Summary Highlights of NRC/DOE Technical Exchange and Management Meeting on Range of Operating Temperatures

August 2, 2001 Rockville, Maryland

Introduction and Objectives

This Technical Exchange and Management Meeting on Range of Operating Temperatures is one in a series of meetings related to the U.S. Nuclear Regulatory Commission (NRC) key technical issue (KTI) and sufficiency review, and the potential U.S. Department of Energy (DOE) site recommendation. The objectives for this meeting were for DOE to (1) summarize the Supplemental Science and Performance Analyses (SSPA) model supplements since the Science and Engineering Report and (2) discuss differences between higher-temperature and lower-temperature operating modes based on process models. This was the first of two separate meetings on this topic. The second meeting, currently scheduled for September 2001, will focus on the NRC staff's questions pertaining to DOE's SSPA.

Consistent with NRC regulations on prelicensing consultations and a 1992 agreement with the DOE, staff-level resolution can be achieved during prelicensing consultation. The purpose of issue resolution is to assure that sufficient information is available on an issue to enable the NRC to docket a proposed license application. Resolution at the staff level does not preclude an issue being raised and considered during the licensing proceedings, nor does it prejudge what the NRC staff evaluation of that issue will be after its licensing review. Issue resolution at the staff level, during prelicensing, is achieved when the staff has no further questions or comments at a point in time regarding how the DOE is addressing an issue.

Summary of Meeting

DOE provided a general briefing on the Yucca Mountain thermal design history, the current thermal management methodology, and the scope of the SSPA and comparison of the thermal operating modes. No NRC/DOE agreements were reached at this Technical Exchange and Management Meeting. The agenda and the attendance list are provided in Attachments 1 and 2, respectively. Copies of the presenters' slides are provided in Attachment 3. Highlights from the Technical Exchange and Management Meeting are listed below.

Highlights

1) DOE's Yucca Mountain Project - Thermal Design History

DOE discussed the changes in DOE's thermal goals since the Viability Assessment (see "YMP Thermal Design History" presentation given by Paul Harrington). DOE then discussed its next steps in moving toward a possible license application and stated its license application design would include a fixed design with flexible operational modes. DOE further stated that it would be formulating the decision process for selecting the licensing operating mode. This process would establish the thermal operating mode, determine appropriate thermal limits, and select operational ranges or parameters for licensing. The NRC staff had several questions related to

Enclosure

1

the design. These questions will be more fully discussed during the next meeting on this subject.

2) DOE's Current Thermal Management Methodology

DOE discussed its Yucca Mountain methodology for thermal management and the effects of this methodology on the design process (see "Current Thermal Management Methodology" presentation given by Gene Rowe). DOE discussed the design presented in the Science and Engineering Report and the SSPA and stated that it represents a single design which will work over the full range of thermal modes. DOE then discussed these different thermal modes and the potential range of operational variables. DOE stated that some of the attributes of flexible operations are: (1) ability to operate under various thermal modes, (2) ability to accommodate variations in waste stream characteristics, (3) ability to accommodate changes in receipt and emplacement rates, and (4) ability to provide for checks and balances for problem detection and corrective action. The NRC staff had several questions related to the methodology. These questions will be more fully discussed during the next meeting on this subject.

3) Scope of the SSPA and Comparison of Thermal Operating Modes

DOE discussed the scope of the SSPA and the comparisons between the thermal operating modes (see "Scope of the SSPA and Comparison of Thermal Operating Modes" presentation given by James Blink and Robert Howard). DOE discussed the organization and scope of the SSPA and provided a summary of the supplemental modes and analyses made since the Science and Engineering Report. DOE then went into a little more detail on these changes. The NRC staff had a number of questions regarding the updated scientific information, uncertainty analysis changes, and how certain changes impacted the cooler thermal operating mode. These questions will be more fully discussed during the next meeting on this subject.

4) Public Comments

Ms. Judy Treichel (Nevada Nuclear Waste Task Force) commented that the second meeting of this subject should not occur during the Nuclear Waste Technical Review Board meeting scheduled for September 10-12, 2001. The NRC stated that it was aware of this meeting and would try to avoid scheduling it on the same days.

James W. Andersen, Project Manager High Level Waste Branch Division of Waste Management Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Structly C. Dut

Timothy C. Gunter Regulatory Interactions Office of Licensing & Regulatory Compliance U.S. Department of Energy

DRAFT AGENDA DOE/NRC MEETING ON REPOSITORY THERMAL MANAGEMENT 10:00 A.M. - 4:45 P.M. (EDT) August 2, 2001 Room O3B-4 11555 Rockville Pike Rockville, MD

Via videocon to: Region IV, DOE, Las Vegas, and CNWRA, San Antonio, Texas

10:00 - 10:15 a.m.	Introduction and Opening Remarks	DOE - Gunter NRC - Andersen
10:15 - 10:45 a.m.	Thermal Management History of the Proposed Repository	DOE - Harrington
10:45 - Noon	Current Thermal Management Methodology	DOE - Trautner/Rowe
Noon - 1:00 p.m.	Lunch	
1:00 - 2:45 p.m.	Supplemental Science and Performance Analyses Overview - Evaluation of the Range of Thermal Operating Modes	DOE - Blink
2:45 - 3:15 p.m.	Caucus	
3:15 - 4:15 p.m.	Discussion	DOE/NRC
4:15 - 4:45 p.m.	Conclusion, Closing Remarks and Adjourn	

8/2/2001

NRC/ DOR TECH EXCHANGE -

THERMAL MONAGEMENT & OP. TEMP

Name		
	Orece	THONE
TIMOTHY C. COMPTER	DBE	7-2-7-1343
Jomes Andersen	NRC	301-415-5717
Dave Esh	NRC	301-415-6705
Daved Brook	NAC	301-45-7294
JEFFREY POHLE	Nn C	301-415-6703
MYSORE NATARAJA	NAC	301-415-6695
Charles Greene	NRC	301-415-6177
POREZT K. JOHNSON	NRC	301.415,6900
Tae M. Ahm	NRC	3-1 415-5812
DAVID SIEFKEN	BSC	(202) 479-2104
STEVE HANAVER	DOE	202-556-6850
JOHN H. PYE	NWTRB	(703)-285-4473
James Firth	NRC	301-415-6628
ROB MASDOUGA	in BSC	202.479.2122
Bati Ibrahin	n NEC	301-415-6651
JOHN TRAPP	NRC	301-915-8063
Tom Pollug	DOE	(202) 586 - 41533
Mark Senderly	DUE	202 586-2279
MARTHA PENDLETON	BSC	(702) 295-2117
Den Beckman	(350	702-295-4392
JAMES BLINK	BSC (LLAVE)	702 - 295 - 4371
AMARJA WNEH	NRE/ACNW	3 - 4/5 - 6899
KIRK LACHMAN	Dot	702 - 794 - 5096
ROBERT HOWARD	BSC	702-295-3097
PAUL HARRINGTON	DOE	702-794-5415
Gene Rowe	BSC	702-295-4246

BSC LICENSING LU ID: 7022955351 AUG 06:01 8:23 NO.002 P.02

PHONE ORGANIZATION NAME DOE/YMP/OLPC 702 794-5578 BSC/LAP/RCC 702 795-5331 DAVE LANGER BSC/Proj/S.P. 702-295-4358 David Rhodes MTS/BAH 702-794-1415 Ralph Royers MTS/SEL 702-794-5484 (Sils Bradbum Grorge-Hellstrom 702- 794-1419 DOE 702 295 4350 295-5494 (702) 245-5494 ROBERT SAUNDERS BSC SSFD MIKE ANDERSON BSC/WPD 702-794-5720 BIMAL MUKHOPADHYAY BAH/MTS 702-794-5047 BIL BELKE NRC 702 455-51.54 E. NON TIESEN HAUSEN CLARK COUNTY (702) 794-5048 R.M. LATTA NRC (702)245.5312 Jennivieve Novero BSC/BSA 702 - 794-1488 Richard Crown 10R 762-248-1127 Judy Treichel NV NWTF 775-687-3744 Stevefrishman NV NOUTO MTS/BAH 702-794-1385 Harris Greenberg 702-295-7472 BSC/EBS Jihn B. Cue 707 - 784 -5301 MTS/ Golder DAVID SASSANT 775-727-7727-Nye Co Reine Downing 702-295-7631 Ahmed M Monib BSC. 702 784 5854 DOE JAIME GONZACA NUOTRB (BY PHO E (703) 235-9130 CARL D'BELLA

. . BSC LICENSING LV

CENTER FOR NUCLEAR WASTE REGULATORY ANALYSES
MEETING ATTENDANCE

BUBJECT OF MEETING	DOE/NEC Meeti	ng on Repository Th	ermal Management
DATE: 8/2/2001	LOCATION: SW	RI Videoconference	Room San Autonis
PERSON	ORGANIZATION	TITLE/FUNCTION	TELEPHONE NUMBER
Asad Chowdhury	CNWRA	Manager - MGFE	(210) 522-5151
Wes Hatrick	CNWRA	President-CaluRA	(210) 522-5158
Debra Hughson	CNURA	PI TEFKTI	210 522 3825
LANE Houses	CNNRA	S.R.E. PA ETI	(210) 522-4981
PAT MACHIN	CNWAR	ASSISTANT TECHNICAL	Q10) S22-50-54
Doug Gute	CNWRA	St. Research Engineer	(210) 522-2307
David Tucaer	CNURA-	Principal Scientist	(010)522-2139
Blaine Russell	CNWRA	Analyst	210-522-6249
SEAN BROSSIA	CHWRA	SK RESERROW CARE.	210 522 5797
Daves Weldy	CNWLA	Sr. Res. Engr.	(210)522·6800
Ron June Izke	CNWKA	Analyst	210-522-3318
Dunrel King	CNURR	Ras. bei	210-522-6824
Stakanta Mohant	CNWEA	Principal Scientist	210-522-5/85-
Osvaldo Pansado	<u> </u>	Res. Egy	322-6084
	ورور و این را به است. ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰		······
			1

CNWRA Form AP-6

Attachment 3

Presenters' Slides

U.S. Department of Energy Office of Civilian Radioactive Waste Management

YMP Thermal Design History

Presented to: U. S. Nuclear Regulatory Commission

Presenteolov Pauli Harrington Svstems i Greeter Harg Officero a Projeto a Esteration Mileter Monument Siter of a Projeto a a

YMP Historical Time Phases Reflecting Changes in Thermal Goals

- Viability Assessment (VA)
- License Application Design Selection (LADS)
- Nuclear Waste Technical Review Board (NWTRB) and Other Party Inputs
- Thermal Operational Scenarios Considered
- Science and Engineering Report (S&ER)
- Next Step

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Evolution of Design Features

Parameter	Viability Assessment	Enhanced Design Alternative II		rence Design and ating Mode
			High End	Low End
Average waste package maximum surface temperature (°C)	230	230	~175	<85
Maximum drift-wall temperature (°C)	200	200	<175	<85
Pillar temperature (°C)	>96	Center below .96	50% below 96	< 85
Areal mass loading(MTHM/acre)	85	60	~60	~40
Area for 70,000 MTHM (acres)	741	1,050	1,050	1,600
Total excavated emplacement drift length (Km)	107	54	~60	~80
Waste-package spacing (meters)	Variable	0.1	0.1	2
Line/point load	Point	Line	Line	Point
Drift spacing (meters)	28	81	81 1	81
Preclosure ventilation period (yrs)	50	50	50	300
Preclosure ventilation flow rate (M ³ /s)	0.1	2 to 10	15	15 for 50 years NVP *driven for 250 years
Waste package max heat output (KW)	18	11.8	11.8	11.8
PWR waste package avg heat output (KW)	9.3	9.8	11.3	11.3
Total waste package avg heat output (KW)	7.3	7.4	7.6	7.6
Avg linear loading (KW /meter)	0.7	1.37	1.45	1.0
Backfill in emplacement drift	Not precluded	Yes	Not precluded	Not precluded
Drip shields	Not precluded	Yes	Yes	Yes

