
COEFFICIENT OF LATERAL CONSOLIDATION (C _H)	
COEFFICIENT OF LATERAL PERMEABILITY (K _H)	•••••
TYPICAL P-CPT PROFILE SEISMIC MEASUREMENTS AND RESULTS	•••••
TYPICAL SEISMIC-CPT PROFILE	
	••••••••••••••••
LIST OF REFERENCES	

APPENDIX A: PIEZO CONE PROFILES APPENDIX B: INTENTIONALLY LEFT BLANK APPENDIX C: SEISMIC DATA APPENDIX D: PORE PRESSURE DISSIPATION DATA APPENDIX E: DILATOMETER DATA

LIST OF TABLES

Table	Page
Table 1. Summary of CPT Testing at the Mixed Oxide Fuel Fabrication Facility	

LIST OF ILLUSTRATIONS

Figure

2.1	Schematic of ARA's Resistivity and Seismic cone penetrometers	
2.2	Typical CPT profile from the MFFF site	
2.3	High energy seismic shear wave hammer	
2.4	Typical shear wave traces	
2.5	Typical compression wave traces	20
2.6	Classic dissipation profile from MFFF project	21
2.7	Dissipation test showing dilating condition	22
2.8	Soil sampler schematic	23
2.9	Schematic of dilatometer utilized on the MFFF site	24
3.1	Friction ratio soil classification chart	35
3.2	Dissipation curves for a 60° cone according to linear isotropic uncoupled solution (after Raligh and Levadoux, 1980)	36
3.3	Estimation of the constrained modulus, M, for clays (after Robertson and Campanella, 1988)	37
3.4	CPT profile from location CPT-08S	
3.5	Shear wavespeeds from location CPT-08S	

SECTION 1 CONE PENETROMETER TESTING AT THE MIXED OXIDE FUEL FABRICATION FACILITY

INTRODUCTION

Applied Research Associates, Inc. (ARA) under contract to Duke, Cogema, Stone & Webster, LLC, conducted Electric Cone Penetration Tests with seismic soundings (S-CPT) at the Mixed Oxide Fuel Fabrication Facility (MFFF), Savannah River Site, South Carolina. This report documents ARA's site investigation efforts, test techniques, and analysis of the data for fieldwork conducted May 31 through July 24, 2000. Presented in this report is the field testing methods, data analysis techniques, and a brief discussion of the results.

TEST LOCATIONS

Sixty-four cone penetrometer test locations were conducted at the MFFF site. All penetrations measured tip stress, sleeve stress, and penetration pore pressure. Twenty of the penetrations included resistivity data in addition to the above measurements. At fifteen of the locations, seismic shear and compressional wave measurements were recorded on five foot intervals. Pore pressure dissipations were conducted as directed by the Stone and Webster field representative. In addition to CPT soundings, twenty soil samples were collected and five dilatometer tests were performed.

Table 1 lists the penetrations conducted and relevant information about each location. All locations were grouted upon retraction of the rod string or using a standard tremie grout method.

Table 1.	Summary	of CPT	Testing	at The	MFFF site	ð.

Test ID	ARA Filename	Type of Test	Date of Test	Maximum Depth (ft)	Dissipation Depth (ft)	Northing (ft)	Easting (ft)	Elevation (ft)	G.W.T. Depth (ff
CPT-01S	409u008	S/P-CPT	6/9/00	104.4	104.4	80784.9	55554.0	258.2	73.4
CPT-02R	414u003	R/P-CPT	6/14/00	112.8	65.3, 101.6	80635.0	55616.4	257.8	57.3
CPT-03S	408u007	S/P-CPT	6/8/00	109.7	64.1, 74.1	80551.4	55700.8	253.2	57.8
CPT-04R	417u002B	R/P-CPT	6/17/00	135.5	80.0, 135.5	80465.4	55320.8	272.6	73.6
CPT-05S	408u004	S/P-CPT	6/8/00	124.8	71.7, 108.5	80499.7	55478.5	264.5	61.9
CPT-06R	415u002	R/P-CPT	6/15/00	103.2	64.8, 78.6	80470.7	55633.2	256.9	58.0
CPT-07R	419u001	R/P-CPT	6/19/00	114.3	78.7, 87.5, 98.1	80438.0	55228.2	280.2	79.6
CPT-08S	402u004	S/P-CPT	6/2/00	140.0	111.4, 140.1	80393.7	55329.1	273.0	74.6
CPT-09R	420u005	R/P-CPT	6/20/00	126.5	50.6, 80.7, 88.1, 112.3		55445.7	266.2	67.0
CPT-10R	420u001	R/P-CPT	6/20/00	142.5	45.6, 85.3, 104.9	80406.7	55527.1	261.9	67.0
CPT-11S	402u001	S/P-CPT	6/2/00	106.4	78.0, 106.4	80394.0	55624.1	258.5	62.4
CPT-12R	323u003	R/P-CPT	6/23/00	102.9	67.4, 86.0	80373.1	55747.5	254.5	61.0
CPT-13S		S/P-CPT	6/5/00	166.5	135.5	80262.2	55233.6	296.7	100.0
CPT-14R		R/P-CPT	6/19/00	123.7	68.9, 85.9, 123.7	80292.7	55330.8	276.0	75.0
CPT-15R	322u001	R/P-CPT	6/22/00	130.0	79.0, 114.9	80295.0	55462.7	269.1	68.5
CPT-16S	408u001	S/P-CPT	6/8/00	122.1	84.7, 116.1	80281.0	55628.6	260.5	79.0
	410u001	P-CPT	6/10/00	106.5	80.1	80259.4	55747.7	255.9	62.0
CPT-18R	322u005	R/P-CPT	6/22/00	120.3	82.9, 97.2	80192.1	55405.9	277.0	73.8
CPT-19S	403u002	S/P-CPT	6/3/00	118.0	98.0, 106.1	80132.1	55467.5	274.8	75.4
CPT-20R	322u003	R/P-CPT	6/22/00	107.0	76.0	80211.3	55570.4	266.9	65.8
CPT-21	412u004	P-CPT	6/12/00	138.7	110.1	80148.4	55060.1	200.9	97.0
:PT-22	412u007	P-CPT	6/12/00	152.6	104.4, 114.6	80143.8	55221.9	295.4	100.0
	406u003	S/P-CPT	6/6/00	123.8	92.9, 104.6	80088.9	55379.4	297.3	69.4
	410u003B	P-CPT	6/10/00	63.4		80115.0	55548.5	272.6	78.8
	410u005	P-CPT	6/10/00	143.1	102.0	80115.0	55548.5	272.6	78.8
CPT-25	412u001	P-CPT	6/12/00	84.5	76.4	80104.7	55621.7	268.9	68.8
	406u001	S/P-CPT	6/6/00	127.1	85.1, 112.7	80116.2	55726.7	261.9	65.5
	322u008	R/P-CPT	6/22/00	128.6	86.0, 104.5	80001.4	55254.2	277.5	72.0
the second s	431y006	S/P-CPT	5/31/00	150.0	107.0	80001.8	55332.0	279.2	76.5
	413u009	R/P-CPT	6/13/00	119.2	66.8, 89.1	79985.8	55422.4	279.2	68.5
	414u001	R/P-CPT	6/14/00	141.0	60.8, 79.3, 125.3	79973.4	55538.3	274.2	
CPT-31S		S/P-CPT	6/1/00	126.3	126.1	79977.3	55610.3	274.2	<u>71.0</u> 67.0
CPT-32R		R/P-CPT	6/24/00	130.3	78.0, 82.6	80005.4	55755.6	264.7	63.8
CPT-33R		R/P-CPT	6/13/00	142.1	81.0, 116.2,	79842.0	54922.7		
	407u001	S/P-CPT	6/7/00	146.0	111.8, 118.2	79826.9	55323.2	274.6 270.8	71.6
	403u005	S/P-CPT	6/3/00	109.4	24.8, 94.9, 141.0	79888.6	55389.0	270.8	71.8
	413u007	R/P-CPT	6/13/00	127.2	84.5, 97.9, 119.9	79898.9	55478.3	273.4	69.5
	405u001	S/P-CPT	6/5/00	135.5	66.6, 124.0	79886.1	55629.4	268.4	67.0
	323u001	R/P-CPT	6/23/00	133.9	81.7, 93.5, 121.8	79899.9	55568.6	200.4	67.4
	324u005	R/P-CPT	6/24/00	120.4	56.2, 82.1, 99.1	80206.6	55646.9	262.1	64.0
	324u007	R/P-CPT	6/24/00	113.2	91.0	79941.1	55448.0		
	408L001	P-CPT	7/8/00	126.0	87.1	80169.8	55591.7	275.0	72.3
	315L055	P-CPT	7/15/00	116.6		80257.7		267.5	69.9
	320L005	P-CPT	7/20/00	118.0	85.2, 95.3	80530.3	55585.0 55109.3	264.0	76.0
	321L001	P-CPT	7/21/00	142.6	94.0, 130.0	80531.1	55194.0	284.7	85.8
	320L003	P-CPT	7/20/00	142.0	83.1, 129.1	80482.0		280.5	82.5
	320L007	P-CPT	7/20/00				55032.8	284.5	74.0
	322L007	P-CPT	7/22/00	116.0	116.0	80456.7	55146.5	284.1	86.1
	02210051			110.5	96.5	80463.6	54964.1	281.2	82.4
	319L003	P-CPT	7/19/00	123.1		80332.7	54931.1	292.4	91.5

.'est ID	ARA Filename	Type of Test	Date of Test	Maximum Depth (ft)	Dissipation Depth (ft)	Northing (ft)	Easting (ft)	Elevation (ft)	G.W.T. Depth (ft
CPT-51	318L008	P-CPT	7/18/00	138.7	95.3, 104.1	80318.7	55198.3	295.5	95.0
CPT-52	319L005	P-CPT	7/19/00	119.9	114.2, 119.1	80277.0	54867.3	293.4	94.7
CPT-53	315L022	P-CPT	7/15/00	124.8	89.0, 106.4	80309.5	55059.9	292.8	90.2
CPT-54	320L001	P-CPT	7/20/00	123.1	96.4, 104.2	80243.1	54940.0	293.7	92.9
CPT-55	318L005	P-CPT	7/18/00	136.5	96.3, 113.0	80259.6	55141.9	294.4	94.1
CPT-56	318L001	P-CPT	7/18/00	120.1	103.5	80207.0	54866.7	294.2	92.5
CPT-57	318L003	P-CPT	7/18/00	128.8	101.2, 115.1	80229.2	55058.2	293.6	91.8
CPT-58	317L004	P-CPT	7/17/00	121.8	103.0, 114.1	80135.1	54866.9	295.1	88.0
CPT-59	415L005	P-CPT	7/15/00	126.0	99.1	80152.7	54956.9	295.5	75.7
CPT-60	415L003	P-CPT	7/15/00	141.0	99.4	80142.2	55140.6	295.7	66.6
CPT-61	321L003	P-CPT	7/21/00	114.6	90.5, 97.1	80037.6	54869.6	279.3	76.3
CPT-62	322L001	P-CPT	7/22/00	115.7	70.8, 95.6	80055.6	54956.3	278.5	75.9
CPT-63	322L003	P-CPT	7/22/00	118.6	104.5	80066.0	55055.5	279.4	90.0
CPT-64	415L001	P-CPT	7/15/00	141.0		80034.9	55165.3	279.8	66.6
DIL-10		DMT	7/7/00	88.0		80398.5	55537.5	261.8	
DIL-15		DMT	6/30/00	103.0		80291.5	55466.0	269.1	
DIL-23		DMT	7/6/00	108.0		80088.4	55382.8	277.2	
DIL-25		DMT	7/1/00	83.0		80108.4	55620.2	268.4	
DIL-29		DMT	6/29/00	95.0		79975.5	55420.4	276.2	
SS-05		SS	6/27/00	117.0		80499.8	55473.5	264.5	**
SS-10		SS	6/28/00	75.0		80411.5	55529.9	261.8	
		SS	6/28/00	115.0					
SS-14		SS	6/28/00	67.0	<u> </u>	80292.7	55330.8	276.0	
		SS	6/28/00	94.0					
SS-22		SS	6/26/00	130.0		80153.0	55221.7	297.0	
SS-24		SS	6/27/00	125.0	••	80112.8	55547.7	272.8	
SS-26		SS	6/27/00	112.0		80116.2	55726.7	261.9	
SS-29		SS	6/26/00	70.0		79982.6	55417.0	276.6	
		SS	6/26/00	100.0					
SS-36		SS	6/26/00	62.0		79902.7	55477.0	273.3	
	••	SS	6/27/00	121.8	••	**			
SS-37		SS	6/28/00	60.0	**	79882.3	55625.6	268.8	
		SS	6/28/00	69.0					
		SS	6/28/00	90.0	•• ·		**	·	
		SS	6/28/00	115.0					
SS-39		SS	6/27/00	104.0	***	80208.8	55650.3	261.7	••
SS-46		SS	7/24/00	114.8	49 	80487.6	55036.0	284.2	
		SS	7/24/00	133.0	**				
		SS	7/24/00	142.0					

REPORT OUTLINE

This report is organized into 4 Sections and 4 Appendices. Section 2 discusses the CPT equipment, field procedures, and daily calibrations. Section 3 describes the methods used to interpret the CPT results as well as a discussion of a typical CPT Profile from the MFFF site. Section 4 lists references. Appendix A presents the piezocone data. Piezocone data in tabular format is presented in Appendix B. Seismic test wave histories and velocities are located in Appendix C. Appendix D contains pore pressure dissipation data. Dilatometer data is found in Appendix E.

SECTION 2 TESTING EQUIPMENT AND PROCEDURES

INTRODUCTION

The electric cone penetrometer test (CPT) was originally developed for use in soft soil. Over the years, cone and push system designs have evolved to the point where they can now be used in strong cemented soils and even soft rock. ARA's penetrometer consists of an instrumented probe that is forced into the ground using a hydraulic load frame mounted on a heavy truck with the weight of the truck providing the necessary reaction mass. The probe has a conical tip and a friction sleeve that independently measures vertical resistance beneath the tip as well as frictional resistance on the side of the probe as a function of depth. A schematic view of ARA's penetrometer probe is shown in Figure 2.1. A pressure transducer in the cone is used to measure the pore water pressure as the probe is pushed into the ground (P-CPT).

A resistivity module is attached directly behind the cone to measure the electrical resistance of the subsurface. This probe also includes three geophones aligned along the X, Y, and Z-axis for measuring shear and compressional waves.

PIEZO-ELECTRIC CONE PENETROMETER EQUIPMENT AND TEST

The cone penetrometer tests were conducted using the ARA penetrometer truck. The penetrometer equipment is mounted inside a van body attached to a ten-wheel truck chassis with a diesel engine. Ballast in the form of weights is added to the truck to achieve an overall push capacity of 60,000 lbs. Penetration force is supplied by a pair of large hydraulic cylinders bolted to the truck frame.

A 15-cm² penetrometer probe (which has 1.75-inch diameter, 60° conical tip, and a 1.75inch diameter by 6.5-inch long friction sleeve) was used on this project. This probe size is in conformance with ASTM D 5778 (Ref. 1). The shoulder between the base of the tip and the porous filter is 0.08 inch long as shown in Figure 2.1. The penetrometer is advanced vertically into the soil at a constant rate of 48 inches/minute (2cm/second), although this rate must sometimes be reduced as hard layers are encountered. The electric cone penetrometer test is conducted in accordance with ASTM D 5778 (Ref. 1).

Inside the probe, two load cells independently measure the vertical resistance against the conical tip and the side friction along the sleeve. Each load cell is a cylinder of uniform cross section instrumented with four strain gages in a full-bridge circuit. The forces are sensed by the load cells and the data are transmitted from the probe assembly via a cable running through the push tubes. The analog data are digitized, recorded, and plotted by computer in the penetrometer truck. A set of data is normally recorded each second, for a minimum resolution of about one data point every 0.8 inch of cone advance. The depth of penetration is measured using a string potentiometer mounted on the push frame.

Electronic data acquisition equipment for the cone penetrometer consists of a computer with a graphics monitor and a rack of eight signal conditioners. Analog signals are transmitted from the probe to the signal conditioners where the CPT data are amplified and filtered at 1 Hz. Once amplified, the analog signals are transmitted to a high-speed analog-to-digital converter board, where the signals are digitized; usually at the rate of one sample per second for the penetration data. The digital data are then read into memory and written to the internal hard disk for future processing. Upon completion of the test the penetration data are plotted. The digital data are brought to ARA's New England Division in South Royalton, Vermont, for analysis and preparation of report plots.

Saturation of the Piezo-Cone

Penetration pore pressures are measured with a pressure transducer located behind the tip in the lower end of the probe. Water pressures in the soil are sensed through a 250 micro-inch porous polyethylene filter that is 0.25-inch high and 0.202-inch thick. The pressure transducer is connected to the porous filter through a pressure port as shown in Figure 2.1. The pressure port and the filter are filled with high viscosity silicone oil.

In order for the pressure transducer to respond rapidly and correctly to changing pore pressures during the penetration, the filter and pressure port must be saturated with oil upon assembly of the probe. A vacuum pump is used to de-air the silicone oil before use and also to saturate the porous filters with oil. The probe is assembled with the pressure transducer facing upwards and the cavity above the pressure transducer is filled with de-aired oil. A previously saturated filter is then placed on a tip and oil is poured over the threads. When the cone tip is screwed into place, excess oil is ejected through the pressure port and filter, thereby forcing out

any trapped air. The high viscosity of the silicone oil coupled with the small pore space in the filter prevents the loss of saturation as the cone is pushed through dry soils. Saturation of the cone can be verified with a calibration check at the completion of the penetration. Extensive field experience has proven the reliability of this technique.

Field Calibrations

Many factors can effectively change the calibration factors used to convert the raw instrument readouts, measured in volts, to units of force or pressure. As a quality control measure, as well as a check for instrument damage, the load cells and the pressure transducer are routinely calibrated in the field. Calibrations are completed with the probe ready to insert into the ground so that any factor affecting any component of the instrumentation system will be included and detected during the calibration.

The tip and sleeve load cells are calibrated with the conical tip and friction sleeve in place on the probe. For each calibration, the probe is placed in the push frame and loaded onto a precision reference load cell. The reference load cell is periodically calibrated in ARA's laboratory against instruments traceable to NIST standards. To calibrate the pore pressure transducer, the saturated probe is inserted into a pressure chamber with air pressure supplied by the compressor on the truck. The reference transducer in the pressure chamber is also periodically calibrated against an NIST traceable instrument in ARA's laboratory. Additionally, the linear displacement transducer used to measure the depth of penetration, is periodically checked against a tape measure. All records of device and load cell calibrations are located at ARA's New England Division.