*NVP = Natural Ventilation Pressure

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Viability Assessment 1998

- Thermal loading High 85 metric tons of heavy metal (MTHM)/acre
 - Specific loading slightly higher than ACD loading
- Point loaded drifts (varies, but ~5-m avg. separation)
- 5.5 m diameter drifts spaced 28 m apart
- Boiling fronts extended 100 m above/below horizon
- Entire footprint temperature above boiling for extended period
- Matrix saturation temporarily increases above the high-temperature region

YUCCA MOUNTAIN PROJECT

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Considering Alternatives

• License Application Design Selection 1998/1999

- To reduce uncertainty in performance assessment
- 5 enhanced design alternatives (EDAs) evaluated considering low and high thermal loadings
- EDA-II recommended 60 MTHM/acre lower than VA
 - + Linear loading (0.1 m spacing) and 81 m drift spacing
 - 50 years forced ventilation
 - Boiling fronts in host rock but 50% of pillars below boiling
 - Draining of heat-mobilized and percolating groundwater

Yucca Mountain Project/Preliminary Predecisional Draft Materials

LADS Alternatives

Parameters	EDA-I	EDA-II	EDA-III	EDA-IV	EDA-V
MTHM/Acre	45	60	85	85	150
Acres for 70,000 MTHM	1400	1050	740	740	420
Line or point load	Point	Line	Line	Line	Line
PWR WP Size	12	21	21	21	21
Drift Spacing	43 m	81 m	56 m	56 m	32 m
Preclosure ventilation	50 years @ 2 to 10 m ³ /s	50 years @ 2 to 10 m ³ /s	50 years @ 2 to 10 m ³ /s	50 years @ 2 to 10 m ³ /s	50 years @ 2 to 10 m ³ /s
Total WPs	15,903	10,039	10,213	10,213	10,039

YUCCA MOUNTAIN PROJECT

6

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Lower Thermal Operational Modes

- Nuclear Waste Technical Review Board 1999/2000
 - Uncertainty with basis for high temperature design prompted evaluation of lower temperature alternatives
- Lower thermal operational scenarios 12/2000
 - One: lower WP temperature through extended ventilation (50/250 years forced/natural); minimal increase in area; increased spacing between WPs (2 m)
 - Two: lower WP temperature through extended ventilation (50/250 years forced/natural); minimal increase in area; lower heat output, tightly-spaced (0.1 meter) WPs;
 - Three: lower WP temperature through extended ventilation (300 years forced); minimal increase in area; reference WP size and spacing; but increased drift spacing (120 m);

YUCCA MOUNTAIN PROJECT

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Lower Thermal Operational Modes

(Continued)

- Four: lower WP temperature through increased area; a limited ventilation period (~125 years); no aging; increased spacing between reference WPs (6 m);
- Five: lower rock temperature and in-drift relative humidity through indefinite natural (passive) ventilation of the reference design

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Range of Thermal Operating Modes 2000/2001

• Higher mode

- ~60 MTHM/acre; linear load of 1.45 kW/m (0.1 m spacing);
 50 years forced ventilation
- Lower mode
 - ~40 MTHM/acre; linear load of 1.0 kW/m (~2 m spacing); forced and natural ventilation for 300 years
- Fixed design with flexible operational modes
 - 5.5 m diameter drifts spaced 81 m apart
 - Repository elevation and layout specified
 - Two barrier waste package design
- Described in Science and Engineering Report 2001

Yucca Mountain Project/Preliminary Predecisional Draft Materials

BSC Graphics Presentations_YMHarrington_080201.ppt

CA MOUNTAIN PROJECT

Next Step 2001/2002

License application design

- Fixed design with flexible operational modes
- Decision process for selecting licensing operating mode
 - Establish the thermal operating mode
 - Determined appropriate thermal limits
- Selected operational ranges or parameters for licensing

Yucca Mountain Project/Preliminary Predecisional Draft Materials

U.S. Department of Energy Office of Civilian Radioactive Waste Management

YUCCA MOUNTAIN PROJECT

Current Thermal Management Methodology

Presented to: U. S. Nuclear Regulatory Commission

Presented by: Gene Rowe Repository Design Bechtel SAIC Company Ì

Agenda

- Introduction
- Present Repository Design
 - Single SR Design
 - SR Typical Waste Package Design
 - SR Drift Design
 - SR Layout
- Operational Modes
 - Potential Range of Operational Variables
 - Options Considered for SR
 - Thermal Response
- Attributes of Flexible Operations
- Licensing Approach with Respect to Flexible Operating Modes
- Summary

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Introduction

• Purpose

 The purpose of this presentation is to present Yucca Mountain's methodology for thermal management and discuss the effects of this methodology on the design process

Background

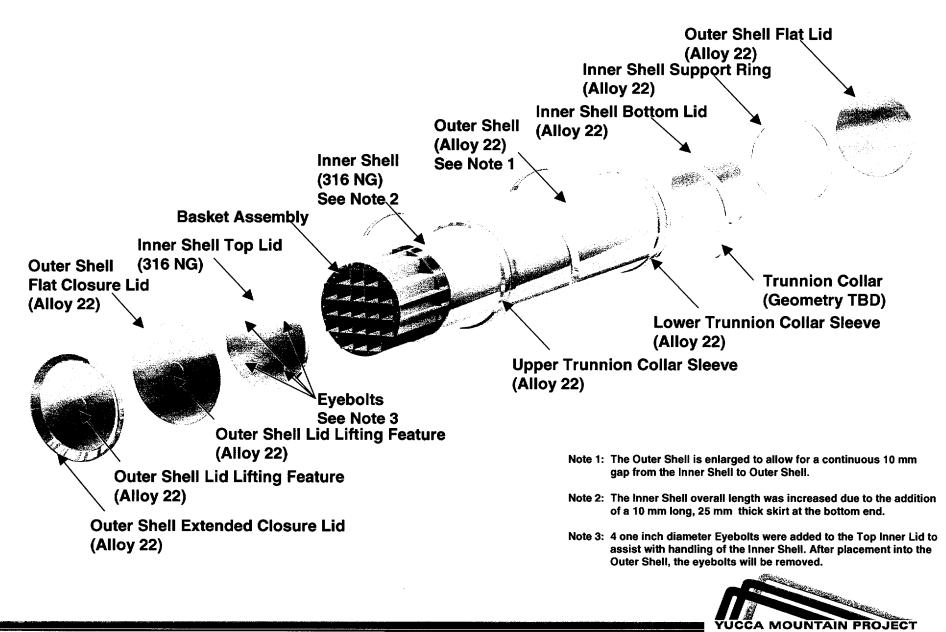
- The majority of the work to date has been to support the Site Recommendation effort. Design parameters have been selected to allow analyzing the performance of the repository for various operating modes. These parameters will be optimized during the final design process
- Need for Flexibility
 - Because the repository thermal goals are still evolving, operational flexibility is needed

Yucca Mountain Project/Preliminary Predecisional Draft Materials

BSC Graphics Presentations_YMRowe_080201.ppt

UCCA MOUNTAIN PROJECT

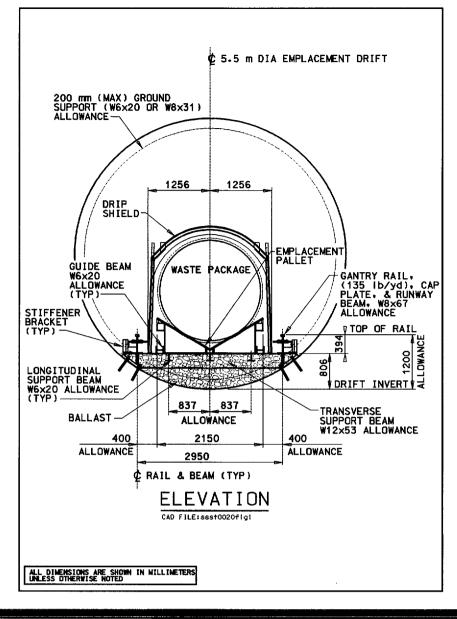
Single SR Design


The design presented in the S&ER and the SSPA represent a single design and will work over the full range of thermal modes

Design Parameter	Fixed for SR for all Modes Analyzed
Repository capacity	. 70,000 MTHM
Emplacement rate	3,000 MTHM/year after 5-year ramp-up
Emplacement period	~23 years
Sequence of waste package emplacement	Interspersed hotter and cooler packages to achieve average linear power density
Waste package design	Large, horizontally emplaced packages with corrosion-resistant outer shell of alloy-22 and structural inner shell of 316NG
Number of waste packages	~11,000
Initial waste package power	11.8 kW maximum
Drift diameter	5.5 meters
Drift spacing	81 meters
Drip shields	Titanium, continuous

Yucca Mountain Project/Preliminary Predecisional Draft Materials

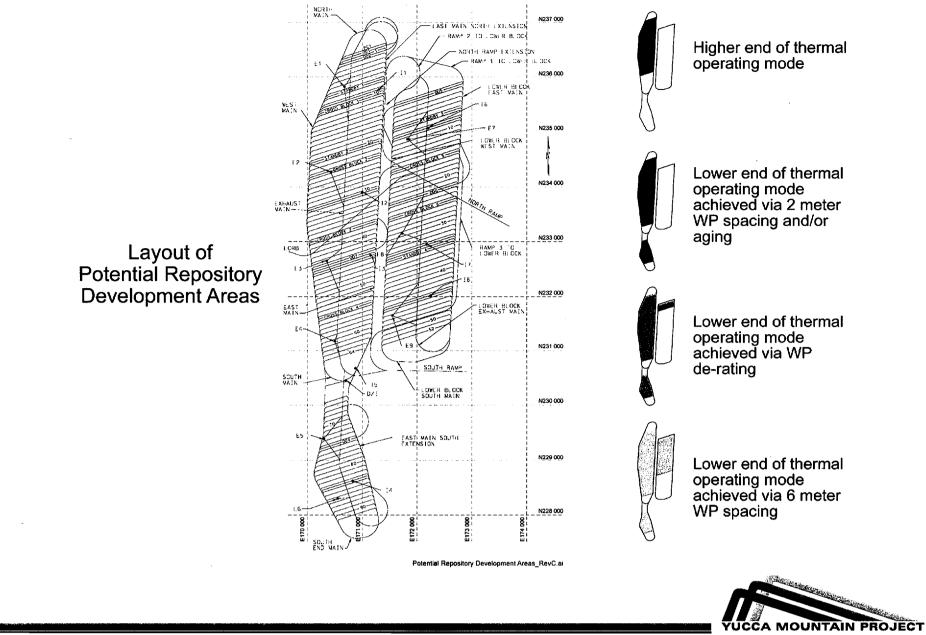
SR Typical Waste Package Design



Yucca Mountain Project/Preliminary Predecisional Draft Materials

BSC Graphics Presentations_YMRowe_080201.ppt

5


SR Drift Design

Yucca Mountain Project/Preliminary Predecisional Draft Materials

SR Underground Layout

Yucca Mountain Project/Preliminary Predecisional Draft Materials

BSC Graphics Presentations_YMRowe_080201.ppt

7

Potential Range of Operational Variables

These variables and ranges are preliminary and will continue to evolve as the TSPA is refined and the design is optimized.