Each instrument is calibrated using a specially developed computer code that displays the output from the reference device and the probe instrument in graphical form. During the calibration procedure, the operator checks for linearity and repeatability in the instrument output. At the completion of each calibration, this code computes the needed calibration factors using a linear regression algorithm. At a minimum, each probe instrument is calibrated at the beginning of each day of field testing. Furthermore, the pressure transducer is recalibrated each time the porous filter is changed and the cone re-saturated. Calibrations are also performed to verify the operation of any instrument if any damage is suspected.

Penetration Data Format

Figure 2.2 presents a typical CPT profile from the MFFF site investigation. This plot presents tip stress, sleeve friction, friction ratio and penetration pore pressure. As shown in Figure 2.1, the piezo-cone probe senses the pore pressure immediately behind the tip. Currently, there is no accepted standard for the location of the sensing element. ARA chose to locate the sensing element behind the tip since the filter is protected from the direct thrust of the penetrometer and the measured pore pressure can be used to correct the tip resistance data as recommended in Reference 2. The magnitude of the penetration pore pressure is a function of the soil compressibility and, most importantly, permeability. In freely draining soil layers, the measured pore pressures will be very close to the hydrostatic pressure computed from the elevation of the water table. When low permeability soil layers are encountered, excess pore pressures generated by the penetration process cannot dissipate rapidly and this results in measured pore pressures, which are significantly higher than the hydrostatic pressures. Whenever the penetrometer is stopped to add another section of push pipe, or when a pore pressure dissipation test is run, the excess pore pressure may begin to dissipate. When the penetration is resumed, the pore pressure quickly rises to the level measured before the penetrometer was stopped. This process causes some of the spikes that appear in the penetration pore pressure data.

Pore Pressure Correction of Tip Stress

Cone penetrometers, by necessity, must have a joint between the tip and sleeve. Pore pressure acting behind the tip decreases the total tip resistance that would be measured if the penetrometer was without joints. The influence of pore pressure in these joints is compensated for by using the net area concept (Ref. 2). The corrected tip resistance is given by:

$$q_{\tau} = q_c + u \left[1 - A_n / A_T \right]$$
(2.1)

where:

 q_T = corrected tip resistance (psi)

 q_c = measured tip resistance (psi)

u = penetration pore pressure measured behind the tip (psi)

 A_n = net area behind the tip not subjected to the pore pressure (1.95 in²)

 A_T = projected area of the tip (2.405 in²).

Hence, for the ARA cone design, the tip resistance is corrected as:

$$q_T = q_c + u(.2054) \tag{2.2}$$

Laboratory calibrations have verified Equation 2.2 for ARA's piezo-cone design.

A joint also exists behind the top of the sleeve (see Figure 2.1). However, since the sleeve is designed to have the same cross sectional area on both ends, the pore pressures acting on the sleeve cancel out. Laboratory tests have verified that the sleeve is not subjected to unequal end area effects. Thus, no correction for pore pressure is needed for the sleeve friction data.

The net effect of applying the pore pressure correction is to increase the tip resistance. Generally, this correction is only significant when the measured tip resistance is very low.

Numerical Editing of the Penetration Data

Any time that the cone penetrometer is stopped or pulled back during a test, misleading data can result. For instance, when the probe is stopped to add the next push rod section, or when a pore pressure dissipation test is run, the excess pore pressures will dissipate towards the hydrostatic pore pressure. When the penetration is resumed, the pore pressure rises very quickly to the pressures experienced prior to the pause in the test. In addition, the probe is sometimes pulled back and cycled up and down at intervals in deep holes to reduce soil friction on the push tubes. This results in erroneous tip stress data when the cone is advanced in the previously penetrated hole.

To eliminate this misleading data from the penetration profile, the data is numerically edited before it is plotted or used in further analysis. Each time the penetrometer stops or backs up, as apparent from the depth data, the penetration data is not plotted. Plotting of successive data is resumed only after the tip is fully re-engaged in the soil by one tip length of new penetration. In addition, each time the probe stops, the previous 0.5 inch of penetration data is filtered out. This filter is required to remove data that was recorded while the operator was in the process of stopping the probe. This algorithm also eliminates any data acquired at the ground surface before the tip has been completely inserted into the ground. The sleeve data is similarly treated and this results in the first data point not occurring at the ground surface, as can be seen in the tip and sleeve profiles in Figure 2.2. These procedures ensure that all of the penetration data

that is plotted and used for analysis was acquired with the probe advancing fully into undisturbed soil.

RESISTIVITY TESTING

Resistivity, one of the oldest geophysical exploration techniques, was originally developed to locate mineral and oil deposits and ground water supplies. The measurements principal exploited by resistivity surveying is that an electrical contrast exists between different geological materials and that this electrical contrast can be used to identify and locate geologic materials. Resistivity surveys are being increasingly used in contaminated site investigation programs to delineate the extent and degree of contamination at a site. These surveys rely on the electric contrasts that typically exist between contaminated soils and uncontaminated soils. For example, leachate from a landfill will contain a higher concentration of dissolved solids, which will decrease the resistivity of the groundwater (Ref. 3). Soils contaminated with hydrocarbons (fuel oils, cleaning solvents, etc.) will typically have higher resistivity than uncontaminated soils as the hydrocarbon can act as an insulator.

The Resistivity-CPT (R-CPT) is an adaptation of conventional borehole tools. The R-CPT probe is in intimate contact with the soil and pore fluid which eliminates two problems associated with borehole resistivity surveys; 1) intrusion of drilling fluids into borehole walls which changes the resistivity of the media and 2) the requirement that any casing materials be non-conducting.

Figure 2.1 is a schematic of ARA's R-CPT probe. The probe consists of 4 electrodes separated by high strength plastic reinforced insulators. The outer two electrodes induce an electric current into the soil and the inner two electrodes measure the potential drop, which is proportional to the resistivity of the soil. To avoid polarization effects, the four electrode array is operated at a frequency of 40 HZ. Electronics in the CPT vehicle are used to modulate and demodulate the current and potential measurement signals to and from the probe. The probe is calibrated in a large water solution in which the conductivity is varied. The data from the calibration tests is used to determine the probe calibration factor, which is dependent on the probe geometry.

SEISMIC CONE PENETROMETER EQUIPMENT AND TEST

The seismic cone penetrometer test was developed in the early 1980s and is gaining rapid acceptance in the geotechnical community. As with the conventional electric cone penetrometer test, initial development work has concentrated in weak materials. ARA's seismic cone equipment and field procedures were developed specifically for both weak soils and strong, dry, cemented soils. The seismic cone penetrometer test utilizes three geophones (Geospace Model GS-14-L9 velocity gages) mounted inside the penetrometer probe to detect the arrival at depth of seismic waves generated on the surface. Two horizontal transducers monitor shear wave (S-wave) traces from which the shear wave velocity can be determined. A third geophone, mounted vertically, is used to measure the compression wave (P-wave) traces and to subsequently derive the compressional velocity.

In the Seismic-Electric Cone Penetrometer Test (S-CPT), the cone is stopped at prescribed depth intervals, and S- and P-waves are generated on the ground surface near the push tubes. Both average downhole velocities and velocities between the depth intervals can be computed from the arrival time or time of peak data. The 2.0-inch diameter expander behind the sleeve minimizes coupling between the ground and the push tubes, mitigating problems with wave propagation down the push tubes.

High-energy shear waves are generated by an automated shear wave source in the front pad of the CPT rig (Figure 2.3). This system consists of a double-acting hydraulic cylinder used to horizontally move a large hammer. The hammer impacts either end of the front lifting pad of the penetrometer truck and induces a horizontal shear wave. By striking the pad on either end, polarized shear waves can be generated. This pad is 1 ft wide and about 8 ft long and oriented parallel to the axles of the truck. The point of impact of the shear hammers is 36 inches horizontally from the penetrometer push rod. Typical seismic traces are shown in Figure 2.4, where time of first peak shear wave motions are indicated. The first major shear wave is used to select the shear time of peak as denoted by the arrows. The use of polarized shear waves clarifies this time of peak.

In a similar fashion, compressive waves are generated by hitting a pile cap with an automated P-wave hammer or a sledge hammer. The point of impact is 72 inches horizontally away from the push rod.

Typical compressional wave traces are shown in Figure 2.5. Determining arrival time of the compressional wave (P-wave) is relatively more difficult. However, the time of first peak can usually be determined with consistency.

PORE PRESSURE DISSIPATION RESULTS

At selected depths, the penetrometer is stopped and the dissipation of excess pore pressure is observed. Pore pressures, as sensed by the pressure transducer, are recorded at regular time intervals (typically 1 second, but the sample rate can be adjusted for local site conditions) and plotted on the graphics monitor. Dissipation tests are usually run until at least 50 percent of the excess pore pressure has dissipated. This length of time, t_{50} can be used to determine the lateral coefficient of consolidation and permeability in the given soil layer. Depending on site conditions, t_{50} can range from a few minutes to several hours. These tests are sometime run to complete dissipation to measure the hydrostatic pore pressure. During the dissipation test, the penetrometer is stationary with no downward force applied by the penetrometer truck.

A classic dissipation profile in a clay soil is shown in Figure 2.6. Total pore pressure is presented on a semi-log plot versus time. The classic dissipation curve will show a dissipation rate that decreases with time. If the dissipation test is allowed to run long enough, the static pore pressure will eventually be reached. The value of P_n at the top of Figure 2.6 is the average of the last ten pore pressure measurements. If the dissipation test is sufficiently long, P_n will be equal to the static pore pressure. This value can also be determined from the water table elevation at some sites. Knowing the static pore pressure (u_o), as well as the peak pressure observed during the test (u_p), the pore pressure at 50 percent of dissipation (u_{50}) can be determined. Time to 50% dissipation (t_{50}) can then be read directly from the dissipation profile.

Many of the penetration profiles from the work at the MFFF site exhibit the classic shape as depicted in Figure 2.6. At some locations, the dissipations start with a vacuum condition due to dilatation occurring during the penetration. From this condition the pore pressures increase as presented in Figure 2.7. This curve shape does not permit the traditional dissipation analysis algorithms to be used to determine hydraulic conductivity. For this reason only the plots of the dissipations as a function of time are presented in the appendix and not analysis tables.

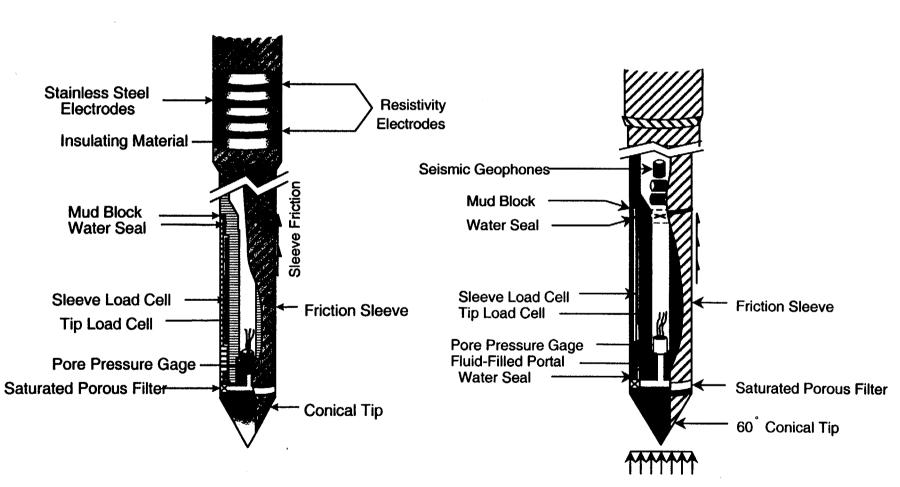
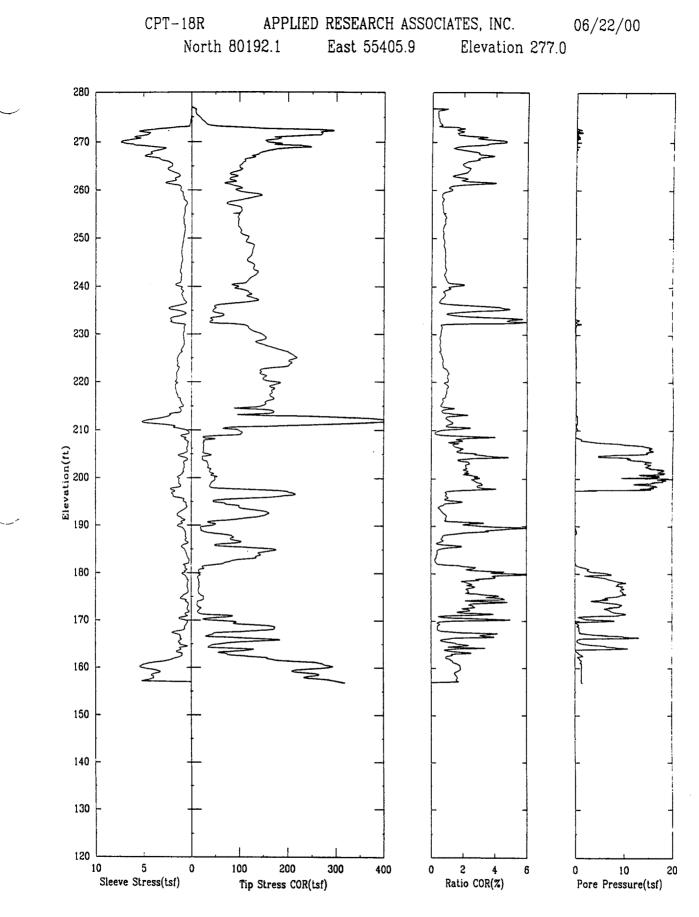
SOIL SAMPLE COLLECTION

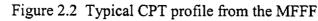
ARA has developed its own soil sampler based on extensive field experience with other types of samplers, and has created a more robust sampler (Figure 2.8) that can be deployed with the heaviest CPT rigs. The assembled soil sampler is deployed to the desired depth where a tip release tool is then lowered down the rod string to unlock the sampler tip. Once released, the rods and sampler are advanced and the soils are forced into a stainless steel sleeve or split spoons through the core catcher. The probe is then retracted, bringing the sample to the surface. The sampler collects a sample 1.4 inches in diameter and up to 21 inches in length.

DILATOMETER TESTS (DMT)

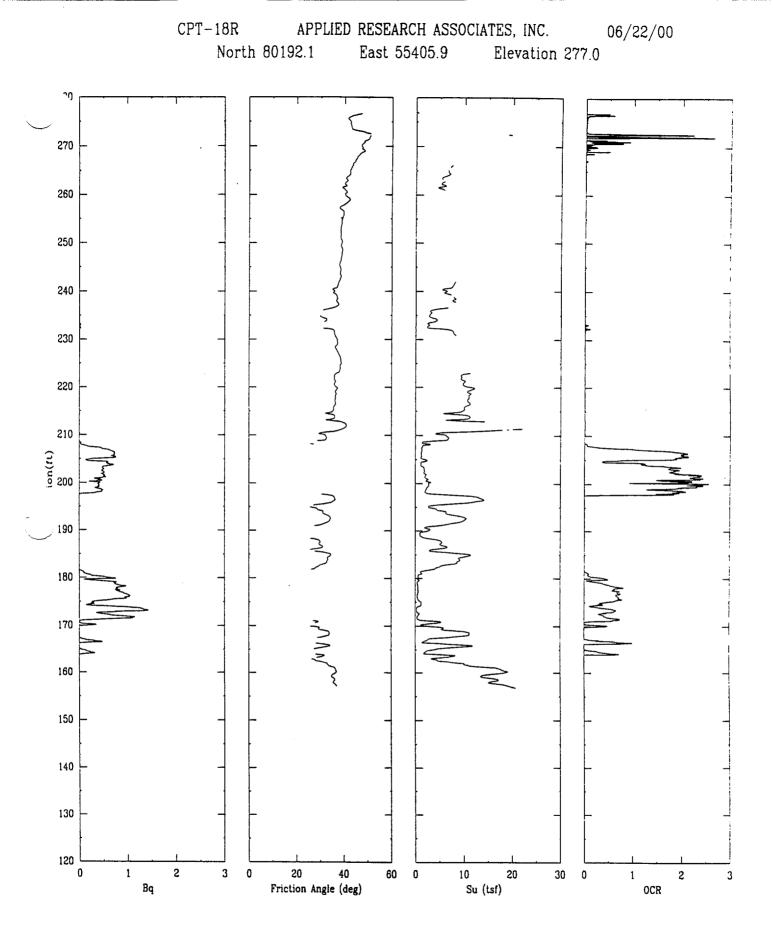
Marchetti Dilatometer Tests are conducted to estimate the lateral earth pressures and soil compressibilities. Material properties derived from the DMTs can be used to evaluate settlement, lateral earch pressures and ECR. The dilatometer consists of a flat-plate penetrometer, which is instrumented with a flexible, circular diaphragm mounted on one face of the blade. The test is operated from a console in the penetrometer truck which is used to push the blade into the ground. The dimensions and geometry of the blade are shown in Figure 2.9. A detailed, recommended procedure for conducting the test has been presented by Schmertmann (Ref. 4) and will be summarized briefly here.

Immediately after the blade is forced into the ground to a desired test depth, using the penetrometer truck, the flexible diaphragm is expanded with compressed gas. As gas pressure is slowly increased and the membrane starts to move outward against the soil, an electric signal ("A" reading) identifies the pressure required to lift the diaphragm off the plan of the blade. As diaphragm expansion continues, a second electric signal ("B" reading) denotes when a central diaphragm displacement of 1mm is reached. A third pressure ("C" reading) is read when the diaphragm is deflated back to the plane of the blade.

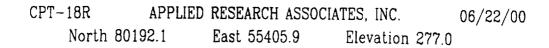



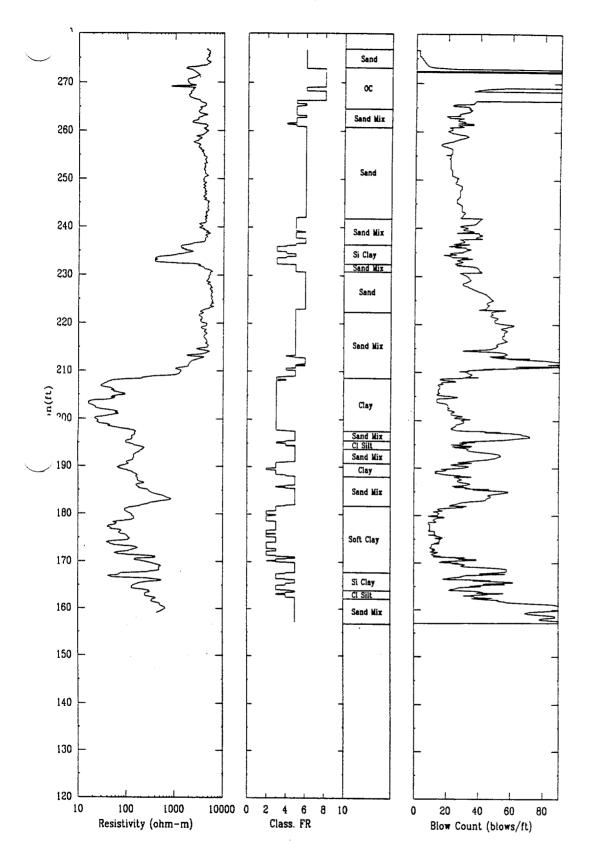

Figure 2.1 Schematic of ARA's Resistivity and Seismic cone penetrometers

4

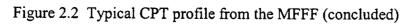

Resistivity Cone Penetrometer

Seismic Cone Penetrometer


File 322u005.ECP



File 322u005.ECP


Figure 2.2 Typical CPT profile from the MFFF (continued)

......