Variable Lower Limit Upper Limit

Variables Associated with the Waste Stream

Assembly Age at Arrival	5 years	N/A
Assembly Burn-up	N/A	75 GWd/t
Assembly Enrichment	N/A	5.0%

Variables Associated with Repository Operations

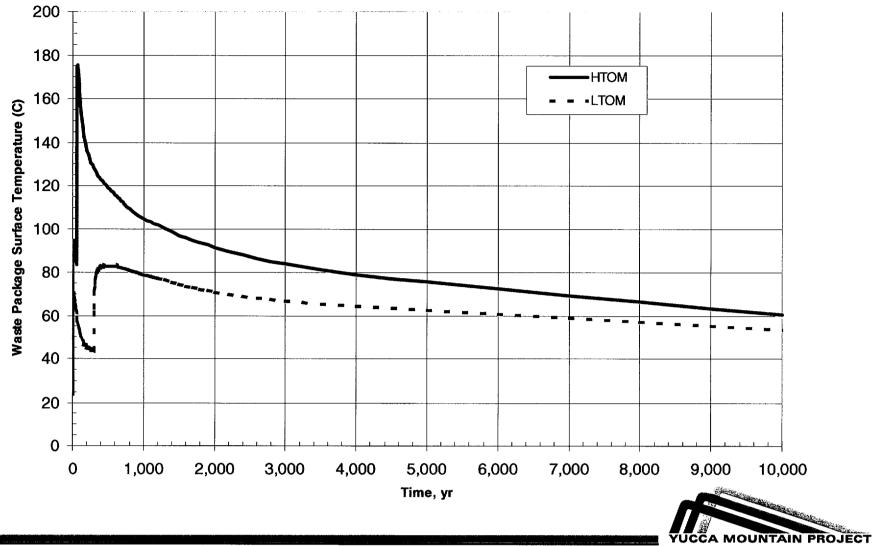
Ventilation Duration	0 years	300 years	
Ventilation Rate	0 CMS	15 CMS	
Waste Package Average Spacing	0.1 meters	8 meters	
PWR WP Capacity	1 assembly	21 assemblies	
BWR WP Capacity	1 assembly	44 assemblies	
Duration of Assembly Staging at Site	0 years	30 years	
Amount of Staging at Site	0 MTHM	40,000 MTHM	
Waste Package Power at Emplacement	N/A	11.8 kW	
Areal Mass Loading	25 MTHM/acre	60 MTHM/acre	
Linear Line Loading	N/A	1.45 kW/m	

Yucca Mountain Project/Preliminary Predecisional Draft Materials

BSC Graphics Presentations_YMRowe_080201.ppt

YUCCA MOUNTAIN PROJECT

Options Considered for SR


		Scenario	Scenario	Scenario	Scenario	Scenario	1	
		1	2	3	4	5		
Docion Romandon	S&ER Design (TSPA Rev 0)	Increased Waste package Spacing and Extended Ventilation	De-Rated or Smaller Waste Packages	Increased Spacing and Duration of Forced Ventilation	Extended Surface Aging with Forced Ventilation	Extended Natural Ventilation	SSPA HTOM	SSPA LTOM
Design Parameters	81	81	81	100	81	81	01	01
Drift Center-to- Center Spacing (m)				120			81	81
Number of Waste Packages	~11,000	~11,000	~15,000	~11,000	~11,000	~11,000	~11,000	~11,000
Operational Paramete	rs	L				•	A	
Average Waste Package Spacing	0.1	2	0.1	6	2	0.1	0.1	1.2
Surface Aging (years)	0	0	0	0	0	30	0	0
Emplacement Period	~23	~23	~23	~23	~243	~23	~23	~23
(years)								
Forced Emplacement Ventilation After Start of Emplacement(years)	50	75	75	125	125	75	50	300
Natural Ventilation (years)	0	250	250	0	0	>300	0	0
Results		L			1			l
Linear Thermal Loading (kW/m)	1.45	1.00	1.00	0.7	0.5	1.45	1.35	1.12
Total Emplacement Drift Excavation Length (km)	~60	~80	~90	~130	~80	~60	~60	~75
Required Emplacement Area (acres)	~1,150	~1,600	~1,800	~2,500	~1,600	~1,150	~1,150	~1,450
Average Waste Package Maximum Temp (°C)	~160	<85	<85	<85	<85	<85	~160	<85

YUCCA MOUNTAIN PROJECT 9

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Thermal Response

HTOM and LTOM Temperature Histories SSPA V1, R00 ICN01

Yucca Mountain Project/Preliminary Predecisional Draft Materials

BSC Graphics Presentations_YMRowe_080201.ppt

10

Attributes of Flexible Operations

- Ability to operate under various thermal modes
- Ability to accommodate variations in waste stream characteristics
- Ability to accommodate changes in receipt and emplacement rates
- Ability to provide for checks and balances for problem detection and corrective action

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Licensing Approach With Respect to Flexible Operating Modes

- License application will be for a single design
- Operational parameters will be bounded and included in the License Specifications
- Thermal response will be bounded by the design parameters and operating modes analyzed in the TSPA-LA

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Summary

- A set of design and operational parameters have been identified for the purpose of SR engineering and performance analyses
- The on going design and performance analyses provide us with a foundation that will allow us to continue to converge on a set of optimum design and operational parameters during the licensing phase of the program
- License application will be for a single design, with operational parameters specified in the License Specifications, and will be bounded by the TSPA-LA analyses

Yucca Mountain Project/Preliminary Predecisional Draft Materials

U.S. Department of Energy Office of Civilian Radioactive Waste Management

Scope of the SSPA and Comparison of Thermal Operating Modes

Presented to: U.S. Nuclear Regulatory Commission Presented by: James A. Blink Lawrence Livermore National Laboratory Bechtel SAIC Company, LLC and Robert Howard Bechtel SAIC Company, LLC

SHORE

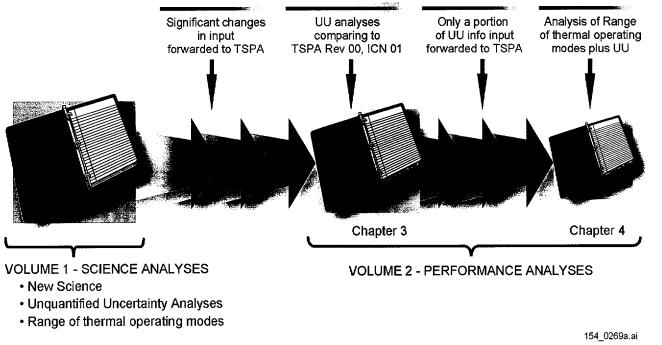
? ?

Objective

- Summarize SSPA model supplements since the S&ER
- Synthesize higher-temperature and lower-temperature operating modes (HTOM/LTOM) contrast based on process models

Organization

- SSPA Organization, volumes 1 and 2
- Subsystem
 - Process model developments for SSPA studies
 - Comparison of HTOM and LTOM process-level results
- Total System dose results from the TSPA-SR and SSPA
 - Key model developments affecting dose
 - Nominal and disruptive event scenarios


Yucca Mountain Project/Preliminary Predecisional Draft Materials

Relationship of SSPA Vol. 1 and Vol. 2

- Vol. 1 provides technical bases for analyses documented in Vol. 2
- "One-off" sensitivity analyses in Vol. 2 and guidance from Vol. 1 determine the content of the supplemental TSPA model

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Scope of SSPA Volume 1

- Volume 1 Covers the major process expected to occur at Yucca Mountain and supplements the information described in Analyses and Model Reports and Process Model Reports
- Subjects are organized in a manner similar to the organization found in the Yucca Mountain Science and Engineering Report
- Volume 1 focuses on the technical work within each process model area, encompassing uncertainty quantification, updated scientific bases, and analyses of a range of operating modes

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Scope of SSPA Volume 1

(Continued) Three General Types of Information

Unquantified Uncertainties Analysis

 Specific uncertainties that were not treated explicitly in the AMRs and PMRs supporting the S&ER have been quantified including parameter bounds, conceptual models, assumptions, and in some cases input parameters consisting of statistically biased or skewed distributions

Updates in Scientific Information

 This includes new experimental results, new conceptual models, new analytical approaches, and the identification and discussion of multiple lines of evidence

• Thermal Operating Mode Analyses

 Includes process level information regarding thermal dependencies; how the process responds to a range of thermal inputs and the impacts on uncertainty in process level results

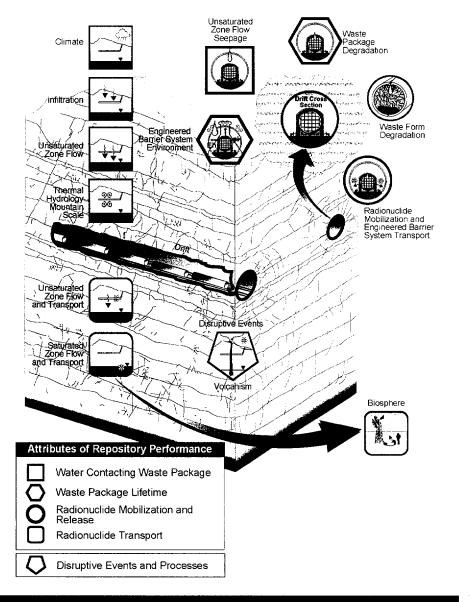
Yucca Mountain Project/Preliminary Predecisional Draft Materials

Scope of SSPA Volume 1

(Continued)

- Sections 3-14 include a summary of the conceptual basis for models used in the S&ER
- Specific content and level of detail of each section varies depending on:
 - Extent of the analyses performed
 - Amount of new information and data that has been generated since the publication of the S&ER and supporting documents
 - Amount of information necessary required to evaluate the range of thermal operating modes
- Each section contains a summary of information and recommendations for use in Volume 2 if appropriate

Yucca Mountain Project/Preliminary Predecisional Draft Materials


Outline of SSPA Volume 2

- Introduction
- Methods and Approach
- Sensitivity Analyses
 - 3.1 System-Level Evaluation--Nominal Scenario
 - 3.2 Subsystem-Level Evaluations--Nominal Scenario
 - 3.3 Evaluations of Disruptive Performance
- Supplemental Total System Performance Assessment Model
 - 4.1 System-Level Evaluations--Nominal Scenario
 - 4.2 Subsystem-Level Evaluations--Nominal Scenario
 - 4.3 System-Level Evaluation of Igneous Disruption
- Summary and Conclusions

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Attributes of Repository Performance

Yucca Mountain Project/Preliminary Predecisional Draft Materials

				or Supplementa Iodel Or Analys			Treatment C	ce Assessment of Supplemental del Or Analysisª
Key Attributes Of System	Process Model (Section of S&ER)	Topic Of Supplemental Scientific Model Or Analysis	Unquantified Uncertainty Analysis	Update in Scientific Information	Cooler Thermal Operating Mode Analysis	Section of Volume 1	TSPA Sensitivity Analysis	Included in Supplemental TSPA Model
Limited Water	Climate (4.2.1)	Post-10,000-year Climate Model		X		3.3.1	X	X
Entering Emplacement	Net Infiltration (4.2.1)	Infiltration for post-10,000-year Climate Model		x		3.3.2	x	х
Drifts	Unsaturated Zone	Flow in PTn		X		3.3.3		
	Flow (4.2.1)	3-D flow fields for cooler design; flow fields for post-10,000 yr climate, lateral flow; variable thickness of PTn; fault property uncertainty		x	х	3.3.4		
		Effects of lithophysal properties on thermal properties		x		3.3.5		
	Coupled Effects on UZ Flow (4.2.2)	Mountain-scale Thermal- Hydrologic effects		х	х	3.3.5		
		Mountain-scale Thermal- Hydrologic-Chemical effects		x	х	3.3.6		
		Mountain-scale Thermal- Hydrologic-Mechanical effects		х	х	3.3.7		
	Seepage into Emplacement Drifts (4.2.1)	Flow-focussing within heterogeneous permeability field; episodic seepage	х		х	4.3.1, 4.3.2, 4.3.5	х	x
		Effects rock bolts and drift degradation on seepage	х			4.3.3, 4.3.4		
	Coupled Effects on	Thermal effects on seepage	х		x	4.3.5	<u>x</u>	X
	Seepage (4.2.2)	Thermal-Hydrologic-Chemical effects on seepage	х		х	4.3.6		
		Thermal-Hydrologic-Mechanical effects on seepage		x	х	4.3.7		

Yucca Mountain Project/Preliminary Predecisional Draft Materials

	Process Model (Section of Yucca			Supplementa odel or Analys			Treatment o Scientific Mo	e Assessment f Supplemental odel or Analysis f in Volume 2)
Key Attributes of System	Mountain Science and Engineering Report)	Topic of Supplemental Scientific Model or Analysis	Unquantified Uncertainty Analysis	Update in Scientific Information	Cooler Thermal Operating Mode Analysis	Section of Volume 1	TSPA Sensitivity Analysis	Included in Supplemental TSPA Model
Long-Lived Waste Package and Drip Shield		Multiscale thermal-hydrolic model, including effects of rock dryout	x		×	5.3.1		х
		Thermal property sets	Х	Х		5.3.1		Х
		Effect of in-drift convection on temperatures, humidities, invert saturations, and evaporation rates	х		x	5.3.2		
		Composition of liquid and gas entering drift	х		x	6.3.1	x	х
		Evolution of in-drift chemical environment	х	······································	x	6.3.3	x	х
		Thermo-Hydro-Chemical model comparison to plug-flow reactor and fracture plugging experiment		х		6.3.1		
		Rockfall		Х		6.3.4		
	In-Drift Moisture Distribution (4.2.5)	Environment on surface of drip shields and waste packages	х			5.3.2		
		Condensation under drip shields	Х			8.3.2	Х	
		Evaporation of seepage	х		x	8.3.1 5.3.2	x	X
		Effect of breached drip shields or waste package on seepage	х		x	8.3.3	×	х
		Waste package release flow geometry (flow-through, bathtub)	х			8.3.4	x	
	Drip Shield Degradation and Performance (4.2.4)	Local chemical environment on surface of drip shields (including Mg, Pb) and potential for initiating localized corrosion	x			7.3.1		

Blink 34.ai YUCCA MOUNTAIN PROJECT

Yucca Mountain Project/Preliminary Predecisional Draft Materials

BSC Graphics Presentations_YMBlink_08/02/01.ppt

10

Summary of Supplemental Modes and Analyses (Continued)

	Process Model (Section of Yucca			Supplementa del or Analys			Treatment of Scientific Mo	e Assessment f Supplemental del or Analysis l in Volume 2)
Key Attributes of System	Mountain Science and Engineering Report)	Topic of Supplemental Scientific Model or Analysis	Unquantified Uncertainty Analysis	Update in Scientific Information	Cooler Thermal Operating Mode Analysis	Section of Volume 1	TSPA Sensitivity Analysis	Included in Supplemental TSPA Model
Long-Lived Waste Package and Drip Shield	Waste Package Degradation and Performance (4.2.4)	Local chemical environment on surface of waste packages (including Mg, Pb) and potential for initiating localized corrosion	x			7.3.1		
		Aging and phase stability effects on A-22	x	х		7.3.2	х	
		Uncertainty in weld stress state following mitigation	х			7.3.3	x	х
		Weld defects	x			7.3.3	X	х
		Early failure due to improper heat treatment	x		x	7.3.6	x	х
		General corrosion rate of A-22: Temperature dependency	х		x	7.3.5	×	x
		General corrosion rate of A-22: Uncertainty/variability partition	x			7.3.5	x	х
		Long-term stability of passive films on A-22	х			7.3.4		
		Stress threshold for initiation of stress corrosion cracking	x	x		7.3.3	x	x
		Probability of non-detection of manufacturing defects		x		7.4.3	×	x
		Number of defects		Х		7.3.5	Х	X
		Distribution of crack growth exponent (repassivation slope)	x	x		7.3.7	×	x
Limited Release of Radionuclides	In-Package Environments (4.2.6)	Effect of HLW glass degradation rate and steel degradation rate on in-package chemistry	x		x	9.3.1	x	x
from the Engineered Barriers	Cladding Degradation and Performance (4.2.6)	Effect of initial perforations, creep rupture, stress corrosion cracking, localized corrosion, seismic failure, rock overburden failure, and unzipping velocity on cladding degradation	x		x	9.3.3	x	x

Blink_35.ai

YUCCA MOUNTAIN PROJECT

Yucca Mountain Project/Preliminary Predecisional Draft Materials

BSC Graphics Presentations_YMBlink_08/02/01.ppt

11

	Process Model (Section of Yucca		Reason for Supplemental Scientific Model or Analysis			Treatment o Scientific Mo	e Assessment f Supplemental odel or Analysis I in Volume 2)	
Key Attributes of System	Mountain Science and Engineering Report)	Topic of Supplemental Scientific Model or Analysis	Unquantified Uncertainty Analysis	Update in Scientific Information	Cooler Thermal Operating Mode Analysis	Section of Volume 1	TSPA Sensitivity Analysis	Included in Supplemental TSPA Model
Limited Release of	DHLW Degradation and Performance (4.2.6)	HLW glass degradation rates	х	x	×	9.3.1		
Radionuclides from the Engineered Barriers	Dissolved Radionuclide Concentrations (4.2.6)	Solubility of neptunium, thorium, plutonium, and technetium	х	x	x	9.3.2	x	x
	Colloid-Associated Radionuclide Concentrations (4.2.6)	Colloid mass concentrations	x			9.3.4	x	
:	EBS (Invert)	Diffusion inside waste package	Х	Х		10.3.1	Х	Х
	Degradation and Transport (4.2.6, 4.2.7)	Transport pathway from inside waste package to invert	х	x		10.3.2		
	4.2.1)	Sorption inside waste package	Х	Х		10.3.4	Х	Х
		Sorption in invert	Х	Х		10.3.4	Х	Х
		Diffusion through invert	Х			10.3.3	Х	Х
		Colloid stability in the invert	X			10.3.5		
		Microbial transport of colloids	Х	Х		10.3.6		

Blink_36.ai

1

Yucca Mountain Project/Preliminary Predecisional Draft Materials

	Process Model (Section of Yucca			· Supplementa odel or Analys			Treatment o	e Assessment f Supplemental odel or Analysis I in Volume 2)
Key Attributes of System	Nountain Science and Engineering Report)	Topic of Supplemental Scientific Model or Analysis	Unquantified Uncertainty Analysis	Update in Scientific Information	Cooler Thermal Operating Mode Analysis	Section of Volume 1	TSPA Sensitivity Analysis	Included in Supplemental TSPA Model
Delay and Dilution of	Unsaturated Zone Radionuclide	Effect of drift shadow zone - advection/diffusion splitting	x		x	11.3.1	x	X
Radionuclide Concentrations by the Natural Barriers	Transport (Advective Pathways; Retardation; Dispersion; Dilution)	Effect of drift shadow zone - concentration boundary condition on EBS release rates	x			11.3.1		
Damers	(4.2.8)	Effect of matrix diffusion	x			11.3.2, 11.3.3		
		3-D transport			Х	11.3.2		
		Effect of coupled Thermo- Hydrologic, Thermo-Hydro- Chemical, and Thermo-Hydro- Mechanical processes on transport		x	x	11.3.5		
	Saturated Zone	Groundwater specific discharge	Х	Х		12.3.1	X	
	Radionuclide Flow and Transport (4.2.9)	Effective diffusion coefficient in volcanic tuffs	х			12.3.2	x	
	(4.2.3)	Flowing interval spacing				12.3.2	Х	
		Flowing interval (fracture) porosity	x			12.3.2	X	
		Effective porosity in the alluvium	X			12.3.2	Х	
		Correlation of the effective diffusion coefficient with matrix porosity	x			12.3.2	x	
		Bulk density of the alluvium	Х	Х		12.3.2	Х	X

Blink_37.ai


Yucca Mountain Project/Preliminary Predecisional Draft Materials

	Process Model (Section of Yucca			⁻ Supplementa odel or Analys			Treatment o Scientific Mo	e Assessment f Supplemental odel or Analysis l in Volume 2)
Key Attributes of System	Mountain Science and Engineering Report)	Topic of Supplemental Scientific Model or Analysis	Unquantified Uncertainty Analysis	Update in Scientific Information	Cooler Thermal Operating Mode Analysis	Section of Volume 1	TSPA Sensitivity Analysis	Included in Supplemental TSPA Model
Delay and Dilution of Radionuclide	Saturated Zone Radionuclide Transport (4.2.9)	Retardation for radionuclides irreversibly sorbed on colloids in the alluvium	x	×		12.3.2	x	
Concentrations by the Natural Barriers		No matrix diffusion in volcanic tuffs case				12.5.2	х	
Damers		Presence or absence of alluvium				12.5.2	x	
		Sorption coefficient in alluvium for I, Tc	x	×		12.3.2		x
		Sorption coefficient in alluvium for Np, U	x	x		12.3.2	x	
		Sorption coefficient for Np in volcanic tuffs	x			12.3.2	x	
		Kc model for groundwater colloid concentrations Pu, Am		×		12.5.2	×	
		Enhanced matrix diffusion in volcanic tuffs				12.5.2	x	
		Effective longitudinal dispersivity	х	X		12.3.2	x	
		New dispersion tensor		X		12.3.2		
		Flexible design			Х	12.3.2		
		Different conceptual models of the large hydraulic gradient and their effects on the flow path and specific discharge		×		12.3.1		
		Hydraulic head and map of potentiometric surface		х		12.3.1		
	Biosphere (4.2.10)	Receptor of interest	X			13.3.1		
		Comparison of dose assessment methods	x			13.3.2		
		Radionuclide removal from soil by leaching	x			13.3.3		
		Uncertainties not captured by GENII-S	x			13.3.4		
		Influence of climate change on groundwater usage and BDCFs	x			13.3.5. 13.3.7		
		BDCFs for groundwater and igneous releases		x		13.3.6, 13.3.8, 13.4	х	×

Blink_38 a YUCCA MOUNTAIN PROJECT 14

1

Yucca Mountain Project/Preliminary Predecisional Draft Materials

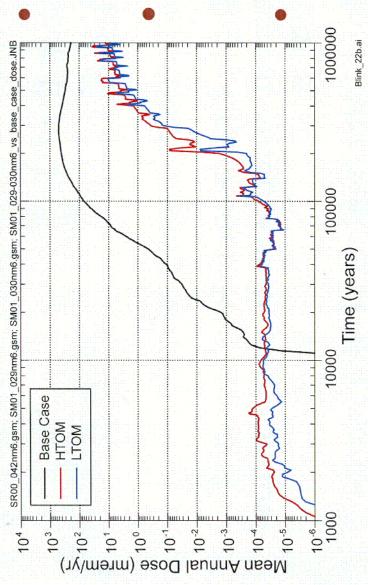
	Process Model (Section of Yucca			Supplementa			Treatment o Scientific Mo	ivity Supplementa
Key Attributes of System	Mountain Science and Engineering Report)	Topic of Supplemental Scientific Model or Analysis	Unquantified Uncertainty Analysis	Update in Scientific Information	Cooler Thermal Operating Mode Analysis	Section of Volume 1	TSPA Sensitivity Analysis	Included in Supplemental TSPA Model
Low Mean Annual Dose Considering	Volcanism/Igneous Activity (4.3.2)	Probability of dike intersection of repository for the operating mode described in S&ER		х		14.3.3.1		x
Potentially Disruptive Events		Scaling factors to evaluate impacts of repository design changes			x	14.3.3.2		
		Contribution to release of Zones 1 and 2		x		14.3.3.3	×	
		Sensitivity to waste particle size distribution		x		14.3.3.4	×	
		New wind speed data		X		14.3.3.5	X	X
		Explanation of method for handling ash/waste particle size and density		x		14.3.3.6		
		Volcanism inputs for Supplemental TSPA Model		x		14.3.3.7		
		New aeromagnetic data		Х		14.3.3.8		Х

NOTE: S&ER = Yucca Mountain Science and Engineering Report

^a Performance assessment treatment of supplemental scientific model or analysis discussed in SSPA Volume 2

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Subsystems


- UZ flow
- Thermal seepage
- In-drift thermal hydrology
- Thermal-hydrologic-mechanical (THM) effects
- Thermal-hydrologic-chemical (THC) effects, in-drift water and gas chemistry
- Waste package (WP) corrosion
- Water diversion in the engineered barrier system (EBS)
- Waste form mobilization
- EBS transport
- Unsaturated zone (UZ) transport
- Saturated Zone (SZ) transport
- Biosphere
- Disruptive events