File 322u005.ECP

Seismic Shear Wave Hammer

Figure 2.3 High energy seismic shear wave hammer

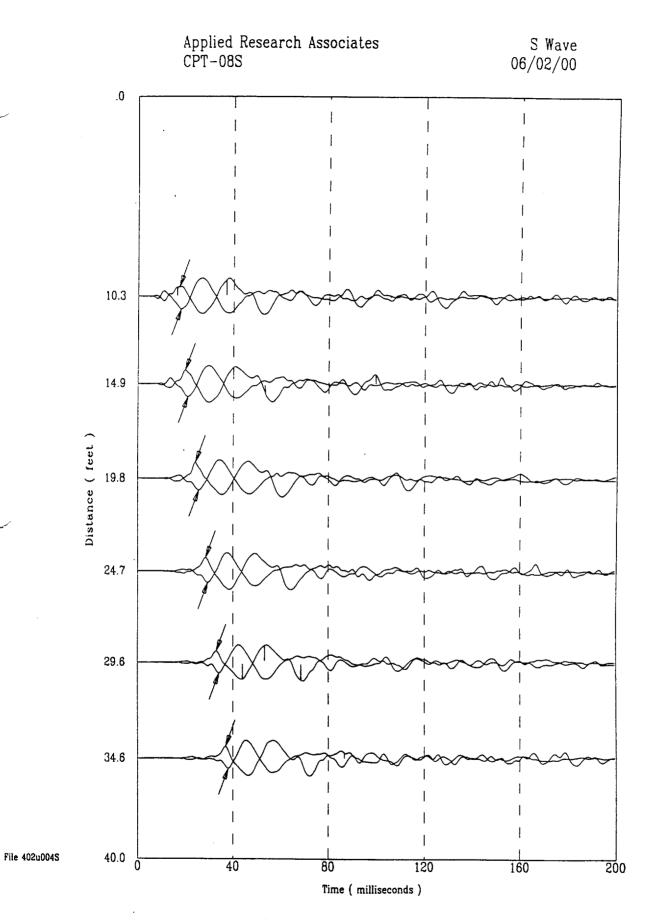
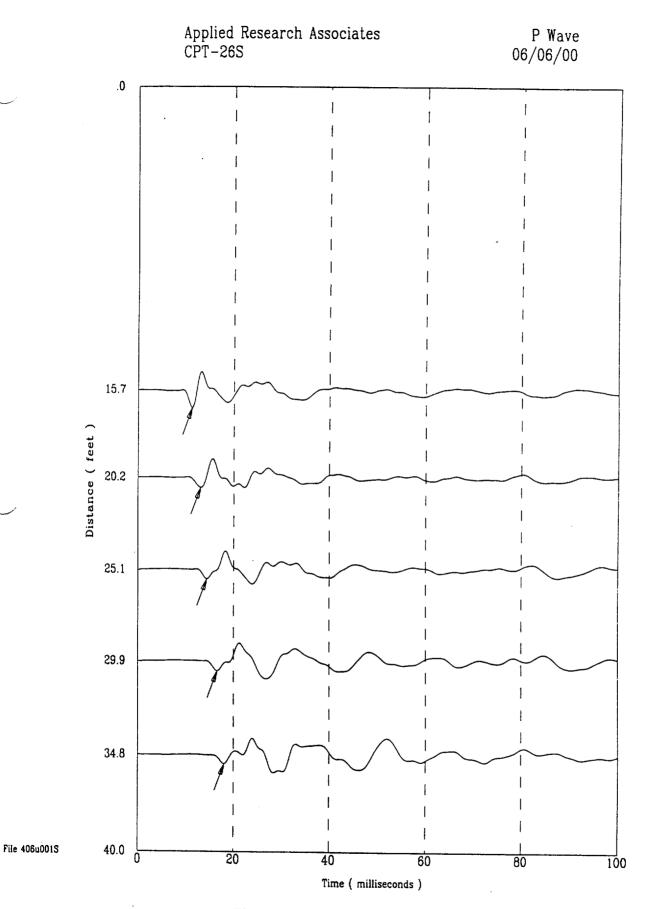



Figure 2.4 Typical shear wave traces

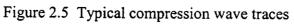


Figure 2.6 Classic dissipation profile from MFFF project

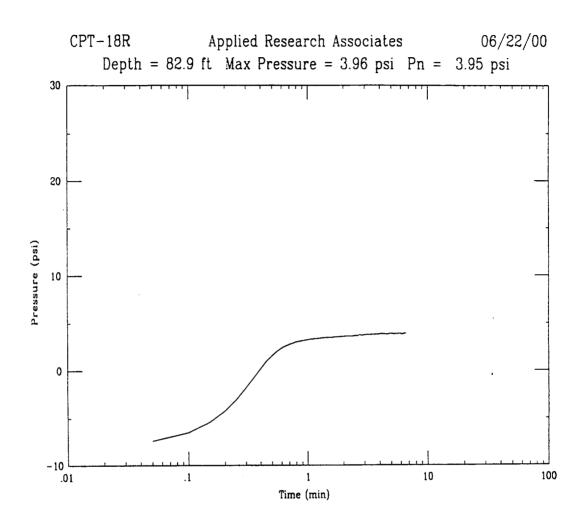


Figure 2.7 Dissipation test showing dilating condition

Soil Sampler

(Patent No. 5211249)

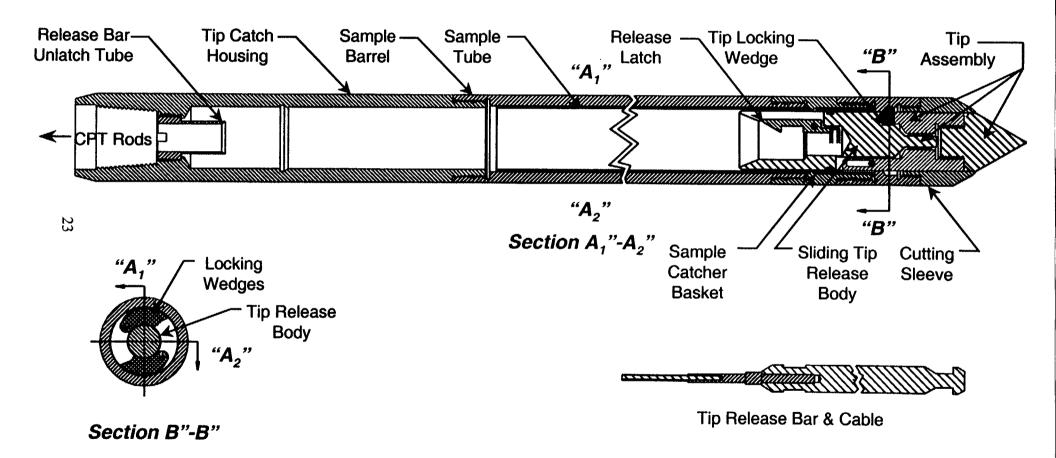


Figure 2.8. Soil Sampler schematic

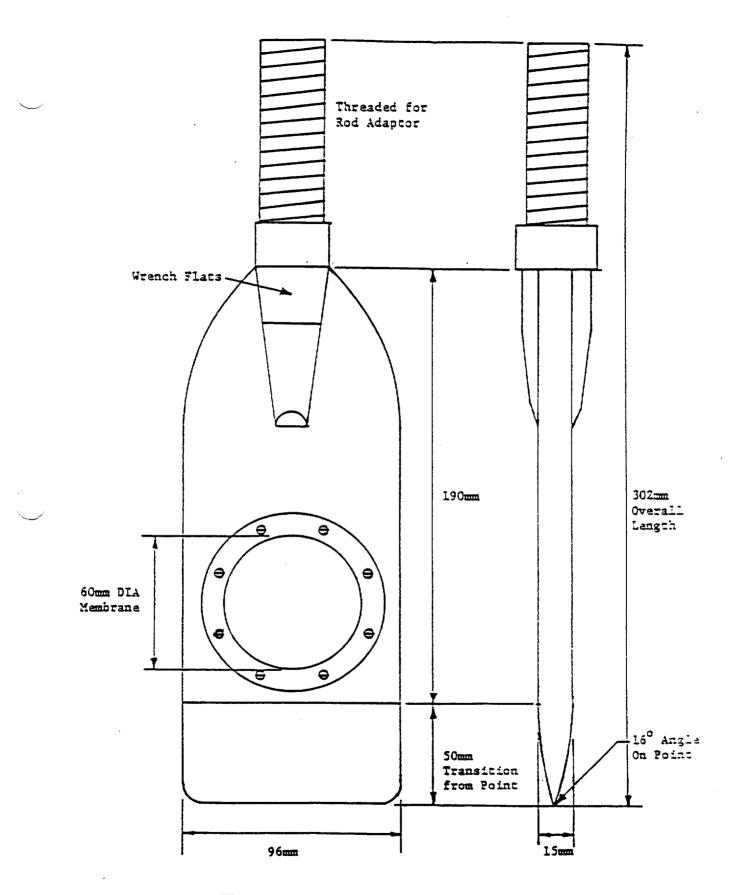


Figure 2.9 Schematic of dilatometer used at the MFFF site

SECTION 3

DATA ANALYSIS TECHNIQUES

OVERVIEW

Presented in this section is a description of analysis techniques used to determine engineering parameters. The methods used to determine the soil type information from the CPT are also discussed. The second portion of this section discusses typical piezo-resistivity and seismic cone penetrometer tests.

LOCATION OF THE SITE WATER TABLE

Generally, the static water table at a given site can be identified from the penetration pore pressures, since it will be equal to the hydrostatic pore pressure in freely draining soil layers. When no such layers are present, pore pressure dissipation tests can be performed to determine hydrostatic pressures. This information was used in the soil classification routines for the calculation of effective stress of the soil materials. A saturated unit weight of 120 pounds per cubic foot is assumed for all calculations.

SOIL BEHAVIOR TYPE

The tip resistance, friction ratio, and pore pressure values from CPT profiles can be used to determine a soil stratigraphy profile. Plots of normalized tip resistance versus friction ratio and normalized tip resistance versus penetration pore pressure can be used to determine Soil Behavior Type, SBT, as a function of depth. Both methods of soil description are based on empirical charts developed by Robertson (Ref. 2). The friction ratio based routines were selected for this project, since this approach is more robust than the pore pressure approach. The friction ratio SBT is determined from the chart in Figure 3.1 using the normalized corrected tip stress and the normalized friction ratio of f_{SN} .

The normalized tip resistance is defined as:

$$q_{NT} = \frac{q_T - \sigma_{vo}}{\sigma'_{vo}} \tag{3.1}$$

The normalized friction ratio is defined as:

fs

$$f_{SN} = \frac{f_s}{q_T - \sigma_{vo}} x \, 100 \tag{3.2}$$

where:

= sleeve friction

 q_T = corrected tip resistance

 σ_{vo} = total overburden stress

 σ'_{vo} = effective overburden stress

The intersection point of the q_T and f_{SN} values normally falls in a classification zone. The zone number corresponds to a soil behavior type (SBT) as shown in Figure 3.1. At some depths, the CPT data will fall outside of the range of the chart. When this occurs, no data is plotted and a break is seen in the SBT profile. This occasionally occurs at the top of a penetration as the effective vertical stress is very small and produces normalized cone resistances greater than 1000.

The classification profiles are very detailed due to the high sampling rate of one sample every 2 cm (0.8 in) for CPT profiles. Frequently significant variability in soil types over small changes in elevation can be observed in the profiles. To provide a simplified soil stratigraphy for comparison to standard boring logs, a layering and generalized classification system was implemented. Layer thicknesses are determined based on the variability of the SBT profile. The layer sequence is begun at the ground surface and layer thicknesses are determined based upon changes in the standard deviation of the SBT number. Whenever an additional 6-inch increment deviates from the previous increment, a new layer is started, otherwise, this material is added to the layer above and the next 6-inch section is evaluated. The soil type for the layer is determined by the mean value for the complete layer.

Although not presented on the CPT profiles, the electronic .ecp files contain the pore pressure classification values based on pore pressure ratio. This method uses the normalized corrected tip stress in bars and the pore pressure ration B_{α} .

$$B_q = \frac{u_{meas} - u_o}{q_t - \sigma_{vo}}$$
(3.3)

where:

- u_{meas} = measured penetration pore pressure
 - u_{o} = static pore pressure, determined from the water table elevation
 - q_T = corrected tip resistance
 - σ_{vo} = total overburden stress

The intersection point of the q_T and B_q or f_{SN} values normally falls in a SBT zone. The SBT zone number corresponds to a soil type as shown in the figure. At some depths, the CPT data will fall outside of the range of the chart. When this occurs, no data is plotted and a break is seen in the SBT profile. Close analysis of this chart indicates that as the SBT numbers vary, so does the soil grain size. What is missing in these charts are mixed soils, such as sandy clays or clayey sands. This type of mixed soil represents special cases and may be misclassified as silts.

STANDARD PENETRATION TEST

Correlations between the cone penetrometer tip stress measurements, q_c , and standard penetration test blow count (N) data have been made by a number of researchers. Robertson and Campanella (Ref. 2) have summarized many of these studies and presented a relationship between q_c , N, and soil type. The blow count corresponding to 60 percent of the energy transferred to the sampler can be estimated from a ratio based on the soil type. For this project, the ratios used to compute the N value were as follows:

Soil Classification Number (SCN)	<u>q/N ratio</u>
less than 1.5	2.0
1.5 to 7.5	SCN/1.5
greater than 7.5	1.5

This relationship shows that as the materials increase in grain size up to an overconsolidated or cemented material (SCN = 7.5 or more) the q_c/N ratio increases. The correlation between q_c and N_{60} should be considered an estimate only, due to the rapid fluctuations in tip stress that can result in large changes in the calculated blow count. Also, the techniques used in performing the SPT test in any geographical area need to be considered. If the energy level normally transferred to the sampler is not nearly 60 percent of the theoretical maximum, the local correlation will be either higher or lower than the data presented in this report.

FRICTION ANGLE (ϕ)

The effective stress friction angle in granular soils can be estimated from the tip resistance data using an empirical correlation derived between laboratory triaxial tests on sands and penetration tests through prepared sands in large calibration chambers. The triaxial tests were performed at confining stresses equal to the horizontal effective stress in the calibration chamber. The tip stress data were then correlated with peak effective friction angle as (Ref. 2):

$$\tan \phi' = .38 \log_{10} \frac{q_c}{\sigma'_{v_0}} + 0.1$$
 (3.4)

where:

 ϕ' = effective internal friction angle (deg) q_c = total measured tip stress

 σ'_{vo} = effective overburden stress.

UNDRAINED SHEAR STRENGTH (S_u)

Estimates of the undrained shear strength in fine grained saturated soils can be made using the empirical relationship (Ref.2):

$$S_u = \frac{q_c - \sigma_{vo}}{N_k} \tag{3.5}$$

where:

 S_u = undrained shear strength q_c = total measured tip stress σ_{vo} = total overburden stress

 $N_k = \text{cone factor}$

The cone factor, N_k falls between 11 and 19 with an average of 15. In the absence of field vane shear data, sa is the case for the MFFF site, Robertson and Campanella (Ref. 2) recommend assuming N_k to be 15. If N_k is 19 for a given material, using N_k of 15 overestimates the undrained shear strength by 27%; and if N_k is 11, the strength is underestimated by 27%.

PRESENTATION OF ϕ AND S_u VALUES

Conventional engineering considers only friction angles (ϕ) to be appropriate in granular soil deposits such as sands. Similarly, undrained shear strength (Su) values are used in saturated,

low permeability layers such as clays. The distinction between which parameter is appropriate at a given depth is based on the soil type. When the average SBT number is greater than 4.0, the granular material is assumed to dominate and the friction angle is plotted. Conversely, if the SBT number is less than or equal to 5, the fine grained material is assumed to dominate and the undrained shear strength is plotted. These SBT numbers are found in the electronic files supplied with this report. Both values are plotted for SBT values of 4 and 5. When the data does not fall within the range of the classification system, neither ϕ or S_u values are presented.

ESTIMATES OF OVERCONSOLIDATION RATIO (OCR)

A soil is termed normally consolidated if the current stress is the maximum to which the material has ever been subjected. The overconsolidation ratio (OCR) is defined as:

$$OCR = \frac{(\sigma_{v'o})_{\max, past}}{(\sigma_{v'o})_{present}}$$
(3.6)

where:

 $(\sigma'_{vo})_{max.past}$ = maximum past vertical effective overburden pressure (σ'_{vo}) = present effective vertical overburden pressure.

For a normally consolidated soil, $(\sigma'_{vo})_{max.past} = (\sigma'_{vo})_{present}$ and OCR = 1, while an overconsolidated soil has an OCR > 1.

OCR calculations for the MFFF site were based on a publication by Mayne (Ref. 5) where OCR is directly correlated to excess pore pressure. As determined from a linear regression of published data, this equation is:

$$OCR = 0.33 \left[\frac{u_{\text{meas}} \bullet u_o}{\sigma_{v'o}} \right]^{1.42}$$
(3.7)

COEFFICIENT OF LATERAL CONSOLIDATION (C_H)

Horizontal coefficients of consolidation can be calculated from the pore pressure dissipation tests using a theoretical model developed by Baligh and Levadoux (Ref. 6) and measured dissipation rates. Calculations are performed at 50% of the excess pore pressure dissipation, U_{50} . Using the theoretical curves in Figure 3.2, C_{H} is calculated as:

$$C_{H} = \frac{T_{50}R^2}{t_{50}}$$
(3.8)

where: T_{50} = theoretical time factor at 50% dissipation

R = radius of cone in centimeters

 t_{50} = measured time at 50% dissipation in seconds

Pore pressure measurements are made just behind the tip; hence, curve 3 in Figure 3.2 is used to determine a T_{50} of 5.5. Estimates of C_H for both the test locations are contained in Appendix C.