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Total Dose - Nominal Scenario

Because most WP failures are well beyond the thermal pulse, HTOM and LTOM mean dose rates are similar

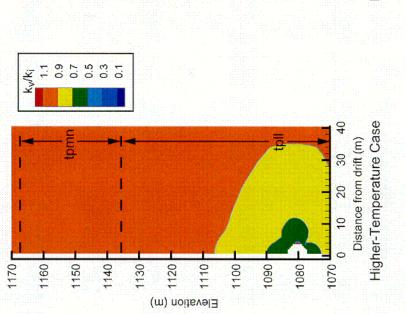
- Early WP failure small doses prior to 100,000 years
- T-dependent general corrosion delay in larger doses
- Post 10,000 year climate changes about 10x dose variation
- Solubility updates—about 10x decrease in peak dose

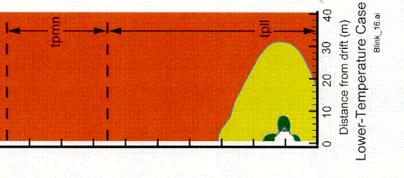
17

YUCCA MOUNTAIN PROJECT

UZ Flow Developments since TSPA-SR

- Examined lateral flow in the PTn
- Expanded 3-D flow fields
- Included lithophysae in thermal properties
- New Thermal Hydrologic Chemical (THC) model development—addressed processes beyond scope of drift-scale THC models
- New Thermal Hydrologic Mechanical (THM) model development—addressed multi-phase flow and calculated stress-induced permeability changes




Yucca Mountain Project/Preliminary Predecisional Draft Materials

Thermal-Mechanical Caused Permeability Changes

- At 10 years, both thermal cases show an overall decrease in permeability around the drift due to thermal stress induced by decay heat
- This decrease overcomes the initial excavationinduced permeability increases, except possibly in areas very close to the crown of the drift

LTOM and HTOM are similar

5-7

19

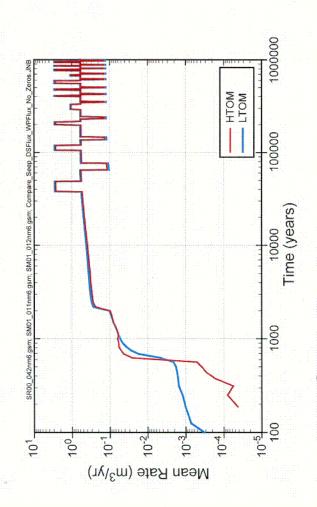
VUCCA MOUNTAIN PROJECT

Seepage Developments since TSPA-SR

- Expanded seepage model to include Tptpll
- Reduced conservatism in flow focusing factor
- Used a more realistic 3-D drift degradation seepage model
- TH, THC, THM—Examined range of thermal operating modes
- THM—Developed a fully coupled THM Continua Model and improved the THM Distinct Element Model

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Thermal Seepage in TSPA


45%

48%

LTOM

HTOM

Blink 14.ai

LTOM seepage

- Total System Performance Assessment (TSPA) model Ambient model
- HTOM seepage
- Process model < TSPA model < Ambient model

ç

5

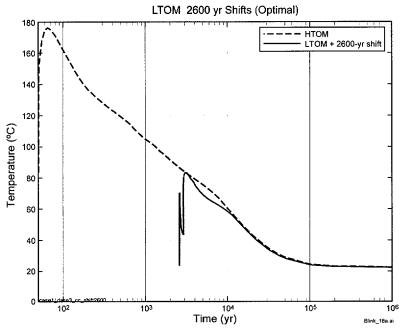
YUCCA MOUNTAIN PROJECT

Key Thermal-Hydrologic Environment Uncertainties Evaluated in SSPA Vol. 1

- Model (Conceptual) Uncertainty
 - Use of effective thermal conductivity and thermal radiation approaches
 - Neglecting dryout during ventilation
 - Coupling of submodels
 - Localized effects of seepage
 - Neglecting fracture heterogeneity impacts on seepage
 - Neglecting effects of mountain-scale gas-phase convection
 - Effects of lithophysal porosity on vapor storage

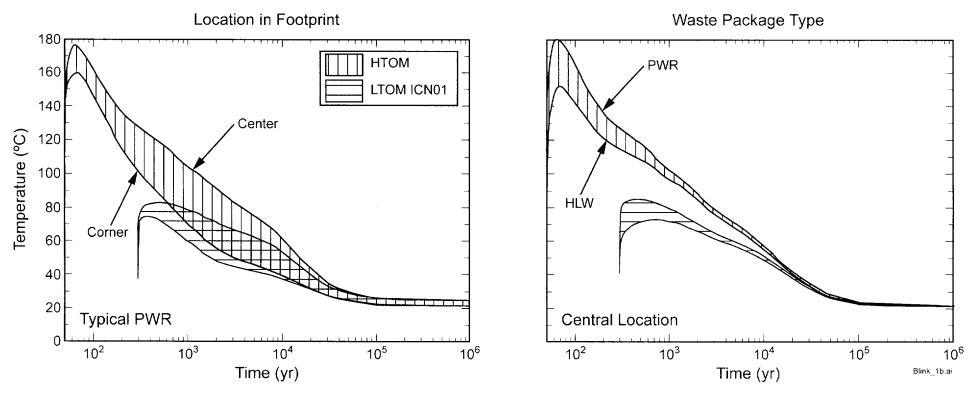
NOTE:

- **DKM = dual permeability model**
- THM = thermal-hydrologic-mechanical
- THC = thermal-hydrologic-chemical


Yucca Mountain Project/Preliminary Predecisional Draft Materials

- Process Uncertainty
 - Hysteresis of imbition
 - THM & THC changes to hydrologic properties
- Input Data Uncertainty
 - Invert properties
 - Host rock bulk permeability
 - Host rock thermal conductivity (wet & dry)
 - Host rock heat capacity
 - Host rock lithophysal porosity
 - WP thermal output
 - Ventilation duration and efficiency

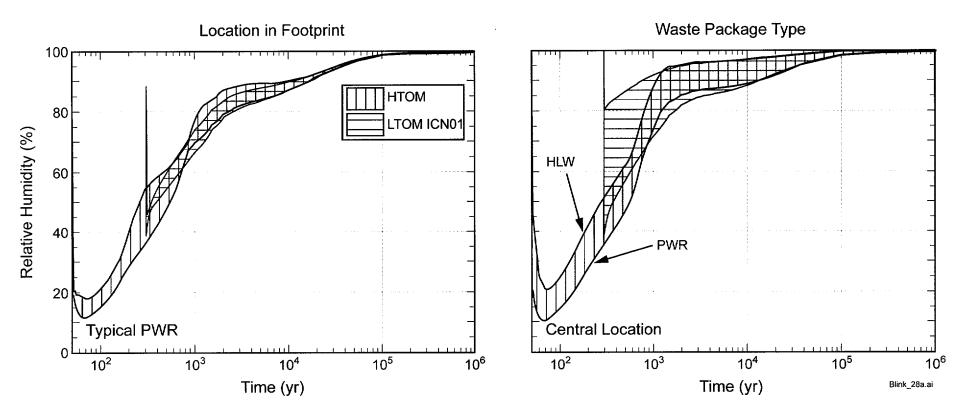
The LTOM Thermal History is Similar to the HTOM after a Few Thousand Years


- HTOM models include the LTOM environments
- High temperature parts of the models could increase HTOM uncertainty compared to LTOM

HTOM and LTOM performance are similar because the HTOM thermal pulse does not significantly affect the EBS or Natural Barrier System

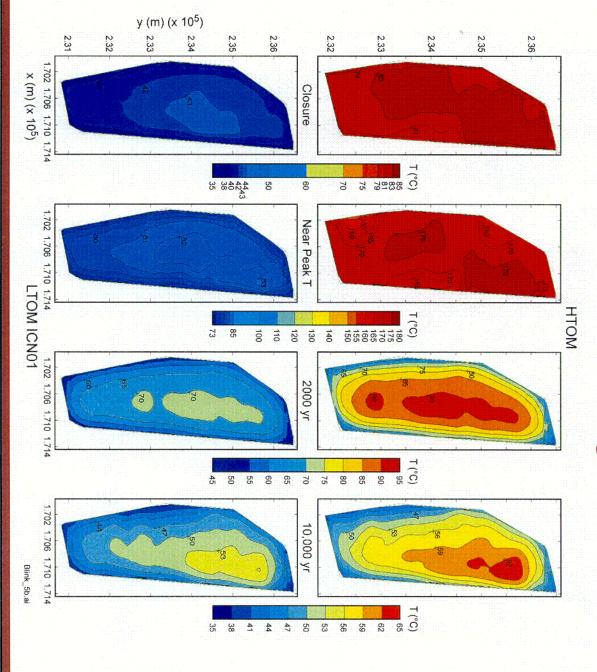
Yucca Mountain Project/Preliminary Predecisional Draft Materials

WP Temperature Sensitivity to Location and WP Type


- The variability range for location and WP type is ~20°C
- The variability range for operating mode is ~90°C

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Sensitivity of WP Relative Humidity (RH) to Infiltration Rate and Operating Mode (All WP Types and Locations)

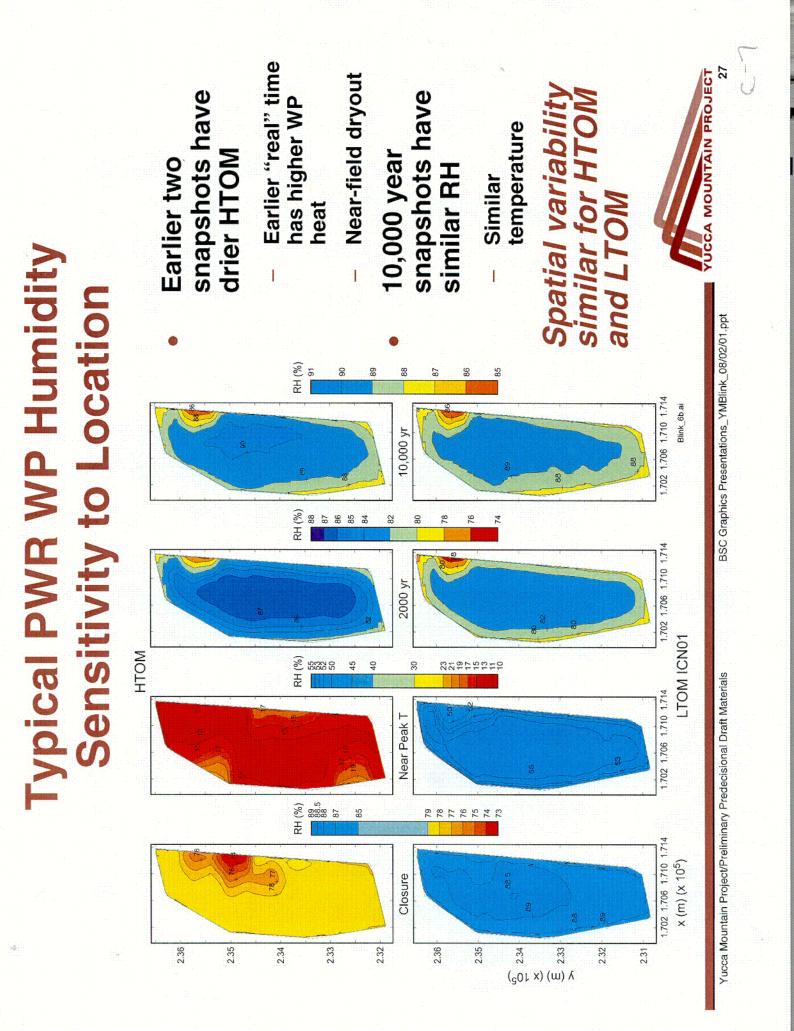


LTOM low RH duration is similar to HTOM

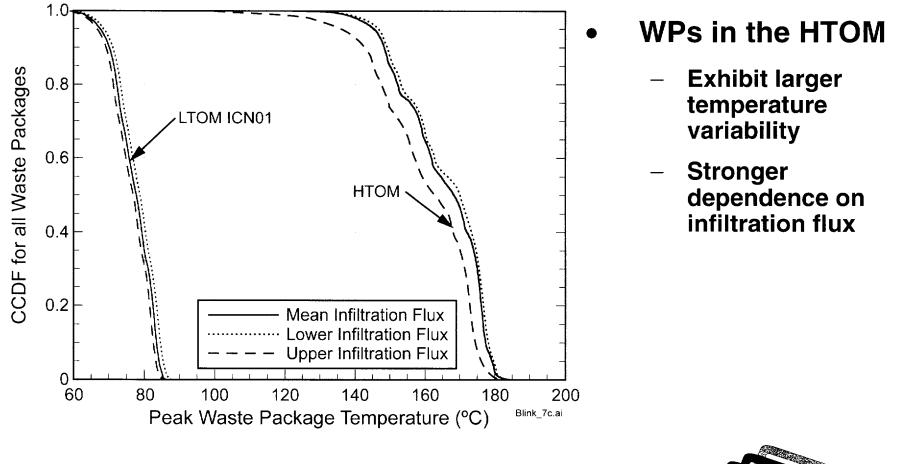
YUCCA MOUNTAIN PROJECT 25

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Typical PWR WP Temperature Sensitivity to Location


- Common color bar for each time period
- Similar distributions at 10,000 years

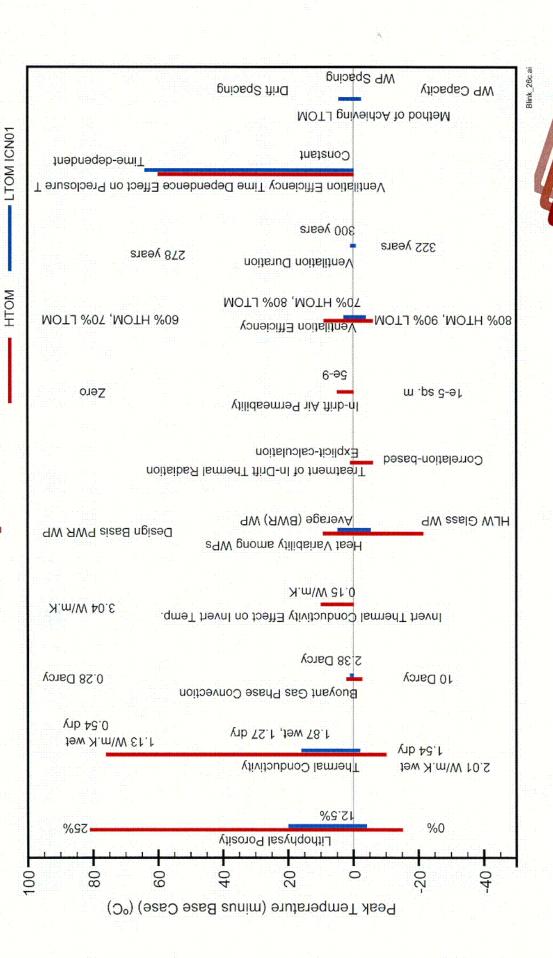
Spatial variability similar for HTOM and LTOM


BSC Graphics Presentations_YMBlink_08/02/01.ppt

Yucca Mountain Project/Preliminary Predecisional Draft Materials

YUCCA MOUNTAIN PROJECT

Sensitivity of Waste Package Temperature to Infiltration Rate and Operating Mode (All Waste Package Types and Locations)



Yucca Mountain Project/Preliminary Predecisional Draft Materials

Sensitivity of Peak Postclosure Ū emperat

Yucca Mountain Project/Preliminary Predecisional Draft Materials

BSC Graphics Presentations_YMBlink_08/02/01.ppt

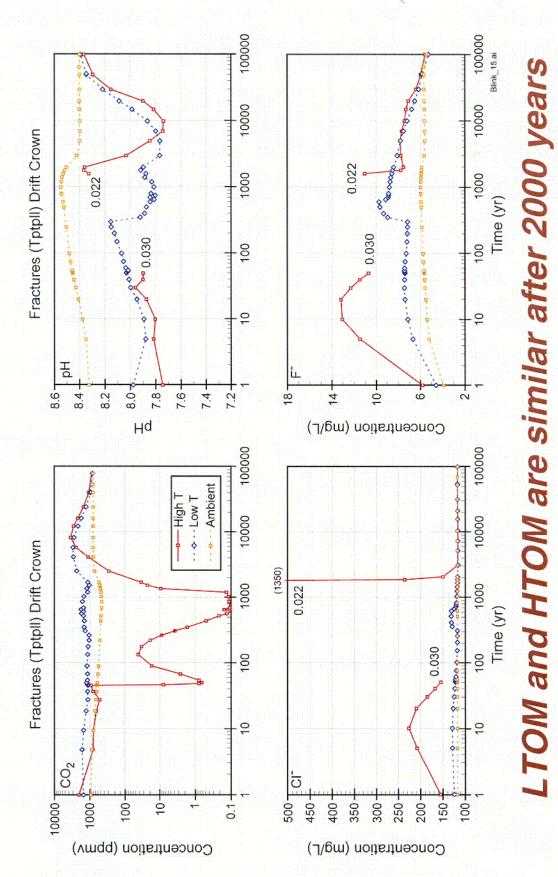
A MOUNTAIN PROJECT 29

Supplemental Engineered Barrier System Chemical Environment Model

- Main improvement for the TSPA-SR supplemental chemical environment model is the propagation of uncertainty associated with the composition of water and gas entering the emplacement drifts
 - Different PCO_2 soil horizon starting conditions (high PCO_2 and low PCO_2 cases)
 - HTOM versus LTOM

Yucca Mountain Project/Preliminary Predecisional Draft Materials

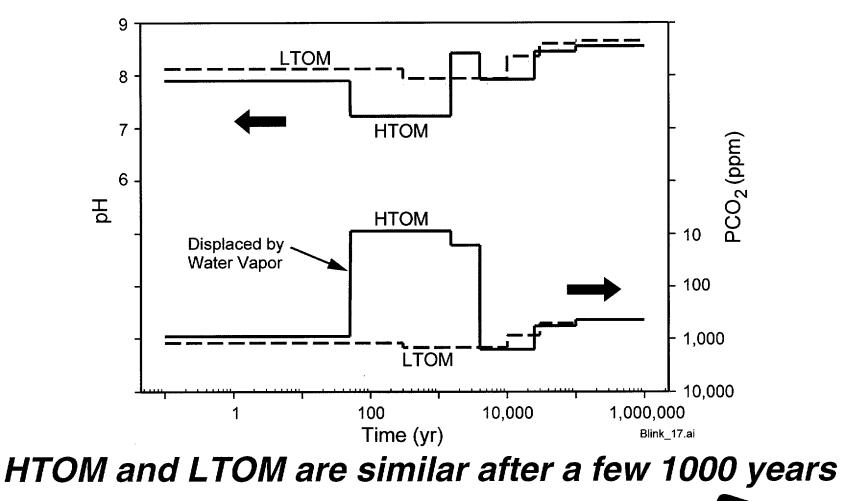
Key Chemical Environment Uncertainties


Key Uncertainty Not Included in S&ER Models	Model Improvements Discussed in SSPA Volume 1	Included in Supplemental TSPA Model
Composition of liquid and gas entering drifts	Yes	Yes
Seepage/Invert mixing and interactions	Yes	No
Trace elemental compositions and effects on chemistry	Yes	No
Radionuclide sorption onto corrosion products	Yes	Yes
Cement leachate effects on in-drift chemistry	Yes	No
Generation of colloids from corrosion products	Yes	No

Blink_32.ai

Yucca Mountain Project/Preliminary Predecisional Draft Materials

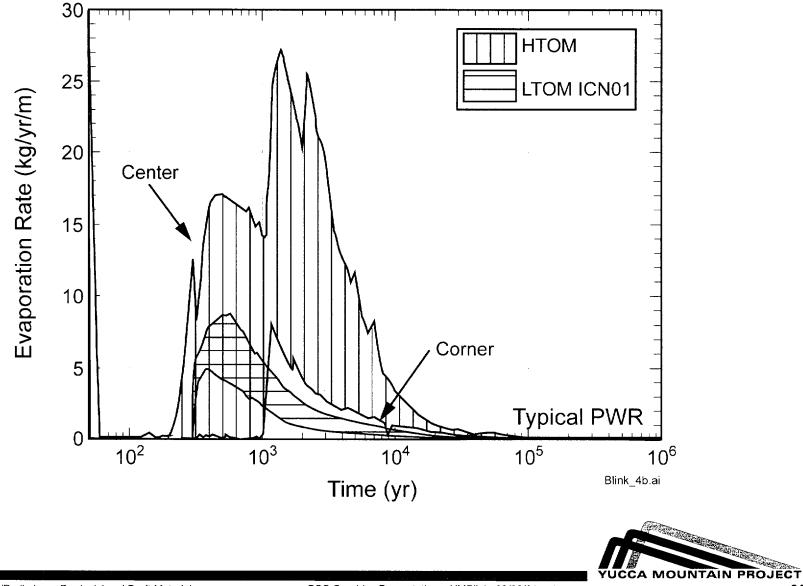
Seepage Water Chemistry


BSC Graphics Presentations_YMBlink_08/02/01.ppt

32

VUCCA MOUNTAIN PROJECT

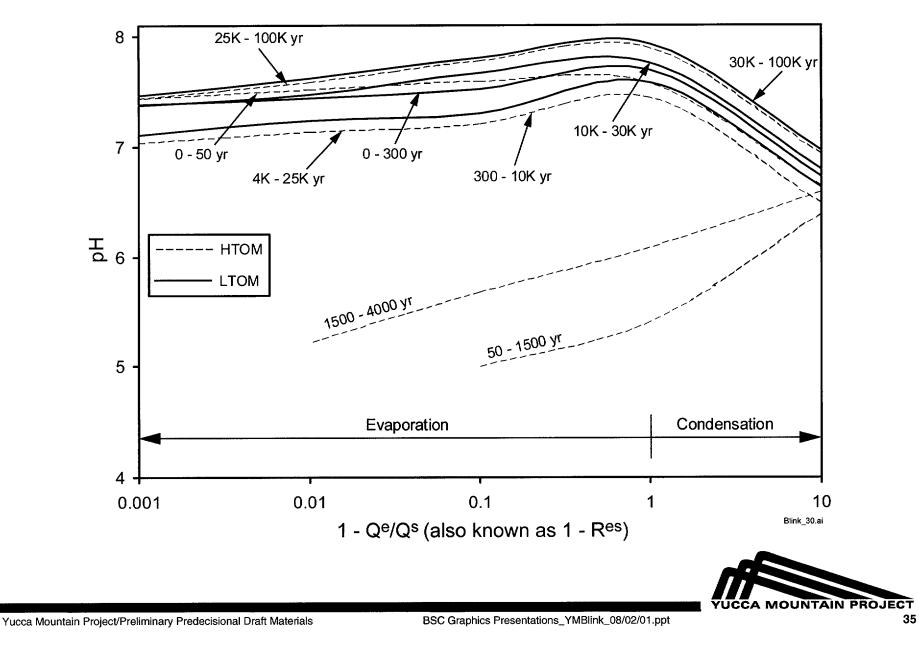
Yucca Mountain Project/Preliminary Predecisional Draft Materials


In-Drift Water and Gas Chemistry (after temporal abstraction, prior to gas-liquid equilibration)

YUCCA MOUNTAIN PROJECT

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Invert Evaporation Sensitivity to Location