COEFFICIENT OF LATERAL PERMEABILITY (K_H)

This method uses the coefficient of lateral consolidation estimated from the pore pressure dissipation test described above and an estimate of the in situ constrained modulus, M, obtained from measured tip resistance values and soil classification according to:

$$K_H = \frac{C_H \gamma_w}{M} \tag{3.9}$$

where:

 C_{H} = coefficient of lateral consolidations

 γ_w = unit weight of water

M = constrained modulus

The constrained modulus, M can be estimated using the empirical relationship:

$$M = \alpha q_c = \frac{1}{m_v}$$
(3.10)

where:

 α = empirical factor

 q_c = measured tip resistance, not corrected for pore pressure effects

 m_v = volumetric compressibility.

The factor α is obtained from Figure 3.3 (Ref. 2) is based on the uncorrected tip resistance and soil type. Estimates of K_H and M are contained in Appendix C.

TYPICAL P-CPT PROFILE

Location CPT-18R represents a typical piezo-resistivity cone penetrometer sounding profile at the proposed MFFF site site (Figure 2.2). Sounding CPT-18R is located at 80192.1 north by 55405.9 east at elevation 277.0 feet. Typical to this site, sands and gravelly sands are encountered in the first 10 feet of penetration from elevation 277.0 to 267.0 feet, as indicated by tip resistance values in excess of 290 tons per square foot (tsf) and friction ratio values ranging from 2% to 4%. Measured soil resistivity remains relatively constant at approximately 4000 ohm-m from elevation 277.0 to 237.0 feet. At elevation 267.0 feet the probe encounters less resistant and less cohesive soils in the form of sands and sand mixes. With the exception of a slight interruption at elevation 237.0 feet, this layer extends approximately 53 feet to elevation 222.0 feet. Sleeve friction values decrease to 1 to 2 tsf and tip resistance in this zone fluctuates between 100 and 200 tsf. This combination of tip stress and sleeve friction results in low friction ratios. As previously mentioned, a fine-grained lens interrupts this layer 4 feet in thickness extending from elevation 237.0 to 233.0 feet. Tip stress decreases while the sleeve friction increases, indicating an increase in soil cohesion. In this less permeable material, the first measurable pore pressure readings are recorded. It is important to note that the soils in this lens are more conductive as is evident by the decrease in measured resistivity. A very resistant soil matrix is encountered at elevation 213 feet. The cone penetrometer typically encounters refusal in such stiff soils, however the thin nature of this lens enabled the crew to cycle the probe through. At elevation 208 to 207 feet, several observations are made. Fine-grained soils are again detected as evident by decreased penetration resistance, elevated penetration pore pressures, and a decrease in soil resistivity. The water table is also encountered at this elevation which is supported by the magnitude of the decrease in soil resistivity. Due to the presence of water below elevation 207 feet, resistivity remains relatively low for the remainder of the sounding. This layer continues to elevation 198 feet where a more resistant, less permeable soil matrix is encountered. Note the dramatic decrease in penetration pore pressure. Dissipation tests were conducted at this location at elevations 194.1 and 179.8 feet. In situ soils at elevation 194.1 feet are best described as fine-grained sands as noted by the elevated tip resistance measurements. The dissipation test conducted at this elevation reveals negative pore pressures for the first 30 seconds of the test, indicating a dilated condition which is consistent with the negative penetration pore pressures measured. At elevation 182 to 171 feet, the soils become

finer and less permeable, resulting in elevated penetration pore pressures. A dissipation test was conducted in this layer and a classic pore pressure profile was obtained supporting the observation of a fine clayey layer. The in situ soils begin to stiffen below elevation 171 feet until penetration refusal is encountered at elevation 156.7 feet.

SEISMIC MEASUREMENTS AND RESULTS

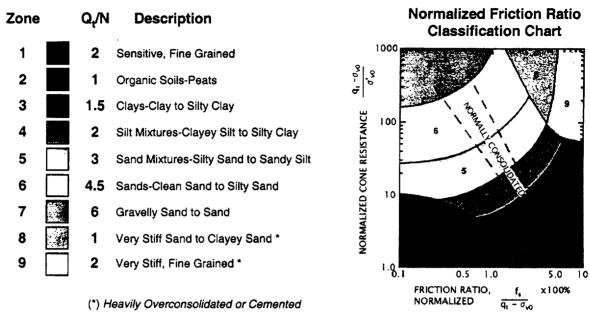
Seismic downhole data of shear and compressional waves were conducted every five feet from the bottom of the pre-augered utility clearance hole to the final depth at six of the CPT locations. The seismic signals were typically recorded at a rate of 10,000 samples per second with the acquisition system set to record a total of 2,500 data points per seismic trace.

The seismic shear wave time histories in Figure 2.4 show several cycles of motion beyond the first peak motion. Any analysis of these late motions should consider the gage frequency response. Geophones are non-linear devices and the amplitude and phase angle are a function of frequency. The data plotted in Figure 2.4 and in Appendix B are presented as the voltage output (vertical scale of each time history trace) of the transducer and have not been corrected for non-linear transducer response. The Geospace transducers (GS-14-L9) used on this project have an undamped natural frequency of 28 Hz, with the transducer sensitivity greatly reduced below 28 Hz. The transducer sensitivity at the natural frequency can be a factor of two greater than the nominal sensitivity below 28 Hz. In addition, there is a phase distortion in the raw data. For the uncorrected seismic time history data presented in this report, the shape of the time histories are qualitatively correct, but the late time motions are exaggerated. The data can be corrected using two methods, the first being a high frequency filter. A second method is to apply a transducer transform function to the data that accounts for the non-linear behavior of the transducer. These corrections were not applied to the data, as only arrival times and wavespeeds were desired.

When the support beam beneath the penetrometer truck is struck on one end, traction between the steel beam and the soil generates a horizontal shear wave. Also generated is a small compressive wave as the energy propagates across the beam. The bulk of the mechanical energy is transferred into shear wave energy at the steel-soil interface. However, the small amount of compressive wave generated will arrive at the velocity transducer first due to its higher wave velocity. This is the source of the small amplitude motion observed in Figure 2.4. The

compression wave contamination is of a very small amplitude when compared to the shear signal, and attenuates rapidly with depth. At greater depths, this compression wave contamination arrives much earlier than the shear wave. The hydraulic shear wave source used by ARA is rich in shear wave energy, and the ability to separate the compression wave from the shear wave is enhanced with the use of polarized shear waves.

The shear wave is identified as the first large out-of-phase motion in Figure 2.4. For shallow locations, the exact arrival time of the shear wave can be difficult to pick. Selection of the first shear wave peak is much easier to accomplish, especially with polarized shear waves. These times are typically more consistent and contain less scatter than the selection of arrival times. The shear wave initial peaks are identified in Figure 2.4 by the small arrows. The times are used in the subsequent analysis to determine the shear wave velocities.


Two methods were used to determine the shear wave velocities. The first method used to determine the wave velocities consisted of visually fitting linear line segments to the travel time data over depth intervals that were interpreted to have the same wave velocity. The second method used least square regression algorithms to determine the peak arrival time data within ± 6 ft of a given test depth. A minimum of three data points were required in the ± 6 ft zone to determine a wave velocity.

TYPICAL SEISMIC-CPT PROFILE

Location CPT-08S (Figure 3.4) presents in situ conditions and seismic wave velocities typical of the site. Sounding CPT-08S is located at 80393.7 north by 55329.1 east at elevation 273.0. Shear wavespeeds at this location range from 1000 feet per second (fps) to 1530 fps (Figure 3.5). Elevated wavespeeds of 1530 fps are measured in top 5 feet of surface material from elevation 263 to 258 feet. Soil properties change at elevation 258 feet to sands and sand mixes. This layer extends 45 feet to elevation 213 feet where shear wavespeeds range from 1120 fps to 1220 fps. Compression wavespeeds of 2090 fps to 2590 fps are determined is these soils. A less permeable clay lens encountered from elevation 213 to 203 feet slows wavespeeds to 1000 fps. The CPT profile for this location indicates a sand mix layer from elevation 203 feet to 186 feet bgs with an interbedded clay lens at elevation 198 feet, approximately 4 feet in thickness. Seismic tests were conducted on 5-foot intervals making it difficult to disseminate thin layers. As a result, an average shear wavespeed of 1100 fps is measured from elevation 203

to 188 feet. Compression wavespeeds are estimated to be 2870 fps in this layer. The water table is encountered below elevation 198 feet so compression wave generation was discontinued. Shear wavespeed increases slightly to 1180 fps from elevation 188 to 168 feet as more resistant and less permeable soils are encountered. From elevation 168 to 163 feet, shear wavespeeds decrease to 1060 fps. No seismic traces could be recorded at test intervals 115 feet and 120 feet bgs resulting in a gap in the calculated shear wavespeeds from elevation 163 to 148 feet. In situ materials stiffen dramatically as the probe nears refusal, resulting in shear wavespeeds of 1320 fps from elevation 148 feet to sounding termination at elevation 133 feet.

(Ref. Robertson, 1990)

Coefficient of Permeability (cm/s)

Zone	Description	Permeability
1	Sensitive Fines	10-5
2	Organic Soils-Peats	10 ⁻⁵
3	Clays	10 ⁻⁷
4	Silt Mixtures	10 ⁻⁶
5	Sand Mixtures	10-4
6	Sands	10 ⁻²
7	Gravelly Sands	10 ⁻¹
8	Very Stiff Sands	10 ⁻⁵
9	Very Stiff Fines	10 ⁻⁶

Applied Research Associates, Inc., South Royalton, Vermont 05068 (802) 763-8348, cpt@ara.com, http://www.ara.com

Figure 3.1 Friction ratio soil classification chart

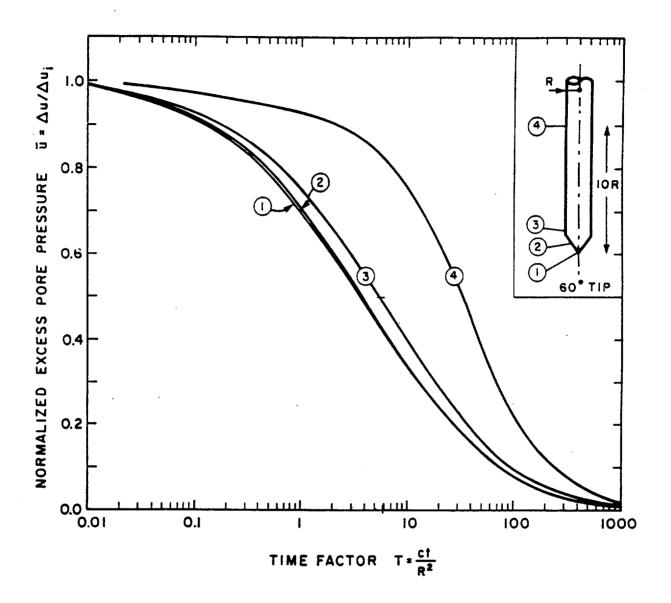
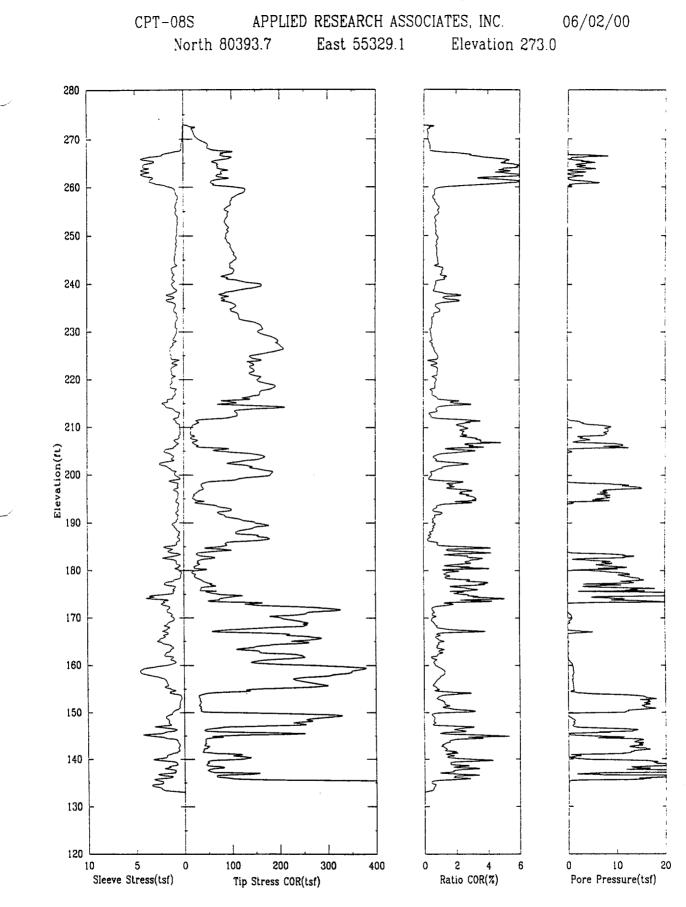
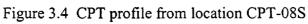




Figure 3.2 Dissipation curves for a 60° cone according to linear isotropic uncoupled solution (after Raligh and Levadoux, 1980)

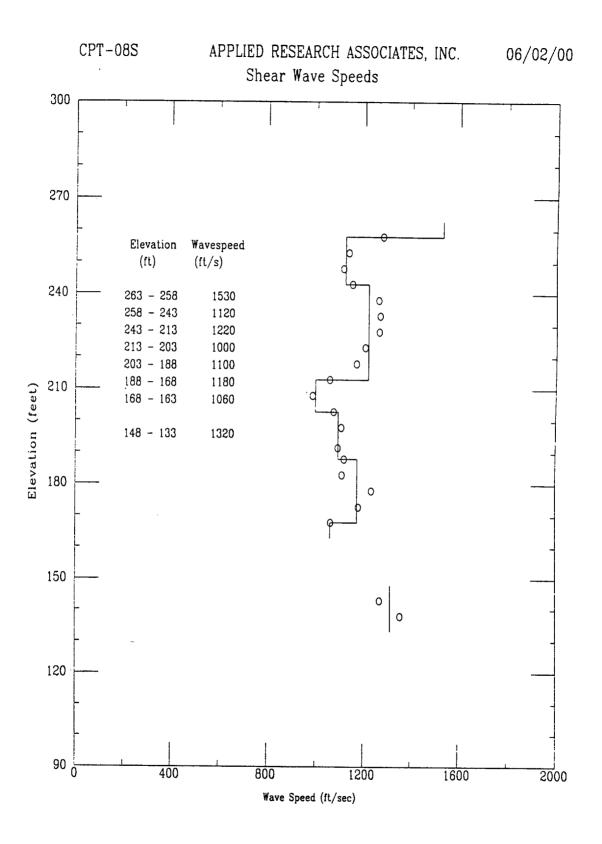
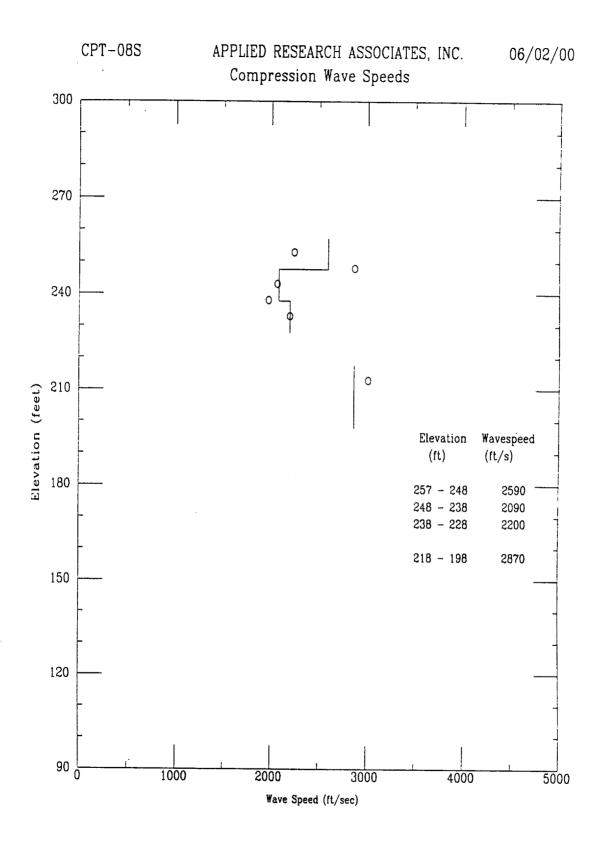

	$M = \frac{1}{m_v} = \alpha_q_c$	
q _c < 7 bar	3 < a < 8	
7 < q _c < 20 bar	2 < a < 5	Clay of low plasticity (CL)
q_ > 20 bar	l < a < 2.5	(01)
q _c > 20 bar	3 < a < 6	Silts of low plasticity (ML)
q_ < 20 bar	l < a < 3	
q _c < 20 bar	2 < a < 6	Highly plastic silts & clays (MH, CH)
q_ < 12 bar	2 < a < 8	Organic silts (OL)
q _c < 7 bar:		
50 < w < 100	1.5 < a < 4	
100 < w < 200	l < a < 1.5	Peat and organic clay (P _t , OH)
₩ > 200	0.4 < a < 1	

Figure 3.3 Estimation of the constrained modulus, M, for clays (after Robertson and Campanella, 1988)



File 402u004.ECP

File 402u004S Figure 3.5 Shear wavespeeds from location CPT-08S

File 402 points Figure 3.5 Shear wavespeeds from location CPT-08S (concluded)

SECTION 4

LIST OF REFERENCES

- 1. American Society for Testing Materials, "Standard Test Method for Performing Electric Friction Cone and Piezocone Penetration Testing of Soil," ASTM Designation: D5778, 1995.
- 2. Robertson, P. K. and R. G. Campanella, *Guidelines for Using the CPT, CPTU and Marchetti DMT for Geotechnical Design*, Vol. II, University of British Columbia, Vancouver, BC, Canada, March 1988.
- 3. Shinn, J. D. and A. F. Rauch, "Resistivity Surveys with the Electric Cone Penetration Technique," Applied Research Associates, Inc., March 1990.
- 4. Schmertmann, J. H., *Guidelines for Using the CPT, CPTU, and Marchetti DMT for Geotechnical Design*, Volume III, University of British Columbia, Vancouver, BC, Canada, March 1988.
- 5. Use of In Situ Test in Geotechnical Engineering, S. P. Clemence, ed., Geotechnical Special Publications No. 6, proceedings of In Situ '86 Conference, sponsored by Geotechnical Engineering Division of the American Society of Civil Engineers, Blacksburg, VA, June 1986.
- 6. Raligh, M. M. and J. N. Levadoux, Pore Pressure Dissipation After Cone Penetration, Massachusetts Institute of Technology, Cambridge, MA, April 1980.