Yucca Mountain Project/Preliminary Predecisional Draft Materials

BSC Graphics Presentations_YMBlink_08/02/01.ppt

34

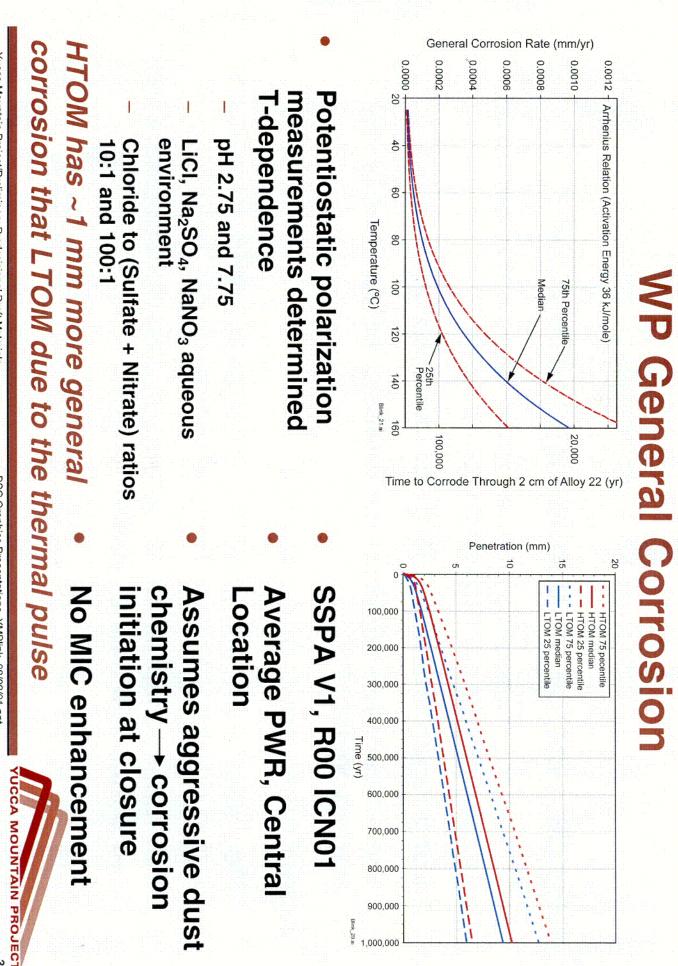
pH for Higher CO₂ Case Pore Water - Type Seepage

Waste Package Corrosion Developments Since TSPA-SR

- Range of water chemistries affect salt development
 - The WP Critical RH Model in TSPA-SR considered only carbonate base brines
 - The SSPA considered near-neutral pH brines, and the possibility of soluble calcium and magnesium halides
- Considered potential effect of soluble Pb and other minor constituents in natural systems
- Also considered other sources of soluble salts
 - Entrained matter in ventilation air
 - Rock dust

YUCCA MOUNTAIN PROJECT

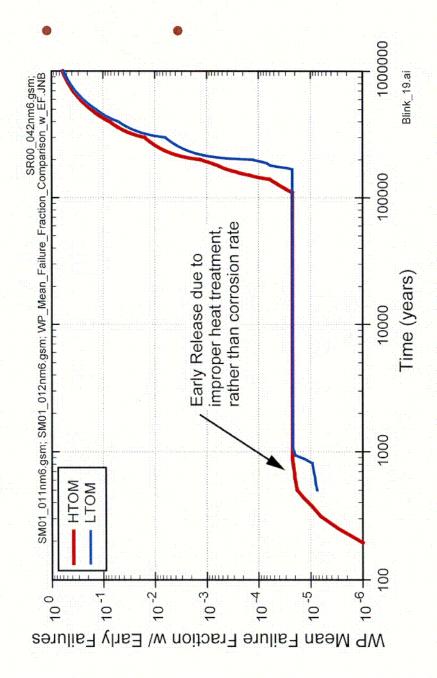
Yucca Mountain Project/Preliminary Predecisional Draft Materials


Alloy 22 Phase Stability in SSPA

• New data increases confidence in TSPA-SR

- Theoretical modeling of base metal does not show phase instabilities under repository conditions
- Long-range ordering (LRO) not expected below 300°C
- Preliminary weld data do not indicate instabilities below approximately 200°C
- Alternative lines of evidence
 - Degradation in mechanical and corrosion properties due to aging does not appear likely at temperatures below 300°C
 - Two-phase metastable structures in Josephinite stable for more than 100 million years

Yucca Mountain Project/Preliminary Predecisional Draft Materials

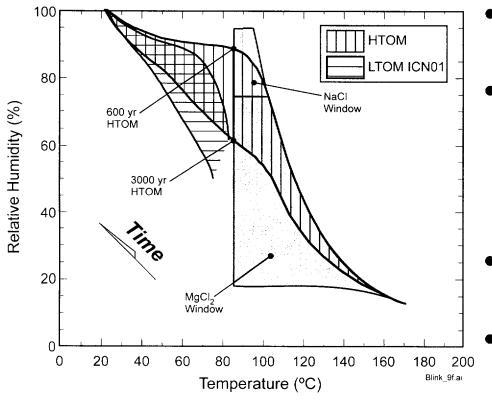


Yucca Mountain Project/Preliminary Predecisional Draft Materials

BSC Graphics Presentations_YMBlink_08/02/01.ppt

(+ 10

LTOM and HTOM are similar


- Includes general corrosion, local corrosion, and stress corrosion cracking
- General corrosion mode increased
- by 1.0 to 2.0 for MIC
- by 1.0 to 2.5 for aging (at closure weld)

Yucca Mountain Project/Preliminary Predecisional Draft Materials

BSC Graphics Presentations_YMBlink_08/02/01.ppt

VUCCA MOUNTAIN PROJECT


WP Temperature-Humidity Trajectories and the Crevice Corrosion Initiation Window of Susceptibility

- Crevice corrosion initiates by breaching the passive film
- The process model crevice corrosion initiation window includes T, [CI⁻] and pH
 - The pH dependence dominates T and [Cl⁻]
- The TSPA crevice corrosion initiation is based on pH
- Both LTOM and HTOM avoid crevice corrosion
 - LTOM: Temperature criterion
 - HTOM: Chemistry (pH) criterion

Yucca Mountain Project/Preliminary Predecisional Draft Materials

WF Mobilization Developments Since TSPA-SR

- In-Package Chemistry
 - Effects of HLW glass and steel degradation rates (on pH-time trajectories and actinide dissolution)
- Dissolved Concentrations of Th, Np, Pu and Tc
 - Effects of thermodynamic data uncertainties, oxygen fugacity, concentration-limiting solid
 - Updated solubilities have lower means and wider ranges
- Cladding
 - Effects of creep rupture and stress corrosion cracking, localized corrosion rate uncertainty, seismic failures, rock overburden failure, unzipping velocity uncertainty
- Colloids
 - Simplified model with expanded range, includes reversible and irreversible Pu attachment

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Other factors had little or no T- dependence	 In-WP pH: used 25°C-dominated database 	 Lower Pu solubility at high-T still too uncertain for SSPA model 	 In-WP diffusion coefficient not strongly T-dependent 	 In-WP sorption T-dependence uncertain, higher sorption at higher-T is likely 	 Clad Creep is T-dependent, but negligible total creep 	- Little T-dependence for colloids
		우. 라이]dN	-124 5 6 7 8 9 14 PH Blink_23 al	pH = 7, logf ₀₂ = -0.7	CSMF Dissolution R	0 20 30 40 50 60 70 80 90 100 Temperature (°C)

-

Supplemental Engineered Barrier System Flow and Transport Model

- Main improvements for the TSPA-SR supplemental EBS flow and transport model are
 - Seepage evaporation at the DS
 - DS and WP flux models
 - In-package diffusion
 - Radionuclide sorption

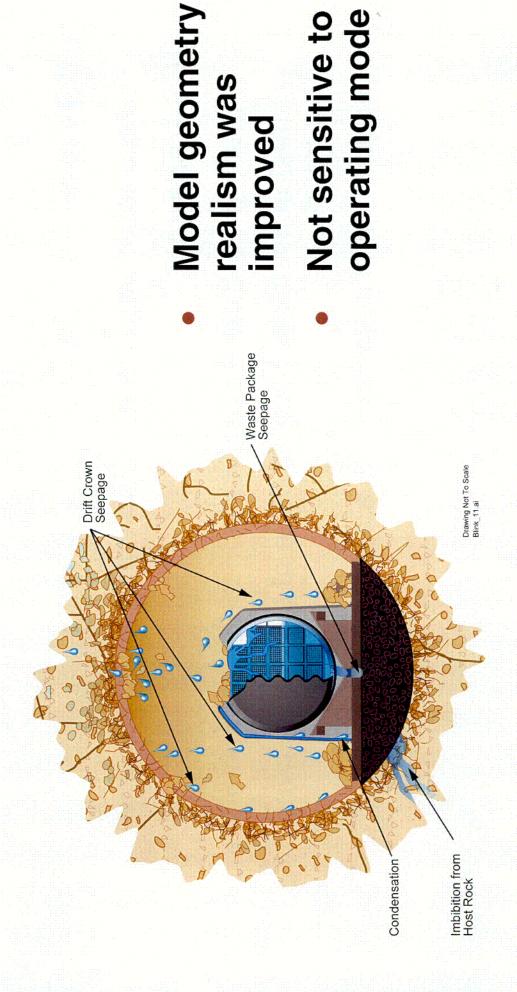
Yucca Mountain Project/Preliminary Predecisional Draft Materials

Key Flow and Transport Uncertainties

Key Uncertainty Not Included in S&ER Models	Model Improvements Discussed in SSPA Volume 1	Included in Supplemental TSPA Model
Seepage evaporation	Yes	Yes
Drip shield and waste package fluxes	Yes	Yes
Drip shield condensation	Yes	No
Bath-tub flow	Yes	No
Diffusion in waste package	Yes	Yes
Diffusion from waste package to invert	Yes	No
Diffusion through invert	Yes	Yes
Microbial sorption and transport	Yes	No

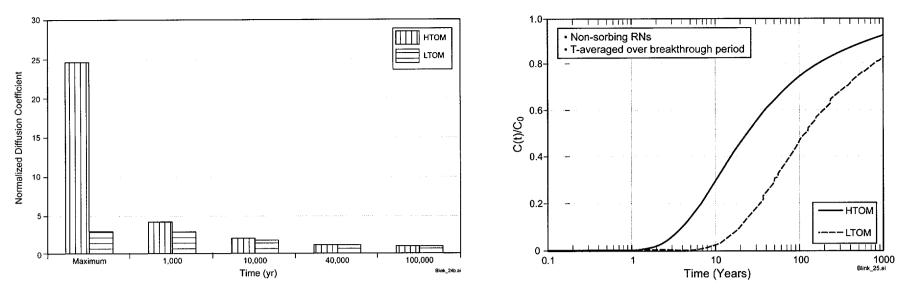
Blink_33.ai

Yucca Mountain Project/Preliminary Predecisional Draft Materials


Impact of Thermal Operating Mode on Engineered Barrier System Transport

- EBS Flow
 - Evaporation rates are a function of thermal response
- EBS transport
 - Diffusion coefficient is a direct function of temperature
 - Diffusion coefficient is a function of the time-dependent saturation
 - Adsorption of water vapor is a function of RH

Yucca Mountain Project/Preliminary Predecisional Draft Materials


Water Diversion in EBS

VUCCA MOUNTAIN PROJECT 46 6-13

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Engineered Barrier System Transport

- Parameters depend on T
 - Diffusion coefficient is f(T, S_{invert})
 - Absorption of water vapor (condensate thickness)
 - Evaporation/condensation fluxes

Negligible difference between HTOM and LTOM because very few WPs fail when temperatures are different

Yucca Mountain Project/Preliminary Predecisional Draft Materials

UZ Transport Developments Since TSPA-SR

- Transport times in the drift shadow are orders of magnitude longer than predicted by the existing PA model. The transport times in the drift shadow model are significant relative to the 10,000 year regulatory time frame
- Process model representation of matrix diffusion is conservative due to matrix discretization effects, resulting in shorter predicted breakthrough times. The PA model is conservative relative to the process models over most of the breakthrough curve
- Including the southern extension to the potential repository block results in slightly longer transport times to the water table
- Local dryout from TH processes will delay or reduce radionuclide transport immediately beneath potential waste emplacement drifts for 2000 to 3000 years. Other thermally-driven coupled process effects are expected to have minimal effects on transport

Yucca Mountain Project/Preliminary Predecisional Draft Materials

BSC Graphics Presentations_YMBlink_08/02/01.ppt

YUCCA MOUNTAIN PROJECT

48

Unsaturated Zone Transport

• Calico Hills peak temperature (~75°C HTOM)

- Is not high enough
- For long enough
- For significant zeolite alteration which could change flow patterns or sorption

Yucca Mountain Project/Preliminary Predecisional Draft Materials

SZ Developments Since TSPA-SR

- New Data
 - Lithology of Nye County wells
 - Hydraulic head and water level elevations
- New Field Test Results
 - Alluvial Testing Complex (ATC) hydraulic measurements
 - Preliminary ATC single-well tracer test results
- New Model Analyses (Process model level)
 - Alternate conceptual model for Large Hydraulic Gradient
 - Alternate representation of Solitario Canyon Fault

Yucca Mountain Project/Preliminary Predecisional Draft Materials

SZ Developments Since TSPA-SR

(Continued)

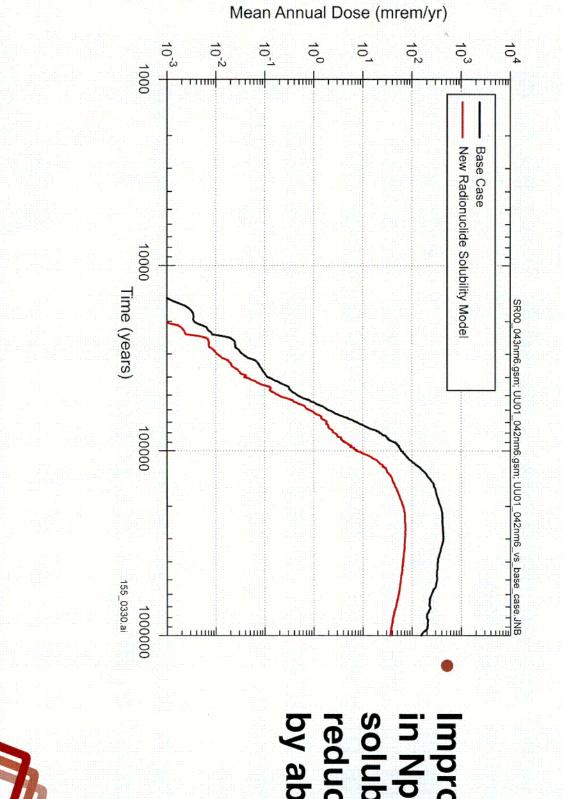
- New Model Analyses (total system level)
 - Dispersion and matrix diffusion analyses
 - Sensitivity to flow path length in alluvium
 - Sensitivity to reversible colloid model uncertainty
 - Location of accessible environment (EPA final rule)
- New Values Used in SSPA
 - Bulk density of alluvium
 - Sorption coefficients (Tc and I)

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Biosphere Developments Since TSPA-SR

- Updated FEPs
- Relative exposures to receptor groups
- Improved distributions for input factors in External and Inhalation exposure analyses
- Climate effects on water usage & ingestion exposure
- Improved transfer coefficients (soil to plant, etc.) for Pb, Bi and Po
- Revised BCDFs
- Increased GENII-S sample size
- Revised volcanic eruption BDCF analysis

Yucca Mountain Project/Preliminary Predecisional Draft Materials

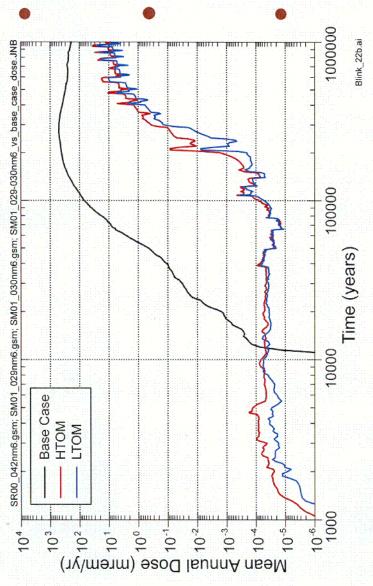


Disruptive Events Developments Since TSPA-SR

- Use of wind speed data that extend to the height of the eruptive column
- New analyses of the probability of dike intrusion, considering changes in layout parameters and alternate models of eruptive center development
- Characterization of uncertainty associated with emplacement drift damage zones due to igneous intrusion
- Evaluation of dose sensitivity to waste particle size distribution in an igneous eruption

Yucca Mountain Project/Preliminary Predecisional Draft Materials

Effect of Updated Solubility Model

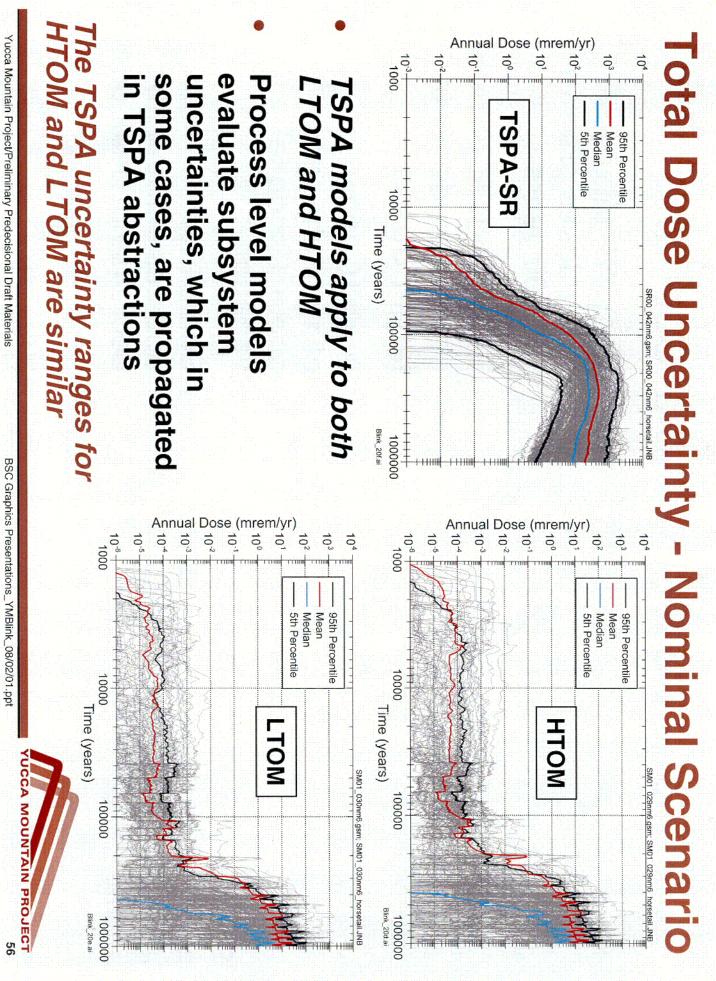

Improvements in Np solubility reduce doses by about 10x

Yucca Mountain Project/Preliminary Predecisional Draft Materials

YUCCA MOUNTAIN PROJECT

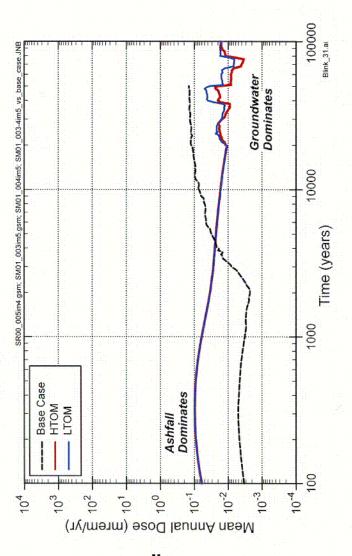
, L

Total Dose - Nominal Scenario



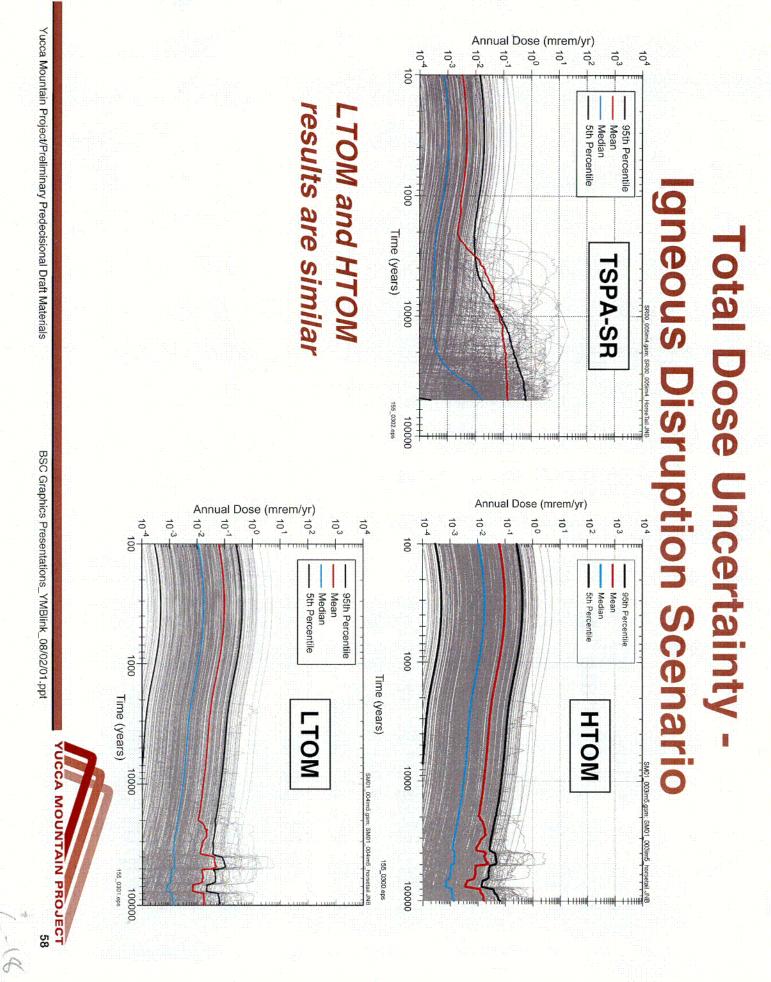
Because most WP failures are well beyond the thermal pulse, HTOM and LTOM mean dose rates are similar

- Early WP failure small doses prior to 100,000 years
- T-dependent general corrosion delay in larger doses
- Post 10,000 year climate changes about 10x dose variation
- Solubility updates—about 10x decrease in peak dose



Yucca Mountain Project/Preliminary Predecisional Draft Materials

Supplemental TSPA Model Results **Igneous Disruption**


- Eruptive doses increase by ~20x, dominate for >10 kyr
- Changes in probability, BDCFs, wind speed, # of packages damaged
- Intrusive groundwater doses peak with 38 kyr climate change
- Overall peak probabilityweighted dose is similar to base case, but dominant pathway shifts from groundwater to eruptive ashfall

Yucca Mountain Project/Preliminary Predecisional Draft Materials

BSC Graphics Presentations_YMBlink_08/02/01.ppt

Process Model Effects on Dose

- Updated Np solubility 10x peak dose decrease
- 1,000,000 year climate model 10x dose variation
- Temperature-dependent general corrosion
 - 700,000 year delay in peak dose
 - ~350,000 year delay in 1 mrem/yr dose rate
- Early failure of a few WPs dose rate ~10⁻⁴ mrem/yr

Yucca Mountain Project/Preliminary Predecisional Draft Materials

· - *

Yucca Mountain Project/Preliminary Predecisional Draft Materials

